xref: /linux/mm/kfence/core.c (revision 4cff5c05e076d2ee4e34122aa956b84a2eaac587)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KFENCE guarded object allocator and fault handling.
4  *
5  * Copyright (C) 2020, Google LLC.
6  */
7 
8 #define pr_fmt(fmt) "kfence: " fmt
9 
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/hash.h>
14 #include <linux/irq_work.h>
15 #include <linux/jhash.h>
16 #include <linux/kcsan-checks.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/log2.h>
22 #include <linux/memblock.h>
23 #include <linux/moduleparam.h>
24 #include <linux/nodemask.h>
25 #include <linux/notifier.h>
26 #include <linux/panic_notifier.h>
27 #include <linux/random.h>
28 #include <linux/rcupdate.h>
29 #include <linux/reboot.h>
30 #include <linux/sched/clock.h>
31 #include <linux/seq_file.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 #include <linux/string.h>
35 
36 #include <asm/kfence.h>
37 
38 #include "kfence.h"
39 
40 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
41 #define KFENCE_WARN_ON(cond)                                                   \
42 	({                                                                     \
43 		const bool __cond = WARN_ON(cond);                             \
44 		if (unlikely(__cond)) {                                        \
45 			WRITE_ONCE(kfence_enabled, false);                     \
46 			disabled_by_warn = true;                               \
47 		}                                                              \
48 		__cond;                                                        \
49 	})
50 
51 /* === Data ================================================================= */
52 
53 static bool kfence_enabled __read_mostly;
54 static bool disabled_by_warn __read_mostly;
55 
56 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
57 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
58 
59 #ifdef MODULE_PARAM_PREFIX
60 #undef MODULE_PARAM_PREFIX
61 #endif
62 #define MODULE_PARAM_PREFIX "kfence."
63 
64 static int kfence_enable_late(void);
65 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
66 {
67 	unsigned long num;
68 	int ret = kstrtoul(val, 0, &num);
69 
70 	if (ret < 0)
71 		return ret;
72 
73 	/* Using 0 to indicate KFENCE is disabled. */
74 	if (!num && READ_ONCE(kfence_enabled)) {
75 		pr_info("disabled\n");
76 		WRITE_ONCE(kfence_enabled, false);
77 	}
78 
79 	*((unsigned long *)kp->arg) = num;
80 
81 	if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
82 		return disabled_by_warn ? -EINVAL : kfence_enable_late();
83 	return 0;
84 }
85 
86 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
87 {
88 	if (!READ_ONCE(kfence_enabled))
89 		return sprintf(buffer, "0\n");
90 
91 	return param_get_ulong(buffer, kp);
92 }
93 
94 static const struct kernel_param_ops sample_interval_param_ops = {
95 	.set = param_set_sample_interval,
96 	.get = param_get_sample_interval,
97 };
98 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
99 
100 /* Pool usage% threshold when currently covered allocations are skipped. */
101 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
102 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
103 
104 /* Allocation burst count: number of excess KFENCE allocations per sample. */
105 static unsigned int kfence_burst __read_mostly;
106 module_param_named(burst, kfence_burst, uint, 0644);
107 
108 /* If true, use a deferrable timer. */
109 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
110 module_param_named(deferrable, kfence_deferrable, bool, 0444);
111 
112 /* If true, check all canary bytes on panic. */
113 static bool kfence_check_on_panic __read_mostly;
114 module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
115 
116 /* The pool of pages used for guard pages and objects. */
117 char *__kfence_pool __read_mostly;
118 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
119 
120 /*
121  * Per-object metadata, with one-to-one mapping of object metadata to
122  * backing pages (in __kfence_pool).
123  */
124 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
125 struct kfence_metadata *kfence_metadata __read_mostly;
126 
127 /*
128  * If kfence_metadata is not NULL, it may be accessed by kfence_shutdown_cache().
129  * So introduce kfence_metadata_init to initialize metadata, and then make
130  * kfence_metadata visible after initialization is successful. This prevents
131  * potential UAF or access to uninitialized metadata.
132  */
133 static struct kfence_metadata *kfence_metadata_init __read_mostly;
134 
135 /* Freelist with available objects. */
136 DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
137 static struct list_head kfence_freelist __guarded_by(&kfence_freelist_lock) = LIST_HEAD_INIT(kfence_freelist);
138 
139 /*
140  * The static key to set up a KFENCE allocation; or if static keys are not used
141  * to gate allocations, to avoid a load and compare if KFENCE is disabled.
142  */
143 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
144 
145 /* Gates the allocation, ensuring only one succeeds in a given period. */
146 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
147 
148 /*
149  * A Counting Bloom filter of allocation coverage: limits currently covered
150  * allocations of the same source filling up the pool.
151  *
152  * Assuming a range of 15%-85% unique allocations in the pool at any point in
153  * time, the below parameters provide a probablity of 0.02-0.33 for false
154  * positive hits respectively:
155  *
156  *	P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
157  */
158 #define ALLOC_COVERED_HNUM	2
159 #define ALLOC_COVERED_ORDER	(const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
160 #define ALLOC_COVERED_SIZE	(1 << ALLOC_COVERED_ORDER)
161 #define ALLOC_COVERED_HNEXT(h)	hash_32(h, ALLOC_COVERED_ORDER)
162 #define ALLOC_COVERED_MASK	(ALLOC_COVERED_SIZE - 1)
163 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
164 
165 /* Stack depth used to determine uniqueness of an allocation. */
166 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
167 
168 /*
169  * Randomness for stack hashes, making the same collisions across reboots and
170  * different machines less likely.
