xref: /linux/include/linux/compiler.h (revision ad69e021288d04f297c097985513306cbd304be3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_COMPILER_H
3 #define __LINUX_COMPILER_H
4 
5 #include <linux/compiler_types.h>
6 
7 #ifndef __ASSEMBLY__
8 
9 #ifdef __KERNEL__
10 
11 /*
12  * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
13  * to disable branch tracing on a per file basis.
14  */
15 void ftrace_likely_update(struct ftrace_likely_data *f, int val,
16 			  int expect, int is_constant);
17 #if defined(CONFIG_TRACE_BRANCH_PROFILING) \
18     && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
19 #define likely_notrace(x)	__builtin_expect(!!(x), 1)
20 #define unlikely_notrace(x)	__builtin_expect(!!(x), 0)
21 
22 #define __branch_check__(x, expect, is_constant) ({			\
23 			long ______r;					\
24 			static struct ftrace_likely_data		\
25 				__aligned(4)				\
26 				__section("_ftrace_annotated_branch")	\
27 				______f = {				\
28 				.data.func = __func__,			\
29 				.data.file = __FILE__,			\
30 				.data.line = __LINE__,			\
31 			};						\
32 			______r = __builtin_expect(!!(x), expect);	\
33 			ftrace_likely_update(&______f, ______r,		\
34 					     expect, is_constant);	\
35 			______r;					\
36 		})
37 
38 /*
39  * Using __builtin_constant_p(x) to ignore cases where the return
40  * value is always the same.  This idea is taken from a similar patch
41  * written by Daniel Walker.
42  */
43 # ifndef likely
44 #  define likely(x)	(__branch_check__(x, 1, __builtin_constant_p(x)))
45 # endif
46 # ifndef unlikely
47 #  define unlikely(x)	(__branch_check__(x, 0, __builtin_constant_p(x)))
48 # endif
49 
50 #ifdef CONFIG_PROFILE_ALL_BRANCHES
51 /*
52  * "Define 'is'", Bill Clinton
53  * "Define 'if'", Steven Rostedt
54  */
55 #define if(cond, ...) if ( __trace_if_var( !!(cond , ## __VA_ARGS__) ) )
56 
57 #define __trace_if_var(cond) (__builtin_constant_p(cond) ? (cond) : __trace_if_value(cond))
58 
59 #define __trace_if_value(cond) ({			\
60 	static struct ftrace_branch_data		\
61 		__aligned(4)				\
62 		__section("_ftrace_branch")		\
63 		__if_trace = {				\
64 			.func = __func__,		\
65 			.file = __FILE__,		\
66 			.line = __LINE__,		\
67 		};					\
68 	(cond) ?					\
69 		(__if_trace.miss_hit[1]++,1) :		\
70 		(__if_trace.miss_hit[0]++,0);		\
71 })
72 
73 #endif /* CONFIG_PROFILE_ALL_BRANCHES */
74 
75 #else
76 # define likely(x)	__builtin_expect(!!(x), 1)
77 # define unlikely(x)	__builtin_expect(!!(x), 0)
78 # define likely_notrace(x)	likely(x)
79 # define unlikely_notrace(x)	unlikely(x)
80 #endif
81 
82 /* Optimization barrier */
83 #ifndef barrier
84 /* The "volatile" is due to gcc bugs */
85 # define barrier() __asm__ __volatile__("": : :"memory")
86 #endif
87 
88 #ifndef barrier_data
89 /*
90  * This version is i.e. to prevent dead stores elimination on @ptr
91  * where gcc and llvm may behave differently when otherwise using
92  * normal barrier(): while gcc behavior gets along with a normal
93  * barrier(), llvm needs an explicit input variable to be assumed
94  * clobbered. The issue is as follows: while the inline asm might
95  * access any memory it wants, the compiler could have fit all of
96  * @ptr into memory registers instead, and since @ptr never escaped
97  * from that, it proved that the inline asm wasn't touching any of
98  * it. This version works well with both compilers, i.e. we're telling
99  * the compiler that the inline asm absolutely may see the contents
100  * of @ptr. See also: https://llvm.org/bugs/show_bug.cgi?id=15495
101  */
102 # define barrier_data(ptr) __asm__ __volatile__("": :"r"(ptr) :"memory")
103 #endif
104 
105 /* workaround for GCC PR82365 if needed */
106 #ifndef barrier_before_unreachable
107 # define barrier_before_unreachable() do { } while (0)
108 #endif
109 
110 /* Unreachable code */
111 #ifdef CONFIG_OBJTOOL
112 /* Annotate a C jump table to allow objtool to follow the code flow */
113 #define __annotate_jump_table __section(".data.rel.ro.c_jump_table")
114 #else /* !CONFIG_OBJTOOL */
115 #define __annotate_jump_table
116 #endif /* CONFIG_OBJTOOL */
117 
118 /*
119  * Mark a position in code as unreachable.  This can be used to
120  * suppress control flow warnings after asm blocks that transfer
121  * control elsewhere.
