1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <linux/bpf_mem_alloc.h> 30 #include <net/xdp.h> 31 #include <linux/trace_events.h> 32 #include <linux/kallsyms.h> 33 34 #include "disasm.h" 35 36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 38 [_id] = & _name ## _verifier_ops, 39 #define BPF_MAP_TYPE(_id, _ops) 40 #define BPF_LINK_TYPE(_id, _name) 41 #include <linux/bpf_types.h> 42 #undef BPF_PROG_TYPE 43 #undef BPF_MAP_TYPE 44 #undef BPF_LINK_TYPE 45 }; 46 47 enum bpf_features { 48 BPF_FEAT_RDONLY_CAST_TO_VOID = 0, 49 BPF_FEAT_STREAMS = 1, 50 __MAX_BPF_FEAT, 51 }; 52 53 struct bpf_mem_alloc bpf_global_percpu_ma; 54 static bool bpf_global_percpu_ma_set; 55 56 /* bpf_check() is a static code analyzer that walks eBPF program 57 * instruction by instruction and updates register/stack state. 58 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 59 * 60 * The first pass is depth-first-search to check that the program is a DAG. 61 * It rejects the following programs: 62 * - larger than BPF_MAXINSNS insns 63 * - if loop is present (detected via back-edge) 64 * - unreachable insns exist (shouldn't be a forest. program = one function) 65 * - out of bounds or malformed jumps 66 * The second pass is all possible path descent from the 1st insn. 67 * Since it's analyzing all paths through the program, the length of the 68 * analysis is limited to 64k insn, which may be hit even if total number of 69 * insn is less then 4K, but there are too many branches that change stack/regs. 70 * Number of 'branches to be analyzed' is limited to 1k 71 * 72 * On entry to each instruction, each register has a type, and the instruction 73 * changes the types of the registers depending on instruction semantics. 74 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 75 * copied to R1. 76 * 77 * All registers are 64-bit. 78 * R0 - return register 79 * R1-R5 argument passing registers 80 * R6-R9 callee saved registers 81 * R10 - frame pointer read-only 82 * 83 * At the start of BPF program the register R1 contains a pointer to bpf_context 84 * and has type PTR_TO_CTX. 85 * 86 * Verifier tracks arithmetic operations on pointers in case: 87 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 88 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 89 * 1st insn copies R10 (which has FRAME_PTR) type into R1 90 * and 2nd arithmetic instruction is pattern matched to recognize 91 * that it wants to construct a pointer to some element within stack. 92 * So after 2nd insn, the register R1 has type PTR_TO_STACK 93 * (and -20 constant is saved for further stack bounds checking). 94 * Meaning that this reg is a pointer to stack plus known immediate constant. 95 * 96 * Most of the time the registers have SCALAR_VALUE type, which 97 * means the register has some value, but it's not a valid pointer. 98 * (like pointer plus pointer becomes SCALAR_VALUE type) 99 * 100 * When verifier sees load or store instructions the type of base register 101 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 102 * four pointer types recognized by check_mem_access() function. 103 * 104 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 105 * and the range of [ptr, ptr + map's value_size) is accessible. 106 * 107 * registers used to pass values to function calls are checked against 108 * function argument constraints. 109 * 110 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 111 * It means that the register type passed to this function must be 112 * PTR_TO_STACK and it will be used inside the function as 113 * 'pointer to map element key' 114 * 115 * For example the argument constraints for bpf_map_lookup_elem(): 116 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 117 * .arg1_type = ARG_CONST_MAP_PTR, 118 * .arg2_type = ARG_PTR_TO_MAP_KEY, 119 * 120 * ret_type says that this function returns 'pointer to map elem value or null' 121 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 122 * 2nd argument should be a pointer to stack, which will be used inside 123 * the helper function as a pointer to map element key. 124 * 125 * On the kernel side the helper function looks like: 126 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 127 * { 128 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 129 * void *key = (void *) (unsigned long) r2; 130 * void *value; 131 * 132 * here kernel can access 'key' and 'map' pointers safely, knowing that 133 * [key, key + map->key_size) bytes are valid and were initialized on 134 * the stack of eBPF program. 135 * } 136 * 137 * Corresponding eBPF program may look like: 138 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 139 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 140 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 141 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 142 * here verifier looks at prototype of map_lookup_elem() and sees: 143 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 144 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 145 * 146 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 147 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 148 * and were initialized prior to this call. 149 * If it's ok, then verifier allows this BPF_CALL insn and looks at 150 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 151 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 152 * returns either pointer to map value or NULL. 153 * 154 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 155 * insn, the register holding that pointer in the true branch changes state to 156 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 157 * branch. See check_cond_jmp_op(). 158 * 159 * After the call R0 is set to return type of the function and registers R1-R5 160 * are set to NOT_INIT to indicate that they are no longer readable. 161 * 162 * The following reference types represent a potential reference to a kernel 163 * resource which, after first being allocated, must be checked and freed by 164 * the BPF program: 165 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 166 * 167 * When the verifier sees a helper call return a reference type, it allocates a 168 * pointer id for the reference and stores it in the current function state. 169 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 170 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 171 * passes through a NULL-check conditional. For the branch wherein the state is 172 * changed to CONST_IMM, the verifier releases the reference. 173 * 174 * For each helper function that allocates a reference, such as 175 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 176 * bpf_sk_release(). When a reference type passes into the release function, 177 * the verifier also releases the reference. If any unchecked or unreleased 178 * reference remains at the end of the program, the verifier rejects it. 179 */ 180 181 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 182 struct bpf_verifier_stack_elem { 183 /* verifier state is 'st' 184 * before processing instruction 'insn_idx' 185 * and after processing instruction 'prev_insn_idx' 186 */ 187 struct bpf_verifier_state st; 188 int insn_idx; 189 int prev_insn_idx; 190 struct bpf_verifier_stack_elem *next; 191 /* length of verifier log at the time this state was pushed on stack */ 192 u32 log_pos; 193 }; 194 195 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 196 #define BPF_COMPLEXITY_LIMIT_STATES 64 197 198 #define BPF_MAP_KEY_POISON (1ULL << 63) 199 #define BPF_MAP_KEY_SEEN (1ULL << 62) 200 201 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512 202 203 #define BPF_PRIV_STACK_MIN_SIZE 64 204 205 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx); 206 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id); 207 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 208 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 209 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 210 static int ref_set_non_owning(struct bpf_verifier_env *env, 211 struct bpf_reg_state *reg); 212 static void specialize_kfunc(struct bpf_verifier_env *env, 213 u32 func_id, u16 offset, unsigned long *addr); 214 static bool is_trusted_reg(const struct bpf_reg_state *reg); 215 216 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 217 { 218 return aux->map_ptr_state.poison; 219 } 220 221 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 222 { 223 return aux->map_ptr_state.unpriv; 224 } 225 226 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 227 struct bpf_map *map, 228 bool unpriv, bool poison) 229 { 230 unpriv |= bpf_map_ptr_unpriv(aux); 231 aux->map_ptr_state.unpriv = unpriv; 232 aux->map_ptr_state.poison = poison; 233 aux->map_ptr_state.map_ptr = map; 234 } 235 236 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 237 { 238 return aux->map_key_state & BPF_MAP_KEY_POISON; 239 } 240 241 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 242 { 243 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 244 } 245 246 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 247 { 248 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 249 } 250 251 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 252 { 253 bool poisoned = bpf_map_key_poisoned(aux); 254 255 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 256 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 257 } 258 259 static bool bpf_helper_call(const struct bpf_insn *insn) 260 { 261 return insn->code == (BPF_JMP | BPF_CALL) && 262 insn->src_reg == 0; 263 } 264 265 static bool bpf_pseudo_call(const struct bpf_insn *insn) 266 { 267 return insn->code == (BPF_JMP | BPF_CALL) && 268 insn->src_reg == BPF_PSEUDO_CALL; 269 } 270 271 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 272 { 273 return insn->code == (BPF_JMP | BPF_CALL) && 274 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 275 } 276 277 struct bpf_call_arg_meta { 278 struct bpf_map *map_ptr; 279 bool raw_mode; 280 bool pkt_access; 281 u8 release_regno; 282 int regno; 283 int access_size; 284 int mem_size; 285 u64 msize_max_value; 286 int ref_obj_id; 287 int dynptr_id; 288 int map_uid; 289 int func_id; 290 struct btf *btf; 291 u32 btf_id; 292 struct btf *ret_btf; 293 u32 ret_btf_id; 294 u32 subprogno; 295 struct btf_field *kptr_field; 296 s64 const_map_key; 297 }; 298 299 struct bpf_kfunc_call_arg_meta { 300 /* In parameters */ 301 struct btf *btf; 302 u32 func_id; 303 u32 kfunc_flags; 304 const struct btf_type *func_proto; 305 const char *func_name; 306 /* Out parameters */ 307 u32 ref_obj_id; 308 u8 release_regno; 309 bool r0_rdonly; 310 u32 ret_btf_id; 311 u64 r0_size; 312 u32 subprogno; 313 struct { 314 u64 value; 315 bool found; 316 } arg_constant; 317 318 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 319 * generally to pass info about user-defined local kptr types to later 320 * verification logic 321 * bpf_obj_drop/bpf_percpu_obj_drop 322 * Record the local kptr type to be drop'd 323 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 324 * Record the local kptr type to be refcount_incr'd and use 325 * arg_owning_ref to determine whether refcount_acquire should be 326 * fallible 327 */ 328 struct btf *arg_btf; 329 u32 arg_btf_id; 330 bool arg_owning_ref; 331 bool arg_prog; 332 333 struct { 334 struct btf_field *field; 335 } arg_list_head; 336 struct { 337 struct btf_field *field; 338 } arg_rbtree_root; 339 struct { 340 enum bpf_dynptr_type type; 341 u32 id; 342 u32 ref_obj_id; 343 } initialized_dynptr; 344 struct { 345 u8 spi; 346 u8 frameno; 347 } iter; 348 struct { 349 struct bpf_map *ptr; 350 int uid; 351 } map; 352 u64 mem_size; 353 }; 354 355 struct btf *btf_vmlinux; 356 357 static const char *btf_type_name(const struct btf *btf, u32 id) 358 { 359 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 360 } 361 362 static DEFINE_MUTEX(bpf_verifier_lock); 363 static DEFINE_MUTEX(bpf_percpu_ma_lock); 364 365 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 366 { 367 struct bpf_verifier_env *env = private_data; 368 va_list args; 369 370 if (!bpf_verifier_log_needed(&env->log)) 371 return; 372 373 va_start(args, fmt); 374 bpf_verifier_vlog(&env->log, fmt, args); 375 va_end(args); 376 } 377 378 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 379 struct bpf_reg_state *reg, 380 struct bpf_retval_range range, const char *ctx, 381 const char *reg_name) 382 { 383 bool unknown = true; 384 385 verbose(env, "%s the register %s has", ctx, reg_name); 386 if (reg->smin_value > S64_MIN) { 387 verbose(env, " smin=%lld", reg->smin_value); 388 unknown = false; 389 } 390 if (reg->smax_value < S64_MAX) { 391 verbose(env, " smax=%lld", reg->smax_value); 392 unknown = false; 393 } 394 if (unknown) 395 verbose(env, " unknown scalar value"); 396 verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval); 397 } 398 399 static bool reg_not_null(const struct bpf_reg_state *reg) 400 { 401 enum bpf_reg_type type; 402 403 type = reg->type; 404 if (type_may_be_null(type)) 405 return false; 406 407 type = base_type(type); 408 return type == PTR_TO_SOCKET || 409 type == PTR_TO_TCP_SOCK || 410 type == PTR_TO_MAP_VALUE || 411 type == PTR_TO_MAP_KEY || 412 type == PTR_TO_SOCK_COMMON || 413 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 414 (type == PTR_TO_MEM && !(reg->type & PTR_UNTRUSTED)) || 415 type == CONST_PTR_TO_MAP; 416 } 417 418 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 419 { 420 struct btf_record *rec = NULL; 421 struct btf_struct_meta *meta; 422 423 if (reg->type == PTR_TO_MAP_VALUE) { 424 rec = reg->map_ptr->record; 425 } else if (type_is_ptr_alloc_obj(reg->type)) { 426 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 427 if (meta) 428 rec = meta->record; 429 } 430 return rec; 431 } 432 433 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 434 { 435 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 436 437 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 438 } 439 440 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog) 441 { 442 struct bpf_func_info *info; 443 444 if (!env->prog->aux->func_info) 445 return ""; 446 447 info = &env->prog->aux->func_info[subprog]; 448 return btf_type_name(env->prog->aux->btf, info->type_id); 449 } 450 451 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog) 452 { 453 struct bpf_subprog_info *info = subprog_info(env, subprog); 454 455 info->is_cb = true; 456 info->is_async_cb = true; 457 info->is_exception_cb = true; 458 } 459 460 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog) 461 { 462 return subprog_info(env, subprog)->is_exception_cb; 463 } 464 465 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 466 { 467 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK); 468 } 469 470 static bool type_is_rdonly_mem(u32 type) 471 { 472 return type & MEM_RDONLY; 473 } 474 475 static bool is_acquire_function(enum bpf_func_id func_id, 476 const struct bpf_map *map) 477 { 478 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 479 480 if (func_id == BPF_FUNC_sk_lookup_tcp || 481 func_id == BPF_FUNC_sk_lookup_udp || 482 func_id == BPF_FUNC_skc_lookup_tcp || 483 func_id == BPF_FUNC_ringbuf_reserve || 484 func_id == BPF_FUNC_kptr_xchg) 485 return true; 486 487 if (func_id == BPF_FUNC_map_lookup_elem && 488 (map_type == BPF_MAP_TYPE_SOCKMAP || 489 map_type == BPF_MAP_TYPE_SOCKHASH)) 490 return true; 491 492 return false; 493 } 494 495 static bool is_ptr_cast_function(enum bpf_func_id func_id) 496 { 497 return func_id == BPF_FUNC_tcp_sock || 498 func_id == BPF_FUNC_sk_fullsock || 499 func_id == BPF_FUNC_skc_to_tcp_sock || 500 func_id == BPF_FUNC_skc_to_tcp6_sock || 501 func_id == BPF_FUNC_skc_to_udp6_sock || 502 func_id == BPF_FUNC_skc_to_mptcp_sock || 503 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 504 func_id == BPF_FUNC_skc_to_tcp_request_sock; 505 } 506 507 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 508 { 509 return func_id == BPF_FUNC_dynptr_data; 510 } 511 512 static bool is_sync_callback_calling_kfunc(u32 btf_id); 513 static bool is_async_callback_calling_kfunc(u32 btf_id); 514 static bool is_callback_calling_kfunc(u32 btf_id); 515 static bool is_bpf_throw_kfunc(struct bpf_insn *insn); 516 517 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id); 518 519 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 520 { 521 return func_id == BPF_FUNC_for_each_map_elem || 522 func_id == BPF_FUNC_find_vma || 523 func_id == BPF_FUNC_loop || 524 func_id == BPF_FUNC_user_ringbuf_drain; 525 } 526 527 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 528 { 529 return func_id == BPF_FUNC_timer_set_callback; 530 } 531 532 static bool is_callback_calling_function(enum bpf_func_id func_id) 533 { 534 return is_sync_callback_calling_function(func_id) || 535 is_async_callback_calling_function(func_id); 536 } 537 538 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 539 { 540 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 541 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 542 } 543 544 static bool is_async_callback_calling_insn(struct bpf_insn *insn) 545 { 546 return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) || 547 (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm)); 548 } 549 550 static bool is_may_goto_insn(struct bpf_insn *insn) 551 { 552 return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO; 553 } 554 555 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx) 556 { 557 return is_may_goto_insn(&env->prog->insnsi[insn_idx]); 558 } 559 560 static bool is_storage_get_function(enum bpf_func_id func_id) 561 { 562 return func_id == BPF_FUNC_sk_storage_get || 563 func_id == BPF_FUNC_inode_storage_get || 564 func_id == BPF_FUNC_task_storage_get || 565 func_id == BPF_FUNC_cgrp_storage_get; 566 } 567 568 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 569 const struct bpf_map *map) 570 { 571 int ref_obj_uses = 0; 572 573 if (is_ptr_cast_function(func_id)) 574 ref_obj_uses++; 575 if (is_acquire_function(func_id, map)) 576 ref_obj_uses++; 577 if (is_dynptr_ref_function(func_id)) 578 ref_obj_uses++; 579 580 return ref_obj_uses > 1; 581 } 582 583 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 584 { 585 return BPF_CLASS(insn->code) == BPF_STX && 586 BPF_MODE(insn->code) == BPF_ATOMIC && 587 insn->imm == BPF_CMPXCHG; 588 } 589 590 static bool is_atomic_load_insn(const struct bpf_insn *insn) 591 { 592 return BPF_CLASS(insn->code) == BPF_STX && 593 BPF_MODE(insn->code) == BPF_ATOMIC && 594 insn->imm == BPF_LOAD_ACQ; 595 } 596 597 static int __get_spi(s32 off) 598 { 599 return (-off - 1) / BPF_REG_SIZE; 600 } 601 602 static struct bpf_func_state *func(struct bpf_verifier_env *env, 603 const struct bpf_reg_state *reg) 604 { 605 struct bpf_verifier_state *cur = env->cur_state; 606 607 return cur->frame[reg->frameno]; 608 } 609 610 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 611 { 612 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 613 614 /* We need to check that slots between [spi - nr_slots + 1, spi] are 615 * within [0, allocated_stack). 616 * 617 * Please note that the spi grows downwards. For example, a dynptr 618 * takes the size of two stack slots; the first slot will be at 619 * spi and the second slot will be at spi - 1. 620 */ 621 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 622 } 623 624 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 625 const char *obj_kind, int nr_slots) 626 { 627 int off, spi; 628 629 if (!tnum_is_const(reg->var_off)) { 630 verbose(env, "%s has to be at a constant offset\n", obj_kind); 631 return -EINVAL; 632 } 633 634 off = reg->off + reg->var_off.value; 635 if (off % BPF_REG_SIZE) { 636 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 637 return -EINVAL; 638 } 639 640 spi = __get_spi(off); 641 if (spi + 1 < nr_slots) { 642 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 643 return -EINVAL; 644 } 645 646 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 647 return -ERANGE; 648 return spi; 649 } 650 651 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 652 { 653 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 654 } 655 656 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 657 { 658 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 659 } 660 661 static int irq_flag_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 662 { 663 return stack_slot_obj_get_spi(env, reg, "irq_flag", 1); 664 } 665 666 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 667 { 668 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 669 case DYNPTR_TYPE_LOCAL: 670 return BPF_DYNPTR_TYPE_LOCAL; 671 case DYNPTR_TYPE_RINGBUF: 672 return BPF_DYNPTR_TYPE_RINGBUF; 673 case DYNPTR_TYPE_SKB: 674 return BPF_DYNPTR_TYPE_SKB; 675 case DYNPTR_TYPE_XDP: 676 return BPF_DYNPTR_TYPE_XDP; 677 case DYNPTR_TYPE_SKB_META: 678 return BPF_DYNPTR_TYPE_SKB_META; 679 default: 680 return BPF_DYNPTR_TYPE_INVALID; 681 } 682 } 683 684 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 685 { 686 switch (type) { 687 case BPF_DYNPTR_TYPE_LOCAL: 688 return DYNPTR_TYPE_LOCAL; 689 case BPF_DYNPTR_TYPE_RINGBUF: 690 return DYNPTR_TYPE_RINGBUF; 691 case BPF_DYNPTR_TYPE_SKB: 692 return DYNPTR_TYPE_SKB; 693 case BPF_DYNPTR_TYPE_XDP: 694 return DYNPTR_TYPE_XDP; 695 case BPF_DYNPTR_TYPE_SKB_META: 696 return DYNPTR_TYPE_SKB_META; 697 default: 698 return 0; 699 } 700 } 701 702 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 703 { 704 return type == BPF_DYNPTR_TYPE_RINGBUF; 705 } 706 707 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 708 enum bpf_dynptr_type type, 709 bool first_slot, int dynptr_id); 710 711 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 712 struct bpf_reg_state *reg); 713 714 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 715 struct bpf_reg_state *sreg1, 716 struct bpf_reg_state *sreg2, 717 enum bpf_dynptr_type type) 718 { 719 int id = ++env->id_gen; 720 721 __mark_dynptr_reg(sreg1, type, true, id); 722 __mark_dynptr_reg(sreg2, type, false, id); 723 } 724 725 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 726 struct bpf_reg_state *reg, 727 enum bpf_dynptr_type type) 728 { 729 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 730 } 731 732 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 733 struct bpf_func_state *state, int spi); 734 735 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 736 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 737 { 738 struct bpf_func_state *state = func(env, reg); 739 enum bpf_dynptr_type type; 740 int spi, i, err; 741 742 spi = dynptr_get_spi(env, reg); 743 if (spi < 0) 744 return spi; 745 746 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 747 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 748 * to ensure that for the following example: 749 * [d1][d1][d2][d2] 750 * spi 3 2 1 0 751 * So marking spi = 2 should lead to destruction of both d1 and d2. In 752 * case they do belong to same dynptr, second call won't see slot_type 753 * as STACK_DYNPTR and will simply skip destruction. 754 */ 755 err = destroy_if_dynptr_stack_slot(env, state, spi); 756 if (err) 757 return err; 758 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 759 if (err) 760 return err; 761 762 for (i = 0; i < BPF_REG_SIZE; i++) { 763 state->stack[spi].slot_type[i] = STACK_DYNPTR; 764 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 765 } 766 767 type = arg_to_dynptr_type(arg_type); 768 if (type == BPF_DYNPTR_TYPE_INVALID) 769 return -EINVAL; 770 771 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 772 &state->stack[spi - 1].spilled_ptr, type); 773 774 if (dynptr_type_refcounted(type)) { 775 /* The id is used to track proper releasing */ 776 int id; 777 778 if (clone_ref_obj_id) 779 id = clone_ref_obj_id; 780 else 781 id = acquire_reference(env, insn_idx); 782 783 if (id < 0) 784 return id; 785 786 state->stack[spi].spilled_ptr.ref_obj_id = id; 787 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 788 } 789 790 bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi)); 791 792 return 0; 793 } 794 795 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 796 { 797 int i; 798 799 for (i = 0; i < BPF_REG_SIZE; i++) { 800 state->stack[spi].slot_type[i] = STACK_INVALID; 801 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 802 } 803 804 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 805 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 806 807 bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi)); 808 } 809 810 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 811 { 812 struct bpf_func_state *state = func(env, reg); 813 int spi, ref_obj_id, i; 814 815 spi = dynptr_get_spi(env, reg); 816 if (spi < 0) 817 return spi; 818 819 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 820 invalidate_dynptr(env, state, spi); 821 return 0; 822 } 823 824 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 825 826 /* If the dynptr has a ref_obj_id, then we need to invalidate 827 * two things: 828 * 829 * 1) Any dynptrs with a matching ref_obj_id (clones) 830 * 2) Any slices derived from this dynptr. 831 */ 832 833 /* Invalidate any slices associated with this dynptr */ 834 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 835 836 /* Invalidate any dynptr clones */ 837 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 838 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 839 continue; 840 841 /* it should always be the case that if the ref obj id 842 * matches then the stack slot also belongs to a 843 * dynptr 844 */ 845 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 846 verifier_bug(env, "misconfigured ref_obj_id"); 847 return -EFAULT; 848 } 849 if (state->stack[i].spilled_ptr.dynptr.first_slot) 850 invalidate_dynptr(env, state, i); 851 } 852 853 return 0; 854 } 855 856 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 857 struct bpf_reg_state *reg); 858 859 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 860 { 861 if (!env->allow_ptr_leaks) 862 __mark_reg_not_init(env, reg); 863 else 864 __mark_reg_unknown(env, reg); 865 } 866 867 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 868 struct bpf_func_state *state, int spi) 869 { 870 struct bpf_func_state *fstate; 871 struct bpf_reg_state *dreg; 872 int i, dynptr_id; 873 874 /* We always ensure that STACK_DYNPTR is never set partially, 875 * hence just checking for slot_type[0] is enough. This is 876 * different for STACK_SPILL, where it may be only set for 877 * 1 byte, so code has to use is_spilled_reg. 878 */ 879 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 880 return 0; 881 882 /* Reposition spi to first slot */ 883 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 884 spi = spi + 1; 885 886 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 887 verbose(env, "cannot overwrite referenced dynptr\n"); 888 return -EINVAL; 889 } 890 891 mark_stack_slot_scratched(env, spi); 892 mark_stack_slot_scratched(env, spi - 1); 893 894 /* Writing partially to one dynptr stack slot destroys both. */ 895 for (i = 0; i < BPF_REG_SIZE; i++) { 896 state->stack[spi].slot_type[i] = STACK_INVALID; 897 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 898 } 899 900 dynptr_id = state->stack[spi].spilled_ptr.id; 901 /* Invalidate any slices associated with this dynptr */ 902 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 903 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 904 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 905 continue; 906 if (dreg->dynptr_id == dynptr_id) 907 mark_reg_invalid(env, dreg); 908 })); 909 910 /* Do not release reference state, we are destroying dynptr on stack, 911 * not using some helper to release it. Just reset register. 912 */ 913 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 914 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 915 916 bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi)); 917 918 return 0; 919 } 920 921 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 922 { 923 int spi; 924 925 if (reg->type == CONST_PTR_TO_DYNPTR) 926 return false; 927 928 spi = dynptr_get_spi(env, reg); 929 930 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 931 * error because this just means the stack state hasn't been updated yet. 932 * We will do check_mem_access to check and update stack bounds later. 933 */ 934 if (spi < 0 && spi != -ERANGE) 935 return false; 936 937 /* We don't need to check if the stack slots are marked by previous 938 * dynptr initializations because we allow overwriting existing unreferenced 939 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 940 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 941 * touching are completely destructed before we reinitialize them for a new 942 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 943 * instead of delaying it until the end where the user will get "Unreleased 944 * reference" error. 945 */ 946 return true; 947 } 948 949 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 950 { 951 struct bpf_func_state *state = func(env, reg); 952 int i, spi; 953 954 /* This already represents first slot of initialized bpf_dynptr. 955 * 956 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 957 * check_func_arg_reg_off's logic, so we don't need to check its 958 * offset and alignment. 959 */ 960 if (reg->type == CONST_PTR_TO_DYNPTR) 961 return true; 962 963 spi = dynptr_get_spi(env, reg); 964 if (spi < 0) 965 return false; 966 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 967 return false; 968 969 for (i = 0; i < BPF_REG_SIZE; i++) { 970 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 971 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 972 return false; 973 } 974 975 return true; 976 } 977 978 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 979 enum bpf_arg_type arg_type) 980 { 981 struct bpf_func_state *state = func(env, reg); 982 enum bpf_dynptr_type dynptr_type; 983 int spi; 984 985 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 986 if (arg_type == ARG_PTR_TO_DYNPTR) 987 return true; 988 989 dynptr_type = arg_to_dynptr_type(arg_type); 990 if (reg->type == CONST_PTR_TO_DYNPTR) { 991 return reg->dynptr.type == dynptr_type; 992 } else { 993 spi = dynptr_get_spi(env, reg); 994 if (spi < 0) 995 return false; 996 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 997 } 998 } 999 1000 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1001 1002 static bool in_rcu_cs(struct bpf_verifier_env *env); 1003 1004 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); 1005 1006 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1007 struct bpf_kfunc_call_arg_meta *meta, 1008 struct bpf_reg_state *reg, int insn_idx, 1009 struct btf *btf, u32 btf_id, int nr_slots) 1010 { 1011 struct bpf_func_state *state = func(env, reg); 1012 int spi, i, j, id; 1013 1014 spi = iter_get_spi(env, reg, nr_slots); 1015 if (spi < 0) 1016 return spi; 1017 1018 id = acquire_reference(env, insn_idx); 1019 if (id < 0) 1020 return id; 1021 1022 for (i = 0; i < nr_slots; i++) { 1023 struct bpf_stack_state *slot = &state->stack[spi - i]; 1024 struct bpf_reg_state *st = &slot->spilled_ptr; 1025 1026 __mark_reg_known_zero(st); 1027 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1028 if (is_kfunc_rcu_protected(meta)) { 1029 if (in_rcu_cs(env)) 1030 st->type |= MEM_RCU; 1031 else 1032 st->type |= PTR_UNTRUSTED; 1033 } 1034 st->ref_obj_id = i == 0 ? id : 0; 1035 st->iter.btf = btf; 1036 st->iter.btf_id = btf_id; 1037 st->iter.state = BPF_ITER_STATE_ACTIVE; 1038 st->iter.depth = 0; 1039 1040 for (j = 0; j < BPF_REG_SIZE; j++) 1041 slot->slot_type[j] = STACK_ITER; 1042 1043 bpf_mark_stack_write(env, state->frameno, BIT(spi - i)); 1044 mark_stack_slot_scratched(env, spi - i); 1045 } 1046 1047 return 0; 1048 } 1049 1050 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1051 struct bpf_reg_state *reg, int nr_slots) 1052 { 1053 struct bpf_func_state *state = func(env, reg); 1054 int spi, i, j; 1055 1056 spi = iter_get_spi(env, reg, nr_slots); 1057 if (spi < 0) 1058 return spi; 1059 1060 for (i = 0; i < nr_slots; i++) { 1061 struct bpf_stack_state *slot = &state->stack[spi - i]; 1062 struct bpf_reg_state *st = &slot->spilled_ptr; 1063 1064 if (i == 0) 1065 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1066 1067 __mark_reg_not_init(env, st); 1068 1069 for (j = 0; j < BPF_REG_SIZE; j++) 1070 slot->slot_type[j] = STACK_INVALID; 1071 1072 bpf_mark_stack_write(env, state->frameno, BIT(spi - i)); 1073 mark_stack_slot_scratched(env, spi - i); 1074 } 1075 1076 return 0; 1077 } 1078 1079 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1080 struct bpf_reg_state *reg, int nr_slots) 1081 { 1082 struct bpf_func_state *state = func(env, reg); 1083 int spi, i, j; 1084 1085 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1086 * will do check_mem_access to check and update stack bounds later, so 1087 * return true for that case. 1088 */ 1089 spi = iter_get_spi(env, reg, nr_slots); 1090 if (spi == -ERANGE) 1091 return true; 1092 if (spi < 0) 1093 return false; 1094 1095 for (i = 0; i < nr_slots; i++) { 1096 struct bpf_stack_state *slot = &state->stack[spi - i]; 1097 1098 for (j = 0; j < BPF_REG_SIZE; j++) 1099 if (slot->slot_type[j] == STACK_ITER) 1100 return false; 1101 } 1102 1103 return true; 1104 } 1105 1106 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1107 struct btf *btf, u32 btf_id, int nr_slots) 1108 { 1109 struct bpf_func_state *state = func(env, reg); 1110 int spi, i, j; 1111 1112 spi = iter_get_spi(env, reg, nr_slots); 1113 if (spi < 0) 1114 return -EINVAL; 1115 1116 for (i = 0; i < nr_slots; i++) { 1117 struct bpf_stack_state *slot = &state->stack[spi - i]; 1118 struct bpf_reg_state *st = &slot->spilled_ptr; 1119 1120 if (st->type & PTR_UNTRUSTED) 1121 return -EPROTO; 1122 /* only main (first) slot has ref_obj_id set */ 1123 if (i == 0 && !st->ref_obj_id) 1124 return -EINVAL; 1125 if (i != 0 && st->ref_obj_id) 1126 return -EINVAL; 1127 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1128 return -EINVAL; 1129 1130 for (j = 0; j < BPF_REG_SIZE; j++) 1131 if (slot->slot_type[j] != STACK_ITER) 1132 return -EINVAL; 1133 } 1134 1135 return 0; 1136 } 1137 1138 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx); 1139 static int release_irq_state(struct bpf_verifier_state *state, int id); 1140 1141 static int mark_stack_slot_irq_flag(struct bpf_verifier_env *env, 1142 struct bpf_kfunc_call_arg_meta *meta, 1143 struct bpf_reg_state *reg, int insn_idx, 1144 int kfunc_class) 1145 { 1146 struct bpf_func_state *state = func(env, reg); 1147 struct bpf_stack_state *slot; 1148 struct bpf_reg_state *st; 1149 int spi, i, id; 1150 1151 spi = irq_flag_get_spi(env, reg); 1152 if (spi < 0) 1153 return spi; 1154 1155 id = acquire_irq_state(env, insn_idx); 1156 if (id < 0) 1157 return id; 1158 1159 slot = &state->stack[spi]; 1160 st = &slot->spilled_ptr; 1161 1162 bpf_mark_stack_write(env, reg->frameno, BIT(spi)); 1163 __mark_reg_known_zero(st); 1164 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1165 st->ref_obj_id = id; 1166 st->irq.kfunc_class = kfunc_class; 1167 1168 for (i = 0; i < BPF_REG_SIZE; i++) 1169 slot->slot_type[i] = STACK_IRQ_FLAG; 1170 1171 mark_stack_slot_scratched(env, spi); 1172 return 0; 1173 } 1174 1175 static int unmark_stack_slot_irq_flag(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1176 int kfunc_class) 1177 { 1178 struct bpf_func_state *state = func(env, reg); 1179 struct bpf_stack_state *slot; 1180 struct bpf_reg_state *st; 1181 int spi, i, err; 1182 1183 spi = irq_flag_get_spi(env, reg); 1184 if (spi < 0) 1185 return spi; 1186 1187 slot = &state->stack[spi]; 1188 st = &slot->spilled_ptr; 1189 1190 if (st->irq.kfunc_class != kfunc_class) { 1191 const char *flag_kfunc = st->irq.kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock"; 1192 const char *used_kfunc = kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock"; 1193 1194 verbose(env, "irq flag acquired by %s kfuncs cannot be restored with %s kfuncs\n", 1195 flag_kfunc, used_kfunc); 1196 return -EINVAL; 1197 } 1198 1199 err = release_irq_state(env->cur_state, st->ref_obj_id); 1200 WARN_ON_ONCE(err && err != -EACCES); 1201 if (err) { 1202 int insn_idx = 0; 1203 1204 for (int i = 0; i < env->cur_state->acquired_refs; i++) { 1205 if (env->cur_state->refs[i].id == env->cur_state->active_irq_id) { 1206 insn_idx = env->cur_state->refs[i].insn_idx; 1207 break; 1208 } 1209 } 1210 1211 verbose(env, "cannot restore irq state out of order, expected id=%d acquired at insn_idx=%d\n", 1212 env->cur_state->active_irq_id, insn_idx); 1213 return err; 1214 } 1215 1216 __mark_reg_not_init(env, st); 1217 1218 bpf_mark_stack_write(env, reg->frameno, BIT(spi)); 1219 1220 for (i = 0; i < BPF_REG_SIZE; i++) 1221 slot->slot_type[i] = STACK_INVALID; 1222 1223 mark_stack_slot_scratched(env, spi); 1224 return 0; 1225 } 1226 1227 static bool is_irq_flag_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1228 { 1229 struct bpf_func_state *state = func(env, reg); 1230 struct bpf_stack_state *slot; 1231 int spi, i; 1232 1233 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1234 * will do check_mem_access to check and update stack bounds later, so 1235 * return true for that case. 1236 */ 1237 spi = irq_flag_get_spi(env, reg); 1238 if (spi == -ERANGE) 1239 return true; 1240 if (spi < 0) 1241 return false; 1242 1243 slot = &state->stack[spi]; 1244 1245 for (i = 0; i < BPF_REG_SIZE; i++) 1246 if (slot->slot_type[i] == STACK_IRQ_FLAG) 1247 return false; 1248 return true; 1249 } 1250 1251 static int is_irq_flag_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1252 { 1253 struct bpf_func_state *state = func(env, reg); 1254 struct bpf_stack_state *slot; 1255 struct bpf_reg_state *st; 1256 int spi, i; 1257 1258 spi = irq_flag_get_spi(env, reg); 1259 if (spi < 0) 1260 return -EINVAL; 1261 1262 slot = &state->stack[spi]; 1263 st = &slot->spilled_ptr; 1264 1265 if (!st->ref_obj_id) 1266 return -EINVAL; 1267 1268 for (i = 0; i < BPF_REG_SIZE; i++) 1269 if (slot->slot_type[i] != STACK_IRQ_FLAG) 1270 return -EINVAL; 1271 return 0; 1272 } 1273 1274 /* Check if given stack slot is "special": 1275 * - spilled register state (STACK_SPILL); 1276 * - dynptr state (STACK_DYNPTR); 1277 * - iter state (STACK_ITER). 1278 * - irq flag state (STACK_IRQ_FLAG) 1279 */ 1280 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1281 { 1282 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1283 1284 switch (type) { 1285 case STACK_SPILL: 1286 case STACK_DYNPTR: 1287 case STACK_ITER: 1288 case STACK_IRQ_FLAG: 1289 return true; 1290 case STACK_INVALID: 1291 case STACK_MISC: 1292 case STACK_ZERO: 1293 return false; 1294 default: 1295 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1296 return true; 1297 } 1298 } 1299 1300 /* The reg state of a pointer or a bounded scalar was saved when 1301 * it was spilled to the stack. 1302 */ 1303 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1304 { 1305 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1306 } 1307 1308 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1309 { 1310 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1311 stack->spilled_ptr.type == SCALAR_VALUE; 1312 } 1313 1314 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack) 1315 { 1316 return stack->slot_type[0] == STACK_SPILL && 1317 stack->spilled_ptr.type == SCALAR_VALUE; 1318 } 1319 1320 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which 1321 * case they are equivalent, or it's STACK_ZERO, in which case we preserve 1322 * more precise STACK_ZERO. 1323 * Regardless of allow_ptr_leaks setting (i.e., privileged or unprivileged 1324 * mode), we won't promote STACK_INVALID to STACK_MISC. In privileged case it is 1325 * unnecessary as both are considered equivalent when loading data and pruning, 1326 * in case of unprivileged mode it will be incorrect to allow reads of invalid 1327 * slots. 1328 */ 1329 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype) 1330 { 1331 if (*stype == STACK_ZERO) 1332 return; 1333 if (*stype == STACK_INVALID) 1334 return; 1335 *stype = STACK_MISC; 1336 } 1337 1338 static void scrub_spilled_slot(u8 *stype) 1339 { 1340 if (*stype != STACK_INVALID) 1341 *stype = STACK_MISC; 1342 } 1343 1344 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1345 * small to hold src. This is different from krealloc since we don't want to preserve 1346 * the contents of dst. 1347 * 1348 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1349 * not be allocated. 1350 */ 1351 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1352 { 1353 size_t alloc_bytes; 1354 void *orig = dst; 1355 size_t bytes; 1356 1357 if (ZERO_OR_NULL_PTR(src)) 1358 goto out; 1359 1360 if (unlikely(check_mul_overflow(n, size, &bytes))) 1361 return NULL; 1362 1363 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1364 dst = krealloc(orig, alloc_bytes, flags); 1365 if (!dst) { 1366 kfree(orig); 1367 return NULL; 1368 } 1369 1370 memcpy(dst, src, bytes); 1371 out: 1372 return dst ? dst : ZERO_SIZE_PTR; 1373 } 1374 1375 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1376 * small to hold new_n items. new items are zeroed out if the array grows. 1377 * 1378 * Contrary to krealloc_array, does not free arr if new_n is zero. 1379 */ 1380 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1381 { 1382 size_t alloc_size; 1383 void *new_arr; 1384 1385 if (!new_n || old_n == new_n) 1386 goto out; 1387 1388 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1389 new_arr = krealloc(arr, alloc_size, GFP_KERNEL_ACCOUNT); 1390 if (!new_arr) { 1391 kfree(arr); 1392 return NULL; 1393 } 1394 arr = new_arr; 1395 1396 if (new_n > old_n) 1397 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1398 1399 out: 1400 return arr ? arr : ZERO_SIZE_PTR; 1401 } 1402 1403 static int copy_reference_state(struct bpf_verifier_state *dst, const struct bpf_verifier_state *src) 1404 { 1405 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1406 sizeof(struct bpf_reference_state), GFP_KERNEL_ACCOUNT); 1407 if (!dst->refs) 1408 return -ENOMEM; 1409 1410 dst->acquired_refs = src->acquired_refs; 1411 dst->active_locks = src->active_locks; 1412 dst->active_preempt_locks = src->active_preempt_locks; 1413 dst->active_rcu_lock = src->active_rcu_lock; 1414 dst->active_irq_id = src->active_irq_id; 1415 dst->active_lock_id = src->active_lock_id; 1416 dst->active_lock_ptr = src->active_lock_ptr; 1417 return 0; 1418 } 1419 1420 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1421 { 1422 size_t n = src->allocated_stack / BPF_REG_SIZE; 1423 1424 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1425 GFP_KERNEL_ACCOUNT); 1426 if (!dst->stack) 1427 return -ENOMEM; 1428 1429 dst->allocated_stack = src->allocated_stack; 1430 return 0; 1431 } 1432 1433 static int resize_reference_state(struct bpf_verifier_state *state, size_t n) 1434 { 1435 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1436 sizeof(struct bpf_reference_state)); 1437 if (!state->refs) 1438 return -ENOMEM; 1439 1440 state->acquired_refs = n; 1441 return 0; 1442 } 1443 1444 /* Possibly update state->allocated_stack to be at least size bytes. Also 1445 * possibly update the function's high-water mark in its bpf_subprog_info. 1446 */ 1447 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1448 { 1449 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n; 1450 1451 /* The stack size is always a multiple of BPF_REG_SIZE. */ 1452 size = round_up(size, BPF_REG_SIZE); 1453 n = size / BPF_REG_SIZE; 1454 1455 if (old_n >= n) 1456 return 0; 1457 1458 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1459 if (!state->stack) 1460 return -ENOMEM; 1461 1462 state->allocated_stack = size; 1463 1464 /* update known max for given subprogram */ 1465 if (env->subprog_info[state->subprogno].stack_depth < size) 1466 env->subprog_info[state->subprogno].stack_depth = size; 1467 1468 return 0; 1469 } 1470 1471 /* Acquire a pointer id from the env and update the state->refs to include 1472 * this new pointer reference. 1473 * On success, returns a valid pointer id to associate with the register 1474 * On failure, returns a negative errno. 1475 */ 1476 static struct bpf_reference_state *acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1477 { 1478 struct bpf_verifier_state *state = env->cur_state; 1479 int new_ofs = state->acquired_refs; 1480 int err; 1481 1482 err = resize_reference_state(state, state->acquired_refs + 1); 1483 if (err) 1484 return NULL; 1485 state->refs[new_ofs].insn_idx = insn_idx; 1486 1487 return &state->refs[new_ofs]; 1488 } 1489 1490 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx) 1491 { 1492 struct bpf_reference_state *s; 1493 1494 s = acquire_reference_state(env, insn_idx); 1495 if (!s) 1496 return -ENOMEM; 1497 s->type = REF_TYPE_PTR; 1498 s->id = ++env->id_gen; 1499 return s->id; 1500 } 1501 1502 static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type, 1503 int id, void *ptr) 1504 { 1505 struct bpf_verifier_state *state = env->cur_state; 1506 struct bpf_reference_state *s; 1507 1508 s = acquire_reference_state(env, insn_idx); 1509 if (!s) 1510 return -ENOMEM; 1511 s->type = type; 1512 s->id = id; 1513 s->ptr = ptr; 1514 1515 state->active_locks++; 1516 state->active_lock_id = id; 1517 state->active_lock_ptr = ptr; 1518 return 0; 1519 } 1520 1521 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx) 1522 { 1523 struct bpf_verifier_state *state = env->cur_state; 1524 struct bpf_reference_state *s; 1525 1526 s = acquire_reference_state(env, insn_idx); 1527 if (!s) 1528 return -ENOMEM; 1529 s->type = REF_TYPE_IRQ; 1530 s->id = ++env->id_gen; 1531 1532 state->active_irq_id = s->id; 1533 return s->id; 1534 } 1535 1536 static void release_reference_state(struct bpf_verifier_state *state, int idx) 1537 { 1538 int last_idx; 1539 size_t rem; 1540 1541 /* IRQ state requires the relative ordering of elements remaining the 1542 * same, since it relies on the refs array to behave as a stack, so that 1543 * it can detect out-of-order IRQ restore. Hence use memmove to shift 1544 * the array instead of swapping the final element into the deleted idx. 1545 */ 1546 last_idx = state->acquired_refs - 1; 1547 rem = state->acquired_refs - idx - 1; 1548 if (last_idx && idx != last_idx) 1549 memmove(&state->refs[idx], &state->refs[idx + 1], sizeof(*state->refs) * rem); 1550 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1551 state->acquired_refs--; 1552 return; 1553 } 1554 1555 static bool find_reference_state(struct bpf_verifier_state *state, int ptr_id) 1556 { 1557 int i; 1558 1559 for (i = 0; i < state->acquired_refs; i++) 1560 if (state->refs[i].id == ptr_id) 1561 return true; 1562 1563 return false; 1564 } 1565 1566 static int release_lock_state(struct bpf_verifier_state *state, int type, int id, void *ptr) 1567 { 1568 void *prev_ptr = NULL; 1569 u32 prev_id = 0; 1570 int i; 1571 1572 for (i = 0; i < state->acquired_refs; i++) { 1573 if (state->refs[i].type == type && state->refs[i].id == id && 1574 state->refs[i].ptr == ptr) { 1575 release_reference_state(state, i); 1576 state->active_locks--; 1577 /* Reassign active lock (id, ptr). */ 1578 state->active_lock_id = prev_id; 1579 state->active_lock_ptr = prev_ptr; 1580 return 0; 1581 } 1582 if (state->refs[i].type & REF_TYPE_LOCK_MASK) { 1583 prev_id = state->refs[i].id; 1584 prev_ptr = state->refs[i].ptr; 1585 } 1586 } 1587 return -EINVAL; 1588 } 1589 1590 static int release_irq_state(struct bpf_verifier_state *state, int id) 1591 { 1592 u32 prev_id = 0; 1593 int i; 1594 1595 if (id != state->active_irq_id) 1596 return -EACCES; 1597 1598 for (i = 0; i < state->acquired_refs; i++) { 1599 if (state->refs[i].type != REF_TYPE_IRQ) 1600 continue; 1601 if (state->refs[i].id == id) { 1602 release_reference_state(state, i); 1603 state->active_irq_id = prev_id; 1604 return 0; 1605 } else { 1606 prev_id = state->refs[i].id; 1607 } 1608 } 1609 return -EINVAL; 1610 } 1611 1612 static struct bpf_reference_state *find_lock_state(struct bpf_verifier_state *state, enum ref_state_type type, 1613 int id, void *ptr) 1614 { 1615 int i; 1616 1617 for (i = 0; i < state->acquired_refs; i++) { 1618 struct bpf_reference_state *s = &state->refs[i]; 1619 1620 if (!(s->type & type)) 1621 continue; 1622 1623 if (s->id == id && s->ptr == ptr) 1624 return s; 1625 } 1626 return NULL; 1627 } 1628 1629 static void update_peak_states(struct bpf_verifier_env *env) 1630 { 1631 u32 cur_states; 1632 1633 cur_states = env->explored_states_size + env->free_list_size + env->num_backedges; 1634 env->peak_states = max(env->peak_states, cur_states); 1635 } 1636 1637 static void free_func_state(struct bpf_func_state *state) 1638 { 1639 if (!state) 1640 return; 1641 kfree(state->stack); 1642 kfree(state); 1643 } 1644 1645 static void clear_jmp_history(struct bpf_verifier_state *state) 1646 { 1647 kfree(state->jmp_history); 1648 state->jmp_history = NULL; 1649 state->jmp_history_cnt = 0; 1650 } 1651 1652 static void free_verifier_state(struct bpf_verifier_state *state, 1653 bool free_self) 1654 { 1655 int i; 1656 1657 for (i = 0; i <= state->curframe; i++) { 1658 free_func_state(state->frame[i]); 1659 state->frame[i] = NULL; 1660 } 1661 kfree(state->refs); 1662 clear_jmp_history(state); 1663 if (free_self) 1664 kfree(state); 1665 } 1666 1667 /* struct bpf_verifier_state->parent refers to states 1668 * that are in either of env->{expored_states,free_list}. 1669 * In both cases the state is contained in struct bpf_verifier_state_list. 1670 */ 1671 static struct bpf_verifier_state_list *state_parent_as_list(struct bpf_verifier_state *st) 1672 { 1673 if (st->parent) 1674 return container_of(st->parent, struct bpf_verifier_state_list, state); 1675 return NULL; 1676 } 1677 1678 static bool incomplete_read_marks(struct bpf_verifier_env *env, 1679 struct bpf_verifier_state *st); 1680 1681 /* A state can be freed if it is no longer referenced: 1682 * - is in the env->free_list; 1683 * - has no children states; 1684 */ 1685 static void maybe_free_verifier_state(struct bpf_verifier_env *env, 1686 struct bpf_verifier_state_list *sl) 1687 { 1688 if (!sl->in_free_list 1689 || sl->state.branches != 0 1690 || incomplete_read_marks(env, &sl->state)) 1691 return; 1692 list_del(&sl->node); 1693 free_verifier_state(&sl->state, false); 1694 kfree(sl); 1695 env->free_list_size--; 1696 } 1697 1698 /* copy verifier state from src to dst growing dst stack space 1699 * when necessary to accommodate larger src stack 1700 */ 1701 static int copy_func_state(struct bpf_func_state *dst, 1702 const struct bpf_func_state *src) 1703 { 1704 memcpy(dst, src, offsetof(struct bpf_func_state, stack)); 1705 return copy_stack_state(dst, src); 1706 } 1707 1708 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1709 const struct bpf_verifier_state *src) 1710 { 1711 struct bpf_func_state *dst; 1712 int i, err; 1713 1714 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1715 src->jmp_history_cnt, sizeof(*dst_state->jmp_history), 1716 GFP_KERNEL_ACCOUNT); 1717 if (!dst_state->jmp_history) 1718 return -ENOMEM; 1719 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1720 1721 /* if dst has more stack frames then src frame, free them, this is also 1722 * necessary in case of exceptional exits using bpf_throw. 1723 */ 1724 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1725 free_func_state(dst_state->frame[i]); 1726 dst_state->frame[i] = NULL; 1727 } 1728 err = copy_reference_state(dst_state, src); 1729 if (err) 1730 return err; 1731 dst_state->speculative = src->speculative; 1732 dst_state->in_sleepable = src->in_sleepable; 1733 dst_state->cleaned = src->cleaned; 1734 dst_state->curframe = src->curframe; 1735 dst_state->branches = src->branches; 1736 dst_state->parent = src->parent; 1737 dst_state->first_insn_idx = src->first_insn_idx; 1738 dst_state->last_insn_idx = src->last_insn_idx; 1739 dst_state->dfs_depth = src->dfs_depth; 1740 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1741 dst_state->may_goto_depth = src->may_goto_depth; 1742 dst_state->equal_state = src->equal_state; 1743 for (i = 0; i <= src->curframe; i++) { 1744 dst = dst_state->frame[i]; 1745 if (!dst) { 1746 dst = kzalloc(sizeof(*dst), GFP_KERNEL_ACCOUNT); 1747 if (!dst) 1748 return -ENOMEM; 1749 dst_state->frame[i] = dst; 1750 } 1751 err = copy_func_state(dst, src->frame[i]); 1752 if (err) 1753 return err; 1754 } 1755 return 0; 1756 } 1757 1758 static u32 state_htab_size(struct bpf_verifier_env *env) 1759 { 1760 return env->prog->len; 1761 } 1762 1763 static struct list_head *explored_state(struct bpf_verifier_env *env, int idx) 1764 { 1765 struct bpf_verifier_state *cur = env->cur_state; 1766 struct bpf_func_state *state = cur->frame[cur->curframe]; 1767 1768 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1769 } 1770 1771 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1772 { 1773 int fr; 1774 1775 if (a->curframe != b->curframe) 1776 return false; 1777 1778 for (fr = a->curframe; fr >= 0; fr--) 1779 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1780 return false; 1781 1782 return true; 1783 } 1784 1785 /* Return IP for a given frame in a call stack */ 1786 static u32 frame_insn_idx(struct bpf_verifier_state *st, u32 frame) 1787 { 1788 return frame == st->curframe 1789 ? st->insn_idx 1790 : st->frame[frame + 1]->callsite; 1791 } 1792 1793 /* For state @st look for a topmost frame with frame_insn_idx() in some SCC, 1794 * if such frame exists form a corresponding @callchain as an array of 1795 * call sites leading to this frame and SCC id. 1796 * E.g.: 1797 * 1798 * void foo() { A: loop {... SCC#1 ...}; } 1799 * void bar() { B: loop { C: foo(); ... SCC#2 ... } 1800 * D: loop { E: foo(); ... SCC#3 ... } } 1801 * void main() { F: bar(); } 1802 * 1803 * @callchain at (A) would be either (F,SCC#2) or (F,SCC#3) depending 1804 * on @st frame call sites being (F,C,A) or (F,E,A). 1805 */ 1806 static bool compute_scc_callchain(struct bpf_verifier_env *env, 1807 struct bpf_verifier_state *st, 1808 struct bpf_scc_callchain *callchain) 1809 { 1810 u32 i, scc, insn_idx; 1811 1812 memset(callchain, 0, sizeof(*callchain)); 1813 for (i = 0; i <= st->curframe; i++) { 1814 insn_idx = frame_insn_idx(st, i); 1815 scc = env->insn_aux_data[insn_idx].scc; 1816 if (scc) { 1817 callchain->scc = scc; 1818 break; 1819 } else if (i < st->curframe) { 1820 callchain->callsites[i] = insn_idx; 1821 } else { 1822 return false; 1823 } 1824 } 1825 return true; 1826 } 1827 1828 /* Check if bpf_scc_visit instance for @callchain exists. */ 1829 static struct bpf_scc_visit *scc_visit_lookup(struct bpf_verifier_env *env, 1830 struct bpf_scc_callchain *callchain) 1831 { 1832 struct bpf_scc_info *info = env->scc_info[callchain->scc]; 1833 struct bpf_scc_visit *visits = info->visits; 1834 u32 i; 1835 1836 if (!info) 1837 return NULL; 1838 for (i = 0; i < info->num_visits; i++) 1839 if (memcmp(callchain, &visits[i].callchain, sizeof(*callchain)) == 0) 1840 return &visits[i]; 1841 return NULL; 1842 } 1843 1844 /* Allocate a new bpf_scc_visit instance corresponding to @callchain. 1845 * Allocated instances are alive for a duration of the do_check_common() 1846 * call and are freed by free_states(). 1847 */ 1848 static struct bpf_scc_visit *scc_visit_alloc(struct bpf_verifier_env *env, 1849 struct bpf_scc_callchain *callchain) 1850 { 1851 struct bpf_scc_visit *visit; 1852 struct bpf_scc_info *info; 1853 u32 scc, num_visits; 1854 u64 new_sz; 1855 1856 scc = callchain->scc; 1857 info = env->scc_info[scc]; 1858 num_visits = info ? info->num_visits : 0; 1859 new_sz = sizeof(*info) + sizeof(struct bpf_scc_visit) * (num_visits + 1); 1860 info = kvrealloc(env->scc_info[scc], new_sz, GFP_KERNEL_ACCOUNT); 1861 if (!info) 1862 return NULL; 1863 env->scc_info[scc] = info; 1864 info->num_visits = num_visits + 1; 1865 visit = &info->visits[num_visits]; 1866 memset(visit, 0, sizeof(*visit)); 1867 memcpy(&visit->callchain, callchain, sizeof(*callchain)); 1868 return visit; 1869 } 1870 1871 /* Form a string '(callsite#1,callsite#2,...,scc)' in env->tmp_str_buf */ 1872 static char *format_callchain(struct bpf_verifier_env *env, struct bpf_scc_callchain *callchain) 1873 { 1874 char *buf = env->tmp_str_buf; 1875 int i, delta = 0; 1876 1877 delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "("); 1878 for (i = 0; i < ARRAY_SIZE(callchain->callsites); i++) { 1879 if (!callchain->callsites[i]) 1880 break; 1881 delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u,", 1882 callchain->callsites[i]); 1883 } 1884 delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u)", callchain->scc); 1885 return env->tmp_str_buf; 1886 } 1887 1888 /* If callchain for @st exists (@st is in some SCC), ensure that 1889 * bpf_scc_visit instance for this callchain exists. 1890 * If instance does not exist or is empty, assign visit->entry_state to @st. 1891 */ 1892 static int maybe_enter_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1893 { 1894 struct bpf_scc_callchain *callchain = &env->callchain_buf; 1895 struct bpf_scc_visit *visit; 1896 1897 if (!compute_scc_callchain(env, st, callchain)) 1898 return 0; 1899 visit = scc_visit_lookup(env, callchain); 1900 visit = visit ?: scc_visit_alloc(env, callchain); 1901 if (!visit) 1902 return -ENOMEM; 1903 if (!visit->entry_state) { 1904 visit->entry_state = st; 1905 if (env->log.level & BPF_LOG_LEVEL2) 1906 verbose(env, "SCC enter %s\n", format_callchain(env, callchain)); 1907 } 1908 return 0; 1909 } 1910 1911 static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit); 1912 1913 /* If callchain for @st exists (@st is in some SCC), make it empty: 1914 * - set visit->entry_state to NULL; 1915 * - flush accumulated backedges. 1916 */ 1917 static int maybe_exit_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1918 { 1919 struct bpf_scc_callchain *callchain = &env->callchain_buf; 1920 struct bpf_scc_visit *visit; 1921 1922 if (!compute_scc_callchain(env, st, callchain)) 1923 return 0; 1924 visit = scc_visit_lookup(env, callchain); 1925 if (!visit) { 1926 /* 1927 * If path traversal stops inside an SCC, corresponding bpf_scc_visit 1928 * must exist for non-speculative paths. For non-speculative paths 1929 * traversal stops when: 1930 * a. Verification error is found, maybe_exit_scc() is not called. 1931 * b. Top level BPF_EXIT is reached. Top level BPF_EXIT is not a member 1932 * of any SCC. 1933 * c. A checkpoint is reached and matched. Checkpoints are created by 1934 * is_state_visited(), which calls maybe_enter_scc(), which allocates 1935 * bpf_scc_visit instances for checkpoints within SCCs. 1936 * (c) is the only case that can reach this point. 1937 */ 1938 if (!st->speculative) { 1939 verifier_bug(env, "scc exit: no visit info for call chain %s", 1940 format_callchain(env, callchain)); 1941 return -EFAULT; 1942 } 1943 return 0; 1944 } 1945 if (visit->entry_state != st) 1946 return 0; 1947 if (env->log.level & BPF_LOG_LEVEL2) 1948 verbose(env, "SCC exit %s\n", format_callchain(env, callchain)); 1949 visit->entry_state = NULL; 1950 env->num_backedges -= visit->num_backedges; 1951 visit->num_backedges = 0; 1952 update_peak_states(env); 1953 return propagate_backedges(env, visit); 1954 } 1955 1956 /* Lookup an bpf_scc_visit instance corresponding to @st callchain 1957 * and add @backedge to visit->backedges. @st callchain must exist. 1958 */ 1959 static int add_scc_backedge(struct bpf_verifier_env *env, 1960 struct bpf_verifier_state *st, 1961 struct bpf_scc_backedge *backedge) 1962 { 1963 struct bpf_scc_callchain *callchain = &env->callchain_buf; 1964 struct bpf_scc_visit *visit; 1965 1966 if (!compute_scc_callchain(env, st, callchain)) { 1967 verifier_bug(env, "add backedge: no SCC in verification path, insn_idx %d", 1968 st->insn_idx); 1969 return -EFAULT; 1970 } 1971 visit = scc_visit_lookup(env, callchain); 1972 if (!visit) { 1973 verifier_bug(env, "add backedge: no visit info for call chain %s", 1974 format_callchain(env, callchain)); 1975 return -EFAULT; 1976 } 1977 if (env->log.level & BPF_LOG_LEVEL2) 1978 verbose(env, "SCC backedge %s\n", format_callchain(env, callchain)); 1979 backedge->next = visit->backedges; 1980 visit->backedges = backedge; 1981 visit->num_backedges++; 1982 env->num_backedges++; 1983 update_peak_states(env); 1984 return 0; 1985 } 1986 1987 /* bpf_reg_state->live marks for registers in a state @st are incomplete, 1988 * if state @st is in some SCC and not all execution paths starting at this 1989 * SCC are fully explored. 1990 */ 1991 static bool incomplete_read_marks(struct bpf_verifier_env *env, 1992 struct bpf_verifier_state *st) 1993 { 1994 struct bpf_scc_callchain *callchain = &env->callchain_buf; 1995 struct bpf_scc_visit *visit; 1996 1997 if (!compute_scc_callchain(env, st, callchain)) 1998 return false; 1999 visit = scc_visit_lookup(env, callchain); 2000 if (!visit) 2001 return false; 2002 return !!visit->backedges; 2003 } 2004 2005 static void free_backedges(struct bpf_scc_visit *visit) 2006 { 2007 struct bpf_scc_backedge *backedge, *next; 2008 2009 for (backedge = visit->backedges; backedge; backedge = next) { 2010 free_verifier_state(&backedge->state, false); 2011 next = backedge->next; 2012 kfree(backedge); 2013 } 2014 visit->backedges = NULL; 2015 } 2016 2017 static int update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 2018 { 2019 struct bpf_verifier_state_list *sl = NULL, *parent_sl; 2020 struct bpf_verifier_state *parent; 2021 int err; 2022 2023 while (st) { 2024 u32 br = --st->branches; 2025 2026 /* verifier_bug_if(br > 1, ...) technically makes sense here, 2027 * but see comment in push_stack(), hence: 2028 */ 2029 verifier_bug_if((int)br < 0, env, "%s:branches_to_explore=%d", __func__, br); 2030 if (br) 2031 break; 2032 err = maybe_exit_scc(env, st); 2033 if (err) 2034 return err; 2035 parent = st->parent; 2036 parent_sl = state_parent_as_list(st); 2037 if (sl) 2038 maybe_free_verifier_state(env, sl); 2039 st = parent; 2040 sl = parent_sl; 2041 } 2042 return 0; 2043 } 2044 2045 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 2046 int *insn_idx, bool pop_log) 2047 { 2048 struct bpf_verifier_state *cur = env->cur_state; 2049 struct bpf_verifier_stack_elem *elem, *head = env->head; 2050 int err; 2051 2052 if (env->head == NULL) 2053 return -ENOENT; 2054 2055 if (cur) { 2056 err = copy_verifier_state(cur, &head->st); 2057 if (err) 2058 return err; 2059 } 2060 if (pop_log) 2061 bpf_vlog_reset(&env->log, head->log_pos); 2062 if (insn_idx) 2063 *insn_idx = head->insn_idx; 2064 if (prev_insn_idx) 2065 *prev_insn_idx = head->prev_insn_idx; 2066 elem = head->next; 2067 free_verifier_state(&head->st, false); 2068 kfree(head); 2069 env->head = elem; 2070 env->stack_size--; 2071 return 0; 2072 } 2073 2074 static bool error_recoverable_with_nospec(int err) 2075 { 2076 /* Should only return true for non-fatal errors that are allowed to 2077 * occur during speculative verification. For these we can insert a 2078 * nospec and the program might still be accepted. Do not include 2079 * something like ENOMEM because it is likely to re-occur for the next 2080 * architectural path once it has been recovered-from in all speculative 2081 * paths. 2082 */ 2083 return err == -EPERM || err == -EACCES || err == -EINVAL; 2084 } 2085 2086 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 2087 int insn_idx, int prev_insn_idx, 2088 bool speculative) 2089 { 2090 struct bpf_verifier_state *cur = env->cur_state; 2091 struct bpf_verifier_stack_elem *elem; 2092 int err; 2093 2094 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT); 2095 if (!elem) 2096 return NULL; 2097 2098 elem->insn_idx = insn_idx; 2099 elem->prev_insn_idx = prev_insn_idx; 2100 elem->next = env->head; 2101 elem->log_pos = env->log.end_pos; 2102 env->head = elem; 2103 env->stack_size++; 2104 err = copy_verifier_state(&elem->st, cur); 2105 if (err) 2106 return NULL; 2107 elem->st.speculative |= speculative; 2108 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2109 verbose(env, "The sequence of %d jumps is too complex.\n", 2110 env->stack_size); 2111 return NULL; 2112 } 2113 if (elem->st.parent) { 2114 ++elem->st.parent->branches; 2115 /* WARN_ON(branches > 2) technically makes sense here, 2116 * but 2117 * 1. speculative states will bump 'branches' for non-branch 2118 * instructions 2119 * 2. is_state_visited() heuristics may decide not to create 2120 * a new state for a sequence of branches and all such current 2121 * and cloned states will be pointing to a single parent state 2122 * which might have large 'branches' count. 2123 */ 2124 } 2125 return &elem->st; 2126 } 2127 2128 #define CALLER_SAVED_REGS 6 2129 static const int caller_saved[CALLER_SAVED_REGS] = { 2130 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 2131 }; 2132 2133 /* This helper doesn't clear reg->id */ 2134 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2135 { 2136 reg->var_off = tnum_const(imm); 2137 reg->smin_value = (s64)imm; 2138 reg->smax_value = (s64)imm; 2139 reg->umin_value = imm; 2140 reg->umax_value = imm; 2141 2142 reg->s32_min_value = (s32)imm; 2143 reg->s32_max_value = (s32)imm; 2144 reg->u32_min_value = (u32)imm; 2145 reg->u32_max_value = (u32)imm; 2146 } 2147 2148 /* Mark the unknown part of a register (variable offset or scalar value) as 2149 * known to have the value @imm. 2150 */ 2151 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2152 { 2153 /* Clear off and union(map_ptr, range) */ 2154 memset(((u8 *)reg) + sizeof(reg->type), 0, 2155 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 2156 reg->id = 0; 2157 reg->ref_obj_id = 0; 2158 ___mark_reg_known(reg, imm); 2159 } 2160 2161 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 2162 { 2163 reg->var_off = tnum_const_subreg(reg->var_off, imm); 2164 reg->s32_min_value = (s32)imm; 2165 reg->s32_max_value = (s32)imm; 2166 reg->u32_min_value = (u32)imm; 2167 reg->u32_max_value = (u32)imm; 2168 } 2169 2170 /* Mark the 'variable offset' part of a register as zero. This should be 2171 * used only on registers holding a pointer type. 2172 */ 2173 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 2174 { 2175 __mark_reg_known(reg, 0); 2176 } 2177 2178 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2179 { 2180 __mark_reg_known(reg, 0); 2181 reg->type = SCALAR_VALUE; 2182 /* all scalars are assumed imprecise initially (unless unprivileged, 2183 * in which case everything is forced to be precise) 2184 */ 2185 reg->precise = !env->bpf_capable; 2186 } 2187 2188 static void mark_reg_known_zero(struct bpf_verifier_env *env, 2189 struct bpf_reg_state *regs, u32 regno) 2190 { 2191 if (WARN_ON(regno >= MAX_BPF_REG)) { 2192 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 2193 /* Something bad happened, let's kill all regs */ 2194 for (regno = 0; regno < MAX_BPF_REG; regno++) 2195 __mark_reg_not_init(env, regs + regno); 2196 return; 2197 } 2198 __mark_reg_known_zero(regs + regno); 2199 } 2200 2201 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 2202 bool first_slot, int dynptr_id) 2203 { 2204 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 2205 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 2206 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 2207 */ 2208 __mark_reg_known_zero(reg); 2209 reg->type = CONST_PTR_TO_DYNPTR; 2210 /* Give each dynptr a unique id to uniquely associate slices to it. */ 2211 reg->id = dynptr_id; 2212 reg->dynptr.type = type; 2213 reg->dynptr.first_slot = first_slot; 2214 } 2215 2216 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 2217 { 2218 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 2219 const struct bpf_map *map = reg->map_ptr; 2220 2221 if (map->inner_map_meta) { 2222 reg->type = CONST_PTR_TO_MAP; 2223 reg->map_ptr = map->inner_map_meta; 2224 /* transfer reg's id which is unique for every map_lookup_elem 2225 * as UID of the inner map. 2226 */ 2227 if (btf_record_has_field(map->inner_map_meta->record, 2228 BPF_TIMER | BPF_WORKQUEUE | BPF_TASK_WORK)) { 2229 reg->map_uid = reg->id; 2230 } 2231 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 2232 reg->type = PTR_TO_XDP_SOCK; 2233 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 2234 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 2235 reg->type = PTR_TO_SOCKET; 2236 } else { 2237 reg->type = PTR_TO_MAP_VALUE; 2238 } 2239 return; 2240 } 2241 2242 reg->type &= ~PTR_MAYBE_NULL; 2243 } 2244 2245 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 2246 struct btf_field_graph_root *ds_head) 2247 { 2248 __mark_reg_known_zero(®s[regno]); 2249 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 2250 regs[regno].btf = ds_head->btf; 2251 regs[regno].btf_id = ds_head->value_btf_id; 2252 regs[regno].off = ds_head->node_offset; 2253 } 2254 2255 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 2256 { 2257 return type_is_pkt_pointer(reg->type); 2258 } 2259 2260 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2261 { 2262 return reg_is_pkt_pointer(reg) || 2263 reg->type == PTR_TO_PACKET_END; 2264 } 2265 2266 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2267 { 2268 return base_type(reg->type) == PTR_TO_MEM && 2269 (reg->type & 2270 (DYNPTR_TYPE_SKB | DYNPTR_TYPE_XDP | DYNPTR_TYPE_SKB_META)); 2271 } 2272 2273 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2274 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2275 enum bpf_reg_type which) 2276 { 2277 /* The register can already have a range from prior markings. 2278 * This is fine as long as it hasn't been advanced from its 2279 * origin. 2280 */ 2281 return reg->type == which && 2282 reg->id == 0 && 2283 reg->off == 0 && 2284 tnum_equals_const(reg->var_off, 0); 2285 } 2286 2287 /* Reset the min/max bounds of a register */ 2288 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2289 { 2290 reg->smin_value = S64_MIN; 2291 reg->smax_value = S64_MAX; 2292 reg->umin_value = 0; 2293 reg->umax_value = U64_MAX; 2294 2295 reg->s32_min_value = S32_MIN; 2296 reg->s32_max_value = S32_MAX; 2297 reg->u32_min_value = 0; 2298 reg->u32_max_value = U32_MAX; 2299 } 2300 2301 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2302 { 2303 reg->smin_value = S64_MIN; 2304 reg->smax_value = S64_MAX; 2305 reg->umin_value = 0; 2306 reg->umax_value = U64_MAX; 2307 } 2308 2309 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2310 { 2311 reg->s32_min_value = S32_MIN; 2312 reg->s32_max_value = S32_MAX; 2313 reg->u32_min_value = 0; 2314 reg->u32_max_value = U32_MAX; 2315 } 2316 2317 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2318 { 2319 struct tnum var32_off = tnum_subreg(reg->var_off); 2320 2321 /* min signed is max(sign bit) | min(other bits) */ 2322 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2323 var32_off.value | (var32_off.mask & S32_MIN)); 2324 /* max signed is min(sign bit) | max(other bits) */ 2325 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2326 var32_off.value | (var32_off.mask & S32_MAX)); 2327 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2328 reg->u32_max_value = min(reg->u32_max_value, 2329 (u32)(var32_off.value | var32_off.mask)); 2330 } 2331 2332 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2333 { 2334 /* min signed is max(sign bit) | min(other bits) */ 2335 reg->smin_value = max_t(s64, reg->smin_value, 2336 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2337 /* max signed is min(sign bit) | max(other bits) */ 2338 reg->smax_value = min_t(s64, reg->smax_value, 2339 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2340 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2341 reg->umax_value = min(reg->umax_value, 2342 reg->var_off.value | reg->var_off.mask); 2343 } 2344 2345 static void __update_reg_bounds(struct bpf_reg_state *reg) 2346 { 2347 __update_reg32_bounds(reg); 2348 __update_reg64_bounds(reg); 2349 } 2350 2351 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2352 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2353 { 2354 /* If upper 32 bits of u64/s64 range don't change, we can use lower 32 2355 * bits to improve our u32/s32 boundaries. 2356 * 2357 * E.g., the case where we have upper 32 bits as zero ([10, 20] in 2358 * u64) is pretty trivial, it's obvious that in u32 we'll also have 2359 * [10, 20] range. But this property holds for any 64-bit range as 2360 * long as upper 32 bits in that entire range of values stay the same. 2361 * 2362 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311] 2363 * in decimal) has the same upper 32 bits throughout all the values in 2364 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15]) 2365 * range. 2366 * 2367 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32, 2368 * following the rules outlined below about u64/s64 correspondence 2369 * (which equally applies to u32 vs s32 correspondence). In general it 2370 * depends on actual hexadecimal values of 32-bit range. They can form 2371 * only valid u32, or only valid s32 ranges in some cases. 2372 * 2373 * So we use all these insights to derive bounds for subregisters here. 2374 */ 2375 if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) { 2376 /* u64 to u32 casting preserves validity of low 32 bits as 2377 * a range, if upper 32 bits are the same 2378 */ 2379 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value); 2380 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value); 2381 2382 if ((s32)reg->umin_value <= (s32)reg->umax_value) { 2383 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2384 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2385 } 2386 } 2387 if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) { 2388 /* low 32 bits should form a proper u32 range */ 2389 if ((u32)reg->smin_value <= (u32)reg->smax_value) { 2390 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value); 2391 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value); 2392 } 2393 /* low 32 bits should form a proper s32 range */ 2394 if ((s32)reg->smin_value <= (s32)reg->smax_value) { 2395 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2396 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2397 } 2398 } 2399 /* Special case where upper bits form a small sequence of two 2400 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to 2401 * 0x00000000 is also valid), while lower bits form a proper s32 range 2402 * going from negative numbers to positive numbers. E.g., let's say we 2403 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]). 2404 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff, 2405 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits, 2406 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]). 2407 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in 2408 * upper 32 bits. As a random example, s64 range 2409 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range 2410 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister. 2411 */ 2412 if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) && 2413 (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) { 2414 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2415 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2416 } 2417 if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) && 2418 (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) { 2419 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2420 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2421 } 2422 /* if u32 range forms a valid s32 range (due to matching sign bit), 2423 * try to learn from that 2424 */ 2425 if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) { 2426 reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value); 2427 reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value); 2428 } 2429 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2430 * are the same, so combine. This works even in the negative case, e.g. 2431 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2432 */ 2433 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2434 reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); 2435 reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); 2436 } 2437 } 2438 2439 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2440 { 2441 /* If u64 range forms a valid s64 range (due to matching sign bit), 2442 * try to learn from that. Let's do a bit of ASCII art to see when 2443 * this is happening. Let's take u64 range first: 2444 * 2445 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2446 * |-------------------------------|--------------------------------| 2447 * 2448 * Valid u64 range is formed when umin and umax are anywhere in the 2449 * range [0, U64_MAX], and umin <= umax. u64 case is simple and 2450 * straightforward. Let's see how s64 range maps onto the same range 2451 * of values, annotated below the line for comparison: 2452 * 2453 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2454 * |-------------------------------|--------------------------------| 2455 * 0 S64_MAX S64_MIN -1 2456 * 2457 * So s64 values basically start in the middle and they are logically 2458 * contiguous to the right of it, wrapping around from -1 to 0, and 2459 * then finishing as S64_MAX (0x7fffffffffffffff) right before 2460 * S64_MIN. We can try drawing the continuity of u64 vs s64 values 2461 * more visually as mapped to sign-agnostic range of hex values. 2462 * 2463 * u64 start u64 end 2464 * _______________________________________________________________ 2465 * / \ 2466 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2467 * |-------------------------------|--------------------------------| 2468 * 0 S64_MAX S64_MIN -1 2469 * / \ 2470 * >------------------------------ -------------------------------> 2471 * s64 continues... s64 end s64 start s64 "midpoint" 2472 * 2473 * What this means is that, in general, we can't always derive 2474 * something new about u64 from any random s64 range, and vice versa. 2475 * 2476 * But we can do that in two particular cases. One is when entire 2477 * u64/s64 range is *entirely* contained within left half of the above 2478 * diagram or when it is *entirely* contained in the right half. I.e.: 2479 * 2480 * |-------------------------------|--------------------------------| 2481 * ^ ^ ^ ^ 2482 * A B C D 2483 * 2484 * [A, B] and [C, D] are contained entirely in their respective halves 2485 * and form valid contiguous ranges as both u64 and s64 values. [A, B] 2486 * will be non-negative both as u64 and s64 (and in fact it will be 2487 * identical ranges no matter the signedness). [C, D] treated as s64 2488 * will be a range of negative values, while in u64 it will be 2489 * non-negative range of values larger than 0x8000000000000000. 2490 * 2491 * Now, any other range here can't be represented in both u64 and s64 2492 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid 2493 * contiguous u64 ranges, but they are discontinuous in s64. [B, C] 2494 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], 2495 * for example. Similarly, valid s64 range [D, A] (going from negative 2496 * to positive values), would be two separate [D, U64_MAX] and [0, A] 2497 * ranges as u64. Currently reg_state can't represent two segments per 2498 * numeric domain, so in such situations we can only derive maximal 2499 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64). 2500 * 2501 * So we use these facts to derive umin/umax from smin/smax and vice 2502 * versa only if they stay within the same "half". This is equivalent 2503 * to checking sign bit: lower half will have sign bit as zero, upper 2504 * half have sign bit 1. Below in code we simplify this by just 2505 * casting umin/umax as smin/smax and checking if they form valid 2506 * range, and vice versa. Those are equivalent checks. 2507 */ 2508 if ((s64)reg->umin_value <= (s64)reg->umax_value) { 2509 reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); 2510 reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); 2511 } 2512 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2513 * are the same, so combine. This works even in the negative case, e.g. 2514 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2515 */ 2516 if ((u64)reg->smin_value <= (u64)reg->smax_value) { 2517 reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); 2518 reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); 2519 } else { 2520 /* If the s64 range crosses the sign boundary, then it's split 2521 * between the beginning and end of the U64 domain. In that 2522 * case, we can derive new bounds if the u64 range overlaps 2523 * with only one end of the s64 range. 2524 * 2525 * In the following example, the u64 range overlaps only with 2526 * positive portion of the s64 range. 2527 * 2528 * 0 U64_MAX 2529 * | [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx] | 2530 * |----------------------------|----------------------------| 2531 * |xxxxx s64 range xxxxxxxxx] [xxxxxxx| 2532 * 0 S64_MAX S64_MIN -1 2533 * 2534 * We can thus derive the following new s64 and u64 ranges. 2535 * 2536 * 0 U64_MAX 2537 * | [xxxxxx u64 range xxxxx] | 2538 * |----------------------------|----------------------------| 2539 * | [xxxxxx s64 range xxxxx] | 2540 * 0 S64_MAX S64_MIN -1 2541 * 2542 * If they overlap in two places, we can't derive anything 2543 * because reg_state can't represent two ranges per numeric 2544 * domain. 2545 * 2546 * 0 U64_MAX 2547 * | [xxxxxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxxxxx] | 2548 * |----------------------------|----------------------------| 2549 * |xxxxx s64 range xxxxxxxxx] [xxxxxxxxxx| 2550 * 0 S64_MAX S64_MIN -1 2551 * 2552 * The first condition below corresponds to the first diagram 2553 * above. 2554 */ 2555 if (reg->umax_value < (u64)reg->smin_value) { 2556 reg->smin_value = (s64)reg->umin_value; 2557 reg->umax_value = min_t(u64, reg->umax_value, reg->smax_value); 2558 } else if ((u64)reg->smax_value < reg->umin_value) { 2559 /* This second condition considers the case where the u64 range 2560 * overlaps with the negative portion of the s64 range: 2561 * 2562 * 0 U64_MAX 2563 * | [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx] | 2564 * |----------------------------|----------------------------| 2565 * |xxxxxxxxx] [xxxxxxxxxxxx s64 range | 2566 * 0 S64_MAX S64_MIN -1 2567 */ 2568 reg->smax_value = (s64)reg->umax_value; 2569 reg->umin_value = max_t(u64, reg->umin_value, reg->smin_value); 2570 } 2571 } 2572 } 2573 2574 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg) 2575 { 2576 /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit 2577 * values on both sides of 64-bit range in hope to have tighter range. 2578 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from 2579 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff]. 2580 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound 2581 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of 2582 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a 2583 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff]. 2584 * We just need to make sure that derived bounds we are intersecting 2585 * with are well-formed ranges in respective s64 or u64 domain, just 2586 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments. 2587 */ 2588 __u64 new_umin, new_umax; 2589 __s64 new_smin, new_smax; 2590 2591 /* u32 -> u64 tightening, it's always well-formed */ 2592 new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value; 2593 new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value; 2594 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2595 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2596 /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */ 2597 new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value; 2598 new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value; 2599 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2600 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2601 2602 /* Here we would like to handle a special case after sign extending load, 2603 * when upper bits for a 64-bit range are all 1s or all 0s. 2604 * 2605 * Upper bits are all 1s when register is in a range: 2606 * [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff] 2607 * Upper bits are all 0s when register is in a range: 2608 * [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff] 2609 * Together this forms are continuous range: 2610 * [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff] 2611 * 2612 * Now, suppose that register range is in fact tighter: 2613 * [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R) 2614 * Also suppose that it's 32-bit range is positive, 2615 * meaning that lower 32-bits of the full 64-bit register 2616 * are in the range: 2617 * [0x0000_0000, 0x7fff_ffff] (W) 2618 * 2619 * If this happens, then any value in a range: 2620 * [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff] 2621 * is smaller than a lowest bound of the range (R): 2622 * 0xffff_ffff_8000_0000 2623 * which means that upper bits of the full 64-bit register 2624 * can't be all 1s, when lower bits are in range (W). 2625 * 2626 * Note that: 2627 * - 0xffff_ffff_8000_0000 == (s64)S32_MIN 2628 * - 0x0000_0000_7fff_ffff == (s64)S32_MAX 2629 * These relations are used in the conditions below. 2630 */ 2631 if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) { 2632 reg->smin_value = reg->s32_min_value; 2633 reg->smax_value = reg->s32_max_value; 2634 reg->umin_value = reg->s32_min_value; 2635 reg->umax_value = reg->s32_max_value; 2636 reg->var_off = tnum_intersect(reg->var_off, 2637 tnum_range(reg->smin_value, reg->smax_value)); 2638 } 2639 } 2640 2641 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2642 { 2643 __reg32_deduce_bounds(reg); 2644 __reg64_deduce_bounds(reg); 2645 __reg_deduce_mixed_bounds(reg); 2646 } 2647 2648 /* Attempts to improve var_off based on unsigned min/max information */ 2649 static void __reg_bound_offset(struct bpf_reg_state *reg) 2650 { 2651 struct tnum var64_off = tnum_intersect(reg->var_off, 2652 tnum_range(reg->umin_value, 2653 reg->umax_value)); 2654 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2655 tnum_range(reg->u32_min_value, 2656 reg->u32_max_value)); 2657 2658 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2659 } 2660 2661 static void reg_bounds_sync(struct bpf_reg_state *reg) 2662 { 2663 /* We might have learned new bounds from the var_off. */ 2664 __update_reg_bounds(reg); 2665 /* We might have learned something about the sign bit. */ 2666 __reg_deduce_bounds(reg); 2667 __reg_deduce_bounds(reg); 2668 __reg_deduce_bounds(reg); 2669 /* We might have learned some bits from the bounds. */ 2670 __reg_bound_offset(reg); 2671 /* Intersecting with the old var_off might have improved our bounds 2672 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2673 * then new var_off is (0; 0x7f...fc) which improves our umax. 2674 */ 2675 __update_reg_bounds(reg); 2676 } 2677 2678 static int reg_bounds_sanity_check(struct bpf_verifier_env *env, 2679 struct bpf_reg_state *reg, const char *ctx) 2680 { 2681 const char *msg; 2682 2683 if (reg->umin_value > reg->umax_value || 2684 reg->smin_value > reg->smax_value || 2685 reg->u32_min_value > reg->u32_max_value || 2686 reg->s32_min_value > reg->s32_max_value) { 2687 msg = "range bounds violation"; 2688 goto out; 2689 } 2690 2691 if (tnum_is_const(reg->var_off)) { 2692 u64 uval = reg->var_off.value; 2693 s64 sval = (s64)uval; 2694 2695 if (reg->umin_value != uval || reg->umax_value != uval || 2696 reg->smin_value != sval || reg->smax_value != sval) { 2697 msg = "const tnum out of sync with range bounds"; 2698 goto out; 2699 } 2700 } 2701 2702 if (tnum_subreg_is_const(reg->var_off)) { 2703 u32 uval32 = tnum_subreg(reg->var_off).value; 2704 s32 sval32 = (s32)uval32; 2705 2706 if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 || 2707 reg->s32_min_value != sval32 || reg->s32_max_value != sval32) { 2708 msg = "const subreg tnum out of sync with range bounds"; 2709 goto out; 2710 } 2711 } 2712 2713 return 0; 2714 out: 2715 verifier_bug(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] " 2716 "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)", 2717 ctx, msg, reg->umin_value, reg->umax_value, 2718 reg->smin_value, reg->smax_value, 2719 reg->u32_min_value, reg->u32_max_value, 2720 reg->s32_min_value, reg->s32_max_value, 2721 reg->var_off.value, reg->var_off.mask); 2722 if (env->test_reg_invariants) 2723 return -EFAULT; 2724 __mark_reg_unbounded(reg); 2725 return 0; 2726 } 2727 2728 static bool __reg32_bound_s64(s32 a) 2729 { 2730 return a >= 0 && a <= S32_MAX; 2731 } 2732 2733 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2734 { 2735 reg->umin_value = reg->u32_min_value; 2736 reg->umax_value = reg->u32_max_value; 2737 2738 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2739 * be positive otherwise set to worse case bounds and refine later 2740 * from tnum. 2741 */ 2742 if (__reg32_bound_s64(reg->s32_min_value) && 2743 __reg32_bound_s64(reg->s32_max_value)) { 2744 reg->smin_value = reg->s32_min_value; 2745 reg->smax_value = reg->s32_max_value; 2746 } else { 2747 reg->smin_value = 0; 2748 reg->smax_value = U32_MAX; 2749 } 2750 } 2751 2752 /* Mark a register as having a completely unknown (scalar) value. */ 2753 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg) 2754 { 2755 /* 2756 * Clear type, off, and union(map_ptr, range) and 2757 * padding between 'type' and union 2758 */ 2759 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2760 reg->type = SCALAR_VALUE; 2761 reg->id = 0; 2762 reg->ref_obj_id = 0; 2763 reg->var_off = tnum_unknown; 2764 reg->frameno = 0; 2765 reg->precise = false; 2766 __mark_reg_unbounded(reg); 2767 } 2768 2769 /* Mark a register as having a completely unknown (scalar) value, 2770 * initialize .precise as true when not bpf capable. 2771 */ 2772 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2773 struct bpf_reg_state *reg) 2774 { 2775 __mark_reg_unknown_imprecise(reg); 2776 reg->precise = !env->bpf_capable; 2777 } 2778 2779 static void mark_reg_unknown(struct bpf_verifier_env *env, 2780 struct bpf_reg_state *regs, u32 regno) 2781 { 2782 if (WARN_ON(regno >= MAX_BPF_REG)) { 2783 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2784 /* Something bad happened, let's kill all regs except FP */ 2785 for (regno = 0; regno < BPF_REG_FP; regno++) 2786 __mark_reg_not_init(env, regs + regno); 2787 return; 2788 } 2789 __mark_reg_unknown(env, regs + regno); 2790 } 2791 2792 static int __mark_reg_s32_range(struct bpf_verifier_env *env, 2793 struct bpf_reg_state *regs, 2794 u32 regno, 2795 s32 s32_min, 2796 s32 s32_max) 2797 { 2798 struct bpf_reg_state *reg = regs + regno; 2799 2800 reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min); 2801 reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max); 2802 2803 reg->smin_value = max_t(s64, reg->smin_value, s32_min); 2804 reg->smax_value = min_t(s64, reg->smax_value, s32_max); 2805 2806 reg_bounds_sync(reg); 2807 2808 return reg_bounds_sanity_check(env, reg, "s32_range"); 2809 } 2810 2811 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2812 struct bpf_reg_state *reg) 2813 { 2814 __mark_reg_unknown(env, reg); 2815 reg->type = NOT_INIT; 2816 } 2817 2818 static void mark_reg_not_init(struct bpf_verifier_env *env, 2819 struct bpf_reg_state *regs, u32 regno) 2820 { 2821 if (WARN_ON(regno >= MAX_BPF_REG)) { 2822 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2823 /* Something bad happened, let's kill all regs except FP */ 2824 for (regno = 0; regno < BPF_REG_FP; regno++) 2825 __mark_reg_not_init(env, regs + regno); 2826 return; 2827 } 2828 __mark_reg_not_init(env, regs + regno); 2829 } 2830 2831 static int mark_btf_ld_reg(struct bpf_verifier_env *env, 2832 struct bpf_reg_state *regs, u32 regno, 2833 enum bpf_reg_type reg_type, 2834 struct btf *btf, u32 btf_id, 2835 enum bpf_type_flag flag) 2836 { 2837 switch (reg_type) { 2838 case SCALAR_VALUE: 2839 mark_reg_unknown(env, regs, regno); 2840 return 0; 2841 case PTR_TO_BTF_ID: 2842 mark_reg_known_zero(env, regs, regno); 2843 regs[regno].type = PTR_TO_BTF_ID | flag; 2844 regs[regno].btf = btf; 2845 regs[regno].btf_id = btf_id; 2846 if (type_may_be_null(flag)) 2847 regs[regno].id = ++env->id_gen; 2848 return 0; 2849 case PTR_TO_MEM: 2850 mark_reg_known_zero(env, regs, regno); 2851 regs[regno].type = PTR_TO_MEM | flag; 2852 regs[regno].mem_size = 0; 2853 return 0; 2854 default: 2855 verifier_bug(env, "unexpected reg_type %d in %s\n", reg_type, __func__); 2856 return -EFAULT; 2857 } 2858 } 2859 2860 #define DEF_NOT_SUBREG (0) 2861 static void init_reg_state(struct bpf_verifier_env *env, 2862 struct bpf_func_state *state) 2863 { 2864 struct bpf_reg_state *regs = state->regs; 2865 int i; 2866 2867 for (i = 0; i < MAX_BPF_REG; i++) { 2868 mark_reg_not_init(env, regs, i); 2869 regs[i].subreg_def = DEF_NOT_SUBREG; 2870 } 2871 2872 /* frame pointer */ 2873 regs[BPF_REG_FP].type = PTR_TO_STACK; 2874 mark_reg_known_zero(env, regs, BPF_REG_FP); 2875 regs[BPF_REG_FP].frameno = state->frameno; 2876 } 2877 2878 static struct bpf_retval_range retval_range(s32 minval, s32 maxval) 2879 { 2880 return (struct bpf_retval_range){ minval, maxval }; 2881 } 2882 2883 #define BPF_MAIN_FUNC (-1) 2884 static void init_func_state(struct bpf_verifier_env *env, 2885 struct bpf_func_state *state, 2886 int callsite, int frameno, int subprogno) 2887 { 2888 state->callsite = callsite; 2889 state->frameno = frameno; 2890 state->subprogno = subprogno; 2891 state->callback_ret_range = retval_range(0, 0); 2892 init_reg_state(env, state); 2893 mark_verifier_state_scratched(env); 2894 } 2895 2896 /* Similar to push_stack(), but for async callbacks */ 2897 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2898 int insn_idx, int prev_insn_idx, 2899 int subprog, bool is_sleepable) 2900 { 2901 struct bpf_verifier_stack_elem *elem; 2902 struct bpf_func_state *frame; 2903 2904 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT); 2905 if (!elem) 2906 return NULL; 2907 2908 elem->insn_idx = insn_idx; 2909 elem->prev_insn_idx = prev_insn_idx; 2910 elem->next = env->head; 2911 elem->log_pos = env->log.end_pos; 2912 env->head = elem; 2913 env->stack_size++; 2914 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2915 verbose(env, 2916 "The sequence of %d jumps is too complex for async cb.\n", 2917 env->stack_size); 2918 return NULL; 2919 } 2920 /* Unlike push_stack() do not copy_verifier_state(). 2921 * The caller state doesn't matter. 2922 * This is async callback. It starts in a fresh stack. 2923 * Initialize it similar to do_check_common(). 2924 */ 2925 elem->st.branches = 1; 2926 elem->st.in_sleepable = is_sleepable; 2927 frame = kzalloc(sizeof(*frame), GFP_KERNEL_ACCOUNT); 2928 if (!frame) 2929 return NULL; 2930 init_func_state(env, frame, 2931 BPF_MAIN_FUNC /* callsite */, 2932 0 /* frameno within this callchain */, 2933 subprog /* subprog number within this prog */); 2934 elem->st.frame[0] = frame; 2935 return &elem->st; 2936 } 2937 2938 2939 enum reg_arg_type { 2940 SRC_OP, /* register is used as source operand */ 2941 DST_OP, /* register is used as destination operand */ 2942 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2943 }; 2944 2945 static int cmp_subprogs(const void *a, const void *b) 2946 { 2947 return ((struct bpf_subprog_info *)a)->start - 2948 ((struct bpf_subprog_info *)b)->start; 2949 } 2950 2951 /* Find subprogram that contains instruction at 'off' */ 2952 struct bpf_subprog_info *bpf_find_containing_subprog(struct bpf_verifier_env *env, int off) 2953 { 2954 struct bpf_subprog_info *vals = env->subprog_info; 2955 int l, r, m; 2956 2957 if (off >= env->prog->len || off < 0 || env->subprog_cnt == 0) 2958 return NULL; 2959 2960 l = 0; 2961 r = env->subprog_cnt - 1; 2962 while (l < r) { 2963 m = l + (r - l + 1) / 2; 2964 if (vals[m].start <= off) 2965 l = m; 2966 else 2967 r = m - 1; 2968 } 2969 return &vals[l]; 2970 } 2971 2972 /* Find subprogram that starts exactly at 'off' */ 2973 static int find_subprog(struct bpf_verifier_env *env, int off) 2974 { 2975 struct bpf_subprog_info *p; 2976 2977 p = bpf_find_containing_subprog(env, off); 2978 if (!p || p->start != off) 2979 return -ENOENT; 2980 return p - env->subprog_info; 2981 } 2982 2983 static int add_subprog(struct bpf_verifier_env *env, int off) 2984 { 2985 int insn_cnt = env->prog->len; 2986 int ret; 2987 2988 if (off >= insn_cnt || off < 0) { 2989 verbose(env, "call to invalid destination\n"); 2990 return -EINVAL; 2991 } 2992 ret = find_subprog(env, off); 2993 if (ret >= 0) 2994 return ret; 2995 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2996 verbose(env, "too many subprograms\n"); 2997 return -E2BIG; 2998 } 2999 /* determine subprog starts. The end is one before the next starts */ 3000 env->subprog_info[env->subprog_cnt++].start = off; 3001 sort(env->subprog_info, env->subprog_cnt, 3002 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 3003 return env->subprog_cnt - 1; 3004 } 3005 3006 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) 3007 { 3008 struct bpf_prog_aux *aux = env->prog->aux; 3009 struct btf *btf = aux->btf; 3010 const struct btf_type *t; 3011 u32 main_btf_id, id; 3012 const char *name; 3013 int ret, i; 3014 3015 /* Non-zero func_info_cnt implies valid btf */ 3016 if (!aux->func_info_cnt) 3017 return 0; 3018 main_btf_id = aux->func_info[0].type_id; 3019 3020 t = btf_type_by_id(btf, main_btf_id); 3021 if (!t) { 3022 verbose(env, "invalid btf id for main subprog in func_info\n"); 3023 return -EINVAL; 3024 } 3025 3026 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); 3027 if (IS_ERR(name)) { 3028 ret = PTR_ERR(name); 3029 /* If there is no tag present, there is no exception callback */ 3030 if (ret == -ENOENT) 3031 ret = 0; 3032 else if (ret == -EEXIST) 3033 verbose(env, "multiple exception callback tags for main subprog\n"); 3034 return ret; 3035 } 3036 3037 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); 3038 if (ret < 0) { 3039 verbose(env, "exception callback '%s' could not be found in BTF\n", name); 3040 return ret; 3041 } 3042 id = ret; 3043 t = btf_type_by_id(btf, id); 3044 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 3045 verbose(env, "exception callback '%s' must have global linkage\n", name); 3046 return -EINVAL; 3047 } 3048 ret = 0; 3049 for (i = 0; i < aux->func_info_cnt; i++) { 3050 if (aux->func_info[i].type_id != id) 3051 continue; 3052 ret = aux->func_info[i].insn_off; 3053 /* Further func_info and subprog checks will also happen 3054 * later, so assume this is the right insn_off for now. 3055 */ 3056 if (!ret) { 3057 verbose(env, "invalid exception callback insn_off in func_info: 0\n"); 3058 ret = -EINVAL; 3059 } 3060 } 3061 if (!ret) { 3062 verbose(env, "exception callback type id not found in func_info\n"); 3063 ret = -EINVAL; 3064 } 3065 return ret; 3066 } 3067 3068 #define MAX_KFUNC_DESCS 256 3069 #define MAX_KFUNC_BTFS 256 3070 3071 struct bpf_kfunc_desc { 3072 struct btf_func_model func_model; 3073 u32 func_id; 3074 s32 imm; 3075 u16 offset; 3076 unsigned long addr; 3077 }; 3078 3079 struct bpf_kfunc_btf { 3080 struct btf *btf; 3081 struct module *module; 3082 u16 offset; 3083 }; 3084 3085 struct bpf_kfunc_desc_tab { 3086 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 3087 * verification. JITs do lookups by bpf_insn, where func_id may not be 3088 * available, therefore at the end of verification do_misc_fixups() 3089 * sorts this by imm and offset. 3090 */ 3091 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 3092 u32 nr_descs; 3093 }; 3094 3095 struct bpf_kfunc_btf_tab { 3096 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 3097 u32 nr_descs; 3098 }; 3099 3100 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 3101 { 3102 const struct bpf_kfunc_desc *d0 = a; 3103 const struct bpf_kfunc_desc *d1 = b; 3104 3105 /* func_id is not greater than BTF_MAX_TYPE */ 3106 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 3107 } 3108 3109 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 3110 { 3111 const struct bpf_kfunc_btf *d0 = a; 3112 const struct bpf_kfunc_btf *d1 = b; 3113 3114 return d0->offset - d1->offset; 3115 } 3116 3117 static const struct bpf_kfunc_desc * 3118 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 3119 { 3120 struct bpf_kfunc_desc desc = { 3121 .func_id = func_id, 3122 .offset = offset, 3123 }; 3124 struct bpf_kfunc_desc_tab *tab; 3125 3126 tab = prog->aux->kfunc_tab; 3127 return bsearch(&desc, tab->descs, tab->nr_descs, 3128 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 3129 } 3130 3131 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 3132 u16 btf_fd_idx, u8 **func_addr) 3133 { 3134 const struct bpf_kfunc_desc *desc; 3135 3136 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 3137 if (!desc) 3138 return -EFAULT; 3139 3140 *func_addr = (u8 *)desc->addr; 3141 return 0; 3142 } 3143 3144 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 3145 s16 offset) 3146 { 3147 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 3148 struct bpf_kfunc_btf_tab *tab; 3149 struct bpf_kfunc_btf *b; 3150 struct module *mod; 3151 struct btf *btf; 3152 int btf_fd; 3153 3154 tab = env->prog->aux->kfunc_btf_tab; 3155 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 3156 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 3157 if (!b) { 3158 if (tab->nr_descs == MAX_KFUNC_BTFS) { 3159 verbose(env, "too many different module BTFs\n"); 3160 return ERR_PTR(-E2BIG); 3161 } 3162 3163 if (bpfptr_is_null(env->fd_array)) { 3164 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 3165 return ERR_PTR(-EPROTO); 3166 } 3167 3168 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 3169 offset * sizeof(btf_fd), 3170 sizeof(btf_fd))) 3171 return ERR_PTR(-EFAULT); 3172 3173 btf = btf_get_by_fd(btf_fd); 3174 if (IS_ERR(btf)) { 3175 verbose(env, "invalid module BTF fd specified\n"); 3176 return btf; 3177 } 3178 3179 if (!btf_is_module(btf)) { 3180 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 3181 btf_put(btf); 3182 return ERR_PTR(-EINVAL); 3183 } 3184 3185 mod = btf_try_get_module(btf); 3186 if (!mod) { 3187 btf_put(btf); 3188 return ERR_PTR(-ENXIO); 3189 } 3190 3191 b = &tab->descs[tab->nr_descs++]; 3192 b->btf = btf; 3193 b->module = mod; 3194 b->offset = offset; 3195 3196 /* sort() reorders entries by value, so b may no longer point 3197 * to the right entry after this 3198 */ 3199 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3200 kfunc_btf_cmp_by_off, NULL); 3201 } else { 3202 btf = b->btf; 3203 } 3204 3205 return btf; 3206 } 3207 3208 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 3209 { 3210 if (!tab) 3211 return; 3212 3213 while (tab->nr_descs--) { 3214 module_put(tab->descs[tab->nr_descs].module); 3215 btf_put(tab->descs[tab->nr_descs].btf); 3216 } 3217 kfree(tab); 3218 } 3219 3220 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 3221 { 3222 if (offset) { 3223 if (offset < 0) { 3224 /* In the future, this can be allowed to increase limit 3225 * of fd index into fd_array, interpreted as u16. 