xref: /linux/drivers/net/wireless/intel/iwlwifi/iwl-nvm-parse.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2023, 2025 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/types.h>
8 #include <linux/fips.h>
9 #include <linux/slab.h>
10 #include <linux/export.h>
11 #include <linux/etherdevice.h>
12 #include <linux/pci.h>
13 #include <linux/firmware.h>
14 
15 #include "iwl-drv.h"
16 #include "iwl-modparams.h"
17 #include "iwl-nvm-parse.h"
18 #include "iwl-prph.h"
19 #include "iwl-io.h"
20 #include "iwl-csr.h"
21 #include "fw/acpi.h"
22 #include "fw/api/nvm-reg.h"
23 #include "fw/api/commands.h"
24 #include "fw/api/cmdhdr.h"
25 #include "fw/img.h"
26 #include "mei/iwl-mei.h"
27 
28 /* NVM offsets (in words) definitions */
29 enum nvm_offsets {
30 	/* NVM HW-Section offset (in words) definitions */
31 	SUBSYSTEM_ID = 0x0A,
32 	HW_ADDR = 0x15,
33 
34 	/* NVM SW-Section offset (in words) definitions */
35 	NVM_SW_SECTION = 0x1C0,
36 	NVM_VERSION = 0,
37 	RADIO_CFG = 1,
38 	SKU = 2,
39 	N_HW_ADDRS = 3,
40 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
41 
42 	/* NVM REGULATORY -Section offset (in words) definitions */
43 	NVM_CHANNELS_SDP = 0,
44 };
45 
46 enum ext_nvm_offsets {
47 	/* NVM HW-Section offset (in words) definitions */
48 
49 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
50 
51 	/* NVM SW-Section offset (in words) definitions */
52 	NVM_VERSION_EXT_NVM = 0,
53 	N_HW_ADDRS_FAMILY_8000 = 3,
54 
55 	/* NVM PHY_SKU-Section offset (in words) definitions */
56 	RADIO_CFG_FAMILY_EXT_NVM = 0,
57 	SKU_FAMILY_8000 = 2,
58 
59 	/* NVM REGULATORY -Section offset (in words) definitions */
60 	NVM_CHANNELS_EXTENDED = 0,
61 	NVM_LAR_OFFSET_OLD = 0x4C7,
62 	NVM_LAR_OFFSET = 0x507,
63 	NVM_LAR_ENABLED = 0x7,
64 };
65 
66 /* SKU Capabilities (actual values from NVM definition) */
67 enum nvm_sku_bits {
68 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
69 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
70 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
71 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
72 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
73 };
74 
75 /*
76  * These are the channel numbers in the order that they are stored in the NVM
77  */
78 static const u16 iwl_nvm_channels[] = {
79 	/* 2.4 GHz */
80 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
81 	/* 5 GHz */
82 	36, 40, 44, 48, 52, 56, 60, 64,
83 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
84 	149, 153, 157, 161, 165
85 };
86 
87 static const u16 iwl_ext_nvm_channels[] = {
88 	/* 2.4 GHz */
89 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
90 	/* 5 GHz */
91 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
92 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
93 	149, 153, 157, 161, 165, 169, 173, 177, 181
94 };
95 
96 static const u16 iwl_uhb_nvm_channels[] = {
97 	/* 2.4 GHz */
98 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
99 	/* 5 GHz */
100 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
101 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
102 	149, 153, 157, 161, 165, 169, 173, 177, 181,
103 	/* 6-7 GHz */
104 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
105 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
106 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
107 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
108 };
109 
110 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
111 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
112 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
113 #define NUM_2GHZ_CHANNELS		14
114 #define NUM_5GHZ_CHANNELS		37
115 #define FIRST_2GHZ_HT_MINUS		5
116 #define LAST_2GHZ_HT_PLUS		9
117 #define N_HW_ADDR_MASK			0xF
118 
119 /* rate data (static) */
120 static struct ieee80211_rate iwl_cfg80211_rates[] = {
121 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
122 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
123 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
124 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
125 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
126 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
127 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
128 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
129 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
130 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
131 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
132 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
133 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
134 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
135 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
136 };
137 #define RATES_24_OFFS	0
138 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
139 #define RATES_52_OFFS	4
140 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
141 
142 /**
143  * enum iwl_nvm_channel_flags - channel flags in NVM
144  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
145  * @NVM_CHANNEL_IBSS: usable as an IBSS channel and deprecated
146  *	when %IWL_NVM_SBANDS_FLAGS_LAR enabled.
147  * @NVM_CHANNEL_ALLOW_20MHZ_ACTIVITY: active scanning allowed and
148  *	AP allowed only in 20 MHz. Valid only
149  *	when %IWL_NVM_SBANDS_FLAGS_LAR enabled.
150  * @NVM_CHANNEL_ACTIVE: active scanning allowed and allows IBSS
151  *	when %IWL_NVM_SBANDS_FLAGS_LAR enabled.
152  * @NVM_CHANNEL_RADAR: radar detection required
153  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
154  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
155  *	on same channel on 2.4 or same UNII band on 5.2
156  * @NVM_CHANNEL_UNIFORM: uniform spreading required
157  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
158  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
159  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
160  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
161  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
162  * @NVM_CHANNEL_VLP: client support connection to UHB VLP AP
163  * @NVM_CHANNEL_AFC: client support connection to UHB AFC AP
164  * @NVM_CHANNEL_VLP_AP_NOT_ALLOWED: UHB VLP AP not allowed,
165  *	Valid only when %NVM_CHANNEL_VLP is enabled.
166  */
167 enum iwl_nvm_channel_flags {
168 	NVM_CHANNEL_VALID			= BIT(0),
169 	NVM_CHANNEL_IBSS			= BIT(1),
170 	NVM_CHANNEL_ALLOW_20MHZ_ACTIVITY	= BIT(2),
171 	NVM_CHANNEL_ACTIVE			= BIT(3),
172 	NVM_CHANNEL_RADAR			= BIT(4),
173 	NVM_CHANNEL_INDOOR_ONLY			= BIT(5),
174 	NVM_CHANNEL_GO_CONCURRENT		= BIT(6),
175 	NVM_CHANNEL_UNIFORM			= BIT(7),
176 	NVM_CHANNEL_20MHZ			= BIT(8),
177 	NVM_CHANNEL_40MHZ			= BIT(9),
178 	NVM_CHANNEL_80MHZ			= BIT(10),
179 	NVM_CHANNEL_160MHZ			= BIT(11),
180 	NVM_CHANNEL_DC_HIGH			= BIT(12),
181 	NVM_CHANNEL_VLP				= BIT(13),
182 	NVM_CHANNEL_AFC				= BIT(14),
183 	NVM_CHANNEL_VLP_AP_NOT_ALLOWED		= BIT(15),
184 };
185 
186 /**
187  * enum iwl_reg_capa_flags_v1 - global flags applied for the whole regulatory
188  * domain.
189  * @REG_CAPA_V1_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
190  *	2.4Ghz band is allowed.
191  * @REG_CAPA_V1_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
192  *	5Ghz band is allowed.
193  * @REG_CAPA_V1_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
194  *	for this regulatory domain (valid only in 5Ghz).
195  * @REG_CAPA_V1_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
196  *	for this regulatory domain (valid only in 5Ghz).
197  * @REG_CAPA_V1_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
198  * @REG_CAPA_V1_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
199  * @REG_CAPA_V1_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
200  *	for this regulatory domain (valid only in 5Ghz).
201  * @REG_CAPA_V1_DC_HIGH_ENABLED: DC HIGH allowed.
202  * @REG_CAPA_V1_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
203  */
204 enum iwl_reg_capa_flags_v1 {
205 	REG_CAPA_V1_BF_CCD_LOW_BAND	= BIT(0),
206 	REG_CAPA_V1_BF_CCD_HIGH_BAND	= BIT(1),
207 	REG_CAPA_V1_160MHZ_ALLOWED	= BIT(2),
208 	REG_CAPA_V1_80MHZ_ALLOWED	= BIT(3),
209 	REG_CAPA_V1_MCS_8_ALLOWED	= BIT(4),
210 	REG_CAPA_V1_MCS_9_ALLOWED	= BIT(5),
211 	REG_CAPA_V1_40MHZ_FORBIDDEN	= BIT(7),
212 	REG_CAPA_V1_DC_HIGH_ENABLED	= BIT(9),
213 	REG_CAPA_V1_11AX_DISABLED	= BIT(10),
214 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_1 */
215 
216 /**
217  * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
218  * domain (version 2).
219  * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
220  *	disabled.
221  * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
222  *	2.4Ghz band is allowed.
223  * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
224  *	5Ghz band is allowed.
225  * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
226  *	for this regulatory domain (valid only in 5Ghz).
227  * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
228  *	for this regulatory domain (valid only in 5Ghz).
229  * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
230  * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
231  * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
232  *	126, 122) are disabled.
233  * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
234  *	for this regulatory domain (uvalid only in 5Ghz).
235  * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
236  */
237 enum iwl_reg_capa_flags_v2 {
238 	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
239 	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
240 	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
241 	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
242 	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
243 	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
244 	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
245 	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
246 	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
247 	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
248 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_2 */
249 
250 /**
251  * enum iwl_reg_capa_flags_v4 - global flags applied for the whole regulatory
252  * domain.
253  * @REG_CAPA_V4_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
254  *	for this regulatory domain (valid only in 5Ghz).
255  * @REG_CAPA_V4_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
256  *	for this regulatory domain (valid only in 5Ghz).
257  * @REG_CAPA_V4_MCS_12_ALLOWED: 11ac with MCS 12 is allowed.