122  */
123 #define unreachable() do {		\
124 	barrier_before_unreachable();	\
125 	__builtin_unreachable();	\
126 } while (0)
127 
128 /*
129  * KENTRY - kernel entry point
130  * This can be used to annotate symbols (functions or data) that are used
131  * without their linker symbol being referenced explicitly. For example,
132  * interrupt vector handlers, or functions in the kernel image that are found
133  * programatically.
134  *
135  * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
136  * are handled in their own way (with KEEP() in linker scripts).
137  *
138  * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
139  * linker script. For example an architecture could KEEP() its entire
140  * boot/exception vector code rather than annotate each function and data.
141  */
142 #ifndef KENTRY
143 # define KENTRY(sym)						\
144 	extern typeof(sym) sym;					\
145 	static const unsigned long __kentry_##sym		\
146 	__used							\
147 	__attribute__((__section__("___kentry+" #sym)))		\
148 	= (unsigned long)&sym;
149 #endif
150 
151 #ifndef RELOC_HIDE
152 # define RELOC_HIDE(ptr, off)					\
153   ({ unsigned long __ptr;					\
154      __ptr = (unsigned long) (ptr);				\
155     (typeof(ptr)) (__ptr + (off)); })
156 #endif
157 
158 #define absolute_pointer(val)	RELOC_HIDE((void *)(val), 0)
159 
160 #ifndef OPTIMIZER_HIDE_VAR
161 /* Make the optimizer believe the variable can be manipulated arbitrarily. */
162 #define OPTIMIZER_HIDE_VAR(var)						\
163 	__asm__ ("" : "=r" (var) : "0" (var))
164 #endif
165 
166 #define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __COUNTER__)
167 
168 /**
169  * data_race - mark an expression as containing intentional data races
170  *
171  * This data_race() macro is useful for situations in which data races
172  * should be forgiven.  One example is diagnostic code that accesses
173  * shared variables but is not a part of the core synchronization design.
174  * For example, if accesses to a given variable are protected by a lock,
175  * except for diagnostic code, then the accesses under the lock should
176  * be plain C-language accesses and those in the diagnostic code should
177  * use data_race().  This way, KCSAN will complain if buggy lockless
178  * accesses to that variable are introduced, even if the buggy accesses
179  * are protected by READ_ONCE() or WRITE_ONCE().
180  *
181  * This macro *does not* affect normal code generation, but is a hint
182  * to tooling that data races here are to be ignored.  If the access must
183  * be atomic *and* KCSAN should ignore the access, use both data_race()
184  * and READ_ONCE(), for example, data_race(READ_ONCE(x)).
185  */
186 #define data_race(expr)							\
187 ({									\
188 	__kcsan_disable_current();					\
189 	__auto_type __v = (expr);					\
190 	__kcsan_enable_current();					\
191 	__v;								\
192 })
193 
194 #ifdef __CHECKER__
195 #define __BUILD_BUG_ON_ZERO_MSG(e, msg) (0)
196 #else /* __CHECKER__ */
197 #define __BUILD_BUG_ON_ZERO_MSG(e, msg) ((int)sizeof(struct {_Static_assert(!(e), msg);}))
198 #endif /* __CHECKER__ */
199 
200 /* &a[0] degrades to a pointer: a different type from an array */
201 #define __is_array(a)		(!__same_type((a), &(a)[0]))
202 #define __must_be_array(a)	__BUILD_BUG_ON_ZERO_MSG(!__is_array(a), \
203 							"must be array")
204 
205 #define __is_byte_array(a)	(__is_array(a) && sizeof((a)[0]) == 1)
206 #define __must_be_byte_array(a)	__BUILD_BUG_ON_ZERO_MSG(!__is_byte_array(a), \
207 							"must be byte array")
208 
209 /* Require C Strings (i.e. NUL-terminated) lack the "nonstring" attribute. */
210 #define __must_be_cstr(p) \
211 	__BUILD_BUG_ON_ZERO_MSG(__annotated(p, nonstring), "must be cstr (NUL-terminated)")
212 
213 #endif /* __KERNEL__ */
214 
215 /**
216  * offset_to_ptr - convert a relative memory offset to an absolute pointer
217  * @off:	the address of the 32-bit offset value
218  */
offset_to_ptr(const int * off)219 static inline void *offset_to_ptr(const int *off)
220 {
221 	return (void *)((unsigned long)off + *off);
222 }
223 
224 #endif /* __ASSEMBLY__ */
225 
226 #ifdef CONFIG_64BIT
227 #define ARCH_SEL(a,b) a
228 #else
229 #define ARCH_SEL(a,b) b
230 #endif
231 
232 /*
233  * Force the compiler to emit 'sym' as a symbol, so that we can reference
234  * it from inline assembler. Necessary in case 'sym' could be inlined
235  * otherwise, or eliminated entirely due to lack of references that are
236  * visible to the compiler.