3226 */ 3227 verbose(env, "negative offset disallowed for kernel module function call\n"); 3228 return ERR_PTR(-EINVAL); 3229 } 3230 3231 return __find_kfunc_desc_btf(env, offset); 3232 } 3233 return btf_vmlinux ?: ERR_PTR(-ENOENT); 3234 } 3235 3236 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 3237 { 3238 const struct btf_type *func, *func_proto; 3239 struct bpf_kfunc_btf_tab *btf_tab; 3240 struct bpf_kfunc_desc_tab *tab; 3241 struct bpf_prog_aux *prog_aux; 3242 struct bpf_kfunc_desc *desc; 3243 const char *func_name; 3244 struct btf *desc_btf; 3245 unsigned long call_imm; 3246 unsigned long addr; 3247 int err; 3248 3249 prog_aux = env->prog->aux; 3250 tab = prog_aux->kfunc_tab; 3251 btf_tab = prog_aux->kfunc_btf_tab; 3252 if (!tab) { 3253 if (!btf_vmlinux) { 3254 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 3255 return -ENOTSUPP; 3256 } 3257 3258 if (!env->prog->jit_requested) { 3259 verbose(env, "JIT is required for calling kernel function\n"); 3260 return -ENOTSUPP; 3261 } 3262 3263 if (!bpf_jit_supports_kfunc_call()) { 3264 verbose(env, "JIT does not support calling kernel function\n"); 3265 return -ENOTSUPP; 3266 } 3267 3268 if (!env->prog->gpl_compatible) { 3269 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 3270 return -EINVAL; 3271 } 3272 3273 tab = kzalloc(sizeof(*tab), GFP_KERNEL_ACCOUNT); 3274 if (!tab) 3275 return -ENOMEM; 3276 prog_aux->kfunc_tab = tab; 3277 } 3278 3279 /* func_id == 0 is always invalid, but instead of returning an error, be 3280 * conservative and wait until the code elimination pass before returning 3281 * error, so that invalid calls that get pruned out can be in BPF programs 3282 * loaded from userspace. It is also required that offset be untouched 3283 * for such calls. 3284 */ 3285 if (!func_id && !offset) 3286 return 0; 3287 3288 if (!btf_tab && offset) { 3289 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL_ACCOUNT); 3290 if (!btf_tab) 3291 return -ENOMEM; 3292 prog_aux->kfunc_btf_tab = btf_tab; 3293 } 3294 3295 desc_btf = find_kfunc_desc_btf(env, offset); 3296 if (IS_ERR(desc_btf)) { 3297 verbose(env, "failed to find BTF for kernel function\n"); 3298 return PTR_ERR(desc_btf); 3299 } 3300 3301 if (find_kfunc_desc(env->prog, func_id, offset)) 3302 return 0; 3303 3304 if (tab->nr_descs == MAX_KFUNC_DESCS) { 3305 verbose(env, "too many different kernel function calls\n"); 3306 return -E2BIG; 3307 } 3308 3309 func = btf_type_by_id(desc_btf, func_id); 3310 if (!func || !btf_type_is_func(func)) { 3311 verbose(env, "kernel btf_id %u is not a function\n", 3312 func_id); 3313 return -EINVAL; 3314 } 3315 func_proto = btf_type_by_id(desc_btf, func->type); 3316 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 3317 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 3318 func_id); 3319 return -EINVAL; 3320 } 3321 3322 func_name = btf_name_by_offset(desc_btf, func->name_off); 3323 addr = kallsyms_lookup_name(func_name); 3324 if (!addr) { 3325 verbose(env, "cannot find address for kernel function %s\n", 3326 func_name); 3327 return -EINVAL; 3328 } 3329 specialize_kfunc(env, func_id, offset, &addr); 3330 3331 if (bpf_jit_supports_far_kfunc_call()) { 3332 call_imm = func_id; 3333 } else { 3334 call_imm = BPF_CALL_IMM(addr); 3335 /* Check whether the relative offset overflows desc->imm */ 3336 if ((unsigned long)(s32)call_imm != call_imm) { 3337 verbose(env, "address of kernel function %s is out of range\n", 3338 func_name); 3339 return -EINVAL; 3340 } 3341 } 3342 3343 if (bpf_dev_bound_kfunc_id(func_id)) { 3344 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 3345 if (err) 3346 return err; 3347 } 3348 3349 desc = &tab->descs[tab->nr_descs++]; 3350 desc->func_id = func_id; 3351 desc->imm = call_imm; 3352 desc->offset = offset; 3353 desc->addr = addr; 3354 err = btf_distill_func_proto(&env->log, desc_btf, 3355 func_proto, func_name, 3356 &desc->func_model); 3357 if (!err) 3358 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3359 kfunc_desc_cmp_by_id_off, NULL); 3360 return err; 3361 } 3362 3363 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 3364 { 3365 const struct bpf_kfunc_desc *d0 = a; 3366 const struct bpf_kfunc_desc *d1 = b; 3367 3368 if (d0->imm != d1->imm) 3369 return d0->imm < d1->imm ? -1 : 1; 3370 if (d0->offset != d1->offset) 3371 return d0->offset < d1->offset ? -1 : 1; 3372 return 0; 3373 } 3374 3375 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 3376 { 3377 struct bpf_kfunc_desc_tab *tab; 3378 3379 tab = prog->aux->kfunc_tab; 3380 if (!tab) 3381 return; 3382 3383 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3384 kfunc_desc_cmp_by_imm_off, NULL); 3385 } 3386 3387 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 3388 { 3389 return !!prog->aux->kfunc_tab; 3390 } 3391 3392 const struct btf_func_model * 3393 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 3394 const struct bpf_insn *insn) 3395 { 3396 const struct bpf_kfunc_desc desc = { 3397 .imm = insn->imm, 3398 .offset = insn->off, 3399 }; 3400 const struct bpf_kfunc_desc *res; 3401 struct bpf_kfunc_desc_tab *tab; 3402 3403 tab = prog->aux->kfunc_tab; 3404 res = bsearch(&desc, tab->descs, tab->nr_descs, 3405 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 3406 3407 return res ? &res->func_model : NULL; 3408 } 3409 3410 static int add_kfunc_in_insns(struct bpf_verifier_env *env, 3411 struct bpf_insn *insn, int cnt) 3412 { 3413 int i, ret; 3414 3415 for (i = 0; i < cnt; i++, insn++) { 3416 if (bpf_pseudo_kfunc_call(insn)) { 3417 ret = add_kfunc_call(env, insn->imm, insn->off); 3418 if (ret < 0) 3419 return ret; 3420 } 3421 } 3422 return 0; 3423 } 3424 3425 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 3426 { 3427 struct bpf_subprog_info *subprog = env->subprog_info; 3428 int i, ret, insn_cnt = env->prog->len, ex_cb_insn; 3429 struct bpf_insn *insn = env->prog->insnsi; 3430 3431 /* Add entry function. */ 3432 ret = add_subprog(env, 0); 3433 if (ret) 3434 return ret; 3435 3436 for (i = 0; i < insn_cnt; i++, insn++) { 3437 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 3438 !bpf_pseudo_kfunc_call(insn)) 3439 continue; 3440 3441 if (!env->bpf_capable) { 3442 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 3443 return -EPERM; 3444 } 3445 3446 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 3447 ret = add_subprog(env, i + insn->imm + 1); 3448 else 3449 ret = add_kfunc_call(env, insn->imm, insn->off); 3450 3451 if (ret < 0) 3452 return ret; 3453 } 3454 3455 ret = bpf_find_exception_callback_insn_off(env); 3456 if (ret < 0) 3457 return ret; 3458 ex_cb_insn = ret; 3459 3460 /* If ex_cb_insn > 0, this means that the main program has a subprog 3461 * marked using BTF decl tag to serve as the exception callback. 3462 */ 3463 if (ex_cb_insn) { 3464 ret = add_subprog(env, ex_cb_insn); 3465 if (ret < 0) 3466 return ret; 3467 for (i = 1; i < env->subprog_cnt; i++) { 3468 if (env->subprog_info[i].start != ex_cb_insn) 3469 continue; 3470 env->exception_callback_subprog = i; 3471 mark_subprog_exc_cb(env, i); 3472 break; 3473 } 3474 } 3475 3476 /* Add a fake 'exit' subprog which could simplify subprog iteration 3477 * logic. 'subprog_cnt' should not be increased. 3478 */ 3479 subprog[env->subprog_cnt].start = insn_cnt; 3480 3481 if (env->log.level & BPF_LOG_LEVEL2) 3482 for (i = 0; i < env->subprog_cnt; i++) 3483 verbose(env, "func#%d @%d\n", i, subprog[i].start); 3484 3485 return 0; 3486 } 3487 3488 static int check_subprogs(struct bpf_verifier_env *env) 3489 { 3490 int i, subprog_start, subprog_end, off, cur_subprog = 0; 3491 struct bpf_subprog_info *subprog = env->subprog_info; 3492 struct bpf_insn *insn = env->prog->insnsi; 3493 int insn_cnt = env->prog->len; 3494 3495 /* now check that all jumps are within the same subprog */ 3496 subprog_start = subprog[cur_subprog].start; 3497 subprog_end = subprog[cur_subprog + 1].start; 3498 for (i = 0; i < insn_cnt; i++) { 3499 u8 code = insn[i].code; 3500 3501 if (code == (BPF_JMP | BPF_CALL) && 3502 insn[i].src_reg == 0 && 3503 insn[i].imm == BPF_FUNC_tail_call) { 3504 subprog[cur_subprog].has_tail_call = true; 3505 subprog[cur_subprog].tail_call_reachable = true; 3506 } 3507 if (BPF_CLASS(code) == BPF_LD && 3508 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 3509 subprog[cur_subprog].has_ld_abs = true; 3510 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 3511 goto next; 3512 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 3513 goto next; 3514 off = i + bpf_jmp_offset(&insn[i]) + 1; 3515 if (off < subprog_start || off >= subprog_end) { 3516 verbose(env, "jump out of range from insn %d to %d\n", i, off); 3517 return -EINVAL; 3518 } 3519 next: 3520 if (i == subprog_end - 1) { 3521 /* to avoid fall-through from one subprog into another 3522 * the last insn of the subprog should be either exit 3523 * or unconditional jump back or bpf_throw call 3524 */ 3525 if (code != (BPF_JMP | BPF_EXIT) && 3526 code != (BPF_JMP32 | BPF_JA) && 3527 code != (BPF_JMP | BPF_JA)) { 3528 verbose(env, "last insn is not an exit or jmp\n"); 3529 return -EINVAL; 3530 } 3531 subprog_start = subprog_end; 3532 cur_subprog++; 3533 if (cur_subprog < env->subprog_cnt) 3534 subprog_end = subprog[cur_subprog + 1].start; 3535 } 3536 } 3537 return 0; 3538 } 3539 3540 static int mark_stack_slot_obj_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3541 int spi, int nr_slots) 3542 { 3543 int err, i; 3544 3545 for (i = 0; i < nr_slots; i++) { 3546 err = bpf_mark_stack_read(env, reg->frameno, env->insn_idx, BIT(spi - i)); 3547 if (err) 3548 return err; 3549 mark_stack_slot_scratched(env, spi - i); 3550 } 3551 return 0; 3552 } 3553 3554 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3555 { 3556 int spi; 3557 3558 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3559 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3560 * check_kfunc_call. 3561 */ 3562 if (reg->type == CONST_PTR_TO_DYNPTR) 3563 return 0; 3564 spi = dynptr_get_spi(env, reg); 3565 if (spi < 0) 3566 return spi; 3567 /* Caller ensures dynptr is valid and initialized, which means spi is in 3568 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3569 * read. 3570 */ 3571 return mark_stack_slot_obj_read(env, reg, spi, BPF_DYNPTR_NR_SLOTS); 3572 } 3573 3574 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3575 int spi, int nr_slots) 3576 { 3577 return mark_stack_slot_obj_read(env, reg, spi, nr_slots); 3578 } 3579 3580 static int mark_irq_flag_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3581 { 3582 int spi; 3583 3584 spi = irq_flag_get_spi(env, reg); 3585 if (spi < 0) 3586 return spi; 3587 return mark_stack_slot_obj_read(env, reg, spi, 1); 3588 } 3589 3590 /* This function is supposed to be used by the following 32-bit optimization 3591 * code only. It returns TRUE if the source or destination register operates 3592 * on 64-bit, otherwise return FALSE. 3593 */ 3594 static bool is_reg64(struct bpf_insn *insn, 3595 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3596 { 3597 u8 code, class, op; 3598 3599 code = insn->code; 3600 class = BPF_CLASS(code); 3601 op = BPF_OP(code); 3602 if (class == BPF_JMP) { 3603 /* BPF_EXIT for "main" will reach here. Return TRUE 3604 * conservatively. 3605 */ 3606 if (op == BPF_EXIT) 3607 return true; 3608 if (op == BPF_CALL) { 3609 /* BPF to BPF call will reach here because of marking 3610 * caller saved clobber with DST_OP_NO_MARK for which we 3611 * don't care the register def because they are anyway 3612 * marked as NOT_INIT already. 3613 */ 3614 if (insn->src_reg == BPF_PSEUDO_CALL) 3615 return false; 3616 /* Helper call will reach here because of arg type 3617 * check, conservatively return TRUE. 3618 */ 3619 if (t == SRC_OP) 3620 return true; 3621 3622 return false; 3623 } 3624 } 3625 3626 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3627 return false; 3628 3629 if (class == BPF_ALU64 || class == BPF_JMP || 3630 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3631 return true; 3632 3633 if (class == BPF_ALU || class == BPF_JMP32) 3634 return false; 3635 3636 if (class == BPF_LDX) { 3637 if (t != SRC_OP) 3638 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; 3639 /* LDX source must be ptr. */ 3640 return true; 3641 } 3642 3643 if (class == BPF_STX) { 3644 /* BPF_STX (including atomic variants) has one or more source 3645 * operands, one of which is a ptr. Check whether the caller is 3646 * asking about it. 3647 */ 3648 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3649 return true; 3650 return BPF_SIZE(code) == BPF_DW; 3651 } 3652 3653 if (class == BPF_LD) { 3654 u8 mode = BPF_MODE(code); 3655 3656 /* LD_IMM64 */ 3657 if (mode == BPF_IMM) 3658 return true; 3659 3660 /* Both LD_IND and LD_ABS return 32-bit data. */ 3661 if (t != SRC_OP) 3662 return false; 3663 3664 /* Implicit ctx ptr. */ 3665 if (regno == BPF_REG_6) 3666 return true; 3667 3668 /* Explicit source could be any width. */ 3669 return true; 3670 } 3671 3672 if (class == BPF_ST) 3673 /* The only source register for BPF_ST is a ptr. */ 3674 return true; 3675 3676 /* Conservatively return true at default. */ 3677 return true; 3678 } 3679 3680 /* Return the regno defined by the insn, or -1. */ 3681 static int insn_def_regno(const struct bpf_insn *insn) 3682 { 3683 switch (BPF_CLASS(insn->code)) { 3684 case BPF_JMP: 3685 case BPF_JMP32: 3686 case BPF_ST: 3687 return -1; 3688 case BPF_STX: 3689 if (BPF_MODE(insn->code) == BPF_ATOMIC || 3690 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) { 3691 if (insn->imm == BPF_CMPXCHG) 3692 return BPF_REG_0; 3693 else if (insn->imm == BPF_LOAD_ACQ) 3694 return insn->dst_reg; 3695 else if (insn->imm & BPF_FETCH) 3696 return insn->src_reg; 3697 } 3698 return -1; 3699 default: 3700 return insn->dst_reg; 3701 } 3702 } 3703 3704 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3705 static bool insn_has_def32(struct bpf_insn *insn) 3706 { 3707 int dst_reg = insn_def_regno(insn); 3708 3709 if (dst_reg == -1) 3710 return false; 3711 3712 return !is_reg64(insn, dst_reg, NULL, DST_OP); 3713 } 3714 3715 static void mark_insn_zext(struct bpf_verifier_env *env, 3716 struct bpf_reg_state *reg) 3717 { 3718 s32 def_idx = reg->subreg_def; 3719 3720 if (def_idx == DEF_NOT_SUBREG) 3721 return; 3722 3723 env->insn_aux_data[def_idx - 1].zext_dst = true; 3724 /* The dst will be zero extended, so won't be sub-register anymore. */ 3725 reg->subreg_def = DEF_NOT_SUBREG; 3726 } 3727 3728 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3729 enum reg_arg_type t) 3730 { 3731 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3732 struct bpf_reg_state *reg; 3733 bool rw64; 3734 3735 if (regno >= MAX_BPF_REG) { 3736 verbose(env, "R%d is invalid\n", regno); 3737 return -EINVAL; 3738 } 3739 3740 mark_reg_scratched(env, regno); 3741 3742 reg = ®s[regno]; 3743 rw64 = is_reg64(insn, regno, reg, t); 3744 if (t == SRC_OP) { 3745 /* check whether register used as source operand can be read */ 3746 if (reg->type == NOT_INIT) { 3747 verbose(env, "R%d !read_ok\n", regno); 3748 return -EACCES; 3749 } 3750 /* We don't need to worry about FP liveness because it's read-only */ 3751 if (regno == BPF_REG_FP) 3752 return 0; 3753 3754 if (rw64) 3755 mark_insn_zext(env, reg); 3756 3757 return 0; 3758 } else { 3759 /* check whether register used as dest operand can be written to */ 3760 if (regno == BPF_REG_FP) { 3761 verbose(env, "frame pointer is read only\n"); 3762 return -EACCES; 3763 } 3764 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3765 if (t == DST_OP) 3766 mark_reg_unknown(env, regs, regno); 3767 } 3768 return 0; 3769 } 3770 3771 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3772 enum reg_arg_type t) 3773 { 3774 struct bpf_verifier_state *vstate = env->cur_state; 3775 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3776 3777 return __check_reg_arg(env, state->regs, regno, t); 3778 } 3779 3780 static int insn_stack_access_flags(int frameno, int spi) 3781 { 3782 return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno; 3783 } 3784 3785 static int insn_stack_access_spi(int insn_flags) 3786 { 3787 return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK; 3788 } 3789 3790 static int insn_stack_access_frameno(int insn_flags) 3791 { 3792 return insn_flags & INSN_F_FRAMENO_MASK; 3793 } 3794 3795 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3796 { 3797 env->insn_aux_data[idx].jmp_point = true; 3798 } 3799 3800 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3801 { 3802 return env->insn_aux_data[insn_idx].jmp_point; 3803 } 3804 3805 #define LR_FRAMENO_BITS 3 3806 #define LR_SPI_BITS 6 3807 #define LR_ENTRY_BITS (LR_SPI_BITS + LR_FRAMENO_BITS + 1) 3808 #define LR_SIZE_BITS 4 3809 #define LR_FRAMENO_MASK ((1ull << LR_FRAMENO_BITS) - 1) 3810 #define LR_SPI_MASK ((1ull << LR_SPI_BITS) - 1) 3811 #define LR_SIZE_MASK ((1ull << LR_SIZE_BITS) - 1) 3812 #define LR_SPI_OFF LR_FRAMENO_BITS 3813 #define LR_IS_REG_OFF (LR_SPI_BITS + LR_FRAMENO_BITS) 3814 #define LINKED_REGS_MAX 6 3815 3816 struct linked_reg { 3817 u8 frameno; 3818 union { 3819 u8 spi; 3820 u8 regno; 3821 }; 3822 bool is_reg; 3823 }; 3824 3825 struct linked_regs { 3826 int cnt; 3827 struct linked_reg entries[LINKED_REGS_MAX]; 3828 }; 3829 3830 static struct linked_reg *linked_regs_push(struct linked_regs *s) 3831 { 3832 if (s->cnt < LINKED_REGS_MAX) 3833 return &s->entries[s->cnt++]; 3834 3835 return NULL; 3836 } 3837 3838 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track 3839 * number of elements currently in stack. 3840 * Pack one history entry for linked registers as 10 bits in the following format: 3841 * - 3-bits frameno 3842 * - 6-bits spi_or_reg 3843 * - 1-bit is_reg 3844 */ 3845 static u64 linked_regs_pack(struct linked_regs *s) 3846 { 3847 u64 val = 0; 3848 int i; 3849 3850 for (i = 0; i < s->cnt; ++i) { 3851 struct linked_reg *e = &s->entries[i]; 3852 u64 tmp = 0; 3853 3854 tmp |= e->frameno; 3855 tmp |= e->spi << LR_SPI_OFF; 3856 tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF; 3857 3858 val <<= LR_ENTRY_BITS; 3859 val |= tmp; 3860 } 3861 val <<= LR_SIZE_BITS; 3862 val |= s->cnt; 3863 return val; 3864 } 3865 3866 static void linked_regs_unpack(u64 val, struct linked_regs *s) 3867 { 3868 int i; 3869 3870 s->cnt = val & LR_SIZE_MASK; 3871 val >>= LR_SIZE_BITS; 3872 3873 for (i = 0; i < s->cnt; ++i) { 3874 struct linked_reg *e = &s->entries[i]; 3875 3876 e->frameno = val & LR_FRAMENO_MASK; 3877 e->spi = (val >> LR_SPI_OFF) & LR_SPI_MASK; 3878 e->is_reg = (val >> LR_IS_REG_OFF) & 0x1; 3879 val >>= LR_ENTRY_BITS; 3880 } 3881 } 3882 3883 /* for any branch, call, exit record the history of jmps in the given state */ 3884 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, 3885 int insn_flags, u64 linked_regs) 3886 { 3887 u32 cnt = cur->jmp_history_cnt; 3888 struct bpf_jmp_history_entry *p; 3889 size_t alloc_size; 3890 3891 /* combine instruction flags if we already recorded this instruction */ 3892 if (env->cur_hist_ent) { 3893 /* atomic instructions push insn_flags twice, for READ and 3894 * WRITE sides, but they should agree on stack slot 3895 */ 3896 verifier_bug_if((env->cur_hist_ent->flags & insn_flags) && 3897 (env->cur_hist_ent->flags & insn_flags) != insn_flags, 3898 env, "insn history: insn_idx %d cur flags %x new flags %x", 3899 env->insn_idx, env->cur_hist_ent->flags, insn_flags); 3900 env->cur_hist_ent->flags |= insn_flags; 3901 verifier_bug_if(env->cur_hist_ent->linked_regs != 0, env, 3902 "insn history: insn_idx %d linked_regs: %#llx", 3903 env->insn_idx, env->cur_hist_ent->linked_regs); 3904 env->cur_hist_ent->linked_regs = linked_regs; 3905 return 0; 3906 } 3907 3908 cnt++; 3909 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3910 p = krealloc(cur->jmp_history, alloc_size, GFP_KERNEL_ACCOUNT); 3911 if (!p) 3912 return -ENOMEM; 3913 cur->jmp_history = p; 3914 3915 p = &cur->jmp_history[cnt - 1]; 3916 p->idx = env->insn_idx; 3917 p->prev_idx = env->prev_insn_idx; 3918 p->flags = insn_flags; 3919 p->linked_regs = linked_regs; 3920 cur->jmp_history_cnt = cnt; 3921 env->cur_hist_ent = p; 3922 3923 return 0; 3924 } 3925 3926 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st, 3927 u32 hist_end, int insn_idx) 3928 { 3929 if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx) 3930 return &st->jmp_history[hist_end - 1]; 3931 return NULL; 3932 } 3933 3934 /* Backtrack one insn at a time. If idx is not at the top of recorded 3935 * history then previous instruction came from straight line execution. 3936 * Return -ENOENT if we exhausted all instructions within given state. 3937 * 3938 * It's legal to have a bit of a looping with the same starting and ending 3939 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3940 * instruction index is the same as state's first_idx doesn't mean we are 3941 * done. If there is still some jump history left, we should keep going. We 3942 * need to take into account that we might have a jump history between given 3943 * state's parent and itself, due to checkpointing. In this case, we'll have 3944 * history entry recording a jump from last instruction of parent state and 3945 * first instruction of given state. 3946 */ 3947 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3948 u32 *history) 3949 { 3950 u32 cnt = *history; 3951 3952 if (i == st->first_insn_idx) { 3953 if (cnt == 0) 3954 return -ENOENT; 3955 if (cnt == 1 && st->jmp_history[0].idx == i) 3956 return -ENOENT; 3957 } 3958 3959 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3960 i = st->jmp_history[cnt - 1].prev_idx; 3961 (*history)--; 3962 } else { 3963 i--; 3964 } 3965 return i; 3966 } 3967 3968 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3969 { 3970 const struct btf_type *func; 3971 struct btf *desc_btf; 3972 3973 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3974 return NULL; 3975 3976 desc_btf = find_kfunc_desc_btf(data, insn->off); 3977 if (IS_ERR(desc_btf)) 3978 return "<error>"; 3979 3980 func = btf_type_by_id(desc_btf, insn->imm); 3981 return btf_name_by_offset(desc_btf, func->name_off); 3982 } 3983 3984 static void verbose_insn(struct bpf_verifier_env *env, struct bpf_insn *insn) 3985 { 3986 const struct bpf_insn_cbs cbs = { 3987 .cb_call = disasm_kfunc_name, 3988 .cb_print = verbose, 3989 .private_data = env, 3990 }; 3991 3992 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3993 } 3994 3995 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3996 { 3997 bt->frame = frame; 3998 } 3999 4000 static inline void bt_reset(struct backtrack_state *bt) 4001 { 4002 struct bpf_verifier_env *env = bt->env; 4003 4004 memset(bt, 0, sizeof(*bt)); 4005 bt->env = env; 4006 } 4007 4008 static inline u32 bt_empty(struct backtrack_state *bt) 4009 { 4010 u64 mask = 0; 4011 int i; 4012 4013 for (i = 0; i <= bt->frame; i++) 4014 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 4015 4016 return mask == 0; 4017 } 4018 4019 static inline int bt_subprog_enter(struct backtrack_state *bt) 4020 { 4021 if (bt->frame == MAX_CALL_FRAMES - 1) { 4022 verifier_bug(bt->env, "subprog enter from frame %d", bt->frame); 4023 return -EFAULT; 4024 } 4025 bt->frame++; 4026 return 0; 4027 } 4028 4029 static inline int bt_subprog_exit(struct backtrack_state *bt) 4030 { 4031 if (bt->frame == 0) { 4032 verifier_bug(bt->env, "subprog exit from frame 0"); 4033 return -EFAULT; 4034 } 4035 bt->frame--; 4036 return 0; 4037 } 4038 4039 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 4040 { 4041 bt->reg_masks[frame] |= 1 << reg; 4042 } 4043 4044 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 4045 { 4046 bt->reg_masks[frame] &= ~(1 << reg); 4047 } 4048 4049 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 4050 { 4051 bt_set_frame_reg(bt, bt->frame, reg); 4052 } 4053 4054 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 4055 { 4056 bt_clear_frame_reg(bt, bt->frame, reg); 4057 } 4058 4059 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 4060 { 4061 bt->stack_masks[frame] |= 1ull << slot; 4062 } 4063 4064 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 4065 { 4066 bt->stack_masks[frame] &= ~(1ull << slot); 4067 } 4068 4069 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 4070 { 4071 return bt->reg_masks[frame]; 4072 } 4073 4074 static inline u32 bt_reg_mask(struct backtrack_state *bt) 4075 { 4076 return bt->reg_masks[bt->frame]; 4077 } 4078 4079 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 4080 { 4081 return bt->stack_masks[frame]; 4082 } 4083 4084 static inline u64 bt_stack_mask(struct backtrack_state *bt) 4085 { 4086 return bt->stack_masks[bt->frame]; 4087 } 4088 4089 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 4090 { 4091 return bt->reg_masks[bt->frame] & (1 << reg); 4092 } 4093 4094 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg) 4095 { 4096 return bt->reg_masks[frame] & (1 << reg); 4097 } 4098 4099 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot) 4100 { 4101 return bt->stack_masks[frame] & (1ull << slot); 4102 } 4103 4104 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 4105 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 4106 { 4107 DECLARE_BITMAP(mask, 64); 4108 bool first = true; 4109 int i, n; 4110 4111 buf[0] = '\0'; 4112 4113 bitmap_from_u64(mask, reg_mask); 4114 for_each_set_bit(i, mask, 32) { 4115 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 4116 first = false; 4117 buf += n; 4118 buf_sz -= n; 4119 if (buf_sz < 0) 4120 break; 4121 } 4122 } 4123 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 4124 void bpf_fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 4125 { 4126 DECLARE_BITMAP(mask, 64); 4127 bool first = true; 4128 int i, n; 4129 4130 buf[0] = '\0'; 4131 4132 bitmap_from_u64(mask, stack_mask); 4133 for_each_set_bit(i, mask, 64) { 4134 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 4135 first = false; 4136 buf += n; 4137 buf_sz -= n; 4138 if (buf_sz < 0) 4139 break; 4140 } 4141 } 4142 4143 /* If any register R in hist->linked_regs is marked as precise in bt, 4144 * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs. 4145 */ 4146 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_jmp_history_entry *hist) 4147 { 4148 struct linked_regs linked_regs; 4149 bool some_precise = false; 4150 int i; 4151 4152 if (!hist || hist->linked_regs == 0) 4153 return; 4154 4155 linked_regs_unpack(hist->linked_regs, &linked_regs); 4156 for (i = 0; i < linked_regs.cnt; ++i) { 4157 struct linked_reg *e = &linked_regs.entries[i]; 4158 4159 if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) || 4160 (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) { 4161 some_precise = true; 4162 break; 4163 } 4164 } 4165 4166 if (!some_precise) 4167 return; 4168 4169 for (i = 0; i < linked_regs.cnt; ++i) { 4170 struct linked_reg *e = &linked_regs.entries[i]; 4171 4172 if (e->is_reg) 4173 bt_set_frame_reg(bt, e->frameno, e->regno); 4174 else 4175 bt_set_frame_slot(bt, e->frameno, e->spi); 4176 } 4177 } 4178 4179 /* For given verifier state backtrack_insn() is called from the last insn to 4180 * the first insn. Its purpose is to compute a bitmask of registers and 4181 * stack slots that needs precision in the parent verifier state. 4182 * 4183 * @idx is an index of the instruction we are currently processing; 4184 * @subseq_idx is an index of the subsequent instruction that: 4185 * - *would be* executed next, if jump history is viewed in forward order; 4186 * - *was* processed previously during backtracking. 4187 */ 4188 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 4189 struct bpf_jmp_history_entry *hist, struct backtrack_state *bt) 4190 { 4191 struct bpf_insn *insn = env->prog->insnsi + idx; 4192 u8 class = BPF_CLASS(insn->code); 4193 u8 opcode = BPF_OP(insn->code); 4194 u8 mode = BPF_MODE(insn->code); 4195 u32 dreg = insn->dst_reg; 4196 u32 sreg = insn->src_reg; 4197 u32 spi, i, fr; 4198 4199 if (insn->code == 0) 4200 return 0; 4201 if (env->log.level & BPF_LOG_LEVEL2) { 4202 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 4203 verbose(env, "mark_precise: frame%d: regs=%s ", 4204 bt->frame, env->tmp_str_buf); 4205 bpf_fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 4206 verbose(env, "stack=%s before ", env->tmp_str_buf); 4207 verbose(env, "%d: ", idx); 4208 verbose_insn(env, insn); 4209 } 4210 4211 /* If there is a history record that some registers gained range at this insn, 4212 * propagate precision marks to those registers, so that bt_is_reg_set() 4213 * accounts for these registers. 4214 */ 4215 bt_sync_linked_regs(bt, hist); 4216 4217 if (class == BPF_ALU || class == BPF_ALU64) { 4218 if (!bt_is_reg_set(bt, dreg)) 4219 return 0; 4220 if (opcode == BPF_END || opcode == BPF_NEG) { 4221 /* sreg is reserved and unused 4222 * dreg still need precision before this insn 4223 */ 4224 return 0; 4225 } else if (opcode == BPF_MOV) { 4226 if (BPF_SRC(insn->code) == BPF_X) { 4227 /* dreg = sreg or dreg = (s8, s16, s32)sreg 4228 * dreg needs precision after this insn 4229 * sreg needs precision before this insn 4230 */ 4231 bt_clear_reg(bt, dreg); 4232 if (sreg != BPF_REG_FP) 4233 bt_set_reg(bt, sreg); 4234 } else { 4235 /* dreg = K 4236 * dreg needs precision after this insn. 4237 * Corresponding register is already marked 4238 * as precise=true in this verifier state. 4239 * No further markings in parent are necessary 4240 */ 4241 bt_clear_reg(bt, dreg); 4242 } 4243 } else { 4244 if (BPF_SRC(insn->code) == BPF_X) { 4245 /* dreg += sreg 4246 * both dreg and sreg need precision 4247 * before this insn 4248 */ 4249 if (sreg != BPF_REG_FP) 4250 bt_set_reg(bt, sreg); 4251 } /* else dreg += K 4252 * dreg still needs precision before this insn 4253 */ 4254 } 4255 } else if (class == BPF_LDX || is_atomic_load_insn(insn)) { 4256 if (!bt_is_reg_set(bt, dreg)) 4257 return 0; 4258 bt_clear_reg(bt, dreg); 4259 4260 /* scalars can only be spilled into stack w/o losing precision. 4261 * Load from any other memory can be zero extended. 4262 * The desire to keep that precision is already indicated 4263 * by 'precise' mark in corresponding register of this state. 4264 * No further tracking necessary. 4265 */ 4266 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 4267 return 0; 4268 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 4269 * that [fp - off] slot contains scalar that needs to be 4270 * tracked with precision 4271 */ 4272 spi = insn_stack_access_spi(hist->flags); 4273 fr = insn_stack_access_frameno(hist->flags); 4274 bt_set_frame_slot(bt, fr, spi); 4275 } else if (class == BPF_STX || class == BPF_ST) { 4276 if (bt_is_reg_set(bt, dreg)) 4277 /* stx & st shouldn't be using _scalar_ dst_reg 4278 * to access memory. It means backtracking 4279 * encountered a case of pointer subtraction. 4280 */ 4281 return -ENOTSUPP; 4282 /* scalars can only be spilled into stack */ 4283 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 4284 return 0; 4285 spi = insn_stack_access_spi(hist->flags); 4286 fr = insn_stack_access_frameno(hist->flags); 4287 if (!bt_is_frame_slot_set(bt, fr, spi)) 4288 return 0; 4289 bt_clear_frame_slot(bt, fr, spi); 4290 if (class == BPF_STX) 4291 bt_set_reg(bt, sreg); 4292 } else if (class == BPF_JMP || class == BPF_JMP32) { 4293 if (bpf_pseudo_call(insn)) { 4294 int subprog_insn_idx, subprog; 4295 4296 subprog_insn_idx = idx + insn->imm + 1; 4297 subprog = find_subprog(env, subprog_insn_idx); 4298 if (subprog < 0) 4299 return -EFAULT; 4300 4301 if (subprog_is_global(env, subprog)) { 4302 /* check that jump history doesn't have any 4303 * extra instructions from subprog; the next 4304 * instruction after call to global subprog 4305 * should be literally next instruction in 4306 * caller program 4307 */ 4308 verifier_bug_if(idx + 1 != subseq_idx, env, 4309 "extra insn from subprog"); 4310 /* r1-r5 are invalidated after subprog call, 4311 * so for global func call it shouldn't be set 4312 * anymore 4313 */ 4314 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4315 verifier_bug(env, "global subprog unexpected regs %x", 4316 bt_reg_mask(bt)); 4317 return -EFAULT; 4318 } 4319 /* global subprog always sets R0 */ 4320 bt_clear_reg(bt, BPF_REG_0); 4321 return 0; 4322 } else { 4323 /* static subprog call instruction, which 4324 * means that we are exiting current subprog, 4325 * so only r1-r5 could be still requested as 4326 * precise, r0 and r6-r10 or any stack slot in 4327 * the current frame should be zero by now 4328 */ 4329 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 4330 verifier_bug(env, "static subprog unexpected regs %x", 4331 bt_reg_mask(bt)); 4332 return -EFAULT; 4333 } 4334 /* we are now tracking register spills correctly, 4335 * so any instance of leftover slots is a bug 4336 */ 4337 if (bt_stack_mask(bt) != 0) { 4338 verifier_bug(env, 4339 "static subprog leftover stack slots %llx", 4340 bt_stack_mask(bt)); 4341 return -EFAULT; 4342 } 4343 /* propagate r1-r5 to the caller */ 4344 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 4345 if (bt_is_reg_set(bt, i)) { 4346 bt_clear_reg(bt, i); 4347 bt_set_frame_reg(bt, bt->frame - 1, i); 4348 } 4349 } 4350 if (bt_subprog_exit(bt)) 4351 return -EFAULT; 4352 return 0; 4353 } 4354 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 4355 /* exit from callback subprog to callback-calling helper or 4356 * kfunc call. Use idx/subseq_idx check to discern it from 4357 * straight line code backtracking. 4358 * Unlike the subprog call handling above, we shouldn't 4359 * propagate precision of r1-r5 (if any requested), as they are 4360 * not actually arguments passed directly to callback subprogs 4361 */ 4362 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 4363 verifier_bug(env, "callback unexpected regs %x", 4364 bt_reg_mask(bt)); 4365 return -EFAULT; 4366 } 4367 if (bt_stack_mask(bt) != 0) { 4368 verifier_bug(env, "callback leftover stack slots %llx", 4369 bt_stack_mask(bt)); 4370 return -EFAULT; 4371 } 4372 /* clear r1-r5 in callback subprog's mask */ 4373 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4374 bt_clear_reg(bt, i); 4375 if (bt_subprog_exit(bt)) 4376 return -EFAULT; 4377 return 0; 4378 } else if (opcode == BPF_CALL) { 4379 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 4380 * catch this error later. Make backtracking conservative 4381 * with ENOTSUPP. 4382 */ 4383 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 4384 return -ENOTSUPP; 4385 /* regular helper call sets R0 */ 4386 bt_clear_reg(bt, BPF_REG_0); 4387 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4388 /* if backtracking was looking for registers R1-R5 4389 * they should have been found already. 4390 */ 4391 verifier_bug(env, "backtracking call unexpected regs %x", 4392 bt_reg_mask(bt)); 4393 return -EFAULT; 4394 } 4395 } else if (opcode == BPF_EXIT) { 4396 bool r0_precise; 4397 4398 /* Backtracking to a nested function call, 'idx' is a part of 4399 * the inner frame 'subseq_idx' is a part of the outer frame. 4400 * In case of a regular function call, instructions giving 4401 * precision to registers R1-R5 should have been found already. 4402 * In case of a callback, it is ok to have R1-R5 marked for 4403 * backtracking, as these registers are set by the function 4404 * invoking callback. 4405 */ 4406 if (subseq_idx >= 0 && bpf_calls_callback(env, subseq_idx)) 4407 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4408 bt_clear_reg(bt, i); 4409 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4410 verifier_bug(env, "backtracking exit unexpected regs %x", 4411 bt_reg_mask(bt)); 4412 return -EFAULT; 4413 } 4414 4415 /* BPF_EXIT in subprog or callback always returns 4416 * right after the call instruction, so by checking 4417 * whether the instruction at subseq_idx-1 is subprog 4418 * call or not we can distinguish actual exit from 4419 * *subprog* from exit from *callback*. In the former 4420 * case, we need to propagate r0 precision, if 4421 * necessary. In the former we never do that. 4422 */ 4423 r0_precise = subseq_idx - 1 >= 0 && 4424 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 4425 bt_is_reg_set(bt, BPF_REG_0); 4426 4427 bt_clear_reg(bt, BPF_REG_0); 4428 if (bt_subprog_enter(bt)) 4429 return -EFAULT; 4430 4431 if (r0_precise) 4432 bt_set_reg(bt, BPF_REG_0); 4433 /* r6-r9 and stack slots will stay set in caller frame 4434 * bitmasks until we return back from callee(s) 4435 */ 4436 return 0; 4437 } else if (BPF_SRC(insn->code) == BPF_X) { 4438 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 4439 return 0; 4440 /* dreg <cond> sreg 4441 * Both dreg and sreg need precision before 4442 * this insn. If only sreg was marked precise 4443 * before it would be equally necessary to 4444 * propagate it to dreg. 4445 */ 4446 if (!hist || !(hist->flags & INSN_F_SRC_REG_STACK)) 4447 bt_set_reg(bt, sreg); 4448 if (!hist || !(hist->flags & INSN_F_DST_REG_STACK)) 4449 bt_set_reg(bt, dreg); 4450 } else if (BPF_SRC(insn->code) == BPF_K) { 4451 /* dreg <cond> K 4452 * Only dreg still needs precision before 4453 * this insn, so for the K-based conditional 4454 * there is nothing new to be marked. 4455 */ 4456 } 4457 } else if (class == BPF_LD) { 4458 if (!bt_is_reg_set(bt, dreg)) 4459 return 0; 4460 bt_clear_reg(bt, dreg); 4461 /* It's ld_imm64 or ld_abs or ld_ind. 4462 * For ld_imm64 no further tracking of precision 4463 * into parent is necessary 4464 */ 4465 if (mode == BPF_IND || mode == BPF_ABS) 4466 /* to be analyzed */ 4467 return -ENOTSUPP; 4468 } 4469 /* Propagate precision marks to linked registers, to account for 4470 * registers marked as precise in this function. 4471 */ 4472 bt_sync_linked_regs(bt, hist); 4473 return 0; 4474 } 4475 4476 /* the scalar precision tracking algorithm: 4477 * . at the start all registers have precise=false. 4478 * . scalar ranges are tracked as normal through alu and jmp insns. 4479 * . once precise value of the scalar register is used in: 4480 * . ptr + scalar alu 4481 * . if (scalar cond K|scalar) 4482 * . helper_call(.., scalar, ...) where ARG_CONST is expected 4483 * backtrack through the verifier states and mark all registers and 4484 * stack slots with spilled constants that these scalar registers 4485 * should be precise. 4486 * . during state pruning two registers (or spilled stack slots) 4487 * are equivalent if both are not precise. 4488 * 4489 * Note the verifier cannot simply walk register parentage chain, 4490 * since many different registers and stack slots could have been 4491 * used to compute single precise scalar. 4492 * 4493 * The approach of starting with precise=true for all registers and then 4494 * backtrack to mark a register as not precise when the verifier detects 4495 * that program doesn't care about specific value (e.g., when helper 4496 * takes register as ARG_ANYTHING parameter) is not safe. 4497 * 4498 * It's ok to walk single parentage chain of the verifier states. 4499 * It's possible that this backtracking will go all the way till 1st insn. 4500 * All other branches will be explored for needing precision later. 4501 * 4502 * The backtracking needs to deal with cases like: 4503 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 4504 * r9 -= r8 4505 * r5 = r9 4506 * if r5 > 0x79f goto pc+7 4507 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 4508 * r5 += 1 4509 * ... 4510 * call bpf_perf_event_output#25 4511 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 4512 * 4513 * and this case: 4514 * r6 = 1 4515 * call foo // uses callee's r6 inside to compute r0 4516 * r0 += r6 4517 * if r0 == 0 goto 4518 * 4519 * to track above reg_mask/stack_mask needs to be independent for each frame. 4520 * 4521 * Also if parent's curframe > frame where backtracking started, 4522 * the verifier need to mark registers in both frames, otherwise callees 4523 * may incorrectly prune callers. This is similar to 4524 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 4525 * 4526 * For now backtracking falls back into conservative marking. 4527 */ 4528 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 4529 struct bpf_verifier_state *st) 4530 { 4531 struct bpf_func_state *func; 4532 struct bpf_reg_state *reg; 4533 int i, j; 4534 4535 if (env->log.level & BPF_LOG_LEVEL2) { 4536 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 4537 st->curframe); 4538 } 4539 4540 /* big hammer: mark all scalars precise in this path. 4541 * pop_stack may still get !precise scalars. 4542 * We also skip current state and go straight to first parent state, 4543 * because precision markings in current non-checkpointed state are 4544 * not needed. See why in the comment in __mark_chain_precision below. 4545 */ 4546 for (st = st->parent; st; st = st->parent) { 4547 for (i = 0; i <= st->curframe; i++) { 4548 func = st->frame[i]; 4549 for (j = 0; j < BPF_REG_FP; j++) { 4550 reg = &func->regs[j]; 4551 if (reg->type != SCALAR_VALUE || reg->precise) 4552 continue; 4553 reg->precise = true; 4554 if (env->log.level & BPF_LOG_LEVEL2) { 4555 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 4556 i, j); 4557 } 4558 } 4559 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4560 if (!is_spilled_reg(&func->stack[j])) 4561 continue; 4562 reg = &func->stack[j].spilled_ptr; 4563 if (reg->type != SCALAR_VALUE || reg->precise) 4564 continue; 4565 reg->precise = true; 4566 if (env->log.level & BPF_LOG_LEVEL2) { 4567 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 4568 i, -(j + 1) * 8); 4569 } 4570 } 4571 } 4572 } 4573 } 4574 4575 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4576 { 4577 struct bpf_func_state *func; 4578 struct bpf_reg_state *reg; 4579 int i, j; 4580 4581 for (i = 0; i <= st->curframe; i++) { 4582 func = st->frame[i]; 4583 for (j = 0; j < BPF_REG_FP; j++) { 4584 reg = &func->regs[j]; 4585 if (reg->type != SCALAR_VALUE) 4586 continue; 4587 reg->precise = false; 4588 } 4589 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4590 if (!is_spilled_reg(&func->stack[j])) 4591 continue; 4592 reg = &func->stack[j].spilled_ptr; 4593 if (reg->type != SCALAR_VALUE) 4594 continue; 4595 reg->precise = false; 4596 } 4597 } 4598 } 4599 4600 /* 4601 * __mark_chain_precision() backtracks BPF program instruction sequence and 4602 * chain of verifier states making sure that register *regno* (if regno >= 0) 4603 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4604 * SCALARS, as well as any other registers and slots that contribute to 4605 * a tracked state of given registers/stack slots, depending on specific BPF 4606 * assembly instructions (see backtrack_insns() for exact instruction handling 4607 * logic). This backtracking relies on recorded jmp_history and is able to 4608 * traverse entire chain of parent states. This process ends only when all the 4609 * necessary registers/slots and their transitive dependencies are marked as 4610 * precise. 4611 * 4612 * One important and subtle aspect is that precise marks *do not matter* in 4613 * the currently verified state (current state). It is important to understand 4614 * why this is the case. 4615 * 4616 * First, note that current state is the state that is not yet "checkpointed", 4617 * i.e., it is not yet put into env->explored_states, and it has no children 4618 * states as well. It's ephemeral, and can end up either a) being discarded if 4619 * compatible explored state is found at some point or BPF_EXIT instruction is 4620 * reached or b) checkpointed and put into env->explored_states, branching out 4621 * into one or more children states. 4622 * 4623 * In the former case, precise markings in current state are completely 4624 * ignored by state comparison code (see regsafe() for details). Only 4625 * checkpointed ("old") state precise markings are important, and if old 4626 * state's register/slot is precise, regsafe() assumes current state's 4627 * register/slot as precise and checks value ranges exactly and precisely. If 4628 * states turn out to be compatible, current state's necessary precise 4629 * markings and any required parent states' precise markings are enforced 4630 * after the fact with propagate_precision() logic, after the fact. But it's 4631 * important to realize that in this case, even after marking current state 4632 * registers/slots as precise, we immediately discard current state. So what 4633 * actually matters is any of the precise markings propagated into current 4634 * state's parent states, which are always checkpointed (due to b) case above). 4635 * As such, for scenario a) it doesn't matter if current state has precise 4636 * markings set or not. 4637 * 4638 * Now, for the scenario b), checkpointing and forking into child(ren) 4639 * state(s). Note that before current state gets to checkpointing step, any 4640 * processed instruction always assumes precise SCALAR register/slot 4641 * knowledge: if precise value or range is useful to prune jump branch, BPF 4642 * verifier takes this opportunity enthusiastically. Similarly, when 4643 * register's value is used to calculate offset or memory address, exact 4644 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4645 * what we mentioned above about state comparison ignoring precise markings 4646 * during state comparison, BPF verifier ignores and also assumes precise 4647 * markings *at will* during instruction verification process. But as verifier 4648 * assumes precision, it also propagates any precision dependencies across 4649 * parent states, which are not yet finalized, so can be further restricted 4650 * based on new knowledge gained from restrictions enforced by their children 4651 * states. This is so that once those parent states are finalized, i.e., when 4652 * they have no more active children state, state comparison logic in 4653 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4654 * required for correctness. 4655 * 4656 * To build a bit more intuition, note also that once a state is checkpointed, 4657 * the path we took to get to that state is not important. This is crucial 4658 * property for state pruning. When state is checkpointed and finalized at 4659 * some instruction index, it can be correctly and safely used to "short 4660 * circuit" any *compatible* state that reaches exactly the same instruction 4661 * index. I.e., if we jumped to that instruction from a completely different 4662 * code path than original finalized state was derived from, it doesn't 4663 * matter, current state can be discarded because from that instruction 4664 * forward having a compatible state will ensure we will safely reach the 4665 * exit. States describe preconditions for further exploration, but completely 4666 * forget the history of how we got here. 4667 * 4668 * This also means that even if we needed precise SCALAR range to get to 4669 * finalized state, but from that point forward *that same* SCALAR register is 4670 * never used in a precise context (i.e., it's precise value is not needed for 4671 * correctness), it's correct and safe to mark such register as "imprecise" 4672 * (i.e., precise marking set to false). This is what we rely on when we do 4673 * not set precise marking in current state. If no child state requires 4674 * precision for any given SCALAR register, it's safe to dictate that it can 4675 * be imprecise. If any child state does require this register to be precise, 4676 * we'll mark it precise later retroactively during precise markings 4677 * propagation from child state to parent states. 4678 * 4679 * Skipping precise marking setting in current state is a mild version of 4680 * relying on the above observation. But we can utilize this property even 4681 * more aggressively by proactively forgetting any precise marking in the 4682 * current state (which we inherited from the parent state), right before we 4683 * checkpoint it and branch off into new child state. This is done by 4684 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4685 * finalized states which help in short circuiting more future states. 4686 */ 4687 static int __mark_chain_precision(struct bpf_verifier_env *env, 4688 struct bpf_verifier_state *starting_state, 4689 int regno, 4690 bool *changed) 4691 { 4692 struct bpf_verifier_state *st = starting_state; 4693 struct backtrack_state *bt = &env->bt; 4694 int first_idx = st->first_insn_idx; 4695 int last_idx = starting_state->insn_idx; 4696 int subseq_idx = -1; 4697 struct bpf_func_state *func; 4698 bool tmp, skip_first = true; 4699 struct bpf_reg_state *reg; 4700 int i, fr, err; 4701 4702 if (!env->bpf_capable) 4703 return 0; 4704 4705 changed = changed ?: &tmp; 4706 /* set frame number from which we are starting to backtrack */ 4707 bt_init(bt, starting_state->curframe); 4708 4709 /* Do sanity checks against current state of register and/or stack 4710 * slot, but don't set precise flag in current state, as precision 4711 * tracking in the current state is unnecessary. 4712 */ 4713 func = st->frame[bt->frame]; 4714 if (regno >= 0) { 4715 reg = &func->regs[regno]; 4716 if (reg->type != SCALAR_VALUE) { 4717 verifier_bug(env, "backtracking misuse"); 4718 return -EFAULT; 4719 } 4720 bt_set_reg(bt, regno); 4721 } 4722 4723 if (bt_empty(bt)) 4724 return 0; 4725 4726 for (;;) { 4727 DECLARE_BITMAP(mask, 64); 4728 u32 history = st->jmp_history_cnt; 4729 struct bpf_jmp_history_entry *hist; 4730 4731 if (env->log.level & BPF_LOG_LEVEL2) { 4732 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4733 bt->frame, last_idx, first_idx, subseq_idx); 4734 } 4735 4736 if (last_idx < 0) { 4737 /* we are at the entry into subprog, which 4738 * is expected for global funcs, but only if 4739 * requested precise registers are R1-R5 4740 * (which are global func's input arguments) 4741 */ 4742 if (st->curframe == 0 && 4743 st->frame[0]->subprogno > 0 && 4744 st->frame[0]->callsite == BPF_MAIN_FUNC && 4745 bt_stack_mask(bt) == 0 && 4746 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4747 bitmap_from_u64(mask, bt_reg_mask(bt)); 4748 for_each_set_bit(i, mask, 32) { 4749 reg = &st->frame[0]->regs[i]; 4750 bt_clear_reg(bt, i); 4751 if (reg->type == SCALAR_VALUE) { 4752 reg->precise = true; 4753 *changed = true; 4754 } 4755 } 4756 return 0; 4757 } 4758 4759 verifier_bug(env, "backtracking func entry subprog %d reg_mask %x stack_mask %llx", 4760 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4761 return -EFAULT; 4762 } 4763 4764 for (i = last_idx;;) { 4765 if (skip_first) { 4766 err = 0; 4767 skip_first = false; 4768 } else { 4769 hist = get_jmp_hist_entry(st, history, i); 4770 err = backtrack_insn(env, i, subseq_idx, hist, bt); 4771 } 4772 if (err == -ENOTSUPP) { 4773 mark_all_scalars_precise(env, starting_state); 4774 bt_reset(bt); 4775 return 0; 4776 } else if (err) { 4777 return err; 4778 } 4779 if (bt_empty(bt)) 4780 /* Found assignment(s) into tracked register in this state. 4781 * Since this state is already marked, just return. 4782 * Nothing to be tracked further in the parent state. 4783 */ 4784 return 0; 4785 subseq_idx = i; 4786 i = get_prev_insn_idx(st, i, &history); 4787 if (i == -ENOENT) 4788 break; 4789 if (i >= env->prog->len) { 4790 /* This can happen if backtracking reached insn 0 4791 * and there are still reg_mask or stack_mask 4792 * to backtrack. 4793 * It means the backtracking missed the spot where 4794 * particular register was initialized with a constant. 4795 */ 4796 verifier_bug(env, "backtracking idx %d", i); 4797 return -EFAULT; 4798 } 4799 } 4800 st = st->parent; 4801 if (!st) 4802 break; 4803 4804 for (fr = bt->frame; fr >= 0; fr--) { 4805 func = st->frame[fr]; 4806 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4807 for_each_set_bit(i, mask, 32) { 4808 reg = &func->regs[i]; 4809 if (reg->type != SCALAR_VALUE) { 4810 bt_clear_frame_reg(bt, fr, i); 4811 continue; 4812 } 4813 if (reg->precise) { 4814 bt_clear_frame_reg(bt, fr, i); 4815 } else { 4816 reg->precise = true; 4817 *changed = true; 4818 } 4819 } 4820 4821 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4822 for_each_set_bit(i, mask, 64) { 4823 if (verifier_bug_if(i >= func->allocated_stack / BPF_REG_SIZE, 4824 env, "stack slot %d, total slots %d", 4825 i, func->allocated_stack / BPF_REG_SIZE)) 4826 return -EFAULT; 4827 4828 if (!is_spilled_scalar_reg(&func->stack[i])) { 4829 bt_clear_frame_slot(bt, fr, i); 4830 continue; 4831 } 4832 reg = &func->stack[i].spilled_ptr; 4833 if (reg->precise) { 4834 bt_clear_frame_slot(bt, fr, i); 4835 } else { 4836 reg->precise = true; 4837 *changed = true; 4838 } 4839 } 4840 if (env->log.level & BPF_LOG_LEVEL2) { 4841 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4842 bt_frame_reg_mask(bt, fr)); 4843 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4844 fr, env->tmp_str_buf); 4845 bpf_fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4846 bt_frame_stack_mask(bt, fr)); 4847 verbose(env, "stack=%s: ", env->tmp_str_buf); 4848 print_verifier_state(env, st, fr, true); 4849 } 4850 } 4851 4852 if (bt_empty(bt)) 4853 return 0; 4854 4855 subseq_idx = first_idx; 4856 last_idx = st->last_insn_idx; 4857 first_idx = st->first_insn_idx; 4858 } 4859 4860 /* if we still have requested precise regs or slots, we missed 4861 * something (e.g., stack access through non-r10 register), so 4862 * fallback to marking all precise 4863 */ 4864 if (!bt_empty(bt)) { 4865 mark_all_scalars_precise(env, starting_state); 4866 bt_reset(bt); 4867 } 4868 4869 return 0; 4870 } 4871 4872 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4873 { 4874 return __mark_chain_precision(env, env->cur_state, regno, NULL); 4875 } 4876 4877 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4878 * desired reg and stack masks across all relevant frames 4879 */ 4880 static int mark_chain_precision_batch(struct bpf_verifier_env *env, 4881 struct bpf_verifier_state *starting_state) 4882 { 4883 return __mark_chain_precision(env, starting_state, -1, NULL); 4884 } 4885 4886 static bool is_spillable_regtype(enum bpf_reg_type type) 4887 { 4888 switch (base_type(type)) { 4889 case PTR_TO_MAP_VALUE: 4890 case PTR_TO_STACK: 4891 case PTR_TO_CTX: 4892 case PTR_TO_PACKET: 4893 case PTR_TO_PACKET_META: 4894 case PTR_TO_PACKET_END: 4895 case PTR_TO_FLOW_KEYS: 4896 case CONST_PTR_TO_MAP: 4897 case PTR_TO_SOCKET: 4898 case PTR_TO_SOCK_COMMON: 4899 case PTR_TO_TCP_SOCK: 4900 case PTR_TO_XDP_SOCK: 4901 case PTR_TO_BTF_ID: 4902 case PTR_TO_BUF: 4903 case PTR_TO_MEM: 4904 case PTR_TO_FUNC: 4905 case PTR_TO_MAP_KEY: 4906 case PTR_TO_ARENA: 4907 return true; 4908 default: 4909 return false; 4910 } 4911 } 4912 4913 /* Does this register contain a constant zero? */ 4914 static bool register_is_null(struct bpf_reg_state *reg) 4915 { 4916 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4917 } 4918 4919 /* check if register is a constant scalar value */ 4920 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32) 4921 { 4922 return reg->type == SCALAR_VALUE && 4923 tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off); 4924 } 4925 4926 /* assuming is_reg_const() is true, return constant value of a register */ 4927 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32) 4928 { 4929 return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value; 4930 } 4931 4932 static bool __is_pointer_value(bool allow_ptr_leaks, 4933 const struct bpf_reg_state *reg) 4934 { 4935 if (allow_ptr_leaks) 4936 return false; 4937 4938 return reg->type != SCALAR_VALUE; 4939 } 4940 4941 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env, 4942 struct bpf_reg_state *src_reg) 4943 { 4944 if (src_reg->type != SCALAR_VALUE) 4945 return; 4946 4947 if (src_reg->id & BPF_ADD_CONST) { 4948 /* 4949 * The verifier is processing rX = rY insn and 4950 * rY->id has special linked register already. 4951 * Cleared it, since multiple rX += const are not supported. 4952 */ 4953 src_reg->id = 0; 4954 src_reg->off = 0; 4955 } 4956 4957 if (!src_reg->id && !tnum_is_const(src_reg->var_off)) 4958 /* Ensure that src_reg has a valid ID that will be copied to 4959 * dst_reg and then will be used by sync_linked_regs() to 4960 * propagate min/max range. 4961 */ 4962 src_reg->id = ++env->id_gen; 4963 } 4964 4965 /* Copy src state preserving dst->parent and dst->live fields */ 4966 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4967 { 4968 *dst = *src; 4969 } 4970 4971 static void save_register_state(struct bpf_verifier_env *env, 4972 struct bpf_func_state *state, 4973 int spi, struct bpf_reg_state *reg, 4974 int size) 4975 { 4976 int i; 4977 4978 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4979 4980 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4981 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4982 4983 /* size < 8 bytes spill */ 4984 for (; i; i--) 4985 mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]); 4986 } 4987 4988 static bool is_bpf_st_mem(struct bpf_insn *insn) 4989 { 4990 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4991 } 4992 4993 static int get_reg_width(struct bpf_reg_state *reg) 4994 { 4995 return fls64(reg->umax_value); 4996 } 4997 4998 /* See comment for mark_fastcall_pattern_for_call() */ 4999 static void check_fastcall_stack_contract(struct bpf_verifier_env *env, 5000 struct bpf_func_state *state, int insn_idx, int off) 5001 { 5002 struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno]; 5003 struct bpf_insn_aux_data *aux = env->insn_aux_data; 5004 int i; 5005 5006 if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern) 5007 return; 5008 /* access to the region [max_stack_depth .. fastcall_stack_off) 5009 * from something that is not a part of the fastcall pattern, 5010 * disable fastcall rewrites for current subprogram by setting 5011 * fastcall_stack_off to a value smaller than any possible offset. 5012 */ 5013 subprog->fastcall_stack_off = S16_MIN; 5014 /* reset fastcall aux flags within subprogram, 5015 * happens at most once per subprogram 5016 */ 5017 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 5018 aux[i].fastcall_spills_num = 0; 5019 aux[i].fastcall_pattern = 0; 5020 } 5021 } 5022 5023 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 5024 * stack boundary and alignment are checked in check_mem_access() 5025 */ 5026 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 5027 /* stack frame we're writing to */ 5028 struct bpf_func_state *state, 5029 int off, int size, int value_regno, 5030 int insn_idx) 5031 { 5032 struct bpf_func_state *cur; /* state of the current function */ 5033 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 5034 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5035 struct bpf_reg_state *reg = NULL; 5036 int insn_flags = insn_stack_access_flags(state->frameno, spi); 5037 5038 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 5039 * so it's aligned access and [off, off + size) are within stack limits 5040 */ 5041 if (!env->allow_ptr_leaks && 5042 is_spilled_reg(&state->stack[spi]) && 5043 !is_spilled_scalar_reg(&state->stack[spi]) && 5044 size != BPF_REG_SIZE) { 5045 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 5046 return -EACCES; 5047 } 5048 5049 cur = env->cur_state->frame[env->cur_state->curframe]; 5050 if (value_regno >= 0) 5051 reg = &cur->regs[value_regno]; 5052 if (!env->bypass_spec_v4) { 5053 bool sanitize = reg && is_spillable_regtype(reg->type); 5054 5055 for (i = 0; i < size; i++) { 5056 u8 type = state->stack[spi].slot_type[i]; 5057 5058 if (type != STACK_MISC && type != STACK_ZERO) { 5059 sanitize = true; 5060 break; 5061 } 5062 } 5063 5064 if (sanitize) 5065 env->insn_aux_data[insn_idx].nospec_result = true; 5066 } 5067 5068 err = destroy_if_dynptr_stack_slot(env, state, spi); 5069 if (err) 5070 return err; 5071 5072 if (!(off % BPF_REG_SIZE) && size == BPF_REG_SIZE) { 5073 /* only mark the slot as written if all 8 bytes were written 5074 * otherwise read propagation may incorrectly stop too soon 5075 * when stack slots are partially written. 5076 * This heuristic means that read propagation will be 5077 * conservative, since it will add reg_live_read marks 5078 * to stack slots all the way to first state when programs 5079 * writes+reads less than 8 bytes 5080 */ 5081 bpf_mark_stack_write(env, state->frameno, BIT(spi)); 5082 } 5083 5084 check_fastcall_stack_contract(env, state, insn_idx, off); 5085 mark_stack_slot_scratched(env, spi); 5086 if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) { 5087 bool reg_value_fits; 5088 5089 reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size; 5090 /* Make sure that reg had an ID to build a relation on spill. */ 5091 if (reg_value_fits) 5092 assign_scalar_id_before_mov(env, reg); 5093 save_register_state(env, state, spi, reg, size); 5094 /* Break the relation on a narrowing spill. */ 5095 if (!reg_value_fits) 5096 state->stack[spi].spilled_ptr.id = 0; 5097 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 5098 env->bpf_capable) { 5099 struct bpf_reg_state *tmp_reg = &env->fake_reg[0]; 5100 5101 memset(tmp_reg, 0, sizeof(*tmp_reg)); 5102 __mark_reg_known(tmp_reg, insn->imm); 5103 tmp_reg->type = SCALAR_VALUE; 5104 save_register_state(env, state, spi, tmp_reg, size); 5105 } else if (reg && is_spillable_regtype(reg->type)) { 5106 /* register containing pointer is being spilled into stack */ 5107 if (size != BPF_REG_SIZE) { 5108 verbose_linfo(env, insn_idx, "; "); 5109 verbose(env, "invalid size of register spill\n"); 5110 return -EACCES; 5111 } 5112 if (state != cur && reg->type == PTR_TO_STACK) { 5113 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 5114 return -EINVAL; 5115 } 5116 save_register_state(env, state, spi, reg, size); 5117 } else { 5118 u8 type = STACK_MISC; 5119 5120 /* regular write of data into stack destroys any spilled ptr */ 5121 state->stack[spi].spilled_ptr.type = NOT_INIT; 5122 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 5123 if (is_stack_slot_special(&state->stack[spi])) 5124 for (i = 0; i < BPF_REG_SIZE; i++) 5125 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 5126 5127 /* when we zero initialize stack slots mark them as such */ 5128 if ((reg && register_is_null(reg)) || 5129 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 5130 /* STACK_ZERO case happened because register spill 5131 * wasn't properly aligned at the stack slot boundary, 5132 * so it's not a register spill anymore; force 5133 * originating register to be precise to make 5134 * STACK_ZERO correct for subsequent states 5135 */ 5136 err = mark_chain_precision(env, value_regno); 5137 if (err) 5138 return err; 5139 type = STACK_ZERO; 5140 } 5141 5142 /* Mark slots affected by this stack write. */ 5143 for (i = 0; i < size; i++) 5144 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; 5145 insn_flags = 0; /* not a register spill */ 5146 } 5147 5148 if (insn_flags) 5149 return push_jmp_history(env, env->cur_state, insn_flags, 0); 5150 return 0; 5151 } 5152 5153 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 5154 * known to contain a variable offset. 5155 * This function checks whether the write is permitted and conservatively 5156 * tracks the effects of the write, considering that each stack slot in the 5157 * dynamic range is potentially written to. 5158 * 5159 * 'off' includes 'regno->off'. 5160 * 'value_regno' can be -1, meaning that an unknown value is being written to 5161 * the stack. 5162 * 5163 * Spilled pointers in range are not marked as written because we don't know 5164 * what's going to be actually written. This means that read propagation for 5165 * future reads cannot be terminated by this write. 5166 * 5167 * For privileged programs, uninitialized stack slots are considered 5168 * initialized by this write (even though we don't know exactly what offsets 5169 * are going to be written to). The idea is that we don't want the verifier to 5170 * reject future reads that access slots written to through variable offsets. 5171 */ 5172 static int check_stack_write_var_off(struct bpf_verifier_env *env, 5173 /* func where register points to */ 5174 struct bpf_func_state *state, 5175 int ptr_regno, int off, int size, 5176 int value_regno, int insn_idx) 5177 { 5178 struct bpf_func_state *cur; /* state of the current function */ 5179 int min_off, max_off; 5180 int i, err; 5181 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 5182 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5183 bool writing_zero = false; 5184 /* set if the fact that we're writing a zero is used to let any 5185 * stack slots remain STACK_ZERO 5186 */ 5187 bool zero_used = false; 5188 5189 cur = env->cur_state->frame[env->cur_state->curframe]; 5190 ptr_reg = &cur->regs[ptr_regno]; 5191 min_off = ptr_reg->smin_value + off; 5192 max_off = ptr_reg->smax_value + off + size; 5193 if (value_regno >= 0) 5194 value_reg = &cur->regs[value_regno]; 5195 if ((value_reg && register_is_null(value_reg)) || 5196 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 5197 writing_zero = true; 5198 5199 for (i = min_off; i < max_off; i++) { 5200 int spi; 5201 5202 spi = __get_spi(i); 5203 err = destroy_if_dynptr_stack_slot(env, state, spi); 5204 if (err) 5205 return err; 5206 } 5207 5208 check_fastcall_stack_contract(env, state, insn_idx, min_off); 5209 /* Variable offset writes destroy any spilled pointers in range. */ 5210 for (i = min_off; i < max_off; i++) { 5211 u8 new_type, *stype; 5212 int slot, spi; 5213 5214 slot = -i - 1; 5215 spi = slot / BPF_REG_SIZE; 5216 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5217 mark_stack_slot_scratched(env, spi); 5218 5219 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 5220 /* Reject the write if range we may write to has not 5221 * been initialized beforehand. If we didn't reject 5222 * here, the ptr status would be erased below (even 5223 * though not all slots are actually overwritten), 5224 * possibly opening the door to leaks. 5225 * 5226 * We do however catch STACK_INVALID case below, and 5227 * only allow reading possibly uninitialized memory 5228 * later for CAP_PERFMON, as the write may not happen to 5229 * that slot. 5230 */ 5231 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 5232 insn_idx, i); 5233 return -EINVAL; 5234 } 5235 5236 /* If writing_zero and the spi slot contains a spill of value 0, 5237 * maintain the spill type. 5238 */ 5239 if (writing_zero && *stype == STACK_SPILL && 5240 is_spilled_scalar_reg(&state->stack[spi])) { 5241 struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr; 5242 5243 if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) { 5244 zero_used = true; 5245 continue; 5246 } 5247 } 5248 5249 /* Erase all other spilled pointers. */ 5250 state->stack[spi].spilled_ptr.type = NOT_INIT; 5251 5252 /* Update the slot type. */ 5253 new_type = STACK_MISC; 5254 if (writing_zero && *stype == STACK_ZERO) { 5255 new_type = STACK_ZERO; 5256 zero_used = true; 5257 } 5258 /* If the slot is STACK_INVALID, we check whether it's OK to 5259 * pretend that it will be initialized by this write. The slot 5260 * might not actually be written to, and so if we mark it as 5261 * initialized future reads might leak uninitialized memory. 5262 * For privileged programs, we will accept such reads to slots 5263 * that may or may not be written because, if we're reject 5264 * them, the error would be too confusing. 5265 */ 5266 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 5267 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 5268 insn_idx, i); 5269 return -EINVAL; 5270 } 5271 *stype = new_type; 5272 } 5273 if (zero_used) { 5274 /* backtracking doesn't work for STACK_ZERO yet. */ 5275 err = mark_chain_precision(env, value_regno); 5276 if (err) 5277 return err; 5278 } 5279 return 0; 5280 } 5281 5282 /* When register 'dst_regno' is assigned some values from stack[min_off, 5283 * max_off), we set the register's type according to the types of the 5284 * respective stack slots. If all the stack values are known to be zeros, then 5285 * so is the destination reg. Otherwise, the register is considered to be 5286 * SCALAR. This function does not deal with register filling; the caller must 5287 * ensure that all spilled registers in the stack range have been marked as 5288 * read. 5289 */ 5290 static void mark_reg_stack_read(struct bpf_verifier_env *env, 5291 /* func where src register points to */ 5292 struct bpf_func_state *ptr_state, 5293 int min_off, int max_off, int dst_regno) 5294 { 5295 struct bpf_verifier_state *vstate = env->cur_state; 5296 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5297 int i, slot, spi; 5298 u8 *stype; 5299 int zeros = 0; 5300 5301 for (i = min_off; i < max_off; i++) { 5302 slot = -i - 1; 5303 spi = slot / BPF_REG_SIZE; 5304 mark_stack_slot_scratched(env, spi); 5305 stype = ptr_state->stack[spi].slot_type; 5306 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 5307 break; 5308 zeros++; 5309 } 5310 if (zeros == max_off - min_off) { 5311 /* Any access_size read into register is zero extended, 5312 * so the whole register == const_zero. 5313 */ 5314 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5315 } else { 5316 /* have read misc data from the stack */ 5317 mark_reg_unknown(env, state->regs, dst_regno); 5318 } 5319 } 5320 5321 /* Read the stack at 'off' and put the results into the register indicated by 5322 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 5323 * spilled reg. 5324 * 5325 * 'dst_regno' can be -1, meaning that the read value is not going to a 5326 * register. 5327 * 5328 * The access is assumed to be within the current stack bounds. 5329 */ 5330 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 5331 /* func where src register points to */ 5332 struct bpf_func_state *reg_state, 5333 int off, int size, int dst_regno) 5334 { 5335 struct bpf_verifier_state *vstate = env->cur_state; 5336 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5337 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 5338 struct bpf_reg_state *reg; 5339 u8 *stype, type; 5340 int insn_flags = insn_stack_access_flags(reg_state->frameno, spi); 5341 int err; 5342 5343 stype = reg_state->stack[spi].slot_type; 5344 reg = ®_state->stack[spi].spilled_ptr; 5345 5346 mark_stack_slot_scratched(env, spi); 5347 check_fastcall_stack_contract(env, state, env->insn_idx, off); 5348 err = bpf_mark_stack_read(env, reg_state->frameno, env->insn_idx, BIT(spi)); 5349 if (err) 5350 return err; 5351 5352 if (is_spilled_reg(®_state->stack[spi])) { 5353 u8 spill_size = 1; 5354 5355 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 5356 spill_size++; 5357 5358 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 5359 if (reg->type != SCALAR_VALUE) { 5360 verbose_linfo(env, env->insn_idx, "; "); 5361 verbose(env, "invalid size of register fill\n"); 5362 return -EACCES; 5363 } 5364 5365 if (dst_regno < 0) 5366 return 0; 5367 5368 if (size <= spill_size && 5369 bpf_stack_narrow_access_ok(off, size, spill_size)) { 5370 /* The earlier check_reg_arg() has decided the 5371 * subreg_def for this insn. Save it first. 5372 */ 5373 s32 subreg_def = state->regs[dst_regno].subreg_def; 5374 5375 copy_register_state(&state->regs[dst_regno], reg); 5376 state->regs[dst_regno].subreg_def = subreg_def; 5377 5378 /* Break the relation on a narrowing fill. 5379 * coerce_reg_to_size will adjust the boundaries. 5380 */ 5381 if (get_reg_width(reg) > size * BITS_PER_BYTE) 5382 state->regs[dst_regno].id = 0; 5383 } else { 5384 int spill_cnt = 0, zero_cnt = 0; 5385 5386 for (i = 0; i < size; i++) { 5387 type = stype[(slot - i) % BPF_REG_SIZE]; 5388 if (type == STACK_SPILL) { 5389 spill_cnt++; 5390 continue; 5391 } 5392 if (type == STACK_MISC) 5393 continue; 5394 if (type == STACK_ZERO) { 5395 zero_cnt++; 5396 continue; 5397 } 5398 if (type == STACK_INVALID && env->allow_uninit_stack) 5399 continue; 5400 verbose(env, "invalid read from stack off %d+%d size %d\n", 5401 off, i, size); 5402 return -EACCES; 5403 } 5404 5405 if (spill_cnt == size && 5406 tnum_is_const(reg->var_off) && reg->var_off.value == 0) { 5407 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5408 /* this IS register fill, so keep insn_flags */ 5409 } else if (zero_cnt == size) { 5410 /* similarly to mark_reg_stack_read(), preserve zeroes */ 5411 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5412 insn_flags = 0; /* not restoring original register state */ 5413 } else { 5414 mark_reg_unknown(env, state->regs, dst_regno); 5415 insn_flags = 0; /* not restoring original register state */ 5416 } 5417 } 5418 } else if (dst_regno >= 0) { 5419 /* restore register state from stack */ 5420 copy_register_state(&state->regs[dst_regno], reg); 5421 /* mark reg as written since spilled pointer state likely 5422 * has its liveness marks cleared by is_state_visited() 5423 * which resets stack/reg liveness for state transitions 5424 */ 5425 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 5426 /* If dst_regno==-1, the caller is asking us whether 5427 * it is acceptable to use this value as a SCALAR_VALUE 5428 * (e.g. for XADD). 5429 * We must not allow unprivileged callers to do that 5430 * with spilled pointers. 5431 */ 5432 verbose(env, "leaking pointer from stack off %d\n", 5433 off); 5434 return -EACCES; 5435 } 5436 } else { 5437 for (i = 0; i < size; i++) { 5438 type = stype[(slot - i) % BPF_REG_SIZE]; 5439 if (type == STACK_MISC) 5440 continue; 5441 if (type == STACK_ZERO) 5442 continue; 5443 if (type == STACK_INVALID && env->allow_uninit_stack) 5444 continue; 5445 verbose(env, "invalid read from stack off %d+%d size %d\n", 5446 off, i, size); 5447 return -EACCES; 5448 } 5449 if (dst_regno >= 0) 5450 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 5451 insn_flags = 0; /* we are not restoring spilled register */ 5452 } 5453 if (insn_flags) 5454 return push_jmp_history(env, env->cur_state, insn_flags, 0); 5455 return 0; 5456 } 5457 5458 enum bpf_access_src { 5459 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 5460 ACCESS_HELPER = 2, /* the access is performed by a helper */ 5461 }; 5462 5463 static int check_stack_range_initialized(struct bpf_verifier_env *env, 5464 int regno, int off, int access_size, 5465 bool zero_size_allowed, 5466 enum bpf_access_type type, 5467 struct bpf_call_arg_meta *meta); 5468 5469 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 5470 { 5471 return cur_regs(env) + regno; 5472 } 5473 5474 /* Read the stack at 'ptr_regno + off' and put the result into the register 5475 * 'dst_regno'. 5476 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 5477 * but not its variable offset. 5478 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 5479 * 5480 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 5481 * filling registers (i.e. reads of spilled register cannot be detected when 5482 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 5483 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 5484 * offset; for a fixed offset check_stack_read_fixed_off should be used 5485 * instead. 5486 */ 5487 static int check_stack_read_var_off(struct bpf_verifier_env *env, 5488 int ptr_regno, int off, int size, int dst_regno) 5489 { 5490 /* The state of the source register. */ 5491 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5492 struct bpf_func_state *ptr_state = func(env, reg); 5493 int err; 5494 int min_off, max_off; 5495 5496 /* Note that we pass a NULL meta, so raw access will not be permitted. 5497 */ 5498 err = check_stack_range_initialized(env, ptr_regno, off, size, 5499 false, BPF_READ, NULL); 5500 if (err) 5501 return err; 5502 5503 min_off = reg->smin_value + off; 5504 max_off = reg->smax_value + off; 5505 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 5506 check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off); 5507 return 0; 5508 } 5509 5510 /* check_stack_read dispatches to check_stack_read_fixed_off or 5511 * check_stack_read_var_off. 5512 * 5513 * The caller must ensure that the offset falls within the allocated stack 5514 * bounds. 5515 * 5516 * 'dst_regno' is a register which will receive the value from the stack. It 5517 * can be -1, meaning that the read value is not going to a register. 5518 */ 5519 static int check_stack_read(struct bpf_verifier_env *env, 5520 int ptr_regno, int off, int size, 5521 int dst_regno) 5522 { 5523 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5524 struct bpf_func_state *state = func(env, reg); 5525 int err; 5526 /* Some accesses are only permitted with a static offset. */ 5527 bool var_off = !tnum_is_const(reg->var_off); 5528 5529 /* The offset is required to be static when reads don't go to a 5530 * register, in order to not leak pointers (see 5531 * check_stack_read_fixed_off). 5532 */ 5533 if (dst_regno < 0 && var_off) { 5534 char tn_buf[48]; 5535 5536 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5537 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 5538 tn_buf, off, size); 5539 return -EACCES; 5540 } 5541 /* Variable offset is prohibited for unprivileged mode for simplicity 5542 * since it requires corresponding support in Spectre masking for stack 5543 * ALU. See also retrieve_ptr_limit(). The check in 5544 * check_stack_access_for_ptr_arithmetic() called by 5545 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 5546 * with variable offsets, therefore no check is required here. Further, 5547 * just checking it here would be insufficient as speculative stack 5548 * writes could still lead to unsafe speculative behaviour. 5549 */ 5550 if (!var_off) { 5551 off += reg->var_off.value; 5552 err = check_stack_read_fixed_off(env, state, off, size, 5553 dst_regno); 5554 } else { 5555 /* Variable offset stack reads need more conservative handling 5556 * than fixed offset ones. Note that dst_regno >= 0 on this 5557 * branch. 5558 */ 5559 err = check_stack_read_var_off(env, ptr_regno, off, size, 5560 dst_regno); 5561 } 5562 return err; 5563 } 5564 5565 5566 /* check_stack_write dispatches to check_stack_write_fixed_off or 5567 * check_stack_write_var_off. 5568 * 5569 * 'ptr_regno' is the register used as a pointer into the stack. 5570 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5571 * 'value_regno' is the register whose value we're writing to the stack. It can 5572 * be -1, meaning that we're not writing from a register. 5573 * 5574 * The caller must ensure that the offset falls within the maximum stack size. 5575 */ 5576 static int check_stack_write(struct bpf_verifier_env *env, 5577 int ptr_regno, int off, int size, 5578 int value_regno, int insn_idx) 5579 { 5580 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5581 struct bpf_func_state *state = func(env, reg); 5582 int err; 5583 5584 if (tnum_is_const(reg->var_off)) { 5585 off += reg->var_off.value; 5586 err = check_stack_write_fixed_off(env, state, off, size, 5587 value_regno, insn_idx); 5588 } else { 5589 /* Variable offset stack reads need more conservative handling 5590 * than fixed offset ones. 5591 */ 5592 err = check_stack_write_var_off(env, state, 5593 ptr_regno, off, size, 5594 value_regno, insn_idx); 5595 } 5596 return err; 5597 } 5598 5599 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5600 int off, int size, enum bpf_access_type type) 5601 { 5602 struct bpf_reg_state *regs = cur_regs(env); 5603 struct bpf_map *map = regs[regno].map_ptr; 5604 u32 cap = bpf_map_flags_to_cap(map); 5605 5606 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5607 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5608 map->value_size, off, size); 5609 return -EACCES; 5610 } 5611 5612 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5613 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5614 map->value_size, off, size); 5615 return -EACCES; 5616 } 5617 5618 return 0; 5619 } 5620 5621 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5622 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5623 int off, int size, u32 mem_size, 5624 bool zero_size_allowed) 5625 { 5626 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5627 struct bpf_reg_state *reg; 5628 5629 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5630 return 0; 5631 5632 reg = &cur_regs(env)[regno]; 5633 switch (reg->type) { 5634 case PTR_TO_MAP_KEY: 5635 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5636 mem_size, off, size); 5637 break; 5638 case PTR_TO_MAP_VALUE: 5639 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5640 mem_size, off, size); 5641 break; 5642 case PTR_TO_PACKET: 5643 case PTR_TO_PACKET_META: 5644 case PTR_TO_PACKET_END: 5645 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5646 off, size, regno, reg->id, off, mem_size); 5647 break; 5648 case PTR_TO_MEM: 5649 default: 5650 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5651 mem_size, off, size); 5652 } 5653 5654 return -EACCES; 5655 } 5656 5657 /* check read/write into a memory region with possible variable offset */ 5658 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5659 int off, int size, u32 mem_size, 5660 bool zero_size_allowed) 5661 { 5662 struct bpf_verifier_state *vstate = env->cur_state; 5663 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5664 struct bpf_reg_state *reg = &state->regs[regno]; 5665 int err; 5666 5667 /* We may have adjusted the register pointing to memory region, so we 5668 * need to try adding each of min_value and max_value to off 5669 * to make sure our theoretical access will be safe. 5670 * 5671 * The minimum value is only important with signed 5672 * comparisons where we can't assume the floor of a 5673 * value is 0. If we are using signed variables for our 5674 * index'es we need to make sure that whatever we use 5675 * will have a set floor within our range. 5676 */ 5677 if (reg->smin_value < 0 && 5678 (reg->smin_value == S64_MIN || 5679 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5680 reg->smin_value + off < 0)) { 5681 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5682 regno); 5683 return -EACCES; 5684 } 5685 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5686 mem_size, zero_size_allowed); 5687 if (err) { 5688 verbose(env, "R%d min value is outside of the allowed memory range\n", 5689 regno); 5690 return err; 5691 } 5692 5693 /* If we haven't set a max value then we need to bail since we can't be 5694 * sure we won't do bad things. 5695 * If reg->umax_value + off could overflow, treat that as unbounded too. 5696 */ 5697 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5698 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5699 regno); 5700 return -EACCES; 5701 } 5702 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5703 mem_size, zero_size_allowed); 5704 if (err) { 5705 verbose(env, "R%d max value is outside of the allowed memory range\n", 5706 regno); 5707 return err; 5708 } 5709 5710 return 0; 5711 } 5712 5713 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5714 const struct bpf_reg_state *reg, int regno, 5715 bool fixed_off_ok) 5716 { 5717 /* Access to this pointer-typed register or passing it to a helper 5718 * is only allowed in its original, unmodified form. 5719 */ 5720 5721 if (reg->off < 0) { 5722 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5723 reg_type_str(env, reg->type), regno, reg->off); 5724 return -EACCES; 5725 } 5726 5727 if (!fixed_off_ok && reg->off) { 5728 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5729 reg_type_str(env, reg->type), regno, reg->off); 5730 return -EACCES; 5731 } 5732 5733 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5734 char tn_buf[48]; 5735 5736 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5737 verbose(env, "variable %s access var_off=%s disallowed\n", 5738 reg_type_str(env, reg->type), tn_buf); 5739 return -EACCES; 5740 } 5741 5742 return 0; 5743 } 5744 5745 static int check_ptr_off_reg(struct bpf_verifier_env *env, 5746 const struct bpf_reg_state *reg, int regno) 5747 { 5748 return __check_ptr_off_reg(env, reg, regno, false); 5749 } 5750 5751 static int map_kptr_match_type(struct bpf_verifier_env *env, 5752 struct btf_field *kptr_field, 5753 struct bpf_reg_state *reg, u32 regno) 5754 { 5755 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5756 int perm_flags; 5757 const char *reg_name = ""; 5758 5759 if (btf_is_kernel(reg->btf)) { 5760 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5761 5762 /* Only unreferenced case accepts untrusted pointers */ 5763 if (kptr_field->type == BPF_KPTR_UNREF) 5764 perm_flags |= PTR_UNTRUSTED; 5765 } else { 5766 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5767 if (kptr_field->type == BPF_KPTR_PERCPU) 5768 perm_flags |= MEM_PERCPU; 5769 } 5770 5771 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5772 goto bad_type; 5773 5774 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5775 reg_name = btf_type_name(reg->btf, reg->btf_id); 5776 5777 /* For ref_ptr case, release function check should ensure we get one 5778 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5779 * normal store of unreferenced kptr, we must ensure var_off is zero. 5780 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5781 * reg->off and reg->ref_obj_id are not needed here. 5782 */ 5783 if (__check_ptr_off_reg(env, reg, regno, true)) 5784 return -EACCES; 5785 5786 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5787 * we also need to take into account the reg->off. 5788 * 5789 * We want to support cases like: 5790 * 5791 * struct foo { 5792 * struct bar br; 5793 * struct baz bz; 5794 * }; 5795 * 5796 * struct foo *v; 5797 * v = func(); // PTR_TO_BTF_ID 5798 * val->foo = v; // reg->off is zero, btf and btf_id match type 5799 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5800 * // first member type of struct after comparison fails 5801 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5802 * // to match type 5803 * 5804 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5805 * is zero. We must also ensure that btf_struct_ids_match does not walk 5806 * the struct to match type against first member of struct, i.e. reject 5807 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5808 * strict mode to true for type match. 5809 */ 5810 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5811 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5812 kptr_field->type != BPF_KPTR_UNREF)) 5813 goto bad_type; 5814 return 0; 5815 bad_type: 5816 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5817 reg_type_str(env, reg->type), reg_name); 5818 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5819 if (kptr_field->type == BPF_KPTR_UNREF) 5820 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5821 targ_name); 5822 else 5823 verbose(env, "\n"); 5824 return -EINVAL; 5825 } 5826 5827 static bool in_sleepable(struct bpf_verifier_env *env) 5828 { 5829 return env->prog->sleepable || 5830 (env->cur_state && env->cur_state->in_sleepable); 5831 } 5832 5833 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5834 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5835 */ 5836 static bool in_rcu_cs(struct bpf_verifier_env *env) 5837 { 5838 return env->cur_state->active_rcu_lock || 5839 env->cur_state->active_locks || 5840 !in_sleepable(env); 5841 } 5842 5843 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5844 BTF_SET_START(rcu_protected_types) 5845 #ifdef CONFIG_NET 5846 BTF_ID(struct, prog_test_ref_kfunc) 5847 #endif 5848 #ifdef CONFIG_CGROUPS 5849 BTF_ID(struct, cgroup) 5850 #endif 5851 #ifdef CONFIG_BPF_JIT 5852 BTF_ID(struct, bpf_cpumask) 5853 #endif 5854 BTF_ID(struct, task_struct) 5855 #ifdef CONFIG_CRYPTO 5856 BTF_ID(struct, bpf_crypto_ctx) 5857 #endif 5858 BTF_SET_END(rcu_protected_types) 5859 5860 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5861 { 5862 if (!btf_is_kernel(btf)) 5863 return true; 5864 return btf_id_set_contains(&rcu_protected_types, btf_id); 5865 } 5866 5867 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field) 5868 { 5869 struct btf_struct_meta *meta; 5870 5871 if (btf_is_kernel(kptr_field->kptr.btf)) 5872 return NULL; 5873 5874 meta = btf_find_struct_meta(kptr_field->kptr.btf, 5875 kptr_field->kptr.btf_id); 5876 5877 return meta ? meta->record : NULL; 5878 } 5879 5880 static bool rcu_safe_kptr(const struct btf_field *field) 5881 { 5882 const struct btf_field_kptr *kptr = &field->kptr; 5883 5884 return field->type == BPF_KPTR_PERCPU || 5885 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); 5886 } 5887 5888 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) 5889 { 5890 struct btf_record *rec; 5891 u32 ret; 5892 5893 ret = PTR_MAYBE_NULL; 5894 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { 5895 ret |= MEM_RCU; 5896 if (kptr_field->type == BPF_KPTR_PERCPU) 5897 ret |= MEM_PERCPU; 5898 else if (!btf_is_kernel(kptr_field->kptr.btf)) 5899 ret |= MEM_ALLOC; 5900 5901 rec = kptr_pointee_btf_record(kptr_field); 5902 if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE)) 5903 ret |= NON_OWN_REF; 5904 } else { 5905 ret |= PTR_UNTRUSTED; 5906 } 5907 5908 return ret; 5909 } 5910 5911 static int mark_uptr_ld_reg(struct bpf_verifier_env *env, u32 regno, 5912 struct btf_field *field) 5913 { 5914 struct bpf_reg_state *reg; 5915 const struct btf_type *t; 5916 5917 t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id); 5918 mark_reg_known_zero(env, cur_regs(env), regno); 5919 reg = reg_state(env, regno); 5920 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; 5921 reg->mem_size = t->size; 5922 reg->id = ++env->id_gen; 5923 5924 return 0; 5925 } 5926 5927 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5928 int value_regno, int insn_idx, 5929 struct btf_field *kptr_field) 5930 { 5931 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5932 int class = BPF_CLASS(insn->code); 5933 struct bpf_reg_state *val_reg; 5934 int ret; 5935 5936 /* Things we already checked for in check_map_access and caller: 5937 * - Reject cases where variable offset may touch kptr 5938 * - size of access (must be BPF_DW) 5939 * - tnum_is_const(reg->var_off) 5940 * - kptr_field->offset == off + reg->var_off.value 5941 */ 5942 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5943 if (BPF_MODE(insn->code) != BPF_MEM) { 5944 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5945 return -EACCES; 5946 } 5947 5948 /* We only allow loading referenced kptr, since it will be marked as 5949 * untrusted, similar to unreferenced kptr. 5950 */ 5951 if (class != BPF_LDX && 5952 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { 5953 verbose(env, "store to referenced kptr disallowed\n"); 5954 return -EACCES; 5955 } 5956 if (class != BPF_LDX && kptr_field->type == BPF_UPTR) { 5957 verbose(env, "store to uptr disallowed\n"); 5958 return -EACCES; 5959 } 5960 5961 if (class == BPF_LDX) { 5962 if (kptr_field->type == BPF_UPTR) 5963 return mark_uptr_ld_reg(env, value_regno, kptr_field); 5964 5965 /* We can simply mark the value_regno receiving the pointer 5966 * value from map as PTR_TO_BTF_ID, with the correct type. 5967 */ 5968 ret = mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, 5969 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5970 btf_ld_kptr_type(env, kptr_field)); 5971 if (ret < 0) 5972 return ret; 5973 } else if (class == BPF_STX) { 5974 val_reg = reg_state(env, value_regno); 5975 if (!register_is_null(val_reg) && 5976 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5977 return -EACCES; 5978 } else if (class == BPF_ST) { 5979 if (insn->imm) { 5980 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5981 kptr_field->offset); 5982 return -EACCES; 5983 } 5984 } else { 5985 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5986 return -EACCES; 5987 } 5988 return 0; 5989 } 5990 5991 /* check read/write into a map element with possible variable offset */ 5992 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5993 int off, int size, bool zero_size_allowed, 5994 enum bpf_access_src src) 5995 { 5996 struct bpf_verifier_state *vstate = env->cur_state; 5997 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5998 struct bpf_reg_state *reg = &state->regs[regno]; 5999 struct bpf_map *map = reg->map_ptr; 6000 struct btf_record *rec; 6001 int err, i; 6002 6003 err = check_mem_region_access(env, regno, off, size, map->value_size, 6004 zero_size_allowed); 6005 if (err) 6006 return err; 6007 6008 if (IS_ERR_OR_NULL(map->record)) 6009 return 0; 6010 rec = map->record; 6011 for (i = 0; i < rec->cnt; i++) { 6012 struct btf_field *field = &rec->fields[i]; 6013 u32 p = field->offset; 6014 6015 /* If any part of a field can be touched by load/store, reject 6016 * this program. To check that [x1, x2) overlaps with [y1, y2), 6017 * it is sufficient to check x1 < y2 && y1 < x2. 6018 */ 6019 if (reg->smin_value + off < p + field->size && 6020 p < reg->umax_value + off + size) { 6021 switch (field->type) { 6022 case BPF_KPTR_UNREF: 6023 case BPF_KPTR_REF: 6024 case BPF_KPTR_PERCPU: 6025 case BPF_UPTR: 6026 if (src != ACCESS_DIRECT) { 6027 verbose(env, "%s cannot be accessed indirectly by helper\n", 6028 btf_field_type_name(field->type)); 6029 return -EACCES; 6030 } 6031 if (!tnum_is_const(reg->var_off)) { 6032 verbose(env, "%s access cannot have variable offset\n", 6033 btf_field_type_name(field->type)); 6034 return -EACCES; 6035 } 6036 if (p != off + reg->var_off.value) { 6037 verbose(env, "%s access misaligned expected=%u off=%llu\n", 6038 btf_field_type_name(field->type), 6039 p, off + reg->var_off.value); 6040 return -EACCES; 6041 } 6042 if (size != bpf_size_to_bytes(BPF_DW)) { 6043 verbose(env, "%s access size must be BPF_DW\n", 6044 btf_field_type_name(field->type)); 6045 return -EACCES; 6046 } 6047 break; 6048 default: 6049 verbose(env, "%s cannot be accessed directly by load/store\n", 6050 btf_field_type_name(field->type)); 6051 return -EACCES; 6052 } 6053 } 6054 } 6055 return 0; 6056 } 6057 6058 #define MAX_PACKET_OFF 0xffff 6059 6060 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 6061 const struct bpf_call_arg_meta *meta, 6062 enum bpf_access_type t) 6063 { 6064 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 6065 6066 switch (prog_type) { 6067 /* Program types only with direct read access go here! */ 6068 case BPF_PROG_TYPE_LWT_IN: 6069 case BPF_PROG_TYPE_LWT_OUT: 6070 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 6071 case BPF_PROG_TYPE_SK_REUSEPORT: 6072 case BPF_PROG_TYPE_FLOW_DISSECTOR: 6073 case BPF_PROG_TYPE_CGROUP_SKB: 6074 if (t == BPF_WRITE) 6075 return false; 6076 fallthrough; 6077 6078 /* Program types with direct read + write access go here! */ 6079 case BPF_PROG_TYPE_SCHED_CLS: 6080 case BPF_PROG_TYPE_SCHED_ACT: 6081 case BPF_PROG_TYPE_XDP: 6082 case BPF_PROG_TYPE_LWT_XMIT: 6083 case BPF_PROG_TYPE_SK_SKB: 6084 case BPF_PROG_TYPE_SK_MSG: 6085 if (meta) 6086 return meta->pkt_access; 6087 6088 env->seen_direct_write = true; 6089 return true; 6090 6091 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 6092 if (t == BPF_WRITE) 6093 env->seen_direct_write = true; 6094 6095 return true; 6096 6097 default: 6098 return false; 6099 } 6100 } 6101 6102 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 6103 int size, bool zero_size_allowed) 6104 { 6105 struct bpf_reg_state *regs = cur_regs(env); 6106 struct bpf_reg_state *reg = ®s[regno]; 6107 int err; 6108 6109 /* We may have added a variable offset to the packet pointer; but any 6110 * reg->range we have comes after that. We are only checking the fixed 6111 * offset. 6112 */ 6113 6114 /* We don't allow negative numbers, because we aren't tracking enough 6115 * detail to prove they're safe. 6116 */ 6117 if (reg->smin_value < 0) { 6118 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 6119 regno); 6120 return -EACCES; 6121 } 6122 6123 err = reg->range < 0 ? -EINVAL : 6124 __check_mem_access(env, regno, off, size, reg->range, 6125 zero_size_allowed); 6126 if (err) { 6127 verbose(env, "R%d offset is outside of the packet\n", regno); 6128 return err; 6129 } 6130 6131 /* __check_mem_access has made sure "off + size - 1" is within u16. 6132 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 6133 * otherwise find_good_pkt_pointers would have refused to set range info 6134 * that __check_mem_access would have rejected this pkt access. 6135 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 6136 */ 6137 env->prog->aux->max_pkt_offset = 6138 max_t(u32, env->prog->aux->max_pkt_offset, 6139 off + reg->umax_value + size - 1); 6140 6141 return err; 6142 } 6143 6144 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 6145 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 6146 enum bpf_access_type t, struct bpf_insn_access_aux *info) 6147 { 6148 if (env->ops->is_valid_access && 6149 env->ops->is_valid_access(off, size, t, env->prog, info)) { 6150 /* A non zero info.ctx_field_size indicates that this field is a 6151 * candidate for later verifier transformation to load the whole 6152 * field and then apply a mask when accessed with a narrower 6153 * access than actual ctx access size. A zero info.ctx_field_size 6154 * will only allow for whole field access and rejects any other 6155 * type of narrower access. 6156 */ 6157 if (base_type(info->reg_type) == PTR_TO_BTF_ID) { 6158 if (info->ref_obj_id && 6159 !find_reference_state(env->cur_state, info->ref_obj_id)) { 6160 verbose(env, "invalid bpf_context access off=%d. Reference may already be released\n", 6161 off); 6162 return -EACCES; 6163 } 6164 } else { 6165 env->insn_aux_data[insn_idx].ctx_field_size = info->ctx_field_size; 6166 } 6167 /* remember the offset of last byte accessed in ctx */ 6168 if (env->prog->aux->max_ctx_offset < off + size) 6169 env->prog->aux->max_ctx_offset = off + size; 6170 return 0; 6171 } 6172 6173 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 6174 return -EACCES; 6175 } 6176 6177 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 6178 int size) 6179 { 6180 if (size < 0 || off < 0 || 6181 (u64)off + size > sizeof(struct bpf_flow_keys)) { 6182 verbose(env, "invalid access to flow keys off=%d size=%d\n", 6183 off, size); 6184 return -EACCES; 6185 } 6186 return 0; 6187 } 6188 6189 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 6190 u32 regno, int off, int size, 6191 enum bpf_access_type t) 6192 { 6193 struct bpf_reg_state *regs = cur_regs(env); 6194 struct bpf_reg_state *reg = ®s[regno]; 6195 struct bpf_insn_access_aux info = {}; 6196 bool valid; 6197 6198 if (reg->smin_value < 0) { 6199 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 6200 regno); 6201 return -EACCES; 6202 } 6203 6204 switch (reg->type) { 6205 case PTR_TO_SOCK_COMMON: 6206 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 6207 break; 6208 case PTR_TO_SOCKET: 6209 valid = bpf_sock_is_valid_access(off, size, t, &info); 6210 break; 6211 case PTR_TO_TCP_SOCK: 6212 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 6213 break; 6214 case PTR_TO_XDP_SOCK: 6215 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 6216 break; 6217 default: 6218 valid = false; 6219 } 6220 6221 6222 if (valid) { 6223 env->insn_aux_data[insn_idx].ctx_field_size = 6224 info.ctx_field_size; 6225 return 0; 6226 } 6227 6228 verbose(env, "R%d invalid %s access off=%d size=%d\n", 6229 regno, reg_type_str(env, reg->type), off, size); 6230 6231 return -EACCES; 6232 } 6233 6234 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 6235 { 6236 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 6237 } 6238 6239 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 6240 { 6241 const struct bpf_reg_state *reg = reg_state(env, regno); 6242 6243 return reg->type == PTR_TO_CTX; 6244 } 6245 6246 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 6247 { 6248 const struct bpf_reg_state *reg = reg_state(env, regno); 6249 6250 return type_is_sk_pointer(reg->type); 6251 } 6252 6253 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 6254 { 6255 const struct bpf_reg_state *reg = reg_state(env, regno); 6256 6257 return type_is_pkt_pointer(reg->type); 6258 } 6259 6260 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 6261 { 6262 const struct bpf_reg_state *reg = reg_state(env, regno); 6263 6264 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 6265 return reg->type == PTR_TO_FLOW_KEYS; 6266 } 6267 6268 static bool is_arena_reg(struct bpf_verifier_env *env, int regno) 6269 { 6270 const struct bpf_reg_state *reg = reg_state(env, regno); 6271 6272 return reg->type == PTR_TO_ARENA; 6273 } 6274 6275 /* Return false if @regno contains a pointer whose type isn't supported for 6276 * atomic instruction @insn. 6277 */ 6278 static bool atomic_ptr_type_ok(struct bpf_verifier_env *env, int regno, 6279 struct bpf_insn *insn) 6280 { 6281 if (is_ctx_reg(env, regno)) 6282 return false; 6283 if (is_pkt_reg(env, regno)) 6284 return false; 6285 if (is_flow_key_reg(env, regno)) 6286 return false; 6287 if (is_sk_reg(env, regno)) 6288 return false; 6289 if (is_arena_reg(env, regno)) 6290 return bpf_jit_supports_insn(insn, true); 6291 6292 return true; 6293 } 6294 6295 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 6296 #ifdef CONFIG_NET 6297 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 6298 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 6299 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 6300 #endif 6301 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 6302 }; 6303 6304 static bool is_trusted_reg(const struct bpf_reg_state *reg) 6305 { 6306 /* A referenced register is always trusted. */ 6307 if (reg->ref_obj_id) 6308 return true; 6309 6310 /* Types listed in the reg2btf_ids are always trusted */ 6311 if (reg2btf_ids[base_type(reg->type)] && 6312 !bpf_type_has_unsafe_modifiers(reg->type)) 6313 return true; 6314 6315 /* If a register is not referenced, it is trusted if it has the 6316 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 6317 * other type modifiers may be safe, but we elect to take an opt-in 6318 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 6319 * not. 6320 * 6321 * Eventually, we should make PTR_TRUSTED the single source of truth 6322 * for whether a register is trusted. 