171  */
172 static u32 stack_hash_seed __ro_after_init;
173 
174 /* Statistics counters for debugfs. */
175 enum kfence_counter_id {
176 	KFENCE_COUNTER_ALLOCATED,
177 	KFENCE_COUNTER_ALLOCS,
178 	KFENCE_COUNTER_FREES,
179 	KFENCE_COUNTER_ZOMBIES,
180 	KFENCE_COUNTER_BUGS,
181 	KFENCE_COUNTER_SKIP_INCOMPAT,
182 	KFENCE_COUNTER_SKIP_CAPACITY,
183 	KFENCE_COUNTER_SKIP_COVERED,
184 	KFENCE_COUNTER_COUNT,
185 };
186 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
187 static const char *const counter_names[] = {
188 	[KFENCE_COUNTER_ALLOCATED]	= "currently allocated",
189 	[KFENCE_COUNTER_ALLOCS]		= "total allocations",
190 	[KFENCE_COUNTER_FREES]		= "total frees",
191 	[KFENCE_COUNTER_ZOMBIES]	= "zombie allocations",
192 	[KFENCE_COUNTER_BUGS]		= "total bugs",
193 	[KFENCE_COUNTER_SKIP_INCOMPAT]	= "skipped allocations (incompatible)",
194 	[KFENCE_COUNTER_SKIP_CAPACITY]	= "skipped allocations (capacity)",
195 	[KFENCE_COUNTER_SKIP_COVERED]	= "skipped allocations (covered)",
196 };
197 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
198 
199 /* === Internals ============================================================ */
200 
201 static inline bool should_skip_covered(void)
202 {
203 	unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
204 
205 	return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
206 }
207 
208 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
209 {
210 	num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
211 	num_entries = filter_irq_stacks(stack_entries, num_entries);
212 	return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
213 }
214 
215 /*
216  * Adds (or subtracts) count @val for allocation stack trace hash
217  * @alloc_stack_hash from Counting Bloom filter.
218  */
219 static void alloc_covered_add(u32 alloc_stack_hash, int val)
220 {
221 	int i;
222 
223 	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
224 		atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
225 		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
226 	}
227 }
228 
229 /*
230  * Returns true if the allocation stack trace hash @alloc_stack_hash is
231  * currently contained (non-zero count) in Counting Bloom filter.
232  */
233 static bool alloc_covered_contains(u32 alloc_stack_hash)
234 {
235 	int i;
236 
237 	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
238 		if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
239 			return false;
240 		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
241 	}
242 
243 	return true;
244 }
245 
246 static bool kfence_protect(unsigned long addr)
247 {
248 	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
249 }
250 
251 static bool kfence_unprotect(unsigned long addr)
252 {
253 	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
254 }
255 
256 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
257 	__must_hold(&meta->lock)
258 {
259 	unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
260 	unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
261 
262 	/* The checks do not affect performance; only called from slow-paths. */
263 
264 	/* Only call with a pointer into kfence_metadata. */
265 	if (KFENCE_WARN_ON(meta < kfence_metadata ||
266 			   meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
267 		return 0;
268 
269 	/*
270 	 * This metadata object only ever maps to 1 page; verify that the stored
271 	 * address is in the expected range.
272 	 */
273 	if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
274 		return 0;
275 
276 	return pageaddr;
277 }
278 
279 static inline bool kfence_obj_allocated(const struct kfence_metadata *meta)
280 {
281 	enum kfence_object_state state = READ_ONCE(meta->state);
282 
283 	return state == KFENCE_OBJECT_ALLOCATED || state == KFENCE_OBJECT_RCU_FREEING;
284 }
285 
286 /*
287  * Update the object's metadata state, including updating the alloc/free stacks
288  * depending on the state transition.
289  */
290 static noinline void
291 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
292 		      unsigned long *stack_entries, size_t num_stack_entries)
293 	__must_hold(&meta->lock)
294 {
295 	struct kfence_track *track =
296 		next == KFENCE_OBJECT_ALLOCATED ? &meta->alloc_track : &meta->free_track;
297 
298 	lockdep_assert_held(&meta->lock);
299 
300 	/* Stack has been saved when calling rcu, skip. */
301 	if (READ_ONCE(meta->state) == KFENCE_OBJECT_RCU_FREEING)
302 		goto out;
303 
304 	if (stack_entries) {
305 		memcpy(track->stack_entries, stack_entries,
306 		       num_stack_entries * sizeof(stack_entries[0]));
307 	} else {
308 		/*
309 		 * Skip over 1 (this) functions; noinline ensures we do not
310 		 * accidentally skip over the caller by never inlining.
311 		 */
312 		num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
313 	}
314 	track->num_stack_entries = num_stack_entries;
315 	track->pid = task_pid_nr(current);
316 	track->cpu = raw_smp_processor_id();
317 	track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
318 
319 out:
320 	/*
321 	 * Pairs with READ_ONCE() in
322 	 *	kfence_shutdown_cache(),
323 	 *	kfence_handle_page_fault().
