1 // SPDX-License-Identifier: GPL-2.0
2 // CAN bus driver for Bosch M_CAN controller
3 // Copyright (C) 2014 Freescale Semiconductor, Inc.
4 // Dong Aisheng <b29396@freescale.com>
5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6
7 /* Bosch M_CAN user manual can be obtained from:
8 * https://github.com/linux-can/can-doc/tree/master/m_can
9 */
10
11 #include <linux/bitfield.h>
12 #include <linux/can/dev.h>
13 #include <linux/ethtool.h>
14 #include <linux/hrtimer.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/iopoll.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <linux/of.h>
22 #include <linux/phy/phy.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26
27 #include "m_can.h"
28
29 /* registers definition */
30 enum m_can_reg {
31 M_CAN_CREL = 0x0,
32 M_CAN_ENDN = 0x4,
33 M_CAN_CUST = 0x8,
34 M_CAN_DBTP = 0xc,
35 M_CAN_TEST = 0x10,
36 M_CAN_RWD = 0x14,
37 M_CAN_CCCR = 0x18,
38 M_CAN_NBTP = 0x1c,
39 M_CAN_TSCC = 0x20,
40 M_CAN_TSCV = 0x24,
41 M_CAN_TOCC = 0x28,
42 M_CAN_TOCV = 0x2c,
43 M_CAN_ECR = 0x40,
44 M_CAN_PSR = 0x44,
45 /* TDCR Register only available for version >=3.1.x */
46 M_CAN_TDCR = 0x48,
47 M_CAN_IR = 0x50,
48 M_CAN_IE = 0x54,
49 M_CAN_ILS = 0x58,
50 M_CAN_ILE = 0x5c,
51 M_CAN_GFC = 0x80,
52 M_CAN_SIDFC = 0x84,
53 M_CAN_XIDFC = 0x88,
54 M_CAN_XIDAM = 0x90,
55 M_CAN_HPMS = 0x94,
56 M_CAN_NDAT1 = 0x98,
57 M_CAN_NDAT2 = 0x9c,
58 M_CAN_RXF0C = 0xa0,
59 M_CAN_RXF0S = 0xa4,
60 M_CAN_RXF0A = 0xa8,
61 M_CAN_RXBC = 0xac,
62 M_CAN_RXF1C = 0xb0,
63 M_CAN_RXF1S = 0xb4,
64 M_CAN_RXF1A = 0xb8,
65 M_CAN_RXESC = 0xbc,
66 M_CAN_TXBC = 0xc0,
67 M_CAN_TXFQS = 0xc4,
68 M_CAN_TXESC = 0xc8,
69 M_CAN_TXBRP = 0xcc,
70 M_CAN_TXBAR = 0xd0,
71 M_CAN_TXBCR = 0xd4,
72 M_CAN_TXBTO = 0xd8,
73 M_CAN_TXBCF = 0xdc,
74 M_CAN_TXBTIE = 0xe0,
75 M_CAN_TXBCIE = 0xe4,
76 M_CAN_TXEFC = 0xf0,
77 M_CAN_TXEFS = 0xf4,
78 M_CAN_TXEFA = 0xf8,
79 };
80
81 /* message ram configuration data length */
82 #define MRAM_CFG_LEN 8
83
84 /* Core Release Register (CREL) */
85 #define CREL_REL_MASK GENMASK(31, 28)
86 #define CREL_STEP_MASK GENMASK(27, 24)
87 #define CREL_SUBSTEP_MASK GENMASK(23, 20)
88
89 /* Data Bit Timing & Prescaler Register (DBTP) */
90 #define DBTP_TDC BIT(23)
91 #define DBTP_DBRP_MASK GENMASK(20, 16)
92 #define DBTP_DTSEG1_MASK GENMASK(12, 8)
93 #define DBTP_DTSEG2_MASK GENMASK(7, 4)
94 #define DBTP_DSJW_MASK GENMASK(3, 0)
95
96 /* Transmitter Delay Compensation Register (TDCR) */
97 #define TDCR_TDCO_MASK GENMASK(14, 8)
98 #define TDCR_TDCF_MASK GENMASK(6, 0)
99
100 /* Test Register (TEST) */
101 #define TEST_LBCK BIT(4)
102
103 /* CC Control Register (CCCR) */
104 #define CCCR_TXP BIT(14)
105 #define CCCR_TEST BIT(7)
106 #define CCCR_DAR BIT(6)
107 #define CCCR_MON BIT(5)
108 #define CCCR_CSR BIT(4)
109 #define CCCR_CSA BIT(3)
110 #define CCCR_ASM BIT(2)
111 #define CCCR_CCE BIT(1)
112 #define CCCR_INIT BIT(0)
113 /* for version 3.0.x */
114 #define CCCR_CMR_MASK GENMASK(11, 10)
115 #define CCCR_CMR_CANFD 0x1
116 #define CCCR_CMR_CANFD_BRS 0x2
117 #define CCCR_CMR_CAN 0x3
118 #define CCCR_CME_MASK GENMASK(9, 8)
119 #define CCCR_CME_CAN 0
120 #define CCCR_CME_CANFD 0x1
121 #define CCCR_CME_CANFD_BRS 0x2
122 /* for version >=3.1.x */
123 #define CCCR_EFBI BIT(13)
124 #define CCCR_PXHD BIT(12)
125 #define CCCR_BRSE BIT(9)
126 #define CCCR_FDOE BIT(8)
127 /* for version >=3.2.x */
128 #define CCCR_NISO BIT(15)
129 /* for version >=3.3.x */
130 #define CCCR_WMM BIT(11)
131 #define CCCR_UTSU BIT(10)
132
133 /* Nominal Bit Timing & Prescaler Register (NBTP) */
134 #define NBTP_NSJW_MASK GENMASK(31, 25)
135 #define NBTP_NBRP_MASK GENMASK(24, 16)
136 #define NBTP_NTSEG1_MASK GENMASK(15, 8)
137 #define NBTP_NTSEG2_MASK GENMASK(6, 0)
138
139 /* Timestamp Counter Configuration Register (TSCC) */
140 #define TSCC_TCP_MASK GENMASK(19, 16)
141 #define TSCC_TSS_MASK GENMASK(1, 0)
142 #define TSCC_TSS_DISABLE 0x0
143 #define TSCC_TSS_INTERNAL 0x1
144 #define TSCC_TSS_EXTERNAL 0x2
145
146 /* Timestamp Counter Value Register (TSCV) */
147 #define TSCV_TSC_MASK GENMASK(15, 0)
148
149 /* Error Counter Register (ECR) */
150 #define ECR_RP BIT(15)
151 #define ECR_REC_MASK GENMASK(14, 8)
152 #define ECR_TEC_MASK GENMASK(7, 0)
153
154 /* Protocol Status Register (PSR) */
155 #define PSR_BO BIT(7)
156 #define PSR_EW BIT(6)
157 #define PSR_EP BIT(5)
158 #define PSR_LEC_MASK GENMASK(2, 0)
159 #define PSR_DLEC_MASK GENMASK(10, 8)
160
161 /* Interrupt Register (IR) */
162 #define IR_ALL_INT 0xffffffff
163
164 /* Renamed bits for versions > 3.1.x */
165 #define IR_ARA BIT(29)
166 #define IR_PED BIT(28)
167 #define IR_PEA BIT(27)
168
169 /* Bits for version 3.0.x */
170 #define IR_STE BIT(31)
171 #define IR_FOE BIT(30)
172 #define IR_ACKE BIT(29)
173 #define IR_BE BIT(28)
174 #define IR_CRCE BIT(27)
175 #define IR_WDI BIT(26)
176 #define IR_BO BIT(25)
177 #define IR_EW BIT(24)
178 #define IR_EP BIT(23)
179 #define IR_ELO BIT(22)
180 #define IR_BEU BIT(21)
181 #define IR_BEC BIT(20)
182 #define IR_DRX BIT(19)
183 #define IR_TOO BIT(18)
184 #define IR_MRAF BIT(17)
185 #define IR_TSW BIT(16)
186 #define IR_TEFL BIT(15)
187 #define IR_TEFF BIT(14)
188 #define IR_TEFW BIT(13)
189 #define IR_TEFN BIT(12)
190 #define IR_TFE BIT(11)
191 #define IR_TCF BIT(10)
192 #define IR_TC BIT(9)
193 #define IR_HPM BIT(8)
194 #define IR_RF1L BIT(7)
195 #define IR_RF1F BIT(6)
196 #define IR_RF1W BIT(5)
197 #define IR_RF1N BIT(4)
198 #define IR_RF0L BIT(3)
199 #define IR_RF0F BIT(2)
200 #define IR_RF0W BIT(1)
201 #define IR_RF0N BIT(0)
202 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
203
204 /* Interrupts for version 3.0.x */
205 #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
206 #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \
207 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
208 IR_RF0L)
209 #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X)
210
211 /* Interrupts for version >= 3.1.x */
212 #define IR_ERR_LEC_31X (IR_PED | IR_PEA)
213 #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \
214 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
215 IR_RF0L)
216 #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X)
217
218 /* Interrupt Line Select (ILS) */
219 #define ILS_ALL_INT0 0x0
220 #define ILS_ALL_INT1 0xFFFFFFFF
221
222 /* Interrupt Line Enable (ILE) */
223 #define ILE_EINT1 BIT(1)
224 #define ILE_EINT0 BIT(0)
225
226 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
227 #define RXFC_FWM_MASK GENMASK(30, 24)
228 #define RXFC_FS_MASK GENMASK(22, 16)
229
230 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
231 #define RXFS_RFL BIT(25)
232 #define RXFS_FF BIT(24)
233 #define RXFS_FPI_MASK GENMASK(21, 16)
234 #define RXFS_FGI_MASK GENMASK(13, 8)
235 #define RXFS_FFL_MASK GENMASK(6, 0)
236
237 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
238 #define RXESC_RBDS_MASK GENMASK(10, 8)
239 #define RXESC_F1DS_MASK GENMASK(6, 4)
240 #define RXESC_F0DS_MASK GENMASK(2, 0)
241 #define RXESC_64B 0x7
242
243 /* Tx Buffer Configuration (TXBC) */
244 #define TXBC_TFQS_MASK GENMASK(29, 24)
245 #define TXBC_NDTB_MASK GENMASK(21, 16)
246
247 /* Tx FIFO/Queue Status (TXFQS) */
248 #define TXFQS_TFQF BIT(21)
249 #define TXFQS_TFQPI_MASK GENMASK(20, 16)
250 #define TXFQS_TFGI_MASK GENMASK(12, 8)
251 #define TXFQS_TFFL_MASK GENMASK(5, 0)
252
253 /* Tx Buffer Element Size Configuration (TXESC) */
254 #define TXESC_TBDS_MASK GENMASK(2, 0)
255 #define TXESC_TBDS_64B 0x7