6323 */ 6324 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 6325 !bpf_type_has_unsafe_modifiers(reg->type); 6326 } 6327 6328 static bool is_rcu_reg(const struct bpf_reg_state *reg) 6329 { 6330 return reg->type & MEM_RCU; 6331 } 6332 6333 static void clear_trusted_flags(enum bpf_type_flag *flag) 6334 { 6335 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 6336 } 6337 6338 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 6339 const struct bpf_reg_state *reg, 6340 int off, int size, bool strict) 6341 { 6342 struct tnum reg_off; 6343 int ip_align; 6344 6345 /* Byte size accesses are always allowed. */ 6346 if (!strict || size == 1) 6347 return 0; 6348 6349 /* For platforms that do not have a Kconfig enabling 6350 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 6351 * NET_IP_ALIGN is universally set to '2'. And on platforms 6352 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 6353 * to this code only in strict mode where we want to emulate 6354 * the NET_IP_ALIGN==2 checking. Therefore use an 6355 * unconditional IP align value of '2'. 6356 */ 6357 ip_align = 2; 6358 6359 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 6360 if (!tnum_is_aligned(reg_off, size)) { 6361 char tn_buf[48]; 6362 6363 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6364 verbose(env, 6365 "misaligned packet access off %d+%s+%d+%d size %d\n", 6366 ip_align, tn_buf, reg->off, off, size); 6367 return -EACCES; 6368 } 6369 6370 return 0; 6371 } 6372 6373 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 6374 const struct bpf_reg_state *reg, 6375 const char *pointer_desc, 6376 int off, int size, bool strict) 6377 { 6378 struct tnum reg_off; 6379 6380 /* Byte size accesses are always allowed. */ 6381 if (!strict || size == 1) 6382 return 0; 6383 6384 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 6385 if (!tnum_is_aligned(reg_off, size)) { 6386 char tn_buf[48]; 6387 6388 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6389 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 6390 pointer_desc, tn_buf, reg->off, off, size); 6391 return -EACCES; 6392 } 6393 6394 return 0; 6395 } 6396 6397 static int check_ptr_alignment(struct bpf_verifier_env *env, 6398 const struct bpf_reg_state *reg, int off, 6399 int size, bool strict_alignment_once) 6400 { 6401 bool strict = env->strict_alignment || strict_alignment_once; 6402 const char *pointer_desc = ""; 6403 6404 switch (reg->type) { 6405 case PTR_TO_PACKET: 6406 case PTR_TO_PACKET_META: 6407 /* Special case, because of NET_IP_ALIGN. Given metadata sits 6408 * right in front, treat it the very same way. 6409 */ 6410 return check_pkt_ptr_alignment(env, reg, off, size, strict); 6411 case PTR_TO_FLOW_KEYS: 6412 pointer_desc = "flow keys "; 6413 break; 6414 case PTR_TO_MAP_KEY: 6415 pointer_desc = "key "; 6416 break; 6417 case PTR_TO_MAP_VALUE: 6418 pointer_desc = "value "; 6419 break; 6420 case PTR_TO_CTX: 6421 pointer_desc = "context "; 6422 break; 6423 case PTR_TO_STACK: 6424 pointer_desc = "stack "; 6425 /* The stack spill tracking logic in check_stack_write_fixed_off() 6426 * and check_stack_read_fixed_off() relies on stack accesses being 6427 * aligned. 6428 */ 6429 strict = true; 6430 break; 6431 case PTR_TO_SOCKET: 6432 pointer_desc = "sock "; 6433 break; 6434 case PTR_TO_SOCK_COMMON: 6435 pointer_desc = "sock_common "; 6436 break; 6437 case PTR_TO_TCP_SOCK: 6438 pointer_desc = "tcp_sock "; 6439 break; 6440 case PTR_TO_XDP_SOCK: 6441 pointer_desc = "xdp_sock "; 6442 break; 6443 case PTR_TO_ARENA: 6444 return 0; 6445 default: 6446 break; 6447 } 6448 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 6449 strict); 6450 } 6451 6452 static enum priv_stack_mode bpf_enable_priv_stack(struct bpf_prog *prog) 6453 { 6454 if (!bpf_jit_supports_private_stack()) 6455 return NO_PRIV_STACK; 6456 6457 /* bpf_prog_check_recur() checks all prog types that use bpf trampoline 6458 * while kprobe/tp/perf_event/raw_tp don't use trampoline hence checked 6459 * explicitly. 6460 */ 6461 switch (prog->type) { 6462 case BPF_PROG_TYPE_KPROBE: 6463 case BPF_PROG_TYPE_TRACEPOINT: 6464 case BPF_PROG_TYPE_PERF_EVENT: 6465 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6466 return PRIV_STACK_ADAPTIVE; 6467 case BPF_PROG_TYPE_TRACING: 6468 case BPF_PROG_TYPE_LSM: 6469 case BPF_PROG_TYPE_STRUCT_OPS: 6470 if (prog->aux->priv_stack_requested || bpf_prog_check_recur(prog)) 6471 return PRIV_STACK_ADAPTIVE; 6472 fallthrough; 6473 default: 6474 break; 6475 } 6476 6477 return NO_PRIV_STACK; 6478 } 6479 6480 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth) 6481 { 6482 if (env->prog->jit_requested) 6483 return round_up(stack_depth, 16); 6484 6485 /* round up to 32-bytes, since this is granularity 6486 * of interpreter stack size 6487 */ 6488 return round_up(max_t(u32, stack_depth, 1), 32); 6489 } 6490 6491 /* starting from main bpf function walk all instructions of the function 6492 * and recursively walk all callees that given function can call. 6493 * Ignore jump and exit insns. 6494 * Since recursion is prevented by check_cfg() this algorithm 6495 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 6496 */ 6497 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx, 6498 bool priv_stack_supported) 6499 { 6500 struct bpf_subprog_info *subprog = env->subprog_info; 6501 struct bpf_insn *insn = env->prog->insnsi; 6502 int depth = 0, frame = 0, i, subprog_end, subprog_depth; 6503 bool tail_call_reachable = false; 6504 int ret_insn[MAX_CALL_FRAMES]; 6505 int ret_prog[MAX_CALL_FRAMES]; 6506 int j; 6507 6508 i = subprog[idx].start; 6509 if (!priv_stack_supported) 6510 subprog[idx].priv_stack_mode = NO_PRIV_STACK; 6511 process_func: 6512 /* protect against potential stack overflow that might happen when 6513 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 6514 * depth for such case down to 256 so that the worst case scenario 6515 * would result in 8k stack size (32 which is tailcall limit * 256 = 6516 * 8k). 6517 * 6518 * To get the idea what might happen, see an example: 6519 * func1 -> sub rsp, 128 6520 * subfunc1 -> sub rsp, 256 6521 * tailcall1 -> add rsp, 256 6522 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 6523 * subfunc2 -> sub rsp, 64 6524 * subfunc22 -> sub rsp, 128 6525 * tailcall2 -> add rsp, 128 6526 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 6527 * 6528 * tailcall will unwind the current stack frame but it will not get rid 6529 * of caller's stack as shown on the example above. 6530 */ 6531 if (idx && subprog[idx].has_tail_call && depth >= 256) { 6532 verbose(env, 6533 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 6534 depth); 6535 return -EACCES; 6536 } 6537 6538 subprog_depth = round_up_stack_depth(env, subprog[idx].stack_depth); 6539 if (priv_stack_supported) { 6540 /* Request private stack support only if the subprog stack 6541 * depth is no less than BPF_PRIV_STACK_MIN_SIZE. This is to 6542 * avoid jit penalty if the stack usage is small. 6543 */ 6544 if (subprog[idx].priv_stack_mode == PRIV_STACK_UNKNOWN && 6545 subprog_depth >= BPF_PRIV_STACK_MIN_SIZE) 6546 subprog[idx].priv_stack_mode = PRIV_STACK_ADAPTIVE; 6547 } 6548 6549 if (subprog[idx].priv_stack_mode == PRIV_STACK_ADAPTIVE) { 6550 if (subprog_depth > MAX_BPF_STACK) { 6551 verbose(env, "stack size of subprog %d is %d. Too large\n", 6552 idx, subprog_depth); 6553 return -EACCES; 6554 } 6555 } else { 6556 depth += subprog_depth; 6557 if (depth > MAX_BPF_STACK) { 6558 verbose(env, "combined stack size of %d calls is %d. Too large\n", 6559 frame + 1, depth); 6560 return -EACCES; 6561 } 6562 } 6563 continue_func: 6564 subprog_end = subprog[idx + 1].start; 6565 for (; i < subprog_end; i++) { 6566 int next_insn, sidx; 6567 6568 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { 6569 bool err = false; 6570 6571 if (!is_bpf_throw_kfunc(insn + i)) 6572 continue; 6573 if (subprog[idx].is_cb) 6574 err = true; 6575 for (int c = 0; c < frame && !err; c++) { 6576 if (subprog[ret_prog[c]].is_cb) { 6577 err = true; 6578 break; 6579 } 6580 } 6581 if (!err) 6582 continue; 6583 verbose(env, 6584 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", 6585 i, idx); 6586 return -EINVAL; 6587 } 6588 6589 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 6590 continue; 6591 /* remember insn and function to return to */ 6592 ret_insn[frame] = i + 1; 6593 ret_prog[frame] = idx; 6594 6595 /* find the callee */ 6596 next_insn = i + insn[i].imm + 1; 6597 sidx = find_subprog(env, next_insn); 6598 if (verifier_bug_if(sidx < 0, env, "callee not found at insn %d", next_insn)) 6599 return -EFAULT; 6600 if (subprog[sidx].is_async_cb) { 6601 if (subprog[sidx].has_tail_call) { 6602 verifier_bug(env, "subprog has tail_call and async cb"); 6603 return -EFAULT; 6604 } 6605 /* async callbacks don't increase bpf prog stack size unless called directly */ 6606 if (!bpf_pseudo_call(insn + i)) 6607 continue; 6608 if (subprog[sidx].is_exception_cb) { 6609 verbose(env, "insn %d cannot call exception cb directly", i); 6610 return -EINVAL; 6611 } 6612 } 6613 i = next_insn; 6614 idx = sidx; 6615 if (!priv_stack_supported) 6616 subprog[idx].priv_stack_mode = NO_PRIV_STACK; 6617 6618 if (subprog[idx].has_tail_call) 6619 tail_call_reachable = true; 6620 6621 frame++; 6622 if (frame >= MAX_CALL_FRAMES) { 6623 verbose(env, "the call stack of %d frames is too deep !\n", 6624 frame); 6625 return -E2BIG; 6626 } 6627 goto process_func; 6628 } 6629 /* if tail call got detected across bpf2bpf calls then mark each of the 6630 * currently present subprog frames as tail call reachable subprogs; 6631 * this info will be utilized by JIT so that we will be preserving the 6632 * tail call counter throughout bpf2bpf calls combined with tailcalls 6633 */ 6634 if (tail_call_reachable) 6635 for (j = 0; j < frame; j++) { 6636 if (subprog[ret_prog[j]].is_exception_cb) { 6637 verbose(env, "cannot tail call within exception cb\n"); 6638 return -EINVAL; 6639 } 6640 subprog[ret_prog[j]].tail_call_reachable = true; 6641 } 6642 if (subprog[0].tail_call_reachable) 6643 env->prog->aux->tail_call_reachable = true; 6644 6645 /* end of for() loop means the last insn of the 'subprog' 6646 * was reached. Doesn't matter whether it was JA or EXIT 6647 */ 6648 if (frame == 0) 6649 return 0; 6650 if (subprog[idx].priv_stack_mode != PRIV_STACK_ADAPTIVE) 6651 depth -= round_up_stack_depth(env, subprog[idx].stack_depth); 6652 frame--; 6653 i = ret_insn[frame]; 6654 idx = ret_prog[frame]; 6655 goto continue_func; 6656 } 6657 6658 static int check_max_stack_depth(struct bpf_verifier_env *env) 6659 { 6660 enum priv_stack_mode priv_stack_mode = PRIV_STACK_UNKNOWN; 6661 struct bpf_subprog_info *si = env->subprog_info; 6662 bool priv_stack_supported; 6663 int ret; 6664 6665 for (int i = 0; i < env->subprog_cnt; i++) { 6666 if (si[i].has_tail_call) { 6667 priv_stack_mode = NO_PRIV_STACK; 6668 break; 6669 } 6670 } 6671 6672 if (priv_stack_mode == PRIV_STACK_UNKNOWN) 6673 priv_stack_mode = bpf_enable_priv_stack(env->prog); 6674 6675 /* All async_cb subprogs use normal kernel stack. If a particular 6676 * subprog appears in both main prog and async_cb subtree, that 6677 * subprog will use normal kernel stack to avoid potential nesting. 6678 * The reverse subprog traversal ensures when main prog subtree is 6679 * checked, the subprogs appearing in async_cb subtrees are already 6680 * marked as using normal kernel stack, so stack size checking can 6681 * be done properly. 6682 */ 6683 for (int i = env->subprog_cnt - 1; i >= 0; i--) { 6684 if (!i || si[i].is_async_cb) { 6685 priv_stack_supported = !i && priv_stack_mode == PRIV_STACK_ADAPTIVE; 6686 ret = check_max_stack_depth_subprog(env, i, priv_stack_supported); 6687 if (ret < 0) 6688 return ret; 6689 } 6690 } 6691 6692 for (int i = 0; i < env->subprog_cnt; i++) { 6693 if (si[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) { 6694 env->prog->aux->jits_use_priv_stack = true; 6695 break; 6696 } 6697 } 6698 6699 return 0; 6700 } 6701 6702 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6703 static int get_callee_stack_depth(struct bpf_verifier_env *env, 6704 const struct bpf_insn *insn, int idx) 6705 { 6706 int start = idx + insn->imm + 1, subprog; 6707 6708 subprog = find_subprog(env, start); 6709 if (verifier_bug_if(subprog < 0, env, "get stack depth: no program at insn %d", start)) 6710 return -EFAULT; 6711 return env->subprog_info[subprog].stack_depth; 6712 } 6713 #endif 6714 6715 static int __check_buffer_access(struct bpf_verifier_env *env, 6716 const char *buf_info, 6717 const struct bpf_reg_state *reg, 6718 int regno, int off, int size) 6719 { 6720 if (off < 0) { 6721 verbose(env, 6722 "R%d invalid %s buffer access: off=%d, size=%d\n", 6723 regno, buf_info, off, size); 6724 return -EACCES; 6725 } 6726 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6727 char tn_buf[48]; 6728 6729 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6730 verbose(env, 6731 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 6732 regno, off, tn_buf); 6733 return -EACCES; 6734 } 6735 6736 return 0; 6737 } 6738 6739 static int check_tp_buffer_access(struct bpf_verifier_env *env, 6740 const struct bpf_reg_state *reg, 6741 int regno, int off, int size) 6742 { 6743 int err; 6744 6745 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6746 if (err) 6747 return err; 6748 6749 if (off + size > env->prog->aux->max_tp_access) 6750 env->prog->aux->max_tp_access = off + size; 6751 6752 return 0; 6753 } 6754 6755 static int check_buffer_access(struct bpf_verifier_env *env, 6756 const struct bpf_reg_state *reg, 6757 int regno, int off, int size, 6758 bool zero_size_allowed, 6759 u32 *max_access) 6760 { 6761 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6762 int err; 6763 6764 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6765 if (err) 6766 return err; 6767 6768 if (off + size > *max_access) 6769 *max_access = off + size; 6770 6771 return 0; 6772 } 6773 6774 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6775 static void zext_32_to_64(struct bpf_reg_state *reg) 6776 { 6777 reg->var_off = tnum_subreg(reg->var_off); 6778 __reg_assign_32_into_64(reg); 6779 } 6780 6781 /* truncate register to smaller size (in bytes) 6782 * must be called with size < BPF_REG_SIZE 6783 */ 6784 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6785 { 6786 u64 mask; 6787 6788 /* clear high bits in bit representation */ 6789 reg->var_off = tnum_cast(reg->var_off, size); 6790 6791 /* fix arithmetic bounds */ 6792 mask = ((u64)1 << (size * 8)) - 1; 6793 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6794 reg->umin_value &= mask; 6795 reg->umax_value &= mask; 6796 } else { 6797 reg->umin_value = 0; 6798 reg->umax_value = mask; 6799 } 6800 reg->smin_value = reg->umin_value; 6801 reg->smax_value = reg->umax_value; 6802 6803 /* If size is smaller than 32bit register the 32bit register 6804 * values are also truncated so we push 64-bit bounds into 6805 * 32-bit bounds. Above were truncated < 32-bits already. 6806 */ 6807 if (size < 4) 6808 __mark_reg32_unbounded(reg); 6809 6810 reg_bounds_sync(reg); 6811 } 6812 6813 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6814 { 6815 if (size == 1) { 6816 reg->smin_value = reg->s32_min_value = S8_MIN; 6817 reg->smax_value = reg->s32_max_value = S8_MAX; 6818 } else if (size == 2) { 6819 reg->smin_value = reg->s32_min_value = S16_MIN; 6820 reg->smax_value = reg->s32_max_value = S16_MAX; 6821 } else { 6822 /* size == 4 */ 6823 reg->smin_value = reg->s32_min_value = S32_MIN; 6824 reg->smax_value = reg->s32_max_value = S32_MAX; 6825 } 6826 reg->umin_value = reg->u32_min_value = 0; 6827 reg->umax_value = U64_MAX; 6828 reg->u32_max_value = U32_MAX; 6829 reg->var_off = tnum_unknown; 6830 } 6831 6832 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6833 { 6834 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6835 u64 top_smax_value, top_smin_value; 6836 u64 num_bits = size * 8; 6837 6838 if (tnum_is_const(reg->var_off)) { 6839 u64_cval = reg->var_off.value; 6840 if (size == 1) 6841 reg->var_off = tnum_const((s8)u64_cval); 6842 else if (size == 2) 6843 reg->var_off = tnum_const((s16)u64_cval); 6844 else 6845 /* size == 4 */ 6846 reg->var_off = tnum_const((s32)u64_cval); 6847 6848 u64_cval = reg->var_off.value; 6849 reg->smax_value = reg->smin_value = u64_cval; 6850 reg->umax_value = reg->umin_value = u64_cval; 6851 reg->s32_max_value = reg->s32_min_value = u64_cval; 6852 reg->u32_max_value = reg->u32_min_value = u64_cval; 6853 return; 6854 } 6855 6856 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6857 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6858 6859 if (top_smax_value != top_smin_value) 6860 goto out; 6861 6862 /* find the s64_min and s64_min after sign extension */ 6863 if (size == 1) { 6864 init_s64_max = (s8)reg->smax_value; 6865 init_s64_min = (s8)reg->smin_value; 6866 } else if (size == 2) { 6867 init_s64_max = (s16)reg->smax_value; 6868 init_s64_min = (s16)reg->smin_value; 6869 } else { 6870 init_s64_max = (s32)reg->smax_value; 6871 init_s64_min = (s32)reg->smin_value; 6872 } 6873 6874 s64_max = max(init_s64_max, init_s64_min); 6875 s64_min = min(init_s64_max, init_s64_min); 6876 6877 /* both of s64_max/s64_min positive or negative */ 6878 if ((s64_max >= 0) == (s64_min >= 0)) { 6879 reg->s32_min_value = reg->smin_value = s64_min; 6880 reg->s32_max_value = reg->smax_value = s64_max; 6881 reg->u32_min_value = reg->umin_value = s64_min; 6882 reg->u32_max_value = reg->umax_value = s64_max; 6883 reg->var_off = tnum_range(s64_min, s64_max); 6884 return; 6885 } 6886 6887 out: 6888 set_sext64_default_val(reg, size); 6889 } 6890 6891 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6892 { 6893 if (size == 1) { 6894 reg->s32_min_value = S8_MIN; 6895 reg->s32_max_value = S8_MAX; 6896 } else { 6897 /* size == 2 */ 6898 reg->s32_min_value = S16_MIN; 6899 reg->s32_max_value = S16_MAX; 6900 } 6901 reg->u32_min_value = 0; 6902 reg->u32_max_value = U32_MAX; 6903 reg->var_off = tnum_subreg(tnum_unknown); 6904 } 6905 6906 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6907 { 6908 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6909 u32 top_smax_value, top_smin_value; 6910 u32 num_bits = size * 8; 6911 6912 if (tnum_is_const(reg->var_off)) { 6913 u32_val = reg->var_off.value; 6914 if (size == 1) 6915 reg->var_off = tnum_const((s8)u32_val); 6916 else 6917 reg->var_off = tnum_const((s16)u32_val); 6918 6919 u32_val = reg->var_off.value; 6920 reg->s32_min_value = reg->s32_max_value = u32_val; 6921 reg->u32_min_value = reg->u32_max_value = u32_val; 6922 return; 6923 } 6924 6925 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6926 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6927 6928 if (top_smax_value != top_smin_value) 6929 goto out; 6930 6931 /* find the s32_min and s32_min after sign extension */ 6932 if (size == 1) { 6933 init_s32_max = (s8)reg->s32_max_value; 6934 init_s32_min = (s8)reg->s32_min_value; 6935 } else { 6936 /* size == 2 */ 6937 init_s32_max = (s16)reg->s32_max_value; 6938 init_s32_min = (s16)reg->s32_min_value; 6939 } 6940 s32_max = max(init_s32_max, init_s32_min); 6941 s32_min = min(init_s32_max, init_s32_min); 6942 6943 if ((s32_min >= 0) == (s32_max >= 0)) { 6944 reg->s32_min_value = s32_min; 6945 reg->s32_max_value = s32_max; 6946 reg->u32_min_value = (u32)s32_min; 6947 reg->u32_max_value = (u32)s32_max; 6948 reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max)); 6949 return; 6950 } 6951 6952 out: 6953 set_sext32_default_val(reg, size); 6954 } 6955 6956 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6957 { 6958 /* A map is considered read-only if the following condition are true: 6959 * 6960 * 1) BPF program side cannot change any of the map content. The 6961 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6962 * and was set at map creation time. 6963 * 2) The map value(s) have been initialized from user space by a 6964 * loader and then "frozen", such that no new map update/delete 6965 * operations from syscall side are possible for the rest of 6966 * the map's lifetime from that point onwards. 6967 * 3) Any parallel/pending map update/delete operations from syscall 6968 * side have been completed. Only after that point, it's safe to 6969 * assume that map value(s) are immutable. 6970 */ 6971 return (map->map_flags & BPF_F_RDONLY_PROG) && 6972 READ_ONCE(map->frozen) && 6973 !bpf_map_write_active(map); 6974 } 6975 6976 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6977 bool is_ldsx) 6978 { 6979 void *ptr; 6980 u64 addr; 6981 int err; 6982 6983 err = map->ops->map_direct_value_addr(map, &addr, off); 6984 if (err) 6985 return err; 6986 ptr = (void *)(long)addr + off; 6987 6988 switch (size) { 6989 case sizeof(u8): 6990 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6991 break; 6992 case sizeof(u16): 6993 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6994 break; 6995 case sizeof(u32): 6996 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6997 break; 6998 case sizeof(u64): 6999 *val = *(u64 *)ptr; 7000 break; 7001 default: 7002 return -EINVAL; 7003 } 7004 return 0; 7005 } 7006 7007 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 7008 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 7009 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 7010 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null) 7011 7012 /* 7013 * Allow list few fields as RCU trusted or full trusted. 7014 * This logic doesn't allow mix tagging and will be removed once GCC supports 7015 * btf_type_tag. 7016 */ 7017 7018 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 7019 BTF_TYPE_SAFE_RCU(struct task_struct) { 7020 const cpumask_t *cpus_ptr; 7021 struct css_set __rcu *cgroups; 7022 struct task_struct __rcu *real_parent; 7023 struct task_struct *group_leader; 7024 }; 7025 7026 BTF_TYPE_SAFE_RCU(struct cgroup) { 7027 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 7028 struct kernfs_node *kn; 7029 }; 7030 7031 BTF_TYPE_SAFE_RCU(struct css_set) { 7032 struct cgroup *dfl_cgrp; 7033 }; 7034 7035 BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state) { 7036 struct cgroup *cgroup; 7037 }; 7038 7039 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 7040 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 7041 struct file __rcu *exe_file; 7042 }; 7043 7044 /* skb->sk, req->sk are not RCU protected, but we mark them as such 7045 * because bpf prog accessible sockets are SOCK_RCU_FREE. 7046 */ 7047 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 7048 struct sock *sk; 7049 }; 7050 7051 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 7052 struct sock *sk; 7053 }; 7054 7055 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 7056 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 7057 struct seq_file *seq; 7058 }; 7059 7060 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 7061 struct bpf_iter_meta *meta; 7062 struct task_struct *task; 7063 }; 7064 7065 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 7066 struct file *file; 7067 }; 7068 7069 BTF_TYPE_SAFE_TRUSTED(struct file) { 7070 struct inode *f_inode; 7071 }; 7072 7073 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry) { 7074 struct inode *d_inode; 7075 }; 7076 7077 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) { 7078 struct sock *sk; 7079 }; 7080 7081 static bool type_is_rcu(struct bpf_verifier_env *env, 7082 struct bpf_reg_state *reg, 7083 const char *field_name, u32 btf_id) 7084 { 7085 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 7086 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 7087 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 7088 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state)); 7089 7090 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 7091 } 7092 7093 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 7094 struct bpf_reg_state *reg, 7095 const char *field_name, u32 btf_id) 7096 { 7097 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 7098 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 7099 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 7100 7101 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 7102 } 7103 7104 static bool type_is_trusted(struct bpf_verifier_env *env, 7105 struct bpf_reg_state *reg, 7106 const char *field_name, u32 btf_id) 7107 { 7108 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 7109 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 7110 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 7111 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 7112 7113 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 7114 } 7115 7116 static bool type_is_trusted_or_null(struct bpf_verifier_env *env, 7117 struct bpf_reg_state *reg, 7118 const char *field_name, u32 btf_id) 7119 { 7120 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)); 7121 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry)); 7122 7123 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, 7124 "__safe_trusted_or_null"); 7125 } 7126 7127 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 7128 struct bpf_reg_state *regs, 7129 int regno, int off, int size, 7130 enum bpf_access_type atype, 7131 int value_regno) 7132 { 7133 struct bpf_reg_state *reg = regs + regno; 7134 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 7135 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 7136 const char *field_name = NULL; 7137 enum bpf_type_flag flag = 0; 7138 u32 btf_id = 0; 7139 int ret; 7140 7141 if (!env->allow_ptr_leaks) { 7142 verbose(env, 7143 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 7144 tname); 7145 return -EPERM; 7146 } 7147 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 7148 verbose(env, 7149 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 7150 tname); 7151 return -EINVAL; 7152 } 7153 if (off < 0) { 7154 verbose(env, 7155 "R%d is ptr_%s invalid negative access: off=%d\n", 7156 regno, tname, off); 7157 return -EACCES; 7158 } 7159 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 7160 char tn_buf[48]; 7161 7162 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7163 verbose(env, 7164 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 7165 regno, tname, off, tn_buf); 7166 return -EACCES; 7167 } 7168 7169 if (reg->type & MEM_USER) { 7170 verbose(env, 7171 "R%d is ptr_%s access user memory: off=%d\n", 7172 regno, tname, off); 7173 return -EACCES; 7174 } 7175 7176 if (reg->type & MEM_PERCPU) { 7177 verbose(env, 7178 "R%d is ptr_%s access percpu memory: off=%d\n", 7179 regno, tname, off); 7180 return -EACCES; 7181 } 7182 7183 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 7184 if (!btf_is_kernel(reg->btf)) { 7185 verifier_bug(env, "reg->btf must be kernel btf"); 7186 return -EFAULT; 7187 } 7188 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 7189 } else { 7190 /* Writes are permitted with default btf_struct_access for 7191 * program allocated objects (which always have ref_obj_id > 0), 7192 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 7193 */ 7194 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 7195 verbose(env, "only read is supported\n"); 7196 return -EACCES; 7197 } 7198 7199 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 7200 !(reg->type & MEM_RCU) && !reg->ref_obj_id) { 7201 verifier_bug(env, "ref_obj_id for allocated object must be non-zero"); 7202 return -EFAULT; 7203 } 7204 7205 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 7206 } 7207 7208 if (ret < 0) 7209 return ret; 7210 7211 if (ret != PTR_TO_BTF_ID) { 7212 /* just mark; */ 7213 7214 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 7215 /* If this is an untrusted pointer, all pointers formed by walking it 7216 * also inherit the untrusted flag. 7217 */ 7218 flag = PTR_UNTRUSTED; 7219 7220 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 7221 /* By default any pointer obtained from walking a trusted pointer is no 7222 * longer trusted, unless the field being accessed has explicitly been 7223 * marked as inheriting its parent's state of trust (either full or RCU). 7224 * For example: 7225 * 'cgroups' pointer is untrusted if task->cgroups dereference 7226 * happened in a sleepable program outside of bpf_rcu_read_lock() 7227 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 7228 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 7229 * 7230 * A regular RCU-protected pointer with __rcu tag can also be deemed 7231 * trusted if we are in an RCU CS. Such pointer can be NULL. 7232 */ 7233 if (type_is_trusted(env, reg, field_name, btf_id)) { 7234 flag |= PTR_TRUSTED; 7235 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) { 7236 flag |= PTR_TRUSTED | PTR_MAYBE_NULL; 7237 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 7238 if (type_is_rcu(env, reg, field_name, btf_id)) { 7239 /* ignore __rcu tag and mark it MEM_RCU */ 7240 flag |= MEM_RCU; 7241 } else if (flag & MEM_RCU || 7242 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 7243 /* __rcu tagged pointers can be NULL */ 7244 flag |= MEM_RCU | PTR_MAYBE_NULL; 7245 7246 /* We always trust them */ 7247 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 7248 flag & PTR_UNTRUSTED) 7249 flag &= ~PTR_UNTRUSTED; 7250 } else if (flag & (MEM_PERCPU | MEM_USER)) { 7251 /* keep as-is */ 7252 } else { 7253 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 7254 clear_trusted_flags(&flag); 7255 } 7256 } else { 7257 /* 7258 * If not in RCU CS or MEM_RCU pointer can be NULL then 7259 * aggressively mark as untrusted otherwise such 7260 * pointers will be plain PTR_TO_BTF_ID without flags 7261 * and will be allowed to be passed into helpers for 7262 * compat reasons. 7263 */ 7264 flag = PTR_UNTRUSTED; 7265 } 7266 } else { 7267 /* Old compat. Deprecated */ 7268 clear_trusted_flags(&flag); 7269 } 7270 7271 if (atype == BPF_READ && value_regno >= 0) { 7272 ret = mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 7273 if (ret < 0) 7274 return ret; 7275 } 7276 7277 return 0; 7278 } 7279 7280 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 7281 struct bpf_reg_state *regs, 7282 int regno, int off, int size, 7283 enum bpf_access_type atype, 7284 int value_regno) 7285 { 7286 struct bpf_reg_state *reg = regs + regno; 7287 struct bpf_map *map = reg->map_ptr; 7288 struct bpf_reg_state map_reg; 7289 enum bpf_type_flag flag = 0; 7290 const struct btf_type *t; 7291 const char *tname; 7292 u32 btf_id; 7293 int ret; 7294 7295 if (!btf_vmlinux) { 7296 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 7297 return -ENOTSUPP; 7298 } 7299 7300 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 7301 verbose(env, "map_ptr access not supported for map type %d\n", 7302 map->map_type); 7303 return -ENOTSUPP; 7304 } 7305 7306 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 7307 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 7308 7309 if (!env->allow_ptr_leaks) { 7310 verbose(env, 7311 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 7312 tname); 7313 return -EPERM; 7314 } 7315 7316 if (off < 0) { 7317 verbose(env, "R%d is %s invalid negative access: off=%d\n", 7318 regno, tname, off); 7319 return -EACCES; 7320 } 7321 7322 if (atype != BPF_READ) { 7323 verbose(env, "only read from %s is supported\n", tname); 7324 return -EACCES; 7325 } 7326 7327 /* Simulate access to a PTR_TO_BTF_ID */ 7328 memset(&map_reg, 0, sizeof(map_reg)); 7329 ret = mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, 7330 btf_vmlinux, *map->ops->map_btf_id, 0); 7331 if (ret < 0) 7332 return ret; 7333 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 7334 if (ret < 0) 7335 return ret; 7336 7337 if (value_regno >= 0) { 7338 ret = mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 7339 if (ret < 0) 7340 return ret; 7341 } 7342 7343 return 0; 7344 } 7345 7346 /* Check that the stack access at the given offset is within bounds. The 7347 * maximum valid offset is -1. 7348 * 7349 * The minimum valid offset is -MAX_BPF_STACK for writes, and 7350 * -state->allocated_stack for reads. 7351 */ 7352 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 7353 s64 off, 7354 struct bpf_func_state *state, 7355 enum bpf_access_type t) 7356 { 7357 int min_valid_off; 7358 7359 if (t == BPF_WRITE || env->allow_uninit_stack) 7360 min_valid_off = -MAX_BPF_STACK; 7361 else 7362 min_valid_off = -state->allocated_stack; 7363 7364 if (off < min_valid_off || off > -1) 7365 return -EACCES; 7366 return 0; 7367 } 7368 7369 /* Check that the stack access at 'regno + off' falls within the maximum stack 7370 * bounds. 7371 * 7372 * 'off' includes `regno->offset`, but not its dynamic part (if any). 7373 */ 7374 static int check_stack_access_within_bounds( 7375 struct bpf_verifier_env *env, 7376 int regno, int off, int access_size, 7377 enum bpf_access_type type) 7378 { 7379 struct bpf_reg_state *regs = cur_regs(env); 7380 struct bpf_reg_state *reg = regs + regno; 7381 struct bpf_func_state *state = func(env, reg); 7382 s64 min_off, max_off; 7383 int err; 7384 char *err_extra; 7385 7386 if (type == BPF_READ) 7387 err_extra = " read from"; 7388 else 7389 err_extra = " write to"; 7390 7391 if (tnum_is_const(reg->var_off)) { 7392 min_off = (s64)reg->var_off.value + off; 7393 max_off = min_off + access_size; 7394 } else { 7395 if (reg->smax_value >= BPF_MAX_VAR_OFF || 7396 reg->smin_value <= -BPF_MAX_VAR_OFF) { 7397 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 7398 err_extra, regno); 7399 return -EACCES; 7400 } 7401 min_off = reg->smin_value + off; 7402 max_off = reg->smax_value + off + access_size; 7403 } 7404 7405 err = check_stack_slot_within_bounds(env, min_off, state, type); 7406 if (!err && max_off > 0) 7407 err = -EINVAL; /* out of stack access into non-negative offsets */ 7408 if (!err && access_size < 0) 7409 /* access_size should not be negative (or overflow an int); others checks 7410 * along the way should have prevented such an access. 7411 */ 7412 err = -EFAULT; /* invalid negative access size; integer overflow? */ 7413 7414 if (err) { 7415 if (tnum_is_const(reg->var_off)) { 7416 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 7417 err_extra, regno, off, access_size); 7418 } else { 7419 char tn_buf[48]; 7420 7421 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7422 verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n", 7423 err_extra, regno, tn_buf, off, access_size); 7424 } 7425 return err; 7426 } 7427 7428 /* Note that there is no stack access with offset zero, so the needed stack 7429 * size is -min_off, not -min_off+1. 7430 */ 7431 return grow_stack_state(env, state, -min_off /* size */); 7432 } 7433 7434 static bool get_func_retval_range(struct bpf_prog *prog, 7435 struct bpf_retval_range *range) 7436 { 7437 if (prog->type == BPF_PROG_TYPE_LSM && 7438 prog->expected_attach_type == BPF_LSM_MAC && 7439 !bpf_lsm_get_retval_range(prog, range)) { 7440 return true; 7441 } 7442 return false; 7443 } 7444 7445 /* check whether memory at (regno + off) is accessible for t = (read | write) 7446 * if t==write, value_regno is a register which value is stored into memory 7447 * if t==read, value_regno is a register which will receive the value from memory 7448 * if t==write && value_regno==-1, some unknown value is stored into memory 7449 * if t==read && value_regno==-1, don't care what we read from memory 7450 */ 7451 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 7452 int off, int bpf_size, enum bpf_access_type t, 7453 int value_regno, bool strict_alignment_once, bool is_ldsx) 7454 { 7455 struct bpf_reg_state *regs = cur_regs(env); 7456 struct bpf_reg_state *reg = regs + regno; 7457 int size, err = 0; 7458 7459 size = bpf_size_to_bytes(bpf_size); 7460 if (size < 0) 7461 return size; 7462 7463 /* alignment checks will add in reg->off themselves */ 7464 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 7465 if (err) 7466 return err; 7467 7468 /* for access checks, reg->off is just part of off */ 7469 off += reg->off; 7470 7471 if (reg->type == PTR_TO_MAP_KEY) { 7472 if (t == BPF_WRITE) { 7473 verbose(env, "write to change key R%d not allowed\n", regno); 7474 return -EACCES; 7475 } 7476 7477 err = check_mem_region_access(env, regno, off, size, 7478 reg->map_ptr->key_size, false); 7479 if (err) 7480 return err; 7481 if (value_regno >= 0) 7482 mark_reg_unknown(env, regs, value_regno); 7483 } else if (reg->type == PTR_TO_MAP_VALUE) { 7484 struct btf_field *kptr_field = NULL; 7485 7486 if (t == BPF_WRITE && value_regno >= 0 && 7487 is_pointer_value(env, value_regno)) { 7488 verbose(env, "R%d leaks addr into map\n", value_regno); 7489 return -EACCES; 7490 } 7491 err = check_map_access_type(env, regno, off, size, t); 7492 if (err) 7493 return err; 7494 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 7495 if (err) 7496 return err; 7497 if (tnum_is_const(reg->var_off)) 7498 kptr_field = btf_record_find(reg->map_ptr->record, 7499 off + reg->var_off.value, BPF_KPTR | BPF_UPTR); 7500 if (kptr_field) { 7501 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 7502 } else if (t == BPF_READ && value_regno >= 0) { 7503 struct bpf_map *map = reg->map_ptr; 7504 7505 /* if map is read-only, track its contents as scalars */ 7506 if (tnum_is_const(reg->var_off) && 7507 bpf_map_is_rdonly(map) && 7508 map->ops->map_direct_value_addr) { 7509 int map_off = off + reg->var_off.value; 7510 u64 val = 0; 7511 7512 err = bpf_map_direct_read(map, map_off, size, 7513 &val, is_ldsx); 7514 if (err) 7515 return err; 7516 7517 regs[value_regno].type = SCALAR_VALUE; 7518 __mark_reg_known(®s[value_regno], val); 7519 } else { 7520 mark_reg_unknown(env, regs, value_regno); 7521 } 7522 } 7523 } else if (base_type(reg->type) == PTR_TO_MEM) { 7524 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7525 bool rdonly_untrusted = rdonly_mem && (reg->type & PTR_UNTRUSTED); 7526 7527 if (type_may_be_null(reg->type)) { 7528 verbose(env, "R%d invalid mem access '%s'\n", regno, 7529 reg_type_str(env, reg->type)); 7530 return -EACCES; 7531 } 7532 7533 if (t == BPF_WRITE && rdonly_mem) { 7534 verbose(env, "R%d cannot write into %s\n", 7535 regno, reg_type_str(env, reg->type)); 7536 return -EACCES; 7537 } 7538 7539 if (t == BPF_WRITE && value_regno >= 0 && 7540 is_pointer_value(env, value_regno)) { 7541 verbose(env, "R%d leaks addr into mem\n", value_regno); 7542 return -EACCES; 7543 } 7544 7545 /* 7546 * Accesses to untrusted PTR_TO_MEM are done through probe 7547 * instructions, hence no need to check bounds in that case. 7548 */ 7549 if (!rdonly_untrusted) 7550 err = check_mem_region_access(env, regno, off, size, 7551 reg->mem_size, false); 7552 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 7553 mark_reg_unknown(env, regs, value_regno); 7554 } else if (reg->type == PTR_TO_CTX) { 7555 struct bpf_retval_range range; 7556 struct bpf_insn_access_aux info = { 7557 .reg_type = SCALAR_VALUE, 7558 .is_ldsx = is_ldsx, 7559 .log = &env->log, 7560 }; 7561 7562 if (t == BPF_WRITE && value_regno >= 0 && 7563 is_pointer_value(env, value_regno)) { 7564 verbose(env, "R%d leaks addr into ctx\n", value_regno); 7565 return -EACCES; 7566 } 7567 7568 err = check_ptr_off_reg(env, reg, regno); 7569 if (err < 0) 7570 return err; 7571 7572 err = check_ctx_access(env, insn_idx, off, size, t, &info); 7573 if (err) 7574 verbose_linfo(env, insn_idx, "; "); 7575 if (!err && t == BPF_READ && value_regno >= 0) { 7576 /* ctx access returns either a scalar, or a 7577 * PTR_TO_PACKET[_META,_END]. In the latter 7578 * case, we know the offset is zero. 7579 */ 7580 if (info.reg_type == SCALAR_VALUE) { 7581 if (info.is_retval && get_func_retval_range(env->prog, &range)) { 7582 err = __mark_reg_s32_range(env, regs, value_regno, 7583 range.minval, range.maxval); 7584 if (err) 7585 return err; 7586 } else { 7587 mark_reg_unknown(env, regs, value_regno); 7588 } 7589 } else { 7590 mark_reg_known_zero(env, regs, 7591 value_regno); 7592 if (type_may_be_null(info.reg_type)) 7593 regs[value_regno].id = ++env->id_gen; 7594 /* A load of ctx field could have different 7595 * actual load size with the one encoded in the 7596 * insn. When the dst is PTR, it is for sure not 7597 * a sub-register. 7598 */ 7599 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 7600 if (base_type(info.reg_type) == PTR_TO_BTF_ID) { 7601 regs[value_regno].btf = info.btf; 7602 regs[value_regno].btf_id = info.btf_id; 7603 regs[value_regno].ref_obj_id = info.ref_obj_id; 7604 } 7605 } 7606 regs[value_regno].type = info.reg_type; 7607 } 7608 7609 } else if (reg->type == PTR_TO_STACK) { 7610 /* Basic bounds checks. */ 7611 err = check_stack_access_within_bounds(env, regno, off, size, t); 7612 if (err) 7613 return err; 7614 7615 if (t == BPF_READ) 7616 err = check_stack_read(env, regno, off, size, 7617 value_regno); 7618 else 7619 err = check_stack_write(env, regno, off, size, 7620 value_regno, insn_idx); 7621 } else if (reg_is_pkt_pointer(reg)) { 7622 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 7623 verbose(env, "cannot write into packet\n"); 7624 return -EACCES; 7625 } 7626 if (t == BPF_WRITE && value_regno >= 0 && 7627 is_pointer_value(env, value_regno)) { 7628 verbose(env, "R%d leaks addr into packet\n", 7629 value_regno); 7630 return -EACCES; 7631 } 7632 err = check_packet_access(env, regno, off, size, false); 7633 if (!err && t == BPF_READ && value_regno >= 0) 7634 mark_reg_unknown(env, regs, value_regno); 7635 } else if (reg->type == PTR_TO_FLOW_KEYS) { 7636 if (t == BPF_WRITE && value_regno >= 0 && 7637 is_pointer_value(env, value_regno)) { 7638 verbose(env, "R%d leaks addr into flow keys\n", 7639 value_regno); 7640 return -EACCES; 7641 } 7642 7643 err = check_flow_keys_access(env, off, size); 7644 if (!err && t == BPF_READ && value_regno >= 0) 7645 mark_reg_unknown(env, regs, value_regno); 7646 } else if (type_is_sk_pointer(reg->type)) { 7647 if (t == BPF_WRITE) { 7648 verbose(env, "R%d cannot write into %s\n", 7649 regno, reg_type_str(env, reg->type)); 7650 return -EACCES; 7651 } 7652 err = check_sock_access(env, insn_idx, regno, off, size, t); 7653 if (!err && value_regno >= 0) 7654 mark_reg_unknown(env, regs, value_regno); 7655 } else if (reg->type == PTR_TO_TP_BUFFER) { 7656 err = check_tp_buffer_access(env, reg, regno, off, size); 7657 if (!err && t == BPF_READ && value_regno >= 0) 7658 mark_reg_unknown(env, regs, value_regno); 7659 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 7660 !type_may_be_null(reg->type)) { 7661 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 7662 value_regno); 7663 } else if (reg->type == CONST_PTR_TO_MAP) { 7664 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 7665 value_regno); 7666 } else if (base_type(reg->type) == PTR_TO_BUF) { 7667 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7668 u32 *max_access; 7669 7670 if (rdonly_mem) { 7671 if (t == BPF_WRITE) { 7672 verbose(env, "R%d cannot write into %s\n", 7673 regno, reg_type_str(env, reg->type)); 7674 return -EACCES; 7675 } 7676 max_access = &env->prog->aux->max_rdonly_access; 7677 } else { 7678 max_access = &env->prog->aux->max_rdwr_access; 7679 } 7680 7681 err = check_buffer_access(env, reg, regno, off, size, false, 7682 max_access); 7683 7684 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 7685 mark_reg_unknown(env, regs, value_regno); 7686 } else if (reg->type == PTR_TO_ARENA) { 7687 if (t == BPF_READ && value_regno >= 0) 7688 mark_reg_unknown(env, regs, value_regno); 7689 } else { 7690 verbose(env, "R%d invalid mem access '%s'\n", regno, 7691 reg_type_str(env, reg->type)); 7692 return -EACCES; 7693 } 7694 7695 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 7696 regs[value_regno].type == SCALAR_VALUE) { 7697 if (!is_ldsx) 7698 /* b/h/w load zero-extends, mark upper bits as known 0 */ 7699 coerce_reg_to_size(®s[value_regno], size); 7700 else 7701 coerce_reg_to_size_sx(®s[value_regno], size); 7702 } 7703 return err; 7704 } 7705 7706 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 7707 bool allow_trust_mismatch); 7708 7709 static int check_load_mem(struct bpf_verifier_env *env, struct bpf_insn *insn, 7710 bool strict_alignment_once, bool is_ldsx, 7711 bool allow_trust_mismatch, const char *ctx) 7712 { 7713 struct bpf_reg_state *regs = cur_regs(env); 7714 enum bpf_reg_type src_reg_type; 7715 int err; 7716 7717 /* check src operand */ 7718 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7719 if (err) 7720 return err; 7721 7722 /* check dst operand */ 7723 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7724 if (err) 7725 return err; 7726 7727 src_reg_type = regs[insn->src_reg].type; 7728 7729 /* Check if (src_reg + off) is readable. The state of dst_reg will be 7730 * updated by this call. 7731 */ 7732 err = check_mem_access(env, env->insn_idx, insn->src_reg, insn->off, 7733 BPF_SIZE(insn->code), BPF_READ, insn->dst_reg, 7734 strict_alignment_once, is_ldsx); 7735 err = err ?: save_aux_ptr_type(env, src_reg_type, 7736 allow_trust_mismatch); 7737 err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], ctx); 7738 7739 return err; 7740 } 7741 7742 static int check_store_reg(struct bpf_verifier_env *env, struct bpf_insn *insn, 7743 bool strict_alignment_once) 7744 { 7745 struct bpf_reg_state *regs = cur_regs(env); 7746 enum bpf_reg_type dst_reg_type; 7747 int err; 7748 7749 /* check src1 operand */ 7750 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7751 if (err) 7752 return err; 7753 7754 /* check src2 operand */ 7755 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7756 if (err) 7757 return err; 7758 7759 dst_reg_type = regs[insn->dst_reg].type; 7760 7761 /* Check if (dst_reg + off) is writeable. */ 7762 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, 7763 BPF_SIZE(insn->code), BPF_WRITE, insn->src_reg, 7764 strict_alignment_once, false); 7765 err = err ?: save_aux_ptr_type(env, dst_reg_type, false); 7766 7767 return err; 7768 } 7769 7770 static int check_atomic_rmw(struct bpf_verifier_env *env, 7771 struct bpf_insn *insn) 7772 { 7773 int load_reg; 7774 int err; 7775 7776 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 7777 verbose(env, "invalid atomic operand size\n"); 7778 return -EINVAL; 7779 } 7780 7781 /* check src1 operand */ 7782 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7783 if (err) 7784 return err; 7785 7786 /* check src2 operand */ 7787 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7788 if (err) 7789 return err; 7790 7791 if (insn->imm == BPF_CMPXCHG) { 7792 /* Check comparison of R0 with memory location */ 7793 const u32 aux_reg = BPF_REG_0; 7794 7795 err = check_reg_arg(env, aux_reg, SRC_OP); 7796 if (err) 7797 return err; 7798 7799 if (is_pointer_value(env, aux_reg)) { 7800 verbose(env, "R%d leaks addr into mem\n", aux_reg); 7801 return -EACCES; 7802 } 7803 } 7804 7805 if (is_pointer_value(env, insn->src_reg)) { 7806 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 7807 return -EACCES; 7808 } 7809 7810 if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) { 7811 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 7812 insn->dst_reg, 7813 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 7814 return -EACCES; 7815 } 7816 7817 if (insn->imm & BPF_FETCH) { 7818 if (insn->imm == BPF_CMPXCHG) 7819 load_reg = BPF_REG_0; 7820 else 7821 load_reg = insn->src_reg; 7822 7823 /* check and record load of old value */ 7824 err = check_reg_arg(env, load_reg, DST_OP); 7825 if (err) 7826 return err; 7827 } else { 7828 /* This instruction accesses a memory location but doesn't 7829 * actually load it into a register. 7830 */ 7831 load_reg = -1; 7832 } 7833 7834 /* Check whether we can read the memory, with second call for fetch 7835 * case to simulate the register fill. 7836 */ 7837 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, 7838 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 7839 if (!err && load_reg >= 0) 7840 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7841 insn->off, BPF_SIZE(insn->code), 7842 BPF_READ, load_reg, true, false); 7843 if (err) 7844 return err; 7845 7846 if (is_arena_reg(env, insn->dst_reg)) { 7847 err = save_aux_ptr_type(env, PTR_TO_ARENA, false); 7848 if (err) 7849 return err; 7850 } 7851 /* Check whether we can write into the same memory. */ 7852 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, 7853 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 7854 if (err) 7855 return err; 7856 return 0; 7857 } 7858 7859 static int check_atomic_load(struct bpf_verifier_env *env, 7860 struct bpf_insn *insn) 7861 { 7862 int err; 7863 7864 err = check_load_mem(env, insn, true, false, false, "atomic_load"); 7865 if (err) 7866 return err; 7867 7868 if (!atomic_ptr_type_ok(env, insn->src_reg, insn)) { 7869 verbose(env, "BPF_ATOMIC loads from R%d %s is not allowed\n", 7870 insn->src_reg, 7871 reg_type_str(env, reg_state(env, insn->src_reg)->type)); 7872 return -EACCES; 7873 } 7874 7875 return 0; 7876 } 7877 7878 static int check_atomic_store(struct bpf_verifier_env *env, 7879 struct bpf_insn *insn) 7880 { 7881 int err; 7882 7883 err = check_store_reg(env, insn, true); 7884 if (err) 7885 return err; 7886 7887 if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) { 7888 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 7889 insn->dst_reg, 7890 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 7891 return -EACCES; 7892 } 7893 7894 return 0; 7895 } 7896 7897 static int check_atomic(struct bpf_verifier_env *env, struct bpf_insn *insn) 7898 { 7899 switch (insn->imm) { 7900 case BPF_ADD: 7901 case BPF_ADD | BPF_FETCH: 7902 case BPF_AND: 7903 case BPF_AND | BPF_FETCH: 7904 case BPF_OR: 7905 case BPF_OR | BPF_FETCH: 7906 case BPF_XOR: 7907 case BPF_XOR | BPF_FETCH: 7908 case BPF_XCHG: 7909 case BPF_CMPXCHG: 7910 return check_atomic_rmw(env, insn); 7911 case BPF_LOAD_ACQ: 7912 if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) { 7913 verbose(env, 7914 "64-bit load-acquires are only supported on 64-bit arches\n"); 7915 return -EOPNOTSUPP; 7916 } 7917 return check_atomic_load(env, insn); 7918 case BPF_STORE_REL: 7919 if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) { 7920 verbose(env, 7921 "64-bit store-releases are only supported on 64-bit arches\n"); 7922 return -EOPNOTSUPP; 7923 } 7924 return check_atomic_store(env, insn); 7925 default: 7926 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", 7927 insn->imm); 7928 return -EINVAL; 7929 } 7930 } 7931 7932 /* When register 'regno' is used to read the stack (either directly or through 7933 * a helper function) make sure that it's within stack boundary and, depending 7934 * on the access type and privileges, that all elements of the stack are 7935 * initialized. 7936 * 7937 * 'off' includes 'regno->off', but not its dynamic part (if any). 7938 * 7939 * All registers that have been spilled on the stack in the slots within the 7940 * read offsets are marked as read. 7941 */ 7942 static int check_stack_range_initialized( 7943 struct bpf_verifier_env *env, int regno, int off, 7944 int access_size, bool zero_size_allowed, 7945 enum bpf_access_type type, struct bpf_call_arg_meta *meta) 7946 { 7947 struct bpf_reg_state *reg = reg_state(env, regno); 7948 struct bpf_func_state *state = func(env, reg); 7949 int err, min_off, max_off, i, j, slot, spi; 7950 /* Some accesses can write anything into the stack, others are 7951 * read-only. 7952 */ 7953 bool clobber = false; 7954 7955 if (access_size == 0 && !zero_size_allowed) { 7956 verbose(env, "invalid zero-sized read\n"); 7957 return -EACCES; 7958 } 7959 7960 if (type == BPF_WRITE) 7961 clobber = true; 7962 7963 err = check_stack_access_within_bounds(env, regno, off, access_size, type); 7964 if (err) 7965 return err; 7966 7967 7968 if (tnum_is_const(reg->var_off)) { 7969 min_off = max_off = reg->var_off.value + off; 7970 } else { 7971 /* Variable offset is prohibited for unprivileged mode for 7972 * simplicity since it requires corresponding support in 7973 * Spectre masking for stack ALU. 7974 * See also retrieve_ptr_limit(). 7975 */ 7976 if (!env->bypass_spec_v1) { 7977 char tn_buf[48]; 7978 7979 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7980 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 7981 regno, tn_buf); 7982 return -EACCES; 7983 } 7984 /* Only initialized buffer on stack is allowed to be accessed 7985 * with variable offset. With uninitialized buffer it's hard to 7986 * guarantee that whole memory is marked as initialized on 7987 * helper return since specific bounds are unknown what may 7988 * cause uninitialized stack leaking. 7989 */ 7990 if (meta && meta->raw_mode) 7991 meta = NULL; 7992 7993 min_off = reg->smin_value + off; 7994 max_off = reg->smax_value + off; 7995 } 7996 7997 if (meta && meta->raw_mode) { 7998 /* Ensure we won't be overwriting dynptrs when simulating byte 7999 * by byte access in check_helper_call using meta.access_size. 8000 * This would be a problem if we have a helper in the future 8001 * which takes: 8002 * 8003 * helper(uninit_mem, len, dynptr) 8004 * 8005 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 8006 * may end up writing to dynptr itself when touching memory from 8007 * arg 1. This can be relaxed on a case by case basis for known 8008 * safe cases, but reject due to the possibilitiy of aliasing by 8009 * default. 8010 */ 8011 for (i = min_off; i < max_off + access_size; i++) { 8012 int stack_off = -i - 1; 8013 8014 spi = __get_spi(i); 8015 /* raw_mode may write past allocated_stack */ 8016 if (state->allocated_stack <= stack_off) 8017 continue; 8018 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 8019 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 8020 return -EACCES; 8021 } 8022 } 8023 meta->access_size = access_size; 8024 meta->regno = regno; 8025 return 0; 8026 } 8027 8028 for (i = min_off; i < max_off + access_size; i++) { 8029 u8 *stype; 8030 8031 slot = -i - 1; 8032 spi = slot / BPF_REG_SIZE; 8033 if (state->allocated_stack <= slot) { 8034 verbose(env, "allocated_stack too small\n"); 8035 return -EFAULT; 8036 } 8037 8038 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 8039 if (*stype == STACK_MISC) 8040 goto mark; 8041 if ((*stype == STACK_ZERO) || 8042 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 8043 if (clobber) { 8044 /* helper can write anything into the stack */ 8045 *stype = STACK_MISC; 8046 } 8047 goto mark; 8048 } 8049 8050 if (is_spilled_reg(&state->stack[spi]) && 8051 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 8052 env->allow_ptr_leaks)) { 8053 if (clobber) { 8054 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 8055 for (j = 0; j < BPF_REG_SIZE; j++) 8056 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 8057 } 8058 goto mark; 8059 } 8060 8061 if (tnum_is_const(reg->var_off)) { 8062 verbose(env, "invalid read from stack R%d off %d+%d size %d\n", 8063 regno, min_off, i - min_off, access_size); 8064 } else { 8065 char tn_buf[48]; 8066 8067 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 8068 verbose(env, "invalid read from stack R%d var_off %s+%d size %d\n", 8069 regno, tn_buf, i - min_off, access_size); 8070 } 8071 return -EACCES; 8072 mark: 8073 /* reading any byte out of 8-byte 'spill_slot' will cause 8074 * the whole slot to be marked as 'read' 8075 */ 8076 err = bpf_mark_stack_read(env, reg->frameno, env->insn_idx, BIT(spi)); 8077 if (err) 8078 return err; 8079 /* We do not call bpf_mark_stack_write(), as we can not 8080 * be sure that whether stack slot is written to or not. Hence, 8081 * we must still conservatively propagate reads upwards even if 8082 * helper may write to the entire memory range. 8083 */ 8084 } 8085 return 0; 8086 } 8087 8088 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 8089 int access_size, enum bpf_access_type access_type, 8090 bool zero_size_allowed, 8091 struct bpf_call_arg_meta *meta) 8092 { 8093 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8094 u32 *max_access; 8095 8096 switch (base_type(reg->type)) { 8097 case PTR_TO_PACKET: 8098 case PTR_TO_PACKET_META: 8099 return check_packet_access(env, regno, reg->off, access_size, 8100 zero_size_allowed); 8101 case PTR_TO_MAP_KEY: 8102 if (access_type == BPF_WRITE) { 8103 verbose(env, "R%d cannot write into %s\n", regno, 8104 reg_type_str(env, reg->type)); 8105 return -EACCES; 8106 } 8107 return check_mem_region_access(env, regno, reg->off, access_size, 8108 reg->map_ptr->key_size, false); 8109 case PTR_TO_MAP_VALUE: 8110 if (check_map_access_type(env, regno, reg->off, access_size, access_type)) 8111 return -EACCES; 8112 return check_map_access(env, regno, reg->off, access_size, 8113 zero_size_allowed, ACCESS_HELPER); 8114 case PTR_TO_MEM: 8115 if (type_is_rdonly_mem(reg->type)) { 8116 if (access_type == BPF_WRITE) { 8117 verbose(env, "R%d cannot write into %s\n", regno, 8118 reg_type_str(env, reg->type)); 8119 return -EACCES; 8120 } 8121 } 8122 return check_mem_region_access(env, regno, reg->off, 8123 access_size, reg->mem_size, 8124 zero_size_allowed); 8125 case PTR_TO_BUF: 8126 if (type_is_rdonly_mem(reg->type)) { 8127 if (access_type == BPF_WRITE) { 8128 verbose(env, "R%d cannot write into %s\n", regno, 8129 reg_type_str(env, reg->type)); 8130 return -EACCES; 8131 } 8132 8133 max_access = &env->prog->aux->max_rdonly_access; 8134 } else { 8135 max_access = &env->prog->aux->max_rdwr_access; 8136 } 8137 return check_buffer_access(env, reg, regno, reg->off, 8138 access_size, zero_size_allowed, 8139 max_access); 8140 case PTR_TO_STACK: 8141 return check_stack_range_initialized( 8142 env, 8143 regno, reg->off, access_size, 8144 zero_size_allowed, access_type, meta); 8145 case PTR_TO_BTF_ID: 8146 return check_ptr_to_btf_access(env, regs, regno, reg->off, 8147 access_size, BPF_READ, -1); 8148 case PTR_TO_CTX: 8149 /* in case the function doesn't know how to access the context, 8150 * (because we are in a program of type SYSCALL for example), we 8151 * can not statically check its size. 8152 * Dynamically check it now. 8153 */ 8154 if (!env->ops->convert_ctx_access) { 8155 int offset = access_size - 1; 8156 8157 /* Allow zero-byte read from PTR_TO_CTX */ 8158 if (access_size == 0) 8159 return zero_size_allowed ? 0 : -EACCES; 8160 8161 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 8162 access_type, -1, false, false); 8163 } 8164 8165 fallthrough; 8166 default: /* scalar_value or invalid ptr */ 8167 /* Allow zero-byte read from NULL, regardless of pointer type */ 8168 if (zero_size_allowed && access_size == 0 && 8169 register_is_null(reg)) 8170 return 0; 8171 8172 verbose(env, "R%d type=%s ", regno, 8173 reg_type_str(env, reg->type)); 8174 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 8175 return -EACCES; 8176 } 8177 } 8178 8179 /* verify arguments to helpers or kfuncs consisting of a pointer and an access 8180 * size. 8181 * 8182 * @regno is the register containing the access size. regno-1 is the register 8183 * containing the pointer. 8184 */ 8185 static int check_mem_size_reg(struct bpf_verifier_env *env, 8186 struct bpf_reg_state *reg, u32 regno, 8187 enum bpf_access_type access_type, 8188 bool zero_size_allowed, 8189 struct bpf_call_arg_meta *meta) 8190 { 8191 int err; 8192 8193 /* This is used to refine r0 return value bounds for helpers 8194 * that enforce this value as an upper bound on return values. 8195 * See do_refine_retval_range() for helpers that can refine 8196 * the return value. C type of helper is u32 so we pull register 8197 * bound from umax_value however, if negative verifier errors 8198 * out. Only upper bounds can be learned because retval is an 8199 * int type and negative retvals are allowed. 8200 */ 8201 meta->msize_max_value = reg->umax_value; 8202 8203 /* The register is SCALAR_VALUE; the access check happens using 8204 * its boundaries. For unprivileged variable accesses, disable 8205 * raw mode so that the program is required to initialize all 8206 * the memory that the helper could just partially fill up. 8207 */ 8208 if (!tnum_is_const(reg->var_off)) 8209 meta = NULL; 8210 8211 if (reg->smin_value < 0) { 8212 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 8213 regno); 8214 return -EACCES; 8215 } 8216 8217 if (reg->umin_value == 0 && !zero_size_allowed) { 8218 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n", 8219 regno, reg->umin_value, reg->umax_value); 8220 return -EACCES; 8221 } 8222 8223 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 8224 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 8225 regno); 8226 return -EACCES; 8227 } 8228 err = check_helper_mem_access(env, regno - 1, reg->umax_value, 8229 access_type, zero_size_allowed, meta); 8230 if (!err) 8231 err = mark_chain_precision(env, regno); 8232 return err; 8233 } 8234 8235 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 8236 u32 regno, u32 mem_size) 8237 { 8238 bool may_be_null = type_may_be_null(reg->type); 8239 struct bpf_reg_state saved_reg; 8240 int err; 8241 8242 if (register_is_null(reg)) 8243 return 0; 8244 8245 /* Assuming that the register contains a value check if the memory 8246 * access is safe. Temporarily save and restore the register's state as 8247 * the conversion shouldn't be visible to a caller. 8248 */ 8249 if (may_be_null) { 8250 saved_reg = *reg; 8251 mark_ptr_not_null_reg(reg); 8252 } 8253 8254 err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL); 8255 err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL); 8256 8257 if (may_be_null) 8258 *reg = saved_reg; 8259 8260 return err; 8261 } 8262 8263 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 8264 u32 regno) 8265 { 8266 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 8267 bool may_be_null = type_may_be_null(mem_reg->type); 8268 struct bpf_reg_state saved_reg; 8269 struct bpf_call_arg_meta meta; 8270 int err; 8271 8272 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 8273 8274 memset(&meta, 0, sizeof(meta)); 8275 8276 if (may_be_null) { 8277 saved_reg = *mem_reg; 8278 mark_ptr_not_null_reg(mem_reg); 8279 } 8280 8281 err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta); 8282 err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta); 8283 8284 if (may_be_null) 8285 *mem_reg = saved_reg; 8286 8287 return err; 8288 } 8289 8290 enum { 8291 PROCESS_SPIN_LOCK = (1 << 0), 8292 PROCESS_RES_LOCK = (1 << 1), 8293 PROCESS_LOCK_IRQ = (1 << 2), 8294 }; 8295 8296 /* Implementation details: 8297 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 8298 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 8299 * Two bpf_map_lookups (even with the same key) will have different reg->id. 8300 * Two separate bpf_obj_new will also have different reg->id. 8301 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 8302 * clears reg->id after value_or_null->value transition, since the verifier only 8303 * cares about the range of access to valid map value pointer and doesn't care 8304 * about actual address of the map element. 8305 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 8306 * reg->id > 0 after value_or_null->value transition. By doing so 8307 * two bpf_map_lookups will be considered two different pointers that 8308 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 8309 * returned from bpf_obj_new. 8310 * The verifier allows taking only one bpf_spin_lock at a time to avoid 8311 * dead-locks. 8312 * Since only one bpf_spin_lock is allowed the checks are simpler than 8313 * reg_is_refcounted() logic. The verifier needs to remember only 8314 * one spin_lock instead of array of acquired_refs. 8315 * env->cur_state->active_locks remembers which map value element or allocated 8316 * object got locked and clears it after bpf_spin_unlock. 8317 */ 8318 static int process_spin_lock(struct bpf_verifier_env *env, int regno, int flags) 8319 { 8320 bool is_lock = flags & PROCESS_SPIN_LOCK, is_res_lock = flags & PROCESS_RES_LOCK; 8321 const char *lock_str = is_res_lock ? "bpf_res_spin" : "bpf_spin"; 8322 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8323 struct bpf_verifier_state *cur = env->cur_state; 8324 bool is_const = tnum_is_const(reg->var_off); 8325 bool is_irq = flags & PROCESS_LOCK_IRQ; 8326 u64 val = reg->var_off.value; 8327 struct bpf_map *map = NULL; 8328 struct btf *btf = NULL; 8329 struct btf_record *rec; 8330 u32 spin_lock_off; 8331 int err; 8332 8333 if (!is_const) { 8334 verbose(env, 8335 "R%d doesn't have constant offset. %s_lock has to be at the constant offset\n", 8336 regno, lock_str); 8337 return -EINVAL; 8338 } 8339 if (reg->type == PTR_TO_MAP_VALUE) { 8340 map = reg->map_ptr; 8341 if (!map->btf) { 8342 verbose(env, 8343 "map '%s' has to have BTF in order to use %s_lock\n", 8344 map->name, lock_str); 8345 return -EINVAL; 8346 } 8347 } else { 8348 btf = reg->btf; 8349 } 8350 8351 rec = reg_btf_record(reg); 8352 if (!btf_record_has_field(rec, is_res_lock ? BPF_RES_SPIN_LOCK : BPF_SPIN_LOCK)) { 8353 verbose(env, "%s '%s' has no valid %s_lock\n", map ? "map" : "local", 8354 map ? map->name : "kptr", lock_str); 8355 return -EINVAL; 8356 } 8357 spin_lock_off = is_res_lock ? rec->res_spin_lock_off : rec->spin_lock_off; 8358 if (spin_lock_off != val + reg->off) { 8359 verbose(env, "off %lld doesn't point to 'struct %s_lock' that is at %d\n", 8360 val + reg->off, lock_str, spin_lock_off); 8361 return -EINVAL; 8362 } 8363 if (is_lock) { 8364 void *ptr; 8365 int type; 8366 8367 if (map) 8368 ptr = map; 8369 else 8370 ptr = btf; 8371 8372 if (!is_res_lock && cur->active_locks) { 8373 if (find_lock_state(env->cur_state, REF_TYPE_LOCK, 0, NULL)) { 8374 verbose(env, 8375 "Locking two bpf_spin_locks are not allowed\n"); 8376 return -EINVAL; 8377 } 8378 } else if (is_res_lock && cur->active_locks) { 8379 if (find_lock_state(env->cur_state, REF_TYPE_RES_LOCK | REF_TYPE_RES_LOCK_IRQ, reg->id, ptr)) { 8380 verbose(env, "Acquiring the same lock again, AA deadlock detected\n"); 8381 return -EINVAL; 8382 } 8383 } 8384 8385 if (is_res_lock && is_irq) 8386 type = REF_TYPE_RES_LOCK_IRQ; 8387 else if (is_res_lock) 8388 type = REF_TYPE_RES_LOCK; 8389 else 8390 type = REF_TYPE_LOCK; 8391 err = acquire_lock_state(env, env->insn_idx, type, reg->id, ptr); 8392 if (err < 0) { 8393 verbose(env, "Failed to acquire lock state\n"); 8394 return err; 8395 } 8396 } else { 8397 void *ptr; 8398 int type; 8399 8400 if (map) 8401 ptr = map; 8402 else 8403 ptr = btf; 8404 8405 if (!cur->active_locks) { 8406 verbose(env, "%s_unlock without taking a lock\n", lock_str); 8407 return -EINVAL; 8408 } 8409 8410 if (is_res_lock && is_irq) 8411 type = REF_TYPE_RES_LOCK_IRQ; 8412 else if (is_res_lock) 8413 type = REF_TYPE_RES_LOCK; 8414 else 8415 type = REF_TYPE_LOCK; 8416 if (!find_lock_state(cur, type, reg->id, ptr)) { 8417 verbose(env, "%s_unlock of different lock\n", lock_str); 8418 return -EINVAL; 8419 } 8420 if (reg->id != cur->active_lock_id || ptr != cur->active_lock_ptr) { 8421 verbose(env, "%s_unlock cannot be out of order\n", lock_str); 8422 return -EINVAL; 8423 } 8424 if (release_lock_state(cur, type, reg->id, ptr)) { 8425 verbose(env, "%s_unlock of different lock\n", lock_str); 8426 return -EINVAL; 8427 } 8428 8429 invalidate_non_owning_refs(env); 8430 } 8431 return 0; 8432 } 8433 8434 /* Check if @regno is a pointer to a specific field in a map value */ 8435 static int check_map_field_pointer(struct bpf_verifier_env *env, u32 regno, 8436 enum btf_field_type field_type) 8437 { 8438 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8439 bool is_const = tnum_is_const(reg->var_off); 8440 struct bpf_map *map = reg->map_ptr; 8441 u64 val = reg->var_off.value; 8442 const char *struct_name = btf_field_type_name(field_type); 8443 int field_off = -1; 8444 8445 if (!is_const) { 8446 verbose(env, 8447 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 8448 regno, struct_name); 8449 return -EINVAL; 8450 } 8451 if (!map->btf) { 8452 verbose(env, "map '%s' has to have BTF in order to use %s\n", map->name, 8453 struct_name); 8454 return -EINVAL; 8455 } 8456 if (!btf_record_has_field(map->record, field_type)) { 8457 verbose(env, "map '%s' has no valid %s\n", map->name, struct_name); 8458 return -EINVAL; 8459 } 8460 switch (field_type) { 8461 case BPF_TIMER: 8462 field_off = map->record->timer_off; 8463 break; 8464 case BPF_TASK_WORK: 8465 field_off = map->record->task_work_off; 8466 break; 8467 default: 8468 verifier_bug(env, "unsupported BTF field type: %s\n", struct_name); 8469 return -EINVAL; 8470 } 8471 if (field_off != val + reg->off) { 8472 verbose(env, "off %lld doesn't point to 'struct %s' that is at %d\n", 8473 val + reg->off, struct_name, field_off); 8474 return -EINVAL; 8475 } 8476 return 0; 8477 } 8478 8479 static int process_timer_func(struct bpf_verifier_env *env, int regno, 8480 struct bpf_call_arg_meta *meta) 8481 { 8482 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8483 struct bpf_map *map = reg->map_ptr; 8484 int err; 8485 8486 err = check_map_field_pointer(env, regno, BPF_TIMER); 8487 if (err) 8488 return err; 8489 8490 if (meta->map_ptr) { 8491 verifier_bug(env, "Two map pointers in a timer helper"); 8492 return -EFAULT; 8493 } 8494 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 8495 verbose(env, "bpf_timer cannot be used for PREEMPT_RT.\n"); 8496 return -EOPNOTSUPP; 8497 } 8498 meta->map_uid = reg->map_uid; 8499 meta->map_ptr = map; 8500 return 0; 8501 } 8502 8503 static int process_wq_func(struct bpf_verifier_env *env, int regno, 8504 struct bpf_kfunc_call_arg_meta *meta) 8505 { 8506 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8507 struct bpf_map *map = reg->map_ptr; 8508 u64 val = reg->var_off.value; 8509 8510 if (map->record->wq_off != val + reg->off) { 8511 verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n", 8512 val + reg->off, map->record->wq_off); 8513 return -EINVAL; 8514 } 8515 meta->map.uid = reg->map_uid; 8516 meta->map.ptr = map; 8517 return 0; 8518 } 8519 8520 static int process_task_work_func(struct bpf_verifier_env *env, int regno, 8521 struct bpf_kfunc_call_arg_meta *meta) 8522 { 8523 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8524 struct bpf_map *map = reg->map_ptr; 8525 int err; 8526 8527 err = check_map_field_pointer(env, regno, BPF_TASK_WORK); 8528 if (err) 8529 return err; 8530 8531 if (meta->map.ptr) { 8532 verifier_bug(env, "Two map pointers in a bpf_task_work helper"); 8533 return -EFAULT; 8534 } 8535 meta->map.uid = reg->map_uid; 8536 meta->map.ptr = map; 8537 return 0; 8538 } 8539 8540 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 8541 struct bpf_call_arg_meta *meta) 8542 { 8543 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8544 struct btf_field *kptr_field; 8545 struct bpf_map *map_ptr; 8546 struct btf_record *rec; 8547 u32 kptr_off; 8548 8549 if (type_is_ptr_alloc_obj(reg->type)) { 8550 rec = reg_btf_record(reg); 8551 } else { /* PTR_TO_MAP_VALUE */ 8552 map_ptr = reg->map_ptr; 8553 if (!map_ptr->btf) { 8554 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 8555 map_ptr->name); 8556 return -EINVAL; 8557 } 8558 rec = map_ptr->record; 8559 meta->map_ptr = map_ptr; 8560 } 8561 8562 if (!tnum_is_const(reg->var_off)) { 8563 verbose(env, 8564 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 8565 regno); 8566 return -EINVAL; 8567 } 8568 8569 if (!btf_record_has_field(rec, BPF_KPTR)) { 8570 verbose(env, "R%d has no valid kptr\n", regno); 8571 return -EINVAL; 8572 } 8573 8574 kptr_off = reg->off + reg->var_off.value; 8575 kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR); 8576 if (!kptr_field) { 8577 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 8578 return -EACCES; 8579 } 8580 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { 8581 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 8582 return -EACCES; 8583 } 8584 meta->kptr_field = kptr_field; 8585 return 0; 8586 } 8587 8588 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 8589 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 8590 * 8591 * In both cases we deal with the first 8 bytes, but need to mark the next 8 8592 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 8593 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 8594 * 8595 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 8596 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 8597 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 8598 * mutate the view of the dynptr and also possibly destroy it. In the latter 8599 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 8600 * memory that dynptr points to. 8601 * 8602 * The verifier will keep track both levels of mutation (bpf_dynptr's in 8603 * reg->type and the memory's in reg->dynptr.type), but there is no support for 8604 * readonly dynptr view yet, hence only the first case is tracked and checked. 8605 * 8606 * This is consistent with how C applies the const modifier to a struct object, 8607 * where the pointer itself inside bpf_dynptr becomes const but not what it 8608 * points to. 8609 * 8610 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 8611 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 8612 */ 8613 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 8614 enum bpf_arg_type arg_type, int clone_ref_obj_id) 8615 { 8616 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8617 int err; 8618 8619 if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) { 8620 verbose(env, 8621 "arg#%d expected pointer to stack or const struct bpf_dynptr\n", 8622 regno - 1); 8623 return -EINVAL; 8624 } 8625 8626 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 8627 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 8628 */ 8629 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 8630 verifier_bug(env, "misconfigured dynptr helper type flags"); 8631 return -EFAULT; 8632 } 8633 8634 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 8635 * constructing a mutable bpf_dynptr object. 8636 * 8637 * Currently, this is only possible with PTR_TO_STACK 8638 * pointing to a region of at least 16 bytes which doesn't 8639 * contain an existing bpf_dynptr. 8640 * 8641 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 8642 * mutated or destroyed. However, the memory it points to 8643 * may be mutated. 8644 * 8645 * None - Points to a initialized dynptr that can be mutated and 8646 * destroyed, including mutation of the memory it points 8647 * to. 8648 */ 8649 if (arg_type & MEM_UNINIT) { 8650 int i; 8651 8652 if (!is_dynptr_reg_valid_uninit(env, reg)) { 8653 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 8654 return -EINVAL; 8655 } 8656 8657 /* we write BPF_DW bits (8 bytes) at a time */ 8658 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 8659 err = check_mem_access(env, insn_idx, regno, 8660 i, BPF_DW, BPF_WRITE, -1, false, false); 8661 if (err) 8662 return err; 8663 } 8664 8665 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 8666 } else /* MEM_RDONLY and None case from above */ { 8667 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 8668 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 8669 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 8670 return -EINVAL; 8671 } 8672 8673 if (!is_dynptr_reg_valid_init(env, reg)) { 8674 verbose(env, 8675 "Expected an initialized dynptr as arg #%d\n", 8676 regno - 1); 8677 return -EINVAL; 8678 } 8679 8680 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 8681 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 8682 verbose(env, 8683 "Expected a dynptr of type %s as arg #%d\n", 8684 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno - 1); 8685 return -EINVAL; 8686 } 8687 8688 err = mark_dynptr_read(env, reg); 8689 } 8690 return err; 8691 } 8692 8693 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 8694 { 8695 struct bpf_func_state *state = func(env, reg); 8696 8697 return state->stack[spi].spilled_ptr.ref_obj_id; 8698 } 8699 8700 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8701 { 8702 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 8703 } 8704 8705 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8706 { 8707 return meta->kfunc_flags & KF_ITER_NEW; 8708 } 8709 8710 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8711 { 8712 return meta->kfunc_flags & KF_ITER_NEXT; 8713 } 8714 8715 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8716 { 8717 return meta->kfunc_flags & KF_ITER_DESTROY; 8718 } 8719 8720 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx, 8721 const struct btf_param *arg) 8722 { 8723 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 8724 * kfunc is iter state pointer 8725 */ 8726 if (is_iter_kfunc(meta)) 8727 return arg_idx == 0; 8728 8729 /* iter passed as an argument to a generic kfunc */ 8730 return btf_param_match_suffix(meta->btf, arg, "__iter"); 8731 } 8732 8733 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 8734 struct bpf_kfunc_call_arg_meta *meta) 8735 { 8736 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8737 const struct btf_type *t; 8738 int spi, err, i, nr_slots, btf_id; 8739 8740 if (reg->type != PTR_TO_STACK) { 8741 verbose(env, "arg#%d expected pointer to an iterator on stack\n", regno - 1); 8742 return -EINVAL; 8743 } 8744 8745 /* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs() 8746 * ensures struct convention, so we wouldn't need to do any BTF 8747 * validation here. But given iter state can be passed as a parameter 8748 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more 8749 * conservative here. 8750 */ 8751 btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1); 8752 if (btf_id < 0) { 8753 verbose(env, "expected valid iter pointer as arg #%d\n", regno - 1); 8754 return -EINVAL; 8755 } 8756 t = btf_type_by_id(meta->btf, btf_id); 8757 nr_slots = t->size / BPF_REG_SIZE; 8758 8759 if (is_iter_new_kfunc(meta)) { 8760 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 8761 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 8762 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 8763 iter_type_str(meta->btf, btf_id), regno - 1); 8764 return -EINVAL; 8765 } 8766 8767 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 8768 err = check_mem_access(env, insn_idx, regno, 8769 i, BPF_DW, BPF_WRITE, -1, false, false); 8770 if (err) 8771 return err; 8772 } 8773 8774 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); 8775 if (err) 8776 return err; 8777 } else { 8778 /* iter_next() or iter_destroy(), as well as any kfunc 8779 * accepting iter argument, expect initialized iter state 8780 */ 8781 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); 8782 switch (err) { 8783 case 0: 8784 break; 8785 case -EINVAL: 8786 verbose(env, "expected an initialized iter_%s as arg #%d\n", 8787 iter_type_str(meta->btf, btf_id), regno - 1); 8788 return err; 8789 case -EPROTO: 8790 verbose(env, "expected an RCU CS when using %s\n", meta->func_name); 8791 return err; 8792 default: 8793 return err; 8794 } 8795 8796 spi = iter_get_spi(env, reg, nr_slots); 8797 if (spi < 0) 8798 return spi; 8799 8800 err = mark_iter_read(env, reg, spi, nr_slots); 8801 if (err) 8802 return err; 8803 8804 /* remember meta->iter info for process_iter_next_call() */ 8805 meta->iter.spi = spi; 8806 meta->iter.frameno = reg->frameno; 8807 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 8808 8809 if (is_iter_destroy_kfunc(meta)) { 8810 err = unmark_stack_slots_iter(env, reg, nr_slots); 8811 if (err) 8812 return err; 8813 } 8814 } 8815 8816 return 0; 8817 } 8818 8819 /* Look for a previous loop entry at insn_idx: nearest parent state 8820 * stopped at insn_idx with callsites matching those in cur->frame. 8821 */ 8822 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 8823 struct bpf_verifier_state *cur, 8824 int insn_idx) 8825 { 8826 struct bpf_verifier_state_list *sl; 8827 struct bpf_verifier_state *st; 8828 struct list_head *pos, *head; 8829 8830 /* Explored states are pushed in stack order, most recent states come first */ 8831 head = explored_state(env, insn_idx); 8832 list_for_each(pos, head) { 8833 sl = container_of(pos, struct bpf_verifier_state_list, node); 8834 /* If st->branches != 0 state is a part of current DFS verification path, 8835 * hence cur & st for a loop. 8836 */ 8837 st = &sl->state; 8838 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 8839 st->dfs_depth < cur->dfs_depth) 8840 return st; 8841 } 8842 8843 return NULL; 8844 } 8845 8846 static void reset_idmap_scratch(struct bpf_verifier_env *env); 8847 static bool regs_exact(const struct bpf_reg_state *rold, 8848 const struct bpf_reg_state *rcur, 8849 struct bpf_idmap *idmap); 8850 8851 static void maybe_widen_reg(struct bpf_verifier_env *env, 8852 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 8853 struct bpf_idmap *idmap) 8854 { 8855 if (rold->type != SCALAR_VALUE) 8856 return; 8857 if (rold->type != rcur->type) 8858 return; 8859 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 8860 return; 8861 __mark_reg_unknown(env, rcur); 8862 } 8863 8864 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 8865 struct bpf_verifier_state *old, 8866 struct bpf_verifier_state *cur) 8867 { 8868 struct bpf_func_state *fold, *fcur; 8869 int i, fr; 8870 8871 reset_idmap_scratch(env); 8872 for (fr = old->curframe; fr >= 0; fr--) { 8873 fold = old->frame[fr]; 8874 fcur = cur->frame[fr]; 8875 8876 for (i = 0; i < MAX_BPF_REG; i++) 8877 maybe_widen_reg(env, 8878 &fold->regs[i], 8879 &fcur->regs[i], 8880 &env->idmap_scratch); 8881 8882 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 8883 if (!is_spilled_reg(&fold->stack[i]) || 8884 !is_spilled_reg(&fcur->stack[i])) 8885 continue; 8886 8887 maybe_widen_reg(env, 8888 &fold->stack[i].spilled_ptr, 8889 &fcur->stack[i].spilled_ptr, 8890 &env->idmap_scratch); 8891 } 8892 } 8893 return 0; 8894 } 8895 8896 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st, 8897 struct bpf_kfunc_call_arg_meta *meta) 8898 { 8899 int iter_frameno = meta->iter.frameno; 8900 int iter_spi = meta->iter.spi; 8901 8902 return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 8903 } 8904 8905 /* process_iter_next_call() is called when verifier gets to iterator's next 8906 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 8907 * to it as just "iter_next()" in comments below. 8908 * 8909 * BPF verifier relies on a crucial contract for any iter_next() 8910 * implementation: it should *eventually* return NULL, and once that happens 8911 * it should keep returning NULL. That is, once iterator exhausts elements to 8912 * iterate, it should never reset or spuriously return new elements. 8913 * 8914 * With the assumption of such contract, process_iter_next_call() simulates 8915 * a fork in the verifier state to validate loop logic correctness and safety 8916 * without having to simulate infinite amount of iterations. 8917 * 8918 * In current state, we first assume that iter_next() returned NULL and 8919 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 8920 * conditions we should not form an infinite loop and should eventually reach 8921 * exit. 8922 * 8923 * Besides that, we also fork current state and enqueue it for later 8924 * verification. In a forked state we keep iterator state as ACTIVE 8925 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 8926 * also bump iteration depth to prevent erroneous infinite loop detection 8927 * later on (see iter_active_depths_differ() comment for details). In this 8928 * state we assume that we'll eventually loop back to another iter_next() 8929 * calls (it could be in exactly same location or in some other instruction, 8930 * it doesn't matter, we don't make any unnecessary assumptions about this, 8931 * everything revolves around iterator state in a stack slot, not which 8932 * instruction is calling iter_next()). When that happens, we either will come 8933 * to iter_next() with equivalent state and can conclude that next iteration 8934 * will proceed in exactly the same way as we just verified, so it's safe to 8935 * assume that loop converges. If not, we'll go on another iteration 8936 * simulation with a different input state, until all possible starting states 8937 * are validated or we reach maximum number of instructions limit. 8938 * 8939 * This way, we will either exhaustively discover all possible input states 8940 * that iterator loop can start with and eventually will converge, or we'll 8941 * effectively regress into bounded loop simulation logic and either reach 8942 * maximum number of instructions if loop is not provably convergent, or there 8943 * is some statically known limit on number of iterations (e.g., if there is 8944 * an explicit `if n > 100 then break;` statement somewhere in the loop). 8945 * 8946 * Iteration convergence logic in is_state_visited() relies on exact 8947 * states comparison, which ignores read and precision marks. 8948 * This is necessary because read and precision marks are not finalized 8949 * while in the loop. Exact comparison might preclude convergence for 8950 * simple programs like below: 8951 * 8952 * i = 0; 8953 * while(iter_next(&it)) 8954 * i++; 8955 * 8956 * At each iteration step i++ would produce a new distinct state and 8957 * eventually instruction processing limit would be reached. 8958 * 8959 * To avoid such behavior speculatively forget (widen) range for 8960 * imprecise scalar registers, if those registers were not precise at the 8961 * end of the previous iteration and do not match exactly. 8962 * 8963 * This is a conservative heuristic that allows to verify wide range of programs, 8964 * however it precludes verification of programs that conjure an 8965 * imprecise value on the first loop iteration and use it as precise on a second. 8966 * For example, the following safe program would fail to verify: 8967 * 8968 * struct bpf_num_iter it; 8969 * int arr[10]; 8970 * int i = 0, a = 0; 8971 * bpf_iter_num_new(&it, 0, 10); 8972 * while (bpf_iter_num_next(&it)) { 8973 * if (a == 0) { 8974 * a = 1; 8975 * i = 7; // Because i changed verifier would forget 8976 * // it's range on second loop entry. 8977 * } else { 8978 * arr[i] = 42; // This would fail to verify. 8979 * } 8980 * } 8981 * bpf_iter_num_destroy(&it); 8982 */ 8983 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 8984 struct bpf_kfunc_call_arg_meta *meta) 8985 { 8986 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 8987 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 8988 struct bpf_reg_state *cur_iter, *queued_iter; 8989 8990 BTF_TYPE_EMIT(struct bpf_iter); 8991 8992 cur_iter = get_iter_from_state(cur_st, meta); 8993 8994 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 8995 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 8996 verifier_bug(env, "unexpected iterator state %d (%s)", 8997 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 8998 return -EFAULT; 8999 } 9000 9001 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 9002 /* Because iter_next() call is a checkpoint is_state_visitied() 9003 * should guarantee parent state with same call sites and insn_idx. 9004 */ 9005 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 9006 !same_callsites(cur_st->parent, cur_st)) { 9007 verifier_bug(env, "bad parent state for iter next call"); 9008 return -EFAULT; 9009 } 9010 /* Note cur_st->parent in the call below, it is necessary to skip 9011 * checkpoint created for cur_st by is_state_visited() 9012 * right at this instruction. 9013 */ 9014 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 9015 /* branch out active iter state */ 9016 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 9017 if (!queued_st) 9018 return -ENOMEM; 9019 9020 queued_iter = get_iter_from_state(queued_st, meta); 9021 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 9022 queued_iter->iter.depth++; 9023 if (prev_st) 9024 widen_imprecise_scalars(env, prev_st, queued_st); 9025 9026 queued_fr = queued_st->frame[queued_st->curframe]; 9027 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 9028 } 9029 9030 /* switch to DRAINED state, but keep the depth unchanged */ 9031 /* mark current iter state as drained and assume returned NULL */ 9032 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 9033 __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]); 9034 9035 return 0; 9036 } 9037 9038 static bool arg_type_is_mem_size(enum bpf_arg_type type) 9039 { 9040 return type == ARG_CONST_SIZE || 9041 type == ARG_CONST_SIZE_OR_ZERO; 9042 } 9043 9044 static bool arg_type_is_raw_mem(enum bpf_arg_type type) 9045 { 9046 return base_type(type) == ARG_PTR_TO_MEM && 9047 type & MEM_UNINIT; 9048 } 9049 9050 static bool arg_type_is_release(enum bpf_arg_type type) 9051 { 9052 return type & OBJ_RELEASE; 9053 } 9054 9055 static bool arg_type_is_dynptr(enum bpf_arg_type type) 9056 { 9057 return base_type(type) == ARG_PTR_TO_DYNPTR; 9058 } 9059 9060 static int resolve_map_arg_type(struct bpf_verifier_env *env, 9061 const struct bpf_call_arg_meta *meta, 9062 enum bpf_arg_type *arg_type) 9063 { 9064 if (!meta->map_ptr) { 9065 /* kernel subsystem misconfigured verifier */ 9066 verifier_bug(env, "invalid map_ptr to access map->type"); 9067 return -EFAULT; 9068 } 9069 9070 switch (meta->map_ptr->map_type) { 9071 case BPF_MAP_TYPE_SOCKMAP: 9072 case BPF_MAP_TYPE_SOCKHASH: 9073 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 9074 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 9075 } else { 9076 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 9077 return -EINVAL; 9078 } 9079 break; 9080 case BPF_MAP_TYPE_BLOOM_FILTER: 9081 if (meta->func_id == BPF_FUNC_map_peek_elem) 9082 *arg_type = ARG_PTR_TO_MAP_VALUE; 9083 break; 9084 default: 9085 break; 9086 } 9087 return 0; 9088 } 9089 9090 struct bpf_reg_types { 9091 const enum bpf_reg_type types[10]; 9092 u32 *btf_id; 9093 }; 9094 9095 static const struct bpf_reg_types sock_types = { 9096 .types = { 9097 PTR_TO_SOCK_COMMON, 9098 PTR_TO_SOCKET, 9099 PTR_TO_TCP_SOCK, 9100 PTR_TO_XDP_SOCK, 9101 }, 9102 }; 9103 9104 #ifdef CONFIG_NET 9105 static const struct bpf_reg_types btf_id_sock_common_types = { 9106 .types = { 9107 PTR_TO_SOCK_COMMON, 9108 PTR_TO_SOCKET, 9109 PTR_TO_TCP_SOCK, 9110 PTR_TO_XDP_SOCK, 9111 PTR_TO_BTF_ID, 9112 PTR_TO_BTF_ID | PTR_TRUSTED, 9113 }, 9114 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 9115 }; 9116 #endif 9117 9118 static const struct bpf_reg_types mem_types = { 9119 .types = { 9120 PTR_TO_STACK, 9121 PTR_TO_PACKET, 9122 PTR_TO_PACKET_META, 9123 PTR_TO_MAP_KEY, 9124 PTR_TO_MAP_VALUE, 9125 PTR_TO_MEM, 9126 PTR_TO_MEM | MEM_RINGBUF, 9127 PTR_TO_BUF, 9128 PTR_TO_BTF_ID | PTR_TRUSTED, 9129 }, 9130 }; 9131 9132 static const struct bpf_reg_types spin_lock_types = { 9133 .types = { 9134 PTR_TO_MAP_VALUE, 9135 PTR_TO_BTF_ID | MEM_ALLOC, 9136 } 9137 }; 9138 9139 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 9140 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 9141 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 9142 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 9143 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 9144 static const struct bpf_reg_types btf_ptr_types = { 9145 .types = { 9146 PTR_TO_BTF_ID, 9147 PTR_TO_BTF_ID | PTR_TRUSTED, 9148 PTR_TO_BTF_ID | MEM_RCU, 9149 }, 9150 }; 9151 static const struct bpf_reg_types percpu_btf_ptr_types = { 9152 .types = { 9153 PTR_TO_BTF_ID | MEM_PERCPU, 9154 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, 9155 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 9156 } 9157 }; 9158 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 9159 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 9160 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 9161 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 9162 static const struct bpf_reg_types kptr_xchg_dest_types = { 9163 .types = { 9164 PTR_TO_MAP_VALUE, 9165 PTR_TO_BTF_ID | MEM_ALLOC 9166 } 9167 }; 9168 static const struct bpf_reg_types dynptr_types = { 9169 .types = { 9170 PTR_TO_STACK, 9171 CONST_PTR_TO_DYNPTR, 9172 } 9173 }; 9174 9175 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 9176 [ARG_PTR_TO_MAP_KEY] = &mem_types, 9177 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 9178 [ARG_CONST_SIZE] = &scalar_types, 9179 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 9180 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 9181 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 9182 [ARG_PTR_TO_CTX] = &context_types, 9183 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 9184 #ifdef CONFIG_NET 9185 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 9186 #endif 9187 [ARG_PTR_TO_SOCKET] = &fullsock_types, 9188 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 9189 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 9190 [ARG_PTR_TO_MEM] = &mem_types, 9191 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 9192 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 9193 [ARG_PTR_TO_FUNC] = &func_ptr_types, 9194 [ARG_PTR_TO_STACK] = &stack_ptr_types, 9195 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 9196 [ARG_PTR_TO_TIMER] = &timer_types, 9197 [ARG_KPTR_XCHG_DEST] = &kptr_xchg_dest_types, 9198 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 9199 }; 9200 9201 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 9202 enum bpf_arg_type arg_type, 9203 const u32 *arg_btf_id, 9204 struct bpf_call_arg_meta *meta) 9205 { 9206 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 9207 enum bpf_reg_type expected, type = reg->type; 9208 const struct bpf_reg_types *compatible; 9209 int i, j; 9210 9211 compatible = compatible_reg_types[base_type(arg_type)]; 9212 if (!compatible) { 9213 verifier_bug(env, "unsupported arg type %d", arg_type); 9214 return -EFAULT; 9215 } 9216 9217 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 9218 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 9219 * 9220 * Same for MAYBE_NULL: 9221 * 9222 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 9223 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 9224 * 9225 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 9226 * 9227 * Therefore we fold these flags depending on the arg_type before comparison. 9228 */ 9229 if (arg_type & MEM_RDONLY) 9230 type &= ~MEM_RDONLY; 9231 if (arg_type & PTR_MAYBE_NULL) 9232 type &= ~PTR_MAYBE_NULL; 9233 if (base_type(arg_type) == ARG_PTR_TO_MEM) 9234 type &= ~DYNPTR_TYPE_FLAG_MASK; 9235 9236 /* Local kptr types are allowed as the source argument of bpf_kptr_xchg */ 9237 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) { 9238 type &= ~MEM_ALLOC; 9239 type &= ~MEM_PERCPU; 9240 } 9241 9242 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 9243 expected = compatible->types[i]; 9244 if (expected == NOT_INIT) 9245 break; 9246 9247 if (type == expected) 9248 goto found; 9249 } 9250 9251 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 9252 for (j = 0; j + 1 < i; j++) 9253 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 9254 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 9255 return -EACCES; 9256 9257 found: 9258 if (base_type(reg->type) != PTR_TO_BTF_ID) 9259 return 0; 9260 9261 if (compatible == &mem_types) { 9262 if (!(arg_type & MEM_RDONLY)) { 9263 verbose(env, 9264 "%s() may write into memory pointed by R%d type=%s\n", 9265 func_id_name(meta->func_id), 9266 regno, reg_type_str(env, reg->type)); 9267 return -EACCES; 9268 } 9269 return 0; 9270 } 9271 9272 switch ((int)reg->type) { 9273 case PTR_TO_BTF_ID: 9274 case PTR_TO_BTF_ID | PTR_TRUSTED: 9275 case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL: 9276 case PTR_TO_BTF_ID | MEM_RCU: 9277 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 9278 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 9279 { 9280 /* For bpf_sk_release, it needs to match against first member 9281 * 'struct sock_common', hence make an exception for it. This 9282 * allows bpf_sk_release to work for multiple socket types. 9283 */ 9284 bool strict_type_match = arg_type_is_release(arg_type) && 9285 meta->func_id != BPF_FUNC_sk_release; 9286 9287 if (type_may_be_null(reg->type) && 9288 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 9289 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 9290 return -EACCES; 9291 } 9292 9293 if (!arg_btf_id) { 9294 if (!compatible->btf_id) { 9295 verifier_bug(env, "missing arg compatible BTF ID"); 9296 return -EFAULT; 9297 } 9298 arg_btf_id = compatible->btf_id; 9299 } 9300 9301 if (meta->func_id == BPF_FUNC_kptr_xchg) { 9302 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 9303 return -EACCES; 9304 } else { 9305 if (arg_btf_id == BPF_PTR_POISON) { 9306 verbose(env, "verifier internal error:"); 9307 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 9308 regno); 9309 return -EACCES; 9310 } 9311 9312 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 9313 btf_vmlinux, *arg_btf_id, 9314 strict_type_match)) { 9315 verbose(env, "R%d is of type %s but %s is expected\n", 9316 regno, btf_type_name(reg->btf, reg->btf_id), 9317 btf_type_name(btf_vmlinux, *arg_btf_id)); 9318 return -EACCES; 9319 } 9320 } 9321 break; 9322 } 9323 case PTR_TO_BTF_ID | MEM_ALLOC: 9324 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: 9325 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 9326 meta->func_id != BPF_FUNC_kptr_xchg) { 9327 verifier_bug(env, "unimplemented handling of MEM_ALLOC"); 9328 return -EFAULT; 9329 } 9330 /* Check if local kptr in src arg matches kptr in dst arg */ 9331 if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) { 9332 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 9333 return -EACCES; 9334 } 9335 break; 9336 case PTR_TO_BTF_ID | MEM_PERCPU: 9337 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: 9338 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 9339 /* Handled by helper specific checks */ 9340 break; 9341 default: 9342 verifier_bug(env, "invalid PTR_TO_BTF_ID register for type match"); 9343 return -EFAULT; 9344 } 9345 return 0; 9346 } 9347 9348 static struct btf_field * 9349 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 9350 { 9351 struct btf_field *field; 9352 struct btf_record *rec; 9353 9354 rec = reg_btf_record(reg); 9355 if (!rec) 9356 return NULL; 9357 9358 field = btf_record_find(rec, off, fields); 9359 if (!field) 9360 return NULL; 9361 9362 return field; 9363 } 9364 9365 static int check_func_arg_reg_off(struct bpf_verifier_env *env, 9366 const struct bpf_reg_state *reg, int regno, 9367 enum bpf_arg_type arg_type) 9368 { 9369 u32 type = reg->type; 9370 9371 /* When referenced register is passed to release function, its fixed 9372 * offset must be 0. 9373 * 9374 * We will check arg_type_is_release reg has ref_obj_id when storing 9375 * meta->release_regno. 9376 */ 9377 if (arg_type_is_release(arg_type)) { 9378 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 9379 * may not directly point to the object being released, but to 9380 * dynptr pointing to such object, which might be at some offset 9381 * on the stack. In that case, we simply to fallback to the 9382 * default handling. 9383 */ 9384 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 9385 return 0; 9386 9387 /* Doing check_ptr_off_reg check for the offset will catch this 9388 * because fixed_off_ok is false, but checking here allows us 9389 * to give the user a better error message. 9390 */ 9391 if (reg->off) { 9392 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 9393 regno); 9394 return -EINVAL; 9395 } 9396 return __check_ptr_off_reg(env, reg, regno, false); 9397 } 9398 9399 switch (type) { 9400 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 9401 case PTR_TO_STACK: 9402 case PTR_TO_PACKET: 9403 case PTR_TO_PACKET_META: 9404 case PTR_TO_MAP_KEY: 9405 case PTR_TO_MAP_VALUE: 9406 case PTR_TO_MEM: 9407 case PTR_TO_MEM | MEM_RDONLY: 9408 case PTR_TO_MEM | MEM_RINGBUF: 9409 case PTR_TO_BUF: 9410 case PTR_TO_BUF | MEM_RDONLY: 9411 case PTR_TO_ARENA: 9412 case SCALAR_VALUE: 9413 return 0; 9414 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 9415 * fixed offset. 9416 */ 9417 case PTR_TO_BTF_ID: 9418 case PTR_TO_BTF_ID | MEM_ALLOC: 9419 case PTR_TO_BTF_ID | PTR_TRUSTED: 9420 case PTR_TO_BTF_ID | MEM_RCU: 9421 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 9422 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 9423 /* When referenced PTR_TO_BTF_ID is passed to release function, 9424 * its fixed offset must be 0. In the other cases, fixed offset 9425 * can be non-zero. This was already checked above. So pass 9426 * fixed_off_ok as true to allow fixed offset for all other 9427 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 9428 * still need to do checks instead of returning. 