324 	 */
325 	WRITE_ONCE(meta->state, next);
326 }
327 
328 #ifdef CONFIG_KMSAN
329 #define check_canary_attributes noinline __no_kmsan_checks
330 #else
331 #define check_canary_attributes inline
332 #endif
333 
334 /* Check canary byte at @addr. */
335 static check_canary_attributes bool check_canary_byte(u8 *addr)
336 {
337 	struct kfence_metadata *meta;
338 	unsigned long flags;
339 
340 	if (likely(*addr == KFENCE_CANARY_PATTERN_U8(addr)))
341 		return true;
342 
343 	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
344 
345 	meta = addr_to_metadata((unsigned long)addr);
346 	raw_spin_lock_irqsave(&meta->lock, flags);
347 	kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
348 	raw_spin_unlock_irqrestore(&meta->lock, flags);
349 
350 	return false;
351 }
352 
353 static inline void set_canary(const struct kfence_metadata *meta)
354 {
355 	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
356 	unsigned long addr = pageaddr;
357 
358 	/*
359 	 * The canary may be written to part of the object memory, but it does
360 	 * not affect it. The user should initialize the object before using it.
361 	 */
362 	for (; addr < meta->addr; addr += sizeof(u64))
363 		*((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
364 
365 	addr = ALIGN_DOWN(meta->addr + meta->size, sizeof(u64));
366 	for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64))
367 		*((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
368 }
369 
370 static check_canary_attributes void
371 check_canary(const struct kfence_metadata *meta)
372 {
373 	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
374 	unsigned long addr = pageaddr;
375 
376 	/*
377 	 * We'll iterate over each canary byte per-side until a corrupted byte
378 	 * is found. However, we'll still iterate over the canary bytes to the
379 	 * right of the object even if there was an error in the canary bytes to
380 	 * the left of the object. Specifically, if check_canary_byte()
381 	 * generates an error, showing both sides might give more clues as to
382 	 * what the error is about when displaying which bytes were corrupted.
383 	 */
384 
385 	/* Apply to left of object. */
386 	for (; meta->addr - addr >= sizeof(u64); addr += sizeof(u64)) {
387 		if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64))
388 			break;
389 	}
390 
391 	/*
392 	 * If the canary is corrupted in a certain 64 bytes, or the canary
393 	 * memory cannot be completely covered by multiple consecutive 64 bytes,
394 	 * it needs to be checked one by one.
395 	 */
396 	for (; addr < meta->addr; addr++) {
397 		if (unlikely(!check_canary_byte((u8 *)addr)))
398 			break;
399 	}
400 
401 	/* Apply to right of object. */
402 	for (addr = meta->addr + meta->size; addr % sizeof(u64) != 0; addr++) {
403 		if (unlikely(!check_canary_byte((u8 *)addr)))
404 			return;
405 	}
406 	for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) {
407 		if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) {
408 
409 			for (; addr - pageaddr < PAGE_SIZE; addr++) {
410 				if (!check_canary_byte((u8 *)addr))
411 					return;
412 			}
413 		}
414 	}
415 }
416 
417 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
418 				  unsigned long *stack_entries, size_t num_stack_entries,
419 				  u32 alloc_stack_hash)
420 {
421 	struct kfence_metadata *meta = NULL;
422 	unsigned long flags;
423 	struct slab *slab;
424 	void *addr;
425 	const bool random_right_allocate = get_random_u32_below(2);
426 	const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS &&
427 				  !get_random_u32_below(CONFIG_KFENCE_STRESS_TEST_FAULTS);
428 
429 	/* Try to obtain a free object. */
430 	raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
431 	if (!list_empty(&kfence_freelist)) {
432 		meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
433 		list_del_init(&meta->list);
434 	}
435 	raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
436 	if (!meta) {
437 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
438 		return NULL;
439 	}
440 
441 	if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
442 		/*
443 		 * This is extremely unlikely -- we are reporting on a
444 		 * use-after-free, which locked meta->lock, and the reporting
445 		 * code via printk calls kmalloc() which ends up in
446 		 * kfence_alloc() and tries to grab the same object that we're
447 		 * reporting on. While it has never been observed, lockdep does
448 		 * report that there is a possibility of deadlock. Fix it by
449 		 * using trylock and bailing out gracefully.
450 		 */
451 		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
452 		/* Put the object back on the freelist. */
453 		list_add_tail(&meta->list, &kfence_freelist);
454 		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
455 
456 		return NULL;
457 	}
458 
459 	meta->addr = metadata_to_pageaddr(meta);
460 	/* Unprotect if we're reusing this page. */
461 	if (meta->state == KFENCE_OBJECT_FREED)
462 		kfence_unprotect(meta->addr);
463 
464 	/*
465 	 * Note: for allocations made before RNG initialization, will always
466 	 * return zero. We still benefit from enabling KFENCE as early as
467 	 * possible, even when the RNG is not yet available, as this will allow
468 	 * KFENCE to detect bugs due to earlier allocations. The only downside
469 	 * is that the out-of-bounds accesses detected are deterministic for
470 	 * such allocations.
471 	 */
472 	if (random_right_allocate) {
473 		/* Allocate on the "right" side, re-calculate address. */
474 		meta->addr += PAGE_SIZE - size;
475 		meta->addr = ALIGN_DOWN(meta->addr, cache->align);
476 	}
477 
478 	addr = (void *)meta->addr;
479 
480 	/* Update remaining metadata. */
481 	metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
482 	/* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
483 	WRITE_ONCE(meta->cache, cache);
484 	meta->size = size;
485 	meta->alloc_stack_hash = alloc_stack_hash;
486 	raw_spin_unlock_irqrestore(&meta->lock, flags);
487 
488 	alloc_covered_add(alloc_stack_hash, 1);
489 
490 	/* Set required slab fields. */
491 	slab = virt_to_slab(addr);
492 	slab->slab_cache = cache;
493 	slab->objects = 1;
494 
495 	/* Memory initialization. */
496 	set_canary(meta);
497 
498 	/*
499 	 * We check slab_want_init_on_alloc() ourselves, rather than letting
500 	 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
501 	 * redzone.