258  * @REG_CAPA_V4_MCS_13_ALLOWED: 11ac with MCS 13 is allowed.
259  * @REG_CAPA_V4_11BE_DISABLED: 11be is forbidden for this regulatory domain.
260  * @REG_CAPA_V4_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
261  * @REG_CAPA_V4_320MHZ_ALLOWED: 11be channel with a width of 320Mhz is allowed
262  *	for this regulatory domain (valid only in 5GHz).
263  */
264 enum iwl_reg_capa_flags_v4 {
265 	REG_CAPA_V4_160MHZ_ALLOWED		= BIT(3),
266 	REG_CAPA_V4_80MHZ_ALLOWED		= BIT(4),
267 	REG_CAPA_V4_MCS_12_ALLOWED		= BIT(5),
268 	REG_CAPA_V4_MCS_13_ALLOWED		= BIT(6),
269 	REG_CAPA_V4_11BE_DISABLED		= BIT(8),
270 	REG_CAPA_V4_11AX_DISABLED		= BIT(13),
271 	REG_CAPA_V4_320MHZ_ALLOWED		= BIT(16),
272 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_4 */
273 
274 /*
275 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the
276 * MCC update command response.
277 */
278 #define REG_CAPA_V2_RESP_VER	6
279 
280 /* API v4 for reg_capa_flags is relevant from version 8 and onwards of the
281  * MCC update command response.
282  */
283 #define REG_CAPA_V4_RESP_VER	8
284 
285 /**
286  * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
287  * handling the different APIs of reg_capa_flags.
288  *
289  * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
290  *	for this regulatory domain.
291  * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
292  *	for this regulatory domain (valid only in 5 and 6 Ghz).
293  * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
294  *	for this regulatory domain (valid only in 5 and 6 Ghz).
295  * @allow_320mhz: 11be channel with a width of 320Mhz is allowed
296  *	for this regulatory domain (valid only in 6 Ghz).
297  * @disable_11ax: 11ax is forbidden for this regulatory domain.
298  * @disable_11be: 11be is forbidden for this regulatory domain.
299  */
300 struct iwl_reg_capa {
301 	bool allow_40mhz;
302 	bool allow_80mhz;
303 	bool allow_160mhz;
304 	bool allow_320mhz;
305 	bool disable_11ax;
306 	bool disable_11be;
307 };
308 
iwl_nvm_print_channel_flags(struct device * dev,u32 level,int chan,u32 flags)309 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
310 					       int chan, u32 flags)
311 {
312 #define CHECK_AND_PRINT_I(x)	\
313 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
314 
315 	if (!(flags & NVM_CHANNEL_VALID)) {
316 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
317 			      chan, flags);
318 		return;
319 	}
320 
321 	/* Note: already can print up to 101 characters, 110 is the limit! */
322 	IWL_DEBUG_DEV(dev, level,
323 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
324 		      chan, flags,
325 		      CHECK_AND_PRINT_I(VALID),
326 		      CHECK_AND_PRINT_I(IBSS),
327 		      CHECK_AND_PRINT_I(ACTIVE),
328 		      CHECK_AND_PRINT_I(RADAR),
329 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
330 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
331 		      CHECK_AND_PRINT_I(UNIFORM),
332 		      CHECK_AND_PRINT_I(20MHZ),
333 		      CHECK_AND_PRINT_I(40MHZ),
334 		      CHECK_AND_PRINT_I(80MHZ),
335 		      CHECK_AND_PRINT_I(160MHZ),
336 		      CHECK_AND_PRINT_I(DC_HIGH),
337 		      CHECK_AND_PRINT_I(VLP),
338 		      CHECK_AND_PRINT_I(AFC));
339 #undef CHECK_AND_PRINT_I
340 }
341 
iwl_get_channel_flags(u8 ch_num,int ch_idx,enum nl80211_band band,u32 nvm_flags,const struct iwl_rf_cfg * cfg)342 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
343 				 u32 nvm_flags, const struct iwl_rf_cfg *cfg)
344 {
345 	u32 flags = IEEE80211_CHAN_NO_HT40;
346 
347 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
348 		if (ch_num <= LAST_2GHZ_HT_PLUS)
349 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
350 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
351 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
352 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
353 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
354 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
355 		else
356 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
357 	}
358 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
359 		flags |= IEEE80211_CHAN_NO_80MHZ;
360 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
361 		flags |= IEEE80211_CHAN_NO_160MHZ;
362 
363 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
364 		flags |= IEEE80211_CHAN_NO_IR;
365 
366 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
367 		flags |= IEEE80211_CHAN_NO_IR;
368 
369 	if (nvm_flags & NVM_CHANNEL_RADAR)
370 		flags |= IEEE80211_CHAN_RADAR;
371 
372 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
373 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
374 
375 	/* Set the GO concurrent flag only in case that NO_IR is set.
376 	 * Otherwise it is meaningless
377 	 */
378 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
379 	    (flags & IEEE80211_CHAN_NO_IR))
380 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
381 
382 	/* Set the AP type for the UHB case. */
383 	if (nvm_flags & NVM_CHANNEL_VLP)
384 		flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP;
385 	else
386 		flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
387 	if (!(nvm_flags & NVM_CHANNEL_AFC))
388 		flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
389 
390 	return flags;
391 }
392 
iwl_nl80211_band_from_channel_idx(int ch_idx)393 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
394 {
395 	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
396 		return NL80211_BAND_6GHZ;
397 	}
398 
399 	if (ch_idx >= NUM_2GHZ_CHANNELS)
400 		return NL80211_BAND_5GHZ;
401 	return NL80211_BAND_2GHZ;
402 }
403 
iwl_init_channel_map(struct iwl_trans * trans,const struct iwl_fw * fw,struct iwl_nvm_data * data,const void * const nvm_ch_flags,u32 sbands_flags,bool v4)404 static int iwl_init_channel_map(struct iwl_trans *trans,
405 				const struct iwl_fw *fw,
406 				struct iwl_nvm_data *data,
407 				const void * const nvm_ch_flags,
408 				u32 sbands_flags, bool v4)
409 {
410 	const struct iwl_rf_cfg *cfg = trans->cfg;
411 	struct device *dev = trans->dev;
412 	int ch_idx;
413 	int n_channels = 0;
414 	struct ieee80211_channel *channel;
415 	u32 ch_flags;
416 	int num_of_ch;
417 	const u16 *nvm_chan;
418 
419 	if (cfg->uhb_supported) {
420 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
421 		nvm_chan = iwl_uhb_nvm_channels;
422 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
423 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
424 		nvm_chan = iwl_ext_nvm_channels;
425 	} else {
426 		num_of_ch = IWL_NVM_NUM_CHANNELS;
427 		nvm_chan = iwl_nvm_channels;
428 	}
429 
430 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
431 		enum nl80211_band band =
432 			iwl_nl80211_band_from_channel_idx(ch_idx);
433 
434 		if (v4)
435 			ch_flags =
436 				__le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
437 		else
438 			ch_flags =
439 				__le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
440 
441 		if (band == NL80211_BAND_5GHZ &&
442 		    !data->sku_cap_band_52ghz_enable)
443 			continue;
444 
445 		/* workaround to disable wide channels in 5GHz */
446 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
447 		    band == NL80211_BAND_5GHZ) {
448 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
449 				     NVM_CHANNEL_80MHZ |
450 				     NVM_CHANNEL_160MHZ);
451 		}
452 
453 		if (ch_flags & NVM_CHANNEL_160MHZ)
454 			data->vht160_supported = true;
455 
456 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
457 		    !(ch_flags & NVM_CHANNEL_VALID)) {
458 			/*
459 			 * Channels might become valid later if lar is
460 			 * supported, hence we still want to add them to
461 			 * the list of supported channels to cfg80211.
462 			 */
463 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
464 						    nvm_chan[ch_idx], ch_flags);
465 			continue;
466 		}
467 
468 		channel = &data->channels[n_channels];
469 		n_channels++;
470 
471 		channel->hw_value = nvm_chan[ch_idx];
472 		channel->band = band;
473 		channel->center_freq =
474 			ieee80211_channel_to_frequency(
475 				channel->hw_value, channel->band);
476 
477 		/* Initialize regulatory-based run-time data */
478 
479 		/*
480 		 * Default value - highest tx power value.  max_power
481 		 * is not used in mvm, and is used for backwards compatibility
482 		 */
483 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
484 
485 		/* don't put limitations in case we're using LAR */
486 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
487 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
488 							       ch_idx, band,
489 							       ch_flags, cfg);
490 		else
491 			channel->flags = 0;
492 
493 		if (fw_has_capa(&fw->ucode_capa,
494 				IWL_UCODE_TLV_CAPA_MONITOR_PASSIVE_CHANS))
495 			channel->flags |= IEEE80211_CHAN_CAN_MONITOR;
496 
497 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
498 					    channel->hw_value, ch_flags);
499 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
500 				 channel->hw_value, channel->max_power);
501 	}
502 
503 	return n_channels;
504 }
505 
iwl_init_vht_hw_capab(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_sta_vht_cap * vht_cap,u8 tx_chains,u8 rx_chains)506 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
507 				  struct iwl_nvm_data *data,
508 				  struct ieee80211_sta_vht_cap *vht_cap,
509 				  u8 tx_chains, u8 rx_chains)
510 {
511 	const struct iwl_rf_cfg *cfg = trans->cfg;
512 	int num_rx_ants = num_of_ant(rx_chains);
513 	int num_tx_ants = num_of_ant(tx_chains);
514 
515 	vht_cap->vht_supported = true;
516 
517 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
518 		       IEEE80211_VHT_CAP_RXSTBC_1 |
519 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
520 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
521 		       IEEE80211_VHT_MAX_AMPDU_1024K <<
522 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
523 
524 	if (!trans->cfg->ht_params.stbc)
525 		vht_cap->cap &= ~IEEE80211_VHT_CAP_RXSTBC_MASK;
526 
527 	if (data->vht160_supported)
528 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
529 				IEEE80211_VHT_CAP_SHORT_GI_160;
530 
531 	if (cfg->vht_mu_mimo_supported)
532 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
533 
534 	if (cfg->ht_params.ldpc)
535 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
536 
537 	if (data->sku_cap_mimo_disabled) {
538 		num_rx_ants = 1;
539 		num_tx_ants = 1;
540 	}
541 
542 	if (trans->cfg->ht_params.stbc && num_tx_ants > 1)
543 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
544 	else
545 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
546 
547 	/*
548 	 * With fips_enabled crypto is done by software, so the HW cannot
549 	 * split up A-MSDUs and the real limit that was set applies.
