xref: /linux/tools/testing/selftests/kvm/access_tracking_perf_test.c (revision 7ae9fb1b7ecbb5d85d07857943f677fd1a559b18)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * access_tracking_perf_test
4  *
5  * Copyright (C) 2021, Google, Inc.
6  *
7  * This test measures the performance effects of KVM's access tracking.
8  * Access tracking is driven by the MMU notifiers test_young, clear_young, and
9  * clear_flush_young. These notifiers do not have a direct userspace API,
10  * however the clear_young notifier can be triggered by marking a pages as idle
11  * in /sys/kernel/mm/page_idle/bitmap. This test leverages that mechanism to
12  * enable access tracking on guest memory.
13  *
14  * To measure performance this test runs a VM with a configurable number of
15  * vCPUs that each touch every page in disjoint regions of memory. Performance
16  * is measured in the time it takes all vCPUs to finish touching their
17  * predefined region.
18  *
19  * Note that a deterministic correctness test of access tracking is not possible
20  * by using page_idle as it exists today. This is for a few reasons:
21  *
22  * 1. page_idle only issues clear_young notifiers, which lack a TLB flush. This
23  *    means subsequent guest accesses are not guaranteed to see page table
24  *    updates made by KVM until some time in the future.
25  *
26  * 2. page_idle only operates on LRU pages. Newly allocated pages are not
27  *    immediately allocated to LRU lists. Instead they are held in a "pagevec",
28  *    which is drained to LRU lists some time in the future. There is no
29  *    userspace API to force this drain to occur.
30  *
31  * These limitations are worked around in this test by using a large enough
32  * region of memory for each vCPU such that the number of translations cached in
33  * the TLB and the number of pages held in pagevecs are a small fraction of the
34  * overall workload. And if either of those conditions are not true (for example
35  * in nesting, where TLB size is unlimited) this test will print a warning
36  * rather than silently passing.
37  */
38 #include <inttypes.h>
39 #include <limits.h>
40 #include <pthread.h>
41 #include <sys/mman.h>
42 #include <sys/types.h>
43 #include <sys/stat.h>
44 
45 #include "kvm_util.h"
46 #include "test_util.h"
47 #include "memstress.h"
48 #include "guest_modes.h"
49 #include "processor.h"
50 
51 /* Global variable used to synchronize all of the vCPU threads. */
52 static int iteration;
53 
54 /* Defines what vCPU threads should do during a given iteration. */
55 static enum {
56 	/* Run the vCPU to access all its memory. */
57 	ITERATION_ACCESS_MEMORY,
58 	/* Mark the vCPU's memory idle in page_idle. */
59 	ITERATION_MARK_IDLE,
60 } iteration_work;
61 
62 /* The iteration that was last completed by each vCPU. */
63 static int vcpu_last_completed_iteration[KVM_MAX_VCPUS];
64 
65 /* Whether to overlap the regions of memory vCPUs access. */
66 static bool overlap_memory_access;
67 
68 struct test_params {
69 	/* The backing source for the region of memory. */
70 	enum vm_mem_backing_src_type backing_src;
71 
72 	/* The amount of memory to allocate for each vCPU. */
73 	uint64_t vcpu_memory_bytes;
74 
75 	/* The number of vCPUs to create in the VM. */
76 	int nr_vcpus;
77 };
78 
pread_uint64(int fd,const char * filename,uint64_t index)79 static uint64_t pread_uint64(int fd, const char *filename, uint64_t index)
80 {
81 	uint64_t value;
82 	off_t offset = index * sizeof(value);
83 