256
257 /* Tx Event FIFO Configuration (TXEFC) */
258 #define TXEFC_EFWM_MASK GENMASK(29, 24)
259 #define TXEFC_EFS_MASK GENMASK(21, 16)
260
261 /* Tx Event FIFO Status (TXEFS) */
262 #define TXEFS_TEFL BIT(25)
263 #define TXEFS_EFF BIT(24)
264 #define TXEFS_EFGI_MASK GENMASK(12, 8)
265 #define TXEFS_EFFL_MASK GENMASK(5, 0)
266
267 /* Tx Event FIFO Acknowledge (TXEFA) */
268 #define TXEFA_EFAI_MASK GENMASK(4, 0)
269
270 /* Message RAM Configuration (in bytes) */
271 #define SIDF_ELEMENT_SIZE 4
272 #define XIDF_ELEMENT_SIZE 8
273 #define RXF0_ELEMENT_SIZE 72
274 #define RXF1_ELEMENT_SIZE 72
275 #define RXB_ELEMENT_SIZE 72
276 #define TXE_ELEMENT_SIZE 8
277 #define TXB_ELEMENT_SIZE 72
278
279 /* Message RAM Elements */
280 #define M_CAN_FIFO_ID 0x0
281 #define M_CAN_FIFO_DLC 0x4
282 #define M_CAN_FIFO_DATA 0x8
283
284 /* Rx Buffer Element */
285 /* R0 */
286 #define RX_BUF_ESI BIT(31)
287 #define RX_BUF_XTD BIT(30)
288 #define RX_BUF_RTR BIT(29)
289 /* R1 */
290 #define RX_BUF_ANMF BIT(31)
291 #define RX_BUF_FDF BIT(21)
292 #define RX_BUF_BRS BIT(20)
293 #define RX_BUF_RXTS_MASK GENMASK(15, 0)
294
295 /* Tx Buffer Element */
296 /* T0 */
297 #define TX_BUF_ESI BIT(31)
298 #define TX_BUF_XTD BIT(30)
299 #define TX_BUF_RTR BIT(29)
300 /* T1 */
301 #define TX_BUF_EFC BIT(23)
302 #define TX_BUF_FDF BIT(21)
303 #define TX_BUF_BRS BIT(20)
304 #define TX_BUF_MM_MASK GENMASK(31, 24)
305 #define TX_BUF_DLC_MASK GENMASK(19, 16)
306
307 /* Tx event FIFO Element */
308 /* E1 */
309 #define TX_EVENT_MM_MASK GENMASK(31, 24)
310 #define TX_EVENT_TXTS_MASK GENMASK(15, 0)
311
312 /* Hrtimer polling interval */
313 #define HRTIMER_POLL_INTERVAL_MS 1
314
315 /* The ID and DLC registers are adjacent in M_CAN FIFO memory,
316 * and we can save a (potentially slow) bus round trip by combining
317 * reads and writes to them.
318 */
319 struct id_and_dlc {
320 u32 id;
321 u32 dlc;
322 };
323
324 struct m_can_fifo_element {
325 u32 id;
326 u32 dlc;
327 u8 data[CANFD_MAX_DLEN];
328 };
329
m_can_read(struct m_can_classdev * cdev,enum m_can_reg reg)330 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
331 {
332 return cdev->ops->read_reg(cdev, reg);
333 }
334
m_can_write(struct m_can_classdev * cdev,enum m_can_reg reg,u32 val)335 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
336 u32 val)
337 {
338 cdev->ops->write_reg(cdev, reg, val);
339 }
340
341 static int
m_can_fifo_read(struct m_can_classdev * cdev,u32 fgi,unsigned int offset,void * val,size_t val_count)342 m_can_fifo_read(struct m_can_classdev *cdev,
343 u32 fgi, unsigned int offset, void *val, size_t val_count)
344 {
345 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
346 offset;
347
348 if (val_count == 0)
349 return 0;
350
351 return cdev->ops->read_fifo(cdev, addr_offset, val, val_count);
352 }
353
354 static int
m_can_fifo_write(struct m_can_classdev * cdev,u32 fpi,unsigned int offset,const void * val,size_t val_count)355 m_can_fifo_write(struct m_can_classdev *cdev,
356 u32 fpi, unsigned int offset, const void *val, size_t val_count)
357 {
358 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
359 offset;
360
361 if (val_count == 0)
362 return 0;
363
364 return cdev->ops->write_fifo(cdev, addr_offset, val, val_count);
365 }
366
m_can_fifo_write_no_off(struct m_can_classdev * cdev,u32 fpi,u32 val)367 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev,
368 u32 fpi, u32 val)
369 {
370 return cdev->ops->write_fifo(cdev, fpi, &val, 1);
371 }
372
373 static int
m_can_txe_fifo_read(struct m_can_classdev * cdev,u32 fgi,u32 offset,u32 * val)374 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val)
375 {
376 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
377 offset;
378
379 return cdev->ops->read_fifo(cdev, addr_offset, val, 1);
380 }
381
m_can_cccr_update_bits(struct m_can_classdev * cdev,u32 mask,u32 val)382 static int m_can_cccr_update_bits(struct m_can_classdev *cdev, u32 mask, u32 val)
383 {
384 u32 val_before = m_can_read(cdev, M_CAN_CCCR);
385 u32 val_after = (val_before & ~mask) | val;
386 size_t tries = 10;
387
388 if (!(mask & CCCR_INIT) && !(val_before & CCCR_INIT)) {
389 dev_err(cdev->dev,
390 "refusing to configure device when in normal mode\n");
391 return -EBUSY;
392 }
393
394 /* The chip should be in standby mode when changing the CCCR register,
395 * and some chips set the CSR and CSA bits when in standby. Furthermore,
396 * the CSR and CSA bits should be written as zeros, even when they read
397 * ones.
398 */
399 val_after &= ~(CCCR_CSR | CCCR_CSA);
400
401 while (tries--) {
402 u32 val_read;
403
404 /* Write the desired value in each try, as setting some bits in
405 * the CCCR register require other bits to be set first. E.g.
406 * setting the NISO bit requires setting the CCE bit first.
407 */
408 m_can_write(cdev, M_CAN_CCCR, val_after);
409
410 val_read = m_can_read(cdev, M_CAN_CCCR) & ~(CCCR_CSR | CCCR_CSA);
411
412 if (val_read == val_after)
413 return 0;
414
415 usleep_range(1, 5);
416 }
417
418 return -ETIMEDOUT;
419 }
420
m_can_config_enable(struct m_can_classdev * cdev)421 static int m_can_config_enable(struct m_can_classdev *cdev)
422 {
423 int err;
424
425 /* CCCR_INIT must be set in order to set CCCR_CCE, but access to
426 * configuration registers should only be enabled when in standby mode,
427 * where CCCR_INIT is always set.
428 */
429 err = m_can_cccr_update_bits(cdev, CCCR_CCE, CCCR_CCE);
430 if (err)
431 netdev_err(cdev->net, "failed to enable configuration mode\n");
432
433 return err;
434 }
435
m_can_config_disable(struct m_can_classdev * cdev)436 static int m_can_config_disable(struct m_can_classdev *cdev)
437 {
438 int err;
439
440 /* Only clear CCCR_CCE, since CCCR_INIT cannot be cleared while in
441 * standby mode
442 */
443 err = m_can_cccr_update_bits(cdev, CCCR_CCE, 0);
444 if (err)
445 netdev_err(cdev->net, "failed to disable configuration registers\n");
446
447 return err;
448 }
449
m_can_interrupt_enable(struct m_can_classdev * cdev,u32 interrupts)450 static void m_can_interrupt_enable(struct m_can_classdev *cdev, u32 interrupts)
451 {
452 if (cdev->active_interrupts == interrupts)
453 return;
454 cdev->ops->write_reg(cdev, M_CAN_IE, interrupts);
455 cdev->active_interrupts = interrupts;
456 }
457
m_can_coalescing_disable(struct m_can_classdev * cdev)458 static void m_can_coalescing_disable(struct m_can_classdev *cdev)
459 {
460 u32 new_interrupts = cdev->active_interrupts | IR_RF0N | IR_TEFN;
461
462 if (!cdev->net->irq)
463 return;
464
465 hrtimer_cancel(&cdev->hrtimer);
466 m_can_interrupt_enable(cdev, new_interrupts);
467 }
468
m_can_enable_all_interrupts(struct m_can_classdev * cdev)469 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
470 {
471 if (!cdev->net->irq) {
472 dev_dbg(cdev->dev, "Start hrtimer\n");
473 hrtimer_start(&cdev->hrtimer,
474 ms_to_ktime(HRTIMER_POLL_INTERVAL_MS),
475 HRTIMER_MODE_REL_PINNED);
476 }
477
478 /* Only interrupt line 0 is used in this driver */
479 m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
480 }
481
m_can_disable_all_interrupts(struct m_can_classdev * cdev)482 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
483 {
484 m_can_coalescing_disable(cdev);
485 m_can_write(cdev, M_CAN_ILE, 0x0);
486
487 if (!cdev->net->irq) {
488 dev_dbg(cdev->dev, "Stop hrtimer\n");
489 hrtimer_try_to_cancel(&cdev->hrtimer);
490 }
491 }
492
493 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
494 * width.