550 	 * Note that EHT doesn't honour this (HE copies the VHT value),
551 	 * but EHT is also entirely disabled for fips_enabled.
552 	 */
553 	switch (iwlwifi_mod_params.amsdu_size) {
554 	case IWL_AMSDU_DEF:
555 		if (trans->mac_cfg->mq_rx_supported && !fips_enabled)
556 			vht_cap->cap |=
557 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
558 		else
559 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
560 		break;
561 	case IWL_AMSDU_2K:
562 		if (trans->mac_cfg->mq_rx_supported && !fips_enabled)
563 			vht_cap->cap |=
564 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
565 		else
566 			WARN(1, "RB size of 2K is not supported by this device\n");
567 		break;
568 	case IWL_AMSDU_4K:
569 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
570 		break;
571 	case IWL_AMSDU_8K:
572 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
573 		break;
574 	case IWL_AMSDU_12K:
575 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
576 		break;
577 	default:
578 		break;
579 	}
580 
581 	vht_cap->vht_mcs.rx_mcs_map =
582 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
583 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
584 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
585 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
586 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
587 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
588 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
589 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
590 
591 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
592 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
593 		/* this works because NOT_SUPPORTED == 3 */
594 		vht_cap->vht_mcs.rx_mcs_map |=
595 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
596 	}
597 
598 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
599 
600 	vht_cap->vht_mcs.tx_highest |=
601 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
602 }
603 
604 static const u8 iwl_vendor_caps[] = {
605 	0xdd,			/* vendor element */
606 	0x06,			/* length */
607 	0x00, 0x17, 0x35,	/* Intel OUI */
608 	0x08,			/* type (Intel Capabilities) */
609 	/* followed by 16 bits of capabilities */
610 #define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE	BIT(0)
611 	IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
612 	0x00
613 };
614 
615 static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
616 	{
617 		.types_mask = BIT(NL80211_IFTYPE_STATION) |
618 			      BIT(NL80211_IFTYPE_P2P_CLIENT),
619 		.he_cap = {
620 			.has_he = true,
621 			.he_cap_elem = {
622 				.mac_cap_info[0] =
623 					IEEE80211_HE_MAC_CAP0_HTC_HE,
624 				.mac_cap_info[1] =
625 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
626 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
627 				.mac_cap_info[2] =
628 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
629 				.mac_cap_info[3] =
630 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
631 					IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
632 				.mac_cap_info[4] =
633 					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
634 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
635 				.mac_cap_info[5] =
636 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
637 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
638 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
639 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
640 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
641 				.phy_cap_info[1] =
642 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
643 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
644 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
645 				.phy_cap_info[2] =
646 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
647 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
648 				.phy_cap_info[3] =
649 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
650 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
651 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
652 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
653 				.phy_cap_info[4] =
654 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
655 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
656 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
657 				.phy_cap_info[6] =
658 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
659 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
660 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
661 				.phy_cap_info[7] =
662 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
663 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
664 				.phy_cap_info[8] =
665 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
666 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
667 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
668 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
669 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
670 				.phy_cap_info[9] =
671 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
672 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
673 					IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU |
674 					IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU |
675 					(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
676 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
677 				.phy_cap_info[10] =
678 					IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
679 			},
680 			/*
681 			 * Set default Tx/Rx HE MCS NSS Support field.
682 			 * Indicate support for up to 2 spatial streams and all
683 			 * MCS, without any special cases
684 			 */
685 			.he_mcs_nss_supp = {
686 				.rx_mcs_80 = cpu_to_le16(0xfffa),
687 				.tx_mcs_80 = cpu_to_le16(0xfffa),
688 				.rx_mcs_160 = cpu_to_le16(0xfffa),
689 				.tx_mcs_160 = cpu_to_le16(0xfffa),
690 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
691 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
692 			},
693 			/*
694 			 * Set default PPE thresholds, with PPET16 set to 0,
695 			 * PPET8 set to 7
696 			 */
697 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
698 		},
699 		.eht_cap = {
700 			.has_eht = true,
701 			.eht_cap_elem = {
702 				.mac_cap_info[0] =
703 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL,
704 				.phy_cap_info[0] =
705 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
706 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
707 					IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
708 					IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
709 				.phy_cap_info[1] =
710 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK  |
711 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK,
712 				.phy_cap_info[3] =
713 					IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK,
714 
715 				.phy_cap_info[4] =
716 					IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
717 				.phy_cap_info[5] =
718 					FIELD_PREP_CONST(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK,
719 							 IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US) |
720 					IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
721 					IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
722 					IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF,
723 				.phy_cap_info[8] =
724 					IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
725 					IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
726 			},
727 
728 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
729 			 * Rx - note we don't set the only_20mhz, but due to this
730 			 * being a union, it gets set correctly anyway.
731 			 */
732 			.eht_mcs_nss_supp = {
733 				.bw._80 = {
734 					.rx_tx_mcs9_max_nss = 0x22,
735 					.rx_tx_mcs11_max_nss = 0x22,
736 					.rx_tx_mcs13_max_nss = 0x22,
737 				},
738 				.bw._160 = {
739 					.rx_tx_mcs9_max_nss = 0x22,
740 					.rx_tx_mcs11_max_nss = 0x22,
741 					.rx_tx_mcs13_max_nss = 0x22,
742 				},
743 				.bw._320 = {
744 					.rx_tx_mcs9_max_nss = 0x22,
745 					.rx_tx_mcs11_max_nss = 0x22,
746 					.rx_tx_mcs13_max_nss = 0x22,
747 				},
748 			},
749 
750 			/*
751 			 * PPE thresholds for NSS = 2, and RU index bitmap set
752 			 * to 0xc.
753 			 * Note: just for stating what we want, not present in
754 			 * the transmitted data due to not including
755 			 * IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT.
756 			 */
757 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
758 		},
759 	},
760 	{
761 		.types_mask = BIT(NL80211_IFTYPE_AP) |
762 			      BIT(NL80211_IFTYPE_P2P_GO),
763 		.he_cap = {
764 			.has_he = true,
765 			.he_cap_elem = {
766 				.mac_cap_info[0] =
767 					IEEE80211_HE_MAC_CAP0_HTC_HE,
768 				.mac_cap_info[1] =
769 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
770 				.mac_cap_info[3] =
771 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
772 				.phy_cap_info[1] =
773 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
774 				.phy_cap_info[2] =
775 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
776 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
777 				.phy_cap_info[3] =
778 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
779 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
780 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
781 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
782 				.phy_cap_info[6] =
783 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
784 				.phy_cap_info[7] =
785 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
786 				.phy_cap_info[8] =
787 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
788 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
789 				.phy_cap_info[9] =
790 					IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU |
791 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
792 					<< IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
793 			},
794 			/*
795 			 * Set default Tx/Rx HE MCS NSS Support field.
796 			 * Indicate support for up to 2 spatial streams and all
797 			 * MCS, without any special cases
798 			 */
799 			.he_mcs_nss_supp = {
800 				.rx_mcs_80 = cpu_to_le16(0xfffa),
801 				.tx_mcs_80 = cpu_to_le16(0xfffa),
802 				.rx_mcs_160 = cpu_to_le16(0xfffa),
803 				.tx_mcs_160 = cpu_to_le16(0xfffa),
804 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
805 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
806 			},
807 			/*
808 			 * Set default PPE thresholds, with PPET16 set to 0,
809 			 * PPET8 set to 7
810 			 */
811 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
812 		},
813 		.eht_cap = {
814 			.has_eht = true,
815 			.eht_cap_elem = {
816 				.mac_cap_info[0] =
817 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL,
818 				.phy_cap_info[0] =
819 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
820 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
821 				.phy_cap_info[5] =
822 					FIELD_PREP_CONST(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK,
823 							 IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US),
824 			},
825 
826 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
827 			 * Rx - note we don't set the only_20mhz, but due to this
828 			 * being a union, it gets set correctly anyway.
829 			 */
830 			.eht_mcs_nss_supp = {
831 				.bw._80 = {
832 					.rx_tx_mcs9_max_nss = 0x22,
833 					.rx_tx_mcs11_max_nss = 0x22,
834 					.rx_tx_mcs13_max_nss = 0x22,
835 				},
836 				.bw._160 = {
837 					.rx_tx_mcs9_max_nss = 0x22,
838 					.rx_tx_mcs11_max_nss = 0x22,
839 					.rx_tx_mcs13_max_nss = 0x22,
840 				},
841 				.bw._320 = {
842 					.rx_tx_mcs9_max_nss = 0x22,
843 					.rx_tx_mcs11_max_nss = 0x22,
844 					.rx_tx_mcs13_max_nss = 0x22,
845 				},
846 			},
847 
848 			/*
849 			 * PPE thresholds for NSS = 2, and RU index bitmap set
850 			 * to 0xc.