9429 */ 9430 return __check_ptr_off_reg(env, reg, regno, true); 9431 default: 9432 return __check_ptr_off_reg(env, reg, regno, false); 9433 } 9434 } 9435 9436 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 9437 const struct bpf_func_proto *fn, 9438 struct bpf_reg_state *regs) 9439 { 9440 struct bpf_reg_state *state = NULL; 9441 int i; 9442 9443 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 9444 if (arg_type_is_dynptr(fn->arg_type[i])) { 9445 if (state) { 9446 verbose(env, "verifier internal error: multiple dynptr args\n"); 9447 return NULL; 9448 } 9449 state = ®s[BPF_REG_1 + i]; 9450 } 9451 9452 if (!state) 9453 verbose(env, "verifier internal error: no dynptr arg found\n"); 9454 9455 return state; 9456 } 9457 9458 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9459 { 9460 struct bpf_func_state *state = func(env, reg); 9461 int spi; 9462 9463 if (reg->type == CONST_PTR_TO_DYNPTR) 9464 return reg->id; 9465 spi = dynptr_get_spi(env, reg); 9466 if (spi < 0) 9467 return spi; 9468 return state->stack[spi].spilled_ptr.id; 9469 } 9470 9471 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9472 { 9473 struct bpf_func_state *state = func(env, reg); 9474 int spi; 9475 9476 if (reg->type == CONST_PTR_TO_DYNPTR) 9477 return reg->ref_obj_id; 9478 spi = dynptr_get_spi(env, reg); 9479 if (spi < 0) 9480 return spi; 9481 return state->stack[spi].spilled_ptr.ref_obj_id; 9482 } 9483 9484 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 9485 struct bpf_reg_state *reg) 9486 { 9487 struct bpf_func_state *state = func(env, reg); 9488 int spi; 9489 9490 if (reg->type == CONST_PTR_TO_DYNPTR) 9491 return reg->dynptr.type; 9492 9493 spi = __get_spi(reg->off); 9494 if (spi < 0) { 9495 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 9496 return BPF_DYNPTR_TYPE_INVALID; 9497 } 9498 9499 return state->stack[spi].spilled_ptr.dynptr.type; 9500 } 9501 9502 static int check_reg_const_str(struct bpf_verifier_env *env, 9503 struct bpf_reg_state *reg, u32 regno) 9504 { 9505 struct bpf_map *map = reg->map_ptr; 9506 int err; 9507 int map_off; 9508 u64 map_addr; 9509 char *str_ptr; 9510 9511 if (reg->type != PTR_TO_MAP_VALUE) 9512 return -EINVAL; 9513 9514 if (!bpf_map_is_rdonly(map)) { 9515 verbose(env, "R%d does not point to a readonly map'\n", regno); 9516 return -EACCES; 9517 } 9518 9519 if (!tnum_is_const(reg->var_off)) { 9520 verbose(env, "R%d is not a constant address'\n", regno); 9521 return -EACCES; 9522 } 9523 9524 if (!map->ops->map_direct_value_addr) { 9525 verbose(env, "no direct value access support for this map type\n"); 9526 return -EACCES; 9527 } 9528 9529 err = check_map_access(env, regno, reg->off, 9530 map->value_size - reg->off, false, 9531 ACCESS_HELPER); 9532 if (err) 9533 return err; 9534 9535 map_off = reg->off + reg->var_off.value; 9536 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 9537 if (err) { 9538 verbose(env, "direct value access on string failed\n"); 9539 return err; 9540 } 9541 9542 str_ptr = (char *)(long)(map_addr); 9543 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 9544 verbose(env, "string is not zero-terminated\n"); 9545 return -EINVAL; 9546 } 9547 return 0; 9548 } 9549 9550 /* Returns constant key value in `value` if possible, else negative error */ 9551 static int get_constant_map_key(struct bpf_verifier_env *env, 9552 struct bpf_reg_state *key, 9553 u32 key_size, 9554 s64 *value) 9555 { 9556 struct bpf_func_state *state = func(env, key); 9557 struct bpf_reg_state *reg; 9558 int slot, spi, off; 9559 int spill_size = 0; 9560 int zero_size = 0; 9561 int stack_off; 9562 int i, err; 9563 u8 *stype; 9564 9565 if (!env->bpf_capable) 9566 return -EOPNOTSUPP; 9567 if (key->type != PTR_TO_STACK) 9568 return -EOPNOTSUPP; 9569 if (!tnum_is_const(key->var_off)) 9570 return -EOPNOTSUPP; 9571 9572 stack_off = key->off + key->var_off.value; 9573 slot = -stack_off - 1; 9574 spi = slot / BPF_REG_SIZE; 9575 off = slot % BPF_REG_SIZE; 9576 stype = state->stack[spi].slot_type; 9577 9578 /* First handle precisely tracked STACK_ZERO */ 9579 for (i = off; i >= 0 && stype[i] == STACK_ZERO; i--) 9580 zero_size++; 9581 if (zero_size >= key_size) { 9582 *value = 0; 9583 return 0; 9584 } 9585 9586 /* Check that stack contains a scalar spill of expected size */ 9587 if (!is_spilled_scalar_reg(&state->stack[spi])) 9588 return -EOPNOTSUPP; 9589 for (i = off; i >= 0 && stype[i] == STACK_SPILL; i--) 9590 spill_size++; 9591 if (spill_size != key_size) 9592 return -EOPNOTSUPP; 9593 9594 reg = &state->stack[spi].spilled_ptr; 9595 if (!tnum_is_const(reg->var_off)) 9596 /* Stack value not statically known */ 9597 return -EOPNOTSUPP; 9598 9599 /* We are relying on a constant value. So mark as precise 9600 * to prevent pruning on it. 9601 */ 9602 bt_set_frame_slot(&env->bt, key->frameno, spi); 9603 err = mark_chain_precision_batch(env, env->cur_state); 9604 if (err < 0) 9605 return err; 9606 9607 *value = reg->var_off.value; 9608 return 0; 9609 } 9610 9611 static bool can_elide_value_nullness(enum bpf_map_type type); 9612 9613 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 9614 struct bpf_call_arg_meta *meta, 9615 const struct bpf_func_proto *fn, 9616 int insn_idx) 9617 { 9618 u32 regno = BPF_REG_1 + arg; 9619 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 9620 enum bpf_arg_type arg_type = fn->arg_type[arg]; 9621 enum bpf_reg_type type = reg->type; 9622 u32 *arg_btf_id = NULL; 9623 u32 key_size; 9624 int err = 0; 9625 9626 if (arg_type == ARG_DONTCARE) 9627 return 0; 9628 9629 err = check_reg_arg(env, regno, SRC_OP); 9630 if (err) 9631 return err; 9632 9633 if (arg_type == ARG_ANYTHING) { 9634 if (is_pointer_value(env, regno)) { 9635 verbose(env, "R%d leaks addr into helper function\n", 9636 regno); 9637 return -EACCES; 9638 } 9639 return 0; 9640 } 9641 9642 if (type_is_pkt_pointer(type) && 9643 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 9644 verbose(env, "helper access to the packet is not allowed\n"); 9645 return -EACCES; 9646 } 9647 9648 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 9649 err = resolve_map_arg_type(env, meta, &arg_type); 9650 if (err) 9651 return err; 9652 } 9653 9654 if (register_is_null(reg) && type_may_be_null(arg_type)) 9655 /* A NULL register has a SCALAR_VALUE type, so skip 9656 * type checking. 9657 */ 9658 goto skip_type_check; 9659 9660 /* arg_btf_id and arg_size are in a union. */ 9661 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 9662 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 9663 arg_btf_id = fn->arg_btf_id[arg]; 9664 9665 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 9666 if (err) 9667 return err; 9668 9669 err = check_func_arg_reg_off(env, reg, regno, arg_type); 9670 if (err) 9671 return err; 9672 9673 skip_type_check: 9674 if (arg_type_is_release(arg_type)) { 9675 if (arg_type_is_dynptr(arg_type)) { 9676 struct bpf_func_state *state = func(env, reg); 9677 int spi; 9678 9679 /* Only dynptr created on stack can be released, thus 9680 * the get_spi and stack state checks for spilled_ptr 9681 * should only be done before process_dynptr_func for 9682 * PTR_TO_STACK. 9683 */ 9684 if (reg->type == PTR_TO_STACK) { 9685 spi = dynptr_get_spi(env, reg); 9686 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 9687 verbose(env, "arg %d is an unacquired reference\n", regno); 9688 return -EINVAL; 9689 } 9690 } else { 9691 verbose(env, "cannot release unowned const bpf_dynptr\n"); 9692 return -EINVAL; 9693 } 9694 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 9695 verbose(env, "R%d must be referenced when passed to release function\n", 9696 regno); 9697 return -EINVAL; 9698 } 9699 if (meta->release_regno) { 9700 verifier_bug(env, "more than one release argument"); 9701 return -EFAULT; 9702 } 9703 meta->release_regno = regno; 9704 } 9705 9706 if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) { 9707 if (meta->ref_obj_id) { 9708 verbose(env, "more than one arg with ref_obj_id R%d %u %u", 9709 regno, reg->ref_obj_id, 9710 meta->ref_obj_id); 9711 return -EACCES; 9712 } 9713 meta->ref_obj_id = reg->ref_obj_id; 9714 } 9715 9716 switch (base_type(arg_type)) { 9717 case ARG_CONST_MAP_PTR: 9718 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 9719 if (meta->map_ptr) { 9720 /* Use map_uid (which is unique id of inner map) to reject: 9721 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 9722 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 9723 * if (inner_map1 && inner_map2) { 9724 * timer = bpf_map_lookup_elem(inner_map1); 9725 * if (timer) 9726 * // mismatch would have been allowed 9727 * bpf_timer_init(timer, inner_map2); 9728 * } 9729 * 9730 * Comparing map_ptr is enough to distinguish normal and outer maps. 9731 */ 9732 if (meta->map_ptr != reg->map_ptr || 9733 meta->map_uid != reg->map_uid) { 9734 verbose(env, 9735 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 9736 meta->map_uid, reg->map_uid); 9737 return -EINVAL; 9738 } 9739 } 9740 meta->map_ptr = reg->map_ptr; 9741 meta->map_uid = reg->map_uid; 9742 break; 9743 case ARG_PTR_TO_MAP_KEY: 9744 /* bpf_map_xxx(..., map_ptr, ..., key) call: 9745 * check that [key, key + map->key_size) are within 9746 * stack limits and initialized 9747 */ 9748 if (!meta->map_ptr) { 9749 /* in function declaration map_ptr must come before 9750 * map_key, so that it's verified and known before 9751 * we have to check map_key here. Otherwise it means 9752 * that kernel subsystem misconfigured verifier 9753 */ 9754 verifier_bug(env, "invalid map_ptr to access map->key"); 9755 return -EFAULT; 9756 } 9757 key_size = meta->map_ptr->key_size; 9758 err = check_helper_mem_access(env, regno, key_size, BPF_READ, false, NULL); 9759 if (err) 9760 return err; 9761 if (can_elide_value_nullness(meta->map_ptr->map_type)) { 9762 err = get_constant_map_key(env, reg, key_size, &meta->const_map_key); 9763 if (err < 0) { 9764 meta->const_map_key = -1; 9765 if (err == -EOPNOTSUPP) 9766 err = 0; 9767 else 9768 return err; 9769 } 9770 } 9771 break; 9772 case ARG_PTR_TO_MAP_VALUE: 9773 if (type_may_be_null(arg_type) && register_is_null(reg)) 9774 return 0; 9775 9776 /* bpf_map_xxx(..., map_ptr, ..., value) call: 9777 * check [value, value + map->value_size) validity 9778 */ 9779 if (!meta->map_ptr) { 9780 /* kernel subsystem misconfigured verifier */ 9781 verifier_bug(env, "invalid map_ptr to access map->value"); 9782 return -EFAULT; 9783 } 9784 meta->raw_mode = arg_type & MEM_UNINIT; 9785 err = check_helper_mem_access(env, regno, meta->map_ptr->value_size, 9786 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 9787 false, meta); 9788 break; 9789 case ARG_PTR_TO_PERCPU_BTF_ID: 9790 if (!reg->btf_id) { 9791 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 9792 return -EACCES; 9793 } 9794 meta->ret_btf = reg->btf; 9795 meta->ret_btf_id = reg->btf_id; 9796 break; 9797 case ARG_PTR_TO_SPIN_LOCK: 9798 if (in_rbtree_lock_required_cb(env)) { 9799 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 9800 return -EACCES; 9801 } 9802 if (meta->func_id == BPF_FUNC_spin_lock) { 9803 err = process_spin_lock(env, regno, PROCESS_SPIN_LOCK); 9804 if (err) 9805 return err; 9806 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 9807 err = process_spin_lock(env, regno, 0); 9808 if (err) 9809 return err; 9810 } else { 9811 verifier_bug(env, "spin lock arg on unexpected helper"); 9812 return -EFAULT; 9813 } 9814 break; 9815 case ARG_PTR_TO_TIMER: 9816 err = process_timer_func(env, regno, meta); 9817 if (err) 9818 return err; 9819 break; 9820 case ARG_PTR_TO_FUNC: 9821 meta->subprogno = reg->subprogno; 9822 break; 9823 case ARG_PTR_TO_MEM: 9824 /* The access to this pointer is only checked when we hit the 9825 * next is_mem_size argument below. 9826 */ 9827 meta->raw_mode = arg_type & MEM_UNINIT; 9828 if (arg_type & MEM_FIXED_SIZE) { 9829 err = check_helper_mem_access(env, regno, fn->arg_size[arg], 9830 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 9831 false, meta); 9832 if (err) 9833 return err; 9834 if (arg_type & MEM_ALIGNED) 9835 err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true); 9836 } 9837 break; 9838 case ARG_CONST_SIZE: 9839 err = check_mem_size_reg(env, reg, regno, 9840 fn->arg_type[arg - 1] & MEM_WRITE ? 9841 BPF_WRITE : BPF_READ, 9842 false, meta); 9843 break; 9844 case ARG_CONST_SIZE_OR_ZERO: 9845 err = check_mem_size_reg(env, reg, regno, 9846 fn->arg_type[arg - 1] & MEM_WRITE ? 9847 BPF_WRITE : BPF_READ, 9848 true, meta); 9849 break; 9850 case ARG_PTR_TO_DYNPTR: 9851 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 9852 if (err) 9853 return err; 9854 break; 9855 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 9856 if (!tnum_is_const(reg->var_off)) { 9857 verbose(env, "R%d is not a known constant'\n", 9858 regno); 9859 return -EACCES; 9860 } 9861 meta->mem_size = reg->var_off.value; 9862 err = mark_chain_precision(env, regno); 9863 if (err) 9864 return err; 9865 break; 9866 case ARG_PTR_TO_CONST_STR: 9867 { 9868 err = check_reg_const_str(env, reg, regno); 9869 if (err) 9870 return err; 9871 break; 9872 } 9873 case ARG_KPTR_XCHG_DEST: 9874 err = process_kptr_func(env, regno, meta); 9875 if (err) 9876 return err; 9877 break; 9878 } 9879 9880 return err; 9881 } 9882 9883 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 9884 { 9885 enum bpf_attach_type eatype = env->prog->expected_attach_type; 9886 enum bpf_prog_type type = resolve_prog_type(env->prog); 9887 9888 if (func_id != BPF_FUNC_map_update_elem && 9889 func_id != BPF_FUNC_map_delete_elem) 9890 return false; 9891 9892 /* It's not possible to get access to a locked struct sock in these 9893 * contexts, so updating is safe. 9894 */ 9895 switch (type) { 9896 case BPF_PROG_TYPE_TRACING: 9897 if (eatype == BPF_TRACE_ITER) 9898 return true; 9899 break; 9900 case BPF_PROG_TYPE_SOCK_OPS: 9901 /* map_update allowed only via dedicated helpers with event type checks */ 9902 if (func_id == BPF_FUNC_map_delete_elem) 9903 return true; 9904 break; 9905 case BPF_PROG_TYPE_SOCKET_FILTER: 9906 case BPF_PROG_TYPE_SCHED_CLS: 9907 case BPF_PROG_TYPE_SCHED_ACT: 9908 case BPF_PROG_TYPE_XDP: 9909 case BPF_PROG_TYPE_SK_REUSEPORT: 9910 case BPF_PROG_TYPE_FLOW_DISSECTOR: 9911 case BPF_PROG_TYPE_SK_LOOKUP: 9912 return true; 9913 default: 9914 break; 9915 } 9916 9917 verbose(env, "cannot update sockmap in this context\n"); 9918 return false; 9919 } 9920 9921 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 9922 { 9923 return env->prog->jit_requested && 9924 bpf_jit_supports_subprog_tailcalls(); 9925 } 9926 9927 static int check_map_func_compatibility(struct bpf_verifier_env *env, 9928 struct bpf_map *map, int func_id) 9929 { 9930 if (!map) 9931 return 0; 9932 9933 /* We need a two way check, first is from map perspective ... */ 9934 switch (map->map_type) { 9935 case BPF_MAP_TYPE_PROG_ARRAY: 9936 if (func_id != BPF_FUNC_tail_call) 9937 goto error; 9938 break; 9939 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 9940 if (func_id != BPF_FUNC_perf_event_read && 9941 func_id != BPF_FUNC_perf_event_output && 9942 func_id != BPF_FUNC_skb_output && 9943 func_id != BPF_FUNC_perf_event_read_value && 9944 func_id != BPF_FUNC_xdp_output) 9945 goto error; 9946 break; 9947 case BPF_MAP_TYPE_RINGBUF: 9948 if (func_id != BPF_FUNC_ringbuf_output && 9949 func_id != BPF_FUNC_ringbuf_reserve && 9950 func_id != BPF_FUNC_ringbuf_query && 9951 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 9952 func_id != BPF_FUNC_ringbuf_submit_dynptr && 9953 func_id != BPF_FUNC_ringbuf_discard_dynptr) 9954 goto error; 9955 break; 9956 case BPF_MAP_TYPE_USER_RINGBUF: 9957 if (func_id != BPF_FUNC_user_ringbuf_drain) 9958 goto error; 9959 break; 9960 case BPF_MAP_TYPE_STACK_TRACE: 9961 if (func_id != BPF_FUNC_get_stackid) 9962 goto error; 9963 break; 9964 case BPF_MAP_TYPE_CGROUP_ARRAY: 9965 if (func_id != BPF_FUNC_skb_under_cgroup && 9966 func_id != BPF_FUNC_current_task_under_cgroup) 9967 goto error; 9968 break; 9969 case BPF_MAP_TYPE_CGROUP_STORAGE: 9970 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 9971 if (func_id != BPF_FUNC_get_local_storage) 9972 goto error; 9973 break; 9974 case BPF_MAP_TYPE_DEVMAP: 9975 case BPF_MAP_TYPE_DEVMAP_HASH: 9976 if (func_id != BPF_FUNC_redirect_map && 9977 func_id != BPF_FUNC_map_lookup_elem) 9978 goto error; 9979 break; 9980 /* Restrict bpf side of cpumap and xskmap, open when use-cases 9981 * appear. 9982 */ 9983 case BPF_MAP_TYPE_CPUMAP: 9984 if (func_id != BPF_FUNC_redirect_map) 9985 goto error; 9986 break; 9987 case BPF_MAP_TYPE_XSKMAP: 9988 if (func_id != BPF_FUNC_redirect_map && 9989 func_id != BPF_FUNC_map_lookup_elem) 9990 goto error; 9991 break; 9992 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 9993 case BPF_MAP_TYPE_HASH_OF_MAPS: 9994 if (func_id != BPF_FUNC_map_lookup_elem) 9995 goto error; 9996 break; 9997 case BPF_MAP_TYPE_SOCKMAP: 9998 if (func_id != BPF_FUNC_sk_redirect_map && 9999 func_id != BPF_FUNC_sock_map_update && 10000 func_id != BPF_FUNC_msg_redirect_map && 10001 func_id != BPF_FUNC_sk_select_reuseport && 10002 func_id != BPF_FUNC_map_lookup_elem && 10003 !may_update_sockmap(env, func_id)) 10004 goto error; 10005 break; 10006 case BPF_MAP_TYPE_SOCKHASH: 10007 if (func_id != BPF_FUNC_sk_redirect_hash && 10008 func_id != BPF_FUNC_sock_hash_update && 10009 func_id != BPF_FUNC_msg_redirect_hash && 10010 func_id != BPF_FUNC_sk_select_reuseport && 10011 func_id != BPF_FUNC_map_lookup_elem && 10012 !may_update_sockmap(env, func_id)) 10013 goto error; 10014 break; 10015 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 10016 if (func_id != BPF_FUNC_sk_select_reuseport) 10017 goto error; 10018 break; 10019 case BPF_MAP_TYPE_QUEUE: 10020 case BPF_MAP_TYPE_STACK: 10021 if (func_id != BPF_FUNC_map_peek_elem && 10022 func_id != BPF_FUNC_map_pop_elem && 10023 func_id != BPF_FUNC_map_push_elem) 10024 goto error; 10025 break; 10026 case BPF_MAP_TYPE_SK_STORAGE: 10027 if (func_id != BPF_FUNC_sk_storage_get && 10028 func_id != BPF_FUNC_sk_storage_delete && 10029 func_id != BPF_FUNC_kptr_xchg) 10030 goto error; 10031 break; 10032 case BPF_MAP_TYPE_INODE_STORAGE: 10033 if (func_id != BPF_FUNC_inode_storage_get && 10034 func_id != BPF_FUNC_inode_storage_delete && 10035 func_id != BPF_FUNC_kptr_xchg) 10036 goto error; 10037 break; 10038 case BPF_MAP_TYPE_TASK_STORAGE: 10039 if (func_id != BPF_FUNC_task_storage_get && 10040 func_id != BPF_FUNC_task_storage_delete && 10041 func_id != BPF_FUNC_kptr_xchg) 10042 goto error; 10043 break; 10044 case BPF_MAP_TYPE_CGRP_STORAGE: 10045 if (func_id != BPF_FUNC_cgrp_storage_get && 10046 func_id != BPF_FUNC_cgrp_storage_delete && 10047 func_id != BPF_FUNC_kptr_xchg) 10048 goto error; 10049 break; 10050 case BPF_MAP_TYPE_BLOOM_FILTER: 10051 if (func_id != BPF_FUNC_map_peek_elem && 10052 func_id != BPF_FUNC_map_push_elem) 10053 goto error; 10054 break; 10055 default: 10056 break; 10057 } 10058 10059 /* ... and second from the function itself. */ 10060 switch (func_id) { 10061 case BPF_FUNC_tail_call: 10062 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 10063 goto error; 10064 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 10065 verbose(env, "mixing of tail_calls and bpf-to-bpf calls is not supported\n"); 10066 return -EINVAL; 10067 } 10068 break; 10069 case BPF_FUNC_perf_event_read: 10070 case BPF_FUNC_perf_event_output: 10071 case BPF_FUNC_perf_event_read_value: 10072 case BPF_FUNC_skb_output: 10073 case BPF_FUNC_xdp_output: 10074 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 10075 goto error; 10076 break; 10077 case BPF_FUNC_ringbuf_output: 10078 case BPF_FUNC_ringbuf_reserve: 10079 case BPF_FUNC_ringbuf_query: 10080 case BPF_FUNC_ringbuf_reserve_dynptr: 10081 case BPF_FUNC_ringbuf_submit_dynptr: 10082 case BPF_FUNC_ringbuf_discard_dynptr: 10083 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 10084 goto error; 10085 break; 10086 case BPF_FUNC_user_ringbuf_drain: 10087 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 10088 goto error; 10089 break; 10090 case BPF_FUNC_get_stackid: 10091 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 10092 goto error; 10093 break; 10094 case BPF_FUNC_current_task_under_cgroup: 10095 case BPF_FUNC_skb_under_cgroup: 10096 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 10097 goto error; 10098 break; 10099 case BPF_FUNC_redirect_map: 10100 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 10101 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 10102 map->map_type != BPF_MAP_TYPE_CPUMAP && 10103 map->map_type != BPF_MAP_TYPE_XSKMAP) 10104 goto error; 10105 break; 10106 case BPF_FUNC_sk_redirect_map: 10107 case BPF_FUNC_msg_redirect_map: 10108 case BPF_FUNC_sock_map_update: 10109 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 10110 goto error; 10111 break; 10112 case BPF_FUNC_sk_redirect_hash: 10113 case BPF_FUNC_msg_redirect_hash: 10114 case BPF_FUNC_sock_hash_update: 10115 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 10116 goto error; 10117 break; 10118 case BPF_FUNC_get_local_storage: 10119 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 10120 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 10121 goto error; 10122 break; 10123 case BPF_FUNC_sk_select_reuseport: 10124 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 10125 map->map_type != BPF_MAP_TYPE_SOCKMAP && 10126 map->map_type != BPF_MAP_TYPE_SOCKHASH) 10127 goto error; 10128 break; 10129 case BPF_FUNC_map_pop_elem: 10130 if (map->map_type != BPF_MAP_TYPE_QUEUE && 10131 map->map_type != BPF_MAP_TYPE_STACK) 10132 goto error; 10133 break; 10134 case BPF_FUNC_map_peek_elem: 10135 case BPF_FUNC_map_push_elem: 10136 if (map->map_type != BPF_MAP_TYPE_QUEUE && 10137 map->map_type != BPF_MAP_TYPE_STACK && 10138 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 10139 goto error; 10140 break; 10141 case BPF_FUNC_map_lookup_percpu_elem: 10142 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 10143 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 10144 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 10145 goto error; 10146 break; 10147 case BPF_FUNC_sk_storage_get: 10148 case BPF_FUNC_sk_storage_delete: 10149 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 10150 goto error; 10151 break; 10152 case BPF_FUNC_inode_storage_get: 10153 case BPF_FUNC_inode_storage_delete: 10154 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 10155 goto error; 10156 break; 10157 case BPF_FUNC_task_storage_get: 10158 case BPF_FUNC_task_storage_delete: 10159 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 10160 goto error; 10161 break; 10162 case BPF_FUNC_cgrp_storage_get: 10163 case BPF_FUNC_cgrp_storage_delete: 10164 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 10165 goto error; 10166 break; 10167 default: 10168 break; 10169 } 10170 10171 return 0; 10172 error: 10173 verbose(env, "cannot pass map_type %d into func %s#%d\n", 10174 map->map_type, func_id_name(func_id), func_id); 10175 return -EINVAL; 10176 } 10177 10178 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 10179 { 10180 int count = 0; 10181 10182 if (arg_type_is_raw_mem(fn->arg1_type)) 10183 count++; 10184 if (arg_type_is_raw_mem(fn->arg2_type)) 10185 count++; 10186 if (arg_type_is_raw_mem(fn->arg3_type)) 10187 count++; 10188 if (arg_type_is_raw_mem(fn->arg4_type)) 10189 count++; 10190 if (arg_type_is_raw_mem(fn->arg5_type)) 10191 count++; 10192 10193 /* We only support one arg being in raw mode at the moment, 10194 * which is sufficient for the helper functions we have 10195 * right now. 10196 */ 10197 return count <= 1; 10198 } 10199 10200 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 10201 { 10202 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 10203 bool has_size = fn->arg_size[arg] != 0; 10204 bool is_next_size = false; 10205 10206 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 10207 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 10208 10209 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 10210 return is_next_size; 10211 10212 return has_size == is_next_size || is_next_size == is_fixed; 10213 } 10214 10215 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 10216 { 10217 /* bpf_xxx(..., buf, len) call will access 'len' 10218 * bytes from memory 'buf'. Both arg types need 10219 * to be paired, so make sure there's no buggy 10220 * helper function specification. 10221 */ 10222 if (arg_type_is_mem_size(fn->arg1_type) || 10223 check_args_pair_invalid(fn, 0) || 10224 check_args_pair_invalid(fn, 1) || 10225 check_args_pair_invalid(fn, 2) || 10226 check_args_pair_invalid(fn, 3) || 10227 check_args_pair_invalid(fn, 4)) 10228 return false; 10229 10230 return true; 10231 } 10232 10233 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 10234 { 10235 int i; 10236 10237 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 10238 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 10239 return !!fn->arg_btf_id[i]; 10240 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 10241 return fn->arg_btf_id[i] == BPF_PTR_POISON; 10242 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 10243 /* arg_btf_id and arg_size are in a union. */ 10244 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 10245 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 10246 return false; 10247 } 10248 10249 return true; 10250 } 10251 10252 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 10253 { 10254 return check_raw_mode_ok(fn) && 10255 check_arg_pair_ok(fn) && 10256 check_btf_id_ok(fn) ? 0 : -EINVAL; 10257 } 10258 10259 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 10260 * are now invalid, so turn them into unknown SCALAR_VALUE. 10261 * 10262 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 10263 * since these slices point to packet data. 10264 */ 10265 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 10266 { 10267 struct bpf_func_state *state; 10268 struct bpf_reg_state *reg; 10269 10270 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 10271 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 10272 mark_reg_invalid(env, reg); 10273 })); 10274 } 10275 10276 enum { 10277 AT_PKT_END = -1, 10278 BEYOND_PKT_END = -2, 10279 }; 10280 10281 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 10282 { 10283 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 10284 struct bpf_reg_state *reg = &state->regs[regn]; 10285 10286 if (reg->type != PTR_TO_PACKET) 10287 /* PTR_TO_PACKET_META is not supported yet */ 10288 return; 10289 10290 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 10291 * How far beyond pkt_end it goes is unknown. 10292 * if (!range_open) it's the case of pkt >= pkt_end 10293 * if (range_open) it's the case of pkt > pkt_end 10294 * hence this pointer is at least 1 byte bigger than pkt_end 10295 */ 10296 if (range_open) 10297 reg->range = BEYOND_PKT_END; 10298 else 10299 reg->range = AT_PKT_END; 10300 } 10301 10302 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id) 10303 { 10304 int i; 10305 10306 for (i = 0; i < state->acquired_refs; i++) { 10307 if (state->refs[i].type != REF_TYPE_PTR) 10308 continue; 10309 if (state->refs[i].id == ref_obj_id) { 10310 release_reference_state(state, i); 10311 return 0; 10312 } 10313 } 10314 return -EINVAL; 10315 } 10316 10317 /* The pointer with the specified id has released its reference to kernel 10318 * resources. Identify all copies of the same pointer and clear the reference. 10319 * 10320 * This is the release function corresponding to acquire_reference(). Idempotent. 10321 */ 10322 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id) 10323 { 10324 struct bpf_verifier_state *vstate = env->cur_state; 10325 struct bpf_func_state *state; 10326 struct bpf_reg_state *reg; 10327 int err; 10328 10329 err = release_reference_nomark(vstate, ref_obj_id); 10330 if (err) 10331 return err; 10332 10333 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 10334 if (reg->ref_obj_id == ref_obj_id) 10335 mark_reg_invalid(env, reg); 10336 })); 10337 10338 return 0; 10339 } 10340 10341 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 10342 { 10343 struct bpf_func_state *unused; 10344 struct bpf_reg_state *reg; 10345 10346 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10347 if (type_is_non_owning_ref(reg->type)) 10348 mark_reg_invalid(env, reg); 10349 })); 10350 } 10351 10352 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 10353 struct bpf_reg_state *regs) 10354 { 10355 int i; 10356 10357 /* after the call registers r0 - r5 were scratched */ 10358 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10359 mark_reg_not_init(env, regs, caller_saved[i]); 10360 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 10361 } 10362 } 10363 10364 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 10365 struct bpf_func_state *caller, 10366 struct bpf_func_state *callee, 10367 int insn_idx); 10368 10369 static bool is_task_work_add_kfunc(u32 func_id); 10370 10371 static int set_callee_state(struct bpf_verifier_env *env, 10372 struct bpf_func_state *caller, 10373 struct bpf_func_state *callee, int insn_idx); 10374 10375 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 10376 set_callee_state_fn set_callee_state_cb, 10377 struct bpf_verifier_state *state) 10378 { 10379 struct bpf_func_state *caller, *callee; 10380 int err; 10381 10382 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 10383 verbose(env, "the call stack of %d frames is too deep\n", 10384 state->curframe + 2); 10385 return -E2BIG; 10386 } 10387 10388 if (state->frame[state->curframe + 1]) { 10389 verifier_bug(env, "Frame %d already allocated", state->curframe + 1); 10390 return -EFAULT; 10391 } 10392 10393 caller = state->frame[state->curframe]; 10394 callee = kzalloc(sizeof(*callee), GFP_KERNEL_ACCOUNT); 10395 if (!callee) 10396 return -ENOMEM; 10397 state->frame[state->curframe + 1] = callee; 10398 10399 /* callee cannot access r0, r6 - r9 for reading and has to write 10400 * into its own stack before reading from it. 10401 * callee can read/write into caller's stack 10402 */ 10403 init_func_state(env, callee, 10404 /* remember the callsite, it will be used by bpf_exit */ 10405 callsite, 10406 state->curframe + 1 /* frameno within this callchain */, 10407 subprog /* subprog number within this prog */); 10408 err = set_callee_state_cb(env, caller, callee, callsite); 10409 if (err) 10410 goto err_out; 10411 10412 /* only increment it after check_reg_arg() finished */ 10413 state->curframe++; 10414 10415 return 0; 10416 10417 err_out: 10418 free_func_state(callee); 10419 state->frame[state->curframe + 1] = NULL; 10420 return err; 10421 } 10422 10423 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, 10424 const struct btf *btf, 10425 struct bpf_reg_state *regs) 10426 { 10427 struct bpf_subprog_info *sub = subprog_info(env, subprog); 10428 struct bpf_verifier_log *log = &env->log; 10429 u32 i; 10430 int ret; 10431 10432 ret = btf_prepare_func_args(env, subprog); 10433 if (ret) 10434 return ret; 10435 10436 /* check that BTF function arguments match actual types that the 10437 * verifier sees. 10438 */ 10439 for (i = 0; i < sub->arg_cnt; i++) { 10440 u32 regno = i + 1; 10441 struct bpf_reg_state *reg = ®s[regno]; 10442 struct bpf_subprog_arg_info *arg = &sub->args[i]; 10443 10444 if (arg->arg_type == ARG_ANYTHING) { 10445 if (reg->type != SCALAR_VALUE) { 10446 bpf_log(log, "R%d is not a scalar\n", regno); 10447 return -EINVAL; 10448 } 10449 } else if (arg->arg_type & PTR_UNTRUSTED) { 10450 /* 10451 * Anything is allowed for untrusted arguments, as these are 10452 * read-only and probe read instructions would protect against 10453 * invalid memory access. 10454 */ 10455 } else if (arg->arg_type == ARG_PTR_TO_CTX) { 10456 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 10457 if (ret < 0) 10458 return ret; 10459 /* If function expects ctx type in BTF check that caller 10460 * is passing PTR_TO_CTX. 10461 */ 10462 if (reg->type != PTR_TO_CTX) { 10463 bpf_log(log, "arg#%d expects pointer to ctx\n", i); 10464 return -EINVAL; 10465 } 10466 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 10467 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 10468 if (ret < 0) 10469 return ret; 10470 if (check_mem_reg(env, reg, regno, arg->mem_size)) 10471 return -EINVAL; 10472 if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) { 10473 bpf_log(log, "arg#%d is expected to be non-NULL\n", i); 10474 return -EINVAL; 10475 } 10476 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 10477 /* 10478 * Can pass any value and the kernel won't crash, but 10479 * only PTR_TO_ARENA or SCALAR make sense. Everything 10480 * else is a bug in the bpf program. Point it out to 10481 * the user at the verification time instead of 10482 * run-time debug nightmare. 10483 */ 10484 if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) { 10485 bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno); 10486 return -EINVAL; 10487 } 10488 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 10489 ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR); 10490 if (ret) 10491 return ret; 10492 10493 ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0); 10494 if (ret) 10495 return ret; 10496 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 10497 struct bpf_call_arg_meta meta; 10498 int err; 10499 10500 if (register_is_null(reg) && type_may_be_null(arg->arg_type)) 10501 continue; 10502 10503 memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */ 10504 err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta); 10505 err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type); 10506 if (err) 10507 return err; 10508 } else { 10509 verifier_bug(env, "unrecognized arg#%d type %d", i, arg->arg_type); 10510 return -EFAULT; 10511 } 10512 } 10513 10514 return 0; 10515 } 10516 10517 /* Compare BTF of a function call with given bpf_reg_state. 10518 * Returns: 10519 * EFAULT - there is a verifier bug. Abort verification. 10520 * EINVAL - there is a type mismatch or BTF is not available. 10521 * 0 - BTF matches with what bpf_reg_state expects. 10522 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 10523 */ 10524 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 10525 struct bpf_reg_state *regs) 10526 { 10527 struct bpf_prog *prog = env->prog; 10528 struct btf *btf = prog->aux->btf; 10529 u32 btf_id; 10530 int err; 10531 10532 if (!prog->aux->func_info) 10533 return -EINVAL; 10534 10535 btf_id = prog->aux->func_info[subprog].type_id; 10536 if (!btf_id) 10537 return -EFAULT; 10538 10539 if (prog->aux->func_info_aux[subprog].unreliable) 10540 return -EINVAL; 10541 10542 err = btf_check_func_arg_match(env, subprog, btf, regs); 10543 /* Compiler optimizations can remove arguments from static functions 10544 * or mismatched type can be passed into a global function. 10545 * In such cases mark the function as unreliable from BTF point of view. 10546 */ 10547 if (err) 10548 prog->aux->func_info_aux[subprog].unreliable = true; 10549 return err; 10550 } 10551 10552 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10553 int insn_idx, int subprog, 10554 set_callee_state_fn set_callee_state_cb) 10555 { 10556 struct bpf_verifier_state *state = env->cur_state, *callback_state; 10557 struct bpf_func_state *caller, *callee; 10558 int err; 10559 10560 caller = state->frame[state->curframe]; 10561 err = btf_check_subprog_call(env, subprog, caller->regs); 10562 if (err == -EFAULT) 10563 return err; 10564 10565 /* set_callee_state is used for direct subprog calls, but we are 10566 * interested in validating only BPF helpers that can call subprogs as 10567 * callbacks 10568 */ 10569 env->subprog_info[subprog].is_cb = true; 10570 if (bpf_pseudo_kfunc_call(insn) && 10571 !is_callback_calling_kfunc(insn->imm)) { 10572 verifier_bug(env, "kfunc %s#%d not marked as callback-calling", 10573 func_id_name(insn->imm), insn->imm); 10574 return -EFAULT; 10575 } else if (!bpf_pseudo_kfunc_call(insn) && 10576 !is_callback_calling_function(insn->imm)) { /* helper */ 10577 verifier_bug(env, "helper %s#%d not marked as callback-calling", 10578 func_id_name(insn->imm), insn->imm); 10579 return -EFAULT; 10580 } 10581 10582 if (is_async_callback_calling_insn(insn)) { 10583 struct bpf_verifier_state *async_cb; 10584 10585 /* there is no real recursion here. timer and workqueue callbacks are async */ 10586 env->subprog_info[subprog].is_async_cb = true; 10587 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 10588 insn_idx, subprog, 10589 is_bpf_wq_set_callback_impl_kfunc(insn->imm) || 10590 is_task_work_add_kfunc(insn->imm)); 10591 if (!async_cb) 10592 return -EFAULT; 10593 callee = async_cb->frame[0]; 10594 callee->async_entry_cnt = caller->async_entry_cnt + 1; 10595 10596 /* Convert bpf_timer_set_callback() args into timer callback args */ 10597 err = set_callee_state_cb(env, caller, callee, insn_idx); 10598 if (err) 10599 return err; 10600 10601 return 0; 10602 } 10603 10604 /* for callback functions enqueue entry to callback and 10605 * proceed with next instruction within current frame. 10606 */ 10607 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 10608 if (!callback_state) 10609 return -ENOMEM; 10610 10611 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 10612 callback_state); 10613 if (err) 10614 return err; 10615 10616 callback_state->callback_unroll_depth++; 10617 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 10618 caller->callback_depth = 0; 10619 return 0; 10620 } 10621 10622 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10623 int *insn_idx) 10624 { 10625 struct bpf_verifier_state *state = env->cur_state; 10626 struct bpf_func_state *caller; 10627 int err, subprog, target_insn; 10628 10629 target_insn = *insn_idx + insn->imm + 1; 10630 subprog = find_subprog(env, target_insn); 10631 if (verifier_bug_if(subprog < 0, env, "target of func call at insn %d is not a program", 10632 target_insn)) 10633 return -EFAULT; 10634 10635 caller = state->frame[state->curframe]; 10636 err = btf_check_subprog_call(env, subprog, caller->regs); 10637 if (err == -EFAULT) 10638 return err; 10639 if (subprog_is_global(env, subprog)) { 10640 const char *sub_name = subprog_name(env, subprog); 10641 10642 if (env->cur_state->active_locks) { 10643 verbose(env, "global function calls are not allowed while holding a lock,\n" 10644 "use static function instead\n"); 10645 return -EINVAL; 10646 } 10647 10648 if (env->subprog_info[subprog].might_sleep && 10649 (env->cur_state->active_rcu_lock || env->cur_state->active_preempt_locks || 10650 env->cur_state->active_irq_id || !in_sleepable(env))) { 10651 verbose(env, "global functions that may sleep are not allowed in non-sleepable context,\n" 10652 "i.e., in a RCU/IRQ/preempt-disabled section, or in\n" 10653 "a non-sleepable BPF program context\n"); 10654 return -EINVAL; 10655 } 10656 10657 if (err) { 10658 verbose(env, "Caller passes invalid args into func#%d ('%s')\n", 10659 subprog, sub_name); 10660 return err; 10661 } 10662 10663 verbose(env, "Func#%d ('%s') is global and assumed valid.\n", 10664 subprog, sub_name); 10665 if (env->subprog_info[subprog].changes_pkt_data) 10666 clear_all_pkt_pointers(env); 10667 /* mark global subprog for verifying after main prog */ 10668 subprog_aux(env, subprog)->called = true; 10669 clear_caller_saved_regs(env, caller->regs); 10670 10671 /* All global functions return a 64-bit SCALAR_VALUE */ 10672 mark_reg_unknown(env, caller->regs, BPF_REG_0); 10673 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10674 10675 /* continue with next insn after call */ 10676 return 0; 10677 } 10678 10679 /* for regular function entry setup new frame and continue 10680 * from that frame. 10681 */ 10682 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 10683 if (err) 10684 return err; 10685 10686 clear_caller_saved_regs(env, caller->regs); 10687 10688 /* and go analyze first insn of the callee */ 10689 *insn_idx = env->subprog_info[subprog].start - 1; 10690 10691 bpf_reset_live_stack_callchain(env); 10692 10693 if (env->log.level & BPF_LOG_LEVEL) { 10694 verbose(env, "caller:\n"); 10695 print_verifier_state(env, state, caller->frameno, true); 10696 verbose(env, "callee:\n"); 10697 print_verifier_state(env, state, state->curframe, true); 10698 } 10699 10700 return 0; 10701 } 10702 10703 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 10704 struct bpf_func_state *caller, 10705 struct bpf_func_state *callee) 10706 { 10707 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 10708 * void *callback_ctx, u64 flags); 10709 * callback_fn(struct bpf_map *map, void *key, void *value, 10710 * void *callback_ctx); 10711 */ 10712 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 10713 10714 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10715 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10716 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 10717 10718 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 10719 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 10720 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 10721 10722 /* pointer to stack or null */ 10723 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 10724 10725 /* unused */ 10726 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10727 return 0; 10728 } 10729 10730 static int set_callee_state(struct bpf_verifier_env *env, 10731 struct bpf_func_state *caller, 10732 struct bpf_func_state *callee, int insn_idx) 10733 { 10734 int i; 10735 10736 /* copy r1 - r5 args that callee can access. The copy includes parent 10737 * pointers, which connects us up to the liveness chain 10738 */ 10739 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 10740 callee->regs[i] = caller->regs[i]; 10741 return 0; 10742 } 10743 10744 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 10745 struct bpf_func_state *caller, 10746 struct bpf_func_state *callee, 10747 int insn_idx) 10748 { 10749 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 10750 struct bpf_map *map; 10751 int err; 10752 10753 /* valid map_ptr and poison value does not matter */ 10754 map = insn_aux->map_ptr_state.map_ptr; 10755 if (!map->ops->map_set_for_each_callback_args || 10756 !map->ops->map_for_each_callback) { 10757 verbose(env, "callback function not allowed for map\n"); 10758 return -ENOTSUPP; 10759 } 10760 10761 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 10762 if (err) 10763 return err; 10764 10765 callee->in_callback_fn = true; 10766 callee->callback_ret_range = retval_range(0, 1); 10767 return 0; 10768 } 10769 10770 static int set_loop_callback_state(struct bpf_verifier_env *env, 10771 struct bpf_func_state *caller, 10772 struct bpf_func_state *callee, 10773 int insn_idx) 10774 { 10775 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 10776 * u64 flags); 10777 * callback_fn(u64 index, void *callback_ctx); 10778 */ 10779 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 10780 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 10781 10782 /* unused */ 10783 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10784 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10785 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10786 10787 callee->in_callback_fn = true; 10788 callee->callback_ret_range = retval_range(0, 1); 10789 return 0; 10790 } 10791 10792 static int set_timer_callback_state(struct bpf_verifier_env *env, 10793 struct bpf_func_state *caller, 10794 struct bpf_func_state *callee, 10795 int insn_idx) 10796 { 10797 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 10798 10799 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 10800 * callback_fn(struct bpf_map *map, void *key, void *value); 10801 */ 10802 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 10803 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 10804 callee->regs[BPF_REG_1].map_ptr = map_ptr; 10805 10806 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10807 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10808 callee->regs[BPF_REG_2].map_ptr = map_ptr; 10809 10810 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 10811 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 10812 callee->regs[BPF_REG_3].map_ptr = map_ptr; 10813 10814 /* unused */ 10815 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10816 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10817 callee->in_async_callback_fn = true; 10818 callee->callback_ret_range = retval_range(0, 0); 10819 return 0; 10820 } 10821 10822 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 10823 struct bpf_func_state *caller, 10824 struct bpf_func_state *callee, 10825 int insn_idx) 10826 { 10827 /* bpf_find_vma(struct task_struct *task, u64 addr, 10828 * void *callback_fn, void *callback_ctx, u64 flags) 10829 * (callback_fn)(struct task_struct *task, 10830 * struct vm_area_struct *vma, void *callback_ctx); 10831 */ 10832 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 10833 10834 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 10835 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10836 callee->regs[BPF_REG_2].btf = btf_vmlinux; 10837 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA]; 10838 10839 /* pointer to stack or null */ 10840 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 10841 10842 /* unused */ 10843 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10844 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10845 callee->in_callback_fn = true; 10846 callee->callback_ret_range = retval_range(0, 1); 10847 return 0; 10848 } 10849 10850 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 10851 struct bpf_func_state *caller, 10852 struct bpf_func_state *callee, 10853 int insn_idx) 10854 { 10855 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 10856 * callback_ctx, u64 flags); 10857 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 10858 */ 10859 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 10860 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 10861 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 10862 10863 /* unused */ 10864 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10865 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10866 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10867 10868 callee->in_callback_fn = true; 10869 callee->callback_ret_range = retval_range(0, 1); 10870 return 0; 10871 } 10872 10873 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 10874 struct bpf_func_state *caller, 10875 struct bpf_func_state *callee, 10876 int insn_idx) 10877 { 10878 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 10879 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 10880 * 10881 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 10882 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 10883 * by this point, so look at 'root' 10884 */ 10885 struct btf_field *field; 10886 10887 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 10888 BPF_RB_ROOT); 10889 if (!field || !field->graph_root.value_btf_id) 10890 return -EFAULT; 10891 10892 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 10893 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 10894 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 10895 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 10896 10897 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10898 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10899 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10900 callee->in_callback_fn = true; 10901 callee->callback_ret_range = retval_range(0, 1); 10902 return 0; 10903 } 10904 10905 static int set_task_work_schedule_callback_state(struct bpf_verifier_env *env, 10906 struct bpf_func_state *caller, 10907 struct bpf_func_state *callee, 10908 int insn_idx) 10909 { 10910 struct bpf_map *map_ptr = caller->regs[BPF_REG_3].map_ptr; 10911 10912 /* 10913 * callback_fn(struct bpf_map *map, void *key, void *value); 10914 */ 10915 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 10916 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 10917 callee->regs[BPF_REG_1].map_ptr = map_ptr; 10918 10919 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10920 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10921 callee->regs[BPF_REG_2].map_ptr = map_ptr; 10922 10923 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 10924 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 10925 callee->regs[BPF_REG_3].map_ptr = map_ptr; 10926 10927 /* unused */ 10928 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10929 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10930 callee->in_async_callback_fn = true; 10931 callee->callback_ret_range = retval_range(S32_MIN, S32_MAX); 10932 return 0; 10933 } 10934 10935 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 10936 10937 /* Are we currently verifying the callback for a rbtree helper that must 10938 * be called with lock held? If so, no need to complain about unreleased 10939 * lock 10940 */ 10941 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 10942 { 10943 struct bpf_verifier_state *state = env->cur_state; 10944 struct bpf_insn *insn = env->prog->insnsi; 10945 struct bpf_func_state *callee; 10946 int kfunc_btf_id; 10947 10948 if (!state->curframe) 10949 return false; 10950 10951 callee = state->frame[state->curframe]; 10952 10953 if (!callee->in_callback_fn) 10954 return false; 10955 10956 kfunc_btf_id = insn[callee->callsite].imm; 10957 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 10958 } 10959 10960 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg, 10961 bool return_32bit) 10962 { 10963 if (return_32bit) 10964 return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval; 10965 else 10966 return range.minval <= reg->smin_value && reg->smax_value <= range.maxval; 10967 } 10968 10969 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 10970 { 10971 struct bpf_verifier_state *state = env->cur_state, *prev_st; 10972 struct bpf_func_state *caller, *callee; 10973 struct bpf_reg_state *r0; 10974 bool in_callback_fn; 10975 int err; 10976 10977 callee = state->frame[state->curframe]; 10978 r0 = &callee->regs[BPF_REG_0]; 10979 if (r0->type == PTR_TO_STACK) { 10980 /* technically it's ok to return caller's stack pointer 10981 * (or caller's caller's pointer) back to the caller, 10982 * since these pointers are valid. Only current stack 10983 * pointer will be invalid as soon as function exits, 10984 * but let's be conservative 10985 */ 10986 verbose(env, "cannot return stack pointer to the caller\n"); 10987 return -EINVAL; 10988 } 10989 10990 caller = state->frame[state->curframe - 1]; 10991 if (callee->in_callback_fn) { 10992 if (r0->type != SCALAR_VALUE) { 10993 verbose(env, "R0 not a scalar value\n"); 10994 return -EACCES; 10995 } 10996 10997 /* we are going to rely on register's precise value */ 10998 err = mark_chain_precision(env, BPF_REG_0); 10999 if (err) 11000 return err; 11001 11002 /* enforce R0 return value range, and bpf_callback_t returns 64bit */ 11003 if (!retval_range_within(callee->callback_ret_range, r0, false)) { 11004 verbose_invalid_scalar(env, r0, callee->callback_ret_range, 11005 "At callback return", "R0"); 11006 return -EINVAL; 11007 } 11008 if (!bpf_calls_callback(env, callee->callsite)) { 11009 verifier_bug(env, "in callback at %d, callsite %d !calls_callback", 11010 *insn_idx, callee->callsite); 11011 return -EFAULT; 11012 } 11013 } else { 11014 /* return to the caller whatever r0 had in the callee */ 11015 caller->regs[BPF_REG_0] = *r0; 11016 } 11017 11018 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 11019 * there function call logic would reschedule callback visit. If iteration 11020 * converges is_state_visited() would prune that visit eventually. 11021 */ 11022 in_callback_fn = callee->in_callback_fn; 11023 if (in_callback_fn) 11024 *insn_idx = callee->callsite; 11025 else 11026 *insn_idx = callee->callsite + 1; 11027 11028 if (env->log.level & BPF_LOG_LEVEL) { 11029 verbose(env, "returning from callee:\n"); 11030 print_verifier_state(env, state, callee->frameno, true); 11031 verbose(env, "to caller at %d:\n", *insn_idx); 11032 print_verifier_state(env, state, caller->frameno, true); 11033 } 11034 /* clear everything in the callee. In case of exceptional exits using 11035 * bpf_throw, this will be done by copy_verifier_state for extra frames. */ 11036 free_func_state(callee); 11037 state->frame[state->curframe--] = NULL; 11038 11039 /* for callbacks widen imprecise scalars to make programs like below verify: 11040 * 11041 * struct ctx { int i; } 11042 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 11043 * ... 11044 * struct ctx = { .i = 0; } 11045 * bpf_loop(100, cb, &ctx, 0); 11046 * 11047 * This is similar to what is done in process_iter_next_call() for open 11048 * coded iterators. 11049 */ 11050 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 11051 if (prev_st) { 11052 err = widen_imprecise_scalars(env, prev_st, state); 11053 if (err) 11054 return err; 11055 } 11056 return 0; 11057 } 11058 11059 static int do_refine_retval_range(struct bpf_verifier_env *env, 11060 struct bpf_reg_state *regs, int ret_type, 11061 int func_id, 11062 struct bpf_call_arg_meta *meta) 11063 { 11064 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 11065 11066 if (ret_type != RET_INTEGER) 11067 return 0; 11068 11069 switch (func_id) { 11070 case BPF_FUNC_get_stack: 11071 case BPF_FUNC_get_task_stack: 11072 case BPF_FUNC_probe_read_str: 11073 case BPF_FUNC_probe_read_kernel_str: 11074 case BPF_FUNC_probe_read_user_str: 11075 ret_reg->smax_value = meta->msize_max_value; 11076 ret_reg->s32_max_value = meta->msize_max_value; 11077 ret_reg->smin_value = -MAX_ERRNO; 11078 ret_reg->s32_min_value = -MAX_ERRNO; 11079 reg_bounds_sync(ret_reg); 11080 break; 11081 case BPF_FUNC_get_smp_processor_id: 11082 ret_reg->umax_value = nr_cpu_ids - 1; 11083 ret_reg->u32_max_value = nr_cpu_ids - 1; 11084 ret_reg->smax_value = nr_cpu_ids - 1; 11085 ret_reg->s32_max_value = nr_cpu_ids - 1; 11086 ret_reg->umin_value = 0; 11087 ret_reg->u32_min_value = 0; 11088 ret_reg->smin_value = 0; 11089 ret_reg->s32_min_value = 0; 11090 reg_bounds_sync(ret_reg); 11091 break; 11092 } 11093 11094 return reg_bounds_sanity_check(env, ret_reg, "retval"); 11095 } 11096 11097 static int 11098 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 11099 int func_id, int insn_idx) 11100 { 11101 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 11102 struct bpf_map *map = meta->map_ptr; 11103 11104 if (func_id != BPF_FUNC_tail_call && 11105 func_id != BPF_FUNC_map_lookup_elem && 11106 func_id != BPF_FUNC_map_update_elem && 11107 func_id != BPF_FUNC_map_delete_elem && 11108 func_id != BPF_FUNC_map_push_elem && 11109 func_id != BPF_FUNC_map_pop_elem && 11110 func_id != BPF_FUNC_map_peek_elem && 11111 func_id != BPF_FUNC_for_each_map_elem && 11112 func_id != BPF_FUNC_redirect_map && 11113 func_id != BPF_FUNC_map_lookup_percpu_elem) 11114 return 0; 11115 11116 if (map == NULL) { 11117 verifier_bug(env, "expected map for helper call"); 11118 return -EFAULT; 11119 } 11120 11121 /* In case of read-only, some additional restrictions 11122 * need to be applied in order to prevent altering the 11123 * state of the map from program side. 11124 */ 11125 if ((map->map_flags & BPF_F_RDONLY_PROG) && 11126 (func_id == BPF_FUNC_map_delete_elem || 11127 func_id == BPF_FUNC_map_update_elem || 11128 func_id == BPF_FUNC_map_push_elem || 11129 func_id == BPF_FUNC_map_pop_elem)) { 11130 verbose(env, "write into map forbidden\n"); 11131 return -EACCES; 11132 } 11133 11134 if (!aux->map_ptr_state.map_ptr) 11135 bpf_map_ptr_store(aux, meta->map_ptr, 11136 !meta->map_ptr->bypass_spec_v1, false); 11137 else if (aux->map_ptr_state.map_ptr != meta->map_ptr) 11138 bpf_map_ptr_store(aux, meta->map_ptr, 11139 !meta->map_ptr->bypass_spec_v1, true); 11140 return 0; 11141 } 11142 11143 static int 11144 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 11145 int func_id, int insn_idx) 11146 { 11147 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 11148 struct bpf_reg_state *regs = cur_regs(env), *reg; 11149 struct bpf_map *map = meta->map_ptr; 11150 u64 val, max; 11151 int err; 11152 11153 if (func_id != BPF_FUNC_tail_call) 11154 return 0; 11155 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 11156 verbose(env, "expected prog array map for tail call"); 11157 return -EINVAL; 11158 } 11159 11160 reg = ®s[BPF_REG_3]; 11161 val = reg->var_off.value; 11162 max = map->max_entries; 11163 11164 if (!(is_reg_const(reg, false) && val < max)) { 11165 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 11166 return 0; 11167 } 11168 11169 err = mark_chain_precision(env, BPF_REG_3); 11170 if (err) 11171 return err; 11172 if (bpf_map_key_unseen(aux)) 11173 bpf_map_key_store(aux, val); 11174 else if (!bpf_map_key_poisoned(aux) && 11175 bpf_map_key_immediate(aux) != val) 11176 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 11177 return 0; 11178 } 11179 11180 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) 11181 { 11182 struct bpf_verifier_state *state = env->cur_state; 11183 enum bpf_prog_type type = resolve_prog_type(env->prog); 11184 struct bpf_reg_state *reg = reg_state(env, BPF_REG_0); 11185 bool refs_lingering = false; 11186 int i; 11187 11188 if (!exception_exit && cur_func(env)->frameno) 11189 return 0; 11190 11191 for (i = 0; i < state->acquired_refs; i++) { 11192 if (state->refs[i].type != REF_TYPE_PTR) 11193 continue; 11194 /* Allow struct_ops programs to return a referenced kptr back to 11195 * kernel. Type checks are performed later in check_return_code. 11196 */ 11197 if (type == BPF_PROG_TYPE_STRUCT_OPS && !exception_exit && 11198 reg->ref_obj_id == state->refs[i].id) 11199 continue; 11200 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 11201 state->refs[i].id, state->refs[i].insn_idx); 11202 refs_lingering = true; 11203 } 11204 return refs_lingering ? -EINVAL : 0; 11205 } 11206 11207 static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit, bool check_lock, const char *prefix) 11208 { 11209 int err; 11210 11211 if (check_lock && env->cur_state->active_locks) { 11212 verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix); 11213 return -EINVAL; 11214 } 11215 11216 err = check_reference_leak(env, exception_exit); 11217 if (err) { 11218 verbose(env, "%s would lead to reference leak\n", prefix); 11219 return err; 11220 } 11221 11222 if (check_lock && env->cur_state->active_irq_id) { 11223 verbose(env, "%s cannot be used inside bpf_local_irq_save-ed region\n", prefix); 11224 return -EINVAL; 11225 } 11226 11227 if (check_lock && env->cur_state->active_rcu_lock) { 11228 verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix); 11229 return -EINVAL; 11230 } 11231 11232 if (check_lock && env->cur_state->active_preempt_locks) { 11233 verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix); 11234 return -EINVAL; 11235 } 11236 11237 return 0; 11238 } 11239 11240 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 11241 struct bpf_reg_state *regs) 11242 { 11243 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 11244 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 11245 struct bpf_map *fmt_map = fmt_reg->map_ptr; 11246 struct bpf_bprintf_data data = {}; 11247 int err, fmt_map_off, num_args; 11248 u64 fmt_addr; 11249 char *fmt; 11250 11251 /* data must be an array of u64 */ 11252 if (data_len_reg->var_off.value % 8) 11253 return -EINVAL; 11254 num_args = data_len_reg->var_off.value / 8; 11255 11256 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 11257 * and map_direct_value_addr is set. 11258 */ 11259 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 11260 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 11261 fmt_map_off); 11262 if (err) { 11263 verbose(env, "failed to retrieve map value address\n"); 11264 return -EFAULT; 11265 } 11266 fmt = (char *)(long)fmt_addr + fmt_map_off; 11267 11268 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 11269 * can focus on validating the format specifiers. 11270 */ 11271 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 11272 if (err < 0) 11273 verbose(env, "Invalid format string\n"); 11274 11275 return err; 11276 } 11277 11278 static int check_get_func_ip(struct bpf_verifier_env *env) 11279 { 11280 enum bpf_prog_type type = resolve_prog_type(env->prog); 11281 int func_id = BPF_FUNC_get_func_ip; 11282 11283 if (type == BPF_PROG_TYPE_TRACING) { 11284 if (!bpf_prog_has_trampoline(env->prog)) { 11285 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 11286 func_id_name(func_id), func_id); 11287 return -ENOTSUPP; 11288 } 11289 return 0; 11290 } else if (type == BPF_PROG_TYPE_KPROBE) { 11291 return 0; 11292 } 11293 11294 verbose(env, "func %s#%d not supported for program type %d\n", 11295 func_id_name(func_id), func_id, type); 11296 return -ENOTSUPP; 11297 } 11298 11299 static struct bpf_insn_aux_data *cur_aux(const struct bpf_verifier_env *env) 11300 { 11301 return &env->insn_aux_data[env->insn_idx]; 11302 } 11303 11304 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 11305 { 11306 struct bpf_reg_state *regs = cur_regs(env); 11307 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 11308 bool reg_is_null = register_is_null(reg); 11309 11310 if (reg_is_null) 11311 mark_chain_precision(env, BPF_REG_4); 11312 11313 return reg_is_null; 11314 } 11315 11316 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 11317 { 11318 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 11319 11320 if (!state->initialized) { 11321 state->initialized = 1; 11322 state->fit_for_inline = loop_flag_is_zero(env); 11323 state->callback_subprogno = subprogno; 11324 return; 11325 } 11326 11327 if (!state->fit_for_inline) 11328 return; 11329 11330 state->fit_for_inline = (loop_flag_is_zero(env) && 11331 state->callback_subprogno == subprogno); 11332 } 11333 11334 /* Returns whether or not the given map type can potentially elide 11335 * lookup return value nullness check. This is possible if the key 11336 * is statically known. 11337 */ 11338 static bool can_elide_value_nullness(enum bpf_map_type type) 11339 { 11340 switch (type) { 11341 case BPF_MAP_TYPE_ARRAY: 11342 case BPF_MAP_TYPE_PERCPU_ARRAY: 11343 return true; 11344 default: 11345 return false; 11346 } 11347 } 11348 11349 static int get_helper_proto(struct bpf_verifier_env *env, int func_id, 11350 const struct bpf_func_proto **ptr) 11351 { 11352 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) 11353 return -ERANGE; 11354 11355 if (!env->ops->get_func_proto) 11356 return -EINVAL; 11357 11358 *ptr = env->ops->get_func_proto(func_id, env->prog); 11359 return *ptr && (*ptr)->func ? 0 : -EINVAL; 11360 } 11361 11362 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11363 int *insn_idx_p) 11364 { 11365 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 11366 bool returns_cpu_specific_alloc_ptr = false; 11367 const struct bpf_func_proto *fn = NULL; 11368 enum bpf_return_type ret_type; 11369 enum bpf_type_flag ret_flag; 11370 struct bpf_reg_state *regs; 11371 struct bpf_call_arg_meta meta; 11372 int insn_idx = *insn_idx_p; 11373 bool changes_data; 11374 int i, err, func_id; 11375 11376 /* find function prototype */ 11377 func_id = insn->imm; 11378 err = get_helper_proto(env, insn->imm, &fn); 11379 if (err == -ERANGE) { 11380 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id); 11381 return -EINVAL; 11382 } 11383 11384 if (err) { 11385 verbose(env, "program of this type cannot use helper %s#%d\n", 11386 func_id_name(func_id), func_id); 11387 return err; 11388 } 11389 11390 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 11391 if (!env->prog->gpl_compatible && fn->gpl_only) { 11392 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 11393 return -EINVAL; 11394 } 11395 11396 if (fn->allowed && !fn->allowed(env->prog)) { 11397 verbose(env, "helper call is not allowed in probe\n"); 11398 return -EINVAL; 11399 } 11400 11401 if (!in_sleepable(env) && fn->might_sleep) { 11402 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 11403 return -EINVAL; 11404 } 11405 11406 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 11407 changes_data = bpf_helper_changes_pkt_data(func_id); 11408 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 11409 verifier_bug(env, "func %s#%d: r1 != ctx", func_id_name(func_id), func_id); 11410 return -EFAULT; 11411 } 11412 11413 memset(&meta, 0, sizeof(meta)); 11414 meta.pkt_access = fn->pkt_access; 11415 11416 err = check_func_proto(fn, func_id); 11417 if (err) { 11418 verifier_bug(env, "incorrect func proto %s#%d", func_id_name(func_id), func_id); 11419 return err; 11420 } 11421 11422 if (env->cur_state->active_rcu_lock) { 11423 if (fn->might_sleep) { 11424 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 11425 func_id_name(func_id), func_id); 11426 return -EINVAL; 11427 } 11428 11429 if (in_sleepable(env) && is_storage_get_function(func_id)) 11430 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 11431 } 11432 11433 if (env->cur_state->active_preempt_locks) { 11434 if (fn->might_sleep) { 11435 verbose(env, "sleepable helper %s#%d in non-preemptible region\n", 11436 func_id_name(func_id), func_id); 11437 return -EINVAL; 11438 } 11439 11440 if (in_sleepable(env) && is_storage_get_function(func_id)) 11441 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 11442 } 11443 11444 if (env->cur_state->active_irq_id) { 11445 if (fn->might_sleep) { 11446 verbose(env, "sleepable helper %s#%d in IRQ-disabled region\n", 11447 func_id_name(func_id), func_id); 11448 return -EINVAL; 11449 } 11450 11451 if (in_sleepable(env) && is_storage_get_function(func_id)) 11452 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 11453 } 11454 11455 meta.func_id = func_id; 11456 /* check args */ 11457 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 11458 err = check_func_arg(env, i, &meta, fn, insn_idx); 11459 if (err) 11460 return err; 11461 } 11462 11463 err = record_func_map(env, &meta, func_id, insn_idx); 11464 if (err) 11465 return err; 11466 11467 err = record_func_key(env, &meta, func_id, insn_idx); 11468 if (err) 11469 return err; 11470 11471 /* Mark slots with STACK_MISC in case of raw mode, stack offset 11472 * is inferred from register state. 11473 */ 11474 for (i = 0; i < meta.access_size; i++) { 11475 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 11476 BPF_WRITE, -1, false, false); 11477 if (err) 11478 return err; 11479 } 11480 11481 regs = cur_regs(env); 11482 11483 if (meta.release_regno) { 11484 err = -EINVAL; 11485 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 11486 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 11487 * is safe to do directly. 11488 */ 11489 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 11490 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 11491 verifier_bug(env, "CONST_PTR_TO_DYNPTR cannot be released"); 11492 return -EFAULT; 11493 } 11494 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 11495 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { 11496 u32 ref_obj_id = meta.ref_obj_id; 11497 bool in_rcu = in_rcu_cs(env); 11498 struct bpf_func_state *state; 11499 struct bpf_reg_state *reg; 11500 11501 err = release_reference_nomark(env->cur_state, ref_obj_id); 11502 if (!err) { 11503 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11504 if (reg->ref_obj_id == ref_obj_id) { 11505 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { 11506 reg->ref_obj_id = 0; 11507 reg->type &= ~MEM_ALLOC; 11508 reg->type |= MEM_RCU; 11509 } else { 11510 mark_reg_invalid(env, reg); 11511 } 11512 } 11513 })); 11514 } 11515 } else if (meta.ref_obj_id) { 11516 err = release_reference(env, meta.ref_obj_id); 11517 } else if (register_is_null(®s[meta.release_regno])) { 11518 /* meta.ref_obj_id can only be 0 if register that is meant to be 11519 * released is NULL, which must be > R0. 11520 */ 11521 err = 0; 11522 } 11523 if (err) { 11524 verbose(env, "func %s#%d reference has not been acquired before\n", 11525 func_id_name(func_id), func_id); 11526 return err; 11527 } 11528 } 11529 11530 switch (func_id) { 11531 case BPF_FUNC_tail_call: 11532 err = check_resource_leak(env, false, true, "tail_call"); 11533 if (err) 11534 return err; 11535 break; 11536 case BPF_FUNC_get_local_storage: 11537 /* check that flags argument in get_local_storage(map, flags) is 0, 11538 * this is required because get_local_storage() can't return an error. 11539 */ 11540 if (!register_is_null(®s[BPF_REG_2])) { 11541 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 11542 return -EINVAL; 11543 } 11544 break; 11545 case BPF_FUNC_for_each_map_elem: 11546 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11547 set_map_elem_callback_state); 11548 break; 11549 case BPF_FUNC_timer_set_callback: 11550 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11551 set_timer_callback_state); 11552 break; 11553 case BPF_FUNC_find_vma: 11554 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11555 set_find_vma_callback_state); 11556 break; 11557 case BPF_FUNC_snprintf: 11558 err = check_bpf_snprintf_call(env, regs); 11559 break; 11560 case BPF_FUNC_loop: 11561 update_loop_inline_state(env, meta.subprogno); 11562 /* Verifier relies on R1 value to determine if bpf_loop() iteration 11563 * is finished, thus mark it precise. 11564 */ 11565 err = mark_chain_precision(env, BPF_REG_1); 11566 if (err) 11567 return err; 11568 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 11569 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11570 set_loop_callback_state); 11571 } else { 11572 cur_func(env)->callback_depth = 0; 11573 if (env->log.level & BPF_LOG_LEVEL2) 11574 verbose(env, "frame%d bpf_loop iteration limit reached\n", 11575 env->cur_state->curframe); 11576 } 11577 break; 11578 case BPF_FUNC_dynptr_from_mem: 11579 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 11580 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 11581 reg_type_str(env, regs[BPF_REG_1].type)); 11582 return -EACCES; 11583 } 11584 break; 11585 case BPF_FUNC_set_retval: 11586 if (prog_type == BPF_PROG_TYPE_LSM && 11587 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 11588 if (!env->prog->aux->attach_func_proto->type) { 11589 /* Make sure programs that attach to void 11590 * hooks don't try to modify return value. 11591 */ 11592 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 11593 return -EINVAL; 11594 } 11595 } 11596 break; 11597 case BPF_FUNC_dynptr_data: 11598 { 11599 struct bpf_reg_state *reg; 11600 int id, ref_obj_id; 11601 11602 reg = get_dynptr_arg_reg(env, fn, regs); 11603 if (!reg) 11604 return -EFAULT; 11605 11606 11607 if (meta.dynptr_id) { 11608 verifier_bug(env, "meta.dynptr_id already set"); 11609 return -EFAULT; 11610 } 11611 if (meta.ref_obj_id) { 11612 verifier_bug(env, "meta.ref_obj_id already set"); 11613 return -EFAULT; 11614 } 11615 11616 id = dynptr_id(env, reg); 11617 if (id < 0) { 11618 verifier_bug(env, "failed to obtain dynptr id"); 11619 return id; 11620 } 11621 11622 ref_obj_id = dynptr_ref_obj_id(env, reg); 11623 if (ref_obj_id < 0) { 11624 verifier_bug(env, "failed to obtain dynptr ref_obj_id"); 11625 return ref_obj_id; 11626 } 11627 11628 meta.dynptr_id = id; 11629 meta.ref_obj_id = ref_obj_id; 11630 11631 break; 11632 } 11633 case BPF_FUNC_dynptr_write: 11634 { 11635 enum bpf_dynptr_type dynptr_type; 11636 struct bpf_reg_state *reg; 11637 11638 reg = get_dynptr_arg_reg(env, fn, regs); 11639 if (!reg) 11640 return -EFAULT; 11641 11642 dynptr_type = dynptr_get_type(env, reg); 11643 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 11644 return -EFAULT; 11645 11646 if (dynptr_type == BPF_DYNPTR_TYPE_SKB || 11647 dynptr_type == BPF_DYNPTR_TYPE_SKB_META) 11648 /* this will trigger clear_all_pkt_pointers(), which will 11649 * invalidate all dynptr slices associated with the skb 11650 */ 11651 changes_data = true; 11652 11653 break; 11654 } 11655 case BPF_FUNC_per_cpu_ptr: 11656 case BPF_FUNC_this_cpu_ptr: 11657 { 11658 struct bpf_reg_state *reg = ®s[BPF_REG_1]; 11659 const struct btf_type *type; 11660 11661 if (reg->type & MEM_RCU) { 11662 type = btf_type_by_id(reg->btf, reg->btf_id); 11663 if (!type || !btf_type_is_struct(type)) { 11664 verbose(env, "Helper has invalid btf/btf_id in R1\n"); 11665 return -EFAULT; 11666 } 11667 returns_cpu_specific_alloc_ptr = true; 11668 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; 11669 } 11670 break; 11671 } 11672 case BPF_FUNC_user_ringbuf_drain: 11673 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11674 set_user_ringbuf_callback_state); 11675 break; 11676 } 11677 11678 if (err) 11679 return err; 11680 11681 /* reset caller saved regs */ 11682 for (i = 0; i < CALLER_SAVED_REGS; i++) { 11683 mark_reg_not_init(env, regs, caller_saved[i]); 11684 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 11685 } 11686 11687 /* helper call returns 64-bit value. */ 11688 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 11689 11690 /* update return register (already marked as written above) */ 11691 ret_type = fn->ret_type; 11692 ret_flag = type_flag(ret_type); 11693 11694 switch (base_type(ret_type)) { 11695 case RET_INTEGER: 11696 /* sets type to SCALAR_VALUE */ 11697 mark_reg_unknown(env, regs, BPF_REG_0); 11698 break; 11699 case RET_VOID: 11700 regs[BPF_REG_0].type = NOT_INIT; 11701 break; 11702 case RET_PTR_TO_MAP_VALUE: 11703 /* There is no offset yet applied, variable or fixed */ 11704 mark_reg_known_zero(env, regs, BPF_REG_0); 11705 /* remember map_ptr, so that check_map_access() 11706 * can check 'value_size' boundary of memory access 11707 * to map element returned from bpf_map_lookup_elem() 11708 */ 11709 if (meta.map_ptr == NULL) { 11710 verifier_bug(env, "unexpected null map_ptr"); 11711 return -EFAULT; 11712 } 11713 11714 if (func_id == BPF_FUNC_map_lookup_elem && 11715 can_elide_value_nullness(meta.map_ptr->map_type) && 11716 meta.const_map_key >= 0 && 11717 meta.const_map_key < meta.map_ptr->max_entries) 11718 ret_flag &= ~PTR_MAYBE_NULL; 11719 11720 regs[BPF_REG_0].map_ptr = meta.map_ptr; 11721 regs[BPF_REG_0].map_uid = meta.map_uid; 11722 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 11723 if (!type_may_be_null(ret_flag) && 11724 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) { 11725 regs[BPF_REG_0].id = ++env->id_gen; 11726 } 11727 break; 11728 case RET_PTR_TO_SOCKET: 11729 mark_reg_known_zero(env, regs, BPF_REG_0); 11730 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 11731 break; 11732 case RET_PTR_TO_SOCK_COMMON: 11733 mark_reg_known_zero(env, regs, BPF_REG_0); 11734 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 11735 break; 11736 case RET_PTR_TO_TCP_SOCK: 11737 mark_reg_known_zero(env, regs, BPF_REG_0); 11738 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 11739 break; 11740 case RET_PTR_TO_MEM: 11741 mark_reg_known_zero(env, regs, BPF_REG_0); 11742 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 11743 regs[BPF_REG_0].mem_size = meta.mem_size; 11744 break; 11745 case RET_PTR_TO_MEM_OR_BTF_ID: 11746 { 11747 const struct btf_type *t; 11748 11749 mark_reg_known_zero(env, regs, BPF_REG_0); 11750 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 11751 if (!btf_type_is_struct(t)) { 11752 u32 tsize; 11753 const struct btf_type *ret; 11754 const char *tname; 11755 11756 /* resolve the type size of ksym. */ 11757 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 11758 if (IS_ERR(ret)) { 11759 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 11760 verbose(env, "unable to resolve the size of type '%s': %ld\n", 11761 tname, PTR_ERR(ret)); 11762 return -EINVAL; 11763 } 11764 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 11765 regs[BPF_REG_0].mem_size = tsize; 11766 } else { 11767 if (returns_cpu_specific_alloc_ptr) { 11768 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; 11769 } else { 11770 /* MEM_RDONLY may be carried from ret_flag, but it 11771 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 11772 * it will confuse the check of PTR_TO_BTF_ID in 11773 * check_mem_access(). 11774 */ 11775 ret_flag &= ~MEM_RDONLY; 11776 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 11777 } 11778 11779 regs[BPF_REG_0].btf = meta.ret_btf; 11780 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11781 } 11782 break; 11783 } 11784 case RET_PTR_TO_BTF_ID: 11785 { 11786 struct btf *ret_btf; 11787 int ret_btf_id; 11788 11789 mark_reg_known_zero(env, regs, BPF_REG_0); 11790 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 11791 if (func_id == BPF_FUNC_kptr_xchg) { 11792 ret_btf = meta.kptr_field->kptr.btf; 11793 ret_btf_id = meta.kptr_field->kptr.btf_id; 11794 if (!btf_is_kernel(ret_btf)) { 11795 regs[BPF_REG_0].type |= MEM_ALLOC; 11796 if (meta.kptr_field->type == BPF_KPTR_PERCPU) 11797 regs[BPF_REG_0].type |= MEM_PERCPU; 11798 } 11799 } else { 11800 if (fn->ret_btf_id == BPF_PTR_POISON) { 11801 verifier_bug(env, "func %s has non-overwritten BPF_PTR_POISON return type", 11802 func_id_name(func_id)); 11803 return -EFAULT; 11804 } 11805 ret_btf = btf_vmlinux; 11806 ret_btf_id = *fn->ret_btf_id; 11807 } 11808 if (ret_btf_id == 0) { 11809 verbose(env, "invalid return type %u of func %s#%d\n", 11810 base_type(ret_type), func_id_name(func_id), 11811 func_id); 11812 return -EINVAL; 11813 } 11814 regs[BPF_REG_0].btf = ret_btf; 11815 regs[BPF_REG_0].btf_id = ret_btf_id; 11816 break; 11817 } 11818 default: 11819 verbose(env, "unknown return type %u of func %s#%d\n", 11820 base_type(ret_type), func_id_name(func_id), func_id); 11821 return -EINVAL; 11822 } 11823 11824 if (type_may_be_null(regs[BPF_REG_0].type)) 11825 regs[BPF_REG_0].id = ++env->id_gen; 11826 11827 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 11828 verifier_bug(env, "func %s#%d sets ref_obj_id more than once", 11829 func_id_name(func_id), func_id); 11830 return -EFAULT; 11831 } 11832 11833 if (is_dynptr_ref_function(func_id)) 11834 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 11835 11836 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 11837 /* For release_reference() */ 11838 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11839 } else if (is_acquire_function(func_id, meta.map_ptr)) { 11840 int id = acquire_reference(env, insn_idx); 11841 11842 if (id < 0) 11843 return id; 11844 /* For mark_ptr_or_null_reg() */ 11845 regs[BPF_REG_0].id = id; 11846 /* For release_reference() */ 11847 regs[BPF_REG_0].ref_obj_id = id; 11848 } 11849 11850 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta); 11851 if (err) 11852 return err; 11853 11854 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 11855 if (err) 11856 return err; 11857 11858 if ((func_id == BPF_FUNC_get_stack || 11859 func_id == BPF_FUNC_get_task_stack) && 11860 !env->prog->has_callchain_buf) { 11861 const char *err_str; 11862 11863 #ifdef CONFIG_PERF_EVENTS 11864 err = get_callchain_buffers(sysctl_perf_event_max_stack); 11865 err_str = "cannot get callchain buffer for func %s#%d\n"; 11866 #else 11867 err = -ENOTSUPP; 11868 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 11869 #endif 11870 if (err) { 11871 verbose(env, err_str, func_id_name(func_id), func_id); 11872 return err; 11873 } 11874 11875 env->prog->has_callchain_buf = true; 11876 } 11877 11878 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 11879 env->prog->call_get_stack = true; 11880 11881 if (func_id == BPF_FUNC_get_func_ip) { 11882 if (check_get_func_ip(env)) 11883 return -ENOTSUPP; 11884 env->prog->call_get_func_ip = true; 11885 } 11886 11887 if (changes_data) 11888 clear_all_pkt_pointers(env); 11889 return 0; 11890 } 11891 11892 /* mark_btf_func_reg_size() is used when the reg size is determined by 11893 * the BTF func_proto's return value size and argument. 11894 */ 11895 static void __mark_btf_func_reg_size(struct bpf_verifier_env *env, struct bpf_reg_state *regs, 11896 u32 regno, size_t reg_size) 11897 { 11898 struct bpf_reg_state *reg = ®s[regno]; 11899 11900 if (regno == BPF_REG_0) { 11901 /* Function return value */ 11902 reg->subreg_def = reg_size == sizeof(u64) ? 11903 DEF_NOT_SUBREG : env->insn_idx + 1; 11904 } else if (reg_size == sizeof(u64)) { 11905 /* Function argument */ 11906 mark_insn_zext(env, reg); 11907 } 11908 } 11909 11910 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 11911 size_t reg_size) 11912 { 11913 return __mark_btf_func_reg_size(env, cur_regs(env), regno, reg_size); 11914 } 11915 11916 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 11917 { 11918 return meta->kfunc_flags & KF_ACQUIRE; 11919 } 11920 11921 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 11922 { 11923 return meta->kfunc_flags & KF_RELEASE; 11924 } 11925 11926 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 11927 { 11928 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 11929 } 11930 11931 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 11932 { 11933 return meta->kfunc_flags & KF_SLEEPABLE; 11934 } 11935 11936 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 11937 { 11938 return meta->kfunc_flags & KF_DESTRUCTIVE; 11939 } 11940 11941 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 11942 { 11943 return meta->kfunc_flags & KF_RCU; 11944 } 11945 11946 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) 11947 { 11948 return meta->kfunc_flags & KF_RCU_PROTECTED; 11949 } 11950 11951 static bool is_kfunc_arg_mem_size(const struct btf *btf, 11952 const struct btf_param *arg, 11953 const struct bpf_reg_state *reg) 11954 { 11955 const struct btf_type *t; 11956 11957 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11958 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 11959 return false; 11960 11961 return btf_param_match_suffix(btf, arg, "__sz"); 11962 } 11963 11964 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 11965 const struct btf_param *arg, 11966 const struct bpf_reg_state *reg) 11967 { 11968 const struct btf_type *t; 11969 11970 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11971 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 11972 return false; 11973 11974 return btf_param_match_suffix(btf, arg, "__szk"); 11975 } 11976 11977 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 11978 { 11979 return btf_param_match_suffix(btf, arg, "__opt"); 11980 } 11981 11982 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 11983 { 11984 return btf_param_match_suffix(btf, arg, "__k"); 11985 } 11986 11987 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 11988 { 11989 return btf_param_match_suffix(btf, arg, "__ign"); 11990 } 11991 11992 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg) 11993 { 11994 return btf_param_match_suffix(btf, arg, "__map"); 11995 } 11996 11997 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 11998 { 11999 return btf_param_match_suffix(btf, arg, "__alloc"); 12000 } 12001 12002 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 12003 { 12004 return btf_param_match_suffix(btf, arg, "__uninit"); 12005 } 12006 12007 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 12008 { 12009 return btf_param_match_suffix(btf, arg, "__refcounted_kptr"); 12010 } 12011 12012 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) 12013 { 12014 return btf_param_match_suffix(btf, arg, "__nullable"); 12015 } 12016 12017 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg) 12018 { 12019 return btf_param_match_suffix(btf, arg, "__str"); 12020 } 12021 12022 static bool is_kfunc_arg_irq_flag(const struct btf *btf, const struct btf_param *arg) 12023 { 12024 return btf_param_match_suffix(btf, arg, "__irq_flag"); 12025 } 12026 12027 static bool is_kfunc_arg_prog(const struct btf *btf, const struct btf_param *arg) 12028 { 12029 return btf_param_match_suffix(btf, arg, "__prog"); 12030 } 12031 12032 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 12033 const struct btf_param *arg, 12034 const char *name) 12035 { 12036 int len, target_len = strlen(name); 12037 const char *param_name; 12038 12039 param_name = btf_name_by_offset(btf, arg->name_off); 12040 if (str_is_empty(param_name)) 12041 return false; 12042 len = strlen(param_name); 12043 if (len != target_len) 12044 return false; 12045 if (strcmp(param_name, name)) 12046 return false; 12047 12048 return true; 12049 } 12050 12051 enum { 12052 KF_ARG_DYNPTR_ID, 12053 KF_ARG_LIST_HEAD_ID, 12054 KF_ARG_LIST_NODE_ID, 12055 KF_ARG_RB_ROOT_ID, 12056 KF_ARG_RB_NODE_ID, 12057 KF_ARG_WORKQUEUE_ID, 12058 KF_ARG_RES_SPIN_LOCK_ID, 12059 KF_ARG_TASK_WORK_ID, 12060 }; 12061 12062 BTF_ID_LIST(kf_arg_btf_ids) 12063 BTF_ID(struct, bpf_dynptr) 12064 BTF_ID(struct, bpf_list_head) 12065 BTF_ID(struct, bpf_list_node) 12066 BTF_ID(struct, bpf_rb_root) 12067 BTF_ID(struct, bpf_rb_node) 12068 BTF_ID(struct, bpf_wq) 12069 BTF_ID(struct, bpf_res_spin_lock) 12070 BTF_ID(struct, bpf_task_work) 12071 12072 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 12073 const struct btf_param *arg, int type) 12074 { 12075 const struct btf_type *t; 12076 u32 res_id; 12077 12078 t = btf_type_skip_modifiers(btf, arg->type, NULL); 12079 if (!t) 12080 return false; 12081 if (!btf_type_is_ptr(t)) 12082 return false; 12083 t = btf_type_skip_modifiers(btf, t->type, &res_id); 12084 if (!t) 12085 return false; 12086 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 12087 } 12088 12089 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 12090 { 12091 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 12092 } 12093 12094 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 12095 { 12096 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 12097 } 12098 12099 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 12100 { 12101 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 12102 } 12103 12104 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 12105 { 12106 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 12107 } 12108 12109 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 12110 { 12111 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 12112 } 12113 12114 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg) 12115 { 12116 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID); 12117 } 12118 12119 static bool is_kfunc_arg_task_work(const struct btf *btf, const struct btf_param *arg) 12120 { 12121 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_TASK_WORK_ID); 12122 } 12123 12124 static bool is_kfunc_arg_res_spin_lock(const struct btf *btf, const struct btf_param *arg) 12125 { 12126 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RES_SPIN_LOCK_ID); 12127 } 12128 12129 static bool is_rbtree_node_type(const struct btf_type *t) 12130 { 12131 return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_RB_NODE_ID]); 12132 } 12133 12134 static bool is_list_node_type(const struct btf_type *t) 12135 { 12136 return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_LIST_NODE_ID]); 12137 } 12138 12139 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 12140 const struct btf_param *arg) 12141 { 12142 const struct btf_type *t; 12143 12144 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 12145 if (!t) 12146 return false; 12147 12148 return true; 12149 } 12150 12151 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 12152 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 12153 const struct btf *btf, 12154 const struct btf_type *t, int rec) 12155 { 12156 const struct btf_type *member_type; 12157 const struct btf_member *member; 12158 u32 i; 12159 12160 if (!btf_type_is_struct(t)) 12161 return false; 12162 12163 for_each_member(i, t, member) { 12164 const struct btf_array *array; 12165 12166 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 12167 if (btf_type_is_struct(member_type)) { 12168 if (rec >= 3) { 12169 verbose(env, "max struct nesting depth exceeded\n"); 12170 return false; 12171 } 12172 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 12173 return false; 12174 continue; 12175 } 12176 if (btf_type_is_array(member_type)) { 12177 array = btf_array(member_type); 12178 if (!array->nelems) 12179 return false; 12180 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 12181 if (!btf_type_is_scalar(member_type)) 12182 return false; 12183 continue; 12184 } 12185 if (!btf_type_is_scalar(member_type)) 12186 return false; 12187 } 12188 return true; 12189 } 12190 12191 enum kfunc_ptr_arg_type { 12192 KF_ARG_PTR_TO_CTX, 12193 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 12194 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 12195 KF_ARG_PTR_TO_DYNPTR, 12196 KF_ARG_PTR_TO_ITER, 12197 KF_ARG_PTR_TO_LIST_HEAD, 12198 KF_ARG_PTR_TO_LIST_NODE, 12199 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 12200 KF_ARG_PTR_TO_MEM, 12201 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 12202 KF_ARG_PTR_TO_CALLBACK, 12203 KF_ARG_PTR_TO_RB_ROOT, 12204 KF_ARG_PTR_TO_RB_NODE, 12205 KF_ARG_PTR_TO_NULL, 12206 KF_ARG_PTR_TO_CONST_STR, 12207 KF_ARG_PTR_TO_MAP, 12208 KF_ARG_PTR_TO_WORKQUEUE, 12209 KF_ARG_PTR_TO_IRQ_FLAG, 12210 KF_ARG_PTR_TO_RES_SPIN_LOCK, 12211 KF_ARG_PTR_TO_TASK_WORK, 12212 }; 12213 12214 enum special_kfunc_type { 12215 KF_bpf_obj_new_impl, 12216 KF_bpf_obj_drop_impl, 12217 KF_bpf_refcount_acquire_impl, 12218 KF_bpf_list_push_front_impl, 12219 KF_bpf_list_push_back_impl, 12220 KF_bpf_list_pop_front, 12221 KF_bpf_list_pop_back, 12222 KF_bpf_list_front, 12223 KF_bpf_list_back, 12224 KF_bpf_cast_to_kern_ctx, 12225 KF_bpf_rdonly_cast, 12226 KF_bpf_rcu_read_lock, 12227 KF_bpf_rcu_read_unlock, 12228 KF_bpf_rbtree_remove, 12229 KF_bpf_rbtree_add_impl, 12230 KF_bpf_rbtree_first, 12231 KF_bpf_rbtree_root, 12232 KF_bpf_rbtree_left, 12233 KF_bpf_rbtree_right, 12234 KF_bpf_dynptr_from_skb, 12235 KF_bpf_dynptr_from_xdp, 12236 KF_bpf_dynptr_from_skb_meta, 12237 KF_bpf_xdp_pull_data, 12238 KF_bpf_dynptr_slice, 12239 KF_bpf_dynptr_slice_rdwr, 12240 KF_bpf_dynptr_clone, 12241 KF_bpf_percpu_obj_new_impl, 12242 KF_bpf_percpu_obj_drop_impl, 12243 KF_bpf_throw, 12244 KF_bpf_wq_set_callback_impl, 12245 KF_bpf_preempt_disable, 12246 KF_bpf_preempt_enable, 12247 KF_bpf_iter_css_task_new, 12248 KF_bpf_session_cookie, 12249 KF_bpf_get_kmem_cache, 12250 KF_bpf_local_irq_save, 12251 KF_bpf_local_irq_restore, 12252 KF_bpf_iter_num_new, 12253 KF_bpf_iter_num_next, 12254 KF_bpf_iter_num_destroy, 12255 KF_bpf_set_dentry_xattr, 12256 KF_bpf_remove_dentry_xattr, 12257 KF_bpf_res_spin_lock, 12258 KF_bpf_res_spin_unlock, 12259 KF_bpf_res_spin_lock_irqsave, 12260 KF_bpf_res_spin_unlock_irqrestore, 12261 KF___bpf_trap, 12262 KF_bpf_task_work_schedule_signal, 12263 KF_bpf_task_work_schedule_resume, 12264 }; 12265 12266 BTF_ID_LIST(special_kfunc_list) 12267 BTF_ID(func, bpf_obj_new_impl) 12268 BTF_ID(func, bpf_obj_drop_impl) 12269 BTF_ID(func, bpf_refcount_acquire_impl) 12270 BTF_ID(func, bpf_list_push_front_impl) 12271 BTF_ID(func, bpf_list_push_back_impl) 12272 BTF_ID(func, bpf_list_pop_front) 12273 BTF_ID(func, bpf_list_pop_back) 12274 BTF_ID(func, bpf_list_front) 12275 BTF_ID(func, bpf_list_back) 12276 BTF_ID(func, bpf_cast_to_kern_ctx) 12277 BTF_ID(func, bpf_rdonly_cast) 12278 BTF_ID(func, bpf_rcu_read_lock) 12279 BTF_ID(func, bpf_rcu_read_unlock) 12280 BTF_ID(func, bpf_rbtree_remove) 12281 BTF_ID(func, bpf_rbtree_add_impl) 12282 BTF_ID(func, bpf_rbtree_first) 12283 BTF_ID(func, bpf_rbtree_root) 12284 BTF_ID(func, bpf_rbtree_left) 12285 BTF_ID(func, bpf_rbtree_right) 12286 #ifdef CONFIG_NET 12287 BTF_ID(func, bpf_dynptr_from_skb) 12288 BTF_ID(func, bpf_dynptr_from_xdp) 12289 BTF_ID(func, bpf_dynptr_from_skb_meta) 12290 BTF_ID(func, bpf_xdp_pull_data) 12291 #else 12292 BTF_ID_UNUSED 12293 BTF_ID_UNUSED 12294 BTF_ID_UNUSED 12295 BTF_ID_UNUSED 12296 #endif 12297 BTF_ID(func, bpf_dynptr_slice) 12298 BTF_ID(func, bpf_dynptr_slice_rdwr) 12299 BTF_ID(func, bpf_dynptr_clone) 12300 BTF_ID(func, bpf_percpu_obj_new_impl) 12301 BTF_ID(func, bpf_percpu_obj_drop_impl) 12302 BTF_ID(func, bpf_throw) 12303 BTF_ID(func, bpf_wq_set_callback_impl) 12304 BTF_ID(func, bpf_preempt_disable) 12305 BTF_ID(func, bpf_preempt_enable) 12306 #ifdef CONFIG_CGROUPS 12307 BTF_ID(func, bpf_iter_css_task_new) 12308 #else 12309 BTF_ID_UNUSED 12310 #endif 12311 #ifdef CONFIG_BPF_EVENTS 12312 BTF_ID(func, bpf_session_cookie) 12313 #else 12314 BTF_ID_UNUSED 12315 #endif 12316 BTF_ID(func, bpf_get_kmem_cache) 12317 BTF_ID(func, bpf_local_irq_save) 12318 BTF_ID(func, bpf_local_irq_restore) 12319 BTF_ID(func, bpf_iter_num_new) 12320 BTF_ID(func, bpf_iter_num_next) 12321 BTF_ID(func, bpf_iter_num_destroy) 12322 #ifdef CONFIG_BPF_LSM 12323 BTF_ID(func, bpf_set_dentry_xattr) 12324 BTF_ID(func, bpf_remove_dentry_xattr) 12325 #else 12326 BTF_ID_UNUSED 12327 BTF_ID_UNUSED 12328 #endif 12329 BTF_ID(func, bpf_res_spin_lock) 12330 BTF_ID(func, bpf_res_spin_unlock) 12331 BTF_ID(func, bpf_res_spin_lock_irqsave) 12332 BTF_ID(func, bpf_res_spin_unlock_irqrestore) 12333 BTF_ID(func, __bpf_trap) 12334 BTF_ID(func, bpf_task_work_schedule_signal) 12335 BTF_ID(func, bpf_task_work_schedule_resume) 12336 12337 static bool is_task_work_add_kfunc(u32 func_id) 12338 { 12339 return func_id == special_kfunc_list[KF_bpf_task_work_schedule_signal] || 12340 func_id == special_kfunc_list[KF_bpf_task_work_schedule_resume]; 12341 } 12342 12343 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 12344 { 12345 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 12346 meta->arg_owning_ref) { 12347 return false; 12348 } 12349 12350 return meta->kfunc_flags & KF_RET_NULL; 12351 } 12352 12353 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 12354 { 12355 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 12356 } 12357 12358 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 12359 { 12360 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 12361 } 12362 12363 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta) 12364 { 12365 return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable]; 12366 } 12367 12368 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta) 12369 { 12370 return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable]; 12371 } 12372 12373 static bool is_kfunc_pkt_changing(struct bpf_kfunc_call_arg_meta *meta) 12374 { 12375 return meta->func_id == special_kfunc_list[KF_bpf_xdp_pull_data]; 12376 } 12377 12378 static enum kfunc_ptr_arg_type 12379 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 12380 struct bpf_kfunc_call_arg_meta *meta, 12381 const struct btf_type *t, const struct btf_type *ref_t, 12382 const char *ref_tname, const struct btf_param *args, 12383 int argno, int nargs) 12384 { 12385 u32 regno = argno + 1; 12386 struct bpf_reg_state *regs = cur_regs(env); 12387 struct bpf_reg_state *reg = ®s[regno]; 12388 bool arg_mem_size = false; 12389 12390 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 12391 return KF_ARG_PTR_TO_CTX; 12392 12393 /* In this function, we verify the kfunc's BTF as per the argument type, 12394 * leaving the rest of the verification with respect to the register 12395 * type to our caller. When a set of conditions hold in the BTF type of 12396 * arguments, we resolve it to a known kfunc_ptr_arg_type. 12397 */ 12398 if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 12399 return KF_ARG_PTR_TO_CTX; 12400 12401 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) 12402 return KF_ARG_PTR_TO_NULL; 12403 12404 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 12405 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 12406 12407 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 12408 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 12409 12410 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 12411 return KF_ARG_PTR_TO_DYNPTR; 12412 12413 if (is_kfunc_arg_iter(meta, argno, &args[argno])) 12414 return KF_ARG_PTR_TO_ITER; 12415 12416 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 12417 return KF_ARG_PTR_TO_LIST_HEAD; 12418 12419 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 12420 return KF_ARG_PTR_TO_LIST_NODE; 12421 12422 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 12423 return KF_ARG_PTR_TO_RB_ROOT; 12424 12425 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 12426 return KF_ARG_PTR_TO_RB_NODE; 12427 12428 if (is_kfunc_arg_const_str(meta->btf, &args[argno])) 12429 return KF_ARG_PTR_TO_CONST_STR; 12430 12431 if (is_kfunc_arg_map(meta->btf, &args[argno])) 12432 return KF_ARG_PTR_TO_MAP; 12433 12434 if (is_kfunc_arg_wq(meta->btf, &args[argno])) 12435 return KF_ARG_PTR_TO_WORKQUEUE; 12436 12437 if (is_kfunc_arg_task_work(meta->btf, &args[argno])) 12438 return KF_ARG_PTR_TO_TASK_WORK; 12439 12440 if (is_kfunc_arg_irq_flag(meta->btf, &args[argno])) 12441 return KF_ARG_PTR_TO_IRQ_FLAG; 12442 12443 if (is_kfunc_arg_res_spin_lock(meta->btf, &args[argno])) 12444 return KF_ARG_PTR_TO_RES_SPIN_LOCK; 12445 12446 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 12447 if (!btf_type_is_struct(ref_t)) { 12448 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 12449 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 12450 return -EINVAL; 12451 } 12452 return KF_ARG_PTR_TO_BTF_ID; 12453 } 12454 12455 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 12456 return KF_ARG_PTR_TO_CALLBACK; 12457 12458 if (argno + 1 < nargs && 12459 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 12460 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 12461 arg_mem_size = true; 12462 12463 /* This is the catch all argument type of register types supported by 12464 * check_helper_mem_access. However, we only allow when argument type is 12465 * pointer to scalar, or struct composed (recursively) of scalars. When 12466 * arg_mem_size is true, the pointer can be void *. 12467 */ 12468 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 12469 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 12470 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 12471 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 12472 return -EINVAL; 12473 } 12474 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 12475 } 12476 12477 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 12478 struct bpf_reg_state *reg, 12479 const struct btf_type *ref_t, 12480 const char *ref_tname, u32 ref_id, 12481 struct bpf_kfunc_call_arg_meta *meta, 12482 int argno) 12483 { 12484 const struct btf_type *reg_ref_t; 12485 bool strict_type_match = false; 12486 const struct btf *reg_btf; 12487 const char *reg_ref_tname; 12488 bool taking_projection; 12489 bool struct_same; 12490 u32 reg_ref_id; 12491 12492 if (base_type(reg->type) == PTR_TO_BTF_ID) { 12493 reg_btf = reg->btf; 12494 reg_ref_id = reg->btf_id; 12495 } else { 12496 reg_btf = btf_vmlinux; 12497 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 12498 } 12499 12500 /* Enforce strict type matching for calls to kfuncs that are acquiring 12501 * or releasing a reference, or are no-cast aliases. We do _not_ 12502 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 12503 * as we want to enable BPF programs to pass types that are bitwise 12504 * equivalent without forcing them to explicitly cast with something 12505 * like bpf_cast_to_kern_ctx(). 12506 * 12507 * For example, say we had a type like the following: 12508 * 12509 * struct bpf_cpumask { 12510 * cpumask_t cpumask; 12511 * refcount_t usage; 12512 * }; 12513 * 12514 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 12515 * to a struct cpumask, so it would be safe to pass a struct 12516 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 12517 * 12518 * The philosophy here is similar to how we allow scalars of different 12519 * types to be passed to kfuncs as long as the size is the same. The 12520 * only difference here is that we're simply allowing 12521 * btf_struct_ids_match() to walk the struct at the 0th offset, and 12522 * resolve types. 12523 */ 12524 if ((is_kfunc_release(meta) && reg->ref_obj_id) || 12525 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 12526 strict_type_match = true; 12527 12528 WARN_ON_ONCE(is_kfunc_release(meta) && 12529 (reg->off || !tnum_is_const(reg->var_off) || 12530 reg->var_off.value)); 12531 12532 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 12533 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 12534 struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match); 12535 /* If kfunc is accepting a projection type (ie. __sk_buff), it cannot 12536 * actually use it -- it must cast to the underlying type. So we allow 12537 * caller to pass in the underlying type. 12538 */ 12539 taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname); 12540 if (!taking_projection && !struct_same) { 12541 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 12542 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 12543 btf_type_str(reg_ref_t), reg_ref_tname); 12544 return -EINVAL; 12545 } 12546 return 0; 12547 } 12548 12549 static int process_irq_flag(struct bpf_verifier_env *env, int regno, 12550 struct bpf_kfunc_call_arg_meta *meta) 12551 { 12552 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 12553 int err, kfunc_class = IRQ_NATIVE_KFUNC; 12554 bool irq_save; 12555 12556 if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_save] || 12557 meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) { 12558 irq_save = true; 12559 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) 12560 kfunc_class = IRQ_LOCK_KFUNC; 12561 } else if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_restore] || 12562 meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) { 12563 irq_save = false; 12564 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) 12565 kfunc_class = IRQ_LOCK_KFUNC; 12566 } else { 12567 verifier_bug(env, "unknown irq flags kfunc"); 12568 return -EFAULT; 12569 } 12570 12571 if (irq_save) { 12572 if (!is_irq_flag_reg_valid_uninit(env, reg)) { 12573 verbose(env, "expected uninitialized irq flag as arg#%d\n", regno - 1); 12574 return -EINVAL; 12575 } 12576 12577 err = check_mem_access(env, env->insn_idx, regno, 0, BPF_DW, BPF_WRITE, -1, false, false); 12578 if (err) 12579 return err; 12580 12581 err = mark_stack_slot_irq_flag(env, meta, reg, env->insn_idx, kfunc_class); 12582 if (err) 12583 return err; 12584 } else { 12585 err = is_irq_flag_reg_valid_init(env, reg); 12586 if (err) { 12587 verbose(env, "expected an initialized irq flag as arg#%d\n", regno - 1); 12588 return err; 12589 } 12590 12591 err = mark_irq_flag_read(env, reg); 12592 if (err) 12593 return err; 12594 12595 err = unmark_stack_slot_irq_flag(env, reg, kfunc_class); 12596 if (err) 12597 return err; 12598 } 12599 return 0; 12600 } 12601 12602 12603 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 12604 { 12605 struct btf_record *rec = reg_btf_record(reg); 12606 12607 if (!env->cur_state->active_locks) { 12608 verifier_bug(env, "%s w/o active lock", __func__); 12609 return -EFAULT; 12610 } 12611 12612 if (type_flag(reg->type) & NON_OWN_REF) { 12613 verifier_bug(env, "NON_OWN_REF already set"); 12614 return -EFAULT; 12615 } 12616 12617 reg->type |= NON_OWN_REF; 12618 if (rec->refcount_off >= 0) 12619 reg->type |= MEM_RCU; 12620 12621 return 0; 12622 } 12623 12624 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 12625 { 12626 struct bpf_verifier_state *state = env->cur_state; 12627 struct bpf_func_state *unused; 12628 struct bpf_reg_state *reg; 12629 int i; 12630 12631 if (!ref_obj_id) { 12632 verifier_bug(env, "ref_obj_id is zero for owning -> non-owning conversion"); 12633 return -EFAULT; 12634 } 12635 12636 for (i = 0; i < state->acquired_refs; i++) { 12637 if (state->refs[i].id != ref_obj_id) 12638 continue; 12639 12640 /* Clear ref_obj_id here so release_reference doesn't clobber 12641 * the whole reg 12642 */ 12643 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 12644 if (reg->ref_obj_id == ref_obj_id) { 12645 reg->ref_obj_id = 0; 12646 ref_set_non_owning(env, reg); 12647 } 12648 })); 12649 return 0; 12650 } 12651 12652 verifier_bug(env, "ref state missing for ref_obj_id"); 12653 return -EFAULT; 12654 } 12655 12656 /* Implementation details: 12657 * 12658 * Each register points to some region of memory, which we define as an 12659 * allocation. Each allocation may embed a bpf_spin_lock which protects any 12660 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 12661 * allocation. The lock and the data it protects are colocated in the same 12662 * memory region. 