237  */
238 #define ___ADDRESSABLE(sym, __attrs)						\
239 	static void * __used __attrs						\
240 	__UNIQUE_ID(__PASTE(__addressable_,sym)) = (void *)(uintptr_t)&sym;
241 
242 #define __ADDRESSABLE(sym) \
243 	___ADDRESSABLE(sym, __section(".discard.addressable"))
244 
245 #define __ADDRESSABLE_ASM(sym)						\
246 	.pushsection .discard.addressable,"aw";				\
247 	.align ARCH_SEL(8,4);						\
248 	ARCH_SEL(.quad, .long) __stringify(sym);			\
249 	.popsection;
250 
251 #define __ADDRESSABLE_ASM_STR(sym) __stringify(__ADDRESSABLE_ASM(sym))
252 
253 /*
254  * This returns a constant expression while determining if an argument is
255  * a constant expression, most importantly without evaluating the argument.
256  * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
257  *
258  * Details:
259  * - sizeof() return an integer constant expression, and does not evaluate
260  *   the value of its operand; it only examines the type of its operand.
261  * - The results of comparing two integer constant expressions is also
262  *   an integer constant expression.
263  * - The first literal "8" isn't important. It could be any literal value.
264  * - The second literal "8" is to avoid warnings about unaligned pointers;
265  *   this could otherwise just be "1".
266  * - (long)(x) is used to avoid warnings about 64-bit types on 32-bit
267  *   architectures.
268  * - The C Standard defines "null pointer constant", "(void *)0", as
269  *   distinct from other void pointers.
270  * - If (x) is an integer constant expression, then the "* 0l" resolves
271  *   it into an integer constant expression of value 0. Since it is cast to
272  *   "void *", this makes the second operand a null pointer constant.
273  * - If (x) is not an integer constant expression, then the second operand
274  *   resolves to a void pointer (but not a null pointer constant: the value
275  *   is not an integer constant 0).
276  * - The conditional operator's third operand, "(int *)8", is an object
277  *   pointer (to type "int").
278  * - The behavior (including the return type) of the conditional operator
279  *   ("operand1 ? operand2 : operand3") depends on the kind of expressions
280  *   given for the second and third operands. This is the central mechanism
281  *   of the macro:
282  *   - When one operand is a null pointer constant (i.e. when x is an integer
283  *     constant expression) and the other is an object pointer (i.e. our
284  *     third operand), the conditional operator returns the type of the
285  *     object pointer operand (i.e. "int *"). Here, within the sizeof(), we
286  *     would then get:
287  *       sizeof(*((int *)(...))  == sizeof(int)  == 4
288  *   - When one operand is a void pointer (i.e. when x is not an integer
289  *     constant expression) and the other is an object pointer (i.e. our
290  *     third operand), the conditional operator returns a "void *" type.
291  *     Here, within the sizeof(), we would then get:
292  *       sizeof(*((void *)(...)) == sizeof(void) == 1
293  * - The equality comparison to "sizeof(int)" therefore depends on (x):
294  *     sizeof(int) == sizeof(int)     (x) was a constant expression
295  *     sizeof(int) != sizeof(void)    (x) was not a constant expression
296  */
297 #define __is_constexpr(x) \
298 	(sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
299 
300 /*
301  * Whether 'type' is a signed type or an unsigned type. Supports scalar types,
302  * bool and also pointer types.
303  */
304 #define is_signed_type(type) (((type)(-1)) < (__force type)1)
305 #define is_unsigned_type(type) (!is_signed_type(type))
306 
307 /*
308  * Useful shorthand for "is this condition known at compile-time?"
309  *
310  * Note that the condition may involve non-constant values,
311  * but the compiler may know enough about the details of the
312  * values to determine that the condition is statically true.
313  */
314 #define statically_true(x) (__builtin_constant_p(x) && (x))
315 
316 /*
317  * Similar to statically_true() but produces a constant expression
318  *
319  * To be used in conjunction with macros, such as BUILD_BUG_ON_ZERO(),
320  * which require their input to be a constant expression and for which
321  * statically_true() would otherwise fail.
322  *
323  * This is a trade-off: const_true() requires all its operands to be
324  * compile time constants. Else, it would always returns false even on
325  * the most trivial cases like:
326  *
327  *   true || non_const_var
328  *
329  * On the opposite, statically_true() is able to fold more complex
330  * tautologies and will return true on expressions such as:
331  *
332  *   !(non_const_var * 8 % 4)
333  *
334  * For the general case, statically_true() is better.
335  */
336 #define const_true(x) __builtin_choose_expr(__is_constexpr(x), x, false)
337 
338 /*
339  * This is needed in functions which generate the stack canary, see
340  * arch/x86/kernel/smpboot.c::start_secondary() for an example.
341  */
342 #define prevent_tail_call_optimization()	mb()
343 
344 #include <asm/rwonce.h>
345 
346 #endif /* __LINUX_COMPILER_H */
347