851 			 * Note: just for stating what we want, not present in
852 			 * the transmitted data due to not including
853 			 * IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT.
854 			 */
855 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
856 		},
857 	},
858 };
859 
iwl_init_he_6ghz_capa(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,u8 tx_chains,u8 rx_chains)860 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
861 				  struct iwl_nvm_data *data,
862 				  struct ieee80211_supported_band *sband,
863 				  u8 tx_chains, u8 rx_chains)
864 {
865 	struct ieee80211_sta_ht_cap ht_cap;
866 	struct ieee80211_sta_vht_cap vht_cap = {};
867 	struct ieee80211_sband_iftype_data *iftype_data;
868 	u16 he_6ghz_capa = 0;
869 	u32 exp;
870 	int i;
871 
872 	if (sband->band != NL80211_BAND_6GHZ)
873 		return;
874 
875 	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
876 	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
877 			     tx_chains, rx_chains);
878 	WARN_ON(!ht_cap.ht_supported);
879 	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
880 	WARN_ON(!vht_cap.vht_supported);
881 
882 	he_6ghz_capa |=
883 		u16_encode_bits(ht_cap.ampdu_density,
884 				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
885 	exp = u32_get_bits(vht_cap.cap,
886 			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
887 	he_6ghz_capa |=
888 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
889 	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
890 	he_6ghz_capa |=
891 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
892 	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
893 	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
894 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
895 	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
896 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
897 
898 	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
899 
900 	/* we know it's writable - we set it before ourselves */
901 	iftype_data = (void *)(uintptr_t)sband->iftype_data;
902 	for (i = 0; i < sband->n_iftype_data; i++)
903 		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
904 }
905 
906 static void
iwl_nvm_fixup_sband_iftd(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,struct ieee80211_sband_iftype_data * iftype_data,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)907 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
908 			 struct iwl_nvm_data *data,
909 			 struct ieee80211_supported_band *sband,
910 			 struct ieee80211_sband_iftype_data *iftype_data,
911 			 u8 tx_chains, u8 rx_chains,
912 			 const struct iwl_fw *fw)
913 {
914 	bool is_ap = iftype_data->types_mask & (BIT(NL80211_IFTYPE_AP) |
915 						BIT(NL80211_IFTYPE_P2P_GO));
916 	bool slow_pcie = (!trans->mac_cfg->integrated &&
917 			  trans->info.pcie_link_speed < PCI_EXP_LNKSTA_CLS_8_0GB);
918 
919 	/* EHT needs WPA3/MFP so cannot do it for fips_enabled */
920 	if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be ||
921 	    fips_enabled)
922 		iftype_data->eht_cap.has_eht = false;
923 
924 	/* Advertise an A-MPDU exponent extension based on
925 	 * operating band
926 	 */
927 	if (sband->band == NL80211_BAND_6GHZ && iftype_data->eht_cap.has_eht)
928 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
929 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2;
930 	else if (sband->band != NL80211_BAND_2GHZ)
931 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
932 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
933 	else
934 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
935 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
936 
937 	switch (sband->band) {
938 	case NL80211_BAND_2GHZ:
939 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
940 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
941 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
942 			u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
943 				       IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
944 		break;
945 	case NL80211_BAND_6GHZ:
946 		if (!trans->reduced_cap_sku &&
947 		    (!trans->cfg->bw_limit || trans->cfg->bw_limit >= 320)) {
948 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
949 				IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
950 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[1] |=
951 				IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK;
952 		}
953 		fallthrough;
954 	case NL80211_BAND_5GHZ:
955 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
956 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
957 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
958 		break;
959 	default:
960 		WARN_ON(1);
961 		break;
962 	}
963 
964 	if ((tx_chains & rx_chains) == ANT_AB) {
965 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
966 			IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
967 		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
968 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
969 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
970 		if (!is_ap) {
971 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
972 				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
973 
974 			if (iftype_data->eht_cap.has_eht) {
975 				/*
976 				 * Set the number of sounding dimensions for each
977 				 * bandwidth to 1 to indicate the maximal supported
978 				 * value of TXVECTOR parameter NUM_STS of 2
979 				 */
980 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
981 
982 				/*
983 				 * Set the MAX NC to 1 to indicate sounding feedback of
984 				 * 2 supported by the beamfomee.
985 				 */
986 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
987 			}
988 		}
989 
990 		if (slow_pcie) {
991 			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
992 				&iftype_data->eht_cap.eht_mcs_nss_supp;
993 
994 			mcs_nss->bw._320.rx_tx_mcs11_max_nss = 0;
995 			mcs_nss->bw._320.rx_tx_mcs13_max_nss = 0;
996 		}
997 	} else {
998 		struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp =
999 			&iftype_data->he_cap.he_mcs_nss_supp;
1000 
1001 		if (iftype_data->eht_cap.has_eht) {
1002 			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
1003 				&iftype_data->eht_cap.eht_mcs_nss_supp;
1004 
1005 			memset(mcs_nss, 0x11, sizeof(*mcs_nss));
1006 		}
1007 
1008 		if (!is_ap) {
1009 			/* If not 2x2, we need to indicate 1x1 in the
1010 			 * Midamble RX Max NSTS - but not for AP mode
1011 			 */
1012 			iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
1013 				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
1014 			iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1015 				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
1016 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
1017 				IEEE80211_HE_PHY_CAP7_MAX_NC_1;
1018 		}
1019 
1020 		he_mcs_nss_supp->rx_mcs_80 |=
1021 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1022 		he_mcs_nss_supp->tx_mcs_80 |=
1023 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1024 		he_mcs_nss_supp->rx_mcs_160 |=
1025 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1026 		he_mcs_nss_supp->tx_mcs_160 |=
1027 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1028 		he_mcs_nss_supp->rx_mcs_80p80 |=
1029 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1030 		he_mcs_nss_supp->tx_mcs_80p80 |=
1031 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1032 	}
1033 
1034 	/* prior RFs don't have HE, HR RF doesn't have this, later have it */
1035 	if (CSR_HW_RFID_TYPE(trans->info.hw_rf_id) == IWL_CFG_RF_TYPE_HR1 ||
1036 	    CSR_HW_RFID_TYPE(trans->info.hw_rf_id) == IWL_CFG_RF_TYPE_HR2)
1037 		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] &=
1038 			~(IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU |
1039 			  IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU);
1040 
1041 	if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210 && !is_ap)
1042 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
1043 			IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO;
1044 
1045 	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
1046 		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
1047 			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
1048 
1049 	if (trans->mac_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
1050 	    !is_ap) {
1051 		iftype_data->vendor_elems.data = iwl_vendor_caps;
1052 		iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
1053 	}
1054 
1055 	if (!trans->cfg->ht_params.stbc) {
1056 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1057 			~IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1058 		iftype_data->he_cap.he_cap_elem.phy_cap_info[7] &=
1059 			~IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1060 	}
1061 
1062 	if (trans->step_urm) {
1063 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._320.rx_tx_mcs11_max_nss = 0;
1064 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._320.rx_tx_mcs13_max_nss = 0;
1065 	}
1066 
1067 	if (trans->cfg->bw_limit && trans->cfg->bw_limit < 160)
1068 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] &=
1069 			~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
1070 
1071 	if ((trans->cfg->bw_limit && trans->cfg->bw_limit < 320) ||
1072 	    trans->reduced_cap_sku) {
1073 		memset(&iftype_data->eht_cap.eht_mcs_nss_supp.bw._320, 0,
1074 		       sizeof(iftype_data->eht_cap.eht_mcs_nss_supp.bw._320));
1075 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] &=
1076 			~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK;
1077 	}
1078 
1079 	if (trans->reduced_cap_sku) {
1080 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._80.rx_tx_mcs13_max_nss = 0;
1081 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._160.rx_tx_mcs13_max_nss = 0;
1082 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[8] &=
1083 			~IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA;
1084 	}
1085 }
1086 
iwl_init_he_hw_capab(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)1087 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