502 	 */
503 	if (unlikely(slab_want_init_on_alloc(gfp, cache)))
504 		memzero_explicit(addr, size);
505 	if (cache->ctor)
506 		cache->ctor(addr);
507 
508 	if (random_fault)
509 		kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
510 
511 	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
512 	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
513 
514 	return addr;
515 }
516 
517 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
518 {
519 	struct kcsan_scoped_access assert_page_exclusive;
520 	u32 alloc_stack_hash;
521 	unsigned long flags;
522 	bool init;
523 
524 	raw_spin_lock_irqsave(&meta->lock, flags);
525 
526 	if (!kfence_obj_allocated(meta) || meta->addr != (unsigned long)addr) {
527 		/* Invalid or double-free, bail out. */
528 		atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
529 		kfence_report_error((unsigned long)addr, false, NULL, meta,
530 				    KFENCE_ERROR_INVALID_FREE);
531 		raw_spin_unlock_irqrestore(&meta->lock, flags);
532 		return;
533 	}
534 
535 	/* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
536 	kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
537 				  KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
538 				  &assert_page_exclusive);
539 
540 	if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
541 		kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
542 
543 	/* Restore page protection if there was an OOB access. */
544 	if (meta->unprotected_page) {
545 		memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
546 		kfence_protect(meta->unprotected_page);
547 		meta->unprotected_page = 0;
548 	}
549 
550 	/* Mark the object as freed. */
551 	metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
552 	init = slab_want_init_on_free(meta->cache);
553 	alloc_stack_hash = meta->alloc_stack_hash;
554 	raw_spin_unlock_irqrestore(&meta->lock, flags);
555 
556 	alloc_covered_add(alloc_stack_hash, -1);
557 
558 	/* Check canary bytes for memory corruption. */
559 	check_canary(meta);
560 
561 	/*
562 	 * Clear memory if init-on-free is set. While we protect the page, the
563 	 * data is still there, and after a use-after-free is detected, we
564 	 * unprotect the page, so the data is still accessible.
565 	 */
566 	if (!zombie && unlikely(init))
567 		memzero_explicit(addr, meta->size);
568 
569 	/* Protect to detect use-after-frees. */
570 	kfence_protect((unsigned long)addr);
571 
572 	kcsan_end_scoped_access(&assert_page_exclusive);
573 	if (!zombie) {
574 		/* Add it to the tail of the freelist for reuse. */
575 		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
576 		KFENCE_WARN_ON(!list_empty(&meta->list));
577 		list_add_tail(&meta->list, &kfence_freelist);
578 		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
579 
580 		atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
581 		atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
582 	} else {
583 		/* See kfence_shutdown_cache(). */
584 		atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
585 	}
586 }
587 
588 static void rcu_guarded_free(struct rcu_head *h)
589 {
590 	struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
591 
592 	kfence_guarded_free((void *)meta->addr, meta, false);
593 }
594 
595 /*
596  * Initialization of the KFENCE pool after its allocation.
597  * Returns 0 on success; otherwise returns the address up to
598  * which partial initialization succeeded.
599  */
600 static unsigned long kfence_init_pool(void)
601 	__context_unsafe(/* constructor */)
602 {
603 	unsigned long addr, start_pfn;
604 	int i, rand;
605 
606 	if (!arch_kfence_init_pool())
607 		return (unsigned long)__kfence_pool;
608 
609 	addr = (unsigned long)__kfence_pool;
610 	start_pfn = PHYS_PFN(virt_to_phys(__kfence_pool));
611 
612 	/*
613 	 * Set up object pages: they must have PGTY_slab set to avoid freeing
614 	 * them as real pages.
615 	 *
616 	 * We also want to avoid inserting kfence_free() in the kfree()
617 	 * fast-path in SLUB, and therefore need to ensure kfree() correctly
618 	 * enters __slab_free() slow-path.
619 	 */
620 	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
621 		struct page *page;
622 
623 		if (!i || (i % 2))
624 			continue;
625 
626 		page = pfn_to_page(start_pfn + i);
627 		__SetPageSlab(page);
628 #ifdef CONFIG_MEMCG
629 		struct slab *slab = page_slab(page);
630 		slab->obj_exts = (unsigned long)&kfence_metadata_init[i / 2 - 1].obj_exts |
631 				 MEMCG_DATA_OBJEXTS;
632 #endif
633 	}
634 
635 	/*
636 	 * Protect the first 2 pages. The first page is mostly unnecessary, and
637 	 * merely serves as an extended guard page. However, adding one
638 	 * additional page in the beginning gives us an even number of pages,
639 	 * which simplifies the mapping of address to metadata index.
640 	 */
641 	for (i = 0; i < 2; i++) {
642 		if (unlikely(!kfence_protect(addr)))
643 			return addr;
644 
645 		addr += PAGE_SIZE;
646 	}
647 
648 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
649 		struct kfence_metadata *meta = &kfence_metadata_init[i];
650 
651 		/* Initialize metadata. */
652 		INIT_LIST_HEAD(&meta->list);
653 		raw_spin_lock_init(&meta->lock);
654 		meta->state = KFENCE_OBJECT_UNUSED;
655 		/* Use addr to randomize the freelist. */
656 		meta->addr = i;
657 
658 		/* Protect the right redzone. */
659 		if (unlikely(!kfence_protect(addr + 2 * i * PAGE_SIZE + PAGE_SIZE)))
660 			goto reset_slab;
661 	}
662 
663 	for (i = CONFIG_KFENCE_NUM_OBJECTS; i > 0; i--) {
664 		rand = get_random_u32_below(i);
665 		swap(kfence_metadata_init[i - 1].addr, kfence_metadata_init[rand].addr);
666 	}
667 
668 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
669 		struct kfence_metadata *meta_1 = &kfence_metadata_init[i];
670 		struct kfence_metadata *meta_2 = &kfence_metadata_init[meta_1->addr];
671 
672 		list_add_tail(&meta_2->list, &kfence_freelist);
673 	}
674 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
675 		kfence_metadata_init[i].addr = addr;
676 		addr += 2 * PAGE_SIZE;
677 	}
678 
679 	/*
680 	 * Make kfence_metadata visible only when initialization is successful.