12663 * 12664 * Hence, everytime a register holds a pointer value pointing to such 12665 * allocation, the verifier preserves a unique reg->id for it. 12666 * 12667 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 12668 * bpf_spin_lock is called. 12669 * 12670 * To enable this, lock state in the verifier captures two values: 12671 * active_lock.ptr = Register's type specific pointer 12672 * active_lock.id = A unique ID for each register pointer value 12673 * 12674 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 12675 * supported register types. 12676 * 12677 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 12678 * allocated objects is the reg->btf pointer. 12679 * 12680 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 12681 * can establish the provenance of the map value statically for each distinct 12682 * lookup into such maps. They always contain a single map value hence unique 12683 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 12684 * 12685 * So, in case of global variables, they use array maps with max_entries = 1, 12686 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 12687 * into the same map value as max_entries is 1, as described above). 12688 * 12689 * In case of inner map lookups, the inner map pointer has same map_ptr as the 12690 * outer map pointer (in verifier context), but each lookup into an inner map 12691 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 12692 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 12693 * will get different reg->id assigned to each lookup, hence different 12694 * active_lock.id. 12695 * 12696 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 12697 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 12698 * returned from bpf_obj_new. Each allocation receives a new reg->id. 12699 */ 12700 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 12701 { 12702 struct bpf_reference_state *s; 12703 void *ptr; 12704 u32 id; 12705 12706 switch ((int)reg->type) { 12707 case PTR_TO_MAP_VALUE: 12708 ptr = reg->map_ptr; 12709 break; 12710 case PTR_TO_BTF_ID | MEM_ALLOC: 12711 ptr = reg->btf; 12712 break; 12713 default: 12714 verifier_bug(env, "unknown reg type for lock check"); 12715 return -EFAULT; 12716 } 12717 id = reg->id; 12718 12719 if (!env->cur_state->active_locks) 12720 return -EINVAL; 12721 s = find_lock_state(env->cur_state, REF_TYPE_LOCK_MASK, id, ptr); 12722 if (!s) { 12723 verbose(env, "held lock and object are not in the same allocation\n"); 12724 return -EINVAL; 12725 } 12726 return 0; 12727 } 12728 12729 static bool is_bpf_list_api_kfunc(u32 btf_id) 12730 { 12731 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12732 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 12733 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 12734 btf_id == special_kfunc_list[KF_bpf_list_pop_back] || 12735 btf_id == special_kfunc_list[KF_bpf_list_front] || 12736 btf_id == special_kfunc_list[KF_bpf_list_back]; 12737 } 12738 12739 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 12740 { 12741 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 12742 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12743 btf_id == special_kfunc_list[KF_bpf_rbtree_first] || 12744 btf_id == special_kfunc_list[KF_bpf_rbtree_root] || 12745 btf_id == special_kfunc_list[KF_bpf_rbtree_left] || 12746 btf_id == special_kfunc_list[KF_bpf_rbtree_right]; 12747 } 12748 12749 static bool is_bpf_iter_num_api_kfunc(u32 btf_id) 12750 { 12751 return btf_id == special_kfunc_list[KF_bpf_iter_num_new] || 12752 btf_id == special_kfunc_list[KF_bpf_iter_num_next] || 12753 btf_id == special_kfunc_list[KF_bpf_iter_num_destroy]; 12754 } 12755 12756 static bool is_bpf_graph_api_kfunc(u32 btf_id) 12757 { 12758 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 12759 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 12760 } 12761 12762 static bool is_bpf_res_spin_lock_kfunc(u32 btf_id) 12763 { 12764 return btf_id == special_kfunc_list[KF_bpf_res_spin_lock] || 12765 btf_id == special_kfunc_list[KF_bpf_res_spin_unlock] || 12766 btf_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] || 12767 btf_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]; 12768 } 12769 12770 static bool kfunc_spin_allowed(u32 btf_id) 12771 { 12772 return is_bpf_graph_api_kfunc(btf_id) || is_bpf_iter_num_api_kfunc(btf_id) || 12773 is_bpf_res_spin_lock_kfunc(btf_id); 12774 } 12775 12776 static bool is_sync_callback_calling_kfunc(u32 btf_id) 12777 { 12778 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 12779 } 12780 12781 static bool is_async_callback_calling_kfunc(u32 btf_id) 12782 { 12783 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl] || 12784 is_task_work_add_kfunc(btf_id); 12785 } 12786 12787 static bool is_bpf_throw_kfunc(struct bpf_insn *insn) 12788 { 12789 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && 12790 insn->imm == special_kfunc_list[KF_bpf_throw]; 12791 } 12792 12793 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id) 12794 { 12795 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 12796 } 12797 12798 static bool is_callback_calling_kfunc(u32 btf_id) 12799 { 12800 return is_sync_callback_calling_kfunc(btf_id) || 12801 is_async_callback_calling_kfunc(btf_id); 12802 } 12803 12804 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 12805 { 12806 return is_bpf_rbtree_api_kfunc(btf_id); 12807 } 12808 12809 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 12810 enum btf_field_type head_field_type, 12811 u32 kfunc_btf_id) 12812 { 12813 bool ret; 12814 12815 switch (head_field_type) { 12816 case BPF_LIST_HEAD: 12817 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 12818 break; 12819 case BPF_RB_ROOT: 12820 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 12821 break; 12822 default: 12823 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 12824 btf_field_type_name(head_field_type)); 12825 return false; 12826 } 12827 12828 if (!ret) 12829 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 12830 btf_field_type_name(head_field_type)); 12831 return ret; 12832 } 12833 12834 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 12835 enum btf_field_type node_field_type, 12836 u32 kfunc_btf_id) 12837 { 12838 bool ret; 12839 12840 switch (node_field_type) { 12841 case BPF_LIST_NODE: 12842 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12843 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 12844 break; 12845 case BPF_RB_NODE: 12846 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12847 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 12848 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_left] || 12849 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_right]); 12850 break; 12851 default: 12852 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 12853 btf_field_type_name(node_field_type)); 12854 return false; 12855 } 12856 12857 if (!ret) 12858 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 12859 btf_field_type_name(node_field_type)); 12860 return ret; 12861 } 12862 12863 static int 12864 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 12865 struct bpf_reg_state *reg, u32 regno, 12866 struct bpf_kfunc_call_arg_meta *meta, 12867 enum btf_field_type head_field_type, 12868 struct btf_field **head_field) 12869 { 12870 const char *head_type_name; 12871 struct btf_field *field; 12872 struct btf_record *rec; 12873 u32 head_off; 12874 12875 if (meta->btf != btf_vmlinux) { 12876 verifier_bug(env, "unexpected btf mismatch in kfunc call"); 12877 return -EFAULT; 12878 } 12879 12880 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 12881 return -EFAULT; 12882 12883 head_type_name = btf_field_type_name(head_field_type); 12884 if (!tnum_is_const(reg->var_off)) { 12885 verbose(env, 12886 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 12887 regno, head_type_name); 12888 return -EINVAL; 12889 } 12890 12891 rec = reg_btf_record(reg); 12892 head_off = reg->off + reg->var_off.value; 12893 field = btf_record_find(rec, head_off, head_field_type); 12894 if (!field) { 12895 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 12896 return -EINVAL; 12897 } 12898 12899 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 12900 if (check_reg_allocation_locked(env, reg)) { 12901 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 12902 rec->spin_lock_off, head_type_name); 12903 return -EINVAL; 12904 } 12905 12906 if (*head_field) { 12907 verifier_bug(env, "repeating %s arg", head_type_name); 12908 return -EFAULT; 12909 } 12910 *head_field = field; 12911 return 0; 12912 } 12913 12914 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 12915 struct bpf_reg_state *reg, u32 regno, 12916 struct bpf_kfunc_call_arg_meta *meta) 12917 { 12918 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 12919 &meta->arg_list_head.field); 12920 } 12921 12922 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 12923 struct bpf_reg_state *reg, u32 regno, 12924 struct bpf_kfunc_call_arg_meta *meta) 12925 { 12926 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 12927 &meta->arg_rbtree_root.field); 12928 } 12929 12930 static int 12931 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 12932 struct bpf_reg_state *reg, u32 regno, 12933 struct bpf_kfunc_call_arg_meta *meta, 12934 enum btf_field_type head_field_type, 12935 enum btf_field_type node_field_type, 12936 struct btf_field **node_field) 12937 { 12938 const char *node_type_name; 12939 const struct btf_type *et, *t; 12940 struct btf_field *field; 12941 u32 node_off; 12942 12943 if (meta->btf != btf_vmlinux) { 12944 verifier_bug(env, "unexpected btf mismatch in kfunc call"); 12945 return -EFAULT; 12946 } 12947 12948 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 12949 return -EFAULT; 12950 12951 node_type_name = btf_field_type_name(node_field_type); 12952 if (!tnum_is_const(reg->var_off)) { 12953 verbose(env, 12954 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 12955 regno, node_type_name); 12956 return -EINVAL; 12957 } 12958 12959 node_off = reg->off + reg->var_off.value; 12960 field = reg_find_field_offset(reg, node_off, node_field_type); 12961 if (!field) { 12962 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 12963 return -EINVAL; 12964 } 12965 12966 field = *node_field; 12967 12968 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 12969 t = btf_type_by_id(reg->btf, reg->btf_id); 12970 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 12971 field->graph_root.value_btf_id, true)) { 12972 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 12973 "in struct %s, but arg is at offset=%d in struct %s\n", 12974 btf_field_type_name(head_field_type), 12975 btf_field_type_name(node_field_type), 12976 field->graph_root.node_offset, 12977 btf_name_by_offset(field->graph_root.btf, et->name_off), 12978 node_off, btf_name_by_offset(reg->btf, t->name_off)); 12979 return -EINVAL; 12980 } 12981 meta->arg_btf = reg->btf; 12982 meta->arg_btf_id = reg->btf_id; 12983 12984 if (node_off != field->graph_root.node_offset) { 12985 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 12986 node_off, btf_field_type_name(node_field_type), 12987 field->graph_root.node_offset, 12988 btf_name_by_offset(field->graph_root.btf, et->name_off)); 12989 return -EINVAL; 12990 } 12991 12992 return 0; 12993 } 12994 12995 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 12996 struct bpf_reg_state *reg, u32 regno, 12997 struct bpf_kfunc_call_arg_meta *meta) 12998 { 12999 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 13000 BPF_LIST_HEAD, BPF_LIST_NODE, 13001 &meta->arg_list_head.field); 13002 } 13003 13004 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 13005 struct bpf_reg_state *reg, u32 regno, 13006 struct bpf_kfunc_call_arg_meta *meta) 13007 { 13008 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 13009 BPF_RB_ROOT, BPF_RB_NODE, 13010 &meta->arg_rbtree_root.field); 13011 } 13012 13013 /* 13014 * css_task iter allowlist is needed to avoid dead locking on css_set_lock. 13015 * LSM hooks and iters (both sleepable and non-sleepable) are safe. 13016 * Any sleepable progs are also safe since bpf_check_attach_target() enforce 13017 * them can only be attached to some specific hook points. 13018 */ 13019 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) 13020 { 13021 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 13022 13023 switch (prog_type) { 13024 case BPF_PROG_TYPE_LSM: 13025 return true; 13026 case BPF_PROG_TYPE_TRACING: 13027 if (env->prog->expected_attach_type == BPF_TRACE_ITER) 13028 return true; 13029 fallthrough; 13030 default: 13031 return in_sleepable(env); 13032 } 13033 } 13034 13035 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 13036 int insn_idx) 13037 { 13038 const char *func_name = meta->func_name, *ref_tname; 13039 const struct btf *btf = meta->btf; 13040 const struct btf_param *args; 13041 struct btf_record *rec; 13042 u32 i, nargs; 13043 int ret; 13044 13045 args = (const struct btf_param *)(meta->func_proto + 1); 13046 nargs = btf_type_vlen(meta->func_proto); 13047 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 13048 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 13049 MAX_BPF_FUNC_REG_ARGS); 13050 return -EINVAL; 13051 } 13052 13053 /* Check that BTF function arguments match actual types that the 13054 * verifier sees. 13055 */ 13056 for (i = 0; i < nargs; i++) { 13057 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 13058 const struct btf_type *t, *ref_t, *resolve_ret; 13059 enum bpf_arg_type arg_type = ARG_DONTCARE; 13060 u32 regno = i + 1, ref_id, type_size; 13061 bool is_ret_buf_sz = false; 13062 int kf_arg_type; 13063 13064 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 13065 13066 if (is_kfunc_arg_ignore(btf, &args[i])) 13067 continue; 13068 13069 if (is_kfunc_arg_prog(btf, &args[i])) { 13070 /* Used to reject repeated use of __prog. */ 13071 if (meta->arg_prog) { 13072 verifier_bug(env, "Only 1 prog->aux argument supported per-kfunc"); 13073 return -EFAULT; 13074 } 13075 meta->arg_prog = true; 13076 cur_aux(env)->arg_prog = regno; 13077 continue; 13078 } 13079 13080 if (btf_type_is_scalar(t)) { 13081 if (reg->type != SCALAR_VALUE) { 13082 verbose(env, "R%d is not a scalar\n", regno); 13083 return -EINVAL; 13084 } 13085 13086 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 13087 if (meta->arg_constant.found) { 13088 verifier_bug(env, "only one constant argument permitted"); 13089 return -EFAULT; 13090 } 13091 if (!tnum_is_const(reg->var_off)) { 13092 verbose(env, "R%d must be a known constant\n", regno); 13093 return -EINVAL; 13094 } 13095 ret = mark_chain_precision(env, regno); 13096 if (ret < 0) 13097 return ret; 13098 meta->arg_constant.found = true; 13099 meta->arg_constant.value = reg->var_off.value; 13100 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 13101 meta->r0_rdonly = true; 13102 is_ret_buf_sz = true; 13103 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 13104 is_ret_buf_sz = true; 13105 } 13106 13107 if (is_ret_buf_sz) { 13108 if (meta->r0_size) { 13109 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 13110 return -EINVAL; 13111 } 13112 13113 if (!tnum_is_const(reg->var_off)) { 13114 verbose(env, "R%d is not a const\n", regno); 13115 return -EINVAL; 13116 } 13117 13118 meta->r0_size = reg->var_off.value; 13119 ret = mark_chain_precision(env, regno); 13120 if (ret) 13121 return ret; 13122 } 13123 continue; 13124 } 13125 13126 if (!btf_type_is_ptr(t)) { 13127 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 13128 return -EINVAL; 13129 } 13130 13131 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 13132 (register_is_null(reg) || type_may_be_null(reg->type)) && 13133 !is_kfunc_arg_nullable(meta->btf, &args[i])) { 13134 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 13135 return -EACCES; 13136 } 13137 13138 if (reg->ref_obj_id) { 13139 if (is_kfunc_release(meta) && meta->ref_obj_id) { 13140 verifier_bug(env, "more than one arg with ref_obj_id R%d %u %u", 13141 regno, reg->ref_obj_id, 13142 meta->ref_obj_id); 13143 return -EFAULT; 13144 } 13145 meta->ref_obj_id = reg->ref_obj_id; 13146 if (is_kfunc_release(meta)) 13147 meta->release_regno = regno; 13148 } 13149 13150 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 13151 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 13152 13153 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 13154 if (kf_arg_type < 0) 13155 return kf_arg_type; 13156 13157 switch (kf_arg_type) { 13158 case KF_ARG_PTR_TO_NULL: 13159 continue; 13160 case KF_ARG_PTR_TO_MAP: 13161 if (!reg->map_ptr) { 13162 verbose(env, "pointer in R%d isn't map pointer\n", regno); 13163 return -EINVAL; 13164 } 13165 if (meta->map.ptr && (reg->map_ptr->record->wq_off >= 0 || 13166 reg->map_ptr->record->task_work_off >= 0)) { 13167 /* Use map_uid (which is unique id of inner map) to reject: 13168 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 13169 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 13170 * if (inner_map1 && inner_map2) { 13171 * wq = bpf_map_lookup_elem(inner_map1); 13172 * if (wq) 13173 * // mismatch would have been allowed 13174 * bpf_wq_init(wq, inner_map2); 13175 * } 13176 * 13177 * Comparing map_ptr is enough to distinguish normal and outer maps. 13178 */ 13179 if (meta->map.ptr != reg->map_ptr || 13180 meta->map.uid != reg->map_uid) { 13181 if (reg->map_ptr->record->task_work_off >= 0) { 13182 verbose(env, 13183 "bpf_task_work pointer in R2 map_uid=%d doesn't match map pointer in R3 map_uid=%d\n", 13184 meta->map.uid, reg->map_uid); 13185 return -EINVAL; 13186 } 13187 verbose(env, 13188 "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 13189 meta->map.uid, reg->map_uid); 13190 return -EINVAL; 13191 } 13192 } 13193 meta->map.ptr = reg->map_ptr; 13194 meta->map.uid = reg->map_uid; 13195 fallthrough; 13196 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 13197 case KF_ARG_PTR_TO_BTF_ID: 13198 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 13199 break; 13200 13201 if (!is_trusted_reg(reg)) { 13202 if (!is_kfunc_rcu(meta)) { 13203 verbose(env, "R%d must be referenced or trusted\n", regno); 13204 return -EINVAL; 13205 } 13206 if (!is_rcu_reg(reg)) { 13207 verbose(env, "R%d must be a rcu pointer\n", regno); 13208 return -EINVAL; 13209 } 13210 } 13211 fallthrough; 13212 case KF_ARG_PTR_TO_CTX: 13213 case KF_ARG_PTR_TO_DYNPTR: 13214 case KF_ARG_PTR_TO_ITER: 13215 case KF_ARG_PTR_TO_LIST_HEAD: 13216 case KF_ARG_PTR_TO_LIST_NODE: 13217 case KF_ARG_PTR_TO_RB_ROOT: 13218 case KF_ARG_PTR_TO_RB_NODE: 13219 case KF_ARG_PTR_TO_MEM: 13220 case KF_ARG_PTR_TO_MEM_SIZE: 13221 case KF_ARG_PTR_TO_CALLBACK: 13222 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 13223 case KF_ARG_PTR_TO_CONST_STR: 13224 case KF_ARG_PTR_TO_WORKQUEUE: 13225 case KF_ARG_PTR_TO_TASK_WORK: 13226 case KF_ARG_PTR_TO_IRQ_FLAG: 13227 case KF_ARG_PTR_TO_RES_SPIN_LOCK: 13228 break; 13229 default: 13230 verifier_bug(env, "unknown kfunc arg type %d", kf_arg_type); 13231 return -EFAULT; 13232 } 13233 13234 if (is_kfunc_release(meta) && reg->ref_obj_id) 13235 arg_type |= OBJ_RELEASE; 13236 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 13237 if (ret < 0) 13238 return ret; 13239 13240 switch (kf_arg_type) { 13241 case KF_ARG_PTR_TO_CTX: 13242 if (reg->type != PTR_TO_CTX) { 13243 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", 13244 i, reg_type_str(env, reg->type)); 13245 return -EINVAL; 13246 } 13247 13248 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 13249 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 13250 if (ret < 0) 13251 return -EINVAL; 13252 meta->ret_btf_id = ret; 13253 } 13254 break; 13255 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 13256 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { 13257 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { 13258 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); 13259 return -EINVAL; 13260 } 13261 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { 13262 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 13263 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); 13264 return -EINVAL; 13265 } 13266 } else { 13267 verbose(env, "arg#%d expected pointer to allocated object\n", i); 13268 return -EINVAL; 13269 } 13270 if (!reg->ref_obj_id) { 13271 verbose(env, "allocated object must be referenced\n"); 13272 return -EINVAL; 13273 } 13274 if (meta->btf == btf_vmlinux) { 13275 meta->arg_btf = reg->btf; 13276 meta->arg_btf_id = reg->btf_id; 13277 } 13278 break; 13279 case KF_ARG_PTR_TO_DYNPTR: 13280 { 13281 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 13282 int clone_ref_obj_id = 0; 13283 13284 if (reg->type == CONST_PTR_TO_DYNPTR) 13285 dynptr_arg_type |= MEM_RDONLY; 13286 13287 if (is_kfunc_arg_uninit(btf, &args[i])) 13288 dynptr_arg_type |= MEM_UNINIT; 13289 13290 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 13291 dynptr_arg_type |= DYNPTR_TYPE_SKB; 13292 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 13293 dynptr_arg_type |= DYNPTR_TYPE_XDP; 13294 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb_meta]) { 13295 dynptr_arg_type |= DYNPTR_TYPE_SKB_META; 13296 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 13297 (dynptr_arg_type & MEM_UNINIT)) { 13298 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 13299 13300 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 13301 verifier_bug(env, "no dynptr type for parent of clone"); 13302 return -EFAULT; 13303 } 13304 13305 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 13306 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 13307 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 13308 verifier_bug(env, "missing ref obj id for parent of clone"); 13309 return -EFAULT; 13310 } 13311 } 13312 13313 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 13314 if (ret < 0) 13315 return ret; 13316 13317 if (!(dynptr_arg_type & MEM_UNINIT)) { 13318 int id = dynptr_id(env, reg); 13319 13320 if (id < 0) { 13321 verifier_bug(env, "failed to obtain dynptr id"); 13322 return id; 13323 } 13324 meta->initialized_dynptr.id = id; 13325 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 13326 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 13327 } 13328 13329 break; 13330 } 13331 case KF_ARG_PTR_TO_ITER: 13332 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { 13333 if (!check_css_task_iter_allowlist(env)) { 13334 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); 13335 return -EINVAL; 13336 } 13337 } 13338 ret = process_iter_arg(env, regno, insn_idx, meta); 13339 if (ret < 0) 13340 return ret; 13341 break; 13342 case KF_ARG_PTR_TO_LIST_HEAD: 13343 if (reg->type != PTR_TO_MAP_VALUE && 13344 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13345 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 13346 return -EINVAL; 13347 } 13348 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 13349 verbose(env, "allocated object must be referenced\n"); 13350 return -EINVAL; 13351 } 13352 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 13353 if (ret < 0) 13354 return ret; 13355 break; 13356 case KF_ARG_PTR_TO_RB_ROOT: 13357 if (reg->type != PTR_TO_MAP_VALUE && 13358 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13359 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 13360 return -EINVAL; 13361 } 13362 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 13363 verbose(env, "allocated object must be referenced\n"); 13364 return -EINVAL; 13365 } 13366 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 13367 if (ret < 0) 13368 return ret; 13369 break; 13370 case KF_ARG_PTR_TO_LIST_NODE: 13371 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13372 verbose(env, "arg#%d expected pointer to allocated object\n", i); 13373 return -EINVAL; 13374 } 13375 if (!reg->ref_obj_id) { 13376 verbose(env, "allocated object must be referenced\n"); 13377 return -EINVAL; 13378 } 13379 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 13380 if (ret < 0) 13381 return ret; 13382 break; 13383 case KF_ARG_PTR_TO_RB_NODE: 13384 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 13385 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13386 verbose(env, "arg#%d expected pointer to allocated object\n", i); 13387 return -EINVAL; 13388 } 13389 if (!reg->ref_obj_id) { 13390 verbose(env, "allocated object must be referenced\n"); 13391 return -EINVAL; 13392 } 13393 } else { 13394 if (!type_is_non_owning_ref(reg->type) && !reg->ref_obj_id) { 13395 verbose(env, "%s can only take non-owning or refcounted bpf_rb_node pointer\n", func_name); 13396 return -EINVAL; 13397 } 13398 if (in_rbtree_lock_required_cb(env)) { 13399 verbose(env, "%s not allowed in rbtree cb\n", func_name); 13400 return -EINVAL; 13401 } 13402 } 13403 13404 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 13405 if (ret < 0) 13406 return ret; 13407 break; 13408 case KF_ARG_PTR_TO_MAP: 13409 /* If argument has '__map' suffix expect 'struct bpf_map *' */ 13410 ref_id = *reg2btf_ids[CONST_PTR_TO_MAP]; 13411 ref_t = btf_type_by_id(btf_vmlinux, ref_id); 13412 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 13413 fallthrough; 13414 case KF_ARG_PTR_TO_BTF_ID: 13415 /* Only base_type is checked, further checks are done here */ 13416 if ((base_type(reg->type) != PTR_TO_BTF_ID || 13417 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 13418 !reg2btf_ids[base_type(reg->type)]) { 13419 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 13420 verbose(env, "expected %s or socket\n", 13421 reg_type_str(env, base_type(reg->type) | 13422 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 13423 return -EINVAL; 13424 } 13425 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 13426 if (ret < 0) 13427 return ret; 13428 break; 13429 case KF_ARG_PTR_TO_MEM: 13430 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 13431 if (IS_ERR(resolve_ret)) { 13432 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 13433 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 13434 return -EINVAL; 13435 } 13436 ret = check_mem_reg(env, reg, regno, type_size); 13437 if (ret < 0) 13438 return ret; 13439 break; 13440 case KF_ARG_PTR_TO_MEM_SIZE: 13441 { 13442 struct bpf_reg_state *buff_reg = ®s[regno]; 13443 const struct btf_param *buff_arg = &args[i]; 13444 struct bpf_reg_state *size_reg = ®s[regno + 1]; 13445 const struct btf_param *size_arg = &args[i + 1]; 13446 13447 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 13448 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 13449 if (ret < 0) { 13450 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 13451 return ret; 13452 } 13453 } 13454 13455 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 13456 if (meta->arg_constant.found) { 13457 verifier_bug(env, "only one constant argument permitted"); 13458 return -EFAULT; 13459 } 13460 if (!tnum_is_const(size_reg->var_off)) { 13461 verbose(env, "R%d must be a known constant\n", regno + 1); 13462 return -EINVAL; 13463 } 13464 meta->arg_constant.found = true; 13465 meta->arg_constant.value = size_reg->var_off.value; 13466 } 13467 13468 /* Skip next '__sz' or '__szk' argument */ 13469 i++; 13470 break; 13471 } 13472 case KF_ARG_PTR_TO_CALLBACK: 13473 if (reg->type != PTR_TO_FUNC) { 13474 verbose(env, "arg%d expected pointer to func\n", i); 13475 return -EINVAL; 13476 } 13477 meta->subprogno = reg->subprogno; 13478 break; 13479 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 13480 if (!type_is_ptr_alloc_obj(reg->type)) { 13481 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 13482 return -EINVAL; 13483 } 13484 if (!type_is_non_owning_ref(reg->type)) 13485 meta->arg_owning_ref = true; 13486 13487 rec = reg_btf_record(reg); 13488 if (!rec) { 13489 verifier_bug(env, "Couldn't find btf_record"); 13490 return -EFAULT; 13491 } 13492 13493 if (rec->refcount_off < 0) { 13494 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 13495 return -EINVAL; 13496 } 13497 13498 meta->arg_btf = reg->btf; 13499 meta->arg_btf_id = reg->btf_id; 13500 break; 13501 case KF_ARG_PTR_TO_CONST_STR: 13502 if (reg->type != PTR_TO_MAP_VALUE) { 13503 verbose(env, "arg#%d doesn't point to a const string\n", i); 13504 return -EINVAL; 13505 } 13506 ret = check_reg_const_str(env, reg, regno); 13507 if (ret) 13508 return ret; 13509 break; 13510 case KF_ARG_PTR_TO_WORKQUEUE: 13511 if (reg->type != PTR_TO_MAP_VALUE) { 13512 verbose(env, "arg#%d doesn't point to a map value\n", i); 13513 return -EINVAL; 13514 } 13515 ret = process_wq_func(env, regno, meta); 13516 if (ret < 0) 13517 return ret; 13518 break; 13519 case KF_ARG_PTR_TO_TASK_WORK: 13520 if (reg->type != PTR_TO_MAP_VALUE) { 13521 verbose(env, "arg#%d doesn't point to a map value\n", i); 13522 return -EINVAL; 13523 } 13524 ret = process_task_work_func(env, regno, meta); 13525 if (ret < 0) 13526 return ret; 13527 break; 13528 case KF_ARG_PTR_TO_IRQ_FLAG: 13529 if (reg->type != PTR_TO_STACK) { 13530 verbose(env, "arg#%d doesn't point to an irq flag on stack\n", i); 13531 return -EINVAL; 13532 } 13533 ret = process_irq_flag(env, regno, meta); 13534 if (ret < 0) 13535 return ret; 13536 break; 13537 case KF_ARG_PTR_TO_RES_SPIN_LOCK: 13538 { 13539 int flags = PROCESS_RES_LOCK; 13540 13541 if (reg->type != PTR_TO_MAP_VALUE && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13542 verbose(env, "arg#%d doesn't point to map value or allocated object\n", i); 13543 return -EINVAL; 13544 } 13545 13546 if (!is_bpf_res_spin_lock_kfunc(meta->func_id)) 13547 return -EFAULT; 13548 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock] || 13549 meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) 13550 flags |= PROCESS_SPIN_LOCK; 13551 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] || 13552 meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) 13553 flags |= PROCESS_LOCK_IRQ; 13554 ret = process_spin_lock(env, regno, flags); 13555 if (ret < 0) 13556 return ret; 13557 break; 13558 } 13559 } 13560 } 13561 13562 if (is_kfunc_release(meta) && !meta->release_regno) { 13563 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 13564 func_name); 13565 return -EINVAL; 13566 } 13567 13568 return 0; 13569 } 13570 13571 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 13572 struct bpf_insn *insn, 13573 struct bpf_kfunc_call_arg_meta *meta, 13574 const char **kfunc_name) 13575 { 13576 const struct btf_type *func, *func_proto; 13577 u32 func_id, *kfunc_flags; 13578 const char *func_name; 13579 struct btf *desc_btf; 13580 13581 if (kfunc_name) 13582 *kfunc_name = NULL; 13583 13584 if (!insn->imm) 13585 return -EINVAL; 13586 13587 desc_btf = find_kfunc_desc_btf(env, insn->off); 13588 if (IS_ERR(desc_btf)) 13589 return PTR_ERR(desc_btf); 13590 13591 func_id = insn->imm; 13592 func = btf_type_by_id(desc_btf, func_id); 13593 func_name = btf_name_by_offset(desc_btf, func->name_off); 13594 if (kfunc_name) 13595 *kfunc_name = func_name; 13596 func_proto = btf_type_by_id(desc_btf, func->type); 13597 13598 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 13599 if (!kfunc_flags) { 13600 return -EACCES; 13601 } 13602 13603 memset(meta, 0, sizeof(*meta)); 13604 meta->btf = desc_btf; 13605 meta->func_id = func_id; 13606 meta->kfunc_flags = *kfunc_flags; 13607 meta->func_proto = func_proto; 13608 meta->func_name = func_name; 13609 13610 return 0; 13611 } 13612 13613 /* check special kfuncs and return: 13614 * 1 - not fall-through to 'else' branch, continue verification 13615 * 0 - fall-through to 'else' branch 13616 * < 0 - not fall-through to 'else' branch, return error 13617 */ 13618 static int check_special_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 13619 struct bpf_reg_state *regs, struct bpf_insn_aux_data *insn_aux, 13620 const struct btf_type *ptr_type, struct btf *desc_btf) 13621 { 13622 const struct btf_type *ret_t; 13623 int err = 0; 13624 13625 if (meta->btf != btf_vmlinux) 13626 return 0; 13627 13628 if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 13629 meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13630 struct btf_struct_meta *struct_meta; 13631 struct btf *ret_btf; 13632 u32 ret_btf_id; 13633 13634 if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) 13635 return -ENOMEM; 13636 13637 if (((u64)(u32)meta->arg_constant.value) != meta->arg_constant.value) { 13638 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 13639 return -EINVAL; 13640 } 13641 13642 ret_btf = env->prog->aux->btf; 13643 ret_btf_id = meta->arg_constant.value; 13644 13645 /* This may be NULL due to user not supplying a BTF */ 13646 if (!ret_btf) { 13647 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); 13648 return -EINVAL; 13649 } 13650 13651 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 13652 if (!ret_t || !__btf_type_is_struct(ret_t)) { 13653 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); 13654 return -EINVAL; 13655 } 13656 13657 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13658 if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) { 13659 verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n", 13660 ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE); 13661 return -EINVAL; 13662 } 13663 13664 if (!bpf_global_percpu_ma_set) { 13665 mutex_lock(&bpf_percpu_ma_lock); 13666 if (!bpf_global_percpu_ma_set) { 13667 /* Charge memory allocated with bpf_global_percpu_ma to 13668 * root memcg. The obj_cgroup for root memcg is NULL. 13669 */ 13670 err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL); 13671 if (!err) 13672 bpf_global_percpu_ma_set = true; 13673 } 13674 mutex_unlock(&bpf_percpu_ma_lock); 13675 if (err) 13676 return err; 13677 } 13678 13679 mutex_lock(&bpf_percpu_ma_lock); 13680 err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size); 13681 mutex_unlock(&bpf_percpu_ma_lock); 13682 if (err) 13683 return err; 13684 } 13685 13686 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); 13687 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13688 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { 13689 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); 13690 return -EINVAL; 13691 } 13692 13693 if (struct_meta) { 13694 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); 13695 return -EINVAL; 13696 } 13697 } 13698 13699 mark_reg_known_zero(env, regs, BPF_REG_0); 13700 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 13701 regs[BPF_REG_0].btf = ret_btf; 13702 regs[BPF_REG_0].btf_id = ret_btf_id; 13703 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) 13704 regs[BPF_REG_0].type |= MEM_PERCPU; 13705 13706 insn_aux->obj_new_size = ret_t->size; 13707 insn_aux->kptr_struct_meta = struct_meta; 13708 } else if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 13709 mark_reg_known_zero(env, regs, BPF_REG_0); 13710 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 13711 regs[BPF_REG_0].btf = meta->arg_btf; 13712 regs[BPF_REG_0].btf_id = meta->arg_btf_id; 13713 13714 insn_aux->kptr_struct_meta = 13715 btf_find_struct_meta(meta->arg_btf, 13716 meta->arg_btf_id); 13717 } else if (is_list_node_type(ptr_type)) { 13718 struct btf_field *field = meta->arg_list_head.field; 13719 13720 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 13721 } else if (is_rbtree_node_type(ptr_type)) { 13722 struct btf_field *field = meta->arg_rbtree_root.field; 13723 13724 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 13725 } else if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 13726 mark_reg_known_zero(env, regs, BPF_REG_0); 13727 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 13728 regs[BPF_REG_0].btf = desc_btf; 13729 regs[BPF_REG_0].btf_id = meta->ret_btf_id; 13730 } else if (meta->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 13731 ret_t = btf_type_by_id(desc_btf, meta->arg_constant.value); 13732 if (!ret_t) { 13733 verbose(env, "Unknown type ID %lld passed to kfunc bpf_rdonly_cast\n", 13734 meta->arg_constant.value); 13735 return -EINVAL; 13736 } else if (btf_type_is_struct(ret_t)) { 13737 mark_reg_known_zero(env, regs, BPF_REG_0); 13738 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 13739 regs[BPF_REG_0].btf = desc_btf; 13740 regs[BPF_REG_0].btf_id = meta->arg_constant.value; 13741 } else if (btf_type_is_void(ret_t)) { 13742 mark_reg_known_zero(env, regs, BPF_REG_0); 13743 regs[BPF_REG_0].type = PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED; 13744 regs[BPF_REG_0].mem_size = 0; 13745 } else { 13746 verbose(env, 13747 "kfunc bpf_rdonly_cast type ID argument must be of a struct or void\n"); 13748 return -EINVAL; 13749 } 13750 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 13751 meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 13752 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta->initialized_dynptr.type); 13753 13754 mark_reg_known_zero(env, regs, BPF_REG_0); 13755 13756 if (!meta->arg_constant.found) { 13757 verifier_bug(env, "bpf_dynptr_slice(_rdwr) no constant size"); 13758 return -EFAULT; 13759 } 13760 13761 regs[BPF_REG_0].mem_size = meta->arg_constant.value; 13762 13763 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 13764 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 13765 13766 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 13767 regs[BPF_REG_0].type |= MEM_RDONLY; 13768 } else { 13769 /* this will set env->seen_direct_write to true */ 13770 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 13771 verbose(env, "the prog does not allow writes to packet data\n"); 13772 return -EINVAL; 13773 } 13774 } 13775 13776 if (!meta->initialized_dynptr.id) { 13777 verifier_bug(env, "no dynptr id"); 13778 return -EFAULT; 13779 } 13780 regs[BPF_REG_0].dynptr_id = meta->initialized_dynptr.id; 13781 13782 /* we don't need to set BPF_REG_0's ref obj id 13783 * because packet slices are not refcounted (see 13784 * dynptr_type_refcounted) 13785 */ 13786 } else { 13787 return 0; 13788 } 13789 13790 return 1; 13791 } 13792 13793 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name); 13794 13795 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 13796 int *insn_idx_p) 13797 { 13798 bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable; 13799 u32 i, nargs, ptr_type_id, release_ref_obj_id; 13800 struct bpf_reg_state *regs = cur_regs(env); 13801 const char *func_name, *ptr_type_name; 13802 const struct btf_type *t, *ptr_type; 13803 struct bpf_kfunc_call_arg_meta meta; 13804 struct bpf_insn_aux_data *insn_aux; 13805 int err, insn_idx = *insn_idx_p; 13806 const struct btf_param *args; 13807 struct btf *desc_btf; 13808 13809 /* skip for now, but return error when we find this in fixup_kfunc_call */ 13810 if (!insn->imm) 13811 return 0; 13812 13813 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 13814 if (err == -EACCES && func_name) 13815 verbose(env, "calling kernel function %s is not allowed\n", func_name); 13816 if (err) 13817 return err; 13818 desc_btf = meta.btf; 13819 insn_aux = &env->insn_aux_data[insn_idx]; 13820 13821 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 13822 13823 if (!insn->off && 13824 (insn->imm == special_kfunc_list[KF_bpf_res_spin_lock] || 13825 insn->imm == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) { 13826 struct bpf_verifier_state *branch; 13827 struct bpf_reg_state *regs; 13828 13829 branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false); 13830 if (!branch) { 13831 verbose(env, "failed to push state for failed lock acquisition\n"); 13832 return -ENOMEM; 13833 } 13834 13835 regs = branch->frame[branch->curframe]->regs; 13836 13837 /* Clear r0-r5 registers in forked state */ 13838 for (i = 0; i < CALLER_SAVED_REGS; i++) 13839 mark_reg_not_init(env, regs, caller_saved[i]); 13840 13841 mark_reg_unknown(env, regs, BPF_REG_0); 13842 err = __mark_reg_s32_range(env, regs, BPF_REG_0, -MAX_ERRNO, -1); 13843 if (err) { 13844 verbose(env, "failed to mark s32 range for retval in forked state for lock\n"); 13845 return err; 13846 } 13847 __mark_btf_func_reg_size(env, regs, BPF_REG_0, sizeof(u32)); 13848 } else if (!insn->off && insn->imm == special_kfunc_list[KF___bpf_trap]) { 13849 verbose(env, "unexpected __bpf_trap() due to uninitialized variable?\n"); 13850 return -EFAULT; 13851 } 13852 13853 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 13854 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 13855 return -EACCES; 13856 } 13857 13858 sleepable = is_kfunc_sleepable(&meta); 13859 if (sleepable && !in_sleepable(env)) { 13860 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 13861 return -EACCES; 13862 } 13863 13864 /* Check the arguments */ 13865 err = check_kfunc_args(env, &meta, insn_idx); 13866 if (err < 0) 13867 return err; 13868 13869 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 13870 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 13871 set_rbtree_add_callback_state); 13872 if (err) { 13873 verbose(env, "kfunc %s#%d failed callback verification\n", 13874 func_name, meta.func_id); 13875 return err; 13876 } 13877 } 13878 13879 if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) { 13880 meta.r0_size = sizeof(u64); 13881 meta.r0_rdonly = false; 13882 } 13883 13884 if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) { 13885 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 13886 set_timer_callback_state); 13887 if (err) { 13888 verbose(env, "kfunc %s#%d failed callback verification\n", 13889 func_name, meta.func_id); 13890 return err; 13891 } 13892 } 13893 13894 if (is_task_work_add_kfunc(meta.func_id)) { 13895 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 13896 set_task_work_schedule_callback_state); 13897 if (err) { 13898 verbose(env, "kfunc %s#%d failed callback verification\n", 13899 func_name, meta.func_id); 13900 return err; 13901 } 13902 } 13903 13904 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 13905 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 13906 13907 preempt_disable = is_kfunc_bpf_preempt_disable(&meta); 13908 preempt_enable = is_kfunc_bpf_preempt_enable(&meta); 13909 13910 if (env->cur_state->active_rcu_lock) { 13911 struct bpf_func_state *state; 13912 struct bpf_reg_state *reg; 13913 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); 13914 13915 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 13916 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 13917 return -EACCES; 13918 } 13919 13920 if (rcu_lock) { 13921 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 13922 return -EINVAL; 13923 } else if (rcu_unlock) { 13924 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ 13925 if (reg->type & MEM_RCU) { 13926 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 13927 reg->type |= PTR_UNTRUSTED; 13928 } 13929 })); 13930 env->cur_state->active_rcu_lock = false; 13931 } else if (sleepable) { 13932 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 13933 return -EACCES; 13934 } 13935 } else if (rcu_lock) { 13936 env->cur_state->active_rcu_lock = true; 13937 } else if (rcu_unlock) { 13938 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 13939 return -EINVAL; 13940 } 13941 13942 if (env->cur_state->active_preempt_locks) { 13943 if (preempt_disable) { 13944 env->cur_state->active_preempt_locks++; 13945 } else if (preempt_enable) { 13946 env->cur_state->active_preempt_locks--; 13947 } else if (sleepable) { 13948 verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name); 13949 return -EACCES; 13950 } 13951 } else if (preempt_disable) { 13952 env->cur_state->active_preempt_locks++; 13953 } else if (preempt_enable) { 13954 verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name); 13955 return -EINVAL; 13956 } 13957 13958 if (env->cur_state->active_irq_id && sleepable) { 13959 verbose(env, "kernel func %s is sleepable within IRQ-disabled region\n", func_name); 13960 return -EACCES; 13961 } 13962 13963 if (is_kfunc_rcu_protected(&meta) && !in_rcu_cs(env)) { 13964 verbose(env, "kernel func %s requires RCU critical section protection\n", func_name); 13965 return -EACCES; 13966 } 13967 13968 /* In case of release function, we get register number of refcounted 13969 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 13970 */ 13971 if (meta.release_regno) { 13972 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 13973 if (err) { 13974 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 13975 func_name, meta.func_id); 13976 return err; 13977 } 13978 } 13979 13980 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 13981 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 13982 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 13983 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 13984 insn_aux->insert_off = regs[BPF_REG_2].off; 13985 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 13986 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 13987 if (err) { 13988 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 13989 func_name, meta.func_id); 13990 return err; 13991 } 13992 13993 err = release_reference(env, release_ref_obj_id); 13994 if (err) { 13995 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 13996 func_name, meta.func_id); 13997 return err; 13998 } 13999 } 14000 14001 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { 14002 if (!bpf_jit_supports_exceptions()) { 14003 verbose(env, "JIT does not support calling kfunc %s#%d\n", 14004 func_name, meta.func_id); 14005 return -ENOTSUPP; 14006 } 14007 env->seen_exception = true; 14008 14009 /* In the case of the default callback, the cookie value passed 14010 * to bpf_throw becomes the return value of the program. 14011 */ 14012 if (!env->exception_callback_subprog) { 14013 err = check_return_code(env, BPF_REG_1, "R1"); 14014 if (err < 0) 14015 return err; 14016 } 14017 } 14018 14019 for (i = 0; i < CALLER_SAVED_REGS; i++) 14020 mark_reg_not_init(env, regs, caller_saved[i]); 14021 14022 /* Check return type */ 14023 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 14024 14025 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 14026 /* Only exception is bpf_obj_new_impl */ 14027 if (meta.btf != btf_vmlinux || 14028 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 14029 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && 14030 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 14031 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 14032 return -EINVAL; 14033 } 14034 } 14035 14036 if (btf_type_is_scalar(t)) { 14037 mark_reg_unknown(env, regs, BPF_REG_0); 14038 if (meta.btf == btf_vmlinux && (meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock] || 14039 meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) 14040 __mark_reg_const_zero(env, ®s[BPF_REG_0]); 14041 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 14042 } else if (btf_type_is_ptr(t)) { 14043 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 14044 err = check_special_kfunc(env, &meta, regs, insn_aux, ptr_type, desc_btf); 14045 if (err) { 14046 if (err < 0) 14047 return err; 14048 } else if (btf_type_is_void(ptr_type)) { 14049 /* kfunc returning 'void *' is equivalent to returning scalar */ 14050 mark_reg_unknown(env, regs, BPF_REG_0); 14051 } else if (!__btf_type_is_struct(ptr_type)) { 14052 if (!meta.r0_size) { 14053 __u32 sz; 14054 14055 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 14056 meta.r0_size = sz; 14057 meta.r0_rdonly = true; 14058 } 14059 } 14060 if (!meta.r0_size) { 14061 ptr_type_name = btf_name_by_offset(desc_btf, 14062 ptr_type->name_off); 14063 verbose(env, 14064 "kernel function %s returns pointer type %s %s is not supported\n", 14065 func_name, 14066 btf_type_str(ptr_type), 14067 ptr_type_name); 14068 return -EINVAL; 14069 } 14070 14071 mark_reg_known_zero(env, regs, BPF_REG_0); 14072 regs[BPF_REG_0].type = PTR_TO_MEM; 14073 regs[BPF_REG_0].mem_size = meta.r0_size; 14074 14075 if (meta.r0_rdonly) 14076 regs[BPF_REG_0].type |= MEM_RDONLY; 14077 14078 /* Ensures we don't access the memory after a release_reference() */ 14079 if (meta.ref_obj_id) 14080 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 14081 14082 if (is_kfunc_rcu_protected(&meta)) 14083 regs[BPF_REG_0].type |= MEM_RCU; 14084 } else { 14085 mark_reg_known_zero(env, regs, BPF_REG_0); 14086 regs[BPF_REG_0].btf = desc_btf; 14087 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 14088 regs[BPF_REG_0].btf_id = ptr_type_id; 14089 14090 if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache]) 14091 regs[BPF_REG_0].type |= PTR_UNTRUSTED; 14092 else if (is_kfunc_rcu_protected(&meta)) 14093 regs[BPF_REG_0].type |= MEM_RCU; 14094 14095 if (is_iter_next_kfunc(&meta)) { 14096 struct bpf_reg_state *cur_iter; 14097 14098 cur_iter = get_iter_from_state(env->cur_state, &meta); 14099 14100 if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */ 14101 regs[BPF_REG_0].type |= MEM_RCU; 14102 else 14103 regs[BPF_REG_0].type |= PTR_TRUSTED; 14104 } 14105 } 14106 14107 if (is_kfunc_ret_null(&meta)) { 14108 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 14109 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 14110 regs[BPF_REG_0].id = ++env->id_gen; 14111 } 14112 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 14113 if (is_kfunc_acquire(&meta)) { 14114 int id = acquire_reference(env, insn_idx); 14115 14116 if (id < 0) 14117 return id; 14118 if (is_kfunc_ret_null(&meta)) 14119 regs[BPF_REG_0].id = id; 14120 regs[BPF_REG_0].ref_obj_id = id; 14121 } else if (is_rbtree_node_type(ptr_type) || is_list_node_type(ptr_type)) { 14122 ref_set_non_owning(env, ®s[BPF_REG_0]); 14123 } 14124 14125 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 14126 regs[BPF_REG_0].id = ++env->id_gen; 14127 } else if (btf_type_is_void(t)) { 14128 if (meta.btf == btf_vmlinux) { 14129 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 14130 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 14131 insn_aux->kptr_struct_meta = 14132 btf_find_struct_meta(meta.arg_btf, 14133 meta.arg_btf_id); 14134 } 14135 } 14136 } 14137 14138 if (is_kfunc_pkt_changing(&meta)) 14139 clear_all_pkt_pointers(env); 14140 14141 nargs = btf_type_vlen(meta.func_proto); 14142 args = (const struct btf_param *)(meta.func_proto + 1); 14143 for (i = 0; i < nargs; i++) { 14144 u32 regno = i + 1; 14145 14146 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 14147 if (btf_type_is_ptr(t)) 14148 mark_btf_func_reg_size(env, regno, sizeof(void *)); 14149 else 14150 /* scalar. ensured by btf_check_kfunc_arg_match() */ 14151 mark_btf_func_reg_size(env, regno, t->size); 14152 } 14153 14154 if (is_iter_next_kfunc(&meta)) { 14155 err = process_iter_next_call(env, insn_idx, &meta); 14156 if (err) 14157 return err; 14158 } 14159 14160 return 0; 14161 } 14162 14163 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 14164 const struct bpf_reg_state *reg, 14165 enum bpf_reg_type type) 14166 { 14167 bool known = tnum_is_const(reg->var_off); 14168 s64 val = reg->var_off.value; 14169 s64 smin = reg->smin_value; 14170 14171 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 14172 verbose(env, "math between %s pointer and %lld is not allowed\n", 14173 reg_type_str(env, type), val); 14174 return false; 14175 } 14176 14177 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 14178 verbose(env, "%s pointer offset %d is not allowed\n", 14179 reg_type_str(env, type), reg->off); 14180 return false; 14181 } 14182 14183 if (smin == S64_MIN) { 14184 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 14185 reg_type_str(env, type)); 14186 return false; 14187 } 14188 14189 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 14190 verbose(env, "value %lld makes %s pointer be out of bounds\n", 14191 smin, reg_type_str(env, type)); 14192 return false; 14193 } 14194 14195 return true; 14196 } 14197 14198 enum { 14199 REASON_BOUNDS = -1, 14200 REASON_TYPE = -2, 14201 REASON_PATHS = -3, 14202 REASON_LIMIT = -4, 14203 REASON_STACK = -5, 14204 }; 14205 14206 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 14207 u32 *alu_limit, bool mask_to_left) 14208 { 14209 u32 max = 0, ptr_limit = 0; 14210 14211 switch (ptr_reg->type) { 14212 case PTR_TO_STACK: 14213 /* Offset 0 is out-of-bounds, but acceptable start for the 14214 * left direction, see BPF_REG_FP. Also, unknown scalar 14215 * offset where we would need to deal with min/max bounds is 14216 * currently prohibited for unprivileged. 14217 */ 14218 max = MAX_BPF_STACK + mask_to_left; 14219 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 14220 break; 14221 case PTR_TO_MAP_VALUE: 14222 max = ptr_reg->map_ptr->value_size; 14223 ptr_limit = (mask_to_left ? 14224 ptr_reg->smin_value : 14225 ptr_reg->umax_value) + ptr_reg->off; 14226 break; 14227 default: 14228 return REASON_TYPE; 14229 } 14230 14231 if (ptr_limit >= max) 14232 return REASON_LIMIT; 14233 *alu_limit = ptr_limit; 14234 return 0; 14235 } 14236 14237 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 14238 const struct bpf_insn *insn) 14239 { 14240 return env->bypass_spec_v1 || 14241 BPF_SRC(insn->code) == BPF_K || 14242 cur_aux(env)->nospec; 14243 } 14244 14245 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 14246 u32 alu_state, u32 alu_limit) 14247 { 14248 /* If we arrived here from different branches with different 14249 * state or limits to sanitize, then this won't work. 14250 */ 14251 if (aux->alu_state && 14252 (aux->alu_state != alu_state || 14253 aux->alu_limit != alu_limit)) 14254 return REASON_PATHS; 14255 14256 /* Corresponding fixup done in do_misc_fixups(). */ 14257 aux->alu_state = alu_state; 14258 aux->alu_limit = alu_limit; 14259 return 0; 14260 } 14261 14262 static int sanitize_val_alu(struct bpf_verifier_env *env, 14263 struct bpf_insn *insn) 14264 { 14265 struct bpf_insn_aux_data *aux = cur_aux(env); 14266 14267 if (can_skip_alu_sanitation(env, insn)) 14268 return 0; 14269 14270 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 14271 } 14272 14273 static bool sanitize_needed(u8 opcode) 14274 { 14275 return opcode == BPF_ADD || opcode == BPF_SUB; 14276 } 14277 14278 struct bpf_sanitize_info { 14279 struct bpf_insn_aux_data aux; 14280 bool mask_to_left; 14281 }; 14282 14283 static struct bpf_verifier_state * 14284 sanitize_speculative_path(struct bpf_verifier_env *env, 14285 const struct bpf_insn *insn, 14286 u32 next_idx, u32 curr_idx) 14287 { 14288 struct bpf_verifier_state *branch; 14289 struct bpf_reg_state *regs; 14290 14291 branch = push_stack(env, next_idx, curr_idx, true); 14292 if (branch && insn) { 14293 regs = branch->frame[branch->curframe]->regs; 14294 if (BPF_SRC(insn->code) == BPF_K) { 14295 mark_reg_unknown(env, regs, insn->dst_reg); 14296 } else if (BPF_SRC(insn->code) == BPF_X) { 14297 mark_reg_unknown(env, regs, insn->dst_reg); 14298 mark_reg_unknown(env, regs, insn->src_reg); 14299 } 14300 } 14301 return branch; 14302 } 14303 14304 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 14305 struct bpf_insn *insn, 14306 const struct bpf_reg_state *ptr_reg, 14307 const struct bpf_reg_state *off_reg, 14308 struct bpf_reg_state *dst_reg, 14309 struct bpf_sanitize_info *info, 14310 const bool commit_window) 14311 { 14312 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 14313 struct bpf_verifier_state *vstate = env->cur_state; 14314 bool off_is_imm = tnum_is_const(off_reg->var_off); 14315 bool off_is_neg = off_reg->smin_value < 0; 14316 bool ptr_is_dst_reg = ptr_reg == dst_reg; 14317 u8 opcode = BPF_OP(insn->code); 14318 u32 alu_state, alu_limit; 14319 struct bpf_reg_state tmp; 14320 bool ret; 14321 int err; 14322 14323 if (can_skip_alu_sanitation(env, insn)) 14324 return 0; 14325 14326 /* We already marked aux for masking from non-speculative 14327 * paths, thus we got here in the first place. We only care 14328 * to explore bad access from here. 14329 */ 14330 if (vstate->speculative) 14331 goto do_sim; 14332 14333 if (!commit_window) { 14334 if (!tnum_is_const(off_reg->var_off) && 14335 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 14336 return REASON_BOUNDS; 14337 14338 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 14339 (opcode == BPF_SUB && !off_is_neg); 14340 } 14341 14342 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 14343 if (err < 0) 14344 return err; 14345 14346 if (commit_window) { 14347 /* In commit phase we narrow the masking window based on 14348 * the observed pointer move after the simulated operation. 14349 */ 14350 alu_state = info->aux.alu_state; 14351 alu_limit = abs(info->aux.alu_limit - alu_limit); 14352 } else { 14353 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 14354 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 14355 alu_state |= ptr_is_dst_reg ? 14356 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 14357 14358 /* Limit pruning on unknown scalars to enable deep search for 14359 * potential masking differences from other program paths. 14360 */ 14361 if (!off_is_imm) 14362 env->explore_alu_limits = true; 14363 } 14364 14365 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 14366 if (err < 0) 14367 return err; 14368 do_sim: 14369 /* If we're in commit phase, we're done here given we already 14370 * pushed the truncated dst_reg into the speculative verification 14371 * stack. 14372 * 14373 * Also, when register is a known constant, we rewrite register-based 14374 * operation to immediate-based, and thus do not need masking (and as 14375 * a consequence, do not need to simulate the zero-truncation either). 14376 */ 14377 if (commit_window || off_is_imm) 14378 return 0; 14379 14380 /* Simulate and find potential out-of-bounds access under 14381 * speculative execution from truncation as a result of 14382 * masking when off was not within expected range. If off 14383 * sits in dst, then we temporarily need to move ptr there 14384 * to simulate dst (== 0) +/-= ptr. Needed, for example, 14385 * for cases where we use K-based arithmetic in one direction 14386 * and truncated reg-based in the other in order to explore 14387 * bad access. 14388 */ 14389 if (!ptr_is_dst_reg) { 14390 tmp = *dst_reg; 14391 copy_register_state(dst_reg, ptr_reg); 14392 } 14393 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 14394 env->insn_idx); 14395 if (!ptr_is_dst_reg && ret) 14396 *dst_reg = tmp; 14397 return !ret ? REASON_STACK : 0; 14398 } 14399 14400 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 14401 { 14402 struct bpf_verifier_state *vstate = env->cur_state; 14403 14404 /* If we simulate paths under speculation, we don't update the 14405 * insn as 'seen' such that when we verify unreachable paths in 14406 * the non-speculative domain, sanitize_dead_code() can still 14407 * rewrite/sanitize them. 14408 */ 14409 if (!vstate->speculative) 14410 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 14411 } 14412 14413 static int sanitize_err(struct bpf_verifier_env *env, 14414 const struct bpf_insn *insn, int reason, 14415 const struct bpf_reg_state *off_reg, 14416 const struct bpf_reg_state *dst_reg) 14417 { 14418 static const char *err = "pointer arithmetic with it prohibited for !root"; 14419 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 14420 u32 dst = insn->dst_reg, src = insn->src_reg; 14421 14422 switch (reason) { 14423 case REASON_BOUNDS: 14424 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 14425 off_reg == dst_reg ? dst : src, err); 14426 break; 14427 case REASON_TYPE: 14428 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 14429 off_reg == dst_reg ? src : dst, err); 14430 break; 14431 case REASON_PATHS: 14432 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 14433 dst, op, err); 14434 break; 14435 case REASON_LIMIT: 14436 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 14437 dst, op, err); 14438 break; 14439 case REASON_STACK: 14440 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 14441 dst, err); 14442 return -ENOMEM; 14443 default: 14444 verifier_bug(env, "unknown reason (%d)", reason); 14445 break; 14446 } 14447 14448 return -EACCES; 14449 } 14450 14451 /* check that stack access falls within stack limits and that 'reg' doesn't 14452 * have a variable offset. 14453 * 14454 * Variable offset is prohibited for unprivileged mode for simplicity since it 14455 * requires corresponding support in Spectre masking for stack ALU. See also 14456 * retrieve_ptr_limit(). 14457 * 14458 * 14459 * 'off' includes 'reg->off'. 14460 */ 14461 static int check_stack_access_for_ptr_arithmetic( 14462 struct bpf_verifier_env *env, 14463 int regno, 14464 const struct bpf_reg_state *reg, 14465 int off) 14466 { 14467 if (!tnum_is_const(reg->var_off)) { 14468 char tn_buf[48]; 14469 14470 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 14471 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 14472 regno, tn_buf, off); 14473 return -EACCES; 14474 } 14475 14476 if (off >= 0 || off < -MAX_BPF_STACK) { 14477 verbose(env, "R%d stack pointer arithmetic goes out of range, " 14478 "prohibited for !root; off=%d\n", regno, off); 14479 return -EACCES; 14480 } 14481 14482 return 0; 14483 } 14484 14485 static int sanitize_check_bounds(struct bpf_verifier_env *env, 14486 const struct bpf_insn *insn, 14487 const struct bpf_reg_state *dst_reg) 14488 { 14489 u32 dst = insn->dst_reg; 14490 14491 /* For unprivileged we require that resulting offset must be in bounds 14492 * in order to be able to sanitize access later on. 14493 */ 14494 if (env->bypass_spec_v1) 14495 return 0; 14496 14497 switch (dst_reg->type) { 14498 case PTR_TO_STACK: 14499 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 14500 dst_reg->off + dst_reg->var_off.value)) 14501 return -EACCES; 14502 break; 14503 case PTR_TO_MAP_VALUE: 14504 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 14505 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 14506 "prohibited for !root\n", dst); 14507 return -EACCES; 14508 } 14509 break; 14510 default: 14511 return -EOPNOTSUPP; 14512 } 14513 14514 return 0; 14515 } 14516 14517 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 14518 * Caller should also handle BPF_MOV case separately. 14519 * If we return -EACCES, caller may want to try again treating pointer as a 14520 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 14521 */ 14522 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 14523 struct bpf_insn *insn, 14524 const struct bpf_reg_state *ptr_reg, 14525 const struct bpf_reg_state *off_reg) 14526 { 14527 struct bpf_verifier_state *vstate = env->cur_state; 14528 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14529 struct bpf_reg_state *regs = state->regs, *dst_reg; 14530 bool known = tnum_is_const(off_reg->var_off); 14531 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 14532 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 14533 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 14534 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 14535 struct bpf_sanitize_info info = {}; 14536 u8 opcode = BPF_OP(insn->code); 14537 u32 dst = insn->dst_reg; 14538 int ret, bounds_ret; 14539 14540 dst_reg = ®s[dst]; 14541 14542 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 14543 smin_val > smax_val || umin_val > umax_val) { 14544 /* Taint dst register if offset had invalid bounds derived from 14545 * e.g. dead branches. 14546 */ 14547 __mark_reg_unknown(env, dst_reg); 14548 return 0; 14549 } 14550 14551 if (BPF_CLASS(insn->code) != BPF_ALU64) { 14552 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 14553 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 14554 __mark_reg_unknown(env, dst_reg); 14555 return 0; 14556 } 14557 14558 verbose(env, 14559 "R%d 32-bit pointer arithmetic prohibited\n", 14560 dst); 14561 return -EACCES; 14562 } 14563 14564 if (ptr_reg->type & PTR_MAYBE_NULL) { 14565 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 14566 dst, reg_type_str(env, ptr_reg->type)); 14567 return -EACCES; 14568 } 14569 14570 /* 14571 * Accesses to untrusted PTR_TO_MEM are done through probe 14572 * instructions, hence no need to track offsets. 14573 */ 14574 if (base_type(ptr_reg->type) == PTR_TO_MEM && (ptr_reg->type & PTR_UNTRUSTED)) 14575 return 0; 14576 14577 switch (base_type(ptr_reg->type)) { 14578 case PTR_TO_CTX: 14579 case PTR_TO_MAP_VALUE: 14580 case PTR_TO_MAP_KEY: 14581 case PTR_TO_STACK: 14582 case PTR_TO_PACKET_META: 14583 case PTR_TO_PACKET: 14584 case PTR_TO_TP_BUFFER: 14585 case PTR_TO_BTF_ID: 14586 case PTR_TO_MEM: 14587 case PTR_TO_BUF: 14588 case PTR_TO_FUNC: 14589 case CONST_PTR_TO_DYNPTR: 14590 break; 14591 case PTR_TO_FLOW_KEYS: 14592 if (known) 14593 break; 14594 fallthrough; 14595 case CONST_PTR_TO_MAP: 14596 /* smin_val represents the known value */ 14597 if (known && smin_val == 0 && opcode == BPF_ADD) 14598 break; 14599 fallthrough; 14600 default: 14601 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 14602 dst, reg_type_str(env, ptr_reg->type)); 14603 return -EACCES; 14604 } 14605 14606 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 14607 * The id may be overwritten later if we create a new variable offset. 14608 */ 14609 dst_reg->type = ptr_reg->type; 14610 dst_reg->id = ptr_reg->id; 14611 14612 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 14613 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 14614 return -EINVAL; 14615 14616 /* pointer types do not carry 32-bit bounds at the moment. */ 14617 __mark_reg32_unbounded(dst_reg); 14618 14619 if (sanitize_needed(opcode)) { 14620 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 14621 &info, false); 14622 if (ret < 0) 14623 return sanitize_err(env, insn, ret, off_reg, dst_reg); 14624 } 14625 14626 switch (opcode) { 14627 case BPF_ADD: 14628 /* We can take a fixed offset as long as it doesn't overflow 14629 * the s32 'off' field 14630 */ 14631 if (known && (ptr_reg->off + smin_val == 14632 (s64)(s32)(ptr_reg->off + smin_val))) { 14633 /* pointer += K. Accumulate it into fixed offset */ 14634 dst_reg->smin_value = smin_ptr; 14635 dst_reg->smax_value = smax_ptr; 14636 dst_reg->umin_value = umin_ptr; 14637 dst_reg->umax_value = umax_ptr; 14638 dst_reg->var_off = ptr_reg->var_off; 14639 dst_reg->off = ptr_reg->off + smin_val; 14640 dst_reg->raw = ptr_reg->raw; 14641 break; 14642 } 14643 /* A new variable offset is created. Note that off_reg->off 14644 * == 0, since it's a scalar. 14645 * dst_reg gets the pointer type and since some positive 14646 * integer value was added to the pointer, give it a new 'id' 14647 * if it's a PTR_TO_PACKET. 14648 * this creates a new 'base' pointer, off_reg (variable) gets 14649 * added into the variable offset, and we copy the fixed offset 14650 * from ptr_reg. 14651 */ 14652 if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) || 14653 check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) { 14654 dst_reg->smin_value = S64_MIN; 14655 dst_reg->smax_value = S64_MAX; 14656 } 14657 if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) || 14658 check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) { 14659 dst_reg->umin_value = 0; 14660 dst_reg->umax_value = U64_MAX; 14661 } 14662 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 14663 dst_reg->off = ptr_reg->off; 14664 dst_reg->raw = ptr_reg->raw; 14665 if (reg_is_pkt_pointer(ptr_reg)) { 14666 dst_reg->id = ++env->id_gen; 14667 /* something was added to pkt_ptr, set range to zero */ 14668 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 14669 } 14670 break; 14671 case BPF_SUB: 14672 if (dst_reg == off_reg) { 14673 /* scalar -= pointer. Creates an unknown scalar */ 14674 verbose(env, "R%d tried to subtract pointer from scalar\n", 14675 dst); 14676 return -EACCES; 14677 } 14678 /* We don't allow subtraction from FP, because (according to 14679 * test_verifier.c test "invalid fp arithmetic", JITs might not 14680 * be able to deal with it. 14681 */ 14682 if (ptr_reg->type == PTR_TO_STACK) { 14683 verbose(env, "R%d subtraction from stack pointer prohibited\n", 14684 dst); 14685 return -EACCES; 14686 } 14687 if (known && (ptr_reg->off - smin_val == 14688 (s64)(s32)(ptr_reg->off - smin_val))) { 14689 /* pointer -= K. Subtract it from fixed offset */ 14690 dst_reg->smin_value = smin_ptr; 14691 dst_reg->smax_value = smax_ptr; 14692 dst_reg->umin_value = umin_ptr; 14693 dst_reg->umax_value = umax_ptr; 14694 dst_reg->var_off = ptr_reg->var_off; 14695 dst_reg->id = ptr_reg->id; 14696 dst_reg->off = ptr_reg->off - smin_val; 14697 dst_reg->raw = ptr_reg->raw; 14698 break; 14699 } 14700 /* A new variable offset is created. If the subtrahend is known 14701 * nonnegative, then any reg->range we had before is still good. 14702 */ 14703 if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) || 14704 check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) { 14705 /* Overflow possible, we know nothing */ 14706 dst_reg->smin_value = S64_MIN; 14707 dst_reg->smax_value = S64_MAX; 14708 } 14709 if (umin_ptr < umax_val) { 14710 /* Overflow possible, we know nothing */ 14711 dst_reg->umin_value = 0; 14712 dst_reg->umax_value = U64_MAX; 14713 } else { 14714 /* Cannot overflow (as long as bounds are consistent) */ 14715 dst_reg->umin_value = umin_ptr - umax_val; 14716 dst_reg->umax_value = umax_ptr - umin_val; 14717 } 14718 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 14719 dst_reg->off = ptr_reg->off; 14720 dst_reg->raw = ptr_reg->raw; 14721 if (reg_is_pkt_pointer(ptr_reg)) { 14722 dst_reg->id = ++env->id_gen; 14723 /* something was added to pkt_ptr, set range to zero */ 14724 if (smin_val < 0) 14725 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 14726 } 14727 break; 14728 case BPF_AND: 14729 case BPF_OR: 14730 case BPF_XOR: 14731 /* bitwise ops on pointers are troublesome, prohibit. */ 14732 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 14733 dst, bpf_alu_string[opcode >> 4]); 14734 return -EACCES; 14735 default: 14736 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 14737 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 14738 dst, bpf_alu_string[opcode >> 4]); 14739 return -EACCES; 14740 } 14741 14742 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 14743 return -EINVAL; 14744 reg_bounds_sync(dst_reg); 14745 bounds_ret = sanitize_check_bounds(env, insn, dst_reg); 14746 if (bounds_ret == -EACCES) 14747 return bounds_ret; 14748 if (sanitize_needed(opcode)) { 14749 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 14750 &info, true); 14751 if (verifier_bug_if(!can_skip_alu_sanitation(env, insn) 14752 && !env->cur_state->speculative 14753 && bounds_ret 14754 && !ret, 14755 env, "Pointer type unsupported by sanitize_check_bounds() not rejected by retrieve_ptr_limit() as required")) { 14756 return -EFAULT; 14757 } 14758 if (ret < 0) 14759 return sanitize_err(env, insn, ret, off_reg, dst_reg); 14760 } 14761 14762 return 0; 14763 } 14764 14765 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 14766 struct bpf_reg_state *src_reg) 14767 { 14768 s32 *dst_smin = &dst_reg->s32_min_value; 14769 s32 *dst_smax = &dst_reg->s32_max_value; 14770 u32 *dst_umin = &dst_reg->u32_min_value; 14771 u32 *dst_umax = &dst_reg->u32_max_value; 14772 u32 umin_val = src_reg->u32_min_value; 14773 u32 umax_val = src_reg->u32_max_value; 14774 bool min_overflow, max_overflow; 14775 14776 if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) || 14777 check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) { 14778 *dst_smin = S32_MIN; 14779 *dst_smax = S32_MAX; 14780 } 14781 14782 /* If either all additions overflow or no additions overflow, then 14783 * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax = 14784 * dst_umax + src_umax. Otherwise (some additions overflow), set 14785 * the output bounds to unbounded. 14786 */ 14787 min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin); 14788 max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax); 14789 14790 if (!min_overflow && max_overflow) { 14791 *dst_umin = 0; 14792 *dst_umax = U32_MAX; 14793 } 14794 } 14795 14796 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 14797 struct bpf_reg_state *src_reg) 14798 { 14799 s64 *dst_smin = &dst_reg->smin_value; 14800 s64 *dst_smax = &dst_reg->smax_value; 14801 u64 *dst_umin = &dst_reg->umin_value; 14802 u64 *dst_umax = &dst_reg->umax_value; 14803 u64 umin_val = src_reg->umin_value; 14804 u64 umax_val = src_reg->umax_value; 14805 bool min_overflow, max_overflow; 14806 14807 if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) || 14808 check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) { 14809 *dst_smin = S64_MIN; 14810 *dst_smax = S64_MAX; 14811 } 14812 14813 /* If either all additions overflow or no additions overflow, then 14814 * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax = 14815 * dst_umax + src_umax. Otherwise (some additions overflow), set 14816 * the output bounds to unbounded. 14817 */ 14818 min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin); 14819 max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax); 14820 14821 if (!min_overflow && max_overflow) { 14822 *dst_umin = 0; 14823 *dst_umax = U64_MAX; 14824 } 14825 } 14826 14827 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 14828 struct bpf_reg_state *src_reg) 14829 { 14830 s32 *dst_smin = &dst_reg->s32_min_value; 14831 s32 *dst_smax = &dst_reg->s32_max_value; 14832 u32 *dst_umin = &dst_reg->u32_min_value; 14833 u32 *dst_umax = &dst_reg->u32_max_value; 14834 u32 umin_val = src_reg->u32_min_value; 14835 u32 umax_val = src_reg->u32_max_value; 14836 bool min_underflow, max_underflow; 14837 14838 if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) || 14839 check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) { 14840 /* Overflow possible, we know nothing */ 14841 *dst_smin = S32_MIN; 14842 *dst_smax = S32_MAX; 14843 } 14844 14845 /* If either all subtractions underflow or no subtractions 14846 * underflow, it is okay to set: dst_umin = dst_umin - src_umax, 14847 * dst_umax = dst_umax - src_umin. Otherwise (some subtractions 14848 * underflow), set the output bounds to unbounded. 14849 */ 14850 min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin); 14851 max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax); 14852 14853 if (min_underflow && !max_underflow) { 14854 *dst_umin = 0; 14855 *dst_umax = U32_MAX; 14856 } 14857 } 14858 14859 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 14860 struct bpf_reg_state *src_reg) 14861 { 14862 s64 *dst_smin = &dst_reg->smin_value; 14863 s64 *dst_smax = &dst_reg->smax_value; 14864 u64 *dst_umin = &dst_reg->umin_value; 14865 u64 *dst_umax = &dst_reg->umax_value; 14866 u64 umin_val = src_reg->umin_value; 14867 u64 umax_val = src_reg->umax_value; 14868 bool min_underflow, max_underflow; 14869 14870 if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) || 14871 check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) { 14872 /* Overflow possible, we know nothing */ 14873 *dst_smin = S64_MIN; 14874 *dst_smax = S64_MAX; 14875 } 14876 14877 /* If either all subtractions underflow or no subtractions 14878 * underflow, it is okay to set: dst_umin = dst_umin - src_umax, 14879 * dst_umax = dst_umax - src_umin. Otherwise (some subtractions 14880 * underflow), set the output bounds to unbounded. 14881 */ 14882 min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin); 14883 max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax); 14884 14885 if (min_underflow && !max_underflow) { 14886 *dst_umin = 0; 14887 *dst_umax = U64_MAX; 14888 } 14889 } 14890 14891 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 14892 struct bpf_reg_state *src_reg) 14893 { 14894 s32 *dst_smin = &dst_reg->s32_min_value; 14895 s32 *dst_smax = &dst_reg->s32_max_value; 14896 u32 *dst_umin = &dst_reg->u32_min_value; 14897 u32 *dst_umax = &dst_reg->u32_max_value; 14898 s32 tmp_prod[4]; 14899 14900 if (check_mul_overflow(*dst_umax, src_reg->u32_max_value, dst_umax) || 14901 check_mul_overflow(*dst_umin, src_reg->u32_min_value, dst_umin)) { 14902 /* Overflow possible, we know nothing */ 14903 *dst_umin = 0; 14904 *dst_umax = U32_MAX; 14905 } 14906 if (check_mul_overflow(*dst_smin, src_reg->s32_min_value, &tmp_prod[0]) || 14907 check_mul_overflow(*dst_smin, src_reg->s32_max_value, &tmp_prod[1]) || 14908 check_mul_overflow(*dst_smax, src_reg->s32_min_value, &tmp_prod[2]) || 14909 check_mul_overflow(*dst_smax, src_reg->s32_max_value, &tmp_prod[3])) { 14910 /* Overflow possible, we know nothing */ 14911 *dst_smin = S32_MIN; 14912 *dst_smax = S32_MAX; 14913 } else { 14914 *dst_smin = min_array(tmp_prod, 4); 14915 *dst_smax = max_array(tmp_prod, 4); 14916 } 14917 } 14918 14919 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 14920 struct bpf_reg_state *src_reg) 14921 { 14922 s64 *dst_smin = &dst_reg->smin_value; 14923 s64 *dst_smax = &dst_reg->smax_value; 14924 u64 *dst_umin = &dst_reg->umin_value; 14925 u64 *dst_umax = &dst_reg->umax_value; 14926 s64 tmp_prod[4]; 14927 14928 if (check_mul_overflow(*dst_umax, src_reg->umax_value, dst_umax) || 14929 check_mul_overflow(*dst_umin, src_reg->umin_value, dst_umin)) { 14930 /* Overflow possible, we know nothing */ 14931 *dst_umin = 0; 14932 *dst_umax = U64_MAX; 14933 } 14934 if (check_mul_overflow(*dst_smin, src_reg->smin_value, &tmp_prod[0]) || 14935 check_mul_overflow(*dst_smin, src_reg->smax_value, &tmp_prod[1]) || 14936 check_mul_overflow(*dst_smax, src_reg->smin_value, &tmp_prod[2]) || 14937 check_mul_overflow(*dst_smax, src_reg->smax_value, &tmp_prod[3])) { 14938 /* Overflow possible, we know nothing */ 14939 *dst_smin = S64_MIN; 14940 *dst_smax = S64_MAX; 14941 } else { 14942 *dst_smin = min_array(tmp_prod, 4); 14943 *dst_smax = max_array(tmp_prod, 4); 14944 } 14945 } 14946 14947 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 14948 struct bpf_reg_state *src_reg) 14949 { 14950 bool src_known = tnum_subreg_is_const(src_reg->var_off); 14951 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 14952 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 14953 u32 umax_val = src_reg->u32_max_value; 14954 14955 if (src_known && dst_known) { 14956 __mark_reg32_known(dst_reg, var32_off.value); 14957 return; 14958 } 14959 14960 /* We get our minimum from the var_off, since that's inherently 14961 * bitwise. Our maximum is the minimum of the operands' maxima. 14962 */ 14963 dst_reg->u32_min_value = var32_off.value; 14964 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 14965 14966 /* Safe to set s32 bounds by casting u32 result into s32 when u32 14967 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 14968 */ 14969 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 14970 dst_reg->s32_min_value = dst_reg->u32_min_value; 14971 dst_reg->s32_max_value = dst_reg->u32_max_value; 14972 } else { 14973 dst_reg->s32_min_value = S32_MIN; 14974 dst_reg->s32_max_value = S32_MAX; 14975 } 14976 } 14977 14978 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 14979 struct bpf_reg_state *src_reg) 14980 { 14981 bool src_known = tnum_is_const(src_reg->var_off); 14982 bool dst_known = tnum_is_const(dst_reg->var_off); 14983 u64 umax_val = src_reg->umax_value; 14984 14985 if (src_known && dst_known) { 14986 __mark_reg_known(dst_reg, dst_reg->var_off.value); 14987 return; 14988 } 14989 14990 /* We get our minimum from the var_off, since that's inherently 14991 * bitwise. Our maximum is the minimum of the operands' maxima. 14992 */ 14993 dst_reg->umin_value = dst_reg->var_off.value; 14994 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 14995 14996 /* Safe to set s64 bounds by casting u64 result into s64 when u64 14997 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 14998 */ 14999 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 15000 dst_reg->smin_value = dst_reg->umin_value; 15001 dst_reg->smax_value = dst_reg->umax_value; 15002 } else { 15003 dst_reg->smin_value = S64_MIN; 15004 dst_reg->smax_value = S64_MAX; 15005 } 15006 /* We may learn something more from the var_off */ 15007 __update_reg_bounds(dst_reg); 15008 } 15009 15010 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 15011 struct bpf_reg_state *src_reg) 15012 { 15013 bool src_known = tnum_subreg_is_const(src_reg->var_off); 15014 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 15015 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 15016 u32 umin_val = src_reg->u32_min_value; 15017 15018 if (src_known && dst_known) { 15019 __mark_reg32_known(dst_reg, var32_off.value); 15020 return; 15021 } 15022 15023 /* We get our maximum from the var_off, and our minimum is the 15024 * maximum of the operands' minima 15025 */ 15026 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 15027 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 15028 15029 /* Safe to set s32 bounds by casting u32 result into s32 when u32 15030 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 15031 */ 15032 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 15033 dst_reg->s32_min_value = dst_reg->u32_min_value; 15034 dst_reg->s32_max_value = dst_reg->u32_max_value; 15035 } else { 15036 dst_reg->s32_min_value = S32_MIN; 15037 dst_reg->s32_max_value = S32_MAX; 15038 } 15039 } 15040 15041 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 15042 struct bpf_reg_state *src_reg) 15043 { 15044 bool src_known = tnum_is_const(src_reg->var_off); 15045 bool dst_known = tnum_is_const(dst_reg->var_off); 15046 u64 umin_val = src_reg->umin_value; 15047 15048 if (src_known && dst_known) { 15049 __mark_reg_known(dst_reg, dst_reg->var_off.value); 15050 return; 15051 } 15052 15053 /* We get our maximum from the var_off, and our minimum is the 15054 * maximum of the operands' minima 15055 */ 15056 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 15057 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 15058 15059 /* Safe to set s64 bounds by casting u64 result into s64 when u64 15060 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 15061 */ 15062 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 15063 dst_reg->smin_value = dst_reg->umin_value; 15064 dst_reg->smax_value = dst_reg->umax_value; 15065 } else { 15066 dst_reg->smin_value = S64_MIN; 15067 dst_reg->smax_value = S64_MAX; 15068 } 15069 /* We may learn something more from the var_off */ 15070 __update_reg_bounds(dst_reg); 15071 } 15072 15073 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 15074 struct bpf_reg_state *src_reg) 15075 { 15076 bool src_known = tnum_subreg_is_const(src_reg->var_off); 15077 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 15078 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 15079 15080 if (src_known && dst_known) { 15081 __mark_reg32_known(dst_reg, var32_off.value); 15082 return; 15083 } 15084 15085 /* We get both minimum and maximum from the var32_off. */ 15086 dst_reg->u32_min_value = var32_off.value; 15087 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 15088 15089 /* Safe to set s32 bounds by casting u32 result into s32 when u32 15090 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 15091 */ 15092 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 15093 dst_reg->s32_min_value = dst_reg->u32_min_value; 15094 dst_reg->s32_max_value = dst_reg->u32_max_value; 15095 } else { 15096 dst_reg->s32_min_value = S32_MIN; 15097 dst_reg->s32_max_value = S32_MAX; 15098 } 15099 } 15100 15101 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 15102 struct bpf_reg_state *src_reg) 15103 { 15104 bool src_known = tnum_is_const(src_reg->var_off); 15105 bool dst_known = tnum_is_const(dst_reg->var_off); 15106 15107 if (src_known && dst_known) { 15108 /* dst_reg->var_off.value has been updated earlier */ 15109 __mark_reg_known(dst_reg, dst_reg->var_off.value); 15110 return; 15111 } 15112 15113 /* We get both minimum and maximum from the var_off. */ 15114 dst_reg->umin_value = dst_reg->var_off.value; 15115 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 15116 15117 /* Safe to set s64 bounds by casting u64 result into s64 when u64 15118 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 15119 */ 15120 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 15121 dst_reg->smin_value = dst_reg->umin_value; 15122 dst_reg->smax_value = dst_reg->umax_value; 15123 } else { 15124 dst_reg->smin_value = S64_MIN; 15125 dst_reg->smax_value = S64_MAX; 15126 } 15127 15128 __update_reg_bounds(dst_reg); 15129 } 15130 15131 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 15132 u64 umin_val, u64 umax_val) 15133 { 15134 /* We lose all sign bit information (except what we can pick 15135 * up from var_off) 15136 */ 15137 dst_reg->s32_min_value = S32_MIN; 15138 dst_reg->s32_max_value = S32_MAX; 15139 /* If we might shift our top bit out, then we know nothing */ 15140 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 15141 dst_reg->u32_min_value = 0; 15142 dst_reg->u32_max_value = U32_MAX; 15143 } else { 15144 dst_reg->u32_min_value <<= umin_val; 15145 dst_reg->u32_max_value <<= umax_val; 15146 } 15147 } 15148 15149 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 15150 struct bpf_reg_state *src_reg) 15151 { 15152 u32 umax_val = src_reg->u32_max_value; 15153 u32 umin_val = src_reg->u32_min_value; 15154 /* u32 alu operation will zext upper bits */ 15155 struct tnum subreg = tnum_subreg(dst_reg->var_off); 15156 15157 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 15158 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 15159 /* Not required but being careful mark reg64 bounds as unknown so 15160 * that we are forced to pick them up from tnum and zext later and 15161 * if some path skips this step we are still safe. 15162 */ 15163 __mark_reg64_unbounded(dst_reg); 15164 __update_reg32_bounds(dst_reg); 15165 } 15166 15167 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 15168 u64 umin_val, u64 umax_val) 15169 { 15170 /* Special case <<32 because it is a common compiler pattern to sign 15171 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 15172 * positive we know this shift will also be positive so we can track 15173 * bounds correctly. Otherwise we lose all sign bit information except 15174 * what we can pick up from var_off. Perhaps we can generalize this 15175 * later to shifts of any length. 15176 */ 15177 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 15178 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 15179 else 15180 dst_reg->smax_value = S64_MAX; 15181 15182 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 15183 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 15184 else 15185 dst_reg->smin_value = S64_MIN; 15186 15187 /* If we might shift our top bit out, then we know nothing */ 15188 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 15189 dst_reg->umin_value = 0; 15190 dst_reg->umax_value = U64_MAX; 15191 } else { 15192 dst_reg->umin_value <<= umin_val; 15193 dst_reg->umax_value <<= umax_val; 15194 } 15195 } 15196 15197 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 15198 struct bpf_reg_state *src_reg) 15199 { 15200 u64 umax_val = src_reg->umax_value; 15201 u64 umin_val = src_reg->umin_value; 15202 15203 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 15204 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 15205 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 15206 15207 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 15208 /* We may learn something more from the var_off */ 15209 __update_reg_bounds(dst_reg); 15210 } 15211 15212 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 15213 struct bpf_reg_state *src_reg) 15214 { 15215 struct tnum subreg = tnum_subreg(dst_reg->var_off); 15216 u32 umax_val = src_reg->u32_max_value; 15217 u32 umin_val = src_reg->u32_min_value; 15218 15219 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 15220 * be negative, then either: 15221 * 1) src_reg might be zero, so the sign bit of the result is 15222 * unknown, so we lose our signed bounds 15223 * 2) it's known negative, thus the unsigned bounds capture the 15224 * signed bounds 15225 * 3) the signed bounds cross zero, so they tell us nothing 15226 * about the result 15227 * If the value in dst_reg is known nonnegative, then again the 15228 * unsigned bounds capture the signed bounds. 15229 * Thus, in all cases it suffices to blow away our signed bounds 15230 * and rely on inferring new ones from the unsigned bounds and 15231 * var_off of the result. 15232 */ 15233 dst_reg->s32_min_value = S32_MIN; 15234 dst_reg->s32_max_value = S32_MAX; 15235 15236 dst_reg->var_off = tnum_rshift(subreg, umin_val); 15237 dst_reg->u32_min_value >>= umax_val; 15238 dst_reg->u32_max_value >>= umin_val; 15239 15240 __mark_reg64_unbounded(dst_reg); 15241 __update_reg32_bounds(dst_reg); 15242 } 15243 15244 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 15245 struct bpf_reg_state *src_reg) 15246 { 15247 u64 umax_val = src_reg->umax_value; 15248 u64 umin_val = src_reg->umin_value; 15249 15250 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 15251 * be negative, then either: 15252 * 1) src_reg might be zero, so the sign bit of the result is 15253 * unknown, so we lose our signed bounds 15254 * 2) it's known negative, thus the unsigned bounds capture the 15255 * signed bounds 15256 * 3) the signed bounds cross zero, so they tell us nothing 15257 * about the result 15258 * If the value in dst_reg is known nonnegative, then again the 15259 * unsigned bounds capture the signed bounds. 15260 * Thus, in all cases it suffices to blow away our signed bounds 15261 * and rely on inferring new ones from the unsigned bounds and 15262 * var_off of the result. 15263 */ 15264 dst_reg->smin_value = S64_MIN; 15265 dst_reg->smax_value = S64_MAX; 15266 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 15267 dst_reg->umin_value >>= umax_val; 15268 dst_reg->umax_value >>= umin_val; 15269 15270 /* Its not easy to operate on alu32 bounds here because it depends 15271 * on bits being shifted in. Take easy way out and mark unbounded 15272 * so we can recalculate later from tnum. 15273 */ 15274 __mark_reg32_unbounded(dst_reg); 15275 __update_reg_bounds(dst_reg); 15276 } 15277 15278 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 15279 struct bpf_reg_state *src_reg) 15280 { 15281 u64 umin_val = src_reg->u32_min_value; 15282 15283 /* Upon reaching here, src_known is true and 15284 * umax_val is equal to umin_val. 15285 */ 15286 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 15287 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 15288 15289 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 15290 15291 /* blow away the dst_reg umin_value/umax_value and rely on 15292 * dst_reg var_off to refine the result. 15293 */ 15294 dst_reg->u32_min_value = 0; 15295 dst_reg->u32_max_value = U32_MAX; 15296 15297 __mark_reg64_unbounded(dst_reg); 15298 __update_reg32_bounds(dst_reg); 15299 } 15300 15301 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 15302 struct bpf_reg_state *src_reg) 15303 { 15304 u64 umin_val = src_reg->umin_value; 15305 15306 /* Upon reaching here, src_known is true and umax_val is equal 15307 * to umin_val. 15308 */ 15309 dst_reg->smin_value >>= umin_val; 15310 dst_reg->smax_value >>= umin_val; 15311 15312 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 15313 15314 /* blow away the dst_reg umin_value/umax_value and rely on 15315 * dst_reg var_off to refine the result. 15316 */ 15317 dst_reg->umin_value = 0; 15318 dst_reg->umax_value = U64_MAX; 15319 15320 /* Its not easy to operate on alu32 bounds here because it depends 15321 * on bits being shifted in from upper 32-bits. Take easy way out 15322 * and mark unbounded so we can recalculate later from tnum. 15323 */ 15324 __mark_reg32_unbounded(dst_reg); 15325 __update_reg_bounds(dst_reg); 15326 } 15327 15328 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn, 15329 const struct bpf_reg_state *src_reg) 15330 { 15331 bool src_is_const = false; 15332 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 15333 15334 if (insn_bitness == 32) { 15335 if (tnum_subreg_is_const(src_reg->var_off) 15336 && src_reg->s32_min_value == src_reg->s32_max_value 15337 && src_reg->u32_min_value == src_reg->u32_max_value) 15338 src_is_const = true; 15339 } else { 15340 if (tnum_is_const(src_reg->var_off) 15341 && src_reg->smin_value == src_reg->smax_value 15342 && src_reg->umin_value == src_reg->umax_value) 15343 src_is_const = true; 15344 } 15345 15346 switch (BPF_OP(insn->code)) { 15347 case BPF_ADD: 15348 case BPF_SUB: 15349 case BPF_NEG: 15350 case BPF_AND: 15351 case BPF_XOR: 15352 case BPF_OR: 15353 case BPF_MUL: 15354 return true; 15355 15356 /* Shift operators range is only computable if shift dimension operand 15357 * is a constant. Shifts greater than 31 or 63 are undefined. This 15358 * includes shifts by a negative number. 15359 */ 15360 case BPF_LSH: 15361 case BPF_RSH: 15362 case BPF_ARSH: 15363 return (src_is_const && src_reg->umax_value < insn_bitness); 15364 default: 15365 return false; 15366 } 15367 } 15368 15369 /* WARNING: This function does calculations on 64-bit values, but the actual 15370 * execution may occur on 32-bit values. Therefore, things like bitshifts 15371 * need extra checks in the 32-bit case. 15372 */ 15373 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 15374 struct bpf_insn *insn, 15375 struct bpf_reg_state *dst_reg, 15376 struct bpf_reg_state src_reg) 15377 { 15378 u8 opcode = BPF_OP(insn->code); 15379 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 15380 int ret; 15381 15382 if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) { 15383 __mark_reg_unknown(env, dst_reg); 15384 return 0; 15385 } 15386 15387 if (sanitize_needed(opcode)) { 15388 ret = sanitize_val_alu(env, insn); 15389 if (ret < 0) 15390 return sanitize_err(env, insn, ret, NULL, NULL); 15391 } 15392 15393 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 15394 * There are two classes of instructions: The first class we track both 15395 * alu32 and alu64 sign/unsigned bounds independently this provides the 15396 * greatest amount of precision when alu operations are mixed with jmp32 15397 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 15398 * and BPF_OR. This is possible because these ops have fairly easy to 15399 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 15400 * See alu32 verifier tests for examples. The second class of 15401 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 15402 * with regards to tracking sign/unsigned bounds because the bits may 15403 * cross subreg boundaries in the alu64 case. When this happens we mark 15404 * the reg unbounded in the subreg bound space and use the resulting 15405 * tnum to calculate an approximation of the sign/unsigned bounds. 15406 */ 15407 switch (opcode) { 15408 case BPF_ADD: 15409 scalar32_min_max_add(dst_reg, &src_reg); 15410 scalar_min_max_add(dst_reg, &src_reg); 15411 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 15412 break; 15413 case BPF_SUB: 15414 scalar32_min_max_sub(dst_reg, &src_reg); 15415 scalar_min_max_sub(dst_reg, &src_reg); 15416 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 15417 break; 15418 case BPF_NEG: 15419 env->fake_reg[0] = *dst_reg; 15420 __mark_reg_known(dst_reg, 0); 15421 scalar32_min_max_sub(dst_reg, &env->fake_reg[0]); 15422 scalar_min_max_sub(dst_reg, &env->fake_reg[0]); 15423 dst_reg->var_off = tnum_neg(env->fake_reg[0].var_off); 15424 break; 15425 case BPF_MUL: 15426 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 15427 scalar32_min_max_mul(dst_reg, &src_reg); 15428 scalar_min_max_mul(dst_reg, &src_reg); 15429 break; 15430 case BPF_AND: 15431 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 15432 scalar32_min_max_and(dst_reg, &src_reg); 15433 scalar_min_max_and(dst_reg, &src_reg); 15434 break; 15435 case BPF_OR: 15436 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 15437 scalar32_min_max_or(dst_reg, &src_reg); 15438 scalar_min_max_or(dst_reg, &src_reg); 15439 break; 15440 case BPF_XOR: 15441 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 15442 scalar32_min_max_xor(dst_reg, &src_reg); 15443 scalar_min_max_xor(dst_reg, &src_reg); 15444 break; 15445 case BPF_LSH: 15446 if (alu32) 15447 scalar32_min_max_lsh(dst_reg, &src_reg); 15448 else 15449 scalar_min_max_lsh(dst_reg, &src_reg); 15450 break; 15451 case BPF_RSH: 15452 if (alu32) 15453 scalar32_min_max_rsh(dst_reg, &src_reg); 15454 else 15455 scalar_min_max_rsh(dst_reg, &src_reg); 15456 break; 15457 case BPF_ARSH: 15458 if (alu32) 15459 scalar32_min_max_arsh(dst_reg, &src_reg); 15460 else 15461 scalar_min_max_arsh(dst_reg, &src_reg); 15462 break; 15463 default: 15464 break; 15465 } 15466 15467 /* ALU32 ops are zero extended into 64bit register */ 15468 if (alu32) 15469 zext_32_to_64(dst_reg); 15470 reg_bounds_sync(dst_reg); 15471 return 0; 15472 } 15473 15474 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 15475 * and var_off. 15476 */ 15477 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 15478 struct bpf_insn *insn) 15479 { 15480 struct bpf_verifier_state *vstate = env->cur_state; 15481 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 15482 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 15483 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 15484 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 15485 u8 opcode = BPF_OP(insn->code); 15486 int err; 15487 15488 dst_reg = ®s[insn->dst_reg]; 15489 src_reg = NULL; 15490 15491 if (dst_reg->type == PTR_TO_ARENA) { 15492 struct bpf_insn_aux_data *aux = cur_aux(env); 15493 15494 if (BPF_CLASS(insn->code) == BPF_ALU64) 15495 /* 15496 * 32-bit operations zero upper bits automatically. 15497 * 64-bit operations need to be converted to 32. 15498 */ 15499 aux->needs_zext = true; 15500 15501 /* Any arithmetic operations are allowed on arena pointers */ 15502 return 0; 15503 } 15504 15505 if (dst_reg->type != SCALAR_VALUE) 15506 ptr_reg = dst_reg; 15507 15508 if (BPF_SRC(insn->code) == BPF_X) { 15509 src_reg = ®s[insn->src_reg]; 15510 if (src_reg->type != SCALAR_VALUE) { 15511 if (dst_reg->type != SCALAR_VALUE) { 15512 /* Combining two pointers by any ALU op yields 15513 * an arbitrary scalar. Disallow all math except 15514 * pointer subtraction 15515 */ 15516 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 15517 mark_reg_unknown(env, regs, insn->dst_reg); 15518 return 0; 15519 } 15520 verbose(env, "R%d pointer %s pointer prohibited\n", 15521 insn->dst_reg, 15522 bpf_alu_string[opcode >> 4]); 15523 return -EACCES; 15524 } else { 15525 /* scalar += pointer 15526 * This is legal, but we have to reverse our 15527 * src/dest handling in computing the range 15528 */ 15529 err = mark_chain_precision(env, insn->dst_reg); 15530 if (err) 15531 return err; 15532 return adjust_ptr_min_max_vals(env, insn, 15533 src_reg, dst_reg); 15534 } 15535 } else if (ptr_reg) { 15536 /* pointer += scalar */ 15537 err = mark_chain_precision(env, insn->src_reg); 15538 if (err) 15539 return err; 15540 return adjust_ptr_min_max_vals(env, insn, 15541 dst_reg, src_reg); 15542 } else if (dst_reg->precise) { 15543 /* if dst_reg is precise, src_reg should be precise as well */ 15544 err = mark_chain_precision(env, insn->src_reg); 15545 if (err) 15546 return err; 15547 } 15548 } else { 15549 /* Pretend the src is a reg with a known value, since we only 15550 * need to be able to read from this state. 15551 */ 15552 off_reg.type = SCALAR_VALUE; 15553 __mark_reg_known(&off_reg, insn->imm); 15554 src_reg = &off_reg; 15555 if (ptr_reg) /* pointer += K */ 15556 return adjust_ptr_min_max_vals(env, insn, 15557 ptr_reg, src_reg); 15558 } 15559 15560 /* Got here implies adding two SCALAR_VALUEs */ 15561 if (WARN_ON_ONCE(ptr_reg)) { 15562 print_verifier_state(env, vstate, vstate->curframe, true); 15563 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 15564 return -EFAULT; 15565 } 15566 if (WARN_ON(!src_reg)) { 15567 print_verifier_state(env, vstate, vstate->curframe, true); 15568 verbose(env, "verifier internal error: no src_reg\n"); 15569 return -EFAULT; 15570 } 15571 err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 15572 if (err) 15573 return err; 15574 /* 15575 * Compilers can generate the code 15576 * r1 = r2 15577 * r1 += 0x1 15578 * if r2 < 1000 goto ... 