495 */
m_can_get_timestamp(struct m_can_classdev * cdev)496 static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
497 {
498 u32 tscv;
499 u32 tsc;
500
501 tscv = m_can_read(cdev, M_CAN_TSCV);
502 tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
503
504 return (tsc << 16);
505 }
506
m_can_clean(struct net_device * net)507 static void m_can_clean(struct net_device *net)
508 {
509 struct m_can_classdev *cdev = netdev_priv(net);
510 unsigned long irqflags;
511
512 if (cdev->tx_ops) {
513 for (int i = 0; i != cdev->tx_fifo_size; ++i) {
514 if (!cdev->tx_ops[i].skb)
515 continue;
516
517 net->stats.tx_errors++;
518 cdev->tx_ops[i].skb = NULL;
519 }
520 }
521
522 for (int i = 0; i != cdev->can.echo_skb_max; ++i)
523 can_free_echo_skb(cdev->net, i, NULL);
524
525 netdev_reset_queue(cdev->net);
526
527 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
528 cdev->tx_fifo_in_flight = 0;
529 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
530 }
531
532 /* For peripherals, pass skb to rx-offload, which will push skb from
533 * napi. For non-peripherals, RX is done in napi already, so push
534 * directly. timestamp is used to ensure good skb ordering in
535 * rx-offload and is ignored for non-peripherals.
536 */
m_can_receive_skb(struct m_can_classdev * cdev,struct sk_buff * skb,u32 timestamp)537 static void m_can_receive_skb(struct m_can_classdev *cdev,
538 struct sk_buff *skb,
539 u32 timestamp)
540 {
541 if (cdev->is_peripheral) {
542 struct net_device_stats *stats = &cdev->net->stats;
543 int err;
544
545 err = can_rx_offload_queue_timestamp(&cdev->offload, skb,
546 timestamp);
547 if (err)
548 stats->rx_fifo_errors++;
549 } else {
550 netif_receive_skb(skb);
551 }
552 }
553
m_can_read_fifo(struct net_device * dev,u32 fgi)554 static int m_can_read_fifo(struct net_device *dev, u32 fgi)
555 {
556 struct net_device_stats *stats = &dev->stats;
557 struct m_can_classdev *cdev = netdev_priv(dev);
558 struct canfd_frame *cf;
559 struct sk_buff *skb;
560 struct id_and_dlc fifo_header;
561 u32 timestamp = 0;
562 int err;
563
564 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2);
565 if (err)
566 goto out_fail;
567
568 if (fifo_header.dlc & RX_BUF_FDF)
569 skb = alloc_canfd_skb(dev, &cf);
570 else
571 skb = alloc_can_skb(dev, (struct can_frame **)&cf);
572 if (!skb) {
573 stats->rx_dropped++;
574 return 0;
575 }
576
577 if (fifo_header.dlc & RX_BUF_FDF)
578 cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F);
579 else
580 cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F);
581
582 if (fifo_header.id & RX_BUF_XTD)
583 cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG;
584 else
585 cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK;
586
587 if (fifo_header.id & RX_BUF_ESI) {
588 cf->flags |= CANFD_ESI;
589 netdev_dbg(dev, "ESI Error\n");
590 }
591
592 if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) {
593 cf->can_id |= CAN_RTR_FLAG;
594 } else {
595 if (fifo_header.dlc & RX_BUF_BRS)
596 cf->flags |= CANFD_BRS;
597
598 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA,
599 cf->data, DIV_ROUND_UP(cf->len, 4));
600 if (err)
601 goto out_free_skb;
602
603 stats->rx_bytes += cf->len;
604 }
605 stats->rx_packets++;
606
607 timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16;
608
609 m_can_receive_skb(cdev, skb, timestamp);
610
611 return 0;
612
613 out_free_skb:
614 kfree_skb(skb);
615 out_fail:
616 netdev_err(dev, "FIFO read returned %d\n", err);
617 return err;
618 }
619
m_can_do_rx_poll(struct net_device * dev,int quota)620 static int m_can_do_rx_poll(struct net_device *dev, int quota)
621 {
622 struct m_can_classdev *cdev = netdev_priv(dev);
623 u32 pkts = 0;
624 u32 rxfs;
625 u32 rx_count;
626 u32 fgi;
627 int ack_fgi = -1;
628 int i;
629 int err = 0;
630
631 rxfs = m_can_read(cdev, M_CAN_RXF0S);
632 if (!(rxfs & RXFS_FFL_MASK)) {
633 netdev_dbg(dev, "no messages in fifo0\n");
634 return 0;
635 }
636
637 rx_count = FIELD_GET(RXFS_FFL_MASK, rxfs);
638 fgi = FIELD_GET(RXFS_FGI_MASK, rxfs);
639
640 for (i = 0; i < rx_count && quota > 0; ++i) {
641 err = m_can_read_fifo(dev, fgi);
642 if (err)
643 break;
644
645 quota--;
646 pkts++;
647 ack_fgi = fgi;
648 fgi = (++fgi >= cdev->mcfg[MRAM_RXF0].num ? 0 : fgi);
649 }
650
651 if (ack_fgi != -1)
652 m_can_write(cdev, M_CAN_RXF0A, ack_fgi);
653
654 if (err)
655 return err;
656
657 return pkts;
658 }
659
m_can_handle_lost_msg(struct net_device * dev)660 static int m_can_handle_lost_msg(struct net_device *dev)
661 {
662 struct m_can_classdev *cdev = netdev_priv(dev);
663 struct net_device_stats *stats = &dev->stats;
664 struct sk_buff *skb;
665 struct can_frame *frame;
666 u32 timestamp = 0;
667
668 netdev_err(dev, "msg lost in rxf0\n");
669
670 stats->rx_errors++;
671 stats->rx_over_errors++;
672
673 skb = alloc_can_err_skb(dev, &frame);
674 if (unlikely(!skb))
675 return 0;
676
677 frame->can_id |= CAN_ERR_CRTL;
678 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
679
680 if (cdev->is_peripheral)
681 timestamp = m_can_get_timestamp(cdev);
682
683 m_can_receive_skb(cdev, skb, timestamp);
684
685 return 1;
686 }
687
m_can_handle_lec_err(struct net_device * dev,enum m_can_lec_type lec_type)688 static int m_can_handle_lec_err(struct net_device *dev,
689 enum m_can_lec_type lec_type)
690 {
691 struct m_can_classdev *cdev = netdev_priv(dev);
692 struct net_device_stats *stats = &dev->stats;
693 struct can_frame *cf;
694 struct sk_buff *skb;
695 u32 timestamp = 0;
696
697 cdev->can.can_stats.bus_error++;
698
699 /* propagate the error condition to the CAN stack */
700 skb = alloc_can_err_skb(dev, &cf);
701
702 /* check for 'last error code' which tells us the
703 * type of the last error to occur on the CAN bus
704 */
705 if (likely(skb))
706 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
707
708 switch (lec_type) {
709 case LEC_STUFF_ERROR:
710 netdev_dbg(dev, "stuff error\n");
711 stats->rx_errors++;
712 if (likely(skb))
713 cf->data[2] |= CAN_ERR_PROT_STUFF;
714 break;
715 case LEC_FORM_ERROR:
716 netdev_dbg(dev, "form error\n");
717 stats->rx_errors++;
718 if (likely(skb))
719 cf->data[2] |= CAN_ERR_PROT_FORM;
720 break;
721 case LEC_ACK_ERROR:
722 netdev_dbg(dev, "ack error\n");
723 stats->tx_errors++;
724 if (likely(skb))
725 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
726 break;
727 case LEC_BIT1_ERROR:
728 netdev_dbg(dev, "bit1 error\n");
729 stats->tx_errors++;
730 if (likely(skb))
731 cf->data[2] |= CAN_ERR_PROT_BIT1;
732 break;
733 case LEC_BIT0_ERROR:
734 netdev_dbg(dev, "bit0 error\n");
735 stats->tx_errors++;
736 if (likely(skb))
737 cf->data[2] |= CAN_ERR_PROT_BIT0;
738 break;
739 case LEC_CRC_ERROR:
740 netdev_dbg(dev, "CRC error\n");
741 stats->rx_errors++;
742 if (likely(skb))
743 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
744 break;
745 default:
746 break;
747 }
748
749 if (unlikely(!skb))
750 return 0;
751
752 if (cdev->is_peripheral)
753 timestamp = m_can_get_timestamp(cdev);
754
755 m_can_receive_skb(cdev, skb, timestamp);
756
757 return 1;
758 }
759
__m_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)760 static int __m_can_get_berr_counter(const struct net_device *dev,
761 struct can_berr_counter *bec)
762 {
763 struct m_can_classdev *cdev = netdev_priv(dev);
764 unsigned int ecr;
765
766 ecr = m_can_read(cdev, M_CAN_ECR);
767 bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr);
768 bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr);
769
770 return 0;
771 }
772
m_can_clk_start(struct m_can_classdev * cdev)773 static int m_can_clk_start(struct m_can_classdev *cdev)
774 {
775 if (cdev->pm_clock_support == 0)
776 return 0;
777
778 return pm_runtime_resume_and_get(cdev->dev);
779 }
780
m_can_clk_stop(struct m_can_classdev * cdev)781 static void m_can_clk_stop(struct m_can_classdev *cdev)
782 {
783 if (cdev->pm_clock_support)
784 pm_runtime_put_sync(cdev->dev);
785 }
786
m_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)787 static int m_can_get_berr_counter(const struct net_device *dev,
788 struct can_berr_counter *bec)
789 {
790 struct m_can_classdev *cdev = netdev_priv(dev);
791 int err;
792
793 err = m_can_clk_start(cdev);
794 if (err)
795 return err;
796
797 __m_can_get_berr_counter(dev, bec);
798
799 m_can_clk_stop(cdev);
800
801 return 0;
802 }
803
m_can_handle_state_change(struct net_device * dev,enum can_state new_state)804 static int m_can_handle_state_change(struct net_device *dev,
805 enum can_state new_state)
806 {
807 struct m_can_classdev *cdev = netdev_priv(dev);
808 struct can_frame *cf;
809 struct sk_buff *skb;
810 struct can_berr_counter bec;
811 unsigned int ecr;
812 u32 timestamp = 0;
813
814 switch (new_state) {
815 case CAN_STATE_ERROR_WARNING:
816 /* error warning state */
817 cdev->can.can_stats.error_warning++;
818 cdev->can.state = CAN_STATE_ERROR_WARNING;
819 break;
820 case CAN_STATE_ERROR_PASSIVE:
821 /* error passive state */
822 cdev->can.can_stats.error_passive++;
823 cdev->can.state = CAN_STATE_ERROR_PASSIVE;
824 break;
825 case CAN_STATE_BUS_OFF:
826 /* bus-off state */
827 cdev->can.state = CAN_STATE_BUS_OFF;
828 m_can_disable_all_interrupts(cdev);
829 cdev->can.can_stats.bus_off++;
830 can_bus_off(dev);
831 break;
832 default:
833 break;
834 }
835
836 /* propagate the error condition to the CAN stack */
837 skb = alloc_can_err_skb(dev, &cf);
838 if (unlikely(!skb))
839 return 0;
840
841 __m_can_get_berr_counter(dev, &bec);
842
843 switch (new_state) {
844 case CAN_STATE_ERROR_WARNING:
845 /* error warning state */
846 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
847 cf->data[1] = (bec.txerr > bec.rxerr) ?