681 	 * Otherwise, if the initialization fails and kfence_metadata is freed,
682 	 * it may cause UAF in kfence_shutdown_cache().
683 	 */
684 	smp_store_release(&kfence_metadata, kfence_metadata_init);
685 	return 0;
686 
687 reset_slab:
688 	addr += 2 * i * PAGE_SIZE;
689 	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
690 		struct page *page;
691 
692 		if (!i || (i % 2))
693 			continue;
694 
695 		page = pfn_to_page(start_pfn + i);
696 #ifdef CONFIG_MEMCG
697 		struct slab *slab = page_slab(page);
698 		slab->obj_exts = 0;
699 #endif
700 		__ClearPageSlab(page);
701 	}
702 
703 	return addr;
704 }
705 
706 static bool __init kfence_init_pool_early(void)
707 {
708 	unsigned long addr;
709 
710 	if (!__kfence_pool)
711 		return false;
712 
713 	addr = kfence_init_pool();
714 
715 	if (!addr) {
716 		/*
717 		 * The pool is live and will never be deallocated from this point on.
718 		 * Ignore the pool object from the kmemleak phys object tree, as it would
719 		 * otherwise overlap with allocations returned by kfence_alloc(), which
720 		 * are registered with kmemleak through the slab post-alloc hook.
721 		 */
722 		kmemleak_ignore_phys(__pa(__kfence_pool));
723 		return true;
724 	}
725 
726 	/*
727 	 * Only release unprotected pages, and do not try to go back and change
728 	 * page attributes due to risk of failing to do so as well. If changing
729 	 * page attributes for some pages fails, it is very likely that it also
730 	 * fails for the first page, and therefore expect addr==__kfence_pool in
731 	 * most failure cases.
732 	 */
733 	memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
734 	__kfence_pool = NULL;
735 
736 	memblock_free_late(__pa(kfence_metadata_init), KFENCE_METADATA_SIZE);
737 	kfence_metadata_init = NULL;
738 
739 	return false;
740 }
741 
742 /* === DebugFS Interface ==================================================== */
743 
744 static int stats_show(struct seq_file *seq, void *v)
745 {
746 	int i;
747 
748 	seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
749 	for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
750 		seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
751 
752 	return 0;
753 }
754 DEFINE_SHOW_ATTRIBUTE(stats);
755 
756 /*
757  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
758  * start_object() and next_object() return the object index + 1, because NULL is used
759  * to stop iteration.
760  */
761 static void *start_object(struct seq_file *seq, loff_t *pos)
762 {
763 	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
764 		return (void *)((long)*pos + 1);
765 	return NULL;
766 }
767 
768 static void stop_object(struct seq_file *seq, void *v)
769 {
770 }
771 
772 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
773 {
774 	++*pos;
775 	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
776 		return (void *)((long)*pos + 1);
777 	return NULL;
778 }
779 
780 static int show_object(struct seq_file *seq, void *v)
781 {
782 	struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
783 	unsigned long flags;
784 
785 	raw_spin_lock_irqsave(&meta->lock, flags);
786 	kfence_print_object(seq, meta);
787 	raw_spin_unlock_irqrestore(&meta->lock, flags);
788 	seq_puts(seq, "---------------------------------\n");
789 
790 	return 0;
791 }
792 
793 static const struct seq_operations objects_sops = {
794 	.start = start_object,
795 	.next = next_object,
796 	.stop = stop_object,
797 	.show = show_object,
798 };
799 DEFINE_SEQ_ATTRIBUTE(objects);
800 
801 static int kfence_debugfs_init(void)
802 {
803 	struct dentry *kfence_dir;
804 
805 	if (!READ_ONCE(kfence_enabled))
806 		return 0;
807 
808 	kfence_dir = debugfs_create_dir("kfence", NULL);
809 	debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
810 	debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
811 	return 0;
812 }
813 
814 late_initcall(kfence_debugfs_init);
815 
816 /* === Panic Notifier ====================================================== */
817 
818 static void kfence_check_all_canary(void)
819 {
820 	int i;
821 
822 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
823 		struct kfence_metadata *meta = &kfence_metadata[i];
824 
825 		if (kfence_obj_allocated(meta))
826 			check_canary(meta);
827 	}
828 }
829 
830 static int kfence_check_canary_callback(struct notifier_block *nb,
831 					unsigned long reason, void *arg)
832 {
833 	kfence_check_all_canary();
834 	return NOTIFY_OK;
835 }
836 
837 static struct notifier_block kfence_check_canary_notifier = {
838 	.notifier_call = kfence_check_canary_callback,
839 };
840 
841 /* === Allocation Gate Timer ================================================ */
842 
843 static struct delayed_work kfence_timer;
844 
845 #ifdef CONFIG_KFENCE_STATIC_KEYS
846 /* Wait queue to wake up allocation-gate timer task. */
847 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
848 
849 static int kfence_reboot_callback(struct notifier_block *nb,
850 				  unsigned long action, void *data)
851 {
852 	/*
853 	 * Disable kfence to avoid static keys IPI synchronization during
854 	 * late shutdown/kexec
855 	 */
856 	WRITE_ONCE(kfence_enabled, false);
857 	/* Cancel any pending timer work */
858 	cancel_delayed_work(&kfence_timer);
859 	/*
860 	 * Wake up any blocked toggle_allocation_gate() so it can complete
861 	 * early while the system is still able to handle IPIs.