84 	TEST_ASSERT(pread(fd, &value, sizeof(value), offset) == sizeof(value),
85 		    "pread from %s offset 0x%" PRIx64 " failed!",
86 		    filename, offset);
87 
88 	return value;
89 
90 }
91 
92 #define PAGEMAP_PRESENT (1ULL << 63)
93 #define PAGEMAP_PFN_MASK ((1ULL << 55) - 1)
94 
lookup_pfn(int pagemap_fd,struct kvm_vm * vm,uint64_t gva)95 static uint64_t lookup_pfn(int pagemap_fd, struct kvm_vm *vm, uint64_t gva)
96 {
97 	uint64_t hva = (uint64_t) addr_gva2hva(vm, gva);
98 	uint64_t entry;
99 	uint64_t pfn;
100 
101 	entry = pread_uint64(pagemap_fd, "pagemap", hva / getpagesize());
102 	if (!(entry & PAGEMAP_PRESENT))
103 		return 0;
104 
105 	pfn = entry & PAGEMAP_PFN_MASK;
106 	__TEST_REQUIRE(pfn, "Looking up PFNs requires CAP_SYS_ADMIN");
107 
108 	return pfn;
109 }
110 
is_page_idle(int page_idle_fd,uint64_t pfn)111 static bool is_page_idle(int page_idle_fd, uint64_t pfn)
112 {
113 	uint64_t bits = pread_uint64(page_idle_fd, "page_idle", pfn / 64);
114 
115 	return !!((bits >> (pfn % 64)) & 1);
116 }
117 
mark_page_idle(int page_idle_fd,uint64_t pfn)118 static void mark_page_idle(int page_idle_fd, uint64_t pfn)
119 {
120 	uint64_t bits = 1ULL << (pfn % 64);
121 
122 	TEST_ASSERT(pwrite(page_idle_fd, &bits, 8, 8 * (pfn / 64)) == 8,
123 		    "Set page_idle bits for PFN 0x%" PRIx64, pfn);
124 }
125 
mark_vcpu_memory_idle(struct kvm_vm * vm,struct memstress_vcpu_args * vcpu_args)126 static void mark_vcpu_memory_idle(struct kvm_vm *vm,
127 				  struct memstress_vcpu_args *vcpu_args)
128 {
129 	int vcpu_idx = vcpu_args->vcpu_idx;
130 	uint64_t base_gva = vcpu_args->gva;
131 	uint64_t pages = vcpu_args->pages;
132 	uint64_t page;
133 	uint64_t still_idle = 0;
134 	uint64_t no_pfn = 0;
135 	int page_idle_fd;
136 	int pagemap_fd;
137 
138 	/* If vCPUs are using an overlapping region, let vCPU 0 mark it idle. */
139 	if (overlap_memory_access && vcpu_idx)
140 		return;
141 
142 	page_idle_fd = open("/sys/kernel/mm/page_idle/bitmap", O_RDWR);
143 	TEST_ASSERT(page_idle_fd > 0, "Failed to open page_idle.");
144 
145 	pagemap_fd = open("/proc/self/pagemap", O_RDONLY);
146 	TEST_ASSERT(pagemap_fd > 0, "Failed to open pagemap.");
147 
148 	for (page = 0; page < pages; page++) {
149 		uint64_t gva = base_gva + page * memstress_args.guest_page_size;
150 		uint64_t pfn = lookup_pfn(pagemap_fd, vm, gva);
151 
152 		if (!pfn) {
153 			no_pfn++;
154 			continue;
155 		}
156 
157 		if (is_page_idle(page_idle_fd, pfn)) {
158 			still_idle++;
159 			continue;
160 		}
161 
162 		mark_page_idle(page_idle_fd, pfn);
163 	}
164 
165 	/*
166 	 * Assumption: Less than 1% of pages are going to be swapped out from
167 	 * under us during this test.
168 	 */
169 	TEST_ASSERT(no_pfn < pages / 100,
170 		    "vCPU %d: No PFN for %" PRIu64 " out of %" PRIu64 " pages.",
171 		    vcpu_idx, no_pfn, pages);
172 
173 	/*
174 	 * Check that at least 90% of memory has been marked idle (the rest
175 	 * might not be marked idle because the pages have not yet made it to an
176 	 * LRU list or the translations are still cached in the TLB). 90% is
177 	 * arbitrary; high enough that we ensure most memory access went through
178 	 * access tracking but low enough as to not make the test too brittle
179 	 * over time and across architectures.
180 	 *
181 	 * When running the guest as a nested VM, "warn" instead of asserting
182 	 * as the TLB size is effectively unlimited and the KVM doesn't
183 	 * explicitly flush the TLB when aging SPTEs.  As a result, more pages
184 	 * are cached and the guest won't see the "idle" bit cleared.