15579 * use r1 in memory access 15580 * So for 64-bit alu remember constant delta between r2 and r1 and 15581 * update r1 after 'if' condition. 15582 */ 15583 if (env->bpf_capable && 15584 BPF_OP(insn->code) == BPF_ADD && !alu32 && 15585 dst_reg->id && is_reg_const(src_reg, false)) { 15586 u64 val = reg_const_value(src_reg, false); 15587 15588 if ((dst_reg->id & BPF_ADD_CONST) || 15589 /* prevent overflow in sync_linked_regs() later */ 15590 val > (u32)S32_MAX) { 15591 /* 15592 * If the register already went through rX += val 15593 * we cannot accumulate another val into rx->off. 15594 */ 15595 dst_reg->off = 0; 15596 dst_reg->id = 0; 15597 } else { 15598 dst_reg->id |= BPF_ADD_CONST; 15599 dst_reg->off = val; 15600 } 15601 } else { 15602 /* 15603 * Make sure ID is cleared otherwise dst_reg min/max could be 15604 * incorrectly propagated into other registers by sync_linked_regs() 15605 */ 15606 dst_reg->id = 0; 15607 } 15608 return 0; 15609 } 15610 15611 /* check validity of 32-bit and 64-bit arithmetic operations */ 15612 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 15613 { 15614 struct bpf_reg_state *regs = cur_regs(env); 15615 u8 opcode = BPF_OP(insn->code); 15616 int err; 15617 15618 if (opcode == BPF_END || opcode == BPF_NEG) { 15619 if (opcode == BPF_NEG) { 15620 if (BPF_SRC(insn->code) != BPF_K || 15621 insn->src_reg != BPF_REG_0 || 15622 insn->off != 0 || insn->imm != 0) { 15623 verbose(env, "BPF_NEG uses reserved fields\n"); 15624 return -EINVAL; 15625 } 15626 } else { 15627 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 15628 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 15629 (BPF_CLASS(insn->code) == BPF_ALU64 && 15630 BPF_SRC(insn->code) != BPF_TO_LE)) { 15631 verbose(env, "BPF_END uses reserved fields\n"); 15632 return -EINVAL; 15633 } 15634 } 15635 15636 /* check src operand */ 15637 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 15638 if (err) 15639 return err; 15640 15641 if (is_pointer_value(env, insn->dst_reg)) { 15642 verbose(env, "R%d pointer arithmetic prohibited\n", 15643 insn->dst_reg); 15644 return -EACCES; 15645 } 15646 15647 /* check dest operand */ 15648 if (opcode == BPF_NEG && 15649 regs[insn->dst_reg].type == SCALAR_VALUE) { 15650 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 15651 err = err ?: adjust_scalar_min_max_vals(env, insn, 15652 ®s[insn->dst_reg], 15653 regs[insn->dst_reg]); 15654 } else { 15655 err = check_reg_arg(env, insn->dst_reg, DST_OP); 15656 } 15657 if (err) 15658 return err; 15659 15660 } else if (opcode == BPF_MOV) { 15661 15662 if (BPF_SRC(insn->code) == BPF_X) { 15663 if (BPF_CLASS(insn->code) == BPF_ALU) { 15664 if ((insn->off != 0 && insn->off != 8 && insn->off != 16) || 15665 insn->imm) { 15666 verbose(env, "BPF_MOV uses reserved fields\n"); 15667 return -EINVAL; 15668 } 15669 } else if (insn->off == BPF_ADDR_SPACE_CAST) { 15670 if (insn->imm != 1 && insn->imm != 1u << 16) { 15671 verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n"); 15672 return -EINVAL; 15673 } 15674 if (!env->prog->aux->arena) { 15675 verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n"); 15676 return -EINVAL; 15677 } 15678 } else { 15679 if ((insn->off != 0 && insn->off != 8 && insn->off != 16 && 15680 insn->off != 32) || insn->imm) { 15681 verbose(env, "BPF_MOV uses reserved fields\n"); 15682 return -EINVAL; 15683 } 15684 } 15685 15686 /* check src operand */ 15687 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15688 if (err) 15689 return err; 15690 } else { 15691 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 15692 verbose(env, "BPF_MOV uses reserved fields\n"); 15693 return -EINVAL; 15694 } 15695 } 15696 15697 /* check dest operand, mark as required later */ 15698 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 15699 if (err) 15700 return err; 15701 15702 if (BPF_SRC(insn->code) == BPF_X) { 15703 struct bpf_reg_state *src_reg = regs + insn->src_reg; 15704 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 15705 15706 if (BPF_CLASS(insn->code) == BPF_ALU64) { 15707 if (insn->imm) { 15708 /* off == BPF_ADDR_SPACE_CAST */ 15709 mark_reg_unknown(env, regs, insn->dst_reg); 15710 if (insn->imm == 1) { /* cast from as(1) to as(0) */ 15711 dst_reg->type = PTR_TO_ARENA; 15712 /* PTR_TO_ARENA is 32-bit */ 15713 dst_reg->subreg_def = env->insn_idx + 1; 15714 } 15715 } else if (insn->off == 0) { 15716 /* case: R1 = R2 15717 * copy register state to dest reg 15718 */ 15719 assign_scalar_id_before_mov(env, src_reg); 15720 copy_register_state(dst_reg, src_reg); 15721 dst_reg->subreg_def = DEF_NOT_SUBREG; 15722 } else { 15723 /* case: R1 = (s8, s16 s32)R2 */ 15724 if (is_pointer_value(env, insn->src_reg)) { 15725 verbose(env, 15726 "R%d sign-extension part of pointer\n", 15727 insn->src_reg); 15728 return -EACCES; 15729 } else if (src_reg->type == SCALAR_VALUE) { 15730 bool no_sext; 15731 15732 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 15733 if (no_sext) 15734 assign_scalar_id_before_mov(env, src_reg); 15735 copy_register_state(dst_reg, src_reg); 15736 if (!no_sext) 15737 dst_reg->id = 0; 15738 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 15739 dst_reg->subreg_def = DEF_NOT_SUBREG; 15740 } else { 15741 mark_reg_unknown(env, regs, insn->dst_reg); 15742 } 15743 } 15744 } else { 15745 /* R1 = (u32) R2 */ 15746 if (is_pointer_value(env, insn->src_reg)) { 15747 verbose(env, 15748 "R%d partial copy of pointer\n", 15749 insn->src_reg); 15750 return -EACCES; 15751 } else if (src_reg->type == SCALAR_VALUE) { 15752 if (insn->off == 0) { 15753 bool is_src_reg_u32 = get_reg_width(src_reg) <= 32; 15754 15755 if (is_src_reg_u32) 15756 assign_scalar_id_before_mov(env, src_reg); 15757 copy_register_state(dst_reg, src_reg); 15758 /* Make sure ID is cleared if src_reg is not in u32 15759 * range otherwise dst_reg min/max could be incorrectly 15760 * propagated into src_reg by sync_linked_regs() 15761 */ 15762 if (!is_src_reg_u32) 15763 dst_reg->id = 0; 15764 dst_reg->subreg_def = env->insn_idx + 1; 15765 } else { 15766 /* case: W1 = (s8, s16)W2 */ 15767 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 15768 15769 if (no_sext) 15770 assign_scalar_id_before_mov(env, src_reg); 15771 copy_register_state(dst_reg, src_reg); 15772 if (!no_sext) 15773 dst_reg->id = 0; 15774 dst_reg->subreg_def = env->insn_idx + 1; 15775 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 15776 } 15777 } else { 15778 mark_reg_unknown(env, regs, 15779 insn->dst_reg); 15780 } 15781 zext_32_to_64(dst_reg); 15782 reg_bounds_sync(dst_reg); 15783 } 15784 } else { 15785 /* case: R = imm 15786 * remember the value we stored into this reg 15787 */ 15788 /* clear any state __mark_reg_known doesn't set */ 15789 mark_reg_unknown(env, regs, insn->dst_reg); 15790 regs[insn->dst_reg].type = SCALAR_VALUE; 15791 if (BPF_CLASS(insn->code) == BPF_ALU64) { 15792 __mark_reg_known(regs + insn->dst_reg, 15793 insn->imm); 15794 } else { 15795 __mark_reg_known(regs + insn->dst_reg, 15796 (u32)insn->imm); 15797 } 15798 } 15799 15800 } else if (opcode > BPF_END) { 15801 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 15802 return -EINVAL; 15803 15804 } else { /* all other ALU ops: and, sub, xor, add, ... */ 15805 15806 if (BPF_SRC(insn->code) == BPF_X) { 15807 if (insn->imm != 0 || (insn->off != 0 && insn->off != 1) || 15808 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 15809 verbose(env, "BPF_ALU uses reserved fields\n"); 15810 return -EINVAL; 15811 } 15812 /* check src1 operand */ 15813 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15814 if (err) 15815 return err; 15816 } else { 15817 if (insn->src_reg != BPF_REG_0 || (insn->off != 0 && insn->off != 1) || 15818 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 15819 verbose(env, "BPF_ALU uses reserved fields\n"); 15820 return -EINVAL; 15821 } 15822 } 15823 15824 /* check src2 operand */ 15825 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 15826 if (err) 15827 return err; 15828 15829 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 15830 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 15831 verbose(env, "div by zero\n"); 15832 return -EINVAL; 15833 } 15834 15835 if ((opcode == BPF_LSH || opcode == BPF_RSH || 15836 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 15837 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 15838 15839 if (insn->imm < 0 || insn->imm >= size) { 15840 verbose(env, "invalid shift %d\n", insn->imm); 15841 return -EINVAL; 15842 } 15843 } 15844 15845 /* check dest operand */ 15846 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 15847 err = err ?: adjust_reg_min_max_vals(env, insn); 15848 if (err) 15849 return err; 15850 } 15851 15852 return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu"); 15853 } 15854 15855 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 15856 struct bpf_reg_state *dst_reg, 15857 enum bpf_reg_type type, 15858 bool range_right_open) 15859 { 15860 struct bpf_func_state *state; 15861 struct bpf_reg_state *reg; 15862 int new_range; 15863 15864 if (dst_reg->off < 0 || 15865 (dst_reg->off == 0 && range_right_open)) 15866 /* This doesn't give us any range */ 15867 return; 15868 15869 if (dst_reg->umax_value > MAX_PACKET_OFF || 15870 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 15871 /* Risk of overflow. For instance, ptr + (1<<63) may be less 15872 * than pkt_end, but that's because it's also less than pkt. 15873 */ 15874 return; 15875 15876 new_range = dst_reg->off; 15877 if (range_right_open) 15878 new_range++; 15879 15880 /* Examples for register markings: 15881 * 15882 * pkt_data in dst register: 15883 * 15884 * r2 = r3; 15885 * r2 += 8; 15886 * if (r2 > pkt_end) goto <handle exception> 15887 * <access okay> 15888 * 15889 * r2 = r3; 15890 * r2 += 8; 15891 * if (r2 < pkt_end) goto <access okay> 15892 * <handle exception> 15893 * 15894 * Where: 15895 * r2 == dst_reg, pkt_end == src_reg 15896 * r2=pkt(id=n,off=8,r=0) 15897 * r3=pkt(id=n,off=0,r=0) 15898 * 15899 * pkt_data in src register: 15900 * 15901 * r2 = r3; 15902 * r2 += 8; 15903 * if (pkt_end >= r2) goto <access okay> 15904 * <handle exception> 15905 * 15906 * r2 = r3; 15907 * r2 += 8; 15908 * if (pkt_end <= r2) goto <handle exception> 15909 * <access okay> 15910 * 15911 * Where: 15912 * pkt_end == dst_reg, r2 == src_reg 15913 * r2=pkt(id=n,off=8,r=0) 15914 * r3=pkt(id=n,off=0,r=0) 15915 * 15916 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 15917 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 15918 * and [r3, r3 + 8-1) respectively is safe to access depending on 15919 * the check. 15920 */ 15921 15922 /* If our ids match, then we must have the same max_value. And we 15923 * don't care about the other reg's fixed offset, since if it's too big 15924 * the range won't allow anything. 15925 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 15926 */ 15927 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 15928 if (reg->type == type && reg->id == dst_reg->id) 15929 /* keep the maximum range already checked */ 15930 reg->range = max(reg->range, new_range); 15931 })); 15932 } 15933 15934 /* 15935 * <reg1> <op> <reg2>, currently assuming reg2 is a constant 15936 */ 15937 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 15938 u8 opcode, bool is_jmp32) 15939 { 15940 struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; 15941 struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; 15942 u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; 15943 u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; 15944 s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; 15945 s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; 15946 u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; 15947 u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; 15948 s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; 15949 s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; 15950 15951 switch (opcode) { 15952 case BPF_JEQ: 15953 /* constants, umin/umax and smin/smax checks would be 15954 * redundant in this case because they all should match 15955 */ 15956 if (tnum_is_const(t1) && tnum_is_const(t2)) 15957 return t1.value == t2.value; 15958 if (!tnum_overlap(t1, t2)) 15959 return 0; 15960 /* non-overlapping ranges */ 15961 if (umin1 > umax2 || umax1 < umin2) 15962 return 0; 15963 if (smin1 > smax2 || smax1 < smin2) 15964 return 0; 15965 if (!is_jmp32) { 15966 /* if 64-bit ranges are inconclusive, see if we can 15967 * utilize 32-bit subrange knowledge to eliminate 15968 * branches that can't be taken a priori 15969 */ 15970 if (reg1->u32_min_value > reg2->u32_max_value || 15971 reg1->u32_max_value < reg2->u32_min_value) 15972 return 0; 15973 if (reg1->s32_min_value > reg2->s32_max_value || 15974 reg1->s32_max_value < reg2->s32_min_value) 15975 return 0; 15976 } 15977 break; 15978 case BPF_JNE: 15979 /* constants, umin/umax and smin/smax checks would be 15980 * redundant in this case because they all should match 15981 */ 15982 if (tnum_is_const(t1) && tnum_is_const(t2)) 15983 return t1.value != t2.value; 15984 if (!tnum_overlap(t1, t2)) 15985 return 1; 15986 /* non-overlapping ranges */ 15987 if (umin1 > umax2 || umax1 < umin2) 15988 return 1; 15989 if (smin1 > smax2 || smax1 < smin2) 15990 return 1; 15991 if (!is_jmp32) { 15992 /* if 64-bit ranges are inconclusive, see if we can 15993 * utilize 32-bit subrange knowledge to eliminate 15994 * branches that can't be taken a priori 15995 */ 15996 if (reg1->u32_min_value > reg2->u32_max_value || 15997 reg1->u32_max_value < reg2->u32_min_value) 15998 return 1; 15999 if (reg1->s32_min_value > reg2->s32_max_value || 16000 reg1->s32_max_value < reg2->s32_min_value) 16001 return 1; 16002 } 16003 break; 16004 case BPF_JSET: 16005 if (!is_reg_const(reg2, is_jmp32)) { 16006 swap(reg1, reg2); 16007 swap(t1, t2); 16008 } 16009 if (!is_reg_const(reg2, is_jmp32)) 16010 return -1; 16011 if ((~t1.mask & t1.value) & t2.value) 16012 return 1; 16013 if (!((t1.mask | t1.value) & t2.value)) 16014 return 0; 16015 break; 16016 case BPF_JGT: 16017 if (umin1 > umax2) 16018 return 1; 16019 else if (umax1 <= umin2) 16020 return 0; 16021 break; 16022 case BPF_JSGT: 16023 if (smin1 > smax2) 16024 return 1; 16025 else if (smax1 <= smin2) 16026 return 0; 16027 break; 16028 case BPF_JLT: 16029 if (umax1 < umin2) 16030 return 1; 16031 else if (umin1 >= umax2) 16032 return 0; 16033 break; 16034 case BPF_JSLT: 16035 if (smax1 < smin2) 16036 return 1; 16037 else if (smin1 >= smax2) 16038 return 0; 16039 break; 16040 case BPF_JGE: 16041 if (umin1 >= umax2) 16042 return 1; 16043 else if (umax1 < umin2) 16044 return 0; 16045 break; 16046 case BPF_JSGE: 16047 if (smin1 >= smax2) 16048 return 1; 16049 else if (smax1 < smin2) 16050 return 0; 16051 break; 16052 case BPF_JLE: 16053 if (umax1 <= umin2) 16054 return 1; 16055 else if (umin1 > umax2) 16056 return 0; 16057 break; 16058 case BPF_JSLE: 16059 if (smax1 <= smin2) 16060 return 1; 16061 else if (smin1 > smax2) 16062 return 0; 16063 break; 16064 } 16065 16066 return -1; 16067 } 16068 16069 static int flip_opcode(u32 opcode) 16070 { 16071 /* How can we transform "a <op> b" into "b <op> a"? */ 16072 static const u8 opcode_flip[16] = { 16073 /* these stay the same */ 16074 [BPF_JEQ >> 4] = BPF_JEQ, 16075 [BPF_JNE >> 4] = BPF_JNE, 16076 [BPF_JSET >> 4] = BPF_JSET, 16077 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 16078 [BPF_JGE >> 4] = BPF_JLE, 16079 [BPF_JGT >> 4] = BPF_JLT, 16080 [BPF_JLE >> 4] = BPF_JGE, 16081 [BPF_JLT >> 4] = BPF_JGT, 16082 [BPF_JSGE >> 4] = BPF_JSLE, 16083 [BPF_JSGT >> 4] = BPF_JSLT, 16084 [BPF_JSLE >> 4] = BPF_JSGE, 16085 [BPF_JSLT >> 4] = BPF_JSGT 16086 }; 16087 return opcode_flip[opcode >> 4]; 16088 } 16089 16090 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 16091 struct bpf_reg_state *src_reg, 16092 u8 opcode) 16093 { 16094 struct bpf_reg_state *pkt; 16095 16096 if (src_reg->type == PTR_TO_PACKET_END) { 16097 pkt = dst_reg; 16098 } else if (dst_reg->type == PTR_TO_PACKET_END) { 16099 pkt = src_reg; 16100 opcode = flip_opcode(opcode); 16101 } else { 16102 return -1; 16103 } 16104 16105 if (pkt->range >= 0) 16106 return -1; 16107 16108 switch (opcode) { 16109 case BPF_JLE: 16110 /* pkt <= pkt_end */ 16111 fallthrough; 16112 case BPF_JGT: 16113 /* pkt > pkt_end */ 16114 if (pkt->range == BEYOND_PKT_END) 16115 /* pkt has at last one extra byte beyond pkt_end */ 16116 return opcode == BPF_JGT; 16117 break; 16118 case BPF_JLT: 16119 /* pkt < pkt_end */ 16120 fallthrough; 16121 case BPF_JGE: 16122 /* pkt >= pkt_end */ 16123 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 16124 return opcode == BPF_JGE; 16125 break; 16126 } 16127 return -1; 16128 } 16129 16130 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;" 16131 * and return: 16132 * 1 - branch will be taken and "goto target" will be executed 16133 * 0 - branch will not be taken and fall-through to next insn 16134 * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value 16135 * range [0,10] 16136 */ 16137 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 16138 u8 opcode, bool is_jmp32) 16139 { 16140 if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32) 16141 return is_pkt_ptr_branch_taken(reg1, reg2, opcode); 16142 16143 if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) { 16144 u64 val; 16145 16146 /* arrange that reg2 is a scalar, and reg1 is a pointer */ 16147 if (!is_reg_const(reg2, is_jmp32)) { 16148 opcode = flip_opcode(opcode); 16149 swap(reg1, reg2); 16150 } 16151 /* and ensure that reg2 is a constant */ 16152 if (!is_reg_const(reg2, is_jmp32)) 16153 return -1; 16154 16155 if (!reg_not_null(reg1)) 16156 return -1; 16157 16158 /* If pointer is valid tests against zero will fail so we can 16159 * use this to direct branch taken. 16160 */ 16161 val = reg_const_value(reg2, is_jmp32); 16162 if (val != 0) 16163 return -1; 16164 16165 switch (opcode) { 16166 case BPF_JEQ: 16167 return 0; 16168 case BPF_JNE: 16169 return 1; 16170 default: 16171 return -1; 16172 } 16173 } 16174 16175 /* now deal with two scalars, but not necessarily constants */ 16176 return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32); 16177 } 16178 16179 /* Opcode that corresponds to a *false* branch condition. 16180 * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2 16181 */ 16182 static u8 rev_opcode(u8 opcode) 16183 { 16184 switch (opcode) { 16185 case BPF_JEQ: return BPF_JNE; 16186 case BPF_JNE: return BPF_JEQ; 16187 /* JSET doesn't have it's reverse opcode in BPF, so add 16188 * BPF_X flag to denote the reverse of that operation 16189 */ 16190 case BPF_JSET: return BPF_JSET | BPF_X; 16191 case BPF_JSET | BPF_X: return BPF_JSET; 16192 case BPF_JGE: return BPF_JLT; 16193 case BPF_JGT: return BPF_JLE; 16194 case BPF_JLE: return BPF_JGT; 16195 case BPF_JLT: return BPF_JGE; 16196 case BPF_JSGE: return BPF_JSLT; 16197 case BPF_JSGT: return BPF_JSLE; 16198 case BPF_JSLE: return BPF_JSGT; 16199 case BPF_JSLT: return BPF_JSGE; 16200 default: return 0; 16201 } 16202 } 16203 16204 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */ 16205 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 16206 u8 opcode, bool is_jmp32) 16207 { 16208 struct tnum t; 16209 u64 val; 16210 16211 /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */ 16212 switch (opcode) { 16213 case BPF_JGE: 16214 case BPF_JGT: 16215 case BPF_JSGE: 16216 case BPF_JSGT: 16217 opcode = flip_opcode(opcode); 16218 swap(reg1, reg2); 16219 break; 16220 default: 16221 break; 16222 } 16223 16224 switch (opcode) { 16225 case BPF_JEQ: 16226 if (is_jmp32) { 16227 reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 16228 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 16229 reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 16230 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 16231 reg2->u32_min_value = reg1->u32_min_value; 16232 reg2->u32_max_value = reg1->u32_max_value; 16233 reg2->s32_min_value = reg1->s32_min_value; 16234 reg2->s32_max_value = reg1->s32_max_value; 16235 16236 t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); 16237 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 16238 reg2->var_off = tnum_with_subreg(reg2->var_off, t); 16239 } else { 16240 reg1->umin_value = max(reg1->umin_value, reg2->umin_value); 16241 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 16242 reg1->smin_value = max(reg1->smin_value, reg2->smin_value); 16243 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 16244 reg2->umin_value = reg1->umin_value; 16245 reg2->umax_value = reg1->umax_value; 16246 reg2->smin_value = reg1->smin_value; 16247 reg2->smax_value = reg1->smax_value; 16248 16249 reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off); 16250 reg2->var_off = reg1->var_off; 16251 } 16252 break; 16253 case BPF_JNE: 16254 if (!is_reg_const(reg2, is_jmp32)) 16255 swap(reg1, reg2); 16256 if (!is_reg_const(reg2, is_jmp32)) 16257 break; 16258 16259 /* try to recompute the bound of reg1 if reg2 is a const and 16260 * is exactly the edge of reg1. 16261 */ 16262 val = reg_const_value(reg2, is_jmp32); 16263 if (is_jmp32) { 16264 /* u32_min_value is not equal to 0xffffffff at this point, 16265 * because otherwise u32_max_value is 0xffffffff as well, 16266 * in such a case both reg1 and reg2 would be constants, 16267 * jump would be predicted and reg_set_min_max() won't 16268 * be called. 16269 * 16270 * Same reasoning works for all {u,s}{min,max}{32,64} cases 16271 * below. 16272 */ 16273 if (reg1->u32_min_value == (u32)val) 16274 reg1->u32_min_value++; 16275 if (reg1->u32_max_value == (u32)val) 16276 reg1->u32_max_value--; 16277 if (reg1->s32_min_value == (s32)val) 16278 reg1->s32_min_value++; 16279 if (reg1->s32_max_value == (s32)val) 16280 reg1->s32_max_value--; 16281 } else { 16282 if (reg1->umin_value == (u64)val) 16283 reg1->umin_value++; 16284 if (reg1->umax_value == (u64)val) 16285 reg1->umax_value--; 16286 if (reg1->smin_value == (s64)val) 16287 reg1->smin_value++; 16288 if (reg1->smax_value == (s64)val) 16289 reg1->smax_value--; 16290 } 16291 break; 16292 case BPF_JSET: 16293 if (!is_reg_const(reg2, is_jmp32)) 16294 swap(reg1, reg2); 16295 if (!is_reg_const(reg2, is_jmp32)) 16296 break; 16297 val = reg_const_value(reg2, is_jmp32); 16298 /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X) 16299 * requires single bit to learn something useful. E.g., if we 16300 * know that `r1 & 0x3` is true, then which bits (0, 1, or both) 16301 * are actually set? We can learn something definite only if 16302 * it's a single-bit value to begin with. 16303 * 16304 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have 16305 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor 16306 * bit 1 is set, which we can readily use in adjustments. 16307 */ 16308 if (!is_power_of_2(val)) 16309 break; 16310 if (is_jmp32) { 16311 t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val)); 16312 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 16313 } else { 16314 reg1->var_off = tnum_or(reg1->var_off, tnum_const(val)); 16315 } 16316 break; 16317 case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */ 16318 if (!is_reg_const(reg2, is_jmp32)) 16319 swap(reg1, reg2); 16320 if (!is_reg_const(reg2, is_jmp32)) 16321 break; 16322 val = reg_const_value(reg2, is_jmp32); 16323 /* Forget the ranges before narrowing tnums, to avoid invariant 16324 * violations if we're on a dead branch. 16325 */ 16326 __mark_reg_unbounded(reg1); 16327 if (is_jmp32) { 16328 t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val)); 16329 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 16330 } else { 16331 reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val)); 16332 } 16333 break; 16334 case BPF_JLE: 16335 if (is_jmp32) { 16336 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 16337 reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 16338 } else { 16339 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 16340 reg2->umin_value = max(reg1->umin_value, reg2->umin_value); 16341 } 16342 break; 16343 case BPF_JLT: 16344 if (is_jmp32) { 16345 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1); 16346 reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value); 16347 } else { 16348 reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1); 16349 reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value); 16350 } 16351 break; 16352 case BPF_JSLE: 16353 if (is_jmp32) { 16354 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 16355 reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 16356 } else { 16357 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 16358 reg2->smin_value = max(reg1->smin_value, reg2->smin_value); 16359 } 16360 break; 16361 case BPF_JSLT: 16362 if (is_jmp32) { 16363 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1); 16364 reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value); 16365 } else { 16366 reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1); 16367 reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value); 16368 } 16369 break; 16370 default: 16371 return; 16372 } 16373 } 16374 16375 /* Adjusts the register min/max values in the case that the dst_reg and 16376 * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K 16377 * check, in which case we have a fake SCALAR_VALUE representing insn->imm). 16378 * Technically we can do similar adjustments for pointers to the same object, 16379 * but we don't support that right now. 16380 */ 16381 static int reg_set_min_max(struct bpf_verifier_env *env, 16382 struct bpf_reg_state *true_reg1, 16383 struct bpf_reg_state *true_reg2, 16384 struct bpf_reg_state *false_reg1, 16385 struct bpf_reg_state *false_reg2, 16386 u8 opcode, bool is_jmp32) 16387 { 16388 int err; 16389 16390 /* If either register is a pointer, we can't learn anything about its 16391 * variable offset from the compare (unless they were a pointer into 16392 * the same object, but we don't bother with that). 16393 */ 16394 if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE) 16395 return 0; 16396 16397 /* fallthrough (FALSE) branch */ 16398 regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32); 16399 reg_bounds_sync(false_reg1); 16400 reg_bounds_sync(false_reg2); 16401 16402 /* jump (TRUE) branch */ 16403 regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32); 16404 reg_bounds_sync(true_reg1); 16405 reg_bounds_sync(true_reg2); 16406 16407 err = reg_bounds_sanity_check(env, true_reg1, "true_reg1"); 16408 err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2"); 16409 err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1"); 16410 err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2"); 16411 return err; 16412 } 16413 16414 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 16415 struct bpf_reg_state *reg, u32 id, 16416 bool is_null) 16417 { 16418 if (type_may_be_null(reg->type) && reg->id == id && 16419 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 16420 /* Old offset (both fixed and variable parts) should have been 16421 * known-zero, because we don't allow pointer arithmetic on 16422 * pointers that might be NULL. If we see this happening, don't 16423 * convert the register. 16424 * 16425 * But in some cases, some helpers that return local kptrs 16426 * advance offset for the returned pointer. In those cases, it 16427 * is fine to expect to see reg->off. 16428 */ 16429 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 16430 return; 16431 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 16432 WARN_ON_ONCE(reg->off)) 16433 return; 16434 16435 if (is_null) { 16436 reg->type = SCALAR_VALUE; 16437 /* We don't need id and ref_obj_id from this point 16438 * onwards anymore, thus we should better reset it, 16439 * so that state pruning has chances to take effect. 16440 */ 16441 reg->id = 0; 16442 reg->ref_obj_id = 0; 16443 16444 return; 16445 } 16446 16447 mark_ptr_not_null_reg(reg); 16448 16449 if (!reg_may_point_to_spin_lock(reg)) { 16450 /* For not-NULL ptr, reg->ref_obj_id will be reset 16451 * in release_reference(). 16452 * 16453 * reg->id is still used by spin_lock ptr. Other 16454 * than spin_lock ptr type, reg->id can be reset. 16455 */ 16456 reg->id = 0; 16457 } 16458 } 16459 } 16460 16461 /* The logic is similar to find_good_pkt_pointers(), both could eventually 16462 * be folded together at some point. 16463 */ 16464 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 16465 bool is_null) 16466 { 16467 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 16468 struct bpf_reg_state *regs = state->regs, *reg; 16469 u32 ref_obj_id = regs[regno].ref_obj_id; 16470 u32 id = regs[regno].id; 16471 16472 if (ref_obj_id && ref_obj_id == id && is_null) 16473 /* regs[regno] is in the " == NULL" branch. 16474 * No one could have freed the reference state before 16475 * doing the NULL check. 16476 */ 16477 WARN_ON_ONCE(release_reference_nomark(vstate, id)); 16478 16479 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 16480 mark_ptr_or_null_reg(state, reg, id, is_null); 16481 })); 16482 } 16483 16484 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 16485 struct bpf_reg_state *dst_reg, 16486 struct bpf_reg_state *src_reg, 16487 struct bpf_verifier_state *this_branch, 16488 struct bpf_verifier_state *other_branch) 16489 { 16490 if (BPF_SRC(insn->code) != BPF_X) 16491 return false; 16492 16493 /* Pointers are always 64-bit. */ 16494 if (BPF_CLASS(insn->code) == BPF_JMP32) 16495 return false; 16496 16497 switch (BPF_OP(insn->code)) { 16498 case BPF_JGT: 16499 if ((dst_reg->type == PTR_TO_PACKET && 16500 src_reg->type == PTR_TO_PACKET_END) || 16501 (dst_reg->type == PTR_TO_PACKET_META && 16502 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16503 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 16504 find_good_pkt_pointers(this_branch, dst_reg, 16505 dst_reg->type, false); 16506 mark_pkt_end(other_branch, insn->dst_reg, true); 16507 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16508 src_reg->type == PTR_TO_PACKET) || 16509 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16510 src_reg->type == PTR_TO_PACKET_META)) { 16511 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 16512 find_good_pkt_pointers(other_branch, src_reg, 16513 src_reg->type, true); 16514 mark_pkt_end(this_branch, insn->src_reg, false); 16515 } else { 16516 return false; 16517 } 16518 break; 16519 case BPF_JLT: 16520 if ((dst_reg->type == PTR_TO_PACKET && 16521 src_reg->type == PTR_TO_PACKET_END) || 16522 (dst_reg->type == PTR_TO_PACKET_META && 16523 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16524 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 16525 find_good_pkt_pointers(other_branch, dst_reg, 16526 dst_reg->type, true); 16527 mark_pkt_end(this_branch, insn->dst_reg, false); 16528 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16529 src_reg->type == PTR_TO_PACKET) || 16530 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16531 src_reg->type == PTR_TO_PACKET_META)) { 16532 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 16533 find_good_pkt_pointers(this_branch, src_reg, 16534 src_reg->type, false); 16535 mark_pkt_end(other_branch, insn->src_reg, true); 16536 } else { 16537 return false; 16538 } 16539 break; 16540 case BPF_JGE: 16541 if ((dst_reg->type == PTR_TO_PACKET && 16542 src_reg->type == PTR_TO_PACKET_END) || 16543 (dst_reg->type == PTR_TO_PACKET_META && 16544 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16545 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 16546 find_good_pkt_pointers(this_branch, dst_reg, 16547 dst_reg->type, true); 16548 mark_pkt_end(other_branch, insn->dst_reg, false); 16549 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16550 src_reg->type == PTR_TO_PACKET) || 16551 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16552 src_reg->type == PTR_TO_PACKET_META)) { 16553 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 16554 find_good_pkt_pointers(other_branch, src_reg, 16555 src_reg->type, false); 16556 mark_pkt_end(this_branch, insn->src_reg, true); 16557 } else { 16558 return false; 16559 } 16560 break; 16561 case BPF_JLE: 16562 if ((dst_reg->type == PTR_TO_PACKET && 16563 src_reg->type == PTR_TO_PACKET_END) || 16564 (dst_reg->type == PTR_TO_PACKET_META && 16565 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16566 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 16567 find_good_pkt_pointers(other_branch, dst_reg, 16568 dst_reg->type, false); 16569 mark_pkt_end(this_branch, insn->dst_reg, true); 16570 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16571 src_reg->type == PTR_TO_PACKET) || 16572 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16573 src_reg->type == PTR_TO_PACKET_META)) { 16574 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 16575 find_good_pkt_pointers(this_branch, src_reg, 16576 src_reg->type, true); 16577 mark_pkt_end(other_branch, insn->src_reg, false); 16578 } else { 16579 return false; 16580 } 16581 break; 16582 default: 16583 return false; 16584 } 16585 16586 return true; 16587 } 16588 16589 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg, 16590 u32 id, u32 frameno, u32 spi_or_reg, bool is_reg) 16591 { 16592 struct linked_reg *e; 16593 16594 if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id) 16595 return; 16596 16597 e = linked_regs_push(reg_set); 16598 if (e) { 16599 e->frameno = frameno; 16600 e->is_reg = is_reg; 16601 e->regno = spi_or_reg; 16602 } else { 16603 reg->id = 0; 16604 } 16605 } 16606 16607 /* For all R being scalar registers or spilled scalar registers 16608 * in verifier state, save R in linked_regs if R->id == id. 16609 * If there are too many Rs sharing same id, reset id for leftover Rs. 16610 */ 16611 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id, 16612 struct linked_regs *linked_regs) 16613 { 16614 struct bpf_func_state *func; 16615 struct bpf_reg_state *reg; 16616 int i, j; 16617 16618 id = id & ~BPF_ADD_CONST; 16619 for (i = vstate->curframe; i >= 0; i--) { 16620 func = vstate->frame[i]; 16621 for (j = 0; j < BPF_REG_FP; j++) { 16622 reg = &func->regs[j]; 16623 __collect_linked_regs(linked_regs, reg, id, i, j, true); 16624 } 16625 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 16626 if (!is_spilled_reg(&func->stack[j])) 16627 continue; 16628 reg = &func->stack[j].spilled_ptr; 16629 __collect_linked_regs(linked_regs, reg, id, i, j, false); 16630 } 16631 } 16632 } 16633 16634 /* For all R in linked_regs, copy known_reg range into R 16635 * if R->id == known_reg->id. 16636 */ 16637 static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg, 16638 struct linked_regs *linked_regs) 16639 { 16640 struct bpf_reg_state fake_reg; 16641 struct bpf_reg_state *reg; 16642 struct linked_reg *e; 16643 int i; 16644 16645 for (i = 0; i < linked_regs->cnt; ++i) { 16646 e = &linked_regs->entries[i]; 16647 reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno] 16648 : &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr; 16649 if (reg->type != SCALAR_VALUE || reg == known_reg) 16650 continue; 16651 if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST)) 16652 continue; 16653 if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) || 16654 reg->off == known_reg->off) { 16655 s32 saved_subreg_def = reg->subreg_def; 16656 16657 copy_register_state(reg, known_reg); 16658 reg->subreg_def = saved_subreg_def; 16659 } else { 16660 s32 saved_subreg_def = reg->subreg_def; 16661 s32 saved_off = reg->off; 16662 16663 fake_reg.type = SCALAR_VALUE; 16664 __mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off); 16665 16666 /* reg = known_reg; reg += delta */ 16667 copy_register_state(reg, known_reg); 16668 /* 16669 * Must preserve off, id and add_const flag, 16670 * otherwise another sync_linked_regs() will be incorrect. 16671 */ 16672 reg->off = saved_off; 16673 reg->subreg_def = saved_subreg_def; 16674 16675 scalar32_min_max_add(reg, &fake_reg); 16676 scalar_min_max_add(reg, &fake_reg); 16677 reg->var_off = tnum_add(reg->var_off, fake_reg.var_off); 16678 } 16679 } 16680 } 16681 16682 static int check_cond_jmp_op(struct bpf_verifier_env *env, 16683 struct bpf_insn *insn, int *insn_idx) 16684 { 16685 struct bpf_verifier_state *this_branch = env->cur_state; 16686 struct bpf_verifier_state *other_branch; 16687 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 16688 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 16689 struct bpf_reg_state *eq_branch_regs; 16690 struct linked_regs linked_regs = {}; 16691 u8 opcode = BPF_OP(insn->code); 16692 int insn_flags = 0; 16693 bool is_jmp32; 16694 int pred = -1; 16695 int err; 16696 16697 /* Only conditional jumps are expected to reach here. */ 16698 if (opcode == BPF_JA || opcode > BPF_JCOND) { 16699 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 16700 return -EINVAL; 16701 } 16702 16703 if (opcode == BPF_JCOND) { 16704 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 16705 int idx = *insn_idx; 16706 16707 if (insn->code != (BPF_JMP | BPF_JCOND) || 16708 insn->src_reg != BPF_MAY_GOTO || 16709 insn->dst_reg || insn->imm) { 16710 verbose(env, "invalid may_goto imm %d\n", insn->imm); 16711 return -EINVAL; 16712 } 16713 prev_st = find_prev_entry(env, cur_st->parent, idx); 16714 16715 /* branch out 'fallthrough' insn as a new state to explore */ 16716 queued_st = push_stack(env, idx + 1, idx, false); 16717 if (!queued_st) 16718 return -ENOMEM; 16719 16720 queued_st->may_goto_depth++; 16721 if (prev_st) 16722 widen_imprecise_scalars(env, prev_st, queued_st); 16723 *insn_idx += insn->off; 16724 return 0; 16725 } 16726 16727 /* check src2 operand */ 16728 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16729 if (err) 16730 return err; 16731 16732 dst_reg = ®s[insn->dst_reg]; 16733 if (BPF_SRC(insn->code) == BPF_X) { 16734 if (insn->imm != 0) { 16735 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 16736 return -EINVAL; 16737 } 16738 16739 /* check src1 operand */ 16740 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16741 if (err) 16742 return err; 16743 16744 src_reg = ®s[insn->src_reg]; 16745 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 16746 is_pointer_value(env, insn->src_reg)) { 16747 verbose(env, "R%d pointer comparison prohibited\n", 16748 insn->src_reg); 16749 return -EACCES; 16750 } 16751 16752 if (src_reg->type == PTR_TO_STACK) 16753 insn_flags |= INSN_F_SRC_REG_STACK; 16754 if (dst_reg->type == PTR_TO_STACK) 16755 insn_flags |= INSN_F_DST_REG_STACK; 16756 } else { 16757 if (insn->src_reg != BPF_REG_0) { 16758 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 16759 return -EINVAL; 16760 } 16761 src_reg = &env->fake_reg[0]; 16762 memset(src_reg, 0, sizeof(*src_reg)); 16763 src_reg->type = SCALAR_VALUE; 16764 __mark_reg_known(src_reg, insn->imm); 16765 16766 if (dst_reg->type == PTR_TO_STACK) 16767 insn_flags |= INSN_F_DST_REG_STACK; 16768 } 16769 16770 if (insn_flags) { 16771 err = push_jmp_history(env, this_branch, insn_flags, 0); 16772 if (err) 16773 return err; 16774 } 16775 16776 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 16777 pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32); 16778 if (pred >= 0) { 16779 /* If we get here with a dst_reg pointer type it is because 16780 * above is_branch_taken() special cased the 0 comparison. 16781 */ 16782 if (!__is_pointer_value(false, dst_reg)) 16783 err = mark_chain_precision(env, insn->dst_reg); 16784 if (BPF_SRC(insn->code) == BPF_X && !err && 16785 !__is_pointer_value(false, src_reg)) 16786 err = mark_chain_precision(env, insn->src_reg); 16787 if (err) 16788 return err; 16789 } 16790 16791 if (pred == 1) { 16792 /* Only follow the goto, ignore fall-through. If needed, push 16793 * the fall-through branch for simulation under speculative 16794 * execution. 16795 */ 16796 if (!env->bypass_spec_v1 && 16797 !sanitize_speculative_path(env, insn, *insn_idx + 1, 16798 *insn_idx)) 16799 return -EFAULT; 16800 if (env->log.level & BPF_LOG_LEVEL) 16801 print_insn_state(env, this_branch, this_branch->curframe); 16802 *insn_idx += insn->off; 16803 return 0; 16804 } else if (pred == 0) { 16805 /* Only follow the fall-through branch, since that's where the 16806 * program will go. If needed, push the goto branch for 16807 * simulation under speculative execution. 16808 */ 16809 if (!env->bypass_spec_v1 && 16810 !sanitize_speculative_path(env, insn, 16811 *insn_idx + insn->off + 1, 16812 *insn_idx)) 16813 return -EFAULT; 16814 if (env->log.level & BPF_LOG_LEVEL) 16815 print_insn_state(env, this_branch, this_branch->curframe); 16816 return 0; 16817 } 16818 16819 /* Push scalar registers sharing same ID to jump history, 16820 * do this before creating 'other_branch', so that both 16821 * 'this_branch' and 'other_branch' share this history 16822 * if parent state is created. 16823 */ 16824 if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id) 16825 collect_linked_regs(this_branch, src_reg->id, &linked_regs); 16826 if (dst_reg->type == SCALAR_VALUE && dst_reg->id) 16827 collect_linked_regs(this_branch, dst_reg->id, &linked_regs); 16828 if (linked_regs.cnt > 1) { 16829 err = push_jmp_history(env, this_branch, 0, linked_regs_pack(&linked_regs)); 16830 if (err) 16831 return err; 16832 } 16833 16834 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 16835 false); 16836 if (!other_branch) 16837 return -EFAULT; 16838 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 16839 16840 if (BPF_SRC(insn->code) == BPF_X) { 16841 err = reg_set_min_max(env, 16842 &other_branch_regs[insn->dst_reg], 16843 &other_branch_regs[insn->src_reg], 16844 dst_reg, src_reg, opcode, is_jmp32); 16845 } else /* BPF_SRC(insn->code) == BPF_K */ { 16846 /* reg_set_min_max() can mangle the fake_reg. Make a copy 16847 * so that these are two different memory locations. The 16848 * src_reg is not used beyond here in context of K. 16849 */ 16850 memcpy(&env->fake_reg[1], &env->fake_reg[0], 16851 sizeof(env->fake_reg[0])); 16852 err = reg_set_min_max(env, 16853 &other_branch_regs[insn->dst_reg], 16854 &env->fake_reg[0], 16855 dst_reg, &env->fake_reg[1], 16856 opcode, is_jmp32); 16857 } 16858 if (err) 16859 return err; 16860 16861 if (BPF_SRC(insn->code) == BPF_X && 16862 src_reg->type == SCALAR_VALUE && src_reg->id && 16863 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 16864 sync_linked_regs(this_branch, src_reg, &linked_regs); 16865 sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs); 16866 } 16867 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 16868 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 16869 sync_linked_regs(this_branch, dst_reg, &linked_regs); 16870 sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs); 16871 } 16872 16873 /* if one pointer register is compared to another pointer 16874 * register check if PTR_MAYBE_NULL could be lifted. 16875 * E.g. register A - maybe null 16876 * register B - not null 16877 * for JNE A, B, ... - A is not null in the false branch; 16878 * for JEQ A, B, ... - A is not null in the true branch. 16879 * 16880 * Since PTR_TO_BTF_ID points to a kernel struct that does 16881 * not need to be null checked by the BPF program, i.e., 16882 * could be null even without PTR_MAYBE_NULL marking, so 16883 * only propagate nullness when neither reg is that type. 16884 */ 16885 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 16886 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 16887 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 16888 base_type(src_reg->type) != PTR_TO_BTF_ID && 16889 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 16890 eq_branch_regs = NULL; 16891 switch (opcode) { 16892 case BPF_JEQ: 16893 eq_branch_regs = other_branch_regs; 16894 break; 16895 case BPF_JNE: 16896 eq_branch_regs = regs; 16897 break; 16898 default: 16899 /* do nothing */ 16900 break; 16901 } 16902 if (eq_branch_regs) { 16903 if (type_may_be_null(src_reg->type)) 16904 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 16905 else 16906 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 16907 } 16908 } 16909 16910 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 16911 * NOTE: these optimizations below are related with pointer comparison 16912 * which will never be JMP32. 16913 */ 16914 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 16915 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 16916 type_may_be_null(dst_reg->type)) { 16917 /* Mark all identical registers in each branch as either 16918 * safe or unknown depending R == 0 or R != 0 conditional. 16919 */ 16920 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 16921 opcode == BPF_JNE); 16922 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 16923 opcode == BPF_JEQ); 16924 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 16925 this_branch, other_branch) && 16926 is_pointer_value(env, insn->dst_reg)) { 16927 verbose(env, "R%d pointer comparison prohibited\n", 16928 insn->dst_reg); 16929 return -EACCES; 16930 } 16931 if (env->log.level & BPF_LOG_LEVEL) 16932 print_insn_state(env, this_branch, this_branch->curframe); 16933 return 0; 16934 } 16935 16936 /* verify BPF_LD_IMM64 instruction */ 16937 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 16938 { 16939 struct bpf_insn_aux_data *aux = cur_aux(env); 16940 struct bpf_reg_state *regs = cur_regs(env); 16941 struct bpf_reg_state *dst_reg; 16942 struct bpf_map *map; 16943 int err; 16944 16945 if (BPF_SIZE(insn->code) != BPF_DW) { 16946 verbose(env, "invalid BPF_LD_IMM insn\n"); 16947 return -EINVAL; 16948 } 16949 if (insn->off != 0) { 16950 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 16951 return -EINVAL; 16952 } 16953 16954 err = check_reg_arg(env, insn->dst_reg, DST_OP); 16955 if (err) 16956 return err; 16957 16958 dst_reg = ®s[insn->dst_reg]; 16959 if (insn->src_reg == 0) { 16960 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 16961 16962 dst_reg->type = SCALAR_VALUE; 16963 __mark_reg_known(®s[insn->dst_reg], imm); 16964 return 0; 16965 } 16966 16967 /* All special src_reg cases are listed below. From this point onwards 16968 * we either succeed and assign a corresponding dst_reg->type after 16969 * zeroing the offset, or fail and reject the program. 16970 */ 16971 mark_reg_known_zero(env, regs, insn->dst_reg); 16972 16973 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 16974 dst_reg->type = aux->btf_var.reg_type; 16975 switch (base_type(dst_reg->type)) { 16976 case PTR_TO_MEM: 16977 dst_reg->mem_size = aux->btf_var.mem_size; 16978 break; 16979 case PTR_TO_BTF_ID: 16980 dst_reg->btf = aux->btf_var.btf; 16981 dst_reg->btf_id = aux->btf_var.btf_id; 16982 break; 16983 default: 16984 verifier_bug(env, "pseudo btf id: unexpected dst reg type"); 16985 return -EFAULT; 16986 } 16987 return 0; 16988 } 16989 16990 if (insn->src_reg == BPF_PSEUDO_FUNC) { 16991 struct bpf_prog_aux *aux = env->prog->aux; 16992 u32 subprogno = find_subprog(env, 16993 env->insn_idx + insn->imm + 1); 16994 16995 if (!aux->func_info) { 16996 verbose(env, "missing btf func_info\n"); 16997 return -EINVAL; 16998 } 16999 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 17000 verbose(env, "callback function not static\n"); 17001 return -EINVAL; 17002 } 17003 17004 dst_reg->type = PTR_TO_FUNC; 17005 dst_reg->subprogno = subprogno; 17006 return 0; 17007 } 17008 17009 map = env->used_maps[aux->map_index]; 17010 dst_reg->map_ptr = map; 17011 17012 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 17013 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 17014 if (map->map_type == BPF_MAP_TYPE_ARENA) { 17015 __mark_reg_unknown(env, dst_reg); 17016 return 0; 17017 } 17018 dst_reg->type = PTR_TO_MAP_VALUE; 17019 dst_reg->off = aux->map_off; 17020 WARN_ON_ONCE(map->max_entries != 1); 17021 /* We want reg->id to be same (0) as map_value is not distinct */ 17022 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 17023 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 17024 dst_reg->type = CONST_PTR_TO_MAP; 17025 } else { 17026 verifier_bug(env, "unexpected src reg value for ldimm64"); 17027 return -EFAULT; 17028 } 17029 17030 return 0; 17031 } 17032 17033 static bool may_access_skb(enum bpf_prog_type type) 17034 { 17035 switch (type) { 17036 case BPF_PROG_TYPE_SOCKET_FILTER: 17037 case BPF_PROG_TYPE_SCHED_CLS: 17038 case BPF_PROG_TYPE_SCHED_ACT: 17039 return true; 17040 default: 17041 return false; 17042 } 17043 } 17044 17045 /* verify safety of LD_ABS|LD_IND instructions: 17046 * - they can only appear in the programs where ctx == skb 17047 * - since they are wrappers of function calls, they scratch R1-R5 registers, 17048 * preserve R6-R9, and store return value into R0 17049 * 17050 * Implicit input: 17051 * ctx == skb == R6 == CTX 17052 * 17053 * Explicit input: 17054 * SRC == any register 17055 * IMM == 32-bit immediate 17056 * 17057 * Output: 17058 * R0 - 8/16/32-bit skb data converted to cpu endianness 17059 */ 17060 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 17061 { 17062 struct bpf_reg_state *regs = cur_regs(env); 17063 static const int ctx_reg = BPF_REG_6; 17064 u8 mode = BPF_MODE(insn->code); 17065 int i, err; 17066 17067 if (!may_access_skb(resolve_prog_type(env->prog))) { 17068 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 17069 return -EINVAL; 17070 } 17071 17072 if (!env->ops->gen_ld_abs) { 17073 verifier_bug(env, "gen_ld_abs is null"); 17074 return -EFAULT; 17075 } 17076 17077 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 17078 BPF_SIZE(insn->code) == BPF_DW || 17079 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 17080 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 17081 return -EINVAL; 17082 } 17083 17084 /* check whether implicit source operand (register R6) is readable */ 17085 err = check_reg_arg(env, ctx_reg, SRC_OP); 17086 if (err) 17087 return err; 17088 17089 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 17090 * gen_ld_abs() may terminate the program at runtime, leading to 17091 * reference leak. 17092 */ 17093 err = check_resource_leak(env, false, true, "BPF_LD_[ABS|IND]"); 17094 if (err) 17095 return err; 17096 17097 if (regs[ctx_reg].type != PTR_TO_CTX) { 17098 verbose(env, 17099 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 17100 return -EINVAL; 17101 } 17102 17103 if (mode == BPF_IND) { 17104 /* check explicit source operand */ 17105 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17106 if (err) 17107 return err; 17108 } 17109 17110 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 17111 if (err < 0) 17112 return err; 17113 17114 /* reset caller saved regs to unreadable */ 17115 for (i = 0; i < CALLER_SAVED_REGS; i++) { 17116 mark_reg_not_init(env, regs, caller_saved[i]); 17117 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 17118 } 17119 17120 /* mark destination R0 register as readable, since it contains 17121 * the value fetched from the packet. 17122 * Already marked as written above. 17123 */ 17124 mark_reg_unknown(env, regs, BPF_REG_0); 17125 /* ld_abs load up to 32-bit skb data. */ 17126 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 17127 return 0; 17128 } 17129 17130 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name) 17131 { 17132 const char *exit_ctx = "At program exit"; 17133 struct tnum enforce_attach_type_range = tnum_unknown; 17134 const struct bpf_prog *prog = env->prog; 17135 struct bpf_reg_state *reg = reg_state(env, regno); 17136 struct bpf_retval_range range = retval_range(0, 1); 17137 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 17138 int err; 17139 struct bpf_func_state *frame = env->cur_state->frame[0]; 17140 const bool is_subprog = frame->subprogno; 17141 bool return_32bit = false; 17142 const struct btf_type *reg_type, *ret_type = NULL; 17143 17144 /* LSM and struct_ops func-ptr's return type could be "void" */ 17145 if (!is_subprog || frame->in_exception_callback_fn) { 17146 switch (prog_type) { 17147 case BPF_PROG_TYPE_LSM: 17148 if (prog->expected_attach_type == BPF_LSM_CGROUP) 17149 /* See below, can be 0 or 0-1 depending on hook. */ 17150 break; 17151 if (!prog->aux->attach_func_proto->type) 17152 return 0; 17153 break; 17154 case BPF_PROG_TYPE_STRUCT_OPS: 17155 if (!prog->aux->attach_func_proto->type) 17156 return 0; 17157 17158 if (frame->in_exception_callback_fn) 17159 break; 17160 17161 /* Allow a struct_ops program to return a referenced kptr if it 17162 * matches the operator's return type and is in its unmodified 17163 * form. A scalar zero (i.e., a null pointer) is also allowed. 17164 */ 17165 reg_type = reg->btf ? btf_type_by_id(reg->btf, reg->btf_id) : NULL; 17166 ret_type = btf_type_resolve_ptr(prog->aux->attach_btf, 17167 prog->aux->attach_func_proto->type, 17168 NULL); 17169 if (ret_type && ret_type == reg_type && reg->ref_obj_id) 17170 return __check_ptr_off_reg(env, reg, regno, false); 17171 break; 17172 default: 17173 break; 17174 } 17175 } 17176 17177 /* eBPF calling convention is such that R0 is used 17178 * to return the value from eBPF program. 17179 * Make sure that it's readable at this time 17180 * of bpf_exit, which means that program wrote 17181 * something into it earlier 17182 */ 17183 err = check_reg_arg(env, regno, SRC_OP); 17184 if (err) 17185 return err; 17186 17187 if (is_pointer_value(env, regno)) { 17188 verbose(env, "R%d leaks addr as return value\n", regno); 17189 return -EACCES; 17190 } 17191 17192 if (frame->in_async_callback_fn) { 17193 exit_ctx = "At async callback return"; 17194 range = frame->callback_ret_range; 17195 goto enforce_retval; 17196 } 17197 17198 if (is_subprog && !frame->in_exception_callback_fn) { 17199 if (reg->type != SCALAR_VALUE) { 17200 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", 17201 regno, reg_type_str(env, reg->type)); 17202 return -EINVAL; 17203 } 17204 return 0; 17205 } 17206 17207 switch (prog_type) { 17208 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 17209 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 17210 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 17211 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || 17212 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 17213 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 17214 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || 17215 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 17216 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || 17217 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) 17218 range = retval_range(1, 1); 17219 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 17220 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 17221 range = retval_range(0, 3); 17222 break; 17223 case BPF_PROG_TYPE_CGROUP_SKB: 17224 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 17225 range = retval_range(0, 3); 17226 enforce_attach_type_range = tnum_range(2, 3); 17227 } 17228 break; 17229 case BPF_PROG_TYPE_CGROUP_SOCK: 17230 case BPF_PROG_TYPE_SOCK_OPS: 17231 case BPF_PROG_TYPE_CGROUP_DEVICE: 17232 case BPF_PROG_TYPE_CGROUP_SYSCTL: 17233 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 17234 break; 17235 case BPF_PROG_TYPE_RAW_TRACEPOINT: 17236 if (!env->prog->aux->attach_btf_id) 17237 return 0; 17238 range = retval_range(0, 0); 17239 break; 17240 case BPF_PROG_TYPE_TRACING: 17241 switch (env->prog->expected_attach_type) { 17242 case BPF_TRACE_FENTRY: 17243 case BPF_TRACE_FEXIT: 17244 range = retval_range(0, 0); 17245 break; 17246 case BPF_TRACE_RAW_TP: 17247 case BPF_MODIFY_RETURN: 17248 return 0; 17249 case BPF_TRACE_ITER: 17250 break; 17251 default: 17252 return -ENOTSUPP; 17253 } 17254 break; 17255 case BPF_PROG_TYPE_KPROBE: 17256 switch (env->prog->expected_attach_type) { 17257 case BPF_TRACE_KPROBE_SESSION: 17258 case BPF_TRACE_UPROBE_SESSION: 17259 range = retval_range(0, 1); 17260 break; 17261 default: 17262 return 0; 17263 } 17264 break; 17265 case BPF_PROG_TYPE_SK_LOOKUP: 17266 range = retval_range(SK_DROP, SK_PASS); 17267 break; 17268 17269 case BPF_PROG_TYPE_LSM: 17270 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 17271 /* no range found, any return value is allowed */ 17272 if (!get_func_retval_range(env->prog, &range)) 17273 return 0; 17274 /* no restricted range, any return value is allowed */ 17275 if (range.minval == S32_MIN && range.maxval == S32_MAX) 17276 return 0; 17277 return_32bit = true; 17278 } else if (!env->prog->aux->attach_func_proto->type) { 17279 /* Make sure programs that attach to void 17280 * hooks don't try to modify return value. 17281 */ 17282 range = retval_range(1, 1); 17283 } 17284 break; 17285 17286 case BPF_PROG_TYPE_NETFILTER: 17287 range = retval_range(NF_DROP, NF_ACCEPT); 17288 break; 17289 case BPF_PROG_TYPE_STRUCT_OPS: 17290 if (!ret_type) 17291 return 0; 17292 range = retval_range(0, 0); 17293 break; 17294 case BPF_PROG_TYPE_EXT: 17295 /* freplace program can return anything as its return value 17296 * depends on the to-be-replaced kernel func or bpf program. 17297 */ 17298 default: 17299 return 0; 17300 } 17301 17302 enforce_retval: 17303 if (reg->type != SCALAR_VALUE) { 17304 verbose(env, "%s the register R%d is not a known value (%s)\n", 17305 exit_ctx, regno, reg_type_str(env, reg->type)); 17306 return -EINVAL; 17307 } 17308 17309 err = mark_chain_precision(env, regno); 17310 if (err) 17311 return err; 17312 17313 if (!retval_range_within(range, reg, return_32bit)) { 17314 verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name); 17315 if (!is_subprog && 17316 prog->expected_attach_type == BPF_LSM_CGROUP && 17317 prog_type == BPF_PROG_TYPE_LSM && 17318 !prog->aux->attach_func_proto->type) 17319 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 17320 return -EINVAL; 17321 } 17322 17323 if (!tnum_is_unknown(enforce_attach_type_range) && 17324 tnum_in(enforce_attach_type_range, reg->var_off)) 17325 env->prog->enforce_expected_attach_type = 1; 17326 return 0; 17327 } 17328 17329 static void mark_subprog_changes_pkt_data(struct bpf_verifier_env *env, int off) 17330 { 17331 struct bpf_subprog_info *subprog; 17332 17333 subprog = bpf_find_containing_subprog(env, off); 17334 subprog->changes_pkt_data = true; 17335 } 17336 17337 static void mark_subprog_might_sleep(struct bpf_verifier_env *env, int off) 17338 { 17339 struct bpf_subprog_info *subprog; 17340 17341 subprog = bpf_find_containing_subprog(env, off); 17342 subprog->might_sleep = true; 17343 } 17344 17345 /* 't' is an index of a call-site. 17346 * 'w' is a callee entry point. 17347 * Eventually this function would be called when env->cfg.insn_state[w] == EXPLORED. 17348 * Rely on DFS traversal order and absence of recursive calls to guarantee that 17349 * callee's change_pkt_data marks would be correct at that moment. 17350 */ 17351 static void merge_callee_effects(struct bpf_verifier_env *env, int t, int w) 17352 { 17353 struct bpf_subprog_info *caller, *callee; 17354 17355 caller = bpf_find_containing_subprog(env, t); 17356 callee = bpf_find_containing_subprog(env, w); 17357 caller->changes_pkt_data |= callee->changes_pkt_data; 17358 caller->might_sleep |= callee->might_sleep; 17359 } 17360 17361 /* non-recursive DFS pseudo code 17362 * 1 procedure DFS-iterative(G,v): 17363 * 2 label v as discovered 17364 * 3 let S be a stack 17365 * 4 S.push(v) 17366 * 5 while S is not empty 17367 * 6 t <- S.peek() 17368 * 7 if t is what we're looking for: 17369 * 8 return t 17370 * 9 for all edges e in G.adjacentEdges(t) do 17371 * 10 if edge e is already labelled 17372 * 11 continue with the next edge 17373 * 12 w <- G.adjacentVertex(t,e) 17374 * 13 if vertex w is not discovered and not explored 17375 * 14 label e as tree-edge 17376 * 15 label w as discovered 17377 * 16 S.push(w) 17378 * 17 continue at 5 17379 * 18 else if vertex w is discovered 17380 * 19 label e as back-edge 17381 * 20 else 17382 * 21 // vertex w is explored 17383 * 22 label e as forward- or cross-edge 17384 * 23 label t as explored 17385 * 24 S.pop() 17386 * 17387 * convention: 17388 * 0x10 - discovered 17389 * 0x11 - discovered and fall-through edge labelled 17390 * 0x12 - discovered and fall-through and branch edges labelled 17391 * 0x20 - explored 17392 */ 17393 17394 enum { 17395 DISCOVERED = 0x10, 17396 EXPLORED = 0x20, 17397 FALLTHROUGH = 1, 17398 BRANCH = 2, 17399 }; 17400 17401 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 17402 { 17403 env->insn_aux_data[idx].prune_point = true; 17404 } 17405 17406 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 17407 { 17408 return env->insn_aux_data[insn_idx].prune_point; 17409 } 17410 17411 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 17412 { 17413 env->insn_aux_data[idx].force_checkpoint = true; 17414 } 17415 17416 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 17417 { 17418 return env->insn_aux_data[insn_idx].force_checkpoint; 17419 } 17420 17421 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 17422 { 17423 env->insn_aux_data[idx].calls_callback = true; 17424 } 17425 17426 bool bpf_calls_callback(struct bpf_verifier_env *env, int insn_idx) 17427 { 17428 return env->insn_aux_data[insn_idx].calls_callback; 17429 } 17430 17431 enum { 17432 DONE_EXPLORING = 0, 17433 KEEP_EXPLORING = 1, 17434 }; 17435 17436 /* t, w, e - match pseudo-code above: 17437 * t - index of current instruction 17438 * w - next instruction 17439 * e - edge 17440 */ 17441 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 17442 { 17443 int *insn_stack = env->cfg.insn_stack; 17444 int *insn_state = env->cfg.insn_state; 17445 17446 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 17447 return DONE_EXPLORING; 17448 17449 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 17450 return DONE_EXPLORING; 17451 17452 if (w < 0 || w >= env->prog->len) { 17453 verbose_linfo(env, t, "%d: ", t); 17454 verbose(env, "jump out of range from insn %d to %d\n", t, w); 17455 return -EINVAL; 17456 } 17457 17458 if (e == BRANCH) { 17459 /* mark branch target for state pruning */ 17460 mark_prune_point(env, w); 17461 mark_jmp_point(env, w); 17462 } 17463 17464 if (insn_state[w] == 0) { 17465 /* tree-edge */ 17466 insn_state[t] = DISCOVERED | e; 17467 insn_state[w] = DISCOVERED; 17468 if (env->cfg.cur_stack >= env->prog->len) 17469 return -E2BIG; 17470 insn_stack[env->cfg.cur_stack++] = w; 17471 return KEEP_EXPLORING; 17472 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 17473 if (env->bpf_capable) 17474 return DONE_EXPLORING; 17475 verbose_linfo(env, t, "%d: ", t); 17476 verbose_linfo(env, w, "%d: ", w); 17477 verbose(env, "back-edge from insn %d to %d\n", t, w); 17478 return -EINVAL; 17479 } else if (insn_state[w] == EXPLORED) { 17480 /* forward- or cross-edge */ 17481 insn_state[t] = DISCOVERED | e; 17482 } else { 17483 verifier_bug(env, "insn state internal bug"); 17484 return -EFAULT; 17485 } 17486 return DONE_EXPLORING; 17487 } 17488 17489 static int visit_func_call_insn(int t, struct bpf_insn *insns, 17490 struct bpf_verifier_env *env, 17491 bool visit_callee) 17492 { 17493 int ret, insn_sz; 17494 int w; 17495 17496 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 17497 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 17498 if (ret) 17499 return ret; 17500 17501 mark_prune_point(env, t + insn_sz); 17502 /* when we exit from subprog, we need to record non-linear history */ 17503 mark_jmp_point(env, t + insn_sz); 17504 17505 if (visit_callee) { 17506 w = t + insns[t].imm + 1; 17507 mark_prune_point(env, t); 17508 merge_callee_effects(env, t, w); 17509 ret = push_insn(t, w, BRANCH, env); 17510 } 17511 return ret; 17512 } 17513 17514 /* Bitmask with 1s for all caller saved registers */ 17515 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) 17516 17517 /* True if do_misc_fixups() replaces calls to helper number 'imm', 17518 * replacement patch is presumed to follow bpf_fastcall contract 17519 * (see mark_fastcall_pattern_for_call() below). 17520 */ 17521 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm) 17522 { 17523 switch (imm) { 17524 #ifdef CONFIG_X86_64 17525 case BPF_FUNC_get_smp_processor_id: 17526 return env->prog->jit_requested && bpf_jit_supports_percpu_insn(); 17527 #endif 17528 default: 17529 return false; 17530 } 17531 } 17532 17533 struct call_summary { 17534 u8 num_params; 17535 bool is_void; 17536 bool fastcall; 17537 }; 17538 17539 /* If @call is a kfunc or helper call, fills @cs and returns true, 17540 * otherwise returns false. 17541 */ 17542 static bool get_call_summary(struct bpf_verifier_env *env, struct bpf_insn *call, 17543 struct call_summary *cs) 17544 { 17545 struct bpf_kfunc_call_arg_meta meta; 17546 const struct bpf_func_proto *fn; 17547 int i; 17548 17549 if (bpf_helper_call(call)) { 17550 17551 if (get_helper_proto(env, call->imm, &fn) < 0) 17552 /* error would be reported later */ 17553 return false; 17554 cs->fastcall = fn->allow_fastcall && 17555 (verifier_inlines_helper_call(env, call->imm) || 17556 bpf_jit_inlines_helper_call(call->imm)); 17557 cs->is_void = fn->ret_type == RET_VOID; 17558 cs->num_params = 0; 17559 for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i) { 17560 if (fn->arg_type[i] == ARG_DONTCARE) 17561 break; 17562 cs->num_params++; 17563 } 17564 return true; 17565 } 17566 17567 if (bpf_pseudo_kfunc_call(call)) { 17568 int err; 17569 17570 err = fetch_kfunc_meta(env, call, &meta, NULL); 17571 if (err < 0) 17572 /* error would be reported later */ 17573 return false; 17574 cs->num_params = btf_type_vlen(meta.func_proto); 17575 cs->fastcall = meta.kfunc_flags & KF_FASTCALL; 17576 cs->is_void = btf_type_is_void(btf_type_by_id(meta.btf, meta.func_proto->type)); 17577 return true; 17578 } 17579 17580 return false; 17581 } 17582 17583 /* LLVM define a bpf_fastcall function attribute. 17584 * This attribute means that function scratches only some of 17585 * the caller saved registers defined by ABI. 17586 * For BPF the set of such registers could be defined as follows: 17587 * - R0 is scratched only if function is non-void; 17588 * - R1-R5 are scratched only if corresponding parameter type is defined 17589 * in the function prototype. 17590 * 17591 * The contract between kernel and clang allows to simultaneously use 17592 * such functions and maintain backwards compatibility with old 17593 * kernels that don't understand bpf_fastcall calls: 17594 * 17595 * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5 17596 * registers are not scratched by the call; 17597 * 17598 * - as a post-processing step, clang visits each bpf_fastcall call and adds 17599 * spill/fill for every live r0-r5; 17600 * 17601 * - stack offsets used for the spill/fill are allocated as lowest 17602 * stack offsets in whole function and are not used for any other 17603 * purposes; 17604 * 17605 * - when kernel loads a program, it looks for such patterns 17606 * (bpf_fastcall function surrounded by spills/fills) and checks if 17607 * spill/fill stack offsets are used exclusively in fastcall patterns; 17608 * 17609 * - if so, and if verifier or current JIT inlines the call to the 17610 * bpf_fastcall function (e.g. a helper call), kernel removes unnecessary 17611 * spill/fill pairs; 17612 * 17613 * - when old kernel loads a program, presence of spill/fill pairs 17614 * keeps BPF program valid, albeit slightly less efficient. 17615 * 17616 * For example: 17617 * 17618 * r1 = 1; 17619 * r2 = 2; 17620 * *(u64 *)(r10 - 8) = r1; r1 = 1; 17621 * *(u64 *)(r10 - 16) = r2; r2 = 2; 17622 * call %[to_be_inlined] --> call %[to_be_inlined] 17623 * r2 = *(u64 *)(r10 - 16); r0 = r1; 17624 * r1 = *(u64 *)(r10 - 8); r0 += r2; 17625 * r0 = r1; exit; 17626 * r0 += r2; 17627 * exit; 17628 * 17629 * The purpose of mark_fastcall_pattern_for_call is to: 17630 * - look for such patterns; 17631 * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern; 17632 * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction; 17633 * - update env->subprog_info[*]->fastcall_stack_off to find an offset 17634 * at which bpf_fastcall spill/fill stack slots start; 17635 * - update env->subprog_info[*]->keep_fastcall_stack. 17636 * 17637 * The .fastcall_pattern and .fastcall_stack_off are used by 17638 * check_fastcall_stack_contract() to check if every stack access to 17639 * fastcall spill/fill stack slot originates from spill/fill 17640 * instructions, members of fastcall patterns. 17641 * 17642 * If such condition holds true for a subprogram, fastcall patterns could 17643 * be rewritten by remove_fastcall_spills_fills(). 17644 * Otherwise bpf_fastcall patterns are not changed in the subprogram 17645 * (code, presumably, generated by an older clang version). 17646 * 17647 * For example, it is *not* safe to remove spill/fill below: 17648 * 17649 * r1 = 1; 17650 * *(u64 *)(r10 - 8) = r1; r1 = 1; 17651 * call %[to_be_inlined] --> call %[to_be_inlined] 17652 * r1 = *(u64 *)(r10 - 8); r0 = *(u64 *)(r10 - 8); <---- wrong !!! 17653 * r0 = *(u64 *)(r10 - 8); r0 += r1; 17654 * r0 += r1; exit; 17655 * exit; 17656 */ 17657 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env, 17658 struct bpf_subprog_info *subprog, 17659 int insn_idx, s16 lowest_off) 17660 { 17661 struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx; 17662 struct bpf_insn *call = &env->prog->insnsi[insn_idx]; 17663 u32 clobbered_regs_mask; 17664 struct call_summary cs; 17665 u32 expected_regs_mask; 17666 s16 off; 17667 int i; 17668 17669 if (!get_call_summary(env, call, &cs)) 17670 return; 17671 17672 /* A bitmask specifying which caller saved registers are clobbered 17673 * by a call to a helper/kfunc *as if* this helper/kfunc follows 17674 * bpf_fastcall contract: 17675 * - includes R0 if function is non-void; 17676 * - includes R1-R5 if corresponding parameter has is described 17677 * in the function prototype. 17678 */ 17679 clobbered_regs_mask = GENMASK(cs.num_params, cs.is_void ? 1 : 0); 17680 /* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */ 17681 expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS; 17682 17683 /* match pairs of form: 17684 * 17685 * *(u64 *)(r10 - Y) = rX (where Y % 8 == 0) 17686 * ... 17687 * call %[to_be_inlined] 17688 * ... 17689 * rX = *(u64 *)(r10 - Y) 17690 */ 17691 for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) { 17692 if (insn_idx - i < 0 || insn_idx + i >= env->prog->len) 17693 break; 17694 stx = &insns[insn_idx - i]; 17695 ldx = &insns[insn_idx + i]; 17696 /* must be a stack spill/fill pair */ 17697 if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) || 17698 ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) || 17699 stx->dst_reg != BPF_REG_10 || 17700 ldx->src_reg != BPF_REG_10) 17701 break; 17702 /* must be a spill/fill for the same reg */ 17703 if (stx->src_reg != ldx->dst_reg) 17704 break; 17705 /* must be one of the previously unseen registers */ 17706 if ((BIT(stx->src_reg) & expected_regs_mask) == 0) 17707 break; 17708 /* must be a spill/fill for the same expected offset, 17709 * no need to check offset alignment, BPF_DW stack access 17710 * is always 8-byte aligned. 17711 */ 17712 if (stx->off != off || ldx->off != off) 17713 break; 17714 expected_regs_mask &= ~BIT(stx->src_reg); 17715 env->insn_aux_data[insn_idx - i].fastcall_pattern = 1; 17716 env->insn_aux_data[insn_idx + i].fastcall_pattern = 1; 17717 } 17718 if (i == 1) 17719 return; 17720 17721 /* Conditionally set 'fastcall_spills_num' to allow forward 17722 * compatibility when more helper functions are marked as 17723 * bpf_fastcall at compile time than current kernel supports, e.g: 17724 * 17725 * 1: *(u64 *)(r10 - 8) = r1 17726 * 2: call A ;; assume A is bpf_fastcall for current kernel 17727 * 3: r1 = *(u64 *)(r10 - 8) 17728 * 4: *(u64 *)(r10 - 8) = r1 17729 * 5: call B ;; assume B is not bpf_fastcall for current kernel 17730 * 6: r1 = *(u64 *)(r10 - 8) 17731 * 17732 * There is no need to block bpf_fastcall rewrite for such program. 17733 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy, 17734 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills() 17735 * does not remove spill/fill pair {4,6}. 17736 */ 17737 if (cs.fastcall) 17738 env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1; 17739 else 17740 subprog->keep_fastcall_stack = 1; 17741 subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off); 17742 } 17743 17744 static int mark_fastcall_patterns(struct bpf_verifier_env *env) 17745 { 17746 struct bpf_subprog_info *subprog = env->subprog_info; 17747 struct bpf_insn *insn; 17748 s16 lowest_off; 17749 int s, i; 17750 17751 for (s = 0; s < env->subprog_cnt; ++s, ++subprog) { 17752 /* find lowest stack spill offset used in this subprog */ 17753 lowest_off = 0; 17754 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 17755 insn = env->prog->insnsi + i; 17756 if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) || 17757 insn->dst_reg != BPF_REG_10) 17758 continue; 17759 lowest_off = min(lowest_off, insn->off); 17760 } 17761 /* use this offset to find fastcall patterns */ 17762 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 17763 insn = env->prog->insnsi + i; 17764 if (insn->code != (BPF_JMP | BPF_CALL)) 17765 continue; 17766 mark_fastcall_pattern_for_call(env, subprog, i, lowest_off); 17767 } 17768 } 17769 return 0; 17770 } 17771 17772 /* Visits the instruction at index t and returns one of the following: 17773 * < 0 - an error occurred 17774 * DONE_EXPLORING - the instruction was fully explored 17775 * KEEP_EXPLORING - there is still work to be done before it is fully explored 17776 */ 17777 static int visit_insn(int t, struct bpf_verifier_env *env) 17778 { 17779 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 17780 int ret, off, insn_sz; 17781 17782 if (bpf_pseudo_func(insn)) 17783 return visit_func_call_insn(t, insns, env, true); 17784 17785 /* All non-branch instructions have a single fall-through edge. */ 17786 if (BPF_CLASS(insn->code) != BPF_JMP && 17787 BPF_CLASS(insn->code) != BPF_JMP32) { 17788 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 17789 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 17790 } 17791 17792 switch (BPF_OP(insn->code)) { 17793 case BPF_EXIT: 17794 return DONE_EXPLORING; 17795 17796 case BPF_CALL: 17797 if (is_async_callback_calling_insn(insn)) 17798 /* Mark this call insn as a prune point to trigger 17799 * is_state_visited() check before call itself is 17800 * processed by __check_func_call(). Otherwise new 17801 * async state will be pushed for further exploration. 17802 */ 17803 mark_prune_point(env, t); 17804 /* For functions that invoke callbacks it is not known how many times 17805 * callback would be called. Verifier models callback calling functions 17806 * by repeatedly visiting callback bodies and returning to origin call 17807 * instruction. 17808 * In order to stop such iteration verifier needs to identify when a 17809 * state identical some state from a previous iteration is reached. 17810 * Check below forces creation of checkpoint before callback calling 17811 * instruction to allow search for such identical states. 17812 */ 17813 if (is_sync_callback_calling_insn(insn)) { 17814 mark_calls_callback(env, t); 17815 mark_force_checkpoint(env, t); 17816 mark_prune_point(env, t); 17817 mark_jmp_point(env, t); 17818 } 17819 if (bpf_helper_call(insn)) { 17820 const struct bpf_func_proto *fp; 17821 17822 ret = get_helper_proto(env, insn->imm, &fp); 17823 /* If called in a non-sleepable context program will be 17824 * rejected anyway, so we should end up with precise 17825 * sleepable marks on subprogs, except for dead code 17826 * elimination. 17827 */ 17828 if (ret == 0 && fp->might_sleep) 17829 mark_subprog_might_sleep(env, t); 17830 if (bpf_helper_changes_pkt_data(insn->imm)) 17831 mark_subprog_changes_pkt_data(env, t); 17832 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 17833 struct bpf_kfunc_call_arg_meta meta; 17834 17835 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 17836 if (ret == 0 && is_iter_next_kfunc(&meta)) { 17837 mark_prune_point(env, t); 17838 /* Checking and saving state checkpoints at iter_next() call 17839 * is crucial for fast convergence of open-coded iterator loop 17840 * logic, so we need to force it. If we don't do that, 17841 * is_state_visited() might skip saving a checkpoint, causing 17842 * unnecessarily long sequence of not checkpointed 17843 * instructions and jumps, leading to exhaustion of jump 17844 * history buffer, and potentially other undesired outcomes. 17845 * It is expected that with correct open-coded iterators 17846 * convergence will happen quickly, so we don't run a risk of 17847 * exhausting memory. 17848 */ 17849 mark_force_checkpoint(env, t); 17850 } 17851 /* Same as helpers, if called in a non-sleepable context 17852 * program will be rejected anyway, so we should end up 17853 * with precise sleepable marks on subprogs, except for 17854 * dead code elimination. 17855 */ 17856 if (ret == 0 && is_kfunc_sleepable(&meta)) 17857 mark_subprog_might_sleep(env, t); 17858 if (ret == 0 && is_kfunc_pkt_changing(&meta)) 17859 mark_subprog_changes_pkt_data(env, t); 17860 } 17861 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 17862 17863 case BPF_JA: 17864 if (BPF_SRC(insn->code) != BPF_K) 17865 return -EINVAL; 17866 17867 if (BPF_CLASS(insn->code) == BPF_JMP) 17868 off = insn->off; 17869 else 17870 off = insn->imm; 17871 17872 /* unconditional jump with single edge */ 17873 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 17874 if (ret) 17875 return ret; 17876 17877 mark_prune_point(env, t + off + 1); 17878 mark_jmp_point(env, t + off + 1); 17879 17880 return ret; 17881 17882 default: 17883 /* conditional jump with two edges */ 17884 mark_prune_point(env, t); 17885 if (is_may_goto_insn(insn)) 17886 mark_force_checkpoint(env, t); 17887 17888 ret = push_insn(t, t + 1, FALLTHROUGH, env); 17889 if (ret) 17890 return ret; 17891 17892 return push_insn(t, t + insn->off + 1, BRANCH, env); 17893 } 17894 } 17895 17896 /* non-recursive depth-first-search to detect loops in BPF program 17897 * loop == back-edge in directed graph 17898 */ 17899 static int check_cfg(struct bpf_verifier_env *env) 17900 { 17901 int insn_cnt = env->prog->len; 17902 int *insn_stack, *insn_state; 17903 int ex_insn_beg, i, ret = 0; 17904 17905 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 17906 if (!insn_state) 17907 return -ENOMEM; 17908 17909 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 17910 if (!insn_stack) { 17911 kvfree(insn_state); 17912 return -ENOMEM; 17913 } 17914 17915 ex_insn_beg = env->exception_callback_subprog 17916 ? env->subprog_info[env->exception_callback_subprog].start 17917 : 0; 17918 17919 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 17920 insn_stack[0] = 0; /* 0 is the first instruction */ 17921 env->cfg.cur_stack = 1; 17922 17923 walk_cfg: 17924 while (env->cfg.cur_stack > 0) { 17925 int t = insn_stack[env->cfg.cur_stack - 1]; 17926 17927 ret = visit_insn(t, env); 17928 switch (ret) { 17929 case DONE_EXPLORING: 17930 insn_state[t] = EXPLORED; 17931 env->cfg.cur_stack--; 17932 break; 17933 case KEEP_EXPLORING: 17934 break; 17935 default: 17936 if (ret > 0) { 17937 verifier_bug(env, "visit_insn internal bug"); 17938 ret = -EFAULT; 17939 } 17940 goto err_free; 17941 } 17942 } 17943 17944 if (env->cfg.cur_stack < 0) { 17945 verifier_bug(env, "pop stack internal bug"); 17946 ret = -EFAULT; 17947 goto err_free; 17948 } 17949 17950 if (ex_insn_beg && insn_state[ex_insn_beg] != EXPLORED) { 17951 insn_state[ex_insn_beg] = DISCOVERED; 17952 insn_stack[0] = ex_insn_beg; 17953 env->cfg.cur_stack = 1; 17954 goto walk_cfg; 17955 } 17956 17957 for (i = 0; i < insn_cnt; i++) { 17958 struct bpf_insn *insn = &env->prog->insnsi[i]; 17959 17960 if (insn_state[i] != EXPLORED) { 17961 verbose(env, "unreachable insn %d\n", i); 17962 ret = -EINVAL; 17963 goto err_free; 17964 } 17965 if (bpf_is_ldimm64(insn)) { 17966 if (insn_state[i + 1] != 0) { 17967 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 17968 ret = -EINVAL; 17969 goto err_free; 17970 } 17971 i++; /* skip second half of ldimm64 */ 17972 } 17973 } 17974 ret = 0; /* cfg looks good */ 17975 env->prog->aux->changes_pkt_data = env->subprog_info[0].changes_pkt_data; 17976 env->prog->aux->might_sleep = env->subprog_info[0].might_sleep; 17977 17978 err_free: 17979 kvfree(insn_state); 17980 kvfree(insn_stack); 17981 env->cfg.insn_state = env->cfg.insn_stack = NULL; 17982 return ret; 17983 } 17984 17985 /* 17986 * For each subprogram 'i' fill array env->cfg.insn_subprogram sub-range 17987 * [env->subprog_info[i].postorder_start, env->subprog_info[i+1].postorder_start) 17988 * with indices of 'i' instructions in postorder. 17989 */ 17990 static int compute_postorder(struct bpf_verifier_env *env) 17991 { 17992 u32 cur_postorder, i, top, stack_sz, s, succ_cnt, succ[2]; 17993 int *stack = NULL, *postorder = NULL, *state = NULL; 17994 17995 postorder = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT); 17996 state = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT); 17997 stack = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT); 17998 if (!postorder || !state || !stack) { 17999 kvfree(postorder); 18000 kvfree(state); 18001 kvfree(stack); 18002 return -ENOMEM; 18003 } 18004 cur_postorder = 0; 18005 for (i = 0; i < env->subprog_cnt; i++) { 18006 env->subprog_info[i].postorder_start = cur_postorder; 18007 stack[0] = env->subprog_info[i].start; 18008 stack_sz = 1; 18009 do { 18010 top = stack[stack_sz - 1]; 18011 state[top] |= DISCOVERED; 18012 if (state[top] & EXPLORED) { 18013 postorder[cur_postorder++] = top; 18014 stack_sz--; 18015 continue; 18016 } 18017 succ_cnt = bpf_insn_successors(env->prog, top, succ); 18018 for (s = 0; s < succ_cnt; ++s) { 18019 if (!state[succ[s]]) { 18020 stack[stack_sz++] = succ[s]; 18021 state[succ[s]] |= DISCOVERED; 18022 } 18023 } 18024 state[top] |= EXPLORED; 18025 } while (stack_sz); 18026 } 18027 env->subprog_info[i].postorder_start = cur_postorder; 18028 env->cfg.insn_postorder = postorder; 18029 env->cfg.cur_postorder = cur_postorder; 18030 kvfree(stack); 18031 kvfree(state); 18032 return 0; 18033 } 18034 18035 static int check_abnormal_return(struct bpf_verifier_env *env) 18036 { 18037 int i; 18038 18039 for (i = 1; i < env->subprog_cnt; i++) { 18040 if (env->subprog_info[i].has_ld_abs) { 18041 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 18042 return -EINVAL; 18043 } 18044 if (env->subprog_info[i].has_tail_call) { 18045 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 18046 return -EINVAL; 18047 } 18048 } 18049 return 0; 18050 } 18051 18052 /* The minimum supported BTF func info size */ 18053 #define MIN_BPF_FUNCINFO_SIZE 8 18054 #define MAX_FUNCINFO_REC_SIZE 252 18055 18056 static int check_btf_func_early(struct bpf_verifier_env *env, 18057 const union bpf_attr *attr, 18058 bpfptr_t uattr) 18059 { 18060 u32 krec_size = sizeof(struct bpf_func_info); 18061 const struct btf_type *type, *func_proto; 18062 u32 i, nfuncs, urec_size, min_size; 18063 struct bpf_func_info *krecord; 18064 struct bpf_prog *prog; 18065 const struct btf *btf; 18066 u32 prev_offset = 0; 18067 bpfptr_t urecord; 18068 int ret = -ENOMEM; 18069 18070 nfuncs = attr->func_info_cnt; 18071 if (!nfuncs) { 18072 if (check_abnormal_return(env)) 18073 return -EINVAL; 18074 return 0; 18075 } 18076 18077 urec_size = attr->func_info_rec_size; 18078 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 18079 urec_size > MAX_FUNCINFO_REC_SIZE || 18080 urec_size % sizeof(u32)) { 18081 verbose(env, "invalid func info rec size %u\n", urec_size); 18082 return -EINVAL; 18083 } 18084 18085 prog = env->prog; 18086 btf = prog->aux->btf; 18087 18088 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 18089 min_size = min_t(u32, krec_size, urec_size); 18090 18091 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 18092 if (!krecord) 18093 return -ENOMEM; 18094 18095 for (i = 0; i < nfuncs; i++) { 18096 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 18097 if (ret) { 18098 if (ret == -E2BIG) { 18099 verbose(env, "nonzero tailing record in func info"); 18100 /* set the size kernel expects so loader can zero 18101 * out the rest of the record. 18102 */ 18103 if (copy_to_bpfptr_offset(uattr, 18104 offsetof(union bpf_attr, func_info_rec_size), 18105 &min_size, sizeof(min_size))) 18106 ret = -EFAULT; 18107 } 18108 goto err_free; 18109 } 18110 18111 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 18112 ret = -EFAULT; 18113 goto err_free; 18114 } 18115 18116 /* check insn_off */ 18117 ret = -EINVAL; 18118 if (i == 0) { 18119 if (krecord[i].insn_off) { 18120 verbose(env, 18121 "nonzero insn_off %u for the first func info record", 18122 krecord[i].insn_off); 18123 goto err_free; 18124 } 18125 } else if (krecord[i].insn_off <= prev_offset) { 18126 verbose(env, 18127 "same or smaller insn offset (%u) than previous func info record (%u)", 18128 krecord[i].insn_off, prev_offset); 18129 goto err_free; 18130 } 18131 18132 /* check type_id */ 18133 type = btf_type_by_id(btf, krecord[i].type_id); 18134 if (!type || !btf_type_is_func(type)) { 18135 verbose(env, "invalid type id %d in func info", 18136 krecord[i].type_id); 18137 goto err_free; 18138 } 18139 18140 func_proto = btf_type_by_id(btf, type->type); 18141 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 18142 /* btf_func_check() already verified it during BTF load */ 18143 goto err_free; 18144 18145 prev_offset = krecord[i].insn_off; 18146 bpfptr_add(&urecord, urec_size); 18147 } 18148 18149 prog->aux->func_info = krecord; 18150 prog->aux->func_info_cnt = nfuncs; 18151 return 0; 18152 18153 err_free: 18154 kvfree(krecord); 18155 return ret; 18156 } 18157 18158 static int check_btf_func(struct bpf_verifier_env *env, 18159 const union bpf_attr *attr, 18160 bpfptr_t uattr) 18161 { 18162 const struct btf_type *type, *func_proto, *ret_type; 18163 u32 i, nfuncs, urec_size; 18164 struct bpf_func_info *krecord; 18165 struct bpf_func_info_aux *info_aux = NULL; 18166 struct bpf_prog *prog; 18167 const struct btf *btf; 18168 bpfptr_t urecord; 18169 bool scalar_return; 18170 int ret = -ENOMEM; 18171 18172 nfuncs = attr->func_info_cnt; 18173 if (!nfuncs) { 18174 if (check_abnormal_return(env)) 18175 return -EINVAL; 18176 return 0; 18177 } 18178 if (nfuncs != env->subprog_cnt) { 18179 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 18180 return -EINVAL; 18181 } 18182 18183 urec_size = attr->func_info_rec_size; 18184 18185 prog = env->prog; 18186 btf = prog->aux->btf; 18187 18188 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 18189 18190 krecord = prog->aux->func_info; 18191 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 18192 if (!info_aux) 18193 return -ENOMEM; 18194 18195 for (i = 0; i < nfuncs; i++) { 18196 /* check insn_off */ 18197 ret = -EINVAL; 18198 18199 if (env->subprog_info[i].start != krecord[i].insn_off) { 18200 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 18201 goto err_free; 18202 } 18203 18204 /* Already checked type_id */ 18205 type = btf_type_by_id(btf, krecord[i].type_id); 18206 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 18207 /* Already checked func_proto */ 18208 func_proto = btf_type_by_id(btf, type->type); 18209 18210 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 18211 scalar_return = 18212 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 18213 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 18214 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 18215 goto err_free; 18216 } 18217 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 18218 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 18219 goto err_free; 18220 } 18221 18222 bpfptr_add(&urecord, urec_size); 18223 } 18224 18225 prog->aux->func_info_aux = info_aux; 18226 return 0; 18227 18228 err_free: 18229 kfree(info_aux); 18230 return ret; 18231 } 18232 18233 static void adjust_btf_func(struct bpf_verifier_env *env) 18234 { 18235 struct bpf_prog_aux *aux = env->prog->aux; 18236 int i; 18237 18238 if (!aux->func_info) 18239 return; 18240 18241 /* func_info is not available for hidden subprogs */ 18242 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) 18243 aux->func_info[i].insn_off = env->subprog_info[i].start; 18244 } 18245 18246 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 18247 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 18248 18249 static int check_btf_line(struct bpf_verifier_env *env, 18250 const union bpf_attr *attr, 18251 bpfptr_t uattr) 18252 { 18253 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 18254 struct bpf_subprog_info *sub; 18255 struct bpf_line_info *linfo; 18256 struct bpf_prog *prog; 18257 const struct btf *btf; 18258 bpfptr_t ulinfo; 18259 int err; 18260 18261 nr_linfo = attr->line_info_cnt; 18262 if (!nr_linfo) 18263 return 0; 18264 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 18265 return -EINVAL; 18266 18267 rec_size = attr->line_info_rec_size; 18268 if (rec_size < MIN_BPF_LINEINFO_SIZE || 18269 rec_size > MAX_LINEINFO_REC_SIZE || 18270 rec_size & (sizeof(u32) - 1)) 18271 return -EINVAL; 18272 18273 /* Need to zero it in case the userspace may 18274 * pass in a smaller bpf_line_info object. 18275 */ 18276 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 18277 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 18278 if (!linfo) 18279 return -ENOMEM; 18280 18281 prog = env->prog; 18282 btf = prog->aux->btf; 18283 18284 s = 0; 18285 sub = env->subprog_info; 18286 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 18287 expected_size = sizeof(struct bpf_line_info); 18288 ncopy = min_t(u32, expected_size, rec_size); 18289 for (i = 0; i < nr_linfo; i++) { 18290 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 18291 if (err) { 18292 if (err == -E2BIG) { 18293 verbose(env, "nonzero tailing record in line_info"); 18294 if (copy_to_bpfptr_offset(uattr, 18295 offsetof(union bpf_attr, line_info_rec_size), 18296 &expected_size, sizeof(expected_size))) 18297 err = -EFAULT; 18298 } 18299 goto err_free; 18300 } 18301 18302 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 18303 err = -EFAULT; 18304 goto err_free; 18305 } 18306 18307 /* 18308 * Check insn_off to ensure 18309 * 1) strictly increasing AND 18310 * 2) bounded by prog->len 18311 * 18312 * The linfo[0].insn_off == 0 check logically falls into 18313 * the later "missing bpf_line_info for func..." case 18314 * because the first linfo[0].insn_off must be the 18315 * first sub also and the first sub must have 18316 * subprog_info[0].start == 0. 18317 */ 18318 if ((i && linfo[i].insn_off <= prev_offset) || 18319 linfo[i].insn_off >= prog->len) { 18320 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 18321 i, linfo[i].insn_off, prev_offset, 18322 prog->len); 18323 err = -EINVAL; 18324 goto err_free; 18325 } 18326 18327 if (!prog->insnsi[linfo[i].insn_off].code) { 18328 verbose(env, 18329 "Invalid insn code at line_info[%u].insn_off\n", 18330 i); 18331 err = -EINVAL; 18332 goto err_free; 18333 } 18334 18335 if (!btf_name_by_offset(btf, linfo[i].line_off) || 18336 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 18337 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 18338 err = -EINVAL; 18339 goto err_free; 18340 } 18341 18342 if (s != env->subprog_cnt) { 18343 if (linfo[i].insn_off == sub[s].start) { 18344 sub[s].linfo_idx = i; 18345 s++; 18346 } else if (sub[s].start < linfo[i].insn_off) { 18347 verbose(env, "missing bpf_line_info for func#%u\n", s); 18348 err = -EINVAL; 18349 goto err_free; 18350 } 18351 } 18352 18353 prev_offset = linfo[i].insn_off; 18354 bpfptr_add(&ulinfo, rec_size); 18355 } 18356 18357 if (s != env->subprog_cnt) { 18358 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 18359 env->subprog_cnt - s, s); 18360 err = -EINVAL; 18361 goto err_free; 18362 } 18363 18364 prog->aux->linfo = linfo; 18365 prog->aux->nr_linfo = nr_linfo; 18366 18367 return 0; 18368 18369 err_free: 18370 kvfree(linfo); 18371 return err; 18372 } 18373 18374 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 18375 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 18376 18377 static int check_core_relo(struct bpf_verifier_env *env, 18378 const union bpf_attr *attr, 18379 bpfptr_t uattr) 18380 { 18381 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 18382 struct bpf_core_relo core_relo = {}; 18383 struct bpf_prog *prog = env->prog; 18384 const struct btf *btf = prog->aux->btf; 18385 struct bpf_core_ctx ctx = { 18386 .log = &env->log, 18387 .btf = btf, 18388 }; 18389 bpfptr_t u_core_relo; 18390 int err; 18391 18392 nr_core_relo = attr->core_relo_cnt; 18393 if (!nr_core_relo) 18394 return 0; 18395 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 18396 return -EINVAL; 18397 18398 rec_size = attr->core_relo_rec_size; 18399 if (rec_size < MIN_CORE_RELO_SIZE || 18400 rec_size > MAX_CORE_RELO_SIZE || 18401 rec_size % sizeof(u32)) 18402 return -EINVAL; 18403 18404 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 18405 expected_size = sizeof(struct bpf_core_relo); 18406 ncopy = min_t(u32, expected_size, rec_size); 18407 18408 /* Unlike func_info and line_info, copy and apply each CO-RE 18409 * relocation record one at a time. 18410 */ 18411 for (i = 0; i < nr_core_relo; i++) { 18412 /* future proofing when sizeof(bpf_core_relo) changes */ 18413 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 18414 if (err) { 18415 if (err == -E2BIG) { 18416 verbose(env, "nonzero tailing record in core_relo"); 18417 if (copy_to_bpfptr_offset(uattr, 18418 offsetof(union bpf_attr, core_relo_rec_size), 18419 &expected_size, sizeof(expected_size))) 18420 err = -EFAULT; 18421 } 18422 break; 18423 } 18424 18425 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 18426 err = -EFAULT; 18427 break; 18428 } 18429 18430 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 18431 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 18432 i, core_relo.insn_off, prog->len); 18433 err = -EINVAL; 18434 break; 18435 } 18436 18437 err = bpf_core_apply(&ctx, &core_relo, i, 18438 &prog->insnsi[core_relo.insn_off / 8]); 18439 if (err) 18440 break; 18441 bpfptr_add(&u_core_relo, rec_size); 18442 } 18443 return err; 18444 } 18445 18446 static int check_btf_info_early(struct bpf_verifier_env *env, 18447 const union bpf_attr *attr, 18448 bpfptr_t uattr) 18449 { 18450 struct btf *btf; 18451 int err; 18452 18453 if (!attr->func_info_cnt && !attr->line_info_cnt) { 18454 if (check_abnormal_return(env)) 18455 return -EINVAL; 18456 return 0; 18457 } 18458 18459 btf = btf_get_by_fd(attr->prog_btf_fd); 18460 if (IS_ERR(btf)) 18461 return PTR_ERR(btf); 18462 if (btf_is_kernel(btf)) { 18463 btf_put(btf); 18464 return -EACCES; 18465 } 18466 env->prog->aux->btf = btf; 18467 18468 err = check_btf_func_early(env, attr, uattr); 18469 if (err) 18470 return err; 18471 return 0; 18472 } 18473 18474 static int check_btf_info(struct bpf_verifier_env *env, 18475 const union bpf_attr *attr, 18476 bpfptr_t uattr) 18477 { 18478 int err; 18479 18480 if (!attr->func_info_cnt && !attr->line_info_cnt) { 18481 if (check_abnormal_return(env)) 18482 return -EINVAL; 18483 return 0; 18484 } 18485 18486 err = check_btf_func(env, attr, uattr); 18487 if (err) 18488 return err; 18489 18490 err = check_btf_line(env, attr, uattr); 18491 if (err) 18492 return err; 18493 18494 err = check_core_relo(env, attr, uattr); 18495 if (err) 18496 return err; 18497 18498 return 0; 18499 } 18500 18501 /* check %cur's range satisfies %old's */ 18502 static bool range_within(const struct bpf_reg_state *old, 18503 const struct bpf_reg_state *cur) 18504 { 18505 return old->umin_value <= cur->umin_value && 18506 old->umax_value >= cur->umax_value && 18507 old->smin_value <= cur->smin_value && 18508 old->smax_value >= cur->smax_value && 18509 old->u32_min_value <= cur->u32_min_value && 18510 old->u32_max_value >= cur->u32_max_value && 18511 old->s32_min_value <= cur->s32_min_value && 18512 old->s32_max_value >= cur->s32_max_value; 18513 } 18514 18515 /* If in the old state two registers had the same id, then they need to have 18516 * the same id in the new state as well. But that id could be different from 18517 * the old state, so we need to track the mapping from old to new ids. 18518 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 18519 * regs with old id 5 must also have new id 9 for the new state to be safe. But 18520 * regs with a different old id could still have new id 9, we don't care about 18521 * that. 18522 * So we look through our idmap to see if this old id has been seen before. If 18523 * so, we require the new id to match; otherwise, we add the id pair to the map. 18524 */ 18525 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 18526 { 18527 struct bpf_id_pair *map = idmap->map; 18528 unsigned int i; 18529 18530 /* either both IDs should be set or both should be zero */ 18531 if (!!old_id != !!cur_id) 18532 return false; 18533 18534 if (old_id == 0) /* cur_id == 0 as well */ 18535 return true; 18536 18537 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 18538 if (!map[i].old) { 18539 /* Reached an empty slot; haven't seen this id before */ 18540 map[i].old = old_id; 18541 map[i].cur = cur_id; 18542 return true; 18543 } 18544 if (map[i].old == old_id) 18545 return map[i].cur == cur_id; 18546 if (map[i].cur == cur_id) 18547 return false; 18548 } 18549 /* We ran out of idmap slots, which should be impossible */ 18550 WARN_ON_ONCE(1); 18551 return false; 18552 } 18553 18554 /* Similar to check_ids(), but allocate a unique temporary ID 18555 * for 'old_id' or 'cur_id' of zero. 18556 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 18557 */ 18558 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 18559 { 18560 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 18561 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 18562 18563 return check_ids(old_id, cur_id, idmap); 18564 } 18565 18566 static void clean_func_state(struct bpf_verifier_env *env, 18567 struct bpf_func_state *st, 18568 u32 ip) 18569 { 18570 u16 live_regs = env->insn_aux_data[ip].live_regs_before; 18571 int i, j; 18572 18573 for (i = 0; i < BPF_REG_FP; i++) { 18574 /* liveness must not touch this register anymore */ 18575 if (!(live_regs & BIT(i))) 18576 /* since the register is unused, clear its state 18577 * to make further comparison simpler 18578 */ 18579 __mark_reg_not_init(env, &st->regs[i]); 18580 } 18581 18582 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 18583 if (!bpf_stack_slot_alive(env, st->frameno, i)) { 18584 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 18585 for (j = 0; j < BPF_REG_SIZE; j++) 18586 st->stack[i].slot_type[j] = STACK_INVALID; 18587 } 18588 } 18589 } 18590 18591 static void clean_verifier_state(struct bpf_verifier_env *env, 18592 struct bpf_verifier_state *st) 18593 { 18594 int i, ip; 18595 18596 bpf_live_stack_query_init(env, st); 18597 st->cleaned = true; 18598 for (i = 0; i <= st->curframe; i++) { 18599 ip = frame_insn_idx(st, i); 18600 clean_func_state(env, st->frame[i], ip); 18601 } 18602 } 18603 18604 /* the parentage chains form a tree. 18605 * the verifier states are added to state lists at given insn and 18606 * pushed into state stack for future exploration. 18607 * when the verifier reaches bpf_exit insn some of the verifier states 18608 * stored in the state lists have their final liveness state already, 18609 * but a lot of states will get revised from liveness point of view when 18610 * the verifier explores other branches. 18611 * Example: 18612 * 1: *(u64)(r10 - 8) = 1 18613 * 2: if r1 == 100 goto pc+1 18614 * 3: *(u64)(r10 - 8) = 2 18615 * 4: r0 = *(u64)(r10 - 8) 18616 * 5: exit 18617 * when the verifier reaches exit insn the stack slot -8 in the state list of 18618 * insn 2 is not yet marked alive. Then the verifier pops the other_branch 18619 * of insn 2 and goes exploring further. After the insn 4 read, liveness 18620 * analysis would propagate read mark for -8 at insn 2. 18621 * 18622 * Since the verifier pushes the branch states as it sees them while exploring 18623 * the program the condition of walking the branch instruction for the second 18624 * time means that all states below this branch were already explored and 18625 * their final liveness marks are already propagated. 18626 * Hence when the verifier completes the search of state list in is_state_visited() 18627 * we can call this clean_live_states() function to clear dead the registers and stack 18628 * slots to simplify state merging. 18629 * 18630 * Important note here that walking the same branch instruction in the callee 18631 * doesn't meant that the states are DONE. The verifier has to compare 18632 * the callsites 18633 */ 18634 static void clean_live_states(struct bpf_verifier_env *env, int insn, 18635 struct bpf_verifier_state *cur) 18636 { 18637 struct bpf_verifier_state_list *sl; 18638 struct list_head *pos, *head; 18639 18640 head = explored_state(env, insn); 18641 list_for_each(pos, head) { 18642 sl = container_of(pos, struct bpf_verifier_state_list, node); 18643 if (sl->state.branches) 18644 continue; 18645 if (sl->state.insn_idx != insn || 18646 !same_callsites(&sl->state, cur)) 18647 continue; 18648 if (sl->state.cleaned) 18649 /* all regs in this state in all frames were already marked */ 18650 continue; 18651 if (incomplete_read_marks(env, &sl->state)) 18652 continue; 18653 clean_verifier_state(env, &sl->state); 18654 } 18655 } 18656 18657 static bool regs_exact(const struct bpf_reg_state *rold, 18658 const struct bpf_reg_state *rcur, 18659 struct bpf_idmap *idmap) 18660 { 18661 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 18662 check_ids(rold->id, rcur->id, idmap) && 18663 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 18664 } 18665 18666 enum exact_level { 18667 NOT_EXACT, 18668 EXACT, 18669 RANGE_WITHIN 18670 }; 18671 18672 /* Returns true if (rold safe implies rcur safe) */ 18673 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 18674 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, 18675 enum exact_level exact) 18676 { 18677 if (exact == EXACT) 18678 return regs_exact(rold, rcur, idmap); 18679 18680 if (rold->type == NOT_INIT) { 18681 if (exact == NOT_EXACT || rcur->type == NOT_INIT) 18682 /* explored state can't have used this */ 18683 return true; 18684 } 18685 18686 /* Enforce that register types have to match exactly, including their 18687 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 18688 * rule. 18689 * 18690 * One can make a point that using a pointer register as unbounded 18691 * SCALAR would be technically acceptable, but this could lead to 18692 * pointer leaks because scalars are allowed to leak while pointers 18693 * are not. We could make this safe in special cases if root is 18694 * calling us, but it's probably not worth the hassle. 