862 	 */
863 	wake_up(&allocation_wait);
864 
865 	return NOTIFY_OK;
866 }
867 
868 static struct notifier_block kfence_reboot_notifier = {
869 	.notifier_call = kfence_reboot_callback,
870 	.priority = INT_MAX, /* Run early to stop timers ASAP */
871 };
872 
873 static void wake_up_kfence_timer(struct irq_work *work)
874 {
875 	wake_up(&allocation_wait);
876 }
877 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
878 #endif
879 
880 /*
881  * Set up delayed work, which will enable and disable the static key. We need to
882  * use a work queue (rather than a simple timer), since enabling and disabling a
883  * static key cannot be done from an interrupt.
884  *
885  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
886  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
887  * more aggressive sampling intervals), we could get away with a variant that
888  * avoids IPIs, at the cost of not immediately capturing allocations if the
889  * instructions remain cached.
890  */
891 static void toggle_allocation_gate(struct work_struct *work)
892 {
893 	if (!READ_ONCE(kfence_enabled))
894 		return;
895 
896 	atomic_set(&kfence_allocation_gate, -kfence_burst);
897 #ifdef CONFIG_KFENCE_STATIC_KEYS
898 	/* Enable static key, and await allocation to happen. */
899 	static_branch_enable(&kfence_allocation_key);
900 
901 	wait_event_idle(allocation_wait,
902 			atomic_read(&kfence_allocation_gate) > 0 ||
903 			!READ_ONCE(kfence_enabled));
904 
905 	/* Disable static key and reset timer. */
906 	static_branch_disable(&kfence_allocation_key);
907 #endif
908 	queue_delayed_work(system_dfl_wq, &kfence_timer,
909 			   msecs_to_jiffies(kfence_sample_interval));
910 }
911 
912 /* === Public interface ===================================================== */
913 
914 void __init kfence_alloc_pool_and_metadata(void)
915 {
916 	if (!kfence_sample_interval)
917 		return;
918 
919 	/*
920 	 * If the pool has already been initialized by arch, there is no need to
921 	 * re-allocate the memory pool.
922 	 */
923 	if (!__kfence_pool)
924 		__kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
925 
926 	if (!__kfence_pool) {
927 		pr_err("failed to allocate pool\n");
928 		return;
929 	}
930 
931 	/* The memory allocated by memblock has been zeroed out. */
932 	kfence_metadata_init = memblock_alloc(KFENCE_METADATA_SIZE, PAGE_SIZE);
933 	if (!kfence_metadata_init) {
934 		pr_err("failed to allocate metadata\n");
935 		memblock_free(__kfence_pool, KFENCE_POOL_SIZE);
936 		__kfence_pool = NULL;
937 	}
938 }
939 
940 static void kfence_init_enable(void)
941 {
942 	if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
943 		static_branch_enable(&kfence_allocation_key);
944 
945 	if (kfence_deferrable)
946 		INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
947 	else
948 		INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
949 
950 	if (kfence_check_on_panic)
951 		atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
952 
953 #ifdef CONFIG_KFENCE_STATIC_KEYS
954 	register_reboot_notifier(&kfence_reboot_notifier);
955 #endif
956 
957 	WRITE_ONCE(kfence_enabled, true);
958 	queue_delayed_work(system_dfl_wq, &kfence_timer, 0);
959 
960 	pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
961 		CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
962 		(void *)(__kfence_pool + KFENCE_POOL_SIZE));
963 }
964 
965 void __init kfence_init(void)
966 {
967 	stack_hash_seed = get_random_u32();
968 
969 	/* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
970 	if (!kfence_sample_interval)
971 		return;
972 
973 	if (!kfence_init_pool_early()) {
974 		pr_err("%s failed\n", __func__);
975 		return;
976 	}
977 
978 	kfence_init_enable();
979 }
980 
981 static int kfence_init_late(void)
982 {
983 	const unsigned long nr_pages_pool = KFENCE_POOL_SIZE / PAGE_SIZE;
984 	const unsigned long nr_pages_meta = KFENCE_METADATA_SIZE / PAGE_SIZE;
985 	unsigned long addr = (unsigned long)__kfence_pool;
986 	unsigned long free_size = KFENCE_POOL_SIZE;
987 	int err = -ENOMEM;
988 
989 #ifdef CONFIG_CONTIG_ALLOC
990 	struct page *pages;
991 
992 	pages = alloc_contig_pages(nr_pages_pool, GFP_KERNEL, first_online_node,
993 				   NULL);
994 	if (!pages)
995 		return -ENOMEM;
996 
997 	__kfence_pool = page_to_virt(pages);
998 	pages = alloc_contig_pages(nr_pages_meta, GFP_KERNEL, first_online_node,
999 				   NULL);
1000 	if (pages)
1001 		kfence_metadata_init = page_to_virt(pages);
1002 #else
1003 	if (nr_pages_pool > MAX_ORDER_NR_PAGES ||
1004 	    nr_pages_meta > MAX_ORDER_NR_PAGES) {
1005 		pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
1006 		return -EINVAL;
1007 	}
1008 
1009 	__kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
1010 	if (!__kfence_pool)
1011 		return -ENOMEM;
1012 
1013 	kfence_metadata_init = alloc_pages_exact(KFENCE_METADATA_SIZE, GFP_KERNEL);
1014 #endif
1015 