1088 				 struct iwl_nvm_data *data,
1089 				 struct ieee80211_supported_band *sband,
1090 				 u8 tx_chains, u8 rx_chains,
1091 				 const struct iwl_fw *fw)
1092 {
1093 	struct ieee80211_sband_iftype_data *iftype_data;
1094 	int i;
1095 
1096 	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
1097 	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
1098 	BUILD_BUG_ON(sizeof(data->iftd.uhb) != sizeof(iwl_he_eht_capa));
1099 
1100 	switch (sband->band) {
1101 	case NL80211_BAND_2GHZ:
1102 		iftype_data = data->iftd.low;
1103 		break;
1104 	case NL80211_BAND_5GHZ:
1105 		iftype_data = data->iftd.high;
1106 		break;
1107 	case NL80211_BAND_6GHZ:
1108 		iftype_data = data->iftd.uhb;
1109 		break;
1110 	default:
1111 		WARN_ON(1);
1112 		return;
1113 	}
1114 
1115 	memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
1116 
1117 	_ieee80211_set_sband_iftype_data(sband, iftype_data,
1118 					 ARRAY_SIZE(iwl_he_eht_capa));
1119 
1120 	for (i = 0; i < sband->n_iftype_data; i++)
1121 		iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
1122 					 tx_chains, rx_chains, fw);
1123 
1124 	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
1125 }
1126 
iwl_reinit_cab(struct iwl_trans * trans,struct iwl_nvm_data * data,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)1127 void iwl_reinit_cab(struct iwl_trans *trans, struct iwl_nvm_data *data,
1128 		    u8 tx_chains, u8 rx_chains, const struct iwl_fw *fw)
1129 {
1130 	struct ieee80211_supported_band *sband;
1131 
1132 	sband = &data->bands[NL80211_BAND_2GHZ];
1133 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1134 			     tx_chains, rx_chains);
1135 
1136 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1137 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1138 				     fw);
1139 
1140 	sband = &data->bands[NL80211_BAND_5GHZ];
1141 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1142 			     tx_chains, rx_chains);
1143 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1144 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1145 				      tx_chains, rx_chains);
1146 
1147 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1148 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1149 				     fw);
1150 
1151 	sband = &data->bands[NL80211_BAND_6GHZ];
1152 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1153 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1154 				     fw);
1155 }
1156 IWL_EXPORT_SYMBOL(iwl_reinit_cab);
1157 
iwl_init_sbands(struct iwl_trans * trans,struct iwl_nvm_data * data,const void * nvm_ch_flags,u8 tx_chains,u8 rx_chains,u32 sbands_flags,bool v4,const struct iwl_fw * fw)1158 static void iwl_init_sbands(struct iwl_trans *trans,
1159 			    struct iwl_nvm_data *data,
1160 			    const void *nvm_ch_flags, u8 tx_chains,
1161 			    u8 rx_chains, u32 sbands_flags, bool v4,
1162 			    const struct iwl_fw *fw)
1163 {
1164 	struct device *dev = trans->dev;
1165 	int n_channels;
1166 	int n_used = 0;
1167 	struct ieee80211_supported_band *sband;
1168 
1169 	n_channels = iwl_init_channel_map(trans, fw, data, nvm_ch_flags,
1170 					  sbands_flags, v4);
1171 	sband = &data->bands[NL80211_BAND_2GHZ];
1172 	sband->band = NL80211_BAND_2GHZ;
1173 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1174 	sband->n_bitrates = N_RATES_24;
1175 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1176 					  NL80211_BAND_2GHZ);
1177 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1178 			     tx_chains, rx_chains);
1179 
1180 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1181 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1182 				     fw);
1183 
1184 	sband = &data->bands[NL80211_BAND_5GHZ];
1185 	sband->band = NL80211_BAND_5GHZ;
1186 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1187 	sband->n_bitrates = N_RATES_52;
1188 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1189 					  NL80211_BAND_5GHZ);
1190 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1191 			     tx_chains, rx_chains);
1192 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1193 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1194 				      tx_chains, rx_chains);
1195 
1196 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1197 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1198 				     fw);
1199 
1200 	/* 6GHz band. */
1201 	sband = &data->bands[NL80211_BAND_6GHZ];
1202 	sband->band = NL80211_BAND_6GHZ;
1203 	/* use the same rates as 5GHz band */
1204 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1205 	sband->n_bitrates = N_RATES_52;
1206 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1207 					  NL80211_BAND_6GHZ);
1208 
1209 	/*
1210 	 * 6 GHz requires WPA3 which requires MFP, which FW cannot do
1211 	 * when fips_enabled, so don't advertise any 6 GHz channels to
1212 	 * avoid spending time on scanning those channels and perhaps
1213 	 * even finding APs there that cannot be used.
1214 	 */
1215 	if (!fips_enabled && data->sku_cap_11ax_enable &&
1216 	    !iwlwifi_mod_params.disable_11ax)
1217 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1218 				     fw);
1219 	else
1220 		sband->n_channels = 0;
1221 
1222 	if (n_channels != n_used)
1223 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
1224 			    n_used, n_channels);
1225 }
1226 
iwl_get_sku(const struct iwl_rf_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)1227 static int iwl_get_sku(const struct iwl_rf_cfg *cfg, const __le16 *nvm_sw,
1228 		       const __le16 *phy_sku)
1229 {
1230 	if (cfg->nvm_type != IWL_NVM_EXT)
1231 		return le16_to_cpup(nvm_sw + SKU);
1232 
1233 	return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
1234 }
1235 
iwl_get_nvm_version(const struct iwl_rf_cfg * cfg,const __le16 * nvm_sw)1236 static int iwl_get_nvm_version(const struct iwl_rf_cfg *cfg, const __le16 *nvm_sw)
1237 {
1238 	if (cfg->nvm_type != IWL_NVM_EXT)
1239 		return le16_to_cpup(nvm_sw + NVM_VERSION);
1240 	else
1241 		return le32_to_cpup((const __le32 *)(nvm_sw +
1242 						     NVM_VERSION_EXT_NVM));
1243 }
1244 
iwl_get_radio_cfg(const struct iwl_rf_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)1245 static int iwl_get_radio_cfg(const struct iwl_rf_cfg *cfg, const __le16 *nvm_sw,
1246 			     const __le16 *phy_sku)
1247 {
1248 	if (cfg->nvm_type != IWL_NVM_EXT)
1249 		return le16_to_cpup(nvm_sw + RADIO_CFG);
1250 
1251 	return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
1252 
1253 }
1254 
iwl_get_n_hw_addrs(const struct iwl_rf_cfg * cfg,const __le16 * nvm_sw)1255 static int iwl_get_n_hw_addrs(const struct iwl_rf_cfg *cfg, const __le16 *nvm_sw)
1256 {
1257 	int n_hw_addr;
1258 
1259 	if (cfg->nvm_type != IWL_NVM_EXT)
1260 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
1261 
1262 	n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
1263 
1264 	return n_hw_addr & N_HW_ADDR_MASK;
1265 }
1266 
iwl_set_radio_cfg(const struct iwl_rf_cfg * cfg,struct iwl_nvm_data * data,u32 radio_cfg)1267 static void iwl_set_radio_cfg(const struct iwl_rf_cfg *cfg,
1268 			      struct iwl_nvm_data *data,
1269 			      u32 radio_cfg)
1270 {
1271 	if (cfg->nvm_type != IWL_NVM_EXT) {
1272 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
1273 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
1274 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
1275 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
1276 		return;
1277 	}
1278 
1279 	/* set the radio configuration for family 8000 */
1280 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1281 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
1282 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
1283 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
1284 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1285 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1286 }
1287 
iwl_flip_hw_address(__le32 mac_addr0,__le32 mac_addr1,u8 * dest)1288 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
1289 {
1290 	const u8 *hw_addr;
1291 
1292 	hw_addr = (const u8 *)&mac_addr0;
1293 	dest[0] = hw_addr[3];
1294 	dest[1] = hw_addr[2];
1295 	dest[2] = hw_addr[1];
1296 	dest[3] = hw_addr[0];
1297 
1298 	hw_addr = (const u8 *)&mac_addr1;
1299 	dest[4] = hw_addr[1];
1300 	dest[5] = hw_addr[0];
1301 }
1302 
iwl_set_hw_address_from_csr(struct iwl_trans * trans,struct iwl_nvm_data * data)1303 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
1304 					struct iwl_nvm_data *data)
1305 {
1306 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
1307 						  CSR_MAC_ADDR0_STRAP(trans)));
1308 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
1309 						  CSR_MAC_ADDR1_STRAP(trans)));
1310 
1311 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1312 	/*
1313 	 * If the OEM fused a valid address, use it instead of the one in the
1314 	 * OTP
1315 	 */
1316 	if (is_valid_ether_addr(data->hw_addr))
1317 		return;
1318 
1319 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1320 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1321 
1322 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1323 }
1324 
iwl_set_hw_address_family_8000(struct iwl_trans * trans,const struct iwl_rf_cfg * cfg,struct iwl_nvm_data * data,const __le16 * mac_override,const __be16 * nvm_hw)1325 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1326 					   const struct iwl_rf_cfg *cfg,
1327 					   struct iwl_nvm_data *data,
1328 					   const __le16 *mac_override,
1329 					   const __be16 *nvm_hw)
1330 {
1331 	const u8 *hw_addr;
1332 
1333 	if (mac_override) {
1334 		static const u8 reserved_mac[] = {
1335 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1336 		};
1337 
1338 		hw_addr = (const u8 *)(mac_override +
1339 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1340 
1341 		/*
1342 		 * Store the MAC address from MAO section.
1343 		 * No byte swapping is required in MAO section
1344 		 */
1345 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1346 
1347 		/*
1348 		 * Force the use of the OTP MAC address in case of reserved MAC
1349 		 * address in the NVM, or if address is given but invalid.