848 CAN_ERR_CRTL_TX_WARNING :
849 CAN_ERR_CRTL_RX_WARNING;
850 cf->data[6] = bec.txerr;
851 cf->data[7] = bec.rxerr;
852 break;
853 case CAN_STATE_ERROR_PASSIVE:
854 /* error passive state */
855 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
856 ecr = m_can_read(cdev, M_CAN_ECR);
857 if (ecr & ECR_RP)
858 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
859 if (bec.txerr > 127)
860 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
861 cf->data[6] = bec.txerr;
862 cf->data[7] = bec.rxerr;
863 break;
864 case CAN_STATE_BUS_OFF:
865 /* bus-off state */
866 cf->can_id |= CAN_ERR_BUSOFF;
867 break;
868 default:
869 break;
870 }
871
872 if (cdev->is_peripheral)
873 timestamp = m_can_get_timestamp(cdev);
874
875 m_can_receive_skb(cdev, skb, timestamp);
876
877 return 1;
878 }
879
m_can_handle_state_errors(struct net_device * dev,u32 psr)880 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
881 {
882 struct m_can_classdev *cdev = netdev_priv(dev);
883 int work_done = 0;
884
885 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
886 netdev_dbg(dev, "entered error warning state\n");
887 work_done += m_can_handle_state_change(dev,
888 CAN_STATE_ERROR_WARNING);
889 }
890
891 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
892 netdev_dbg(dev, "entered error passive state\n");
893 work_done += m_can_handle_state_change(dev,
894 CAN_STATE_ERROR_PASSIVE);
895 }
896
897 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
898 netdev_dbg(dev, "entered error bus off state\n");
899 work_done += m_can_handle_state_change(dev,
900 CAN_STATE_BUS_OFF);
901 }
902
903 return work_done;
904 }
905
m_can_handle_other_err(struct net_device * dev,u32 irqstatus)906 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
907 {
908 if (irqstatus & IR_WDI)
909 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
910 if (irqstatus & IR_BEU)
911 netdev_err(dev, "Bit Error Uncorrected\n");
912 if (irqstatus & IR_BEC)
913 netdev_err(dev, "Bit Error Corrected\n");
914 if (irqstatus & IR_TOO)
915 netdev_err(dev, "Timeout reached\n");
916 if (irqstatus & IR_MRAF)
917 netdev_err(dev, "Message RAM access failure occurred\n");
918 }
919
is_lec_err(u8 lec)920 static inline bool is_lec_err(u8 lec)
921 {
922 return lec != LEC_NO_ERROR && lec != LEC_NO_CHANGE;
923 }
924
m_can_is_protocol_err(u32 irqstatus)925 static inline bool m_can_is_protocol_err(u32 irqstatus)
926 {
927 return irqstatus & IR_ERR_LEC_31X;
928 }
929
m_can_handle_protocol_error(struct net_device * dev,u32 irqstatus)930 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
931 {
932 struct net_device_stats *stats = &dev->stats;
933 struct m_can_classdev *cdev = netdev_priv(dev);
934 struct can_frame *cf;
935 struct sk_buff *skb;
936 u32 timestamp = 0;
937
938 /* propagate the error condition to the CAN stack */
939 skb = alloc_can_err_skb(dev, &cf);
940
941 /* update tx error stats since there is protocol error */
942 stats->tx_errors++;
943
944 /* update arbitration lost status */
945 if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
946 netdev_dbg(dev, "Protocol error in Arbitration fail\n");
947 cdev->can.can_stats.arbitration_lost++;
948 if (skb) {
949 cf->can_id |= CAN_ERR_LOSTARB;
950 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
951 }
952 }
953
954 if (unlikely(!skb)) {
955 netdev_dbg(dev, "allocation of skb failed\n");
956 return 0;
957 }
958
959 if (cdev->is_peripheral)
960 timestamp = m_can_get_timestamp(cdev);
961
962 m_can_receive_skb(cdev, skb, timestamp);
963
964 return 1;
965 }
966
m_can_handle_bus_errors(struct net_device * dev,u32 irqstatus,u32 psr)967 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
968 u32 psr)
969 {
970 struct m_can_classdev *cdev = netdev_priv(dev);
971 int work_done = 0;
972
973 if (irqstatus & IR_RF0L)
974 work_done += m_can_handle_lost_msg(dev);
975
976 /* handle lec errors on the bus */
977 if (cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
978 u8 lec = FIELD_GET(PSR_LEC_MASK, psr);
979 u8 dlec = FIELD_GET(PSR_DLEC_MASK, psr);
980
981 if (is_lec_err(lec)) {
982 netdev_dbg(dev, "Arbitration phase error detected\n");
983 work_done += m_can_handle_lec_err(dev, lec);
984 }
985
986 if (is_lec_err(dlec)) {
987 netdev_dbg(dev, "Data phase error detected\n");
988 work_done += m_can_handle_lec_err(dev, dlec);
989 }
990 }
991
992 /* handle protocol errors in arbitration phase */
993 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
994 m_can_is_protocol_err(irqstatus))
995 work_done += m_can_handle_protocol_error(dev, irqstatus);
996
997 /* other unproccessed error interrupts */
998 m_can_handle_other_err(dev, irqstatus);
999
1000 return work_done;
1001 }
1002
m_can_rx_handler(struct net_device * dev,int quota,u32 irqstatus)1003 static int m_can_rx_handler(struct net_device *dev, int quota, u32 irqstatus)
1004 {
1005 struct m_can_classdev *cdev = netdev_priv(dev);
1006 int rx_work_or_err;
1007 int work_done = 0;
1008
1009 if (!irqstatus)
1010 goto end;
1011
1012 /* Errata workaround for issue "Needless activation of MRAF irq"
1013 * During frame reception while the MCAN is in Error Passive state
1014 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
1015 * it may happen that MCAN_IR.MRAF is set although there was no
1016 * Message RAM access failure.
1017 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
1018 * The Message RAM Access Failure interrupt routine needs to check
1019 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
1020 * In this case, reset MCAN_IR.MRAF. No further action is required.
1021 */
1022 if (cdev->version <= 31 && irqstatus & IR_MRAF &&
1023 m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
1024 struct can_berr_counter bec;
1025
1026 __m_can_get_berr_counter(dev, &bec);
1027 if (bec.rxerr == 127) {
1028 m_can_write(cdev, M_CAN_IR, IR_MRAF);
1029 irqstatus &= ~IR_MRAF;
1030 }
1031 }
1032
1033 if (irqstatus & IR_ERR_STATE)
1034 work_done += m_can_handle_state_errors(dev,
1035 m_can_read(cdev, M_CAN_PSR));
1036
1037 if (irqstatus & IR_ERR_BUS_30X)
1038 work_done += m_can_handle_bus_errors(dev, irqstatus,
1039 m_can_read(cdev, M_CAN_PSR));
1040
1041 if (irqstatus & IR_RF0N) {
1042 rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done));
1043 if (rx_work_or_err < 0)
1044 return rx_work_or_err;
1045
1046 work_done += rx_work_or_err;
1047 }
1048 end:
1049 return work_done;
1050 }
1051
m_can_poll(struct napi_struct * napi,int quota)1052 static int m_can_poll(struct napi_struct *napi, int quota)
1053 {
1054 struct net_device *dev = napi->dev;
1055 struct m_can_classdev *cdev = netdev_priv(dev);
1056 int work_done;
1057 u32 irqstatus;
1058
1059 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
1060
1061 work_done = m_can_rx_handler(dev, quota, irqstatus);
1062
1063 /* Don't re-enable interrupts if the driver had a fatal error
1064 * (e.g., FIFO read failure).
1065 */
1066 if (work_done >= 0 && work_done < quota) {
1067 napi_complete_done(napi, work_done);
1068 m_can_enable_all_interrupts(cdev);
1069 }
1070
1071 return work_done;
1072 }
1073
1074 /* Echo tx skb and update net stats. Peripherals use rx-offload for
1075 * echo. timestamp is used for peripherals to ensure correct ordering
1076 * by rx-offload, and is ignored for non-peripherals.