1016 	if (!kfence_metadata_init)
1017 		goto free_pool;
1018 
1019 	memzero_explicit(kfence_metadata_init, KFENCE_METADATA_SIZE);
1020 	addr = kfence_init_pool();
1021 	if (!addr) {
1022 		kfence_init_enable();
1023 		kfence_debugfs_init();
1024 		return 0;
1025 	}
1026 
1027 	pr_err("%s failed\n", __func__);
1028 	free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
1029 	err = -EBUSY;
1030 
1031 #ifdef CONFIG_CONTIG_ALLOC
1032 	free_contig_range(page_to_pfn(virt_to_page((void *)kfence_metadata_init)),
1033 			  nr_pages_meta);
1034 free_pool:
1035 	free_contig_range(page_to_pfn(virt_to_page((void *)addr)),
1036 			  free_size / PAGE_SIZE);
1037 #else
1038 	free_pages_exact((void *)kfence_metadata_init, KFENCE_METADATA_SIZE);
1039 free_pool:
1040 	free_pages_exact((void *)addr, free_size);
1041 #endif
1042 
1043 	kfence_metadata_init = NULL;
1044 	__kfence_pool = NULL;
1045 	return err;
1046 }
1047 
1048 static int kfence_enable_late(void)
1049 {
1050 	if (!__kfence_pool)
1051 		return kfence_init_late();
1052 
1053 	WRITE_ONCE(kfence_enabled, true);
1054 	queue_delayed_work(system_dfl_wq, &kfence_timer, 0);
1055 	pr_info("re-enabled\n");
1056 	return 0;
1057 }
1058 
1059 void kfence_shutdown_cache(struct kmem_cache *s)
1060 {
1061 	unsigned long flags;
1062 	struct kfence_metadata *meta;
1063 	int i;
1064 
1065 	/* Pairs with release in kfence_init_pool(). */
1066 	if (!smp_load_acquire(&kfence_metadata))
1067 		return;
1068 
1069 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
1070 		bool in_use;
1071 
1072 		meta = &kfence_metadata[i];
1073 
1074 		/*
1075 		 * If we observe some inconsistent cache and state pair where we
1076 		 * should have returned false here, cache destruction is racing
1077 		 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
1078 		 * the lock will not help, as different critical section
1079 		 * serialization will have the same outcome.
1080 		 */
1081 		if (READ_ONCE(meta->cache) != s || !kfence_obj_allocated(meta))
1082 			continue;
1083 
1084 		raw_spin_lock_irqsave(&meta->lock, flags);
1085 		in_use = meta->cache == s && kfence_obj_allocated(meta);
1086 		raw_spin_unlock_irqrestore(&meta->lock, flags);
1087 
1088 		if (in_use) {
1089 			/*
1090 			 * This cache still has allocations, and we should not
1091 			 * release them back into the freelist so they can still
1092 			 * safely be used and retain the kernel's default
1093 			 * behaviour of keeping the allocations alive (leak the
1094 			 * cache); however, they effectively become "zombie
1095 			 * allocations" as the KFENCE objects are the only ones
1096 			 * still in use and the owning cache is being destroyed.
1097 			 *
1098 			 * We mark them freed, so that any subsequent use shows
1099 			 * more useful error messages that will include stack
1100 			 * traces of the user of the object, the original
1101 			 * allocation, and caller to shutdown_cache().
1102 			 */
1103 			kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
1104 		}
1105 	}
1106 
1107 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
1108 		meta = &kfence_metadata[i];
1109 
1110 		/* See above. */
1111 		if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
1112 			continue;
1113 
1114 		raw_spin_lock_irqsave(&meta->lock, flags);
1115 		if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
1116 			meta->cache = NULL;
1117 		raw_spin_unlock_irqrestore(&meta->lock, flags);
1118 	}
1119 }
1120 
1121 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
1122 {
1123 	unsigned long stack_entries[KFENCE_STACK_DEPTH];
1124 	size_t num_stack_entries;
1125 	u32 alloc_stack_hash;
1126 	int allocation_gate;
1127 
1128 	/*
1129 	 * Perform size check before switching kfence_allocation_gate, so that
1130 	 * we don't disable KFENCE without making an allocation.
1131 	 */
1132 	if (size > PAGE_SIZE) {
1133 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1134 		return NULL;
1135 	}
1136 
1137 	/*
1138 	 * Skip allocations from non-default zones, including DMA. We cannot
1139 	 * guarantee that pages in the KFENCE pool will have the requested
1140 	 * properties (e.g. reside in DMAable memory).
1141 	 */
1142 	if ((flags & GFP_ZONEMASK) ||
1143 	    ((flags & __GFP_THISNODE) && num_online_nodes() > 1) ||
1144 	    (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
1145 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1146 		return NULL;
1147 	}
1148 
1149 	/*
1150 	 * Skip allocations for this slab, if KFENCE has been disabled for
1151 	 * this slab.
1152 	 */
1153 	if (s->flags & SLAB_SKIP_KFENCE)
1154 		return NULL;
1155 
1156 	allocation_gate = atomic_inc_return(&kfence_allocation_gate);
1157 	if (allocation_gate > 1)
1158 		return NULL;
1159 #ifdef CONFIG_KFENCE_STATIC_KEYS
1160 	/*
1161 	 * waitqueue_active() is fully ordered after the update of
1162 	 * kfence_allocation_gate per atomic_inc_return().