1350 		 */
1351 		if (is_valid_ether_addr(data->hw_addr) &&
1352 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1353 			return;
1354 
1355 		IWL_ERR(trans,
1356 			"mac address from nvm override section is not valid\n");
1357 	}
1358 
1359 	if (nvm_hw) {
1360 		/* read the mac address from WFMP registers */
1361 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1362 						WFMP_MAC_ADDR_0));
1363 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1364 						WFMP_MAC_ADDR_1));
1365 
1366 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1367 
1368 		return;
1369 	}
1370 
1371 	IWL_ERR(trans, "mac address is not found\n");
1372 }
1373 
iwl_set_hw_address(struct iwl_trans * trans,const struct iwl_rf_cfg * cfg,struct iwl_nvm_data * data,const __be16 * nvm_hw,const __le16 * mac_override)1374 static int iwl_set_hw_address(struct iwl_trans *trans,
1375 			      const struct iwl_rf_cfg *cfg,
1376 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1377 			      const __le16 *mac_override)
1378 {
1379 	const struct iwl_mac_cfg *mac_cfg = trans->mac_cfg;
1380 	if (mac_cfg->base->mac_addr_from_csr) {
1381 		iwl_set_hw_address_from_csr(trans, data);
1382 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1383 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1384 
1385 		/* The byte order is little endian 16 bit, meaning 214365 */
1386 		data->hw_addr[0] = hw_addr[1];
1387 		data->hw_addr[1] = hw_addr[0];
1388 		data->hw_addr[2] = hw_addr[3];
1389 		data->hw_addr[3] = hw_addr[2];
1390 		data->hw_addr[4] = hw_addr[5];
1391 		data->hw_addr[5] = hw_addr[4];
1392 	} else {
1393 		iwl_set_hw_address_family_8000(trans, cfg, data,
1394 					       mac_override, nvm_hw);
1395 	}
1396 
1397 	if (!is_valid_ether_addr(data->hw_addr)) {
1398 		IWL_ERR(trans, "no valid mac address was found\n");
1399 		return -EINVAL;
1400 	}
1401 
1402 	if (!trans->csme_own)
1403 		IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1404 			 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1405 
1406 	return 0;
1407 }
1408 
1409 static bool
iwl_nvm_no_wide_in_5ghz(struct iwl_trans * trans,const struct iwl_rf_cfg * cfg,const __be16 * nvm_hw)1410 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_rf_cfg *cfg,
1411 			const __be16 *nvm_hw)
1412 {
1413 	/*
1414 	 * Workaround a bug in Indonesia SKUs where the regulatory in
1415 	 * some 7000-family OTPs erroneously allow wide channels in
1416 	 * 5GHz.  To check for Indonesia, we take the SKU value from
1417 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1418 	 * 9.  In those cases, we need to force-disable wide channels
1419 	 * in 5GHz otherwise the FW will throw a sysassert when we try
1420 	 * to use them.
1421 	 */
1422 	if (trans->mac_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1423 		/*
1424 		 * Unlike the other sections in the NVM, the hw
1425 		 * section uses big-endian.
1426 		 */
1427 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1428 		u8 sku = (subsystem_id & 0x1e) >> 1;
1429 
1430 		if (sku == 5 || sku == 9) {
1431 			IWL_DEBUG_EEPROM(trans->dev,
1432 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1433 					 subsystem_id, sku);
1434 			return true;
1435 		}
1436 	}
1437 
1438 	return false;
1439 }
1440 
1441 struct iwl_nvm_data *
iwl_parse_mei_nvm_data(struct iwl_trans * trans,const struct iwl_rf_cfg * cfg,const struct iwl_mei_nvm * mei_nvm,const struct iwl_fw * fw,u8 tx_ant,u8 rx_ant)1442 iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_rf_cfg *cfg,
1443 		       const struct iwl_mei_nvm *mei_nvm,
1444 		       const struct iwl_fw *fw, u8 tx_ant, u8 rx_ant)
1445 {
1446 	struct iwl_nvm_data *data;
1447 	u32 sbands_flags = 0;
1448 	u8 rx_chains = fw->valid_rx_ant;
1449 	u8 tx_chains = fw->valid_rx_ant;
1450 
1451 	if (cfg->uhb_supported)
1452 		data = kzalloc(struct_size(data, channels,
1453 					   IWL_NVM_NUM_CHANNELS_UHB),
1454 					   GFP_KERNEL);
1455 	else
1456 		data = kzalloc(struct_size(data, channels,
1457 					   IWL_NVM_NUM_CHANNELS_EXT),
1458 					   GFP_KERNEL);
1459 	if (!data)
1460 		return NULL;
1461 
1462 	BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1463 		     IWL_NVM_NUM_CHANNELS_UHB);
1464 	data->nvm_version = mei_nvm->nvm_version;
1465 
1466 	iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1467 	if (data->valid_tx_ant)
1468 		tx_chains &= data->valid_tx_ant;
1469 	if (data->valid_rx_ant)
1470 		rx_chains &= data->valid_rx_ant;
1471 	if (tx_ant)
1472 		tx_chains &= tx_ant;
1473 	if (rx_ant)
1474 		rx_chains &= rx_ant;
1475 
1476 	data->sku_cap_mimo_disabled = false;
1477 	data->sku_cap_band_24ghz_enable = true;
1478 	data->sku_cap_band_52ghz_enable = true;
1479 	data->sku_cap_11n_enable =
1480 		!(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1481 	data->sku_cap_11ac_enable = true;
1482 	data->sku_cap_11ax_enable =
1483 		mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1484 
1485 	data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1486 
1487 	data->n_hw_addrs = mei_nvm->n_hw_addrs;
1488 	/* If no valid mac address was found - bail out */
1489 	if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1490 		kfree(data);
1491 		return NULL;
1492 	}
1493 
1494 	if (data->lar_enabled &&
1495 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1496 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1497 
1498 	iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1499 			sbands_flags, true, fw);
1500 
1501 	return data;
1502 }
1503 IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1504 
1505 struct iwl_nvm_data *
iwl_parse_nvm_data(struct iwl_trans * trans,const struct iwl_rf_cfg * cfg,const struct iwl_fw * fw,const __be16 * nvm_hw,const __le16 * nvm_sw,const __le16 * nvm_calib,const __le16 * regulatory,const __le16 * mac_override,const __le16 * phy_sku,u8 tx_chains,u8 rx_chains)1506 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_rf_cfg *cfg,
1507 		   const struct iwl_fw *fw,
1508 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1509 		   const __le16 *nvm_calib, const __le16 *regulatory,
1510 		   const __le16 *mac_override, const __le16 *phy_sku,
1511 		   u8 tx_chains, u8 rx_chains)
1512 {
1513 	struct iwl_nvm_data *data;
1514 	bool lar_enabled;
1515 	u32 sku, radio_cfg;
1516 	u32 sbands_flags = 0;
1517 	u16 lar_config;
1518 	const __le16 *ch_section;
1519 
1520 	if (cfg->uhb_supported)
1521 		data = kzalloc(struct_size(data, channels,
1522 					   IWL_NVM_NUM_CHANNELS_UHB),
1523 					   GFP_KERNEL);
1524 	else if (cfg->nvm_type != IWL_NVM_EXT)
1525 		data = kzalloc(struct_size(data, channels,
1526 					   IWL_NVM_NUM_CHANNELS),
1527 					   GFP_KERNEL);
1528 	else
1529 		data = kzalloc(struct_size(data, channels,
1530 					   IWL_NVM_NUM_CHANNELS_EXT),
1531 					   GFP_KERNEL);
1532 	if (!data)
1533 		return NULL;
1534 
1535 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1536 
1537 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1538 	iwl_set_radio_cfg(cfg, data, radio_cfg);
1539 	if (data->valid_tx_ant)
1540 		tx_chains &= data->valid_tx_ant;
1541 	if (data->valid_rx_ant)
1542 		rx_chains &= data->valid_rx_ant;
1543 
1544 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1545 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1546 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1547 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1548 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1549 		data->sku_cap_11n_enable = false;
1550 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1551 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1552 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1553 
1554 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1555 
1556 	if (cfg->nvm_type != IWL_NVM_EXT) {
1557 		/* Checking for required sections */
1558 		if (!nvm_calib) {
1559 			IWL_ERR(trans,
1560 				"Can't parse empty Calib NVM sections\n");
1561 			kfree(data);
1562 			return NULL;
1563 		}
1564 
1565 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1566 			     &regulatory[NVM_CHANNELS_SDP] :
1567 			     &nvm_sw[NVM_CHANNELS];
1568 
1569 		lar_enabled = true;
1570 	} else {
1571 		u16 lar_offset = data->nvm_version < 0xE39 ?
1572 				 NVM_LAR_OFFSET_OLD :
1573 				 NVM_LAR_OFFSET;
1574 
1575 		lar_config = le16_to_cpup(regulatory + lar_offset);
1576 		data->lar_enabled = !!(lar_config &
1577 				       NVM_LAR_ENABLED);
1578 		lar_enabled = data->lar_enabled;
1579 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1580 	}
1581 
1582 	/* If no valid mac address was found - bail out */
1583 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1584 		kfree(data);
1585 		return NULL;
1586 	}
1587 
1588 	if (lar_enabled &&
1589 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1590 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1591 
1592 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1593 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1594 
1595 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1596 			sbands_flags, false, fw);
1597 	data->calib_version = 255;
1598 
1599 	return data;
1600 }
1601 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1602 
iwl_nvm_get_regdom_bw_flags(const u16 * nvm_chan,int ch_idx,u16 nvm_flags,struct iwl_reg_capa reg_capa)1603 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1604 				       int ch_idx, u16 nvm_flags,
1605 				       struct iwl_reg_capa reg_capa)
1606 {
1607 	u32 flags = NL80211_RRF_NO_HT40;
1608 
1609 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1610 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1611 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1612 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1613 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1614 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1615 	} else if (ch_idx < NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS &&
1616 		   nvm_flags & NVM_CHANNEL_40MHZ) {
1617 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1618 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1619 		else
1620 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1621 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1622 		flags &= ~NL80211_RRF_NO_HT40PLUS;
1623 		flags &= ~NL80211_RRF_NO_HT40MINUS;
1624 	}
1625 
1626 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1627 		flags |= NL80211_RRF_NO_80MHZ;
1628 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1629 		flags |= NL80211_RRF_NO_160MHZ;
1630 
1631 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1632 		flags |= NL80211_RRF_NO_IR;
1633 
1634 	if (nvm_flags & NVM_CHANNEL_RADAR)
1635 		flags |= NL80211_RRF_DFS;
1636 
1637 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1638 		flags |= NL80211_RRF_NO_OUTDOOR;
1639 
1640 	if (nvm_flags & NVM_CHANNEL_ALLOW_20MHZ_ACTIVITY &&
1641 	    flags & NL80211_RRF_NO_IR)
1642 		flags |= NL80211_RRF_ALLOW_20MHZ_ACTIVITY;
1643 
1644 	/* Set the GO concurrent flag only in case that NO_IR is set.