1077 */
m_can_tx_update_stats(struct m_can_classdev * cdev,unsigned int msg_mark,u32 timestamp)1078 static unsigned int m_can_tx_update_stats(struct m_can_classdev *cdev,
1079 unsigned int msg_mark, u32 timestamp)
1080 {
1081 struct net_device *dev = cdev->net;
1082 struct net_device_stats *stats = &dev->stats;
1083 unsigned int frame_len;
1084
1085 if (cdev->is_peripheral)
1086 stats->tx_bytes +=
1087 can_rx_offload_get_echo_skb_queue_timestamp(&cdev->offload,
1088 msg_mark,
1089 timestamp,
1090 &frame_len);
1091 else
1092 stats->tx_bytes += can_get_echo_skb(dev, msg_mark, &frame_len);
1093
1094 stats->tx_packets++;
1095
1096 return frame_len;
1097 }
1098
m_can_finish_tx(struct m_can_classdev * cdev,int transmitted,unsigned int transmitted_frame_len)1099 static void m_can_finish_tx(struct m_can_classdev *cdev, int transmitted,
1100 unsigned int transmitted_frame_len)
1101 {
1102 unsigned long irqflags;
1103
1104 netdev_completed_queue(cdev->net, transmitted, transmitted_frame_len);
1105
1106 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
1107 if (cdev->tx_fifo_in_flight >= cdev->tx_fifo_size && transmitted > 0)
1108 netif_wake_queue(cdev->net);
1109 cdev->tx_fifo_in_flight -= transmitted;
1110 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
1111 }
1112
m_can_start_tx(struct m_can_classdev * cdev)1113 static netdev_tx_t m_can_start_tx(struct m_can_classdev *cdev)
1114 {
1115 unsigned long irqflags;
1116 int tx_fifo_in_flight;
1117
1118 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
1119 tx_fifo_in_flight = cdev->tx_fifo_in_flight + 1;
1120 if (tx_fifo_in_flight >= cdev->tx_fifo_size) {
1121 netif_stop_queue(cdev->net);
1122 if (tx_fifo_in_flight > cdev->tx_fifo_size) {
1123 netdev_err_once(cdev->net, "hard_xmit called while TX FIFO full\n");
1124 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
1125 return NETDEV_TX_BUSY;
1126 }
1127 }
1128 cdev->tx_fifo_in_flight = tx_fifo_in_flight;
1129 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
1130
1131 return NETDEV_TX_OK;
1132 }
1133
m_can_echo_tx_event(struct net_device * dev)1134 static int m_can_echo_tx_event(struct net_device *dev)
1135 {
1136 u32 txe_count = 0;
1137 u32 m_can_txefs;
1138 u32 fgi = 0;
1139 int ack_fgi = -1;
1140 int i = 0;
1141 int err = 0;
1142 unsigned int msg_mark;
1143 int processed = 0;
1144 unsigned int processed_frame_len = 0;
1145
1146 struct m_can_classdev *cdev = netdev_priv(dev);
1147
1148 /* read tx event fifo status */
1149 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
1150
1151 /* Get Tx Event fifo element count */
1152 txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs);
1153 fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_txefs);
1154
1155 /* Get and process all sent elements */
1156 for (i = 0; i < txe_count; i++) {
1157 u32 txe, timestamp = 0;
1158
1159 /* get message marker, timestamp */
1160 err = m_can_txe_fifo_read(cdev, fgi, 4, &txe);
1161 if (err) {
1162 netdev_err(dev, "TXE FIFO read returned %d\n", err);
1163 break;
1164 }
1165
1166 msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe);
1167 timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16;
1168
1169 ack_fgi = fgi;
1170 fgi = (++fgi >= cdev->mcfg[MRAM_TXE].num ? 0 : fgi);
1171
1172 /* update stats */
1173 processed_frame_len += m_can_tx_update_stats(cdev, msg_mark,
1174 timestamp);
1175
1176 ++processed;
1177 }
1178
1179 if (ack_fgi != -1)
1180 m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
1181 ack_fgi));
1182
1183 m_can_finish_tx(cdev, processed, processed_frame_len);
1184
1185 return err;
1186 }
1187
m_can_coalescing_update(struct m_can_classdev * cdev,u32 ir)1188 static void m_can_coalescing_update(struct m_can_classdev *cdev, u32 ir)
1189 {
1190 u32 new_interrupts = cdev->active_interrupts;
1191 bool enable_rx_timer = false;
1192 bool enable_tx_timer = false;
1193
1194 if (!cdev->net->irq)
1195 return;
1196
1197 if (cdev->rx_coalesce_usecs_irq > 0 && (ir & (IR_RF0N | IR_RF0W))) {
1198 enable_rx_timer = true;
1199 new_interrupts &= ~IR_RF0N;
1200 }
1201 if (cdev->tx_coalesce_usecs_irq > 0 && (ir & (IR_TEFN | IR_TEFW))) {
1202 enable_tx_timer = true;
1203 new_interrupts &= ~IR_TEFN;
1204 }
1205 if (!enable_rx_timer && !hrtimer_active(&cdev->hrtimer))
1206 new_interrupts |= IR_RF0N;
1207 if (!enable_tx_timer && !hrtimer_active(&cdev->hrtimer))
1208 new_interrupts |= IR_TEFN;
1209
1210 m_can_interrupt_enable(cdev, new_interrupts);
1211 if (enable_rx_timer | enable_tx_timer)
1212 hrtimer_start(&cdev->hrtimer, cdev->irq_timer_wait,
1213 HRTIMER_MODE_REL);
1214 }
1215
1216 /* This interrupt handler is called either from the interrupt thread or a
1217 * hrtimer. This has implications like cancelling a timer won't be possible
1218 * blocking.
1219 */
m_can_interrupt_handler(struct m_can_classdev * cdev)1220 static int m_can_interrupt_handler(struct m_can_classdev *cdev)
1221 {
1222 struct net_device *dev = cdev->net;
1223 u32 ir = 0, ir_read;
1224 int ret;
1225
1226 if (pm_runtime_suspended(cdev->dev))
1227 return IRQ_NONE;
1228
1229 /* The m_can controller signals its interrupt status as a level, but
1230 * depending in the integration the CPU may interpret the signal as
1231 * edge-triggered (for example with m_can_pci). For these
1232 * edge-triggered integrations, we must observe that IR is 0 at least
1233 * once to be sure that the next interrupt will generate an edge.
1234 */
1235 while ((ir_read = m_can_read(cdev, M_CAN_IR)) != 0) {
1236 ir |= ir_read;
1237
1238 /* ACK all irqs */
1239 m_can_write(cdev, M_CAN_IR, ir);
1240
1241 if (!cdev->irq_edge_triggered)
1242 break;
1243 }
1244
1245 m_can_coalescing_update(cdev, ir);
1246 if (!ir)
1247 return IRQ_NONE;
1248
1249 if (cdev->ops->clear_interrupts)
1250 cdev->ops->clear_interrupts(cdev);
1251
1252 /* schedule NAPI in case of
1253 * - rx IRQ
1254 * - state change IRQ
1255 * - bus error IRQ and bus error reporting
1256 */
1257 if (ir & (IR_RF0N | IR_RF0W | IR_ERR_ALL_30X)) {
1258 cdev->irqstatus = ir;
1259 if (!cdev->is_peripheral) {
1260 m_can_disable_all_interrupts(cdev);
1261 napi_schedule(&cdev->napi);
1262 } else {
1263 ret = m_can_rx_handler(dev, NAPI_POLL_WEIGHT, ir);
1264 if (ret < 0)
1265 return ret;
1266 }
1267 }
1268
1269 if (cdev->version == 30) {
1270 if (ir & IR_TC) {
1271 /* Transmission Complete Interrupt*/
1272 u32 timestamp = 0;
1273 unsigned int frame_len;
1274
1275 if (cdev->is_peripheral)
1276 timestamp = m_can_get_timestamp(cdev);
1277 frame_len = m_can_tx_update_stats(cdev, 0, timestamp);
1278 m_can_finish_tx(cdev, 1, frame_len);
1279 }
1280 } else {
1281 if (ir & (IR_TEFN | IR_TEFW)) {
1282 /* New TX FIFO Element arrived */
1283 ret = m_can_echo_tx_event(dev);
1284 if (ret != 0)
1285 return ret;
1286 }
1287 }
1288
1289 if (cdev->is_peripheral)
1290 can_rx_offload_threaded_irq_finish(&cdev->offload);
1291
1292 return IRQ_HANDLED;
1293 }
1294
m_can_isr(int irq,void * dev_id)1295 static irqreturn_t m_can_isr(int irq, void *dev_id)
1296 {
1297 struct net_device *dev = (struct net_device *)dev_id;
1298 struct m_can_classdev *cdev = netdev_priv(dev);
1299 int ret;
1300
1301 ret = m_can_interrupt_handler(cdev);
1302 if (ret < 0) {
1303 m_can_disable_all_interrupts(cdev);
1304 return IRQ_HANDLED;
1305 }
1306
1307 return ret;
1308 }
1309
m_can_coalescing_timer(struct hrtimer * timer)1310 static enum hrtimer_restart m_can_coalescing_timer(struct hrtimer *timer)
1311 {
1312 struct m_can_classdev *cdev = container_of(timer, struct m_can_classdev, hrtimer);
1313
1314 if (cdev->can.state == CAN_STATE_BUS_OFF ||
1315 cdev->can.state == CAN_STATE_STOPPED)
1316 return HRTIMER_NORESTART;
1317
1318 irq_wake_thread(cdev->net->irq, cdev->net);
1319
1320 return HRTIMER_NORESTART;
1321 }
1322
1323 static const struct can_bittiming_const m_can_bittiming_const_30X = {
1324 .name = KBUILD_MODNAME,
1325 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1326 .tseg1_max = 64,
1327 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1328 .tseg2_max = 16,
1329 .sjw_max = 16,
1330 .brp_min = 1,
1331 .brp_max = 1024,
1332 .brp_inc = 1,
1333 };
1334
1335 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1336 .name = KBUILD_MODNAME,
1337 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1338 .tseg1_max = 16,
1339 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1340 .tseg2_max = 8,
1341 .sjw_max = 4,
1342 .brp_min = 1,
1343 .brp_max = 32,
1344 .brp_inc = 1,
1345 };
1346
1347 static const struct can_bittiming_const m_can_bittiming_const_31X = {
1348 .name = KBUILD_MODNAME,
1349 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1350 .tseg1_max = 256,
1351 .tseg2_min = 2, /* Time segment 2 = phase_seg2 */
1352 .tseg2_max = 128,
1353 .sjw_max = 128,
1354 .brp_min = 1,
1355 .brp_max = 512,
1356 .brp_inc = 1,
1357 };
1358
1359 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1360 .name = KBUILD_MODNAME,
1361 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */
1362 .tseg1_max = 32,
1363 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1364 .tseg2_max = 16,
1365 .sjw_max = 16,
1366 .brp_min = 1,
1367 .brp_max = 32,
1368 .brp_inc = 1,
1369 };
1370
m_can_set_bittiming(struct net_device * dev)1371 static int m_can_set_bittiming(struct net_device *dev)
1372 {
1373 struct m_can_classdev *cdev = netdev_priv(dev);
1374 const struct can_bittiming *bt = &cdev->can.bittiming;
1375 const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1376 u16 brp, sjw, tseg1, tseg2;
1377 u32 reg_btp;
1378
1379 brp = bt->brp - 1;
1380 sjw = bt->sjw - 1;
1381 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1382 tseg2 = bt->phase_seg2 - 1;
1383 reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
1384 FIELD_PREP(NBTP_NSJW_MASK, sjw) |
1385 FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
1386 FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
1387 m_can_write(cdev, M_CAN_NBTP, reg_btp);
1388
1389 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1390 reg_btp = 0;
1391 brp = dbt->brp - 1;
1392 sjw = dbt->sjw - 1;
1393 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1394 tseg2 = dbt->phase_seg2 - 1;
1395
1396 /* TDC is only needed for bitrates beyond 2.5 MBit/s.