1163 	 */
1164 	if (allocation_gate == 1 && waitqueue_active(&allocation_wait)) {
1165 		/*
1166 		 * Calling wake_up() here may deadlock when allocations happen
1167 		 * from within timer code. Use an irq_work to defer it.
1168 		 */
1169 		irq_work_queue(&wake_up_kfence_timer_work);
1170 	}
1171 #endif
1172 
1173 	if (!READ_ONCE(kfence_enabled))
1174 		return NULL;
1175 
1176 	num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
1177 
1178 	/*
1179 	 * Do expensive check for coverage of allocation in slow-path after
1180 	 * allocation_gate has already become non-zero, even though it might
1181 	 * mean not making any allocation within a given sample interval.
1182 	 *
1183 	 * This ensures reasonable allocation coverage when the pool is almost
1184 	 * full, including avoiding long-lived allocations of the same source
1185 	 * filling up the pool (e.g. pagecache allocations).
1186 	 */
1187 	alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1188 	if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1189 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1190 		return NULL;
1191 	}
1192 
1193 	return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1194 				    alloc_stack_hash);
1195 }
1196 
1197 size_t kfence_ksize(const void *addr)
1198 {
1199 	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1200 
1201 	/*
1202 	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1203 	 * either a use-after-free or invalid access.
1204 	 */
1205 	return meta ? meta->size : 0;
1206 }
1207 
1208 void *kfence_object_start(const void *addr)
1209 {
1210 	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1211 
1212 	/*
1213 	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1214 	 * either a use-after-free or invalid access.
1215 	 */
1216 	return meta ? (void *)meta->addr : NULL;
1217 }
1218 
1219 void __kfence_free(void *addr)
1220 {
1221 	struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1222 
1223 #ifdef CONFIG_MEMCG
1224 	KFENCE_WARN_ON(meta->obj_exts.objcg);
1225 #endif
1226 	/*
1227 	 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1228 	 * the object, as the object page may be recycled for other-typed
1229 	 * objects once it has been freed. meta->cache may be NULL if the cache
1230 	 * was destroyed.
1231 	 * Save the stack trace here so that reports show where the user freed
1232 	 * the object.
1233 	 */
1234 	if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU))) {
1235 		unsigned long flags;
1236 
1237 		raw_spin_lock_irqsave(&meta->lock, flags);
1238 		metadata_update_state(meta, KFENCE_OBJECT_RCU_FREEING, NULL, 0);
1239 		raw_spin_unlock_irqrestore(&meta->lock, flags);
1240 		call_rcu(&meta->rcu_head, rcu_guarded_free);
1241 	} else {
1242 		kfence_guarded_free(addr, meta, false);
1243 	}
1244 }
1245 
1246 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1247 {
1248 	const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1249 	struct kfence_metadata *to_report = NULL;
1250 	unsigned long unprotected_page = 0;
1251 	enum kfence_error_type error_type;
1252 	unsigned long flags;
1253 
1254 	if (!is_kfence_address((void *)addr))
1255 		return false;
1256 
1257 	if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1258 		return kfence_unprotect(addr); /* ... unprotect and proceed. */
1259 
1260 	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1261 
1262 	if (page_index % 2) {
1263 		/* This is a redzone, report a buffer overflow. */
1264 		struct kfence_metadata *meta;
1265 		int distance = 0;
1266 
1267 		meta = addr_to_metadata(addr - PAGE_SIZE);
1268 		if (meta && kfence_obj_allocated(meta)) {
1269 			to_report = meta;
1270 			/* Data race ok; distance calculation approximate. */
1271 			distance = addr - data_race(meta->addr + meta->size);
1272 		}
1273 
1274 		meta = addr_to_metadata(addr + PAGE_SIZE);
1275 		if (meta && kfence_obj_allocated(meta)) {
1276 			/* Data race ok; distance calculation approximate. */
1277 			if (!to_report || distance > data_race(meta->addr) - addr)
1278 				to_report = meta;
1279 		}
1280 
1281 		if (!to_report)
1282 			goto out;
1283 
1284 		error_type = KFENCE_ERROR_OOB;
1285 		unprotected_page = addr;
1286 
1287 		/*
1288 		 * If the object was freed before we took the look we can still
1289 		 * report this as an OOB -- the report will simply show the
1290 		 * stacktrace of the free as well.
1291 		 */
1292 	} else {
1293 		to_report = addr_to_metadata(addr);
1294 		if (!to_report)
1295 			goto out;
1296 
1297 		error_type = KFENCE_ERROR_UAF;
1298 		/*
1299 		 * We may race with __kfence_alloc(), and it is possible that a
1300 		 * freed object may be reallocated. We simply report this as a
1301 		 * use-after-free, with the stack trace showing the place where
1302 		 * the object was re-allocated.
1303 		 */
1304 	}
1305 
1306 out:
1307 	if (to_report) {
1308 		raw_spin_lock_irqsave(&to_report->lock, flags);
1309 		to_report->unprotected_page = unprotected_page;
1310 		kfence_report_error(addr, is_write, regs, to_report, error_type);
1311 		raw_spin_unlock_irqrestore(&to_report->lock, flags);
1312 	} else {
1313 		/* This may be a UAF or OOB access, but we can't be sure. */
1314 		kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1315 	}
1316 
1317 	return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1318 }
1319