185 	 */
186 	if (still_idle >= pages / 10) {
187 #ifdef __x86_64__
188 		TEST_ASSERT(this_cpu_has(X86_FEATURE_HYPERVISOR),
189 			    "vCPU%d: Too many pages still idle (%lu out of %lu)",
190 			    vcpu_idx, still_idle, pages);
191 #endif
192 		printf("WARNING: vCPU%d: Too many pages still idle (%lu out of %lu), "
193 		       "this will affect performance results.\n",
194 		       vcpu_idx, still_idle, pages);
195 	}
196 
197 	close(page_idle_fd);
198 	close(pagemap_fd);
199 }
200 
assert_ucall(struct kvm_vcpu * vcpu,uint64_t expected_ucall)201 static void assert_ucall(struct kvm_vcpu *vcpu, uint64_t expected_ucall)
202 {
203 	struct ucall uc;
204 	uint64_t actual_ucall = get_ucall(vcpu, &uc);
205 
206 	TEST_ASSERT(expected_ucall == actual_ucall,
207 		    "Guest exited unexpectedly (expected ucall %" PRIu64
208 		    ", got %" PRIu64 ")",
209 		    expected_ucall, actual_ucall);
210 }
211 
spin_wait_for_next_iteration(int * current_iteration)212 static bool spin_wait_for_next_iteration(int *current_iteration)
213 {
214 	int last_iteration = *current_iteration;
215 
216 	do {
217 		if (READ_ONCE(memstress_args.stop_vcpus))
218 			return false;
219 
220 		*current_iteration = READ_ONCE(iteration);
221 	} while (last_iteration == *current_iteration);
222 
223 	return true;
224 }
225 
vcpu_thread_main(struct memstress_vcpu_args * vcpu_args)226 static void vcpu_thread_main(struct memstress_vcpu_args *vcpu_args)
227 {
228 	struct kvm_vcpu *vcpu = vcpu_args->vcpu;
229 	struct kvm_vm *vm = memstress_args.vm;
230 	int vcpu_idx = vcpu_args->vcpu_idx;
231 	int current_iteration = 0;
232 
233 	while (spin_wait_for_next_iteration(&current_iteration)) {
234 		switch (READ_ONCE(iteration_work)) {
235 		case ITERATION_ACCESS_MEMORY:
236 			vcpu_run(vcpu);
237 			assert_ucall(vcpu, UCALL_SYNC);
238 			break;
239 		case ITERATION_MARK_IDLE:
240 			mark_vcpu_memory_idle(vm, vcpu_args);
241 			break;
242 		};
243 
244 		vcpu_last_completed_iteration[vcpu_idx] = current_iteration;
245 	}
246 }
247 
spin_wait_for_vcpu(int vcpu_idx,int target_iteration)248 static void spin_wait_for_vcpu(int vcpu_idx, int target_iteration)
249 {
250 	while (READ_ONCE(vcpu_last_completed_iteration[vcpu_idx]) !=
251 	       target_iteration) {
252 		continue;
253 	}
254 }
255 
256 /* The type of memory accesses to perform in the VM. */
257 enum access_type {
258 	ACCESS_READ,
259 	ACCESS_WRITE,
260 };
261 
run_iteration(struct kvm_vm * vm,int nr_vcpus,const char * description)262 static void run_iteration(struct kvm_vm *vm, int nr_vcpus, const char *description)
263 {
264 	struct timespec ts_start;
265 	struct timespec ts_elapsed;
266 	int next_iteration, i;
267 
268 	/* Kick off the vCPUs by incrementing iteration. */
269 	next_iteration = ++iteration;
270 
271 	clock_gettime(CLOCK_MONOTONIC, &ts_start);
272 
273 	/* Wait for all vCPUs to finish the iteration. */
274 	for (i = 0; i < nr_vcpus; i++)
275 		spin_wait_for_vcpu(i, next_iteration);
276 
277 	ts_elapsed = timespec_elapsed(ts_start);
278 	pr_info("%-30s: %ld.%09lds\n",
279 		description, ts_elapsed.tv_sec, ts_elapsed.tv_nsec);
280 }
281 
access_memory(struct kvm_vm * vm,int nr_vcpus,enum access_type access,const char * description)282 static void access_memory(struct kvm_vm *vm, int nr_vcpus,
283 			  enum access_type access, const char *description)
284 {
285 	memstress_set_write_percent(vm, (access == ACCESS_READ) ? 0 : 100);
286 	iteration_work = ITERATION_ACCESS_MEMORY;
287 	run_iteration(vm, nr_vcpus, description);
288 }
289 
mark_memory_idle(struct kvm_vm * vm,int nr_vcpus)290 static void mark_memory_idle(struct kvm_vm *vm, int nr_vcpus)
291 {
292 	/*
293 	 * Even though this parallelizes the work across vCPUs, this is still a
294 	 * very slow operation because page_idle forces the test to mark one pfn
295 	 * at a time and the clear_young notifier serializes on the KVM MMU
296 	 * lock.