1397 * This is mentioned in the "Bit Time Requirements for CAN FD"
1398 * paper presented at the International CAN Conference 2013
1399 */
1400 if (dbt->bitrate > 2500000) {
1401 u32 tdco, ssp;
1402
1403 /* Use the same value of secondary sampling point
1404 * as the data sampling point
1405 */
1406 ssp = dbt->sample_point;
1407
1408 /* Equation based on Bosch's M_CAN User Manual's
1409 * Transmitter Delay Compensation Section
1410 */
1411 tdco = (cdev->can.clock.freq / 1000) *
1412 ssp / dbt->bitrate;
1413
1414 /* Max valid TDCO value is 127 */
1415 if (tdco > 127) {
1416 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1417 tdco);
1418 tdco = 127;
1419 }
1420
1421 reg_btp |= DBTP_TDC;
1422 m_can_write(cdev, M_CAN_TDCR,
1423 FIELD_PREP(TDCR_TDCO_MASK, tdco));
1424 }
1425
1426 reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) |
1427 FIELD_PREP(DBTP_DSJW_MASK, sjw) |
1428 FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) |
1429 FIELD_PREP(DBTP_DTSEG2_MASK, tseg2);
1430
1431 m_can_write(cdev, M_CAN_DBTP, reg_btp);
1432 }
1433
1434 return 0;
1435 }
1436
1437 /* Configure M_CAN chip:
1438 * - set rx buffer/fifo element size
1439 * - configure rx fifo
1440 * - accept non-matching frame into fifo 0
1441 * - configure tx buffer
1442 * - >= v3.1.x: TX FIFO is used
1443 * - configure mode
1444 * - setup bittiming
1445 * - configure timestamp generation
1446 */
m_can_chip_config(struct net_device * dev)1447 static int m_can_chip_config(struct net_device *dev)
1448 {
1449 struct m_can_classdev *cdev = netdev_priv(dev);
1450 u32 interrupts = IR_ALL_INT;
1451 u32 cccr, test;
1452 int err;
1453
1454 err = m_can_init_ram(cdev);
1455 if (err) {
1456 dev_err(cdev->dev, "Message RAM configuration failed\n");
1457 return err;
1458 }
1459
1460 /* Disable unused interrupts */
1461 interrupts &= ~(IR_ARA | IR_ELO | IR_DRX | IR_TEFF | IR_TFE | IR_TCF |
1462 IR_HPM | IR_RF1F | IR_RF1W | IR_RF1N | IR_RF0F |
1463 IR_TSW);
1464
1465 err = m_can_config_enable(cdev);
1466 if (err)
1467 return err;
1468
1469 /* RX Buffer/FIFO Element Size 64 bytes data field */
1470 m_can_write(cdev, M_CAN_RXESC,
1471 FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) |
1472 FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) |
1473 FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B));
1474
1475 /* Accept Non-matching Frames Into FIFO 0 */
1476 m_can_write(cdev, M_CAN_GFC, 0x0);
1477
1478 if (cdev->version == 30) {
1479 /* only support one Tx Buffer currently */
1480 m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) |
1481 cdev->mcfg[MRAM_TXB].off);
1482 } else {
1483 /* TX FIFO is used for newer IP Core versions */
1484 m_can_write(cdev, M_CAN_TXBC,
1485 FIELD_PREP(TXBC_TFQS_MASK,
1486 cdev->mcfg[MRAM_TXB].num) |
1487 cdev->mcfg[MRAM_TXB].off);
1488 }
1489
1490 /* support 64 bytes payload */
1491 m_can_write(cdev, M_CAN_TXESC,
1492 FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B));
1493
1494 /* TX Event FIFO */
1495 if (cdev->version == 30) {
1496 m_can_write(cdev, M_CAN_TXEFC,
1497 FIELD_PREP(TXEFC_EFS_MASK, 1) |
1498 cdev->mcfg[MRAM_TXE].off);
1499 } else {
1500 /* Full TX Event FIFO is used */
1501 m_can_write(cdev, M_CAN_TXEFC,
1502 FIELD_PREP(TXEFC_EFWM_MASK,
1503 cdev->tx_max_coalesced_frames_irq) |
1504 FIELD_PREP(TXEFC_EFS_MASK,
1505 cdev->mcfg[MRAM_TXE].num) |
1506 cdev->mcfg[MRAM_TXE].off);
1507 }
1508
1509 /* rx fifo configuration, blocking mode, fifo size 1 */
1510 m_can_write(cdev, M_CAN_RXF0C,
1511 FIELD_PREP(RXFC_FWM_MASK, cdev->rx_max_coalesced_frames_irq) |
1512 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
1513 cdev->mcfg[MRAM_RXF0].off);
1514
1515 m_can_write(cdev, M_CAN_RXF1C,
1516 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) |
1517 cdev->mcfg[MRAM_RXF1].off);
1518
1519 cccr = m_can_read(cdev, M_CAN_CCCR);
1520 test = m_can_read(cdev, M_CAN_TEST);
1521 test &= ~TEST_LBCK;
1522 if (cdev->version == 30) {
1523 /* Version 3.0.x */
1524
1525 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1526 FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) |
1527 FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK)));
1528
1529 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1530 cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS);
1531
1532 } else {
1533 /* Version 3.1.x or 3.2.x */
1534 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1535 CCCR_NISO | CCCR_DAR);
1536
1537 /* Only 3.2.x has NISO Bit implemented */
1538 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1539 cccr |= CCCR_NISO;
1540
1541 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1542 cccr |= (CCCR_BRSE | CCCR_FDOE);
1543 }
1544
1545 /* Loopback Mode */
1546 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1547 cccr |= CCCR_TEST | CCCR_MON;
1548 test |= TEST_LBCK;
1549 }
1550
1551 /* Enable Monitoring (all versions) */
1552 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1553 cccr |= CCCR_MON;
1554
1555 /* Disable Auto Retransmission (all versions) */
1556 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1557 cccr |= CCCR_DAR;
1558
1559 /* Write config */
1560 m_can_write(cdev, M_CAN_CCCR, cccr);
1561 m_can_write(cdev, M_CAN_TEST, test);
1562
1563 /* Enable interrupts */
1564 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) {
1565 if (cdev->version == 30)
1566 interrupts &= ~(IR_ERR_LEC_30X);
1567 else
1568 interrupts &= ~(IR_ERR_LEC_31X);
1569 }
1570 cdev->active_interrupts = 0;
1571 m_can_interrupt_enable(cdev, interrupts);
1572
1573 /* route all interrupts to INT0 */
1574 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1575
1576 /* set bittiming params */
1577 m_can_set_bittiming(dev);
1578
1579 /* enable internal timestamp generation, with a prescaler of 16. The
1580 * prescaler is applied to the nominal bit timing
1581 */
1582 m_can_write(cdev, M_CAN_TSCC,
1583 FIELD_PREP(TSCC_TCP_MASK, 0xf) |
1584 FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL));
1585
1586 err = m_can_config_disable(cdev);
1587 if (err)
1588 return err;
1589
1590 if (cdev->ops->init)
1591 cdev->ops->init(cdev);
1592
1593 return 0;
1594 }
1595
m_can_start(struct net_device * dev)1596 static int m_can_start(struct net_device *dev)
1597 {
1598 struct m_can_classdev *cdev = netdev_priv(dev);
1599 int ret;
1600
1601 /* basic m_can configuration */
1602 ret = m_can_chip_config(dev);
1603 if (ret)
1604 return ret;
1605
1606 netdev_queue_set_dql_min_limit(netdev_get_tx_queue(cdev->net, 0),
1607 cdev->tx_max_coalesced_frames);
1608
1609 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1610
1611 m_can_enable_all_interrupts(cdev);
1612
1613 if (cdev->version > 30)
1614 cdev->tx_fifo_putidx = FIELD_GET(TXFQS_TFQPI_MASK,
1615 m_can_read(cdev, M_CAN_TXFQS));
1616
1617 ret = m_can_cccr_update_bits(cdev, CCCR_INIT, 0);
1618 if (ret)
1619 netdev_err(dev, "failed to enter normal mode\n");
1620
1621 return ret;
1622 }
1623
m_can_set_mode(struct net_device * dev,enum can_mode mode)1624 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1625 {
1626 switch (mode) {
1627 case CAN_MODE_START:
1628 m_can_clean(dev);
1629 m_can_start(dev);
1630 netif_wake_queue(dev);
1631 break;
1632 default:
1633 return -EOPNOTSUPP;
1634 }
1635
1636 return 0;
1637 }
1638
1639 /* Checks core release number of M_CAN
1640 * returns 0 if an unsupported device is detected
1641 * else it returns the release and step coded as:
1642 * return value = 10 * <release> + 1 * <step>
1643 */
m_can_check_core_release(struct m_can_classdev * cdev)1644 static int m_can_check_core_release(struct m_can_classdev *cdev)
1645 {
1646 u32 crel_reg;
1647 u8 rel;
1648 u8 step;
1649 int res;
1650
1651 /* Read Core Release Version and split into version number
1652 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1653 */
1654 crel_reg = m_can_read(cdev, M_CAN_CREL);
1655 rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg);
1656 step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg);
1657
1658 if (rel == 3) {
1659 /* M_CAN v3.x.y: create return value */
1660 res = 30 + step;
1661 } else {
1662 /* Unsupported M_CAN version */
1663 res = 0;
1664 }
1665
1666 return res;
1667 }
1668
1669 /* Selectable Non ISO support only in version 3.2.x
1670 * Return 1 if the bit is writable, 0 if it is not, or negative on error.