18695 * 18696 * Also, register types that are *not* MAYBE_NULL could technically be 18697 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 18698 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 18699 * to the same map). 18700 * However, if the old MAYBE_NULL register then got NULL checked, 18701 * doing so could have affected others with the same id, and we can't 18702 * check for that because we lost the id when we converted to 18703 * a non-MAYBE_NULL variant. 18704 * So, as a general rule we don't allow mixing MAYBE_NULL and 18705 * non-MAYBE_NULL registers as well. 18706 */ 18707 if (rold->type != rcur->type) 18708 return false; 18709 18710 switch (base_type(rold->type)) { 18711 case SCALAR_VALUE: 18712 if (env->explore_alu_limits) { 18713 /* explore_alu_limits disables tnum_in() and range_within() 18714 * logic and requires everything to be strict 18715 */ 18716 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 18717 check_scalar_ids(rold->id, rcur->id, idmap); 18718 } 18719 if (!rold->precise && exact == NOT_EXACT) 18720 return true; 18721 if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST)) 18722 return false; 18723 if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off)) 18724 return false; 18725 /* Why check_ids() for scalar registers? 18726 * 18727 * Consider the following BPF code: 18728 * 1: r6 = ... unbound scalar, ID=a ... 18729 * 2: r7 = ... unbound scalar, ID=b ... 18730 * 3: if (r6 > r7) goto +1 18731 * 4: r6 = r7 18732 * 5: if (r6 > X) goto ... 18733 * 6: ... memory operation using r7 ... 18734 * 18735 * First verification path is [1-6]: 18736 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 18737 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark 18738 * r7 <= X, because r6 and r7 share same id. 18739 * Next verification path is [1-4, 6]. 18740 * 18741 * Instruction (6) would be reached in two states: 18742 * I. r6{.id=b}, r7{.id=b} via path 1-6; 18743 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 18744 * 18745 * Use check_ids() to distinguish these states. 18746 * --- 18747 * Also verify that new value satisfies old value range knowledge. 18748 */ 18749 return range_within(rold, rcur) && 18750 tnum_in(rold->var_off, rcur->var_off) && 18751 check_scalar_ids(rold->id, rcur->id, idmap); 18752 case PTR_TO_MAP_KEY: 18753 case PTR_TO_MAP_VALUE: 18754 case PTR_TO_MEM: 18755 case PTR_TO_BUF: 18756 case PTR_TO_TP_BUFFER: 18757 /* If the new min/max/var_off satisfy the old ones and 18758 * everything else matches, we are OK. 18759 */ 18760 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 18761 range_within(rold, rcur) && 18762 tnum_in(rold->var_off, rcur->var_off) && 18763 check_ids(rold->id, rcur->id, idmap) && 18764 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 18765 case PTR_TO_PACKET_META: 18766 case PTR_TO_PACKET: 18767 /* We must have at least as much range as the old ptr 18768 * did, so that any accesses which were safe before are 18769 * still safe. This is true even if old range < old off, 18770 * since someone could have accessed through (ptr - k), or 18771 * even done ptr -= k in a register, to get a safe access. 18772 */ 18773 if (rold->range > rcur->range) 18774 return false; 18775 /* If the offsets don't match, we can't trust our alignment; 18776 * nor can we be sure that we won't fall out of range. 18777 */ 18778 if (rold->off != rcur->off) 18779 return false; 18780 /* id relations must be preserved */ 18781 if (!check_ids(rold->id, rcur->id, idmap)) 18782 return false; 18783 /* new val must satisfy old val knowledge */ 18784 return range_within(rold, rcur) && 18785 tnum_in(rold->var_off, rcur->var_off); 18786 case PTR_TO_STACK: 18787 /* two stack pointers are equal only if they're pointing to 18788 * the same stack frame, since fp-8 in foo != fp-8 in bar 18789 */ 18790 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 18791 case PTR_TO_ARENA: 18792 return true; 18793 default: 18794 return regs_exact(rold, rcur, idmap); 18795 } 18796 } 18797 18798 static struct bpf_reg_state unbound_reg; 18799 18800 static __init int unbound_reg_init(void) 18801 { 18802 __mark_reg_unknown_imprecise(&unbound_reg); 18803 return 0; 18804 } 18805 late_initcall(unbound_reg_init); 18806 18807 static bool is_stack_all_misc(struct bpf_verifier_env *env, 18808 struct bpf_stack_state *stack) 18809 { 18810 u32 i; 18811 18812 for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) { 18813 if ((stack->slot_type[i] == STACK_MISC) || 18814 (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack)) 18815 continue; 18816 return false; 18817 } 18818 18819 return true; 18820 } 18821 18822 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env, 18823 struct bpf_stack_state *stack) 18824 { 18825 if (is_spilled_scalar_reg64(stack)) 18826 return &stack->spilled_ptr; 18827 18828 if (is_stack_all_misc(env, stack)) 18829 return &unbound_reg; 18830 18831 return NULL; 18832 } 18833 18834 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 18835 struct bpf_func_state *cur, struct bpf_idmap *idmap, 18836 enum exact_level exact) 18837 { 18838 int i, spi; 18839 18840 /* walk slots of the explored stack and ignore any additional 18841 * slots in the current stack, since explored(safe) state 18842 * didn't use them 18843 */ 18844 for (i = 0; i < old->allocated_stack; i++) { 18845 struct bpf_reg_state *old_reg, *cur_reg; 18846 18847 spi = i / BPF_REG_SIZE; 18848 18849 if (exact != NOT_EXACT && 18850 (i >= cur->allocated_stack || 18851 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 18852 cur->stack[spi].slot_type[i % BPF_REG_SIZE])) 18853 return false; 18854 18855 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 18856 continue; 18857 18858 if (env->allow_uninit_stack && 18859 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 18860 continue; 18861 18862 /* explored stack has more populated slots than current stack 18863 * and these slots were used 18864 */ 18865 if (i >= cur->allocated_stack) 18866 return false; 18867 18868 /* 64-bit scalar spill vs all slots MISC and vice versa. 18869 * Load from all slots MISC produces unbound scalar. 18870 * Construct a fake register for such stack and call 18871 * regsafe() to ensure scalar ids are compared. 18872 */ 18873 old_reg = scalar_reg_for_stack(env, &old->stack[spi]); 18874 cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]); 18875 if (old_reg && cur_reg) { 18876 if (!regsafe(env, old_reg, cur_reg, idmap, exact)) 18877 return false; 18878 i += BPF_REG_SIZE - 1; 18879 continue; 18880 } 18881 18882 /* if old state was safe with misc data in the stack 18883 * it will be safe with zero-initialized stack. 18884 * The opposite is not true 18885 */ 18886 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 18887 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 18888 continue; 18889 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 18890 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 18891 /* Ex: old explored (safe) state has STACK_SPILL in 18892 * this stack slot, but current has STACK_MISC -> 18893 * this verifier states are not equivalent, 18894 * return false to continue verification of this path 18895 */ 18896 return false; 18897 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 18898 continue; 18899 /* Both old and cur are having same slot_type */ 18900 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 18901 case STACK_SPILL: 18902 /* when explored and current stack slot are both storing 18903 * spilled registers, check that stored pointers types 18904 * are the same as well. 18905 * Ex: explored safe path could have stored 18906 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 18907 * but current path has stored: 18908 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 18909 * such verifier states are not equivalent. 18910 * return false to continue verification of this path 18911 */ 18912 if (!regsafe(env, &old->stack[spi].spilled_ptr, 18913 &cur->stack[spi].spilled_ptr, idmap, exact)) 18914 return false; 18915 break; 18916 case STACK_DYNPTR: 18917 old_reg = &old->stack[spi].spilled_ptr; 18918 cur_reg = &cur->stack[spi].spilled_ptr; 18919 if (old_reg->dynptr.type != cur_reg->dynptr.type || 18920 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 18921 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 18922 return false; 18923 break; 18924 case STACK_ITER: 18925 old_reg = &old->stack[spi].spilled_ptr; 18926 cur_reg = &cur->stack[spi].spilled_ptr; 18927 /* iter.depth is not compared between states as it 18928 * doesn't matter for correctness and would otherwise 18929 * prevent convergence; we maintain it only to prevent 18930 * infinite loop check triggering, see 18931 * iter_active_depths_differ() 18932 */ 18933 if (old_reg->iter.btf != cur_reg->iter.btf || 18934 old_reg->iter.btf_id != cur_reg->iter.btf_id || 18935 old_reg->iter.state != cur_reg->iter.state || 18936 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 18937 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 18938 return false; 18939 break; 18940 case STACK_IRQ_FLAG: 18941 old_reg = &old->stack[spi].spilled_ptr; 18942 cur_reg = &cur->stack[spi].spilled_ptr; 18943 if (!check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap) || 18944 old_reg->irq.kfunc_class != cur_reg->irq.kfunc_class) 18945 return false; 18946 break; 18947 case STACK_MISC: 18948 case STACK_ZERO: 18949 case STACK_INVALID: 18950 continue; 18951 /* Ensure that new unhandled slot types return false by default */ 18952 default: 18953 return false; 18954 } 18955 } 18956 return true; 18957 } 18958 18959 static bool refsafe(struct bpf_verifier_state *old, struct bpf_verifier_state *cur, 18960 struct bpf_idmap *idmap) 18961 { 18962 int i; 18963 18964 if (old->acquired_refs != cur->acquired_refs) 18965 return false; 18966 18967 if (old->active_locks != cur->active_locks) 18968 return false; 18969 18970 if (old->active_preempt_locks != cur->active_preempt_locks) 18971 return false; 18972 18973 if (old->active_rcu_lock != cur->active_rcu_lock) 18974 return false; 18975 18976 if (!check_ids(old->active_irq_id, cur->active_irq_id, idmap)) 18977 return false; 18978 18979 if (!check_ids(old->active_lock_id, cur->active_lock_id, idmap) || 18980 old->active_lock_ptr != cur->active_lock_ptr) 18981 return false; 18982 18983 for (i = 0; i < old->acquired_refs; i++) { 18984 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) || 18985 old->refs[i].type != cur->refs[i].type) 18986 return false; 18987 switch (old->refs[i].type) { 18988 case REF_TYPE_PTR: 18989 case REF_TYPE_IRQ: 18990 break; 18991 case REF_TYPE_LOCK: 18992 case REF_TYPE_RES_LOCK: 18993 case REF_TYPE_RES_LOCK_IRQ: 18994 if (old->refs[i].ptr != cur->refs[i].ptr) 18995 return false; 18996 break; 18997 default: 18998 WARN_ONCE(1, "Unhandled enum type for reference state: %d\n", old->refs[i].type); 18999 return false; 19000 } 19001 } 19002 19003 return true; 19004 } 19005 19006 /* compare two verifier states 19007 * 19008 * all states stored in state_list are known to be valid, since 19009 * verifier reached 'bpf_exit' instruction through them 19010 * 19011 * this function is called when verifier exploring different branches of 19012 * execution popped from the state stack. If it sees an old state that has 19013 * more strict register state and more strict stack state then this execution 19014 * branch doesn't need to be explored further, since verifier already 19015 * concluded that more strict state leads to valid finish. 19016 * 19017 * Therefore two states are equivalent if register state is more conservative 19018 * and explored stack state is more conservative than the current one. 19019 * Example: 19020 * explored current 19021 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 19022 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 19023 * 19024 * In other words if current stack state (one being explored) has more 19025 * valid slots than old one that already passed validation, it means 19026 * the verifier can stop exploring and conclude that current state is valid too 19027 * 19028 * Similarly with registers. If explored state has register type as invalid 19029 * whereas register type in current state is meaningful, it means that 19030 * the current state will reach 'bpf_exit' instruction safely 19031 */ 19032 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 19033 struct bpf_func_state *cur, u32 insn_idx, enum exact_level exact) 19034 { 19035 u16 live_regs = env->insn_aux_data[insn_idx].live_regs_before; 19036 u16 i; 19037 19038 if (old->callback_depth > cur->callback_depth) 19039 return false; 19040 19041 for (i = 0; i < MAX_BPF_REG; i++) 19042 if (((1 << i) & live_regs) && 19043 !regsafe(env, &old->regs[i], &cur->regs[i], 19044 &env->idmap_scratch, exact)) 19045 return false; 19046 19047 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 19048 return false; 19049 19050 return true; 19051 } 19052 19053 static void reset_idmap_scratch(struct bpf_verifier_env *env) 19054 { 19055 env->idmap_scratch.tmp_id_gen = env->id_gen; 19056 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 19057 } 19058 19059 static bool states_equal(struct bpf_verifier_env *env, 19060 struct bpf_verifier_state *old, 19061 struct bpf_verifier_state *cur, 19062 enum exact_level exact) 19063 { 19064 u32 insn_idx; 19065 int i; 19066 19067 if (old->curframe != cur->curframe) 19068 return false; 19069 19070 reset_idmap_scratch(env); 19071 19072 /* Verification state from speculative execution simulation 19073 * must never prune a non-speculative execution one. 19074 */ 19075 if (old->speculative && !cur->speculative) 19076 return false; 19077 19078 if (old->in_sleepable != cur->in_sleepable) 19079 return false; 19080 19081 if (!refsafe(old, cur, &env->idmap_scratch)) 19082 return false; 19083 19084 /* for states to be equal callsites have to be the same 19085 * and all frame states need to be equivalent 19086 */ 19087 for (i = 0; i <= old->curframe; i++) { 19088 insn_idx = frame_insn_idx(old, i); 19089 if (old->frame[i]->callsite != cur->frame[i]->callsite) 19090 return false; 19091 if (!func_states_equal(env, old->frame[i], cur->frame[i], insn_idx, exact)) 19092 return false; 19093 } 19094 return true; 19095 } 19096 19097 /* find precise scalars in the previous equivalent state and 19098 * propagate them into the current state 19099 */ 19100 static int propagate_precision(struct bpf_verifier_env *env, 19101 const struct bpf_verifier_state *old, 19102 struct bpf_verifier_state *cur, 19103 bool *changed) 19104 { 19105 struct bpf_reg_state *state_reg; 19106 struct bpf_func_state *state; 19107 int i, err = 0, fr; 19108 bool first; 19109 19110 for (fr = old->curframe; fr >= 0; fr--) { 19111 state = old->frame[fr]; 19112 state_reg = state->regs; 19113 first = true; 19114 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 19115 if (state_reg->type != SCALAR_VALUE || 19116 !state_reg->precise) 19117 continue; 19118 if (env->log.level & BPF_LOG_LEVEL2) { 19119 if (first) 19120 verbose(env, "frame %d: propagating r%d", fr, i); 19121 else 19122 verbose(env, ",r%d", i); 19123 } 19124 bt_set_frame_reg(&env->bt, fr, i); 19125 first = false; 19126 } 19127 19128 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 19129 if (!is_spilled_reg(&state->stack[i])) 19130 continue; 19131 state_reg = &state->stack[i].spilled_ptr; 19132 if (state_reg->type != SCALAR_VALUE || 19133 !state_reg->precise) 19134 continue; 19135 if (env->log.level & BPF_LOG_LEVEL2) { 19136 if (first) 19137 verbose(env, "frame %d: propagating fp%d", 19138 fr, (-i - 1) * BPF_REG_SIZE); 19139 else 19140 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 19141 } 19142 bt_set_frame_slot(&env->bt, fr, i); 19143 first = false; 19144 } 19145 if (!first) 19146 verbose(env, "\n"); 19147 } 19148 19149 err = __mark_chain_precision(env, cur, -1, changed); 19150 if (err < 0) 19151 return err; 19152 19153 return 0; 19154 } 19155 19156 #define MAX_BACKEDGE_ITERS 64 19157 19158 /* Propagate read and precision marks from visit->backedges[*].state->equal_state 19159 * to corresponding parent states of visit->backedges[*].state until fixed point is reached, 19160 * then free visit->backedges. 19161 * After execution of this function incomplete_read_marks() will return false 19162 * for all states corresponding to @visit->callchain. 19163 */ 19164 static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit) 19165 { 19166 struct bpf_scc_backedge *backedge; 19167 struct bpf_verifier_state *st; 19168 bool changed; 19169 int i, err; 19170 19171 i = 0; 19172 do { 19173 if (i++ > MAX_BACKEDGE_ITERS) { 19174 if (env->log.level & BPF_LOG_LEVEL2) 19175 verbose(env, "%s: too many iterations\n", __func__); 19176 for (backedge = visit->backedges; backedge; backedge = backedge->next) 19177 mark_all_scalars_precise(env, &backedge->state); 19178 break; 19179 } 19180 changed = false; 19181 for (backedge = visit->backedges; backedge; backedge = backedge->next) { 19182 st = &backedge->state; 19183 err = propagate_precision(env, st->equal_state, st, &changed); 19184 if (err) 19185 return err; 19186 } 19187 } while (changed); 19188 19189 free_backedges(visit); 19190 return 0; 19191 } 19192 19193 static bool states_maybe_looping(struct bpf_verifier_state *old, 19194 struct bpf_verifier_state *cur) 19195 { 19196 struct bpf_func_state *fold, *fcur; 19197 int i, fr = cur->curframe; 19198 19199 if (old->curframe != fr) 19200 return false; 19201 19202 fold = old->frame[fr]; 19203 fcur = cur->frame[fr]; 19204 for (i = 0; i < MAX_BPF_REG; i++) 19205 if (memcmp(&fold->regs[i], &fcur->regs[i], 19206 offsetof(struct bpf_reg_state, frameno))) 19207 return false; 19208 return true; 19209 } 19210 19211 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 19212 { 19213 return env->insn_aux_data[insn_idx].is_iter_next; 19214 } 19215 19216 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 19217 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 19218 * states to match, which otherwise would look like an infinite loop. So while 19219 * iter_next() calls are taken care of, we still need to be careful and 19220 * prevent erroneous and too eager declaration of "infinite loop", when 19221 * iterators are involved. 19222 * 19223 * Here's a situation in pseudo-BPF assembly form: 19224 * 19225 * 0: again: ; set up iter_next() call args 19226 * 1: r1 = &it ; <CHECKPOINT HERE> 19227 * 2: call bpf_iter_num_next ; this is iter_next() call 19228 * 3: if r0 == 0 goto done 19229 * 4: ... something useful here ... 19230 * 5: goto again ; another iteration 19231 * 6: done: 19232 * 7: r1 = &it 19233 * 8: call bpf_iter_num_destroy ; clean up iter state 19234 * 9: exit 19235 * 19236 * This is a typical loop. Let's assume that we have a prune point at 1:, 19237 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 19238 * again`, assuming other heuristics don't get in a way). 19239 * 19240 * When we first time come to 1:, let's say we have some state X. We proceed 19241 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 19242 * Now we come back to validate that forked ACTIVE state. We proceed through 19243 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 19244 * are converging. But the problem is that we don't know that yet, as this 19245 * convergence has to happen at iter_next() call site only. So if nothing is 19246 * done, at 1: verifier will use bounded loop logic and declare infinite 19247 * looping (and would be *technically* correct, if not for iterator's 19248 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 19249 * don't want that. So what we do in process_iter_next_call() when we go on 19250 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 19251 * a different iteration. So when we suspect an infinite loop, we additionally 19252 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 19253 * pretend we are not looping and wait for next iter_next() call. 19254 * 19255 * This only applies to ACTIVE state. In DRAINED state we don't expect to 19256 * loop, because that would actually mean infinite loop, as DRAINED state is 19257 * "sticky", and so we'll keep returning into the same instruction with the 19258 * same state (at least in one of possible code paths). 19259 * 19260 * This approach allows to keep infinite loop heuristic even in the face of 19261 * active iterator. E.g., C snippet below is and will be detected as 19262 * infinitely looping: 19263 * 19264 * struct bpf_iter_num it; 19265 * int *p, x; 19266 * 19267 * bpf_iter_num_new(&it, 0, 10); 19268 * while ((p = bpf_iter_num_next(&t))) { 19269 * x = p; 19270 * while (x--) {} // <<-- infinite loop here 19271 * } 19272 * 19273 */ 19274 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 19275 { 19276 struct bpf_reg_state *slot, *cur_slot; 19277 struct bpf_func_state *state; 19278 int i, fr; 19279 19280 for (fr = old->curframe; fr >= 0; fr--) { 19281 state = old->frame[fr]; 19282 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 19283 if (state->stack[i].slot_type[0] != STACK_ITER) 19284 continue; 19285 19286 slot = &state->stack[i].spilled_ptr; 19287 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 19288 continue; 19289 19290 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 19291 if (cur_slot->iter.depth != slot->iter.depth) 19292 return true; 19293 } 19294 } 19295 return false; 19296 } 19297 19298 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 19299 { 19300 struct bpf_verifier_state_list *new_sl; 19301 struct bpf_verifier_state_list *sl; 19302 struct bpf_verifier_state *cur = env->cur_state, *new; 19303 bool force_new_state, add_new_state, loop; 19304 int n, err, states_cnt = 0; 19305 struct list_head *pos, *tmp, *head; 19306 19307 force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) || 19308 /* Avoid accumulating infinitely long jmp history */ 19309 cur->jmp_history_cnt > 40; 19310 19311 /* bpf progs typically have pruning point every 4 instructions 19312 * http://vger.kernel.org/bpfconf2019.html#session-1 19313 * Do not add new state for future pruning if the verifier hasn't seen 19314 * at least 2 jumps and at least 8 instructions. 19315 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 19316 * In tests that amounts to up to 50% reduction into total verifier 19317 * memory consumption and 20% verifier time speedup. 19318 */ 19319 add_new_state = force_new_state; 19320 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 19321 env->insn_processed - env->prev_insn_processed >= 8) 19322 add_new_state = true; 19323 19324 clean_live_states(env, insn_idx, cur); 19325 19326 loop = false; 19327 head = explored_state(env, insn_idx); 19328 list_for_each_safe(pos, tmp, head) { 19329 sl = container_of(pos, struct bpf_verifier_state_list, node); 19330 states_cnt++; 19331 if (sl->state.insn_idx != insn_idx) 19332 continue; 19333 19334 if (sl->state.branches) { 19335 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 19336 19337 if (frame->in_async_callback_fn && 19338 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 19339 /* Different async_entry_cnt means that the verifier is 19340 * processing another entry into async callback. 19341 * Seeing the same state is not an indication of infinite 19342 * loop or infinite recursion. 19343 * But finding the same state doesn't mean that it's safe 19344 * to stop processing the current state. The previous state 19345 * hasn't yet reached bpf_exit, since state.branches > 0. 19346 * Checking in_async_callback_fn alone is not enough either. 19347 * Since the verifier still needs to catch infinite loops 19348 * inside async callbacks. 19349 */ 19350 goto skip_inf_loop_check; 19351 } 19352 /* BPF open-coded iterators loop detection is special. 19353 * states_maybe_looping() logic is too simplistic in detecting 19354 * states that *might* be equivalent, because it doesn't know 19355 * about ID remapping, so don't even perform it. 19356 * See process_iter_next_call() and iter_active_depths_differ() 19357 * for overview of the logic. When current and one of parent 19358 * states are detected as equivalent, it's a good thing: we prove 19359 * convergence and can stop simulating further iterations. 19360 * It's safe to assume that iterator loop will finish, taking into 19361 * account iter_next() contract of eventually returning 19362 * sticky NULL result. 19363 * 19364 * Note, that states have to be compared exactly in this case because 19365 * read and precision marks might not be finalized inside the loop. 19366 * E.g. as in the program below: 19367 * 19368 * 1. r7 = -16 19369 * 2. r6 = bpf_get_prandom_u32() 19370 * 3. while (bpf_iter_num_next(&fp[-8])) { 19371 * 4. if (r6 != 42) { 19372 * 5. r7 = -32 19373 * 6. r6 = bpf_get_prandom_u32() 19374 * 7. continue 19375 * 8. } 19376 * 9. r0 = r10 19377 * 10. r0 += r7 19378 * 11. r8 = *(u64 *)(r0 + 0) 19379 * 12. r6 = bpf_get_prandom_u32() 19380 * 13. } 19381 * 19382 * Here verifier would first visit path 1-3, create a checkpoint at 3 19383 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 19384 * not have read or precision mark for r7 yet, thus inexact states 19385 * comparison would discard current state with r7=-32 19386 * => unsafe memory access at 11 would not be caught. 19387 */ 19388 if (is_iter_next_insn(env, insn_idx)) { 19389 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 19390 struct bpf_func_state *cur_frame; 19391 struct bpf_reg_state *iter_state, *iter_reg; 19392 int spi; 19393 19394 cur_frame = cur->frame[cur->curframe]; 19395 /* btf_check_iter_kfuncs() enforces that 19396 * iter state pointer is always the first arg 19397 */ 19398 iter_reg = &cur_frame->regs[BPF_REG_1]; 19399 /* current state is valid due to states_equal(), 19400 * so we can assume valid iter and reg state, 19401 * no need for extra (re-)validations 19402 */ 19403 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 19404 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 19405 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 19406 loop = true; 19407 goto hit; 19408 } 19409 } 19410 goto skip_inf_loop_check; 19411 } 19412 if (is_may_goto_insn_at(env, insn_idx)) { 19413 if (sl->state.may_goto_depth != cur->may_goto_depth && 19414 states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 19415 loop = true; 19416 goto hit; 19417 } 19418 } 19419 if (bpf_calls_callback(env, insn_idx)) { 19420 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) 19421 goto hit; 19422 goto skip_inf_loop_check; 19423 } 19424 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 19425 if (states_maybe_looping(&sl->state, cur) && 19426 states_equal(env, &sl->state, cur, EXACT) && 19427 !iter_active_depths_differ(&sl->state, cur) && 19428 sl->state.may_goto_depth == cur->may_goto_depth && 19429 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 19430 verbose_linfo(env, insn_idx, "; "); 19431 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 19432 verbose(env, "cur state:"); 19433 print_verifier_state(env, cur, cur->curframe, true); 19434 verbose(env, "old state:"); 19435 print_verifier_state(env, &sl->state, cur->curframe, true); 19436 return -EINVAL; 19437 } 19438 /* if the verifier is processing a loop, avoid adding new state 19439 * too often, since different loop iterations have distinct 19440 * states and may not help future pruning. 19441 * This threshold shouldn't be too low to make sure that 19442 * a loop with large bound will be rejected quickly. 19443 * The most abusive loop will be: 19444 * r1 += 1 19445 * if r1 < 1000000 goto pc-2 19446 * 1M insn_procssed limit / 100 == 10k peak states. 19447 * This threshold shouldn't be too high either, since states 19448 * at the end of the loop are likely to be useful in pruning. 19449 */ 19450 skip_inf_loop_check: 19451 if (!force_new_state && 19452 env->jmps_processed - env->prev_jmps_processed < 20 && 19453 env->insn_processed - env->prev_insn_processed < 100) 19454 add_new_state = false; 19455 goto miss; 19456 } 19457 /* See comments for mark_all_regs_read_and_precise() */ 19458 loop = incomplete_read_marks(env, &sl->state); 19459 if (states_equal(env, &sl->state, cur, loop ? RANGE_WITHIN : NOT_EXACT)) { 19460 hit: 19461 sl->hit_cnt++; 19462 19463 /* if previous state reached the exit with precision and 19464 * current state is equivalent to it (except precision marks) 19465 * the precision needs to be propagated back in 19466 * the current state. 19467 */ 19468 err = 0; 19469 if (is_jmp_point(env, env->insn_idx)) 19470 err = push_jmp_history(env, cur, 0, 0); 19471 err = err ? : propagate_precision(env, &sl->state, cur, NULL); 19472 if (err) 19473 return err; 19474 /* When processing iterator based loops above propagate_liveness and 19475 * propagate_precision calls are not sufficient to transfer all relevant 19476 * read and precision marks. E.g. consider the following case: 19477 * 19478 * .-> A --. Assume the states are visited in the order A, B, C. 19479 * | | | Assume that state B reaches a state equivalent to state A. 19480 * | v v At this point, state C is not processed yet, so state A 19481 * '-- B C has not received any read or precision marks from C. 19482 * Thus, marks propagated from A to B are incomplete. 19483 * 19484 * The verifier mitigates this by performing the following steps: 19485 * 19486 * - Prior to the main verification pass, strongly connected components 19487 * (SCCs) are computed over the program's control flow graph, 19488 * intraprocedurally. 19489 * 19490 * - During the main verification pass, `maybe_enter_scc()` checks 19491 * whether the current verifier state is entering an SCC. If so, an 19492 * instance of a `bpf_scc_visit` object is created, and the state 19493 * entering the SCC is recorded as the entry state. 19494 * 19495 * - This instance is associated not with the SCC itself, but with a 19496 * `bpf_scc_callchain`: a tuple consisting of the call sites leading to 19497 * the SCC and the SCC id. See `compute_scc_callchain()`. 19498 * 19499 * - When a verification path encounters a `states_equal(..., 19500 * RANGE_WITHIN)` condition, there exists a call chain describing the 19501 * current state and a corresponding `bpf_scc_visit` instance. A copy 19502 * of the current state is created and added to 19503 * `bpf_scc_visit->backedges`. 19504 * 19505 * - When a verification path terminates, `maybe_exit_scc()` is called 19506 * from `update_branch_counts()`. For states with `branches == 0`, it 19507 * checks whether the state is the entry state of any `bpf_scc_visit` 19508 * instance. If it is, this indicates that all paths originating from 19509 * this SCC visit have been explored. `propagate_backedges()` is then 19510 * called, which propagates read and precision marks through the 19511 * backedges until a fixed point is reached. 19512 * (In the earlier example, this would propagate marks from A to B, 19513 * from C to A, and then again from A to B.) 19514 * 19515 * A note on callchains 19516 * -------------------- 19517 * 19518 * Consider the following example: 19519 * 19520 * void foo() { loop { ... SCC#1 ... } } 19521 * void main() { 19522 * A: foo(); 19523 * B: ... 19524 * C: foo(); 19525 * } 19526 * 19527 * Here, there are two distinct callchains leading to SCC#1: 19528 * - (A, SCC#1) 19529 * - (C, SCC#1) 19530 * 19531 * Each callchain identifies a separate `bpf_scc_visit` instance that 19532 * accumulates backedge states. The `propagate_{liveness,precision}()` 19533 * functions traverse the parent state of each backedge state, which 19534 * means these parent states must remain valid (i.e., not freed) while 19535 * the corresponding `bpf_scc_visit` instance exists. 19536 * 19537 * Associating `bpf_scc_visit` instances directly with SCCs instead of 19538 * callchains would break this invariant: 19539 * - States explored during `C: foo()` would contribute backedges to 19540 * SCC#1, but SCC#1 would only be exited once the exploration of 19541 * `A: foo()` completes. 19542 * - By that time, the states explored between `A: foo()` and `C: foo()` 19543 * (i.e., `B: ...`) may have already been freed, causing the parent 19544 * links for states from `C: foo()` to become invalid. 19545 */ 19546 if (loop) { 19547 struct bpf_scc_backedge *backedge; 19548 19549 backedge = kzalloc(sizeof(*backedge), GFP_KERNEL_ACCOUNT); 19550 if (!backedge) 19551 return -ENOMEM; 19552 err = copy_verifier_state(&backedge->state, cur); 19553 backedge->state.equal_state = &sl->state; 19554 backedge->state.insn_idx = insn_idx; 19555 err = err ?: add_scc_backedge(env, &sl->state, backedge); 19556 if (err) { 19557 free_verifier_state(&backedge->state, false); 19558 kfree(backedge); 19559 return err; 19560 } 19561 } 19562 return 1; 19563 } 19564 miss: 19565 /* when new state is not going to be added do not increase miss count. 19566 * Otherwise several loop iterations will remove the state 19567 * recorded earlier. The goal of these heuristics is to have 19568 * states from some iterations of the loop (some in the beginning 19569 * and some at the end) to help pruning. 19570 */ 19571 if (add_new_state) 19572 sl->miss_cnt++; 19573 /* heuristic to determine whether this state is beneficial 19574 * to keep checking from state equivalence point of view. 19575 * Higher numbers increase max_states_per_insn and verification time, 19576 * but do not meaningfully decrease insn_processed. 19577 * 'n' controls how many times state could miss before eviction. 19578 * Use bigger 'n' for checkpoints because evicting checkpoint states 19579 * too early would hinder iterator convergence. 19580 */ 19581 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 19582 if (sl->miss_cnt > sl->hit_cnt * n + n) { 19583 /* the state is unlikely to be useful. Remove it to 19584 * speed up verification 19585 */ 19586 sl->in_free_list = true; 19587 list_del(&sl->node); 19588 list_add(&sl->node, &env->free_list); 19589 env->free_list_size++; 19590 env->explored_states_size--; 19591 maybe_free_verifier_state(env, sl); 19592 } 19593 } 19594 19595 if (env->max_states_per_insn < states_cnt) 19596 env->max_states_per_insn = states_cnt; 19597 19598 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 19599 return 0; 19600 19601 if (!add_new_state) 19602 return 0; 19603 19604 /* There were no equivalent states, remember the current one. 19605 * Technically the current state is not proven to be safe yet, 19606 * but it will either reach outer most bpf_exit (which means it's safe) 19607 * or it will be rejected. When there are no loops the verifier won't be 19608 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 19609 * again on the way to bpf_exit. 19610 * When looping the sl->state.branches will be > 0 and this state 19611 * will not be considered for equivalence until branches == 0. 19612 */ 19613 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL_ACCOUNT); 19614 if (!new_sl) 19615 return -ENOMEM; 19616 env->total_states++; 19617 env->explored_states_size++; 19618 update_peak_states(env); 19619 env->prev_jmps_processed = env->jmps_processed; 19620 env->prev_insn_processed = env->insn_processed; 19621 19622 /* forget precise markings we inherited, see __mark_chain_precision */ 19623 if (env->bpf_capable) 19624 mark_all_scalars_imprecise(env, cur); 19625 19626 /* add new state to the head of linked list */ 19627 new = &new_sl->state; 19628 err = copy_verifier_state(new, cur); 19629 if (err) { 19630 free_verifier_state(new, false); 19631 kfree(new_sl); 19632 return err; 19633 } 19634 new->insn_idx = insn_idx; 19635 verifier_bug_if(new->branches != 1, env, 19636 "%s:branches_to_explore=%d insn %d", 19637 __func__, new->branches, insn_idx); 19638 err = maybe_enter_scc(env, new); 19639 if (err) { 19640 free_verifier_state(new, false); 19641 kfree(new_sl); 19642 return err; 19643 } 19644 19645 cur->parent = new; 19646 cur->first_insn_idx = insn_idx; 19647 cur->dfs_depth = new->dfs_depth + 1; 19648 clear_jmp_history(cur); 19649 list_add(&new_sl->node, head); 19650 return 0; 19651 } 19652 19653 /* Return true if it's OK to have the same insn return a different type. */ 19654 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 19655 { 19656 switch (base_type(type)) { 19657 case PTR_TO_CTX: 19658 case PTR_TO_SOCKET: 19659 case PTR_TO_SOCK_COMMON: 19660 case PTR_TO_TCP_SOCK: 19661 case PTR_TO_XDP_SOCK: 19662 case PTR_TO_BTF_ID: 19663 case PTR_TO_ARENA: 19664 return false; 19665 default: 19666 return true; 19667 } 19668 } 19669 19670 /* If an instruction was previously used with particular pointer types, then we 19671 * need to be careful to avoid cases such as the below, where it may be ok 19672 * for one branch accessing the pointer, but not ok for the other branch: 19673 * 19674 * R1 = sock_ptr 19675 * goto X; 19676 * ... 19677 * R1 = some_other_valid_ptr; 19678 * goto X; 19679 * ... 19680 * R2 = *(u32 *)(R1 + 0); 19681 */ 19682 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 19683 { 19684 return src != prev && (!reg_type_mismatch_ok(src) || 19685 !reg_type_mismatch_ok(prev)); 19686 } 19687 19688 static bool is_ptr_to_mem_or_btf_id(enum bpf_reg_type type) 19689 { 19690 switch (base_type(type)) { 19691 case PTR_TO_MEM: 19692 case PTR_TO_BTF_ID: 19693 return true; 19694 default: 19695 return false; 19696 } 19697 } 19698 19699 static bool is_ptr_to_mem(enum bpf_reg_type type) 19700 { 19701 return base_type(type) == PTR_TO_MEM; 19702 } 19703 19704 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 19705 bool allow_trust_mismatch) 19706 { 19707 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 19708 enum bpf_reg_type merged_type; 19709 19710 if (*prev_type == NOT_INIT) { 19711 /* Saw a valid insn 19712 * dst_reg = *(u32 *)(src_reg + off) 19713 * save type to validate intersecting paths 19714 */ 19715 *prev_type = type; 19716 } else if (reg_type_mismatch(type, *prev_type)) { 19717 /* Abuser program is trying to use the same insn 19718 * dst_reg = *(u32*) (src_reg + off) 19719 * with different pointer types: 19720 * src_reg == ctx in one branch and 19721 * src_reg == stack|map in some other branch. 19722 * Reject it. 19723 */ 19724 if (allow_trust_mismatch && 19725 is_ptr_to_mem_or_btf_id(type) && 19726 is_ptr_to_mem_or_btf_id(*prev_type)) { 19727 /* 19728 * Have to support a use case when one path through 19729 * the program yields TRUSTED pointer while another 19730 * is UNTRUSTED. Fallback to UNTRUSTED to generate 19731 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 19732 * Same behavior of MEM_RDONLY flag. 19733 */ 19734 if (is_ptr_to_mem(type) || is_ptr_to_mem(*prev_type)) 19735 merged_type = PTR_TO_MEM; 19736 else 19737 merged_type = PTR_TO_BTF_ID; 19738 if ((type & PTR_UNTRUSTED) || (*prev_type & PTR_UNTRUSTED)) 19739 merged_type |= PTR_UNTRUSTED; 19740 if ((type & MEM_RDONLY) || (*prev_type & MEM_RDONLY)) 19741 merged_type |= MEM_RDONLY; 19742 *prev_type = merged_type; 19743 } else { 19744 verbose(env, "same insn cannot be used with different pointers\n"); 19745 return -EINVAL; 19746 } 19747 } 19748 19749 return 0; 19750 } 19751 19752 enum { 19753 PROCESS_BPF_EXIT = 1 19754 }; 19755 19756 static int process_bpf_exit_full(struct bpf_verifier_env *env, 19757 bool *do_print_state, 19758 bool exception_exit) 19759 { 19760 /* We must do check_reference_leak here before 19761 * prepare_func_exit to handle the case when 19762 * state->curframe > 0, it may be a callback function, 19763 * for which reference_state must match caller reference 19764 * state when it exits. 19765 */ 19766 int err = check_resource_leak(env, exception_exit, 19767 !env->cur_state->curframe, 19768 "BPF_EXIT instruction in main prog"); 19769 if (err) 19770 return err; 19771 19772 /* The side effect of the prepare_func_exit which is 19773 * being skipped is that it frees bpf_func_state. 19774 * Typically, process_bpf_exit will only be hit with 19775 * outermost exit. copy_verifier_state in pop_stack will 19776 * handle freeing of any extra bpf_func_state left over 19777 * from not processing all nested function exits. We 19778 * also skip return code checks as they are not needed 19779 * for exceptional exits. 19780 */ 19781 if (exception_exit) 19782 return PROCESS_BPF_EXIT; 19783 19784 if (env->cur_state->curframe) { 19785 err = bpf_update_live_stack(env); 19786 if (err) 19787 return err; 19788 /* exit from nested function */ 19789 err = prepare_func_exit(env, &env->insn_idx); 19790 if (err) 19791 return err; 19792 *do_print_state = true; 19793 return 0; 19794 } 19795 19796 err = check_return_code(env, BPF_REG_0, "R0"); 19797 if (err) 19798 return err; 19799 return PROCESS_BPF_EXIT; 19800 } 19801 19802 static int do_check_insn(struct bpf_verifier_env *env, bool *do_print_state) 19803 { 19804 int err; 19805 struct bpf_insn *insn = &env->prog->insnsi[env->insn_idx]; 19806 u8 class = BPF_CLASS(insn->code); 19807 19808 if (class == BPF_ALU || class == BPF_ALU64) { 19809 err = check_alu_op(env, insn); 19810 if (err) 19811 return err; 19812 19813 } else if (class == BPF_LDX) { 19814 bool is_ldsx = BPF_MODE(insn->code) == BPF_MEMSX; 19815 19816 /* Check for reserved fields is already done in 19817 * resolve_pseudo_ldimm64(). 19818 */ 19819 err = check_load_mem(env, insn, false, is_ldsx, true, "ldx"); 19820 if (err) 19821 return err; 19822 } else if (class == BPF_STX) { 19823 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 19824 err = check_atomic(env, insn); 19825 if (err) 19826 return err; 19827 env->insn_idx++; 19828 return 0; 19829 } 19830 19831 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 19832 verbose(env, "BPF_STX uses reserved fields\n"); 19833 return -EINVAL; 19834 } 19835 19836 err = check_store_reg(env, insn, false); 19837 if (err) 19838 return err; 19839 } else if (class == BPF_ST) { 19840 enum bpf_reg_type dst_reg_type; 19841 19842 if (BPF_MODE(insn->code) != BPF_MEM || 19843 insn->src_reg != BPF_REG_0) { 19844 verbose(env, "BPF_ST uses reserved fields\n"); 19845 return -EINVAL; 19846 } 19847 /* check src operand */ 19848 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 19849 if (err) 19850 return err; 19851 19852 dst_reg_type = cur_regs(env)[insn->dst_reg].type; 19853 19854 /* check that memory (dst_reg + off) is writeable */ 19855 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 19856 insn->off, BPF_SIZE(insn->code), 19857 BPF_WRITE, -1, false, false); 19858 if (err) 19859 return err; 19860 19861 err = save_aux_ptr_type(env, dst_reg_type, false); 19862 if (err) 19863 return err; 19864 } else if (class == BPF_JMP || class == BPF_JMP32) { 19865 u8 opcode = BPF_OP(insn->code); 19866 19867 env->jmps_processed++; 19868 if (opcode == BPF_CALL) { 19869 if (BPF_SRC(insn->code) != BPF_K || 19870 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL && 19871 insn->off != 0) || 19872 (insn->src_reg != BPF_REG_0 && 19873 insn->src_reg != BPF_PSEUDO_CALL && 19874 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 19875 insn->dst_reg != BPF_REG_0 || class == BPF_JMP32) { 19876 verbose(env, "BPF_CALL uses reserved fields\n"); 19877 return -EINVAL; 19878 } 19879 19880 if (env->cur_state->active_locks) { 19881 if ((insn->src_reg == BPF_REG_0 && 19882 insn->imm != BPF_FUNC_spin_unlock) || 19883 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 19884 (insn->off != 0 || !kfunc_spin_allowed(insn->imm)))) { 19885 verbose(env, 19886 "function calls are not allowed while holding a lock\n"); 19887 return -EINVAL; 19888 } 19889 } 19890 if (insn->src_reg == BPF_PSEUDO_CALL) { 19891 err = check_func_call(env, insn, &env->insn_idx); 19892 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 19893 err = check_kfunc_call(env, insn, &env->insn_idx); 19894 if (!err && is_bpf_throw_kfunc(insn)) 19895 return process_bpf_exit_full(env, do_print_state, true); 19896 } else { 19897 err = check_helper_call(env, insn, &env->insn_idx); 19898 } 19899 if (err) 19900 return err; 19901 19902 mark_reg_scratched(env, BPF_REG_0); 19903 } else if (opcode == BPF_JA) { 19904 if (BPF_SRC(insn->code) != BPF_K || 19905 insn->src_reg != BPF_REG_0 || 19906 insn->dst_reg != BPF_REG_0 || 19907 (class == BPF_JMP && insn->imm != 0) || 19908 (class == BPF_JMP32 && insn->off != 0)) { 19909 verbose(env, "BPF_JA uses reserved fields\n"); 19910 return -EINVAL; 19911 } 19912 19913 if (class == BPF_JMP) 19914 env->insn_idx += insn->off + 1; 19915 else 19916 env->insn_idx += insn->imm + 1; 19917 return 0; 19918 } else if (opcode == BPF_EXIT) { 19919 if (BPF_SRC(insn->code) != BPF_K || 19920 insn->imm != 0 || 19921 insn->src_reg != BPF_REG_0 || 19922 insn->dst_reg != BPF_REG_0 || 19923 class == BPF_JMP32) { 19924 verbose(env, "BPF_EXIT uses reserved fields\n"); 19925 return -EINVAL; 19926 } 19927 return process_bpf_exit_full(env, do_print_state, false); 19928 } else { 19929 err = check_cond_jmp_op(env, insn, &env->insn_idx); 19930 if (err) 19931 return err; 19932 } 19933 } else if (class == BPF_LD) { 19934 u8 mode = BPF_MODE(insn->code); 19935 19936 if (mode == BPF_ABS || mode == BPF_IND) { 19937 err = check_ld_abs(env, insn); 19938 if (err) 19939 return err; 19940 19941 } else if (mode == BPF_IMM) { 19942 err = check_ld_imm(env, insn); 19943 if (err) 19944 return err; 19945 19946 env->insn_idx++; 19947 sanitize_mark_insn_seen(env); 19948 } else { 19949 verbose(env, "invalid BPF_LD mode\n"); 19950 return -EINVAL; 19951 } 19952 } else { 19953 verbose(env, "unknown insn class %d\n", class); 19954 return -EINVAL; 19955 } 19956 19957 env->insn_idx++; 19958 return 0; 19959 } 19960 19961 static int do_check(struct bpf_verifier_env *env) 19962 { 19963 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 19964 struct bpf_verifier_state *state = env->cur_state; 19965 struct bpf_insn *insns = env->prog->insnsi; 19966 int insn_cnt = env->prog->len; 19967 bool do_print_state = false; 19968 int prev_insn_idx = -1; 19969 19970 for (;;) { 19971 struct bpf_insn *insn; 19972 struct bpf_insn_aux_data *insn_aux; 19973 int err, marks_err; 19974 19975 /* reset current history entry on each new instruction */ 19976 env->cur_hist_ent = NULL; 19977 19978 env->prev_insn_idx = prev_insn_idx; 19979 if (env->insn_idx >= insn_cnt) { 19980 verbose(env, "invalid insn idx %d insn_cnt %d\n", 19981 env->insn_idx, insn_cnt); 19982 return -EFAULT; 19983 } 19984 19985 insn = &insns[env->insn_idx]; 19986 insn_aux = &env->insn_aux_data[env->insn_idx]; 19987 19988 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 19989 verbose(env, 19990 "BPF program is too large. Processed %d insn\n", 19991 env->insn_processed); 19992 return -E2BIG; 19993 } 19994 19995 state->last_insn_idx = env->prev_insn_idx; 19996 state->insn_idx = env->insn_idx; 19997 19998 if (is_prune_point(env, env->insn_idx)) { 19999 err = is_state_visited(env, env->insn_idx); 20000 if (err < 0) 20001 return err; 20002 if (err == 1) { 20003 /* found equivalent state, can prune the search */ 20004 if (env->log.level & BPF_LOG_LEVEL) { 20005 if (do_print_state) 20006 verbose(env, "\nfrom %d to %d%s: safe\n", 20007 env->prev_insn_idx, env->insn_idx, 20008 env->cur_state->speculative ? 20009 " (speculative execution)" : ""); 20010 else 20011 verbose(env, "%d: safe\n", env->insn_idx); 20012 } 20013 goto process_bpf_exit; 20014 } 20015 } 20016 20017 if (is_jmp_point(env, env->insn_idx)) { 20018 err = push_jmp_history(env, state, 0, 0); 20019 if (err) 20020 return err; 20021 } 20022 20023 if (signal_pending(current)) 20024 return -EAGAIN; 20025 20026 if (need_resched()) 20027 cond_resched(); 20028 20029 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 20030 verbose(env, "\nfrom %d to %d%s:", 20031 env->prev_insn_idx, env->insn_idx, 20032 env->cur_state->speculative ? 20033 " (speculative execution)" : ""); 20034 print_verifier_state(env, state, state->curframe, true); 20035 do_print_state = false; 20036 } 20037 20038 if (env->log.level & BPF_LOG_LEVEL) { 20039 if (verifier_state_scratched(env)) 20040 print_insn_state(env, state, state->curframe); 20041 20042 verbose_linfo(env, env->insn_idx, "; "); 20043 env->prev_log_pos = env->log.end_pos; 20044 verbose(env, "%d: ", env->insn_idx); 20045 verbose_insn(env, insn); 20046 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 20047 env->prev_log_pos = env->log.end_pos; 20048 } 20049 20050 if (bpf_prog_is_offloaded(env->prog->aux)) { 20051 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 20052 env->prev_insn_idx); 20053 if (err) 20054 return err; 20055 } 20056 20057 sanitize_mark_insn_seen(env); 20058 prev_insn_idx = env->insn_idx; 20059 20060 /* Reduce verification complexity by stopping speculative path 20061 * verification when a nospec is encountered. 20062 */ 20063 if (state->speculative && insn_aux->nospec) 20064 goto process_bpf_exit; 20065 20066 err = bpf_reset_stack_write_marks(env, env->insn_idx); 20067 if (err) 20068 return err; 20069 err = do_check_insn(env, &do_print_state); 20070 if (err >= 0 || error_recoverable_with_nospec(err)) { 20071 marks_err = bpf_commit_stack_write_marks(env); 20072 if (marks_err) 20073 return marks_err; 20074 } 20075 if (error_recoverable_with_nospec(err) && state->speculative) { 20076 /* Prevent this speculative path from ever reaching the 20077 * insn that would have been unsafe to execute. 20078 */ 20079 insn_aux->nospec = true; 20080 /* If it was an ADD/SUB insn, potentially remove any 20081 * markings for alu sanitization. 20082 */ 20083 insn_aux->alu_state = 0; 20084 goto process_bpf_exit; 20085 } else if (err < 0) { 20086 return err; 20087 } else if (err == PROCESS_BPF_EXIT) { 20088 goto process_bpf_exit; 20089 } 20090 WARN_ON_ONCE(err); 20091 20092 if (state->speculative && insn_aux->nospec_result) { 20093 /* If we are on a path that performed a jump-op, this 20094 * may skip a nospec patched-in after the jump. This can 20095 * currently never happen because nospec_result is only 20096 * used for the write-ops 20097 * `*(size*)(dst_reg+off)=src_reg|imm32` which must 20098 * never skip the following insn. Still, add a warning 20099 * to document this in case nospec_result is used 20100 * elsewhere in the future. 20101 * 20102 * All non-branch instructions have a single 20103 * fall-through edge. For these, nospec_result should 20104 * already work. 20105 */ 20106 if (verifier_bug_if(BPF_CLASS(insn->code) == BPF_JMP || 20107 BPF_CLASS(insn->code) == BPF_JMP32, env, 20108 "speculation barrier after jump instruction may not have the desired effect")) 20109 return -EFAULT; 20110 process_bpf_exit: 20111 mark_verifier_state_scratched(env); 20112 err = update_branch_counts(env, env->cur_state); 20113 if (err) 20114 return err; 20115 err = bpf_update_live_stack(env); 20116 if (err) 20117 return err; 20118 err = pop_stack(env, &prev_insn_idx, &env->insn_idx, 20119 pop_log); 20120 if (err < 0) { 20121 if (err != -ENOENT) 20122 return err; 20123 break; 20124 } else { 20125 do_print_state = true; 20126 continue; 20127 } 20128 } 20129 } 20130 20131 return 0; 20132 } 20133 20134 static int find_btf_percpu_datasec(struct btf *btf) 20135 { 20136 const struct btf_type *t; 20137 const char *tname; 20138 int i, n; 20139 20140 /* 20141 * Both vmlinux and module each have their own ".data..percpu" 20142 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 20143 * types to look at only module's own BTF types. 20144 */ 20145 n = btf_nr_types(btf); 20146 if (btf_is_module(btf)) 20147 i = btf_nr_types(btf_vmlinux); 20148 else 20149 i = 1; 20150 20151 for(; i < n; i++) { 20152 t = btf_type_by_id(btf, i); 20153 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 20154 continue; 20155 20156 tname = btf_name_by_offset(btf, t->name_off); 20157 if (!strcmp(tname, ".data..percpu")) 20158 return i; 20159 } 20160 20161 return -ENOENT; 20162 } 20163 20164 /* 20165 * Add btf to the used_btfs array and return the index. (If the btf was 20166 * already added, then just return the index.) Upon successful insertion 20167 * increase btf refcnt, and, if present, also refcount the corresponding 20168 * kernel module. 20169 */ 20170 static int __add_used_btf(struct bpf_verifier_env *env, struct btf *btf) 20171 { 20172 struct btf_mod_pair *btf_mod; 20173 int i; 20174 20175 /* check whether we recorded this BTF (and maybe module) already */ 20176 for (i = 0; i < env->used_btf_cnt; i++) 20177 if (env->used_btfs[i].btf == btf) 20178 return i; 20179 20180 if (env->used_btf_cnt >= MAX_USED_BTFS) { 20181 verbose(env, "The total number of btfs per program has reached the limit of %u\n", 20182 MAX_USED_BTFS); 20183 return -E2BIG; 20184 } 20185 20186 btf_get(btf); 20187 20188 btf_mod = &env->used_btfs[env->used_btf_cnt]; 20189 btf_mod->btf = btf; 20190 btf_mod->module = NULL; 20191 20192 /* if we reference variables from kernel module, bump its refcount */ 20193 if (btf_is_module(btf)) { 20194 btf_mod->module = btf_try_get_module(btf); 20195 if (!btf_mod->module) { 20196 btf_put(btf); 20197 return -ENXIO; 20198 } 20199 } 20200 20201 return env->used_btf_cnt++; 20202 } 20203 20204 /* replace pseudo btf_id with kernel symbol address */ 20205 static int __check_pseudo_btf_id(struct bpf_verifier_env *env, 20206 struct bpf_insn *insn, 20207 struct bpf_insn_aux_data *aux, 20208 struct btf *btf) 20209 { 20210 const struct btf_var_secinfo *vsi; 20211 const struct btf_type *datasec; 20212 const struct btf_type *t; 20213 const char *sym_name; 20214 bool percpu = false; 20215 u32 type, id = insn->imm; 20216 s32 datasec_id; 20217 u64 addr; 20218 int i; 20219 20220 t = btf_type_by_id(btf, id); 20221 if (!t) { 20222 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 20223 return -ENOENT; 20224 } 20225 20226 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 20227 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 20228 return -EINVAL; 20229 } 20230 20231 sym_name = btf_name_by_offset(btf, t->name_off); 20232 addr = kallsyms_lookup_name(sym_name); 20233 if (!addr) { 20234 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 20235 sym_name); 20236 return -ENOENT; 20237 } 20238 insn[0].imm = (u32)addr; 20239 insn[1].imm = addr >> 32; 20240 20241 if (btf_type_is_func(t)) { 20242 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 20243 aux->btf_var.mem_size = 0; 20244 return 0; 20245 } 20246 20247 datasec_id = find_btf_percpu_datasec(btf); 20248 if (datasec_id > 0) { 20249 datasec = btf_type_by_id(btf, datasec_id); 20250 for_each_vsi(i, datasec, vsi) { 20251 if (vsi->type == id) { 20252 percpu = true; 20253 break; 20254 } 20255 } 20256 } 20257 20258 type = t->type; 20259 t = btf_type_skip_modifiers(btf, type, NULL); 20260 if (percpu) { 20261 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 20262 aux->btf_var.btf = btf; 20263 aux->btf_var.btf_id = type; 20264 } else if (!btf_type_is_struct(t)) { 20265 const struct btf_type *ret; 20266 const char *tname; 20267 u32 tsize; 20268 20269 /* resolve the type size of ksym. */ 20270 ret = btf_resolve_size(btf, t, &tsize); 20271 if (IS_ERR(ret)) { 20272 tname = btf_name_by_offset(btf, t->name_off); 20273 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 20274 tname, PTR_ERR(ret)); 20275 return -EINVAL; 20276 } 20277 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 20278 aux->btf_var.mem_size = tsize; 20279 } else { 20280 aux->btf_var.reg_type = PTR_TO_BTF_ID; 20281 aux->btf_var.btf = btf; 20282 aux->btf_var.btf_id = type; 20283 } 20284 20285 return 0; 20286 } 20287 20288 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 20289 struct bpf_insn *insn, 20290 struct bpf_insn_aux_data *aux) 20291 { 20292 struct btf *btf; 20293 int btf_fd; 20294 int err; 20295 20296 btf_fd = insn[1].imm; 20297 if (btf_fd) { 20298 CLASS(fd, f)(btf_fd); 20299 20300 btf = __btf_get_by_fd(f); 20301 if (IS_ERR(btf)) { 20302 verbose(env, "invalid module BTF object FD specified.\n"); 20303 return -EINVAL; 20304 } 20305 } else { 20306 if (!btf_vmlinux) { 20307 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 20308 return -EINVAL; 20309 } 20310 btf = btf_vmlinux; 20311 } 20312 20313 err = __check_pseudo_btf_id(env, insn, aux, btf); 20314 if (err) 20315 return err; 20316 20317 err = __add_used_btf(env, btf); 20318 if (err < 0) 20319 return err; 20320 return 0; 20321 } 20322 20323 static bool is_tracing_prog_type(enum bpf_prog_type type) 20324 { 20325 switch (type) { 20326 case BPF_PROG_TYPE_KPROBE: 20327 case BPF_PROG_TYPE_TRACEPOINT: 20328 case BPF_PROG_TYPE_PERF_EVENT: 20329 case BPF_PROG_TYPE_RAW_TRACEPOINT: 20330 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 20331 return true; 20332 default: 20333 return false; 20334 } 20335 } 20336 20337 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 20338 { 20339 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 20340 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 20341 } 20342 20343 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 20344 struct bpf_map *map, 20345 struct bpf_prog *prog) 20346 20347 { 20348 enum bpf_prog_type prog_type = resolve_prog_type(prog); 20349 20350 if (map->excl_prog_sha && 20351 memcmp(map->excl_prog_sha, prog->digest, SHA256_DIGEST_SIZE)) { 20352 verbose(env, "program's hash doesn't match map's excl_prog_hash\n"); 20353 return -EACCES; 20354 } 20355 20356 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 20357 btf_record_has_field(map->record, BPF_RB_ROOT)) { 20358 if (is_tracing_prog_type(prog_type)) { 20359 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 20360 return -EINVAL; 20361 } 20362 } 20363 20364 if (btf_record_has_field(map->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) { 20365 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 20366 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 20367 return -EINVAL; 20368 } 20369 20370 if (is_tracing_prog_type(prog_type)) { 20371 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 20372 return -EINVAL; 20373 } 20374 } 20375 20376 if (btf_record_has_field(map->record, BPF_TIMER)) { 20377 if (is_tracing_prog_type(prog_type)) { 20378 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 20379 return -EINVAL; 20380 } 20381 } 20382 20383 if (btf_record_has_field(map->record, BPF_WORKQUEUE)) { 20384 if (is_tracing_prog_type(prog_type)) { 20385 verbose(env, "tracing progs cannot use bpf_wq yet\n"); 20386 return -EINVAL; 20387 } 20388 } 20389 20390 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 20391 !bpf_offload_prog_map_match(prog, map)) { 20392 verbose(env, "offload device mismatch between prog and map\n"); 20393 return -EINVAL; 20394 } 20395 20396 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 20397 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 20398 return -EINVAL; 20399 } 20400 20401 if (prog->sleepable) 20402 switch (map->map_type) { 20403 case BPF_MAP_TYPE_HASH: 20404 case BPF_MAP_TYPE_LRU_HASH: 20405 case BPF_MAP_TYPE_ARRAY: 20406 case BPF_MAP_TYPE_PERCPU_HASH: 20407 case BPF_MAP_TYPE_PERCPU_ARRAY: 20408 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 20409 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 20410 case BPF_MAP_TYPE_HASH_OF_MAPS: 20411 case BPF_MAP_TYPE_RINGBUF: 20412 case BPF_MAP_TYPE_USER_RINGBUF: 20413 case BPF_MAP_TYPE_INODE_STORAGE: 20414 case BPF_MAP_TYPE_SK_STORAGE: 20415 case BPF_MAP_TYPE_TASK_STORAGE: 20416 case BPF_MAP_TYPE_CGRP_STORAGE: 20417 case BPF_MAP_TYPE_QUEUE: 20418 case BPF_MAP_TYPE_STACK: 20419 case BPF_MAP_TYPE_ARENA: 20420 break; 20421 default: 20422 verbose(env, 20423 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 20424 return -EINVAL; 20425 } 20426 20427 if (bpf_map_is_cgroup_storage(map) && 20428 bpf_cgroup_storage_assign(env->prog->aux, map)) { 20429 verbose(env, "only one cgroup storage of each type is allowed\n"); 20430 return -EBUSY; 20431 } 20432 20433 if (map->map_type == BPF_MAP_TYPE_ARENA) { 20434 if (env->prog->aux->arena) { 20435 verbose(env, "Only one arena per program\n"); 20436 return -EBUSY; 20437 } 20438 if (!env->allow_ptr_leaks || !env->bpf_capable) { 20439 verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n"); 20440 return -EPERM; 20441 } 20442 if (!env->prog->jit_requested) { 20443 verbose(env, "JIT is required to use arena\n"); 20444 return -EOPNOTSUPP; 20445 } 20446 if (!bpf_jit_supports_arena()) { 20447 verbose(env, "JIT doesn't support arena\n"); 20448 return -EOPNOTSUPP; 20449 } 20450 env->prog->aux->arena = (void *)map; 20451 if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) { 20452 verbose(env, "arena's user address must be set via map_extra or mmap()\n"); 20453 return -EINVAL; 20454 } 20455 } 20456 20457 return 0; 20458 } 20459 20460 static int __add_used_map(struct bpf_verifier_env *env, struct bpf_map *map) 20461 { 20462 int i, err; 20463 20464 /* check whether we recorded this map already */ 20465 for (i = 0; i < env->used_map_cnt; i++) 20466 if (env->used_maps[i] == map) 20467 return i; 20468 20469 if (env->used_map_cnt >= MAX_USED_MAPS) { 20470 verbose(env, "The total number of maps per program has reached the limit of %u\n", 20471 MAX_USED_MAPS); 20472 return -E2BIG; 20473 } 20474 20475 err = check_map_prog_compatibility(env, map, env->prog); 20476 if (err) 20477 return err; 20478 20479 if (env->prog->sleepable) 20480 atomic64_inc(&map->sleepable_refcnt); 20481 20482 /* hold the map. If the program is rejected by verifier, 20483 * the map will be released by release_maps() or it 20484 * will be used by the valid program until it's unloaded 20485 * and all maps are released in bpf_free_used_maps() 20486 */ 20487 bpf_map_inc(map); 20488 20489 env->used_maps[env->used_map_cnt++] = map; 20490 20491 return env->used_map_cnt - 1; 20492 } 20493 20494 /* Add map behind fd to used maps list, if it's not already there, and return 20495 * its index. 20496 * Returns <0 on error, or >= 0 index, on success. 20497 */ 20498 static int add_used_map(struct bpf_verifier_env *env, int fd) 20499 { 20500 struct bpf_map *map; 20501 CLASS(fd, f)(fd); 20502 20503 map = __bpf_map_get(f); 20504 if (IS_ERR(map)) { 20505 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd); 20506 return PTR_ERR(map); 20507 } 20508 20509 return __add_used_map(env, map); 20510 } 20511 20512 /* find and rewrite pseudo imm in ld_imm64 instructions: 20513 * 20514 * 1. if it accesses map FD, replace it with actual map pointer. 20515 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 20516 * 20517 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 20518 */ 20519 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 20520 { 20521 struct bpf_insn *insn = env->prog->insnsi; 20522 int insn_cnt = env->prog->len; 20523 int i, err; 20524 20525 err = bpf_prog_calc_tag(env->prog); 20526 if (err) 20527 return err; 20528 20529 for (i = 0; i < insn_cnt; i++, insn++) { 20530 if (BPF_CLASS(insn->code) == BPF_LDX && 20531 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 20532 insn->imm != 0)) { 20533 verbose(env, "BPF_LDX uses reserved fields\n"); 20534 return -EINVAL; 20535 } 20536 20537 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 20538 struct bpf_insn_aux_data *aux; 20539 struct bpf_map *map; 20540 int map_idx; 20541 u64 addr; 20542 u32 fd; 20543 20544 if (i == insn_cnt - 1 || insn[1].code != 0 || 20545 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 20546 insn[1].off != 0) { 20547 verbose(env, "invalid bpf_ld_imm64 insn\n"); 20548 return -EINVAL; 20549 } 20550 20551 if (insn[0].src_reg == 0) 20552 /* valid generic load 64-bit imm */ 20553 goto next_insn; 20554 20555 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 20556 aux = &env->insn_aux_data[i]; 20557 err = check_pseudo_btf_id(env, insn, aux); 20558 if (err) 20559 return err; 20560 goto next_insn; 20561 } 20562 20563 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 20564 aux = &env->insn_aux_data[i]; 20565 aux->ptr_type = PTR_TO_FUNC; 20566 goto next_insn; 20567 } 20568 20569 /* In final convert_pseudo_ld_imm64() step, this is 20570 * converted into regular 64-bit imm load insn. 20571 */ 20572 switch (insn[0].src_reg) { 20573 case BPF_PSEUDO_MAP_VALUE: 20574 case BPF_PSEUDO_MAP_IDX_VALUE: 20575 break; 20576 case BPF_PSEUDO_MAP_FD: 20577 case BPF_PSEUDO_MAP_IDX: 20578 if (insn[1].imm == 0) 20579 break; 20580 fallthrough; 20581 default: 20582 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 20583 return -EINVAL; 20584 } 20585 20586 switch (insn[0].src_reg) { 20587 case BPF_PSEUDO_MAP_IDX_VALUE: 20588 case BPF_PSEUDO_MAP_IDX: 20589 if (bpfptr_is_null(env->fd_array)) { 20590 verbose(env, "fd_idx without fd_array is invalid\n"); 20591 return -EPROTO; 20592 } 20593 if (copy_from_bpfptr_offset(&fd, env->fd_array, 20594 insn[0].imm * sizeof(fd), 20595 sizeof(fd))) 20596 return -EFAULT; 20597 break; 20598 default: 20599 fd = insn[0].imm; 20600 break; 20601 } 20602 20603 map_idx = add_used_map(env, fd); 20604 if (map_idx < 0) 20605 return map_idx; 20606 map = env->used_maps[map_idx]; 20607 20608 aux = &env->insn_aux_data[i]; 20609 aux->map_index = map_idx; 20610 20611 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 20612 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 20613 addr = (unsigned long)map; 20614 } else { 20615 u32 off = insn[1].imm; 20616 20617 if (off >= BPF_MAX_VAR_OFF) { 20618 verbose(env, "direct value offset of %u is not allowed\n", off); 20619 return -EINVAL; 20620 } 20621 20622 if (!map->ops->map_direct_value_addr) { 20623 verbose(env, "no direct value access support for this map type\n"); 20624 return -EINVAL; 20625 } 20626 20627 err = map->ops->map_direct_value_addr(map, &addr, off); 20628 if (err) { 20629 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 20630 map->value_size, off); 20631 return err; 20632 } 20633 20634 aux->map_off = off; 20635 addr += off; 20636 } 20637 20638 insn[0].imm = (u32)addr; 20639 insn[1].imm = addr >> 32; 20640 20641 next_insn: 20642 insn++; 20643 i++; 20644 continue; 20645 } 20646 20647 /* Basic sanity check before we invest more work here. */ 20648 if (!bpf_opcode_in_insntable(insn->code)) { 20649 verbose(env, "unknown opcode %02x\n", insn->code); 20650 return -EINVAL; 20651 } 20652 } 20653 20654 /* now all pseudo BPF_LD_IMM64 instructions load valid 20655 * 'struct bpf_map *' into a register instead of user map_fd. 20656 * These pointers will be used later by verifier to validate map access. 20657 */ 20658 return 0; 20659 } 20660 20661 /* drop refcnt of maps used by the rejected program */ 20662 static void release_maps(struct bpf_verifier_env *env) 20663 { 20664 __bpf_free_used_maps(env->prog->aux, env->used_maps, 20665 env->used_map_cnt); 20666 } 20667 20668 /* drop refcnt of maps used by the rejected program */ 20669 static void release_btfs(struct bpf_verifier_env *env) 20670 { 20671 __bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt); 20672 } 20673 20674 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 20675 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 20676 { 20677 struct bpf_insn *insn = env->prog->insnsi; 20678 int insn_cnt = env->prog->len; 20679 int i; 20680 20681 for (i = 0; i < insn_cnt; i++, insn++) { 20682 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 20683 continue; 20684 if (insn->src_reg == BPF_PSEUDO_FUNC) 20685 continue; 20686 insn->src_reg = 0; 20687 } 20688 } 20689 20690 /* single env->prog->insni[off] instruction was replaced with the range 20691 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 20692 * [0, off) and [off, end) to new locations, so the patched range stays zero 20693 */ 20694 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 20695 struct bpf_prog *new_prog, u32 off, u32 cnt) 20696 { 20697 struct bpf_insn_aux_data *data = env->insn_aux_data; 20698 struct bpf_insn *insn = new_prog->insnsi; 20699 u32 old_seen = data[off].seen; 20700 u32 prog_len; 20701 int i; 20702 20703 /* aux info at OFF always needs adjustment, no matter fast path 20704 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 20705 * original insn at old prog. 20706 */ 20707 data[off].zext_dst = insn_has_def32(insn + off + cnt - 1); 20708 20709 if (cnt == 1) 20710 return; 20711 prog_len = new_prog->len; 20712 20713 memmove(data + off + cnt - 1, data + off, 20714 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 20715 memset(data + off, 0, sizeof(struct bpf_insn_aux_data) * (cnt - 1)); 20716 for (i = off; i < off + cnt - 1; i++) { 20717 /* Expand insni[off]'s seen count to the patched range. */ 20718 data[i].seen = old_seen; 20719 data[i].zext_dst = insn_has_def32(insn + i); 20720 } 20721 } 20722 20723 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 20724 { 20725 int i; 20726 20727 if (len == 1) 20728 return; 20729 /* NOTE: fake 'exit' subprog should be updated as well. */ 20730 for (i = 0; i <= env->subprog_cnt; i++) { 20731 if (env->subprog_info[i].start <= off) 20732 continue; 20733 env->subprog_info[i].start += len - 1; 20734 } 20735 } 20736 20737 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 20738 { 20739 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 20740 int i, sz = prog->aux->size_poke_tab; 20741 struct bpf_jit_poke_descriptor *desc; 20742 20743 for (i = 0; i < sz; i++) { 20744 desc = &tab[i]; 20745 if (desc->insn_idx <= off) 20746 continue; 20747 desc->insn_idx += len - 1; 20748 } 20749 } 20750 20751 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 20752 const struct bpf_insn *patch, u32 len) 20753 { 20754 struct bpf_prog *new_prog; 20755 struct bpf_insn_aux_data *new_data = NULL; 20756 20757 if (len > 1) { 20758 new_data = vrealloc(env->insn_aux_data, 20759 array_size(env->prog->len + len - 1, 20760 sizeof(struct bpf_insn_aux_data)), 20761 GFP_KERNEL_ACCOUNT | __GFP_ZERO); 20762 if (!new_data) 20763 return NULL; 20764 20765 env->insn_aux_data = new_data; 20766 } 20767 20768 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 20769 if (IS_ERR(new_prog)) { 20770 if (PTR_ERR(new_prog) == -ERANGE) 20771 verbose(env, 20772 "insn %d cannot be patched due to 16-bit range\n", 20773 env->insn_aux_data[off].orig_idx); 20774 return NULL; 20775 } 20776 adjust_insn_aux_data(env, new_prog, off, len); 20777 adjust_subprog_starts(env, off, len); 20778 adjust_poke_descs(new_prog, off, len); 20779 return new_prog; 20780 } 20781 20782 /* 20783 * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the 20784 * jump offset by 'delta'. 20785 */ 20786 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta) 20787 { 20788 struct bpf_insn *insn = prog->insnsi; 20789 u32 insn_cnt = prog->len, i; 20790 s32 imm; 20791 s16 off; 20792 20793 for (i = 0; i < insn_cnt; i++, insn++) { 20794 u8 code = insn->code; 20795 20796 if (tgt_idx <= i && i < tgt_idx + delta) 20797 continue; 20798 20799 if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) || 20800 BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT) 20801 continue; 20802 20803 if (insn->code == (BPF_JMP32 | BPF_JA)) { 20804 if (i + 1 + insn->imm != tgt_idx) 20805 continue; 20806 if (check_add_overflow(insn->imm, delta, &imm)) 20807 return -ERANGE; 20808 insn->imm = imm; 20809 } else { 20810 if (i + 1 + insn->off != tgt_idx) 20811 continue; 20812 if (check_add_overflow(insn->off, delta, &off)) 20813 return -ERANGE; 20814 insn->off = off; 20815 } 20816 } 20817 return 0; 20818 } 20819 20820 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 20821 u32 off, u32 cnt) 20822 { 20823 int i, j; 20824 20825 /* find first prog starting at or after off (first to remove) */ 20826 for (i = 0; i < env->subprog_cnt; i++) 20827 if (env->subprog_info[i].start >= off) 20828 break; 20829 /* find first prog starting at or after off + cnt (first to stay) */ 20830 for (j = i; j < env->subprog_cnt; j++) 20831 if (env->subprog_info[j].start >= off + cnt) 20832 break; 20833 /* if j doesn't start exactly at off + cnt, we are just removing 20834 * the front of previous prog 20835 */ 20836 if (env->subprog_info[j].start != off + cnt) 20837 j--; 20838 20839 if (j > i) { 20840 struct bpf_prog_aux *aux = env->prog->aux; 20841 int move; 20842 20843 /* move fake 'exit' subprog as well */ 20844 move = env->subprog_cnt + 1 - j; 20845 20846 memmove(env->subprog_info + i, 20847 env->subprog_info + j, 20848 sizeof(*env->subprog_info) * move); 20849 env->subprog_cnt -= j - i; 20850 20851 /* remove func_info */ 20852 if (aux->func_info) { 20853 move = aux->func_info_cnt - j; 20854 20855 memmove(aux->func_info + i, 20856 aux->func_info + j, 20857 sizeof(*aux->func_info) * move); 20858 aux->func_info_cnt -= j - i; 20859 /* func_info->insn_off is set after all code rewrites, 20860 * in adjust_btf_func() - no need to adjust 20861 */ 20862 } 20863 } else { 20864 /* convert i from "first prog to remove" to "first to adjust" */ 20865 if (env->subprog_info[i].start == off) 20866 i++; 20867 } 20868 20869 /* update fake 'exit' subprog as well */ 20870 for (; i <= env->subprog_cnt; i++) 20871 env->subprog_info[i].start -= cnt; 20872 20873 return 0; 20874 } 20875 20876 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 20877 u32 cnt) 20878 { 20879 struct bpf_prog *prog = env->prog; 20880 u32 i, l_off, l_cnt, nr_linfo; 20881 struct bpf_line_info *linfo; 20882 20883 nr_linfo = prog->aux->nr_linfo; 20884 if (!nr_linfo) 20885 return 0; 20886 20887 linfo = prog->aux->linfo; 20888 20889 /* find first line info to remove, count lines to be removed */ 20890 for (i = 0; i < nr_linfo; i++) 20891 if (linfo[i].insn_off >= off) 20892 break; 20893 20894 l_off = i; 20895 l_cnt = 0; 20896 for (; i < nr_linfo; i++) 20897 if (linfo[i].insn_off < off + cnt) 20898 l_cnt++; 20899 else 20900 break; 20901 20902 /* First live insn doesn't match first live linfo, it needs to "inherit" 20903 * last removed linfo. prog is already modified, so prog->len == off 20904 * means no live instructions after (tail of the program was removed). 20905 */ 20906 if (prog->len != off && l_cnt && 20907 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 20908 l_cnt--; 20909 linfo[--i].insn_off = off + cnt; 20910 } 20911 20912 /* remove the line info which refer to the removed instructions */ 20913 if (l_cnt) { 20914 memmove(linfo + l_off, linfo + i, 20915 sizeof(*linfo) * (nr_linfo - i)); 20916 20917 prog->aux->nr_linfo -= l_cnt; 20918 nr_linfo = prog->aux->nr_linfo; 20919 } 20920 20921 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 20922 for (i = l_off; i < nr_linfo; i++) 20923 linfo[i].insn_off -= cnt; 20924 20925 /* fix up all subprogs (incl. 'exit') which start >= off */ 20926 for (i = 0; i <= env->subprog_cnt; i++) 20927 if (env->subprog_info[i].linfo_idx > l_off) { 20928 /* program may have started in the removed region but 20929 * may not be fully removed 20930 */ 20931 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 20932 env->subprog_info[i].linfo_idx -= l_cnt; 20933 else 20934 env->subprog_info[i].linfo_idx = l_off; 20935 } 20936 20937 return 0; 20938 } 20939 20940 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 20941 { 20942 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 20943 unsigned int orig_prog_len = env->prog->len; 20944 int err; 20945 20946 if (bpf_prog_is_offloaded(env->prog->aux)) 20947 bpf_prog_offload_remove_insns(env, off, cnt); 20948 20949 err = bpf_remove_insns(env->prog, off, cnt); 20950 if (err) 20951 return err; 20952 20953 err = adjust_subprog_starts_after_remove(env, off, cnt); 20954 if (err) 20955 return err; 20956 20957 err = bpf_adj_linfo_after_remove(env, off, cnt); 20958 if (err) 20959 return err; 20960 20961 memmove(aux_data + off, aux_data + off + cnt, 20962 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 20963 20964 return 0; 20965 } 20966 20967 /* The verifier does more data flow analysis than llvm and will not 20968 * explore branches that are dead at run time. Malicious programs can 20969 * have dead code too. Therefore replace all dead at-run-time code 20970 * with 'ja -1'. 20971 * 20972 * Just nops are not optimal, e.g. if they would sit at the end of the 20973 * program and through another bug we would manage to jump there, then 20974 * we'd execute beyond program memory otherwise. Returning exception 20975 * code also wouldn't work since we can have subprogs where the dead 20976 * code could be located. 20977 */ 20978 static void sanitize_dead_code(struct bpf_verifier_env *env) 20979 { 20980 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 20981 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 20982 struct bpf_insn *insn = env->prog->insnsi; 20983 const int insn_cnt = env->prog->len; 20984 int i; 20985 20986 for (i = 0; i < insn_cnt; i++) { 20987 if (aux_data[i].seen) 20988 continue; 20989 memcpy(insn + i, &trap, sizeof(trap)); 20990 aux_data[i].zext_dst = false; 20991 } 20992 } 20993 20994 static bool insn_is_cond_jump(u8 code) 20995 { 20996 u8 op; 20997 20998 op = BPF_OP(code); 20999 if (BPF_CLASS(code) == BPF_JMP32) 21000 return op != BPF_JA; 21001 21002 if (BPF_CLASS(code) != BPF_JMP) 21003 return false; 21004 21005 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 21006 } 21007 21008 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 21009 { 21010 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 21011 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 21012 struct bpf_insn *insn = env->prog->insnsi; 21013 const int insn_cnt = env->prog->len; 21014 int i; 21015 21016 for (i = 0; i < insn_cnt; i++, insn++) { 21017 if (!insn_is_cond_jump(insn->code)) 21018 continue; 21019 21020 if (!aux_data[i + 1].seen) 21021 ja.off = insn->off; 21022 else if (!aux_data[i + 1 + insn->off].seen) 21023 ja.off = 0; 21024 else 21025 continue; 21026 21027 if (bpf_prog_is_offloaded(env->prog->aux)) 21028 bpf_prog_offload_replace_insn(env, i, &ja); 21029 21030 memcpy(insn, &ja, sizeof(ja)); 21031 } 21032 } 21033 21034 static int opt_remove_dead_code(struct bpf_verifier_env *env) 21035 { 21036 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 21037 int insn_cnt = env->prog->len; 21038 int i, err; 21039 21040 for (i = 0; i < insn_cnt; i++) { 21041 int j; 21042 21043 j = 0; 21044 while (i + j < insn_cnt && !aux_data[i + j].seen) 21045 j++; 21046 if (!j) 21047 continue; 21048 21049 err = verifier_remove_insns(env, i, j); 21050 if (err) 21051 return err; 21052 insn_cnt = env->prog->len; 21053 } 21054 21055 return 0; 21056 } 21057 21058 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 21059 static const struct bpf_insn MAY_GOTO_0 = BPF_RAW_INSN(BPF_JMP | BPF_JCOND, 0, 0, 0, 0); 21060 21061 static int opt_remove_nops(struct bpf_verifier_env *env) 21062 { 21063 struct bpf_insn *insn = env->prog->insnsi; 21064 int insn_cnt = env->prog->len; 21065 bool is_may_goto_0, is_ja; 21066 int i, err; 21067 21068 for (i = 0; i < insn_cnt; i++) { 21069 is_may_goto_0 = !memcmp(&insn[i], &MAY_GOTO_0, sizeof(MAY_GOTO_0)); 21070 is_ja = !memcmp(&insn[i], &NOP, sizeof(NOP)); 21071 21072 if (!is_may_goto_0 && !is_ja) 21073 continue; 21074 21075 err = verifier_remove_insns(env, i, 1); 21076 if (err) 21077 return err; 21078 insn_cnt--; 21079 /* Go back one insn to catch may_goto +1; may_goto +0 sequence */ 21080 i -= (is_may_goto_0 && i > 0) ? 2 : 1; 21081 } 21082 21083 return 0; 21084 } 21085 21086 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 21087 const union bpf_attr *attr) 21088 { 21089 struct bpf_insn *patch; 21090 /* use env->insn_buf as two independent buffers */ 21091 struct bpf_insn *zext_patch = env->insn_buf; 21092 struct bpf_insn *rnd_hi32_patch = &env->insn_buf[2]; 21093 struct bpf_insn_aux_data *aux = env->insn_aux_data; 21094 int i, patch_len, delta = 0, len = env->prog->len; 21095 struct bpf_insn *insns = env->prog->insnsi; 21096 struct bpf_prog *new_prog; 21097 bool rnd_hi32; 21098 21099 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 21100 zext_patch[1] = BPF_ZEXT_REG(0); 21101 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 21102 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 21103 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 21104 for (i = 0; i < len; i++) { 21105 int adj_idx = i + delta; 21106 struct bpf_insn insn; 21107 int load_reg; 21108 21109 insn = insns[adj_idx]; 21110 load_reg = insn_def_regno(&insn); 21111 if (!aux[adj_idx].zext_dst) { 21112 u8 code, class; 21113 u32 imm_rnd; 21114 21115 if (!rnd_hi32) 21116 continue; 21117 21118 code = insn.code; 21119 class = BPF_CLASS(code); 21120 if (load_reg == -1) 21121 continue; 21122 21123 /* NOTE: arg "reg" (the fourth one) is only used for 21124 * BPF_STX + SRC_OP, so it is safe to pass NULL 21125 * here. 21126 */ 21127 if (is_reg64(&insn, load_reg, NULL, DST_OP)) { 21128 if (class == BPF_LD && 21129 BPF_MODE(code) == BPF_IMM) 21130 i++; 21131 continue; 21132 } 21133 21134 /* ctx load could be transformed into wider load. */ 21135 if (class == BPF_LDX && 21136 aux[adj_idx].ptr_type == PTR_TO_CTX) 21137 continue; 21138 21139 imm_rnd = get_random_u32(); 21140 rnd_hi32_patch[0] = insn; 21141 rnd_hi32_patch[1].imm = imm_rnd; 21142 rnd_hi32_patch[3].dst_reg = load_reg; 21143 patch = rnd_hi32_patch; 21144 patch_len = 4; 21145 goto apply_patch_buffer; 21146 } 21147 21148 /* Add in an zero-extend instruction if a) the JIT has requested 21149 * it or b) it's a CMPXCHG. 21150 * 21151 * The latter is because: BPF_CMPXCHG always loads a value into 21152 * R0, therefore always zero-extends. However some archs' 21153 * equivalent instruction only does this load when the 21154 * comparison is successful. This detail of CMPXCHG is 21155 * orthogonal to the general zero-extension behaviour of the 21156 * CPU, so it's treated independently of bpf_jit_needs_zext. 21157 */ 21158 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 21159 continue; 21160 21161 /* Zero-extension is done by the caller. */ 21162 if (bpf_pseudo_kfunc_call(&insn)) 21163 continue; 21164 21165 if (verifier_bug_if(load_reg == -1, env, 21166 "zext_dst is set, but no reg is defined")) 21167 return -EFAULT; 21168 21169 zext_patch[0] = insn; 21170 zext_patch[1].dst_reg = load_reg; 21171 zext_patch[1].src_reg = load_reg; 21172 patch = zext_patch; 21173 patch_len = 2; 21174 apply_patch_buffer: 21175 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 21176 if (!new_prog) 21177 return -ENOMEM; 21178 env->prog = new_prog; 21179 insns = new_prog->insnsi; 21180 aux = env->insn_aux_data; 21181 delta += patch_len - 1; 21182 } 21183 21184 return 0; 21185 } 21186 21187 /* convert load instructions that access fields of a context type into a 21188 * sequence of instructions that access fields of the underlying structure: 21189 * struct __sk_buff -> struct sk_buff 21190 * struct bpf_sock_ops -> struct sock 21191 */ 21192 static int convert_ctx_accesses(struct bpf_verifier_env *env) 21193 { 21194 struct bpf_subprog_info *subprogs = env->subprog_info; 21195 const struct bpf_verifier_ops *ops = env->ops; 21196 int i, cnt, size, ctx_field_size, ret, delta = 0, epilogue_cnt = 0; 21197 const int insn_cnt = env->prog->len; 21198 struct bpf_insn *epilogue_buf = env->epilogue_buf; 21199 struct bpf_insn *insn_buf = env->insn_buf; 21200 struct bpf_insn *insn; 21201 u32 target_size, size_default, off; 21202 struct bpf_prog *new_prog; 21203 enum bpf_access_type type; 21204 bool is_narrower_load; 21205 int epilogue_idx = 0; 21206 21207 if (ops->gen_epilogue) { 21208 epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog, 21209 -(subprogs[0].stack_depth + 8)); 21210 if (epilogue_cnt >= INSN_BUF_SIZE) { 21211 verifier_bug(env, "epilogue is too long"); 21212 return -EFAULT; 21213 } else if (epilogue_cnt) { 21214 /* Save the ARG_PTR_TO_CTX for the epilogue to use */ 21215 cnt = 0; 21216 subprogs[0].stack_depth += 8; 21217 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1, 21218 -subprogs[0].stack_depth); 21219 insn_buf[cnt++] = env->prog->insnsi[0]; 21220 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 21221 if (!new_prog) 21222 return -ENOMEM; 21223 env->prog = new_prog; 21224 delta += cnt - 1; 21225 21226 ret = add_kfunc_in_insns(env, epilogue_buf, epilogue_cnt - 1); 21227 if (ret < 0) 21228 return ret; 21229 } 21230 } 21231 21232 if (ops->gen_prologue || env->seen_direct_write) { 21233 if (!ops->gen_prologue) { 21234 verifier_bug(env, "gen_prologue is null"); 21235 return -EFAULT; 21236 } 21237 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 21238 env->prog); 21239 if (cnt >= INSN_BUF_SIZE) { 21240 verifier_bug(env, "prologue is too long"); 21241 return -EFAULT; 21242 } else if (cnt) { 21243 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 21244 if (!new_prog) 21245 return -ENOMEM; 21246 21247 env->prog = new_prog; 21248 delta += cnt - 1; 21249 21250 ret = add_kfunc_in_insns(env, insn_buf, cnt - 1); 21251 if (ret < 0) 21252 return ret; 21253 } 21254 } 21255 21256 if (delta) 21257 WARN_ON(adjust_jmp_off(env->prog, 0, delta)); 21258 21259 if (bpf_prog_is_offloaded(env->prog->aux)) 21260 return 0; 21261 21262 insn = env->prog->insnsi + delta; 21263 21264 for (i = 0; i < insn_cnt; i++, insn++) { 21265 bpf_convert_ctx_access_t convert_ctx_access; 21266 u8 mode; 21267 21268 if (env->insn_aux_data[i + delta].nospec) { 21269 WARN_ON_ONCE(env->insn_aux_data[i + delta].alu_state); 21270 struct bpf_insn *patch = insn_buf; 21271 21272 *patch++ = BPF_ST_NOSPEC(); 21273 *patch++ = *insn; 21274 cnt = patch - insn_buf; 21275 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21276 if (!new_prog) 21277 return -ENOMEM; 21278 21279 delta += cnt - 1; 21280 env->prog = new_prog; 21281 insn = new_prog->insnsi + i + delta; 21282 /* This can not be easily merged with the 21283 * nospec_result-case, because an insn may require a 21284 * nospec before and after itself. Therefore also do not 21285 * 'continue' here but potentially apply further 21286 * patching to insn. *insn should equal patch[1] now. 21287 */ 21288 } 21289 21290 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 21291 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 21292 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 21293 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 21294 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 21295 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 21296 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 21297 type = BPF_READ; 21298 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 21299 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 21300 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 21301 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 21302 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 21303 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 21304 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 21305 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 21306 type = BPF_WRITE; 21307 } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_B) || 21308 insn->code == (BPF_STX | BPF_ATOMIC | BPF_H) || 21309 insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) || 21310 insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) && 21311 env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) { 21312 insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code); 21313 env->prog->aux->num_exentries++; 21314 continue; 21315 } else if (insn->code == (BPF_JMP | BPF_EXIT) && 21316 epilogue_cnt && 21317 i + delta < subprogs[1].start) { 21318 /* Generate epilogue for the main prog */ 21319 if (epilogue_idx) { 21320 /* jump back to the earlier generated epilogue */ 21321 insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1); 21322 cnt = 1; 21323 } else { 21324 memcpy(insn_buf, epilogue_buf, 21325 epilogue_cnt * sizeof(*epilogue_buf)); 21326 cnt = epilogue_cnt; 21327 /* epilogue_idx cannot be 0. It must have at 21328 * least one ctx ptr saving insn before the 21329 * epilogue. 21330 */ 21331 epilogue_idx = i + delta; 21332 } 21333 goto patch_insn_buf; 21334 } else { 21335 continue; 21336 } 21337 21338 if (type == BPF_WRITE && 21339 env->insn_aux_data[i + delta].nospec_result) { 21340 /* nospec_result is only used to mitigate Spectre v4 and 21341 * to limit verification-time for Spectre v1. 21342 */ 21343 struct bpf_insn *patch = insn_buf; 21344 21345 *patch++ = *insn; 21346 *patch++ = BPF_ST_NOSPEC(); 21347 cnt = patch - insn_buf; 21348 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21349 if (!new_prog) 21350 return -ENOMEM; 21351 21352 delta += cnt - 1; 21353 env->prog = new_prog; 21354 insn = new_prog->insnsi + i + delta; 21355 continue; 21356 } 21357 21358 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 21359 case PTR_TO_CTX: 21360 if (!ops->convert_ctx_access) 21361 continue; 21362 convert_ctx_access = ops->convert_ctx_access; 21363 break; 21364 case PTR_TO_SOCKET: 21365 case PTR_TO_SOCK_COMMON: 21366 convert_ctx_access = bpf_sock_convert_ctx_access; 21367 break; 21368 case PTR_TO_TCP_SOCK: 21369 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 21370 break; 21371 case PTR_TO_XDP_SOCK: 21372 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 21373 break; 21374 case PTR_TO_BTF_ID: 21375 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 21376 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 21377 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 21378 * be said once it is marked PTR_UNTRUSTED, hence we must handle 21379 * any faults for loads into such types. BPF_WRITE is disallowed 21380 * for this case. 21381 */ 21382 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 21383 case PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED: 21384 if (type == BPF_READ) { 21385 if (BPF_MODE(insn->code) == BPF_MEM) 21386 insn->code = BPF_LDX | BPF_PROBE_MEM | 21387 BPF_SIZE((insn)->code); 21388 else 21389 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 21390 BPF_SIZE((insn)->code); 21391 env->prog->aux->num_exentries++; 21392 } 21393 continue; 21394 case PTR_TO_ARENA: 21395 if (BPF_MODE(insn->code) == BPF_MEMSX) { 21396 if (!bpf_jit_supports_insn(insn, true)) { 21397 verbose(env, "sign extending loads from arena are not supported yet\n"); 21398 return -EOPNOTSUPP; 21399 } 21400 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32SX | BPF_SIZE(insn->code); 21401 } else { 21402 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code); 21403 } 21404 env->prog->aux->num_exentries++; 21405 continue; 21406 default: 21407 continue; 21408 } 21409 21410 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 21411 size = BPF_LDST_BYTES(insn); 21412 mode = BPF_MODE(insn->code); 21413 21414 /* If the read access is a narrower load of the field, 21415 * convert to a 4/8-byte load, to minimum program type specific 21416 * convert_ctx_access changes. If conversion is successful, 21417 * we will apply proper mask to the result. 21418 */ 21419 is_narrower_load = size < ctx_field_size; 21420 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 21421 off = insn->off; 21422 if (is_narrower_load) { 21423 u8 size_code; 21424 21425 if (type == BPF_WRITE) { 21426 verifier_bug(env, "narrow ctx access misconfigured"); 21427 return -EFAULT; 21428 } 21429 21430 size_code = BPF_H; 21431 if (ctx_field_size == 4) 21432 size_code = BPF_W; 21433 else if (ctx_field_size == 8) 21434 size_code = BPF_DW; 21435 21436 insn->off = off & ~(size_default - 1); 21437 insn->code = BPF_LDX | BPF_MEM | size_code; 21438 } 21439 21440 target_size = 0; 21441 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 21442 &target_size); 21443 if (cnt == 0 || cnt >= INSN_BUF_SIZE || 21444 (ctx_field_size && !target_size)) { 21445 verifier_bug(env, "error during ctx access conversion (%d)", cnt); 21446 return -EFAULT; 21447 } 21448 21449 if (is_narrower_load && size < target_size) { 21450 u8 shift = bpf_ctx_narrow_access_offset( 21451 off, size, size_default) * 8; 21452 if (shift && cnt + 1 >= INSN_BUF_SIZE) { 21453 verifier_bug(env, "narrow ctx load misconfigured"); 21454 return -EFAULT; 21455 } 21456 if (ctx_field_size <= 4) { 21457 if (shift) 21458 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 21459 insn->dst_reg, 21460 shift); 21461 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 21462 (1 << size * 8) - 1); 21463 } else { 21464 if (shift) 21465 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 21466 insn->dst_reg, 21467 shift); 21468 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 21469 (1ULL << size * 8) - 1); 21470 } 21471 } 21472 if (mode == BPF_MEMSX) 21473 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 21474 insn->dst_reg, insn->dst_reg, 21475 size * 8, 0); 21476 21477 patch_insn_buf: 21478 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21479 if (!new_prog) 21480 return -ENOMEM; 21481 21482 delta += cnt - 1; 21483 21484 /* keep walking new program and skip insns we just inserted */ 21485 env->prog = new_prog; 21486 insn = new_prog->insnsi + i + delta; 21487 } 21488 21489 return 0; 21490 } 21491 21492 static int jit_subprogs(struct bpf_verifier_env *env) 21493 { 21494 struct bpf_prog *prog = env->prog, **func, *tmp; 21495 int i, j, subprog_start, subprog_end = 0, len, subprog; 21496 struct bpf_map *map_ptr; 21497 struct bpf_insn *insn; 21498 void *old_bpf_func; 21499 int err, num_exentries; 21500 21501 if (env->subprog_cnt <= 1) 21502 return 0; 21503 21504 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 21505 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 21506 continue; 21507 21508 /* Upon error here we cannot fall back to interpreter but 21509 * need a hard reject of the program. Thus -EFAULT is 21510 * propagated in any case. 21511 */ 21512 subprog = find_subprog(env, i + insn->imm + 1); 21513 if (verifier_bug_if(subprog < 0, env, "No program to jit at insn %d", 21514 i + insn->imm + 1)) 21515 return -EFAULT; 21516 /* temporarily remember subprog id inside insn instead of 21517 * aux_data, since next loop will split up all insns into funcs 21518 */ 21519 insn->off = subprog; 21520 /* remember original imm in case JIT fails and fallback 21521 * to interpreter will be needed 21522 */ 21523 env->insn_aux_data[i].call_imm = insn->imm; 21524 /* point imm to __bpf_call_base+1 from JITs point of view */ 21525 insn->imm = 1; 21526 if (bpf_pseudo_func(insn)) { 21527 #if defined(MODULES_VADDR) 21528 u64 addr = MODULES_VADDR; 21529 #else 21530 u64 addr = VMALLOC_START; 21531 #endif 21532 /* jit (e.g. x86_64) may emit fewer instructions 21533 * if it learns a u32 imm is the same as a u64 imm. 21534 * Set close enough to possible prog address. 21535 */ 21536 insn[0].imm = (u32)addr; 21537 insn[1].imm = addr >> 32; 21538 } 21539 } 21540 21541 err = bpf_prog_alloc_jited_linfo(prog); 21542 if (err) 21543 goto out_undo_insn; 21544 21545 err = -ENOMEM; 21546 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 21547 if (!func) 21548 goto out_undo_insn; 21549 21550 for (i = 0; i < env->subprog_cnt; i++) { 21551 subprog_start = subprog_end; 21552 subprog_end = env->subprog_info[i + 1].start; 21553 21554 len = subprog_end - subprog_start; 21555 /* bpf_prog_run() doesn't call subprogs directly, 21556 * hence main prog stats include the runtime of subprogs. 21557 * subprogs don't have IDs and not reachable via prog_get_next_id 21558 * func[i]->stats will never be accessed and stays NULL 21559 */ 21560 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 21561 if (!func[i]) 21562 goto out_free; 21563 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 21564 len * sizeof(struct bpf_insn)); 21565 func[i]->type = prog->type; 21566 func[i]->len = len; 21567 if (bpf_prog_calc_tag(func[i])) 21568 goto out_free; 21569 func[i]->is_func = 1; 21570 func[i]->sleepable = prog->sleepable; 21571 func[i]->aux->func_idx = i; 21572 /* Below members will be freed only at prog->aux */ 21573 func[i]->aux->btf = prog->aux->btf; 21574 func[i]->aux->func_info = prog->aux->func_info; 21575 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 21576 func[i]->aux->poke_tab = prog->aux->poke_tab; 21577 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 21578 func[i]->aux->main_prog_aux = prog->aux; 21579 21580 for (j = 0; j < prog->aux->size_poke_tab; j++) { 21581 struct bpf_jit_poke_descriptor *poke; 21582 21583 poke = &prog->aux->poke_tab[j]; 21584 if (poke->insn_idx < subprog_end && 21585 poke->insn_idx >= subprog_start) 21586 poke->aux = func[i]->aux; 21587 } 21588 21589 func[i]->aux->name[0] = 'F'; 21590 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 21591 if (env->subprog_info[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) 21592 func[i]->aux->jits_use_priv_stack = true; 21593 21594 func[i]->jit_requested = 1; 21595 func[i]->blinding_requested = prog->blinding_requested; 21596 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 21597 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 21598 func[i]->aux->linfo = prog->aux->linfo; 21599 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 21600 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 21601 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 21602 func[i]->aux->arena = prog->aux->arena; 21603 num_exentries = 0; 21604 insn = func[i]->insnsi; 21605 for (j = 0; j < func[i]->len; j++, insn++) { 21606 if (BPF_CLASS(insn->code) == BPF_LDX && 21607 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 21608 BPF_MODE(insn->code) == BPF_PROBE_MEM32 || 21609 BPF_MODE(insn->code) == BPF_PROBE_MEM32SX || 21610 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 21611 num_exentries++; 21612 if ((BPF_CLASS(insn->code) == BPF_STX || 21613 BPF_CLASS(insn->code) == BPF_ST) && 21614 BPF_MODE(insn->code) == BPF_PROBE_MEM32) 21615 num_exentries++; 21616 if (BPF_CLASS(insn->code) == BPF_STX && 21617 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) 21618 num_exentries++; 21619 } 21620 func[i]->aux->num_exentries = num_exentries; 21621 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 21622 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; 21623 func[i]->aux->changes_pkt_data = env->subprog_info[i].changes_pkt_data; 21624 func[i]->aux->might_sleep = env->subprog_info[i].might_sleep; 21625 if (!i) 21626 func[i]->aux->exception_boundary = env->seen_exception; 21627 func[i] = bpf_int_jit_compile(func[i]); 21628 if (!func[i]->jited) { 21629 err = -ENOTSUPP; 21630 goto out_free; 21631 } 21632 cond_resched(); 21633 } 21634 21635 /* at this point all bpf functions were successfully JITed 21636 * now populate all bpf_calls with correct addresses and 21637 * run last pass of JIT 21638 */ 21639 for (i = 0; i < env->subprog_cnt; i++) { 21640 insn = func[i]->insnsi; 21641 for (j = 0; j < func[i]->len; j++, insn++) { 21642 if (bpf_pseudo_func(insn)) { 21643 subprog = insn->off; 21644 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 21645 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 21646 continue; 21647 } 21648 if (!bpf_pseudo_call(insn)) 21649 continue; 21650 subprog = insn->off; 21651 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 21652 } 21653 21654 /* we use the aux data to keep a list of the start addresses 21655 * of the JITed images for each function in the program 21656 * 21657 * for some architectures, such as powerpc64, the imm field 21658 * might not be large enough to hold the offset of the start 21659 * address of the callee's JITed image from __bpf_call_base 21660 * 21661 * in such cases, we can lookup the start address of a callee 21662 * by using its subprog id, available from the off field of 21663 * the call instruction, as an index for this list 21664 */ 21665 func[i]->aux->func = func; 21666 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 21667 func[i]->aux->real_func_cnt = env->subprog_cnt; 21668 } 21669 for (i = 0; i < env->subprog_cnt; i++) { 21670 old_bpf_func = func[i]->bpf_func; 21671 tmp = bpf_int_jit_compile(func[i]); 21672 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 21673 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 21674 err = -ENOTSUPP; 21675 goto out_free; 21676 } 21677 cond_resched(); 21678 } 21679 21680 /* finally lock prog and jit images for all functions and 21681 * populate kallsysm. Begin at the first subprogram, since 21682 * bpf_prog_load will add the kallsyms for the main program. 21683 */ 21684 for (i = 1; i < env->subprog_cnt; i++) { 21685 err = bpf_prog_lock_ro(func[i]); 21686 if (err) 21687 goto out_free; 21688 } 21689 21690 for (i = 1; i < env->subprog_cnt; i++) 21691 bpf_prog_kallsyms_add(func[i]); 21692 21693 /* Last step: make now unused interpreter insns from main 21694 * prog consistent for later dump requests, so they can 21695 * later look the same as if they were interpreted only. 21696 */ 21697 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 21698 if (bpf_pseudo_func(insn)) { 21699 insn[0].imm = env->insn_aux_data[i].call_imm; 21700 insn[1].imm = insn->off; 21701 insn->off = 0; 21702 continue; 21703 } 21704 if (!bpf_pseudo_call(insn)) 21705 continue; 21706 insn->off = env->insn_aux_data[i].call_imm; 21707 subprog = find_subprog(env, i + insn->off + 1); 21708 insn->imm = subprog; 21709 } 21710 21711 prog->jited = 1; 21712 prog->bpf_func = func[0]->bpf_func; 21713 prog->jited_len = func[0]->jited_len; 21714 prog->aux->extable = func[0]->aux->extable; 21715 prog->aux->num_exentries = func[0]->aux->num_exentries; 21716 prog->aux->func = func; 21717 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 21718 prog->aux->real_func_cnt = env->subprog_cnt; 21719 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; 21720 prog->aux->exception_boundary = func[0]->aux->exception_boundary; 21721 bpf_prog_jit_attempt_done(prog); 21722 return 0; 21723 out_free: 21724 /* We failed JIT'ing, so at this point we need to unregister poke 21725 * descriptors from subprogs, so that kernel is not attempting to 21726 * patch it anymore as we're freeing the subprog JIT memory. 