1645 	 * Otherwise it is meaningless
1646 	 */
1647 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT)) {
1648 		if (flags & NL80211_RRF_NO_IR)
1649 			flags |= NL80211_RRF_GO_CONCURRENT;
1650 		if (flags & NL80211_RRF_DFS) {
1651 			flags |= NL80211_RRF_DFS_CONCURRENT;
1652 			/* Our device doesn't set active bit for DFS channels
1653 			 * however, once marked as DFS no-ir is not needed.
1654 			 */
1655 			flags &= ~NL80211_RRF_NO_IR;
1656 		}
1657 	}
1658 
1659 	/* Set the AP type for the UHB case. */
1660 	if (nvm_flags & NVM_CHANNEL_VLP) {
1661 		if (!(nvm_flags & NVM_CHANNEL_VLP_AP_NOT_ALLOWED))
1662 			flags |= NL80211_RRF_ALLOW_6GHZ_VLP_AP;
1663 	} else {
1664 		flags |= NL80211_RRF_NO_6GHZ_VLP_CLIENT;
1665 	}
1666 
1667 	if (!(nvm_flags & NVM_CHANNEL_AFC))
1668 		flags |= NL80211_RRF_NO_6GHZ_AFC_CLIENT;
1669 
1670 	/*
1671 	 * reg_capa is per regulatory domain so apply it for every channel
1672 	 */
1673 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1674 		if (!reg_capa.allow_40mhz)
1675 			flags |= NL80211_RRF_NO_HT40;
1676 
1677 		if (!reg_capa.allow_80mhz)
1678 			flags |= NL80211_RRF_NO_80MHZ;
1679 
1680 		if (!reg_capa.allow_160mhz)
1681 			flags |= NL80211_RRF_NO_160MHZ;
1682 
1683 		if (!reg_capa.allow_320mhz)
1684 			flags |= NL80211_RRF_NO_320MHZ;
1685 	}
1686 
1687 	if (reg_capa.disable_11ax)
1688 		flags |= NL80211_RRF_NO_HE;
1689 
1690 	if (reg_capa.disable_11be)
1691 		flags |= NL80211_RRF_NO_EHT;
1692 
1693 	return flags;
1694 }
1695 
iwl_get_reg_capa(u32 flags,u8 resp_ver)1696 static struct iwl_reg_capa iwl_get_reg_capa(u32 flags, u8 resp_ver)
1697 {
1698 	struct iwl_reg_capa reg_capa = {};
1699 
1700 	if (resp_ver >= REG_CAPA_V4_RESP_VER) {
1701 		reg_capa.allow_40mhz = true;
1702 		reg_capa.allow_80mhz = flags & REG_CAPA_V4_80MHZ_ALLOWED;
1703 		reg_capa.allow_160mhz = flags & REG_CAPA_V4_160MHZ_ALLOWED;
1704 		reg_capa.allow_320mhz = flags & REG_CAPA_V4_320MHZ_ALLOWED;
1705 		reg_capa.disable_11ax = flags & REG_CAPA_V4_11AX_DISABLED;
1706 		reg_capa.disable_11be = flags & REG_CAPA_V4_11BE_DISABLED;
1707 	} else if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1708 		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1709 		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1710 		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1711 		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1712 	} else {
1713 		reg_capa.allow_40mhz = !(flags & REG_CAPA_V1_40MHZ_FORBIDDEN);
1714 		reg_capa.allow_80mhz = flags & REG_CAPA_V1_80MHZ_ALLOWED;
1715 		reg_capa.allow_160mhz = flags & REG_CAPA_V1_160MHZ_ALLOWED;
1716 		reg_capa.disable_11ax = flags & REG_CAPA_V1_11AX_DISABLED;
1717 	}
1718 	return reg_capa;
1719 }
1720 
1721 struct ieee80211_regdomain *
iwl_parse_nvm_mcc_info(struct iwl_trans * trans,int num_of_ch,__le32 * channels,u16 fw_mcc,u16 geo_info,u32 cap,u8 resp_ver)1722 iwl_parse_nvm_mcc_info(struct iwl_trans *trans,
1723 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1724 		       u16 geo_info, u32 cap, u8 resp_ver)
1725 {
1726 	const struct iwl_rf_cfg *cfg = trans->cfg;
1727 	struct device *dev = trans->dev;
1728 	int ch_idx;
1729 	u16 ch_flags;
1730 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1731 	const u16 *nvm_chan;
1732 	struct ieee80211_regdomain *regd, *copy_rd;
1733 	struct ieee80211_reg_rule *rule;
1734 	int center_freq, prev_center_freq = 0;
1735 	int valid_rules = 0;
1736 	bool new_rule;
1737 	int max_num_ch;
1738 	struct iwl_reg_capa reg_capa;
1739 
1740 	if (cfg->uhb_supported) {
1741 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1742 		nvm_chan = iwl_uhb_nvm_channels;
1743 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1744 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1745 		nvm_chan = iwl_ext_nvm_channels;
1746 	} else {
1747 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1748 		nvm_chan = iwl_nvm_channels;
1749 	}
1750 
1751 	if (num_of_ch > max_num_ch) {
1752 		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1753 			      "Num of channels (%d) is greater than expected. Truncating to %d\n",
1754 			      num_of_ch, max_num_ch);
1755 		num_of_ch = max_num_ch;
1756 	}
1757 
1758 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1759 		return ERR_PTR(-EINVAL);
1760 
1761 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1762 		      num_of_ch);
1763 
1764 	/* build a regdomain rule for every valid channel */
1765 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1766 	if (!regd)
1767 		return ERR_PTR(-ENOMEM);
1768 
1769 	/* set alpha2 from FW. */
1770 	regd->alpha2[0] = fw_mcc >> 8;
1771 	regd->alpha2[1] = fw_mcc & 0xff;
1772 
1773 	/* parse regulatory capability flags */
1774 	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1775 
1776 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1777 		enum nl80211_band band =
1778 			iwl_nl80211_band_from_channel_idx(ch_idx);
1779 
1780 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1781 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1782 							     band);
1783 		new_rule = false;
1784 
1785 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1786 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1787 						    nvm_chan[ch_idx], ch_flags);
1788 			continue;
1789 		}
1790 
1791 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1792 							     ch_flags,
1793 							     reg_capa);
1794 
1795 		/* we can't continue the same rule */
1796 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1797 		    center_freq - prev_center_freq > 20) {
1798 			valid_rules++;
1799 			new_rule = true;
1800 		}
1801 
1802 		rule = &regd->reg_rules[valid_rules - 1];
1803 
1804 		if (new_rule)
1805 			rule->freq_range.start_freq_khz =
1806 						MHZ_TO_KHZ(center_freq - 10);
1807 
1808 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1809 
1810 		/* this doesn't matter - not used by FW */
1811 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1812 		rule->power_rule.max_eirp =
1813 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1814 
1815 		rule->flags = reg_rule_flags;
1816 
1817 		/* rely on auto-calculation to merge BW of contiguous chans */
1818 		rule->flags |= NL80211_RRF_AUTO_BW;
1819 		rule->freq_range.max_bandwidth_khz = 0;
1820 
1821 		prev_center_freq = center_freq;
1822 		prev_reg_rule_flags = reg_rule_flags;
1823 
1824 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1825 					    nvm_chan[ch_idx], ch_flags);
1826 
1827 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1828 		    band == NL80211_BAND_2GHZ)
1829 			continue;
1830 
1831 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1832 	}
1833 
1834 	/*
1835 	 * Certain firmware versions might report no valid channels
1836 	 * if booted in RF-kill, i.e. not all calibrations etc. are
1837 	 * running. We'll get out of this situation later when the
1838 	 * rfkill is removed and we update the regdomain again, but
1839 	 * since cfg80211 doesn't accept an empty regdomain, add a
1840 	 * dummy (unusable) rule here in this case so we can init.
1841 	 */
1842 	if (!valid_rules) {
1843 		valid_rules = 1;
1844 		rule = &regd->reg_rules[valid_rules - 1];
1845 		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1846 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1847 		rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1848 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1849 		rule->power_rule.max_eirp =
1850 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1851 	}
1852 
1853 	regd->n_reg_rules = valid_rules;
1854 
1855 	/*
1856 	 * Narrow down regdom for unused regulatory rules to prevent hole
1857 	 * between reg rules to wmm rules.