1671 */
m_can_niso_supported(struct m_can_classdev * cdev)1672 static int m_can_niso_supported(struct m_can_classdev *cdev)
1673 {
1674 int ret, niso;
1675
1676 ret = m_can_config_enable(cdev);
1677 if (ret)
1678 return ret;
1679
1680 /* First try to set the NISO bit. */
1681 niso = m_can_cccr_update_bits(cdev, CCCR_NISO, CCCR_NISO);
1682
1683 /* Then clear the it again. */
1684 ret = m_can_cccr_update_bits(cdev, CCCR_NISO, 0);
1685 if (ret) {
1686 dev_err(cdev->dev, "failed to revert the NON-ISO bit in CCCR\n");
1687 return ret;
1688 }
1689
1690 ret = m_can_config_disable(cdev);
1691 if (ret)
1692 return ret;
1693
1694 return niso == 0;
1695 }
1696
m_can_dev_setup(struct m_can_classdev * cdev)1697 static int m_can_dev_setup(struct m_can_classdev *cdev)
1698 {
1699 struct net_device *dev = cdev->net;
1700 int m_can_version, err, niso;
1701
1702 m_can_version = m_can_check_core_release(cdev);
1703 /* return if unsupported version */
1704 if (!m_can_version) {
1705 dev_err(cdev->dev, "Unsupported version number: %2d",
1706 m_can_version);
1707 return -EINVAL;
1708 }
1709
1710 /* Write the INIT bit, in case no hardware reset has happened before
1711 * the probe (for example, it was observed that the Intel Elkhart Lake
1712 * SoCs do not properly reset the CAN controllers on reboot)
1713 */
1714 err = m_can_cccr_update_bits(cdev, CCCR_INIT, CCCR_INIT);
1715 if (err)
1716 return err;
1717
1718 if (!cdev->is_peripheral)
1719 netif_napi_add(dev, &cdev->napi, m_can_poll);
1720
1721 /* Shared properties of all M_CAN versions */
1722 cdev->version = m_can_version;
1723 cdev->can.do_set_mode = m_can_set_mode;
1724 cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1725
1726 /* Set M_CAN supported operations */
1727 cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1728 CAN_CTRLMODE_LISTENONLY |
1729 CAN_CTRLMODE_BERR_REPORTING |
1730 CAN_CTRLMODE_FD |
1731 CAN_CTRLMODE_ONE_SHOT;
1732
1733 /* Set properties depending on M_CAN version */
1734 switch (cdev->version) {
1735 case 30:
1736 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1737 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1738 if (err)
1739 return err;
1740 cdev->can.bittiming_const = &m_can_bittiming_const_30X;
1741 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X;
1742 break;
1743 case 31:
1744 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1745 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1746 if (err)
1747 return err;
1748 cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1749 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1750 break;
1751 case 32:
1752 case 33:
1753 /* Support both MCAN version v3.2.x and v3.3.0 */
1754 cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1755 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1756
1757 niso = m_can_niso_supported(cdev);
1758 if (niso < 0)
1759 return niso;
1760 if (niso)
1761 cdev->can.ctrlmode_supported |= CAN_CTRLMODE_FD_NON_ISO;
1762 break;
1763 default:
1764 dev_err(cdev->dev, "Unsupported version number: %2d",
1765 cdev->version);
1766 return -EINVAL;
1767 }
1768
1769 return 0;
1770 }
1771
m_can_stop(struct net_device * dev)1772 static void m_can_stop(struct net_device *dev)
1773 {
1774 struct m_can_classdev *cdev = netdev_priv(dev);
1775 int ret;
1776
1777 /* disable all interrupts */
1778 m_can_disable_all_interrupts(cdev);
1779
1780 /* Set init mode to disengage from the network */
1781 ret = m_can_cccr_update_bits(cdev, CCCR_INIT, CCCR_INIT);
1782 if (ret)
1783 netdev_err(dev, "failed to enter standby mode: %pe\n",
1784 ERR_PTR(ret));
1785
1786 /* set the state as STOPPED */
1787 cdev->can.state = CAN_STATE_STOPPED;
1788 }
1789
m_can_close(struct net_device * dev)1790 static int m_can_close(struct net_device *dev)
1791 {
1792 struct m_can_classdev *cdev = netdev_priv(dev);
1793
1794 netif_stop_queue(dev);
1795
1796 m_can_stop(dev);
1797 if (dev->irq)
1798 free_irq(dev->irq, dev);
1799
1800 m_can_clean(dev);
1801
1802 if (cdev->is_peripheral) {
1803 destroy_workqueue(cdev->tx_wq);
1804 cdev->tx_wq = NULL;
1805 can_rx_offload_disable(&cdev->offload);
1806 } else {
1807 napi_disable(&cdev->napi);
1808 }
1809
1810 close_candev(dev);
1811
1812 m_can_clk_stop(cdev);
1813 phy_power_off(cdev->transceiver);
1814
1815 return 0;
1816 }
1817
m_can_tx_handler(struct m_can_classdev * cdev,struct sk_buff * skb)1818 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev,
1819 struct sk_buff *skb)
1820 {
1821 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1822 u8 len_padded = DIV_ROUND_UP(cf->len, 4);
1823 struct m_can_fifo_element fifo_element;
1824 struct net_device *dev = cdev->net;
1825 u32 cccr, fdflags;
1826 int err;
1827 u32 putidx;
1828 unsigned int frame_len = can_skb_get_frame_len(skb);
1829
1830 /* Generate ID field for TX buffer Element */
1831 /* Common to all supported M_CAN versions */
1832 if (cf->can_id & CAN_EFF_FLAG) {
1833 fifo_element.id = cf->can_id & CAN_EFF_MASK;
1834 fifo_element.id |= TX_BUF_XTD;
1835 } else {
1836 fifo_element.id = ((cf->can_id & CAN_SFF_MASK) << 18);
1837 }
1838
1839 if (cf->can_id & CAN_RTR_FLAG)
1840 fifo_element.id |= TX_BUF_RTR;
1841
1842 if (cdev->version == 30) {
1843 netif_stop_queue(dev);
1844
1845 fifo_element.dlc = can_fd_len2dlc(cf->len) << 16;
1846
1847 /* Write the frame ID, DLC, and payload to the FIFO element. */
1848 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_element, 2);
1849 if (err)
1850 goto out_fail;
1851
1852 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA,
1853 cf->data, len_padded);
1854 if (err)
1855 goto out_fail;
1856
1857 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1858 cccr = m_can_read(cdev, M_CAN_CCCR);
1859 cccr &= ~CCCR_CMR_MASK;
1860 if (can_is_canfd_skb(skb)) {
1861 if (cf->flags & CANFD_BRS)
1862 cccr |= FIELD_PREP(CCCR_CMR_MASK,
1863 CCCR_CMR_CANFD_BRS);
1864 else
1865 cccr |= FIELD_PREP(CCCR_CMR_MASK,
1866 CCCR_CMR_CANFD);
1867 } else {
1868 cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN);
1869 }
1870 m_can_write(cdev, M_CAN_CCCR, cccr);
1871 }
1872 m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1873
1874 can_put_echo_skb(skb, dev, 0, frame_len);
1875
1876 m_can_write(cdev, M_CAN_TXBAR, 0x1);
1877 /* End of xmit function for version 3.0.x */
1878 } else {
1879 /* Transmit routine for version >= v3.1.x */
1880
1881 /* get put index for frame */
1882 putidx = cdev->tx_fifo_putidx;
1883
1884 /* Construct DLC Field, with CAN-FD configuration.
1885 * Use the put index of the fifo as the message marker,
1886 * used in the TX interrupt for sending the correct echo frame.
1887 */
1888
1889 /* get CAN FD configuration of frame */
1890 fdflags = 0;
1891 if (can_is_canfd_skb(skb)) {
1892 fdflags |= TX_BUF_FDF;
1893 if (cf->flags & CANFD_BRS)
1894 fdflags |= TX_BUF_BRS;
1895 }
1896
1897 fifo_element.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
1898 FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) |
1899 fdflags | TX_BUF_EFC;
1900
1901 memcpy_and_pad(fifo_element.data, CANFD_MAX_DLEN, &cf->data,
1902 cf->len, 0);
1903
1904 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID,
1905 &fifo_element, 2 + len_padded);
1906 if (err)
1907 goto out_fail;
1908
1909 /* Push loopback echo.
1910 * Will be looped back on TX interrupt based on message marker
1911 */
1912 can_put_echo_skb(skb, dev, putidx, frame_len);
1913
1914 if (cdev->is_peripheral) {
1915 /* Delay enabling TX FIFO element */
1916 cdev->tx_peripheral_submit |= BIT(putidx);
1917 } else {
1918 /* Enable TX FIFO element to start transfer */
1919 m_can_write(cdev, M_CAN_TXBAR, BIT(putidx));
1920 }
1921 cdev->tx_fifo_putidx = (++cdev->tx_fifo_putidx >= cdev->can.echo_skb_max ?