297 	 */
298 	pr_debug("Marking VM memory idle (slow)...\n");
299 	iteration_work = ITERATION_MARK_IDLE;
300 	run_iteration(vm, nr_vcpus, "Mark memory idle");
301 }
302 
run_test(enum vm_guest_mode mode,void * arg)303 static void run_test(enum vm_guest_mode mode, void *arg)
304 {
305 	struct test_params *params = arg;
306 	struct kvm_vm *vm;
307 	int nr_vcpus = params->nr_vcpus;
308 
309 	vm = memstress_create_vm(mode, nr_vcpus, params->vcpu_memory_bytes, 1,
310 				 params->backing_src, !overlap_memory_access);
311 
312 	memstress_start_vcpu_threads(nr_vcpus, vcpu_thread_main);
313 
314 	pr_info("\n");
315 	access_memory(vm, nr_vcpus, ACCESS_WRITE, "Populating memory");
316 
317 	/* As a control, read and write to the populated memory first. */
318 	access_memory(vm, nr_vcpus, ACCESS_WRITE, "Writing to populated memory");
319 	access_memory(vm, nr_vcpus, ACCESS_READ, "Reading from populated memory");
320 
321 	/* Repeat on memory that has been marked as idle. */
322 	mark_memory_idle(vm, nr_vcpus);
323 	access_memory(vm, nr_vcpus, ACCESS_WRITE, "Writing to idle memory");
324 	mark_memory_idle(vm, nr_vcpus);
325 	access_memory(vm, nr_vcpus, ACCESS_READ, "Reading from idle memory");
326 
327 	memstress_join_vcpu_threads(nr_vcpus);
328 	memstress_destroy_vm(vm);
329 }
330 
help(char * name)331 static void help(char *name)
332 {
333 	puts("");
334 	printf("usage: %s [-h] [-m mode] [-b vcpu_bytes] [-v vcpus] [-o]  [-s mem_type]\n",
335 	       name);
336 	puts("");
337 	printf(" -h: Display this help message.");
338 	guest_modes_help();
339 	printf(" -b: specify the size of the memory region which should be\n"
340 	       "     dirtied by each vCPU. e.g. 10M or 3G.\n"
341 	       "     (default: 1G)\n");
342 	printf(" -v: specify the number of vCPUs to run.\n");
343 	printf(" -o: Overlap guest memory accesses instead of partitioning\n"
344 	       "     them into a separate region of memory for each vCPU.\n");
345 	backing_src_help("-s");
346 	puts("");
347 	exit(0);
348 }
349 
main(int argc,char * argv[])350 int main(int argc, char *argv[])
351 {
352 	struct test_params params = {
353 		.backing_src = DEFAULT_VM_MEM_SRC,
354 		.vcpu_memory_bytes = DEFAULT_PER_VCPU_MEM_SIZE,
355 		.nr_vcpus = 1,
356 	};
357 	int page_idle_fd;
358 	int opt;
359 
360 	guest_modes_append_default();
361 
362 	while ((opt = getopt(argc, argv, "hm:b:v:os:")) != -1) {
363 		switch (opt) {
364 		case 'm':
365 			guest_modes_cmdline(optarg);
366 			break;
367 		case 'b':
368 			params.vcpu_memory_bytes = parse_size(optarg);
369 			break;
370 		case 'v':
371 			params.nr_vcpus = atoi_positive("Number of vCPUs", optarg);
372 			break;
373 		case 'o':
374 			overlap_memory_access = true;
375 			break;
376 		case 's':
377 			params.backing_src = parse_backing_src_type(optarg);
378 			break;
379 		case 'h':
380 		default:
381 			help(argv[0]);
382 			break;
383 		}
384 	}
385 
386 	page_idle_fd = open("/sys/kernel/mm/page_idle/bitmap", O_RDWR);
387 	__TEST_REQUIRE(page_idle_fd >= 0,
388 		       "CONFIG_IDLE_PAGE_TRACKING is not enabled");
389 	close(page_idle_fd);
390 
391 	for_each_guest_mode(run_test, &params);
392 
393 	return 0;
394 }
395