21727 */ 21728 for (i = 0; i < prog->aux->size_poke_tab; i++) { 21729 map_ptr = prog->aux->poke_tab[i].tail_call.map; 21730 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 21731 } 21732 /* At this point we're guaranteed that poke descriptors are not 21733 * live anymore. We can just unlink its descriptor table as it's 21734 * released with the main prog. 21735 */ 21736 for (i = 0; i < env->subprog_cnt; i++) { 21737 if (!func[i]) 21738 continue; 21739 func[i]->aux->poke_tab = NULL; 21740 bpf_jit_free(func[i]); 21741 } 21742 kfree(func); 21743 out_undo_insn: 21744 /* cleanup main prog to be interpreted */ 21745 prog->jit_requested = 0; 21746 prog->blinding_requested = 0; 21747 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 21748 if (!bpf_pseudo_call(insn)) 21749 continue; 21750 insn->off = 0; 21751 insn->imm = env->insn_aux_data[i].call_imm; 21752 } 21753 bpf_prog_jit_attempt_done(prog); 21754 return err; 21755 } 21756 21757 static int fixup_call_args(struct bpf_verifier_env *env) 21758 { 21759 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 21760 struct bpf_prog *prog = env->prog; 21761 struct bpf_insn *insn = prog->insnsi; 21762 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 21763 int i, depth; 21764 #endif 21765 int err = 0; 21766 21767 if (env->prog->jit_requested && 21768 !bpf_prog_is_offloaded(env->prog->aux)) { 21769 err = jit_subprogs(env); 21770 if (err == 0) 21771 return 0; 21772 if (err == -EFAULT) 21773 return err; 21774 } 21775 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 21776 if (has_kfunc_call) { 21777 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 21778 return -EINVAL; 21779 } 21780 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 21781 /* When JIT fails the progs with bpf2bpf calls and tail_calls 21782 * have to be rejected, since interpreter doesn't support them yet. 21783 */ 21784 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 21785 return -EINVAL; 21786 } 21787 for (i = 0; i < prog->len; i++, insn++) { 21788 if (bpf_pseudo_func(insn)) { 21789 /* When JIT fails the progs with callback calls 21790 * have to be rejected, since interpreter doesn't support them yet. 21791 */ 21792 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 21793 return -EINVAL; 21794 } 21795 21796 if (!bpf_pseudo_call(insn)) 21797 continue; 21798 depth = get_callee_stack_depth(env, insn, i); 21799 if (depth < 0) 21800 return depth; 21801 bpf_patch_call_args(insn, depth); 21802 } 21803 err = 0; 21804 #endif 21805 return err; 21806 } 21807 21808 /* replace a generic kfunc with a specialized version if necessary */ 21809 static void specialize_kfunc(struct bpf_verifier_env *env, 21810 u32 func_id, u16 offset, unsigned long *addr) 21811 { 21812 struct bpf_prog *prog = env->prog; 21813 bool seen_direct_write; 21814 void *xdp_kfunc; 21815 bool is_rdonly; 21816 21817 if (bpf_dev_bound_kfunc_id(func_id)) { 21818 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 21819 if (xdp_kfunc) { 21820 *addr = (unsigned long)xdp_kfunc; 21821 return; 21822 } 21823 /* fallback to default kfunc when not supported by netdev */ 21824 } 21825 21826 if (offset) 21827 return; 21828 21829 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 21830 seen_direct_write = env->seen_direct_write; 21831 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 21832 21833 if (is_rdonly) 21834 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 21835 21836 /* restore env->seen_direct_write to its original value, since 21837 * may_access_direct_pkt_data mutates it 21838 */ 21839 env->seen_direct_write = seen_direct_write; 21840 } 21841 21842 if (func_id == special_kfunc_list[KF_bpf_set_dentry_xattr] && 21843 bpf_lsm_has_d_inode_locked(prog)) 21844 *addr = (unsigned long)bpf_set_dentry_xattr_locked; 21845 21846 if (func_id == special_kfunc_list[KF_bpf_remove_dentry_xattr] && 21847 bpf_lsm_has_d_inode_locked(prog)) 21848 *addr = (unsigned long)bpf_remove_dentry_xattr_locked; 21849 } 21850 21851 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 21852 u16 struct_meta_reg, 21853 u16 node_offset_reg, 21854 struct bpf_insn *insn, 21855 struct bpf_insn *insn_buf, 21856 int *cnt) 21857 { 21858 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 21859 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 21860 21861 insn_buf[0] = addr[0]; 21862 insn_buf[1] = addr[1]; 21863 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 21864 insn_buf[3] = *insn; 21865 *cnt = 4; 21866 } 21867 21868 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 21869 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 21870 { 21871 const struct bpf_kfunc_desc *desc; 21872 21873 if (!insn->imm) { 21874 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 21875 return -EINVAL; 21876 } 21877 21878 *cnt = 0; 21879 21880 /* insn->imm has the btf func_id. Replace it with an offset relative to 21881 * __bpf_call_base, unless the JIT needs to call functions that are 21882 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 21883 */ 21884 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 21885 if (!desc) { 21886 verifier_bug(env, "kernel function descriptor not found for func_id %u", 21887 insn->imm); 21888 return -EFAULT; 21889 } 21890 21891 if (!bpf_jit_supports_far_kfunc_call()) 21892 insn->imm = BPF_CALL_IMM(desc->addr); 21893 if (insn->off) 21894 return 0; 21895 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 21896 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 21897 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 21898 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 21899 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 21900 21901 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { 21902 verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d", 21903 insn_idx); 21904 return -EFAULT; 21905 } 21906 21907 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 21908 insn_buf[1] = addr[0]; 21909 insn_buf[2] = addr[1]; 21910 insn_buf[3] = *insn; 21911 *cnt = 4; 21912 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 21913 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || 21914 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 21915 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 21916 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 21917 21918 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { 21919 verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d", 21920 insn_idx); 21921 return -EFAULT; 21922 } 21923 21924 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 21925 !kptr_struct_meta) { 21926 verifier_bug(env, "kptr_struct_meta expected at insn_idx %d", 21927 insn_idx); 21928 return -EFAULT; 21929 } 21930 21931 insn_buf[0] = addr[0]; 21932 insn_buf[1] = addr[1]; 21933 insn_buf[2] = *insn; 21934 *cnt = 3; 21935 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 21936 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 21937 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 21938 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 21939 int struct_meta_reg = BPF_REG_3; 21940 int node_offset_reg = BPF_REG_4; 21941 21942 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 21943 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 21944 struct_meta_reg = BPF_REG_4; 21945 node_offset_reg = BPF_REG_5; 21946 } 21947 21948 if (!kptr_struct_meta) { 21949 verifier_bug(env, "kptr_struct_meta expected at insn_idx %d", 21950 insn_idx); 21951 return -EFAULT; 21952 } 21953 21954 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 21955 node_offset_reg, insn, insn_buf, cnt); 21956 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 21957 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 21958 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 21959 *cnt = 1; 21960 } 21961 21962 if (env->insn_aux_data[insn_idx].arg_prog) { 21963 u32 regno = env->insn_aux_data[insn_idx].arg_prog; 21964 struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(regno, (long)env->prog->aux) }; 21965 int idx = *cnt; 21966 21967 insn_buf[idx++] = ld_addrs[0]; 21968 insn_buf[idx++] = ld_addrs[1]; 21969 insn_buf[idx++] = *insn; 21970 *cnt = idx; 21971 } 21972 return 0; 21973 } 21974 21975 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ 21976 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) 21977 { 21978 struct bpf_subprog_info *info = env->subprog_info; 21979 int cnt = env->subprog_cnt; 21980 struct bpf_prog *prog; 21981 21982 /* We only reserve one slot for hidden subprogs in subprog_info. */ 21983 if (env->hidden_subprog_cnt) { 21984 verifier_bug(env, "only one hidden subprog supported"); 21985 return -EFAULT; 21986 } 21987 /* We're not patching any existing instruction, just appending the new 21988 * ones for the hidden subprog. Hence all of the adjustment operations 21989 * in bpf_patch_insn_data are no-ops. 21990 */ 21991 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); 21992 if (!prog) 21993 return -ENOMEM; 21994 env->prog = prog; 21995 info[cnt + 1].start = info[cnt].start; 21996 info[cnt].start = prog->len - len + 1; 21997 env->subprog_cnt++; 21998 env->hidden_subprog_cnt++; 21999 return 0; 22000 } 22001 22002 /* Do various post-verification rewrites in a single program pass. 22003 * These rewrites simplify JIT and interpreter implementations. 22004 */ 22005 static int do_misc_fixups(struct bpf_verifier_env *env) 22006 { 22007 struct bpf_prog *prog = env->prog; 22008 enum bpf_attach_type eatype = prog->expected_attach_type; 22009 enum bpf_prog_type prog_type = resolve_prog_type(prog); 22010 struct bpf_insn *insn = prog->insnsi; 22011 const struct bpf_func_proto *fn; 22012 const int insn_cnt = prog->len; 22013 const struct bpf_map_ops *ops; 22014 struct bpf_insn_aux_data *aux; 22015 struct bpf_insn *insn_buf = env->insn_buf; 22016 struct bpf_prog *new_prog; 22017 struct bpf_map *map_ptr; 22018 int i, ret, cnt, delta = 0, cur_subprog = 0; 22019 struct bpf_subprog_info *subprogs = env->subprog_info; 22020 u16 stack_depth = subprogs[cur_subprog].stack_depth; 22021 u16 stack_depth_extra = 0; 22022 22023 if (env->seen_exception && !env->exception_callback_subprog) { 22024 struct bpf_insn *patch = insn_buf; 22025 22026 *patch++ = env->prog->insnsi[insn_cnt - 1]; 22027 *patch++ = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 22028 *patch++ = BPF_EXIT_INSN(); 22029 ret = add_hidden_subprog(env, insn_buf, patch - insn_buf); 22030 if (ret < 0) 22031 return ret; 22032 prog = env->prog; 22033 insn = prog->insnsi; 22034 22035 env->exception_callback_subprog = env->subprog_cnt - 1; 22036 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ 22037 mark_subprog_exc_cb(env, env->exception_callback_subprog); 22038 } 22039 22040 for (i = 0; i < insn_cnt;) { 22041 if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) { 22042 if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) || 22043 (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) { 22044 /* convert to 32-bit mov that clears upper 32-bit */ 22045 insn->code = BPF_ALU | BPF_MOV | BPF_X; 22046 /* clear off and imm, so it's a normal 'wX = wY' from JIT pov */ 22047 insn->off = 0; 22048 insn->imm = 0; 22049 } /* cast from as(0) to as(1) should be handled by JIT */ 22050 goto next_insn; 22051 } 22052 22053 if (env->insn_aux_data[i + delta].needs_zext) 22054 /* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */ 22055 insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code); 22056 22057 /* Make sdiv/smod divide-by-minus-one exceptions impossible. */ 22058 if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) || 22059 insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) || 22060 insn->code == (BPF_ALU | BPF_MOD | BPF_K) || 22061 insn->code == (BPF_ALU | BPF_DIV | BPF_K)) && 22062 insn->off == 1 && insn->imm == -1) { 22063 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 22064 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 22065 struct bpf_insn *patch = insn_buf; 22066 22067 if (isdiv) 22068 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 22069 BPF_NEG | BPF_K, insn->dst_reg, 22070 0, 0, 0); 22071 else 22072 *patch++ = BPF_MOV32_IMM(insn->dst_reg, 0); 22073 22074 cnt = patch - insn_buf; 22075 22076 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22077 if (!new_prog) 22078 return -ENOMEM; 22079 22080 delta += cnt - 1; 22081 env->prog = prog = new_prog; 22082 insn = new_prog->insnsi + i + delta; 22083 goto next_insn; 22084 } 22085 22086 /* Make divide-by-zero and divide-by-minus-one exceptions impossible. */ 22087 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 22088 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 22089 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 22090 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 22091 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 22092 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 22093 bool is_sdiv = isdiv && insn->off == 1; 22094 bool is_smod = !isdiv && insn->off == 1; 22095 struct bpf_insn *patch = insn_buf; 22096 22097 if (is_sdiv) { 22098 /* [R,W]x sdiv 0 -> 0 22099 * LLONG_MIN sdiv -1 -> LLONG_MIN 22100 * INT_MIN sdiv -1 -> INT_MIN 22101 */ 22102 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 22103 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 22104 BPF_ADD | BPF_K, BPF_REG_AX, 22105 0, 0, 1); 22106 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22107 BPF_JGT | BPF_K, BPF_REG_AX, 22108 0, 4, 1); 22109 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22110 BPF_JEQ | BPF_K, BPF_REG_AX, 22111 0, 1, 0); 22112 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 22113 BPF_MOV | BPF_K, insn->dst_reg, 22114 0, 0, 0); 22115 /* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */ 22116 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 22117 BPF_NEG | BPF_K, insn->dst_reg, 22118 0, 0, 0); 22119 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22120 *patch++ = *insn; 22121 cnt = patch - insn_buf; 22122 } else if (is_smod) { 22123 /* [R,W]x mod 0 -> [R,W]x */ 22124 /* [R,W]x mod -1 -> 0 */ 22125 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 22126 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 22127 BPF_ADD | BPF_K, BPF_REG_AX, 22128 0, 0, 1); 22129 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22130 BPF_JGT | BPF_K, BPF_REG_AX, 22131 0, 3, 1); 22132 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22133 BPF_JEQ | BPF_K, BPF_REG_AX, 22134 0, 3 + (is64 ? 0 : 1), 1); 22135 *patch++ = BPF_MOV32_IMM(insn->dst_reg, 0); 22136 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22137 *patch++ = *insn; 22138 22139 if (!is64) { 22140 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22141 *patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg); 22142 } 22143 cnt = patch - insn_buf; 22144 } else if (isdiv) { 22145 /* [R,W]x div 0 -> 0 */ 22146 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22147 BPF_JNE | BPF_K, insn->src_reg, 22148 0, 2, 0); 22149 *patch++ = BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg); 22150 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22151 *patch++ = *insn; 22152 cnt = patch - insn_buf; 22153 } else { 22154 /* [R,W]x mod 0 -> [R,W]x */ 22155 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22156 BPF_JEQ | BPF_K, insn->src_reg, 22157 0, 1 + (is64 ? 0 : 1), 0); 22158 *patch++ = *insn; 22159 22160 if (!is64) { 22161 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22162 *patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg); 22163 } 22164 cnt = patch - insn_buf; 22165 } 22166 22167 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22168 if (!new_prog) 22169 return -ENOMEM; 22170 22171 delta += cnt - 1; 22172 env->prog = prog = new_prog; 22173 insn = new_prog->insnsi + i + delta; 22174 goto next_insn; 22175 } 22176 22177 /* Make it impossible to de-reference a userspace address */ 22178 if (BPF_CLASS(insn->code) == BPF_LDX && 22179 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 22180 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { 22181 struct bpf_insn *patch = insn_buf; 22182 u64 uaddress_limit = bpf_arch_uaddress_limit(); 22183 22184 if (!uaddress_limit) 22185 goto next_insn; 22186 22187 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 22188 if (insn->off) 22189 *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); 22190 *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); 22191 *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); 22192 *patch++ = *insn; 22193 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22194 *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); 22195 22196 cnt = patch - insn_buf; 22197 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22198 if (!new_prog) 22199 return -ENOMEM; 22200 22201 delta += cnt - 1; 22202 env->prog = prog = new_prog; 22203 insn = new_prog->insnsi + i + delta; 22204 goto next_insn; 22205 } 22206 22207 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 22208 if (BPF_CLASS(insn->code) == BPF_LD && 22209 (BPF_MODE(insn->code) == BPF_ABS || 22210 BPF_MODE(insn->code) == BPF_IND)) { 22211 cnt = env->ops->gen_ld_abs(insn, insn_buf); 22212 if (cnt == 0 || cnt >= INSN_BUF_SIZE) { 22213 verifier_bug(env, "%d insns generated for ld_abs", cnt); 22214 return -EFAULT; 22215 } 22216 22217 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22218 if (!new_prog) 22219 return -ENOMEM; 22220 22221 delta += cnt - 1; 22222 env->prog = prog = new_prog; 22223 insn = new_prog->insnsi + i + delta; 22224 goto next_insn; 22225 } 22226 22227 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 22228 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 22229 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 22230 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 22231 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 22232 struct bpf_insn *patch = insn_buf; 22233 bool issrc, isneg, isimm; 22234 u32 off_reg; 22235 22236 aux = &env->insn_aux_data[i + delta]; 22237 if (!aux->alu_state || 22238 aux->alu_state == BPF_ALU_NON_POINTER) 22239 goto next_insn; 22240 22241 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 22242 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 22243 BPF_ALU_SANITIZE_SRC; 22244 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 22245 22246 off_reg = issrc ? insn->src_reg : insn->dst_reg; 22247 if (isimm) { 22248 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 22249 } else { 22250 if (isneg) 22251 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 22252 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 22253 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 22254 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 22255 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 22256 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 22257 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 22258 } 22259 if (!issrc) 22260 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 22261 insn->src_reg = BPF_REG_AX; 22262 if (isneg) 22263 insn->code = insn->code == code_add ? 22264 code_sub : code_add; 22265 *patch++ = *insn; 22266 if (issrc && isneg && !isimm) 22267 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 22268 cnt = patch - insn_buf; 22269 22270 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22271 if (!new_prog) 22272 return -ENOMEM; 22273 22274 delta += cnt - 1; 22275 env->prog = prog = new_prog; 22276 insn = new_prog->insnsi + i + delta; 22277 goto next_insn; 22278 } 22279 22280 if (is_may_goto_insn(insn) && bpf_jit_supports_timed_may_goto()) { 22281 int stack_off_cnt = -stack_depth - 16; 22282 22283 /* 22284 * Two 8 byte slots, depth-16 stores the count, and 22285 * depth-8 stores the start timestamp of the loop. 22286 * 22287 * The starting value of count is BPF_MAX_TIMED_LOOPS 22288 * (0xffff). Every iteration loads it and subs it by 1, 22289 * until the value becomes 0 in AX (thus, 1 in stack), 22290 * after which we call arch_bpf_timed_may_goto, which 22291 * either sets AX to 0xffff to keep looping, or to 0 22292 * upon timeout. AX is then stored into the stack. In 22293 * the next iteration, we either see 0 and break out, or 22294 * continue iterating until the next time value is 0 22295 * after subtraction, rinse and repeat. 22296 */ 22297 stack_depth_extra = 16; 22298 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off_cnt); 22299 if (insn->off >= 0) 22300 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 5); 22301 else 22302 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); 22303 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); 22304 insn_buf[3] = BPF_JMP_IMM(BPF_JNE, BPF_REG_AX, 0, 2); 22305 /* 22306 * AX is used as an argument to pass in stack_off_cnt 22307 * (to add to r10/fp), and also as the return value of 22308 * the call to arch_bpf_timed_may_goto. 22309 */ 22310 insn_buf[4] = BPF_MOV64_IMM(BPF_REG_AX, stack_off_cnt); 22311 insn_buf[5] = BPF_EMIT_CALL(arch_bpf_timed_may_goto); 22312 insn_buf[6] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off_cnt); 22313 cnt = 7; 22314 22315 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22316 if (!new_prog) 22317 return -ENOMEM; 22318 22319 delta += cnt - 1; 22320 env->prog = prog = new_prog; 22321 insn = new_prog->insnsi + i + delta; 22322 goto next_insn; 22323 } else if (is_may_goto_insn(insn)) { 22324 int stack_off = -stack_depth - 8; 22325 22326 stack_depth_extra = 8; 22327 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off); 22328 if (insn->off >= 0) 22329 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2); 22330 else 22331 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); 22332 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); 22333 insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off); 22334 cnt = 4; 22335 22336 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22337 if (!new_prog) 22338 return -ENOMEM; 22339 22340 delta += cnt - 1; 22341 env->prog = prog = new_prog; 22342 insn = new_prog->insnsi + i + delta; 22343 goto next_insn; 22344 } 22345 22346 if (insn->code != (BPF_JMP | BPF_CALL)) 22347 goto next_insn; 22348 if (insn->src_reg == BPF_PSEUDO_CALL) 22349 goto next_insn; 22350 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 22351 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 22352 if (ret) 22353 return ret; 22354 if (cnt == 0) 22355 goto next_insn; 22356 22357 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22358 if (!new_prog) 22359 return -ENOMEM; 22360 22361 delta += cnt - 1; 22362 env->prog = prog = new_prog; 22363 insn = new_prog->insnsi + i + delta; 22364 goto next_insn; 22365 } 22366 22367 /* Skip inlining the helper call if the JIT does it. */ 22368 if (bpf_jit_inlines_helper_call(insn->imm)) 22369 goto next_insn; 22370 22371 if (insn->imm == BPF_FUNC_get_route_realm) 22372 prog->dst_needed = 1; 22373 if (insn->imm == BPF_FUNC_get_prandom_u32) 22374 bpf_user_rnd_init_once(); 22375 if (insn->imm == BPF_FUNC_override_return) 22376 prog->kprobe_override = 1; 22377 if (insn->imm == BPF_FUNC_tail_call) { 22378 /* If we tail call into other programs, we 22379 * cannot make any assumptions since they can 22380 * be replaced dynamically during runtime in 22381 * the program array. 22382 */ 22383 prog->cb_access = 1; 22384 if (!allow_tail_call_in_subprogs(env)) 22385 prog->aux->stack_depth = MAX_BPF_STACK; 22386 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 22387 22388 /* mark bpf_tail_call as different opcode to avoid 22389 * conditional branch in the interpreter for every normal 22390 * call and to prevent accidental JITing by JIT compiler 22391 * that doesn't support bpf_tail_call yet 22392 */ 22393 insn->imm = 0; 22394 insn->code = BPF_JMP | BPF_TAIL_CALL; 22395 22396 aux = &env->insn_aux_data[i + delta]; 22397 if (env->bpf_capable && !prog->blinding_requested && 22398 prog->jit_requested && 22399 !bpf_map_key_poisoned(aux) && 22400 !bpf_map_ptr_poisoned(aux) && 22401 !bpf_map_ptr_unpriv(aux)) { 22402 struct bpf_jit_poke_descriptor desc = { 22403 .reason = BPF_POKE_REASON_TAIL_CALL, 22404 .tail_call.map = aux->map_ptr_state.map_ptr, 22405 .tail_call.key = bpf_map_key_immediate(aux), 22406 .insn_idx = i + delta, 22407 }; 22408 22409 ret = bpf_jit_add_poke_descriptor(prog, &desc); 22410 if (ret < 0) { 22411 verbose(env, "adding tail call poke descriptor failed\n"); 22412 return ret; 22413 } 22414 22415 insn->imm = ret + 1; 22416 goto next_insn; 22417 } 22418 22419 if (!bpf_map_ptr_unpriv(aux)) 22420 goto next_insn; 22421 22422 /* instead of changing every JIT dealing with tail_call 22423 * emit two extra insns: 22424 * if (index >= max_entries) goto out; 22425 * index &= array->index_mask; 22426 * to avoid out-of-bounds cpu speculation 22427 */ 22428 if (bpf_map_ptr_poisoned(aux)) { 22429 verbose(env, "tail_call abusing map_ptr\n"); 22430 return -EINVAL; 22431 } 22432 22433 map_ptr = aux->map_ptr_state.map_ptr; 22434 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 22435 map_ptr->max_entries, 2); 22436 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 22437 container_of(map_ptr, 22438 struct bpf_array, 22439 map)->index_mask); 22440 insn_buf[2] = *insn; 22441 cnt = 3; 22442 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22443 if (!new_prog) 22444 return -ENOMEM; 22445 22446 delta += cnt - 1; 22447 env->prog = prog = new_prog; 22448 insn = new_prog->insnsi + i + delta; 22449 goto next_insn; 22450 } 22451 22452 if (insn->imm == BPF_FUNC_timer_set_callback) { 22453 /* The verifier will process callback_fn as many times as necessary 22454 * with different maps and the register states prepared by 22455 * set_timer_callback_state will be accurate. 22456 * 22457 * The following use case is valid: 22458 * map1 is shared by prog1, prog2, prog3. 22459 * prog1 calls bpf_timer_init for some map1 elements 22460 * prog2 calls bpf_timer_set_callback for some map1 elements. 22461 * Those that were not bpf_timer_init-ed will return -EINVAL. 22462 * prog3 calls bpf_timer_start for some map1 elements. 22463 * Those that were not both bpf_timer_init-ed and 22464 * bpf_timer_set_callback-ed will return -EINVAL. 22465 */ 22466 struct bpf_insn ld_addrs[2] = { 22467 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 22468 }; 22469 22470 insn_buf[0] = ld_addrs[0]; 22471 insn_buf[1] = ld_addrs[1]; 22472 insn_buf[2] = *insn; 22473 cnt = 3; 22474 22475 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22476 if (!new_prog) 22477 return -ENOMEM; 22478 22479 delta += cnt - 1; 22480 env->prog = prog = new_prog; 22481 insn = new_prog->insnsi + i + delta; 22482 goto patch_call_imm; 22483 } 22484 22485 if (is_storage_get_function(insn->imm)) { 22486 if (!in_sleepable(env) || 22487 env->insn_aux_data[i + delta].storage_get_func_atomic) 22488 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 22489 else 22490 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 22491 insn_buf[1] = *insn; 22492 cnt = 2; 22493 22494 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22495 if (!new_prog) 22496 return -ENOMEM; 22497 22498 delta += cnt - 1; 22499 env->prog = prog = new_prog; 22500 insn = new_prog->insnsi + i + delta; 22501 goto patch_call_imm; 22502 } 22503 22504 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ 22505 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { 22506 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, 22507 * bpf_mem_alloc() returns a ptr to the percpu data ptr. 22508 */ 22509 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); 22510 insn_buf[1] = *insn; 22511 cnt = 2; 22512 22513 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22514 if (!new_prog) 22515 return -ENOMEM; 22516 22517 delta += cnt - 1; 22518 env->prog = prog = new_prog; 22519 insn = new_prog->insnsi + i + delta; 22520 goto patch_call_imm; 22521 } 22522 22523 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 22524 * and other inlining handlers are currently limited to 64 bit 22525 * only. 22526 */ 22527 if (prog->jit_requested && BITS_PER_LONG == 64 && 22528 (insn->imm == BPF_FUNC_map_lookup_elem || 22529 insn->imm == BPF_FUNC_map_update_elem || 22530 insn->imm == BPF_FUNC_map_delete_elem || 22531 insn->imm == BPF_FUNC_map_push_elem || 22532 insn->imm == BPF_FUNC_map_pop_elem || 22533 insn->imm == BPF_FUNC_map_peek_elem || 22534 insn->imm == BPF_FUNC_redirect_map || 22535 insn->imm == BPF_FUNC_for_each_map_elem || 22536 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 22537 aux = &env->insn_aux_data[i + delta]; 22538 if (bpf_map_ptr_poisoned(aux)) 22539 goto patch_call_imm; 22540 22541 map_ptr = aux->map_ptr_state.map_ptr; 22542 ops = map_ptr->ops; 22543 if (insn->imm == BPF_FUNC_map_lookup_elem && 22544 ops->map_gen_lookup) { 22545 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 22546 if (cnt == -EOPNOTSUPP) 22547 goto patch_map_ops_generic; 22548 if (cnt <= 0 || cnt >= INSN_BUF_SIZE) { 22549 verifier_bug(env, "%d insns generated for map lookup", cnt); 22550 return -EFAULT; 22551 } 22552 22553 new_prog = bpf_patch_insn_data(env, i + delta, 22554 insn_buf, cnt); 22555 if (!new_prog) 22556 return -ENOMEM; 22557 22558 delta += cnt - 1; 22559 env->prog = prog = new_prog; 22560 insn = new_prog->insnsi + i + delta; 22561 goto next_insn; 22562 } 22563 22564 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 22565 (void *(*)(struct bpf_map *map, void *key))NULL)); 22566 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 22567 (long (*)(struct bpf_map *map, void *key))NULL)); 22568 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 22569 (long (*)(struct bpf_map *map, void *key, void *value, 22570 u64 flags))NULL)); 22571 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 22572 (long (*)(struct bpf_map *map, void *value, 22573 u64 flags))NULL)); 22574 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 22575 (long (*)(struct bpf_map *map, void *value))NULL)); 22576 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 22577 (long (*)(struct bpf_map *map, void *value))NULL)); 22578 BUILD_BUG_ON(!__same_type(ops->map_redirect, 22579 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 22580 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 22581 (long (*)(struct bpf_map *map, 22582 bpf_callback_t callback_fn, 22583 void *callback_ctx, 22584 u64 flags))NULL)); 22585 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 22586 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 22587 22588 patch_map_ops_generic: 22589 switch (insn->imm) { 22590 case BPF_FUNC_map_lookup_elem: 22591 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 22592 goto next_insn; 22593 case BPF_FUNC_map_update_elem: 22594 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 22595 goto next_insn; 22596 case BPF_FUNC_map_delete_elem: 22597 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 22598 goto next_insn; 22599 case BPF_FUNC_map_push_elem: 22600 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 22601 goto next_insn; 22602 case BPF_FUNC_map_pop_elem: 22603 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 22604 goto next_insn; 22605 case BPF_FUNC_map_peek_elem: 22606 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 22607 goto next_insn; 22608 case BPF_FUNC_redirect_map: 22609 insn->imm = BPF_CALL_IMM(ops->map_redirect); 22610 goto next_insn; 22611 case BPF_FUNC_for_each_map_elem: 22612 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 22613 goto next_insn; 22614 case BPF_FUNC_map_lookup_percpu_elem: 22615 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 22616 goto next_insn; 22617 } 22618 22619 goto patch_call_imm; 22620 } 22621 22622 /* Implement bpf_jiffies64 inline. */ 22623 if (prog->jit_requested && BITS_PER_LONG == 64 && 22624 insn->imm == BPF_FUNC_jiffies64) { 22625 struct bpf_insn ld_jiffies_addr[2] = { 22626 BPF_LD_IMM64(BPF_REG_0, 22627 (unsigned long)&jiffies), 22628 }; 22629 22630 insn_buf[0] = ld_jiffies_addr[0]; 22631 insn_buf[1] = ld_jiffies_addr[1]; 22632 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 22633 BPF_REG_0, 0); 22634 cnt = 3; 22635 22636 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 22637 cnt); 22638 if (!new_prog) 22639 return -ENOMEM; 22640 22641 delta += cnt - 1; 22642 env->prog = prog = new_prog; 22643 insn = new_prog->insnsi + i + delta; 22644 goto next_insn; 22645 } 22646 22647 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML) 22648 /* Implement bpf_get_smp_processor_id() inline. */ 22649 if (insn->imm == BPF_FUNC_get_smp_processor_id && 22650 verifier_inlines_helper_call(env, insn->imm)) { 22651 /* BPF_FUNC_get_smp_processor_id inlining is an 22652 * optimization, so if cpu_number is ever 22653 * changed in some incompatible and hard to support 22654 * way, it's fine to back out this inlining logic 22655 */ 22656 #ifdef CONFIG_SMP 22657 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, (u32)(unsigned long)&cpu_number); 22658 insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); 22659 insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0); 22660 cnt = 3; 22661 #else 22662 insn_buf[0] = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0); 22663 cnt = 1; 22664 #endif 22665 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22666 if (!new_prog) 22667 return -ENOMEM; 22668 22669 delta += cnt - 1; 22670 env->prog = prog = new_prog; 22671 insn = new_prog->insnsi + i + delta; 22672 goto next_insn; 22673 } 22674 #endif 22675 /* Implement bpf_get_func_arg inline. */ 22676 if (prog_type == BPF_PROG_TYPE_TRACING && 22677 insn->imm == BPF_FUNC_get_func_arg) { 22678 /* Load nr_args from ctx - 8 */ 22679 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 22680 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 22681 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 22682 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 22683 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 22684 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 22685 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 22686 insn_buf[7] = BPF_JMP_A(1); 22687 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 22688 cnt = 9; 22689 22690 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22691 if (!new_prog) 22692 return -ENOMEM; 22693 22694 delta += cnt - 1; 22695 env->prog = prog = new_prog; 22696 insn = new_prog->insnsi + i + delta; 22697 goto next_insn; 22698 } 22699 22700 /* Implement bpf_get_func_ret inline. */ 22701 if (prog_type == BPF_PROG_TYPE_TRACING && 22702 insn->imm == BPF_FUNC_get_func_ret) { 22703 if (eatype == BPF_TRACE_FEXIT || 22704 eatype == BPF_MODIFY_RETURN) { 22705 /* Load nr_args from ctx - 8 */ 22706 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 22707 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 22708 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 22709 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 22710 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 22711 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 22712 cnt = 6; 22713 } else { 22714 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 22715 cnt = 1; 22716 } 22717 22718 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22719 if (!new_prog) 22720 return -ENOMEM; 22721 22722 delta += cnt - 1; 22723 env->prog = prog = new_prog; 22724 insn = new_prog->insnsi + i + delta; 22725 goto next_insn; 22726 } 22727 22728 /* Implement get_func_arg_cnt inline. */ 22729 if (prog_type == BPF_PROG_TYPE_TRACING && 22730 insn->imm == BPF_FUNC_get_func_arg_cnt) { 22731 /* Load nr_args from ctx - 8 */ 22732 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 22733 22734 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 22735 if (!new_prog) 22736 return -ENOMEM; 22737 22738 env->prog = prog = new_prog; 22739 insn = new_prog->insnsi + i + delta; 22740 goto next_insn; 22741 } 22742 22743 /* Implement bpf_get_func_ip inline. */ 22744 if (prog_type == BPF_PROG_TYPE_TRACING && 22745 insn->imm == BPF_FUNC_get_func_ip) { 22746 /* Load IP address from ctx - 16 */ 22747 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 22748 22749 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 22750 if (!new_prog) 22751 return -ENOMEM; 22752 22753 env->prog = prog = new_prog; 22754 insn = new_prog->insnsi + i + delta; 22755 goto next_insn; 22756 } 22757 22758 /* Implement bpf_get_branch_snapshot inline. */ 22759 if (IS_ENABLED(CONFIG_PERF_EVENTS) && 22760 prog->jit_requested && BITS_PER_LONG == 64 && 22761 insn->imm == BPF_FUNC_get_branch_snapshot) { 22762 /* We are dealing with the following func protos: 22763 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags); 22764 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt); 22765 */ 22766 const u32 br_entry_size = sizeof(struct perf_branch_entry); 22767 22768 /* struct perf_branch_entry is part of UAPI and is 22769 * used as an array element, so extremely unlikely to 22770 * ever grow or shrink 22771 */ 22772 BUILD_BUG_ON(br_entry_size != 24); 22773 22774 /* if (unlikely(flags)) return -EINVAL */ 22775 insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7); 22776 22777 /* Transform size (bytes) into number of entries (cnt = size / 24). 22778 * But to avoid expensive division instruction, we implement 22779 * divide-by-3 through multiplication, followed by further 22780 * division by 8 through 3-bit right shift. 22781 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr., 22782 * p. 227, chapter "Unsigned Division by 3" for details and proofs. 22783 * 22784 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab. 22785 */ 22786 insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab); 22787 insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0); 22788 insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36); 22789 22790 /* call perf_snapshot_branch_stack implementation */ 22791 insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack)); 22792 /* if (entry_cnt == 0) return -ENOENT */ 22793 insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4); 22794 /* return entry_cnt * sizeof(struct perf_branch_entry) */ 22795 insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size); 22796 insn_buf[7] = BPF_JMP_A(3); 22797 /* return -EINVAL; */ 22798 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 22799 insn_buf[9] = BPF_JMP_A(1); 22800 /* return -ENOENT; */ 22801 insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT); 22802 cnt = 11; 22803 22804 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22805 if (!new_prog) 22806 return -ENOMEM; 22807 22808 delta += cnt - 1; 22809 env->prog = prog = new_prog; 22810 insn = new_prog->insnsi + i + delta; 22811 goto next_insn; 22812 } 22813 22814 /* Implement bpf_kptr_xchg inline */ 22815 if (prog->jit_requested && BITS_PER_LONG == 64 && 22816 insn->imm == BPF_FUNC_kptr_xchg && 22817 bpf_jit_supports_ptr_xchg()) { 22818 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2); 22819 insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0); 22820 cnt = 2; 22821 22822 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22823 if (!new_prog) 22824 return -ENOMEM; 22825 22826 delta += cnt - 1; 22827 env->prog = prog = new_prog; 22828 insn = new_prog->insnsi + i + delta; 22829 goto next_insn; 22830 } 22831 patch_call_imm: 22832 fn = env->ops->get_func_proto(insn->imm, env->prog); 22833 /* all functions that have prototype and verifier allowed 22834 * programs to call them, must be real in-kernel functions 22835 */ 22836 if (!fn->func) { 22837 verifier_bug(env, 22838 "not inlined functions %s#%d is missing func", 22839 func_id_name(insn->imm), insn->imm); 22840 return -EFAULT; 22841 } 22842 insn->imm = fn->func - __bpf_call_base; 22843 next_insn: 22844 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 22845 subprogs[cur_subprog].stack_depth += stack_depth_extra; 22846 subprogs[cur_subprog].stack_extra = stack_depth_extra; 22847 22848 stack_depth = subprogs[cur_subprog].stack_depth; 22849 if (stack_depth > MAX_BPF_STACK && !prog->jit_requested) { 22850 verbose(env, "stack size %d(extra %d) is too large\n", 22851 stack_depth, stack_depth_extra); 22852 return -EINVAL; 22853 } 22854 cur_subprog++; 22855 stack_depth = subprogs[cur_subprog].stack_depth; 22856 stack_depth_extra = 0; 22857 } 22858 i++; 22859 insn++; 22860 } 22861 22862 env->prog->aux->stack_depth = subprogs[0].stack_depth; 22863 for (i = 0; i < env->subprog_cnt; i++) { 22864 int delta = bpf_jit_supports_timed_may_goto() ? 2 : 1; 22865 int subprog_start = subprogs[i].start; 22866 int stack_slots = subprogs[i].stack_extra / 8; 22867 int slots = delta, cnt = 0; 22868 22869 if (!stack_slots) 22870 continue; 22871 /* We need two slots in case timed may_goto is supported. */ 22872 if (stack_slots > slots) { 22873 verifier_bug(env, "stack_slots supports may_goto only"); 22874 return -EFAULT; 22875 } 22876 22877 stack_depth = subprogs[i].stack_depth; 22878 if (bpf_jit_supports_timed_may_goto()) { 22879 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth, 22880 BPF_MAX_TIMED_LOOPS); 22881 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth + 8, 0); 22882 } else { 22883 /* Add ST insn to subprog prologue to init extra stack */ 22884 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth, 22885 BPF_MAX_LOOPS); 22886 } 22887 /* Copy first actual insn to preserve it */ 22888 insn_buf[cnt++] = env->prog->insnsi[subprog_start]; 22889 22890 new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, cnt); 22891 if (!new_prog) 22892 return -ENOMEM; 22893 env->prog = prog = new_prog; 22894 /* 22895 * If may_goto is a first insn of a prog there could be a jmp 22896 * insn that points to it, hence adjust all such jmps to point 22897 * to insn after BPF_ST that inits may_goto count. 22898 * Adjustment will succeed because bpf_patch_insn_data() didn't fail. 22899 */ 22900 WARN_ON(adjust_jmp_off(env->prog, subprog_start, delta)); 22901 } 22902 22903 /* Since poke tab is now finalized, publish aux to tracker. */ 22904 for (i = 0; i < prog->aux->size_poke_tab; i++) { 22905 map_ptr = prog->aux->poke_tab[i].tail_call.map; 22906 if (!map_ptr->ops->map_poke_track || 22907 !map_ptr->ops->map_poke_untrack || 22908 !map_ptr->ops->map_poke_run) { 22909 verifier_bug(env, "poke tab is misconfigured"); 22910 return -EFAULT; 22911 } 22912 22913 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 22914 if (ret < 0) { 22915 verbose(env, "tracking tail call prog failed\n"); 22916 return ret; 22917 } 22918 } 22919 22920 sort_kfunc_descs_by_imm_off(env->prog); 22921 22922 return 0; 22923 } 22924 22925 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 22926 int position, 22927 s32 stack_base, 22928 u32 callback_subprogno, 22929 u32 *total_cnt) 22930 { 22931 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 22932 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 22933 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 22934 int reg_loop_max = BPF_REG_6; 22935 int reg_loop_cnt = BPF_REG_7; 22936 int reg_loop_ctx = BPF_REG_8; 22937 22938 struct bpf_insn *insn_buf = env->insn_buf; 22939 struct bpf_prog *new_prog; 22940 u32 callback_start; 22941 u32 call_insn_offset; 22942 s32 callback_offset; 22943 u32 cnt = 0; 22944 22945 /* This represents an inlined version of bpf_iter.c:bpf_loop, 22946 * be careful to modify this code in sync. 22947 */ 22948 22949 /* Return error and jump to the end of the patch if 22950 * expected number of iterations is too big. 22951 */ 22952 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2); 22953 insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG); 22954 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16); 22955 /* spill R6, R7, R8 to use these as loop vars */ 22956 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset); 22957 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset); 22958 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset); 22959 /* initialize loop vars */ 22960 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1); 22961 insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0); 22962 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3); 22963 /* loop header, 22964 * if reg_loop_cnt >= reg_loop_max skip the loop body 22965 */ 22966 insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5); 22967 /* callback call, 22968 * correct callback offset would be set after patching 22969 */ 22970 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt); 22971 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx); 22972 insn_buf[cnt++] = BPF_CALL_REL(0); 22973 /* increment loop counter */ 22974 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1); 22975 /* jump to loop header if callback returned 0 */ 22976 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6); 22977 /* return value of bpf_loop, 22978 * set R0 to the number of iterations 22979 */ 22980 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt); 22981 /* restore original values of R6, R7, R8 */ 22982 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset); 22983 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset); 22984 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset); 22985 22986 *total_cnt = cnt; 22987 new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt); 22988 if (!new_prog) 22989 return new_prog; 22990 22991 /* callback start is known only after patching */ 22992 callback_start = env->subprog_info[callback_subprogno].start; 22993 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 22994 call_insn_offset = position + 12; 22995 callback_offset = callback_start - call_insn_offset - 1; 22996 new_prog->insnsi[call_insn_offset].imm = callback_offset; 22997 22998 return new_prog; 22999 } 23000 23001 static bool is_bpf_loop_call(struct bpf_insn *insn) 23002 { 23003 return insn->code == (BPF_JMP | BPF_CALL) && 23004 insn->src_reg == 0 && 23005 insn->imm == BPF_FUNC_loop; 23006 } 23007 23008 /* For all sub-programs in the program (including main) check 23009 * insn_aux_data to see if there are bpf_loop calls that require 23010 * inlining. If such calls are found the calls are replaced with a 23011 * sequence of instructions produced by `inline_bpf_loop` function and 23012 * subprog stack_depth is increased by the size of 3 registers. 23013 * This stack space is used to spill values of the R6, R7, R8. These 23014 * registers are used to store the loop bound, counter and context 23015 * variables. 23016 */ 23017 static int optimize_bpf_loop(struct bpf_verifier_env *env) 23018 { 23019 struct bpf_subprog_info *subprogs = env->subprog_info; 23020 int i, cur_subprog = 0, cnt, delta = 0; 23021 struct bpf_insn *insn = env->prog->insnsi; 23022 int insn_cnt = env->prog->len; 23023 u16 stack_depth = subprogs[cur_subprog].stack_depth; 23024 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 23025 u16 stack_depth_extra = 0; 23026 23027 for (i = 0; i < insn_cnt; i++, insn++) { 23028 struct bpf_loop_inline_state *inline_state = 23029 &env->insn_aux_data[i + delta].loop_inline_state; 23030 23031 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 23032 struct bpf_prog *new_prog; 23033 23034 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 23035 new_prog = inline_bpf_loop(env, 23036 i + delta, 23037 -(stack_depth + stack_depth_extra), 23038 inline_state->callback_subprogno, 23039 &cnt); 23040 if (!new_prog) 23041 return -ENOMEM; 23042 23043 delta += cnt - 1; 23044 env->prog = new_prog; 23045 insn = new_prog->insnsi + i + delta; 23046 } 23047 23048 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 23049 subprogs[cur_subprog].stack_depth += stack_depth_extra; 23050 cur_subprog++; 23051 stack_depth = subprogs[cur_subprog].stack_depth; 23052 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 23053 stack_depth_extra = 0; 23054 } 23055 } 23056 23057 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 23058 23059 return 0; 23060 } 23061 23062 /* Remove unnecessary spill/fill pairs, members of fastcall pattern, 23063 * adjust subprograms stack depth when possible. 23064 */ 23065 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env) 23066 { 23067 struct bpf_subprog_info *subprog = env->subprog_info; 23068 struct bpf_insn_aux_data *aux = env->insn_aux_data; 23069 struct bpf_insn *insn = env->prog->insnsi; 23070 int insn_cnt = env->prog->len; 23071 u32 spills_num; 23072 bool modified = false; 23073 int i, j; 23074 23075 for (i = 0; i < insn_cnt; i++, insn++) { 23076 if (aux[i].fastcall_spills_num > 0) { 23077 spills_num = aux[i].fastcall_spills_num; 23078 /* NOPs would be removed by opt_remove_nops() */ 23079 for (j = 1; j <= spills_num; ++j) { 23080 *(insn - j) = NOP; 23081 *(insn + j) = NOP; 23082 } 23083 modified = true; 23084 } 23085 if ((subprog + 1)->start == i + 1) { 23086 if (modified && !subprog->keep_fastcall_stack) 23087 subprog->stack_depth = -subprog->fastcall_stack_off; 23088 subprog++; 23089 modified = false; 23090 } 23091 } 23092 23093 return 0; 23094 } 23095 23096 static void free_states(struct bpf_verifier_env *env) 23097 { 23098 struct bpf_verifier_state_list *sl; 23099 struct list_head *head, *pos, *tmp; 23100 struct bpf_scc_info *info; 23101 int i, j; 23102 23103 free_verifier_state(env->cur_state, true); 23104 env->cur_state = NULL; 23105 while (!pop_stack(env, NULL, NULL, false)); 23106 23107 list_for_each_safe(pos, tmp, &env->free_list) { 23108 sl = container_of(pos, struct bpf_verifier_state_list, node); 23109 free_verifier_state(&sl->state, false); 23110 kfree(sl); 23111 } 23112 INIT_LIST_HEAD(&env->free_list); 23113 23114 for (i = 0; i < env->scc_cnt; ++i) { 23115 info = env->scc_info[i]; 23116 if (!info) 23117 continue; 23118 for (j = 0; j < info->num_visits; j++) 23119 free_backedges(&info->visits[j]); 23120 kvfree(info); 23121 env->scc_info[i] = NULL; 23122 } 23123 23124 if (!env->explored_states) 23125 return; 23126 23127 for (i = 0; i < state_htab_size(env); i++) { 23128 head = &env->explored_states[i]; 23129 23130 list_for_each_safe(pos, tmp, head) { 23131 sl = container_of(pos, struct bpf_verifier_state_list, node); 23132 free_verifier_state(&sl->state, false); 23133 kfree(sl); 23134 } 23135 INIT_LIST_HEAD(&env->explored_states[i]); 23136 } 23137 } 23138 23139 static int do_check_common(struct bpf_verifier_env *env, int subprog) 23140 { 23141 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 23142 struct bpf_subprog_info *sub = subprog_info(env, subprog); 23143 struct bpf_prog_aux *aux = env->prog->aux; 23144 struct bpf_verifier_state *state; 23145 struct bpf_reg_state *regs; 23146 int ret, i; 23147 23148 env->prev_linfo = NULL; 23149 env->pass_cnt++; 23150 23151 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL_ACCOUNT); 23152 if (!state) 23153 return -ENOMEM; 23154 state->curframe = 0; 23155 state->speculative = false; 23156 state->branches = 1; 23157 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL_ACCOUNT); 23158 if (!state->frame[0]) { 23159 kfree(state); 23160 return -ENOMEM; 23161 } 23162 env->cur_state = state; 23163 init_func_state(env, state->frame[0], 23164 BPF_MAIN_FUNC /* callsite */, 23165 0 /* frameno */, 23166 subprog); 23167 state->first_insn_idx = env->subprog_info[subprog].start; 23168 state->last_insn_idx = -1; 23169 23170 regs = state->frame[state->curframe]->regs; 23171 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 23172 const char *sub_name = subprog_name(env, subprog); 23173 struct bpf_subprog_arg_info *arg; 23174 struct bpf_reg_state *reg; 23175 23176 verbose(env, "Validating %s() func#%d...\n", sub_name, subprog); 23177 ret = btf_prepare_func_args(env, subprog); 23178 if (ret) 23179 goto out; 23180 23181 if (subprog_is_exc_cb(env, subprog)) { 23182 state->frame[0]->in_exception_callback_fn = true; 23183 /* We have already ensured that the callback returns an integer, just 23184 * like all global subprogs. We need to determine it only has a single 23185 * scalar argument. 23186 */ 23187 if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) { 23188 verbose(env, "exception cb only supports single integer argument\n"); 23189 ret = -EINVAL; 23190 goto out; 23191 } 23192 } 23193 for (i = BPF_REG_1; i <= sub->arg_cnt; i++) { 23194 arg = &sub->args[i - BPF_REG_1]; 23195 reg = ®s[i]; 23196 23197 if (arg->arg_type == ARG_PTR_TO_CTX) { 23198 reg->type = PTR_TO_CTX; 23199 mark_reg_known_zero(env, regs, i); 23200 } else if (arg->arg_type == ARG_ANYTHING) { 23201 reg->type = SCALAR_VALUE; 23202 mark_reg_unknown(env, regs, i); 23203 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 23204 /* assume unspecial LOCAL dynptr type */ 23205 __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen); 23206 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 23207 reg->type = PTR_TO_MEM; 23208 reg->type |= arg->arg_type & 23209 (PTR_MAYBE_NULL | PTR_UNTRUSTED | MEM_RDONLY); 23210 mark_reg_known_zero(env, regs, i); 23211 reg->mem_size = arg->mem_size; 23212 if (arg->arg_type & PTR_MAYBE_NULL) 23213 reg->id = ++env->id_gen; 23214 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 23215 reg->type = PTR_TO_BTF_ID; 23216 if (arg->arg_type & PTR_MAYBE_NULL) 23217 reg->type |= PTR_MAYBE_NULL; 23218 if (arg->arg_type & PTR_UNTRUSTED) 23219 reg->type |= PTR_UNTRUSTED; 23220 if (arg->arg_type & PTR_TRUSTED) 23221 reg->type |= PTR_TRUSTED; 23222 mark_reg_known_zero(env, regs, i); 23223 reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */ 23224 reg->btf_id = arg->btf_id; 23225 reg->id = ++env->id_gen; 23226 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 23227 /* caller can pass either PTR_TO_ARENA or SCALAR */ 23228 mark_reg_unknown(env, regs, i); 23229 } else { 23230 verifier_bug(env, "unhandled arg#%d type %d", 23231 i - BPF_REG_1, arg->arg_type); 23232 ret = -EFAULT; 23233 goto out; 23234 } 23235 } 23236 } else { 23237 /* if main BPF program has associated BTF info, validate that 23238 * it's matching expected signature, and otherwise mark BTF 23239 * info for main program as unreliable 23240 */ 23241 if (env->prog->aux->func_info_aux) { 23242 ret = btf_prepare_func_args(env, 0); 23243 if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX) 23244 env->prog->aux->func_info_aux[0].unreliable = true; 23245 } 23246 23247 /* 1st arg to a function */ 23248 regs[BPF_REG_1].type = PTR_TO_CTX; 23249 mark_reg_known_zero(env, regs, BPF_REG_1); 23250 } 23251 23252 /* Acquire references for struct_ops program arguments tagged with "__ref" */ 23253 if (!subprog && env->prog->type == BPF_PROG_TYPE_STRUCT_OPS) { 23254 for (i = 0; i < aux->ctx_arg_info_size; i++) 23255 aux->ctx_arg_info[i].ref_obj_id = aux->ctx_arg_info[i].refcounted ? 23256 acquire_reference(env, 0) : 0; 23257 } 23258 23259 ret = do_check(env); 23260 out: 23261 if (!ret && pop_log) 23262 bpf_vlog_reset(&env->log, 0); 23263 free_states(env); 23264 return ret; 23265 } 23266 23267 /* Lazily verify all global functions based on their BTF, if they are called 23268 * from main BPF program or any of subprograms transitively. 23269 * BPF global subprogs called from dead code are not validated. 23270 * All callable global functions must pass verification. 23271 * Otherwise the whole program is rejected. 23272 * Consider: 23273 * int bar(int); 23274 * int foo(int f) 23275 * { 23276 * return bar(f); 23277 * } 23278 * int bar(int b) 23279 * { 23280 * ... 23281 * } 23282 * foo() will be verified first for R1=any_scalar_value. During verification it 23283 * will be assumed that bar() already verified successfully and call to bar() 23284 * from foo() will be checked for type match only. Later bar() will be verified 23285 * independently to check that it's safe for R1=any_scalar_value. 23286 */ 23287 static int do_check_subprogs(struct bpf_verifier_env *env) 23288 { 23289 struct bpf_prog_aux *aux = env->prog->aux; 23290 struct bpf_func_info_aux *sub_aux; 23291 int i, ret, new_cnt; 23292 23293 if (!aux->func_info) 23294 return 0; 23295 23296 /* exception callback is presumed to be always called */ 23297 if (env->exception_callback_subprog) 23298 subprog_aux(env, env->exception_callback_subprog)->called = true; 23299 23300 again: 23301 new_cnt = 0; 23302 for (i = 1; i < env->subprog_cnt; i++) { 23303 if (!subprog_is_global(env, i)) 23304 continue; 23305 23306 sub_aux = subprog_aux(env, i); 23307 if (!sub_aux->called || sub_aux->verified) 23308 continue; 23309 23310 env->insn_idx = env->subprog_info[i].start; 23311 WARN_ON_ONCE(env->insn_idx == 0); 23312 ret = do_check_common(env, i); 23313 if (ret) { 23314 return ret; 23315 } else if (env->log.level & BPF_LOG_LEVEL) { 23316 verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n", 23317 i, subprog_name(env, i)); 23318 } 23319 23320 /* We verified new global subprog, it might have called some 23321 * more global subprogs that we haven't verified yet, so we 23322 * need to do another pass over subprogs to verify those. 23323 */ 23324 sub_aux->verified = true; 23325 new_cnt++; 23326 } 23327 23328 /* We can't loop forever as we verify at least one global subprog on 23329 * each pass. 23330 */ 23331 if (new_cnt) 23332 goto again; 23333 23334 return 0; 23335 } 23336 23337 static int do_check_main(struct bpf_verifier_env *env) 23338 { 23339 int ret; 23340 23341 env->insn_idx = 0; 23342 ret = do_check_common(env, 0); 23343 if (!ret) 23344 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 23345 return ret; 23346 } 23347 23348 23349 static void print_verification_stats(struct bpf_verifier_env *env) 23350 { 23351 int i; 23352 23353 if (env->log.level & BPF_LOG_STATS) { 23354 verbose(env, "verification time %lld usec\n", 23355 div_u64(env->verification_time, 1000)); 23356 verbose(env, "stack depth "); 23357 for (i = 0; i < env->subprog_cnt; i++) { 23358 u32 depth = env->subprog_info[i].stack_depth; 23359 23360 verbose(env, "%d", depth); 23361 if (i + 1 < env->subprog_cnt) 23362 verbose(env, "+"); 23363 } 23364 verbose(env, "\n"); 23365 } 23366 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 23367 "total_states %d peak_states %d mark_read %d\n", 23368 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 23369 env->max_states_per_insn, env->total_states, 23370 env->peak_states, env->longest_mark_read_walk); 23371 } 23372 23373 int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog, 23374 const struct bpf_ctx_arg_aux *info, u32 cnt) 23375 { 23376 prog->aux->ctx_arg_info = kmemdup_array(info, cnt, sizeof(*info), GFP_KERNEL_ACCOUNT); 23377 prog->aux->ctx_arg_info_size = cnt; 23378 23379 return prog->aux->ctx_arg_info ? 0 : -ENOMEM; 23380 } 23381 23382 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 23383 { 23384 const struct btf_type *t, *func_proto; 23385 const struct bpf_struct_ops_desc *st_ops_desc; 23386 const struct bpf_struct_ops *st_ops; 23387 const struct btf_member *member; 23388 struct bpf_prog *prog = env->prog; 23389 bool has_refcounted_arg = false; 23390 u32 btf_id, member_idx, member_off; 23391 struct btf *btf; 23392 const char *mname; 23393 int i, err; 23394 23395 if (!prog->gpl_compatible) { 23396 verbose(env, "struct ops programs must have a GPL compatible license\n"); 23397 return -EINVAL; 23398 } 23399 23400 if (!prog->aux->attach_btf_id) 23401 return -ENOTSUPP; 23402 23403 btf = prog->aux->attach_btf; 23404 if (btf_is_module(btf)) { 23405 /* Make sure st_ops is valid through the lifetime of env */ 23406 env->attach_btf_mod = btf_try_get_module(btf); 23407 if (!env->attach_btf_mod) { 23408 verbose(env, "struct_ops module %s is not found\n", 23409 btf_get_name(btf)); 23410 return -ENOTSUPP; 23411 } 23412 } 23413 23414 btf_id = prog->aux->attach_btf_id; 23415 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 23416 if (!st_ops_desc) { 23417 verbose(env, "attach_btf_id %u is not a supported struct\n", 23418 btf_id); 23419 return -ENOTSUPP; 23420 } 23421 st_ops = st_ops_desc->st_ops; 23422 23423 t = st_ops_desc->type; 23424 member_idx = prog->expected_attach_type; 23425 if (member_idx >= btf_type_vlen(t)) { 23426 verbose(env, "attach to invalid member idx %u of struct %s\n", 23427 member_idx, st_ops->name); 23428 return -EINVAL; 23429 } 23430 23431 member = &btf_type_member(t)[member_idx]; 23432 mname = btf_name_by_offset(btf, member->name_off); 23433 func_proto = btf_type_resolve_func_ptr(btf, member->type, 23434 NULL); 23435 if (!func_proto) { 23436 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 23437 mname, member_idx, st_ops->name); 23438 return -EINVAL; 23439 } 23440 23441 member_off = __btf_member_bit_offset(t, member) / 8; 23442 err = bpf_struct_ops_supported(st_ops, member_off); 23443 if (err) { 23444 verbose(env, "attach to unsupported member %s of struct %s\n", 23445 mname, st_ops->name); 23446 return err; 23447 } 23448 23449 if (st_ops->check_member) { 23450 err = st_ops->check_member(t, member, prog); 23451 23452 if (err) { 23453 verbose(env, "attach to unsupported member %s of struct %s\n", 23454 mname, st_ops->name); 23455 return err; 23456 } 23457 } 23458 23459 if (prog->aux->priv_stack_requested && !bpf_jit_supports_private_stack()) { 23460 verbose(env, "Private stack not supported by jit\n"); 23461 return -EACCES; 23462 } 23463 23464 for (i = 0; i < st_ops_desc->arg_info[member_idx].cnt; i++) { 23465 if (st_ops_desc->arg_info[member_idx].info->refcounted) { 23466 has_refcounted_arg = true; 23467 break; 23468 } 23469 } 23470 23471 /* Tail call is not allowed for programs with refcounted arguments since we 23472 * cannot guarantee that valid refcounted kptrs will be passed to the callee. 23473 */ 23474 for (i = 0; i < env->subprog_cnt; i++) { 23475 if (has_refcounted_arg && env->subprog_info[i].has_tail_call) { 23476 verbose(env, "program with __ref argument cannot tail call\n"); 23477 return -EINVAL; 23478 } 23479 } 23480 23481 prog->aux->st_ops = st_ops; 23482 prog->aux->attach_st_ops_member_off = member_off; 23483 23484 prog->aux->attach_func_proto = func_proto; 23485 prog->aux->attach_func_name = mname; 23486 env->ops = st_ops->verifier_ops; 23487 23488 return bpf_prog_ctx_arg_info_init(prog, st_ops_desc->arg_info[member_idx].info, 23489 st_ops_desc->arg_info[member_idx].cnt); 23490 } 23491 #define SECURITY_PREFIX "security_" 23492 23493 static int check_attach_modify_return(unsigned long addr, const char *func_name) 23494 { 23495 if (within_error_injection_list(addr) || 23496 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 23497 return 0; 23498 23499 return -EINVAL; 23500 } 23501 23502 /* list of non-sleepable functions that are otherwise on 23503 * ALLOW_ERROR_INJECTION list 23504 */ 23505 BTF_SET_START(btf_non_sleepable_error_inject) 23506 /* Three functions below can be called from sleepable and non-sleepable context. 23507 * Assume non-sleepable from bpf safety point of view. 23508 */ 23509 BTF_ID(func, __filemap_add_folio) 23510 #ifdef CONFIG_FAIL_PAGE_ALLOC 23511 BTF_ID(func, should_fail_alloc_page) 23512 #endif 23513 #ifdef CONFIG_FAILSLAB 23514 BTF_ID(func, should_failslab) 23515 #endif 23516 BTF_SET_END(btf_non_sleepable_error_inject) 23517 23518 static int check_non_sleepable_error_inject(u32 btf_id) 23519 { 23520 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 23521 } 23522 23523 int bpf_check_attach_target(struct bpf_verifier_log *log, 23524 const struct bpf_prog *prog, 23525 const struct bpf_prog *tgt_prog, 23526 u32 btf_id, 23527 struct bpf_attach_target_info *tgt_info) 23528 { 23529 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 23530 bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING; 23531 char trace_symbol[KSYM_SYMBOL_LEN]; 23532 const char prefix[] = "btf_trace_"; 23533 struct bpf_raw_event_map *btp; 23534 int ret = 0, subprog = -1, i; 23535 const struct btf_type *t; 23536 bool conservative = true; 23537 const char *tname, *fname; 23538 struct btf *btf; 23539 long addr = 0; 23540 struct module *mod = NULL; 23541 23542 if (!btf_id) { 23543 bpf_log(log, "Tracing programs must provide btf_id\n"); 23544 return -EINVAL; 23545 } 23546 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 23547 if (!btf) { 23548 bpf_log(log, 23549 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 23550 return -EINVAL; 23551 } 23552 t = btf_type_by_id(btf, btf_id); 23553 if (!t) { 23554 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 23555 return -EINVAL; 23556 } 23557 tname = btf_name_by_offset(btf, t->name_off); 23558 if (!tname) { 23559 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 23560 return -EINVAL; 23561 } 23562 if (tgt_prog) { 23563 struct bpf_prog_aux *aux = tgt_prog->aux; 23564 bool tgt_changes_pkt_data; 23565 bool tgt_might_sleep; 23566 23567 if (bpf_prog_is_dev_bound(prog->aux) && 23568 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 23569 bpf_log(log, "Target program bound device mismatch"); 23570 return -EINVAL; 23571 } 23572 23573 for (i = 0; i < aux->func_info_cnt; i++) 23574 if (aux->func_info[i].type_id == btf_id) { 23575 subprog = i; 23576 break; 23577 } 23578 if (subprog == -1) { 23579 bpf_log(log, "Subprog %s doesn't exist\n", tname); 23580 return -EINVAL; 23581 } 23582 if (aux->func && aux->func[subprog]->aux->exception_cb) { 23583 bpf_log(log, 23584 "%s programs cannot attach to exception callback\n", 23585 prog_extension ? "Extension" : "FENTRY/FEXIT"); 23586 return -EINVAL; 23587 } 23588 conservative = aux->func_info_aux[subprog].unreliable; 23589 if (prog_extension) { 23590 if (conservative) { 23591 bpf_log(log, 23592 "Cannot replace static functions\n"); 23593 return -EINVAL; 23594 } 23595 if (!prog->jit_requested) { 23596 bpf_log(log, 23597 "Extension programs should be JITed\n"); 23598 return -EINVAL; 23599 } 23600 tgt_changes_pkt_data = aux->func 23601 ? aux->func[subprog]->aux->changes_pkt_data 23602 : aux->changes_pkt_data; 23603 if (prog->aux->changes_pkt_data && !tgt_changes_pkt_data) { 23604 bpf_log(log, 23605 "Extension program changes packet data, while original does not\n"); 23606 return -EINVAL; 23607 } 23608 23609 tgt_might_sleep = aux->func 23610 ? aux->func[subprog]->aux->might_sleep 23611 : aux->might_sleep; 23612 if (prog->aux->might_sleep && !tgt_might_sleep) { 23613 bpf_log(log, 23614 "Extension program may sleep, while original does not\n"); 23615 return -EINVAL; 23616 } 23617 } 23618 if (!tgt_prog->jited) { 23619 bpf_log(log, "Can attach to only JITed progs\n"); 23620 return -EINVAL; 23621 } 23622 if (prog_tracing) { 23623 if (aux->attach_tracing_prog) { 23624 /* 23625 * Target program is an fentry/fexit which is already attached 23626 * to another tracing program. More levels of nesting 23627 * attachment are not allowed. 23628 */ 23629 bpf_log(log, "Cannot nest tracing program attach more than once\n"); 23630 return -EINVAL; 23631 } 23632 } else if (tgt_prog->type == prog->type) { 23633 /* 23634 * To avoid potential call chain cycles, prevent attaching of a 23635 * program extension to another extension. It's ok to attach 23636 * fentry/fexit to extension program. 23637 */ 23638 bpf_log(log, "Cannot recursively attach\n"); 23639 return -EINVAL; 23640 } 23641 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 23642 prog_extension && 23643 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 23644 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 23645 /* Program extensions can extend all program types 23646 * except fentry/fexit. The reason is the following. 23647 * The fentry/fexit programs are used for performance 23648 * analysis, stats and can be attached to any program 23649 * type. When extension program is replacing XDP function 23650 * it is necessary to allow performance analysis of all 23651 * functions. Both original XDP program and its program 23652 * extension. Hence attaching fentry/fexit to 23653 * BPF_PROG_TYPE_EXT is allowed. If extending of 23654 * fentry/fexit was allowed it would be possible to create 23655 * long call chain fentry->extension->fentry->extension 23656 * beyond reasonable stack size. Hence extending fentry 23657 * is not allowed. 23658 */ 23659 bpf_log(log, "Cannot extend fentry/fexit\n"); 23660 return -EINVAL; 23661 } 23662 } else { 23663 if (prog_extension) { 23664 bpf_log(log, "Cannot replace kernel functions\n"); 23665 return -EINVAL; 23666 } 23667 } 23668 23669 switch (prog->expected_attach_type) { 23670 case BPF_TRACE_RAW_TP: 23671 if (tgt_prog) { 23672 bpf_log(log, 23673 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 23674 return -EINVAL; 23675 } 23676 if (!btf_type_is_typedef(t)) { 23677 bpf_log(log, "attach_btf_id %u is not a typedef\n", 23678 btf_id); 23679 return -EINVAL; 23680 } 23681 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 23682 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 23683 btf_id, tname); 23684 return -EINVAL; 23685 } 23686 tname += sizeof(prefix) - 1; 23687 23688 /* The func_proto of "btf_trace_##tname" is generated from typedef without argument 23689 * names. Thus using bpf_raw_event_map to get argument names. 23690 */ 23691 btp = bpf_get_raw_tracepoint(tname); 23692 if (!btp) 23693 return -EINVAL; 23694 fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL, 23695 trace_symbol); 23696 bpf_put_raw_tracepoint(btp); 23697 23698 if (fname) 23699 ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC); 23700 23701 if (!fname || ret < 0) { 23702 bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n", 23703 prefix, tname); 23704 t = btf_type_by_id(btf, t->type); 23705 if (!btf_type_is_ptr(t)) 23706 /* should never happen in valid vmlinux build */ 23707 return -EINVAL; 23708 } else { 23709 t = btf_type_by_id(btf, ret); 23710 if (!btf_type_is_func(t)) 23711 /* should never happen in valid vmlinux build */ 23712 return -EINVAL; 23713 } 23714 23715 t = btf_type_by_id(btf, t->type); 23716 if (!btf_type_is_func_proto(t)) 23717 /* should never happen in valid vmlinux build */ 23718 return -EINVAL; 23719 23720 break; 23721 case BPF_TRACE_ITER: 23722 if (!btf_type_is_func(t)) { 23723 bpf_log(log, "attach_btf_id %u is not a function\n", 23724 btf_id); 23725 return -EINVAL; 23726 } 23727 t = btf_type_by_id(btf, t->type); 23728 if (!btf_type_is_func_proto(t)) 23729 return -EINVAL; 23730 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 23731 if (ret) 23732 return ret; 23733 break; 23734 default: 23735 if (!prog_extension) 23736 return -EINVAL; 23737 fallthrough; 23738 case BPF_MODIFY_RETURN: 23739 case BPF_LSM_MAC: 23740 case BPF_LSM_CGROUP: 23741 case BPF_TRACE_FENTRY: 23742 case BPF_TRACE_FEXIT: 23743 if (!btf_type_is_func(t)) { 23744 bpf_log(log, "attach_btf_id %u is not a function\n", 23745 btf_id); 23746 return -EINVAL; 23747 } 23748 if (prog_extension && 23749 btf_check_type_match(log, prog, btf, t)) 23750 return -EINVAL; 23751 t = btf_type_by_id(btf, t->type); 23752 if (!btf_type_is_func_proto(t)) 23753 return -EINVAL; 23754 23755 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 23756 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 23757 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 23758 return -EINVAL; 23759 23760 if (tgt_prog && conservative) 23761 t = NULL; 23762 23763 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 23764 if (ret < 0) 23765 return ret; 23766 23767 if (tgt_prog) { 23768 if (subprog == 0) 23769 addr = (long) tgt_prog->bpf_func; 23770 else 23771 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 23772 } else { 23773 if (btf_is_module(btf)) { 23774 mod = btf_try_get_module(btf); 23775 if (mod) 23776 addr = find_kallsyms_symbol_value(mod, tname); 23777 else 23778 addr = 0; 23779 } else { 23780 addr = kallsyms_lookup_name(tname); 23781 } 23782 if (!addr) { 23783 module_put(mod); 23784 bpf_log(log, 23785 "The address of function %s cannot be found\n", 23786 tname); 23787 return -ENOENT; 23788 } 23789 } 23790 23791 if (prog->sleepable) { 23792 ret = -EINVAL; 23793 switch (prog->type) { 23794 case BPF_PROG_TYPE_TRACING: 23795 23796 /* fentry/fexit/fmod_ret progs can be sleepable if they are 23797 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 23798 */ 23799 if (!check_non_sleepable_error_inject(btf_id) && 23800 within_error_injection_list(addr)) 23801 ret = 0; 23802 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 23803 * in the fmodret id set with the KF_SLEEPABLE flag. 23804 */ 23805 else { 23806 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 23807 prog); 23808 23809 if (flags && (*flags & KF_SLEEPABLE)) 23810 ret = 0; 23811 } 23812 break; 23813 case BPF_PROG_TYPE_LSM: 23814 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 23815 * Only some of them are sleepable. 23816 */ 23817 if (bpf_lsm_is_sleepable_hook(btf_id)) 23818 ret = 0; 23819 break; 23820 default: 23821 break; 23822 } 23823 if (ret) { 23824 module_put(mod); 23825 bpf_log(log, "%s is not sleepable\n", tname); 23826 return ret; 23827 } 23828 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 23829 if (tgt_prog) { 23830 module_put(mod); 23831 bpf_log(log, "can't modify return codes of BPF programs\n"); 23832 return -EINVAL; 23833 } 23834 ret = -EINVAL; 23835 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 23836 !check_attach_modify_return(addr, tname)) 23837 ret = 0; 23838 if (ret) { 23839 module_put(mod); 23840 bpf_log(log, "%s() is not modifiable\n", tname); 23841 return ret; 23842 } 23843 } 23844 23845 break; 23846 } 23847 tgt_info->tgt_addr = addr; 23848 tgt_info->tgt_name = tname; 23849 tgt_info->tgt_type = t; 23850 tgt_info->tgt_mod = mod; 23851 return 0; 23852 } 23853 23854 BTF_SET_START(btf_id_deny) 23855 BTF_ID_UNUSED 23856 #ifdef CONFIG_SMP 23857 BTF_ID(func, ___migrate_enable) 23858 BTF_ID(func, migrate_disable) 23859 BTF_ID(func, migrate_enable) 23860 #endif 23861 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 23862 BTF_ID(func, rcu_read_unlock_strict) 23863 #endif 23864 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 23865 BTF_ID(func, preempt_count_add) 23866 BTF_ID(func, preempt_count_sub) 23867 #endif 23868 #ifdef CONFIG_PREEMPT_RCU 23869 BTF_ID(func, __rcu_read_lock) 23870 BTF_ID(func, __rcu_read_unlock) 23871 #endif 23872 BTF_SET_END(btf_id_deny) 23873 23874 /* fexit and fmod_ret can't be used to attach to __noreturn functions. 23875 * Currently, we must manually list all __noreturn functions here. Once a more 23876 * robust solution is implemented, this workaround can be removed. 23877 */ 23878 BTF_SET_START(noreturn_deny) 23879 #ifdef CONFIG_IA32_EMULATION 23880 BTF_ID(func, __ia32_sys_exit) 23881 BTF_ID(func, __ia32_sys_exit_group) 23882 #endif 23883 #ifdef CONFIG_KUNIT 23884 BTF_ID(func, __kunit_abort) 23885 BTF_ID(func, kunit_try_catch_throw) 23886 #endif 23887 #ifdef CONFIG_MODULES 23888 BTF_ID(func, __module_put_and_kthread_exit) 23889 #endif 23890 #ifdef CONFIG_X86_64 23891 BTF_ID(func, __x64_sys_exit) 23892 BTF_ID(func, __x64_sys_exit_group) 23893 #endif 23894 BTF_ID(func, do_exit) 23895 BTF_ID(func, do_group_exit) 23896 BTF_ID(func, kthread_complete_and_exit) 23897 BTF_ID(func, kthread_exit) 23898 BTF_ID(func, make_task_dead) 23899 BTF_SET_END(noreturn_deny) 23900 23901 static bool can_be_sleepable(struct bpf_prog *prog) 23902 { 23903 if (prog->type == BPF_PROG_TYPE_TRACING) { 23904 switch (prog->expected_attach_type) { 23905 case BPF_TRACE_FENTRY: 23906 case BPF_TRACE_FEXIT: 23907 case BPF_MODIFY_RETURN: 23908 case BPF_TRACE_ITER: 23909 return true; 23910 default: 23911 return false; 23912 } 23913 } 23914 return prog->type == BPF_PROG_TYPE_LSM || 23915 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 23916 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 23917 } 23918 23919 static int check_attach_btf_id(struct bpf_verifier_env *env) 23920 { 23921 struct bpf_prog *prog = env->prog; 23922 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 23923 struct bpf_attach_target_info tgt_info = {}; 23924 u32 btf_id = prog->aux->attach_btf_id; 23925 struct bpf_trampoline *tr; 23926 int ret; 23927 u64 key; 23928 23929 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 23930 if (prog->sleepable) 23931 /* attach_btf_id checked to be zero already */ 23932 return 0; 23933 verbose(env, "Syscall programs can only be sleepable\n"); 23934 return -EINVAL; 23935 } 23936 23937 if (prog->sleepable && !can_be_sleepable(prog)) { 23938 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 23939 return -EINVAL; 23940 } 23941 23942 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 23943 return check_struct_ops_btf_id(env); 23944 23945 if (prog->type != BPF_PROG_TYPE_TRACING && 23946 prog->type != BPF_PROG_TYPE_LSM && 23947 prog->type != BPF_PROG_TYPE_EXT) 23948 return 0; 23949 23950 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 23951 if (ret) 23952 return ret; 23953 23954 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 23955 /* to make freplace equivalent to their targets, they need to 23956 * inherit env->ops and expected_attach_type for the rest of the 23957 * verification 23958 */ 23959 env->ops = bpf_verifier_ops[tgt_prog->type]; 23960 prog->expected_attach_type = tgt_prog->expected_attach_type; 23961 } 23962 23963 /* store info about the attachment target that will be used later */ 23964 prog->aux->attach_func_proto = tgt_info.tgt_type; 23965 prog->aux->attach_func_name = tgt_info.tgt_name; 23966 prog->aux->mod = tgt_info.tgt_mod; 23967 23968 if (tgt_prog) { 23969 prog->aux->saved_dst_prog_type = tgt_prog->type; 23970 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 23971 } 23972 23973 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 23974 prog->aux->attach_btf_trace = true; 23975 return 0; 23976 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 23977 return bpf_iter_prog_supported(prog); 23978 } 23979 23980 if (prog->type == BPF_PROG_TYPE_LSM) { 23981 ret = bpf_lsm_verify_prog(&env->log, prog); 23982 if (ret < 0) 23983 return ret; 23984 } else if (prog->type == BPF_PROG_TYPE_TRACING && 23985 btf_id_set_contains(&btf_id_deny, btf_id)) { 23986 verbose(env, "Attaching tracing programs to function '%s' is rejected.\n", 23987 tgt_info.tgt_name); 23988 return -EINVAL; 23989 } else if ((prog->expected_attach_type == BPF_TRACE_FEXIT || 23990 prog->expected_attach_type == BPF_MODIFY_RETURN) && 23991 btf_id_set_contains(&noreturn_deny, btf_id)) { 23992 verbose(env, "Attaching fexit/fmod_ret to __noreturn function '%s' is rejected.\n", 23993 tgt_info.tgt_name); 23994 return -EINVAL; 23995 } 23996 23997 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 23998 tr = bpf_trampoline_get(key, &tgt_info); 23999 if (!tr) 24000 return -ENOMEM; 24001 24002 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 24003 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 24004 24005 prog->aux->dst_trampoline = tr; 24006 return 0; 24007 } 24008 24009 struct btf *bpf_get_btf_vmlinux(void) 24010 { 24011 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 24012 mutex_lock(&bpf_verifier_lock); 24013 if (!btf_vmlinux) 24014 btf_vmlinux = btf_parse_vmlinux(); 24015 mutex_unlock(&bpf_verifier_lock); 24016 } 24017 return btf_vmlinux; 24018 } 24019 24020 /* 24021 * The add_fd_from_fd_array() is executed only if fd_array_cnt is non-zero. In 24022 * this case expect that every file descriptor in the array is either a map or 24023 * a BTF. Everything else is considered to be trash. 24024 */ 24025 static int add_fd_from_fd_array(struct bpf_verifier_env *env, int fd) 24026 { 24027 struct bpf_map *map; 24028 struct btf *btf; 24029 CLASS(fd, f)(fd); 24030 int err; 24031 24032 map = __bpf_map_get(f); 24033 if (!IS_ERR(map)) { 24034 err = __add_used_map(env, map); 24035 if (err < 0) 24036 return err; 24037 return 0; 24038 } 24039 24040 btf = __btf_get_by_fd(f); 24041 if (!IS_ERR(btf)) { 24042 err = __add_used_btf(env, btf); 24043 if (err < 0) 24044 return err; 24045 return 0; 24046 } 24047 24048 verbose(env, "fd %d is not pointing to valid bpf_map or btf\n", fd); 24049 return PTR_ERR(map); 24050 } 24051 24052 static int process_fd_array(struct bpf_verifier_env *env, union bpf_attr *attr, bpfptr_t uattr) 24053 { 24054 size_t size = sizeof(int); 24055 int ret; 24056 int fd; 24057 u32 i; 24058 24059 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 24060 24061 /* 24062 * The only difference between old (no fd_array_cnt is given) and new 24063 * APIs is that in the latter case the fd_array is expected to be 24064 * continuous and is scanned for map fds right away 24065 */ 24066 if (!attr->fd_array_cnt) 24067 return 0; 24068 24069 /* Check for integer overflow */ 24070 if (attr->fd_array_cnt >= (U32_MAX / size)) { 24071 verbose(env, "fd_array_cnt is too big (%u)\n", attr->fd_array_cnt); 24072 return -EINVAL; 24073 } 24074 24075 for (i = 0; i < attr->fd_array_cnt; i++) { 24076 if (copy_from_bpfptr_offset(&fd, env->fd_array, i * size, size)) 24077 return -EFAULT; 24078 24079 ret = add_fd_from_fd_array(env, fd); 24080 if (ret) 24081 return ret; 24082 } 24083 24084 return 0; 24085 } 24086 24087 /* Each field is a register bitmask */ 24088 struct insn_live_regs { 24089 u16 use; /* registers read by instruction */ 24090 u16 def; /* registers written by instruction */ 24091 u16 in; /* registers that may be alive before instruction */ 24092 u16 out; /* registers that may be alive after instruction */ 24093 }; 24094 24095 /* Bitmask with 1s for all caller saved registers */ 24096 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) 24097 24098 /* Compute info->{use,def} fields for the instruction */ 24099 static void compute_insn_live_regs(struct bpf_verifier_env *env, 24100 struct bpf_insn *insn, 24101 struct insn_live_regs *info) 24102 { 24103 struct call_summary cs; 24104 u8 class = BPF_CLASS(insn->code); 24105 u8 code = BPF_OP(insn->code); 24106 u8 mode = BPF_MODE(insn->code); 24107 u16 src = BIT(insn->src_reg); 24108 u16 dst = BIT(insn->dst_reg); 24109 u16 r0 = BIT(0); 24110 u16 def = 0; 24111 u16 use = 0xffff; 24112 24113 switch (class) { 24114 case BPF_LD: 24115 switch (mode) { 24116 case BPF_IMM: 24117 if (BPF_SIZE(insn->code) == BPF_DW) { 24118 def = dst; 24119 use = 0; 24120 } 24121 break; 24122 case BPF_LD | BPF_ABS: 24123 case BPF_LD | BPF_IND: 24124 /* stick with defaults */ 24125 break; 24126 } 24127 break; 24128 case BPF_LDX: 24129 switch (mode) { 24130 case BPF_MEM: 24131 case BPF_MEMSX: 24132 def = dst; 24133 use = src; 24134 break; 24135 } 24136 break; 24137 case BPF_ST: 24138 switch (mode) { 24139 case BPF_MEM: 24140 def = 0; 24141 use = dst; 24142 break; 24143 } 24144 break; 24145 case BPF_STX: 24146 switch (mode) { 24147 case BPF_MEM: 24148 def = 0; 24149 use = dst | src; 24150 break; 24151 case BPF_ATOMIC: 24152 switch (insn->imm) { 24153 case BPF_CMPXCHG: 24154 use = r0 | dst | src; 24155 def = r0; 24156 break; 24157 case BPF_LOAD_ACQ: 24158 def = dst; 24159 use = src; 24160 break; 24161 case BPF_STORE_REL: 24162 def = 0; 24163 use = dst | src; 24164 break; 24165 default: 24166 use = dst | src; 24167 if (insn->imm & BPF_FETCH) 24168 def = src; 24169 else 24170 def = 0; 24171 } 24172 break; 24173 } 24174 break; 24175 case BPF_ALU: 24176 case BPF_ALU64: 24177 switch (code) { 24178 case BPF_END: 24179 use = dst; 24180 def = dst; 24181 break; 24182 case BPF_MOV: 24183 def = dst; 24184 if (BPF_SRC(insn->code) == BPF_K) 24185 use = 0; 24186 else 24187 use = src; 24188 break; 24189 default: 24190 def = dst; 24191 if (BPF_SRC(insn->code) == BPF_K) 24192 use = dst; 24193 else 24194 use = dst | src; 24195 } 24196 break; 24197 case BPF_JMP: 24198 case BPF_JMP32: 24199 switch (code) { 24200 case BPF_JA: 24201 case BPF_JCOND: 24202 def = 0; 24203 use = 0; 24204 break; 24205 case BPF_EXIT: 24206 def = 0; 24207 use = r0; 24208 break; 24209 case BPF_CALL: 24210 def = ALL_CALLER_SAVED_REGS; 24211 use = def & ~BIT(BPF_REG_0); 24212 if (get_call_summary(env, insn, &cs)) 24213 use = GENMASK(cs.num_params, 1); 24214 break; 24215 default: 24216 def = 0; 24217 if (BPF_SRC(insn->code) == BPF_K) 24218 use = dst; 24219 else 24220 use = dst | src; 24221 } 24222 break; 24223 } 24224 24225 info->def = def; 24226 info->use = use; 24227 } 24228 24229 /* Compute may-live registers after each instruction in the program. 24230 * The register is live after the instruction I if it is read by some 24231 * instruction S following I during program execution and is not 24232 * overwritten between I and S. 24233 * 24234 * Store result in env->insn_aux_data[i].live_regs. 24235 */ 24236 static int compute_live_registers(struct bpf_verifier_env *env) 24237 { 24238 struct bpf_insn_aux_data *insn_aux = env->insn_aux_data; 24239 struct bpf_insn *insns = env->prog->insnsi; 24240 struct insn_live_regs *state; 24241 int insn_cnt = env->prog->len; 24242 int err = 0, i, j; 24243 bool changed; 24244 24245 /* Use the following algorithm: 24246 * - define the following: 24247 * - I.use : a set of all registers read by instruction I; 24248 * - I.def : a set of all registers written by instruction I; 24249 * - I.in : a set of all registers that may be alive before I execution; 24250 * - I.out : a set of all registers that may be alive after I execution; 24251 * - insn_successors(I): a set of instructions S that might immediately 24252 * follow I for some program execution; 24253 * - associate separate empty sets 'I.in' and 'I.out' with each instruction; 24254 * - visit each instruction in a postorder and update 24255 * state[i].in, state[i].out as follows: 24256 * 24257 * state[i].out = U [state[s].in for S in insn_successors(i)] 24258 * state[i].in = (state[i].out / state[i].def) U state[i].use 24259 * 24260 * (where U stands for set union, / stands for set difference) 24261 * - repeat the computation while {in,out} fields changes for 24262 * any instruction. 24263 */ 24264 state = kvcalloc(insn_cnt, sizeof(*state), GFP_KERNEL_ACCOUNT); 24265 if (!state) { 24266 err = -ENOMEM; 24267 goto out; 24268 } 24269 24270 for (i = 0; i < insn_cnt; ++i) 24271 compute_insn_live_regs(env, &insns[i], &state[i]); 24272 24273 changed = true; 24274 while (changed) { 24275 changed = false; 24276 for (i = 0; i < env->cfg.cur_postorder; ++i) { 24277 int insn_idx = env->cfg.insn_postorder[i]; 24278 struct insn_live_regs *live = &state[insn_idx]; 24279 int succ_num; 24280 u32 succ[2]; 24281 u16 new_out = 0; 24282 u16 new_in = 0; 24283 24284 succ_num = bpf_insn_successors(env->prog, insn_idx, succ); 24285 for (int s = 0; s < succ_num; ++s) 24286 new_out |= state[succ[s]].in; 24287 new_in = (new_out & ~live->def) | live->use; 24288 if (new_out != live->out || new_in != live->in) { 24289 live->in = new_in; 24290 live->out = new_out; 24291 changed = true; 24292 } 24293 } 24294 } 24295 24296 for (i = 0; i < insn_cnt; ++i) 24297 insn_aux[i].live_regs_before = state[i].in; 24298 24299 if (env->log.level & BPF_LOG_LEVEL2) { 24300 verbose(env, "Live regs before insn:\n"); 24301 for (i = 0; i < insn_cnt; ++i) { 24302 if (env->insn_aux_data[i].scc) 24303 verbose(env, "%3d ", env->insn_aux_data[i].scc); 24304 else 24305 verbose(env, " "); 24306 verbose(env, "%3d: ", i); 24307 for (j = BPF_REG_0; j < BPF_REG_10; ++j) 24308 if (insn_aux[i].live_regs_before & BIT(j)) 24309 verbose(env, "%d", j); 24310 else 24311 verbose(env, "."); 24312 verbose(env, " "); 24313 verbose_insn(env, &insns[i]); 24314 if (bpf_is_ldimm64(&insns[i])) 24315 i++; 24316 } 24317 } 24318 24319 out: 24320 kvfree(state); 24321 return err; 24322 } 24323 24324 /* 24325 * Compute strongly connected components (SCCs) on the CFG. 24326 * Assign an SCC number to each instruction, recorded in env->insn_aux[*].scc. 24327 * If instruction is a sole member of its SCC and there are no self edges, 24328 * assign it SCC number of zero. 24329 * Uses a non-recursive adaptation of Tarjan's algorithm for SCC computation. 24330 */ 24331 static int compute_scc(struct bpf_verifier_env *env) 24332 { 24333 const u32 NOT_ON_STACK = U32_MAX; 24334 24335 struct bpf_insn_aux_data *aux = env->insn_aux_data; 24336 const u32 insn_cnt = env->prog->len; 24337 int stack_sz, dfs_sz, err = 0; 24338 u32 *stack, *pre, *low, *dfs; 24339 u32 succ_cnt, i, j, t, w; 24340 u32 next_preorder_num; 24341 u32 next_scc_id; 24342 bool assign_scc; 24343 u32 succ[2]; 24344 24345 next_preorder_num = 1; 24346 next_scc_id = 1; 24347 /* 24348 * - 'stack' accumulates vertices in DFS order, see invariant comment below; 24349 * - 'pre[t] == p' => preorder number of vertex 't' is 'p'; 24350 * - 'low[t] == n' => smallest preorder number of the vertex reachable from 't' is 'n'; 24351 * - 'dfs' DFS traversal stack, used to emulate explicit recursion. 24352 */ 24353 stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 24354 pre = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 24355 low = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 24356 dfs = kvcalloc(insn_cnt, sizeof(*dfs), GFP_KERNEL_ACCOUNT); 24357 if (!stack || !pre || !low || !dfs) { 24358 err = -ENOMEM; 24359 goto exit; 24360 } 24361 /* 24362 * References: 24363 * [1] R. Tarjan "Depth-First Search and Linear Graph Algorithms" 24364 * [2] D. J. Pearce "A Space-Efficient Algorithm for Finding Strongly Connected Components" 24365 * 24366 * The algorithm maintains the following invariant: 24367 * - suppose there is a path 'u' ~> 'v', such that 'pre[v] < pre[u]'; 24368 * - then, vertex 'u' remains on stack while vertex 'v' is on stack. 24369 * 24370 * Consequently: 24371 * - If 'low[v] < pre[v]', there is a path from 'v' to some vertex 'u', 24372 * such that 'pre[u] == low[v]'; vertex 'u' is currently on the stack, 24373 * and thus there is an SCC (loop) containing both 'u' and 'v'. 24374 * - If 'low[v] == pre[v]', loops containing 'v' have been explored, 24375 * and 'v' can be considered the root of some SCC. 24376 * 24377 * Here is a pseudo-code for an explicitly recursive version of the algorithm: 24378 * 24379 * NOT_ON_STACK = insn_cnt + 1 24380 * pre = [0] * insn_cnt 24381 * low = [0] * insn_cnt 24382 * scc = [0] * insn_cnt 24383 * stack = [] 24384 * 24385 * next_preorder_num = 1 24386 * next_scc_id = 1 24387 * 24388 * def recur(w): 24389 * nonlocal next_preorder_num 24390 * nonlocal next_scc_id 24391 * 24392 * pre[w] = next_preorder_num 24393 * low[w] = next_preorder_num 24394 * next_preorder_num += 1 24395 * stack.append(w) 24396 * for s in successors(w): 24397 * # Note: for classic algorithm the block below should look as: 24398 * # 24399 * # if pre[s] == 0: 24400 * # recur(s) 24401 * # low[w] = min(low[w], low[s]) 24402 * # elif low[s] != NOT_ON_STACK: 24403 * # low[w] = min(low[w], pre[s]) 24404 * # 24405 * # But replacing both 'min' instructions with 'low[w] = min(low[w], low[s])' 24406 * # does not break the invariant and makes itartive version of the algorithm 24407 * # simpler. See 'Algorithm #3' from [2]. 24408 * 24409 * # 's' not yet visited 24410 * if pre[s] == 0: 24411 * recur(s) 24412 * # if 's' is on stack, pick lowest reachable preorder number from it; 24413 * # if 's' is not on stack 'low[s] == NOT_ON_STACK > low[w]', 24414 * # so 'min' would be a noop. 24415 * low[w] = min(low[w], low[s]) 24416 * 24417 * if low[w] == pre[w]: 24418 * # 'w' is the root of an SCC, pop all vertices 24419 * # below 'w' on stack and assign same SCC to them. 24420 * while True: 24421 * t = stack.pop() 24422 * low[t] = NOT_ON_STACK 24423 * scc[t] = next_scc_id 24424 * if t == w: 24425 * break 24426 * next_scc_id += 1 24427 * 24428 * for i in range(0, insn_cnt): 24429 * if pre[i] == 0: 24430 * recur(i) 24431 * 24432 * Below implementation replaces explicit recursion with array 'dfs'. 24433 */ 24434 for (i = 0; i < insn_cnt; i++) { 24435 if (pre[i]) 24436 continue; 24437 stack_sz = 0; 24438 dfs_sz = 1; 24439 dfs[0] = i; 24440 dfs_continue: 24441 while (dfs_sz) { 24442 w = dfs[dfs_sz - 1]; 24443 if (pre[w] == 0) { 24444 low[w] = next_preorder_num; 24445 pre[w] = next_preorder_num; 24446 next_preorder_num++; 24447 stack[stack_sz++] = w; 24448 } 24449 /* Visit 'w' successors */ 24450 succ_cnt = bpf_insn_successors(env->prog, w, succ); 24451 for (j = 0; j < succ_cnt; ++j) { 24452 if (pre[succ[j]]) { 24453 low[w] = min(low[w], low[succ[j]]); 24454 } else { 24455 dfs[dfs_sz++] = succ[j]; 24456 goto dfs_continue; 24457 } 24458 } 24459 /* 24460 * Preserve the invariant: if some vertex above in the stack 24461 * is reachable from 'w', keep 'w' on the stack. 24462 */ 24463 if (low[w] < pre[w]) { 24464 dfs_sz--; 24465 goto dfs_continue; 24466 } 24467 /* 24468 * Assign SCC number only if component has two or more elements, 24469 * or if component has a self reference. 24470 */ 24471 assign_scc = stack[stack_sz - 1] != w; 24472 for (j = 0; j < succ_cnt; ++j) { 24473 if (succ[j] == w) { 24474 assign_scc = true; 24475 break; 24476 } 24477 } 24478 /* Pop component elements from stack */ 24479 do { 24480 t = stack[--stack_sz]; 24481 low[t] = NOT_ON_STACK; 24482 if (assign_scc) 24483 aux[t].scc = next_scc_id; 24484 } while (t != w); 24485 if (assign_scc) 24486 next_scc_id++; 24487 dfs_sz--; 24488 } 24489 } 24490 env->scc_info = kvcalloc(next_scc_id, sizeof(*env->scc_info), GFP_KERNEL_ACCOUNT); 24491 if (!env->scc_info) { 24492 err = -ENOMEM; 24493 goto exit; 24494 } 24495 env->scc_cnt = next_scc_id; 24496 exit: 24497 kvfree(stack); 24498 kvfree(pre); 24499 kvfree(low); 24500 kvfree(dfs); 24501 return err; 24502 } 24503 24504 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 24505 { 24506 u64 start_time = ktime_get_ns(); 24507 struct bpf_verifier_env *env; 24508 int i, len, ret = -EINVAL, err; 24509 u32 log_true_size; 24510 bool is_priv; 24511 24512 BTF_TYPE_EMIT(enum bpf_features); 24513 24514 /* no program is valid */ 24515 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 24516 return -EINVAL; 24517 24518 /* 'struct bpf_verifier_env' can be global, but since it's not small, 24519 * allocate/free it every time bpf_check() is called 24520 */ 24521 env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL_ACCOUNT); 24522 if (!env) 24523 return -ENOMEM; 24524 24525 env->bt.env = env; 24526 24527 len = (*prog)->len; 24528 env->insn_aux_data = 24529 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 24530 ret = -ENOMEM; 24531 if (!env->insn_aux_data) 24532 goto err_free_env; 24533 for (i = 0; i < len; i++) 24534 env->insn_aux_data[i].orig_idx = i; 24535 env->prog = *prog; 24536 env->ops = bpf_verifier_ops[env->prog->type]; 24537 24538 env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token); 24539 env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token); 24540 env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token); 24541 env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token); 24542 env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF); 24543 24544 bpf_get_btf_vmlinux(); 24545 24546 /* grab the mutex to protect few globals used by verifier */ 24547 if (!is_priv) 24548 mutex_lock(&bpf_verifier_lock); 24549 24550 /* user could have requested verbose verifier output 24551 * and supplied buffer to store the verification trace 24552 */ 24553 ret = bpf_vlog_init(&env->log, attr->log_level, 24554 (char __user *) (unsigned long) attr->log_buf, 24555 attr->log_size); 24556 if (ret) 24557 goto err_unlock; 24558 24559 ret = process_fd_array(env, attr, uattr); 24560 if (ret) 24561 goto skip_full_check; 24562 24563 mark_verifier_state_clean(env); 24564 24565 if (IS_ERR(btf_vmlinux)) { 24566 /* Either gcc or pahole or kernel are broken. */ 24567 verbose(env, "in-kernel BTF is malformed\n"); 24568 ret = PTR_ERR(btf_vmlinux); 24569 goto skip_full_check; 24570 } 24571 24572 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 24573 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 24574 env->strict_alignment = true; 24575 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 24576 env->strict_alignment = false; 24577 24578 if (is_priv) 24579 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 24580 env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS; 24581 24582 env->explored_states = kvcalloc(state_htab_size(env), 24583 sizeof(struct list_head), 24584 GFP_KERNEL_ACCOUNT); 24585 ret = -ENOMEM; 24586 if (!env->explored_states) 24587 goto skip_full_check; 24588 24589 for (i = 0; i < state_htab_size(env); i++) 24590 INIT_LIST_HEAD(&env->explored_states[i]); 24591 INIT_LIST_HEAD(&env->free_list); 24592 24593 ret = check_btf_info_early(env, attr, uattr); 24594 if (ret < 0) 24595 goto skip_full_check; 24596 24597 ret = add_subprog_and_kfunc(env); 24598 if (ret < 0) 24599 goto skip_full_check; 24600 24601 ret = check_subprogs(env); 24602 if (ret < 0) 24603 goto skip_full_check; 24604 24605 ret = check_btf_info(env, attr, uattr); 24606 if (ret < 0) 24607 goto skip_full_check; 24608 24609 ret = resolve_pseudo_ldimm64(env); 24610 if (ret < 0) 24611 goto skip_full_check; 24612 24613 if (bpf_prog_is_offloaded(env->prog->aux)) { 24614 ret = bpf_prog_offload_verifier_prep(env->prog); 24615 if (ret) 24616 goto skip_full_check; 24617 } 24618 24619 ret = check_cfg(env); 24620 if (ret < 0) 24621 goto skip_full_check; 24622 24623 ret = compute_postorder(env); 24624 if (ret < 0) 24625 goto skip_full_check; 24626 24627 ret = bpf_stack_liveness_init(env); 24628 if (ret) 24629 goto skip_full_check; 24630 24631 ret = check_attach_btf_id(env); 24632 if (ret) 24633 goto skip_full_check; 24634 24635 ret = compute_scc(env); 24636 if (ret < 0) 24637 goto skip_full_check; 24638 24639 ret = compute_live_registers(env); 24640 if (ret < 0) 24641 goto skip_full_check; 24642 24643 ret = mark_fastcall_patterns(env); 24644 if (ret < 0) 24645 goto skip_full_check; 24646 24647 ret = do_check_main(env); 24648 ret = ret ?: do_check_subprogs(env); 24649 24650 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 24651 ret = bpf_prog_offload_finalize(env); 24652 24653 skip_full_check: 24654 kvfree(env->explored_states); 24655 24656 /* might decrease stack depth, keep it before passes that 24657 * allocate additional slots. 24658 */ 24659 if (ret == 0) 24660 ret = remove_fastcall_spills_fills(env); 24661 24662 if (ret == 0) 24663 ret = check_max_stack_depth(env); 24664 24665 /* instruction rewrites happen after this point */ 24666 if (ret == 0) 24667 ret = optimize_bpf_loop(env); 24668 24669 if (is_priv) { 24670 if (ret == 0) 24671 opt_hard_wire_dead_code_branches(env); 24672 if (ret == 0) 24673 ret = opt_remove_dead_code(env); 24674 if (ret == 0) 24675 ret = opt_remove_nops(env); 24676 } else { 24677 if (ret == 0) 24678 sanitize_dead_code(env); 24679 } 24680 24681 if (ret == 0) 24682 /* program is valid, convert *(u32*)(ctx + off) accesses */ 24683 ret = convert_ctx_accesses(env); 24684 24685 if (ret == 0) 24686 ret = do_misc_fixups(env); 24687 24688 /* do 32-bit optimization after insn patching has done so those patched 24689 * insns could be handled correctly. 24690 */ 24691 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 24692 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 24693 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 24694 : false; 24695 } 24696 24697 if (ret == 0) 24698 ret = fixup_call_args(env); 24699 24700 env->verification_time = ktime_get_ns() - start_time; 24701 print_verification_stats(env); 24702 env->prog->aux->verified_insns = env->insn_processed; 24703 24704 /* preserve original error even if log finalization is successful */ 24705 err = bpf_vlog_finalize(&env->log, &log_true_size); 24706 if (err) 24707 ret = err; 24708 24709 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 24710 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 24711 &log_true_size, sizeof(log_true_size))) { 24712 ret = -EFAULT; 24713 goto err_release_maps; 24714 } 24715 24716 if (ret) 24717 goto err_release_maps; 24718 24719 if (env->used_map_cnt) { 24720 /* if program passed verifier, update used_maps in bpf_prog_info */ 24721 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 24722 sizeof(env->used_maps[0]), 24723 GFP_KERNEL_ACCOUNT); 24724 24725 if (!env->prog->aux->used_maps) { 24726 ret = -ENOMEM; 24727 goto err_release_maps; 24728 } 24729 24730 memcpy(env->prog->aux->used_maps, env->used_maps, 24731 sizeof(env->used_maps[0]) * env->used_map_cnt); 24732 env->prog->aux->used_map_cnt = env->used_map_cnt; 24733 } 24734 if (env->used_btf_cnt) { 24735 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 24736 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 24737 sizeof(env->used_btfs[0]), 24738 GFP_KERNEL_ACCOUNT); 24739 if (!env->prog->aux->used_btfs) { 24740 ret = -ENOMEM; 24741 goto err_release_maps; 24742 } 24743 24744 memcpy(env->prog->aux->used_btfs, env->used_btfs, 24745 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 24746 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 24747 } 24748 if (env->used_map_cnt || env->used_btf_cnt) { 24749 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 24750 * bpf_ld_imm64 instructions 24751 */ 24752 convert_pseudo_ld_imm64(env); 24753 } 24754 24755 adjust_btf_func(env); 24756 24757 err_release_maps: 24758 if (!env->prog->aux->used_maps) 24759 /* if we didn't copy map pointers into bpf_prog_info, release 24760 * them now. Otherwise free_used_maps() will release them. 24761 */ 24762 release_maps(env); 24763 if (!env->prog->aux->used_btfs) 24764 release_btfs(env); 24765 24766 /* extension progs temporarily inherit the attach_type of their targets 24767 for verification purposes, so set it back to zero before returning 24768 */ 24769 if (env->prog->type == BPF_PROG_TYPE_EXT) 24770 env->prog->expected_attach_type = 0; 24771 24772 *prog = env->prog; 24773 24774 module_put(env->attach_btf_mod); 24775 err_unlock: 24776 if (!is_priv) 24777 mutex_unlock(&bpf_verifier_lock); 24778 vfree(env->insn_aux_data); 24779 err_free_env: 24780 bpf_stack_liveness_free(env); 24781 kvfree(env->cfg.insn_postorder); 24782 kvfree(env->scc_info); 24783 kvfree(env); 24784 return ret; 24785 } 24786