1858 	 */
1859 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1860 			  GFP_KERNEL);
1861 	if (!copy_rd)
1862 		copy_rd = ERR_PTR(-ENOMEM);
1863 
1864 	kfree(regd);
1865 	return copy_rd;
1866 }
1867 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1868 
1869 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1870 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1871 #define MAX_NVM_FILE_LEN	16384
1872 
iwl_nvm_fixups(u32 hw_id,unsigned int section,u8 * data,unsigned int len)1873 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1874 		    unsigned int len)
1875 {
1876 #define IWL_4165_DEVICE_ID	0x5501
1877 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1878 
1879 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1880 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1881 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1882 		/* OTP 0x52 bug work around: it's a 1x1 device */
1883 		data[3] = ANT_B | (ANT_B << 4);
1884 }
1885 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1886 
1887 /*
1888  * Reads external NVM from a file into mvm->nvm_sections
1889  *
1890  * HOW TO CREATE THE NVM FILE FORMAT:
1891  * ------------------------------
1892  * 1. create hex file, format:
1893  *      3800 -> header
1894  *      0000 -> header
1895  *      5a40 -> data
1896  *
1897  *   rev - 6 bit (word1)
1898  *   len - 10 bit (word1)
1899  *   id - 4 bit (word2)
1900  *   rsv - 12 bit (word2)
1901  *
1902  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1903  *
1904  * 3. create binary file from the hex file
1905  *
1906  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1907  */
iwl_read_external_nvm(struct iwl_trans * trans,const char * nvm_file_name,struct iwl_nvm_section * nvm_sections)1908 int iwl_read_external_nvm(struct iwl_trans *trans,
1909 			  const char *nvm_file_name,
1910 			  struct iwl_nvm_section *nvm_sections)
1911 {
1912 	int ret, section_size;
1913 	u16 section_id;
1914 	const struct firmware *fw_entry;
1915 	const struct {
1916 		__le16 word1;
1917 		__le16 word2;
1918 		u8 data[];
1919 	} *file_sec;
1920 	const u8 *eof;
1921 	u8 *temp;
1922 	int max_section_size;
1923 	const __le32 *dword_buff;
1924 
1925 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1926 #define NVM_WORD2_ID(x) (x >> 12)
1927 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1928 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1929 #define NVM_HEADER_0	(0x2A504C54)
1930 #define NVM_HEADER_1	(0x4E564D2A)
1931 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1932 
1933 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1934 
1935 	/* Maximal size depends on NVM version */
1936 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1937 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1938 	else
1939 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1940 
1941 	/*
1942 	 * Obtain NVM image via request_firmware. Since we already used
1943 	 * request_firmware_nowait() for the firmware binary load and only
1944 	 * get here after that we assume the NVM request can be satisfied
1945 	 * synchronously.
1946 	 */
1947 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1948 	if (ret) {
1949 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1950 			nvm_file_name, ret);
1951 		return ret;
1952 	}
1953 
1954 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1955 		 nvm_file_name, fw_entry->size);
1956 
1957 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1958 		IWL_ERR(trans, "NVM file too large\n");
1959 		ret = -EINVAL;
1960 		goto out;
1961 	}
1962 
1963 	eof = fw_entry->data + fw_entry->size;
1964 	dword_buff = (const __le32 *)fw_entry->data;
1965 
1966 	/* some NVM file will contain a header.
1967 	 * The header is identified by 2 dwords header as follow:
1968 	 * dword[0] = 0x2A504C54
1969 	 * dword[1] = 0x4E564D2A
1970 	 *
1971 	 * This header must be skipped when providing the NVM data to the FW.
1972 	 */
1973 	if (fw_entry->size > NVM_HEADER_SIZE &&
1974 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1975 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1976 		file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
1977 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1978 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1979 			 le32_to_cpu(dword_buff[3]));
1980 
1981 		/* nvm file validation, dword_buff[2] holds the file version */
1982 		if (trans->mac_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1983 		    trans->info.hw_rev_step == SILICON_C_STEP &&
1984 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1985 			ret = -EFAULT;
1986 			goto out;
1987 		}
1988 	} else {
1989 		file_sec = (const void *)fw_entry->data;
1990 	}
1991 
1992 	while (true) {
1993 		if (file_sec->data > eof) {
1994 			IWL_ERR(trans,
1995 				"ERROR - NVM file too short for section header\n");
1996 			ret = -EINVAL;
1997 			break;
1998 		}
1999 
2000 		/* check for EOF marker */
2001 		if (!file_sec->word1 && !file_sec->word2) {
2002 			ret = 0;
2003 			break;
2004 		}
2005 
2006 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
2007 			section_size =
2008 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
2009 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
2010 		} else {
2011 			section_size = 2 * EXT_NVM_WORD2_LEN(
2012 						le16_to_cpu(file_sec->word2));
2013 			section_id = EXT_NVM_WORD1_ID(
2014 						le16_to_cpu(file_sec->word1));
2015 		}
2016 
2017 		if (section_size > max_section_size) {
2018 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
2019 				section_size);
2020 			ret = -EINVAL;
2021 			break;
2022 		}
2023 
2024 		if (!section_size) {
2025 			IWL_ERR(trans, "ERROR - section empty\n");
2026 			ret = -EINVAL;
2027 			break;
2028 		}
2029 
2030 		if (file_sec->data + section_size > eof) {
2031 			IWL_ERR(trans,
2032 				"ERROR - NVM file too short for section (%d bytes)\n",
2033 				section_size);
2034 			ret = -EINVAL;
2035 			break;
2036 		}
2037 
2038 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
2039 			 "Invalid NVM section ID %d\n", section_id)) {
2040 			ret = -EINVAL;
2041 			break;
2042 		}
2043 
2044 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
2045 		if (!temp) {
2046 			ret = -ENOMEM;
2047 			break;
2048 		}
2049 
2050 		iwl_nvm_fixups(trans->info.hw_id, section_id, temp, section_size);
2051 
2052 		kfree(nvm_sections[section_id].data);
2053 		nvm_sections[section_id].data = temp;
2054 		nvm_sections[section_id].length = section_size;
2055 
2056 		/* advance to the next section */
2057 		file_sec = (const void *)(file_sec->data + section_size);
2058 	}
2059 out:
2060 	release_firmware(fw_entry);
2061 	return ret;
2062 }
2063 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
2064 
iwl_get_nvm(struct iwl_trans * trans,const struct iwl_fw * fw,u8 set_tx_ant,u8 set_rx_ant)2065 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
2066 				 const struct iwl_fw *fw,
2067 				 u8 set_tx_ant, u8 set_rx_ant)
2068 {
2069 	struct iwl_nvm_get_info cmd = {};
2070 	struct iwl_nvm_data *nvm;
2071 	struct iwl_host_cmd hcmd = {
2072 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
2073 		.data = { &cmd, },
2074 		.len = { sizeof(cmd) },
2075 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
2076 	};
2077 	int  ret;
2078 	bool empty_otp;
2079 	u32 mac_flags;
2080 	u32 sbands_flags = 0;
2081 	u8 tx_ant;
2082 	u8 rx_ant;
2083 
2084 	/*
2085 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
2086 	 * in v3, except for the channel profile part of the
2087 	 * regulatory.  So we can just access the new struct, with the
2088 	 * exception of the latter.
2089 	 */
2090 	struct iwl_nvm_get_info_rsp *rsp;
2091 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
2092 	bool v4 = fw_has_api(&fw->ucode_capa,
2093 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
2094 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
2095 	void *channel_profile;
2096 
2097 	ret = iwl_trans_send_cmd(trans, &hcmd);
2098 	if (ret)
2099 		return ERR_PTR(ret);
2100 
2101 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
2102 		 "Invalid payload len in NVM response from FW %d",
2103 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
2104 		ret = -EINVAL;
2105 		goto out;
2106 	}
2107 
2108 	rsp = (void *)hcmd.resp_pkt->data;
2109 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
2110 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
2111 	if (empty_otp)
2112 		IWL_INFO(trans, "OTP is empty\n");
2113 
2114 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
2115 	if (!nvm) {
2116 		ret = -ENOMEM;
2117 		goto out;
2118 	}
2119 
2120 	iwl_set_hw_address_from_csr(trans, nvm);
2121 	/* TODO: if platform NVM has MAC address - override it here */
2122 
2123 	if (!is_valid_ether_addr(nvm->hw_addr)) {
2124 		IWL_ERR(trans, "no valid mac address was found\n");
2125 		ret = -EINVAL;
2126 		goto err_free;
2127 	}
2128 
2129 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
2130 
2131 	/* Initialize general data */
2132 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
2133 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
2134 	if (nvm->n_hw_addrs == 0)
2135 		IWL_WARN(trans,
2136 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
2137 			 empty_otp);
2138 
2139 	/* Initialize MAC sku data */
2140 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
2141 	nvm->sku_cap_11ac_enable =
2142 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
2143 	nvm->sku_cap_11n_enable =
2144 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
2145 	nvm->sku_cap_11ax_enable =
2146 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
2147 	nvm->sku_cap_band_24ghz_enable =
2148 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
2149 	nvm->sku_cap_band_52ghz_enable =
2150 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
2151 	nvm->sku_cap_mimo_disabled =
2152 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
2153 	if (CSR_HW_RFID_TYPE(trans->info.hw_rf_id) >= IWL_CFG_RF_TYPE_FM)
2154 		nvm->sku_cap_11be_enable = true;
2155 
2156 	/* Initialize PHY sku data */
2157 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
2158 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
2159 
2160 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
2161 	    fw_has_capa(&fw->ucode_capa,
2162 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
2163 		nvm->lar_enabled = true;
2164 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
2165 	}
2166 
2167 	rsp_v3 = (void *)rsp;
2168 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
2169 			  (void *)rsp_v3->regulatory.channel_profile;
2170 
2171 	tx_ant = nvm->valid_tx_ant & fw->valid_tx_ant;
2172 	rx_ant = nvm->valid_rx_ant & fw->valid_rx_ant;
2173 
2174 	if (set_tx_ant)
2175 		tx_ant &= set_tx_ant;
2176 	if (set_rx_ant)
2177 		rx_ant &= set_rx_ant;
2178 
2179 	iwl_init_sbands(trans, nvm, channel_profile, tx_ant, rx_ant,
2180 			sbands_flags, v4, fw);
2181 
2182 	iwl_free_resp(&hcmd);
2183 	return nvm;
2184 
2185 err_free:
2186 	kfree(nvm);
2187 out:
2188 	iwl_free_resp(&hcmd);
2189 	return ERR_PTR(ret);
2190 }
2191 IWL_EXPORT_SYMBOL(iwl_get_nvm);
2192