1922 0 : cdev->tx_fifo_putidx);
1923 }
1924
1925 return NETDEV_TX_OK;
1926
1927 out_fail:
1928 netdev_err(dev, "FIFO write returned %d\n", err);
1929 m_can_disable_all_interrupts(cdev);
1930 return NETDEV_TX_BUSY;
1931 }
1932
m_can_tx_submit(struct m_can_classdev * cdev)1933 static void m_can_tx_submit(struct m_can_classdev *cdev)
1934 {
1935 if (cdev->version == 30)
1936 return;
1937 if (!cdev->is_peripheral)
1938 return;
1939
1940 m_can_write(cdev, M_CAN_TXBAR, cdev->tx_peripheral_submit);
1941 cdev->tx_peripheral_submit = 0;
1942 }
1943
m_can_tx_work_queue(struct work_struct * ws)1944 static void m_can_tx_work_queue(struct work_struct *ws)
1945 {
1946 struct m_can_tx_op *op = container_of(ws, struct m_can_tx_op, work);
1947 struct m_can_classdev *cdev = op->cdev;
1948 struct sk_buff *skb = op->skb;
1949
1950 op->skb = NULL;
1951 m_can_tx_handler(cdev, skb);
1952 if (op->submit)
1953 m_can_tx_submit(cdev);
1954 }
1955
m_can_tx_queue_skb(struct m_can_classdev * cdev,struct sk_buff * skb,bool submit)1956 static void m_can_tx_queue_skb(struct m_can_classdev *cdev, struct sk_buff *skb,
1957 bool submit)
1958 {
1959 cdev->tx_ops[cdev->next_tx_op].skb = skb;
1960 cdev->tx_ops[cdev->next_tx_op].submit = submit;
1961 queue_work(cdev->tx_wq, &cdev->tx_ops[cdev->next_tx_op].work);
1962
1963 ++cdev->next_tx_op;
1964 if (cdev->next_tx_op >= cdev->tx_fifo_size)
1965 cdev->next_tx_op = 0;
1966 }
1967
m_can_start_peripheral_xmit(struct m_can_classdev * cdev,struct sk_buff * skb)1968 static netdev_tx_t m_can_start_peripheral_xmit(struct m_can_classdev *cdev,
1969 struct sk_buff *skb)
1970 {
1971 bool submit;
1972
1973 ++cdev->nr_txs_without_submit;
1974 if (cdev->nr_txs_without_submit >= cdev->tx_max_coalesced_frames ||
1975 !netdev_xmit_more()) {
1976 cdev->nr_txs_without_submit = 0;
1977 submit = true;
1978 } else {
1979 submit = false;
1980 }
1981 m_can_tx_queue_skb(cdev, skb, submit);
1982
1983 return NETDEV_TX_OK;
1984 }
1985
m_can_start_xmit(struct sk_buff * skb,struct net_device * dev)1986 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1987 struct net_device *dev)
1988 {
1989 struct m_can_classdev *cdev = netdev_priv(dev);
1990 unsigned int frame_len;
1991 netdev_tx_t ret;
1992
1993 if (can_dev_dropped_skb(dev, skb))
1994 return NETDEV_TX_OK;
1995
1996 frame_len = can_skb_get_frame_len(skb);
1997
1998 if (cdev->can.state == CAN_STATE_BUS_OFF) {
1999 m_can_clean(cdev->net);
2000 return NETDEV_TX_OK;
2001 }
2002
2003 ret = m_can_start_tx(cdev);
2004 if (ret != NETDEV_TX_OK)
2005 return ret;
2006
2007 netdev_sent_queue(dev, frame_len);
2008
2009 if (cdev->is_peripheral)
2010 ret = m_can_start_peripheral_xmit(cdev, skb);
2011 else
2012 ret = m_can_tx_handler(cdev, skb);
2013
2014 if (ret != NETDEV_TX_OK)
2015 netdev_completed_queue(dev, 1, frame_len);
2016
2017 return ret;
2018 }
2019
hrtimer_callback(struct hrtimer * timer)2020 static enum hrtimer_restart hrtimer_callback(struct hrtimer *timer)
2021 {
2022 struct m_can_classdev *cdev = container_of(timer, struct
2023 m_can_classdev, hrtimer);
2024 int ret;
2025
2026 if (cdev->can.state == CAN_STATE_BUS_OFF ||
2027 cdev->can.state == CAN_STATE_STOPPED)
2028 return HRTIMER_NORESTART;
2029
2030 ret = m_can_interrupt_handler(cdev);
2031
2032 /* On error or if napi is scheduled to read, stop the timer */
2033 if (ret < 0 || napi_is_scheduled(&cdev->napi))
2034 return HRTIMER_NORESTART;
2035
2036 hrtimer_forward_now(timer, ms_to_ktime(HRTIMER_POLL_INTERVAL_MS));
2037
2038 return HRTIMER_RESTART;
2039 }
2040
m_can_open(struct net_device * dev)2041 static int m_can_open(struct net_device *dev)
2042 {
2043 struct m_can_classdev *cdev = netdev_priv(dev);
2044 int err;
2045
2046 err = phy_power_on(cdev->transceiver);
2047 if (err)
2048 return err;
2049
2050 err = m_can_clk_start(cdev);
2051 if (err)
2052 goto out_phy_power_off;
2053
2054 /* open the can device */
2055 err = open_candev(dev);
2056 if (err) {
2057 netdev_err(dev, "failed to open can device\n");
2058 goto exit_disable_clks;
2059 }
2060
2061 if (cdev->is_peripheral)
2062 can_rx_offload_enable(&cdev->offload);
2063 else
2064 napi_enable(&cdev->napi);
2065
2066 /* register interrupt handler */
2067 if (cdev->is_peripheral) {
2068 cdev->tx_wq = alloc_ordered_workqueue("mcan_wq",
2069 WQ_FREEZABLE | WQ_MEM_RECLAIM);
2070 if (!cdev->tx_wq) {
2071 err = -ENOMEM;
2072 goto out_wq_fail;
2073 }
2074
2075 for (int i = 0; i != cdev->tx_fifo_size; ++i) {
2076 cdev->tx_ops[i].cdev = cdev;
2077 INIT_WORK(&cdev->tx_ops[i].work, m_can_tx_work_queue);
2078 }
2079
2080 err = request_threaded_irq(dev->irq, NULL, m_can_isr,
2081 IRQF_ONESHOT,
2082 dev->name, dev);
2083 } else if (dev->irq) {
2084 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
2085 dev);
2086 }
2087
2088 if (err < 0) {
2089 netdev_err(dev, "failed to request interrupt\n");
2090 goto exit_irq_fail;
2091 }
2092
2093 /* start the m_can controller */
2094 err = m_can_start(dev);
2095 if (err)
2096 goto exit_start_fail;
2097
2098 netif_start_queue(dev);
2099
2100 return 0;
2101
2102 exit_start_fail:
2103 if (cdev->is_peripheral || dev->irq)
2104 free_irq(dev->irq, dev);
2105 exit_irq_fail:
2106 if (cdev->is_peripheral)
2107 destroy_workqueue(cdev->tx_wq);
2108 out_wq_fail:
2109 if (cdev->is_peripheral)
2110 can_rx_offload_disable(&cdev->offload);
2111 else
2112 napi_disable(&cdev->napi);
2113 close_candev(dev);
2114 exit_disable_clks:
2115 m_can_clk_stop(cdev);
2116 out_phy_power_off:
2117 phy_power_off(cdev->transceiver);
2118 return err;
2119 }
2120
2121 static const struct net_device_ops m_can_netdev_ops = {
2122 .ndo_open = m_can_open,
2123 .ndo_stop = m_can_close,
2124 .ndo_start_xmit = m_can_start_xmit,
2125 .ndo_change_mtu = can_change_mtu,
2126 };
2127
m_can_get_coalesce(struct net_device * dev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kec,struct netlink_ext_ack * ext_ack)2128 static int m_can_get_coalesce(struct net_device *dev,
2129 struct ethtool_coalesce *ec,
2130 struct kernel_ethtool_coalesce *kec,
2131 struct netlink_ext_ack *ext_ack)
2132 {
2133 struct m_can_classdev *cdev = netdev_priv(dev);
2134
2135 ec->rx_max_coalesced_frames_irq = cdev->rx_max_coalesced_frames_irq;
2136 ec->rx_coalesce_usecs_irq = cdev->rx_coalesce_usecs_irq;
2137 ec->tx_max_coalesced_frames = cdev->tx_max_coalesced_frames;
2138 ec->tx_max_coalesced_frames_irq = cdev->tx_max_coalesced_frames_irq;
2139 ec->tx_coalesce_usecs_irq = cdev->tx_coalesce_usecs_irq;
2140
2141 return 0;
2142 }
2143
m_can_set_coalesce(struct net_device * dev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kec,struct netlink_ext_ack * ext_ack)2144 static int m_can_set_coalesce(struct net_device *dev,
2145 struct ethtool_coalesce *ec,
2146 struct kernel_ethtool_coalesce *kec,
2147 struct netlink_ext_ack *ext_ack)
2148 {
2149 struct m_can_classdev *cdev = netdev_priv(dev);
2150
2151 if (cdev->can.state != CAN_STATE_STOPPED) {
2152 netdev_err(dev, "Device is in use, please shut it down first\n");
2153 return -EBUSY;
2154 }
2155
2156 if (ec->rx_max_coalesced_frames_irq > cdev->mcfg[MRAM_RXF0].num) {
2157 netdev_err(dev, "rx-frames-irq %u greater than the RX FIFO %u\n",
2158 ec->rx_max_coalesced_frames_irq,
2159 cdev->mcfg[MRAM_RXF0].num);
2160 return -EINVAL;
2161 }
2162 if ((ec->rx_max_coalesced_frames_irq == 0) != (ec->rx_coalesce_usecs_irq == 0)) {
2163 netdev_err(dev, "rx-frames-irq and rx-usecs-irq can only be set together\n");
2164 return -EINVAL;
2165 }
2166 if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXE].num) {
2167 netdev_err(dev, "tx-frames-irq %u greater than the TX event FIFO %u\n",
2168 ec->tx_max_coalesced_frames_irq,
2169 cdev->mcfg[MRAM_TXE].num);
2170 return -EINVAL;
2171 }
2172 if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXB].num) {
2173 netdev_err(dev, "tx-frames-irq %u greater than the TX FIFO %u\n",
2174 ec->tx_max_coalesced_frames_irq,
2175 cdev->mcfg[MRAM_TXB].num);
2176 return -EINVAL;
2177 }
2178 if ((ec->tx_max_coalesced_frames_irq == 0) != (ec->tx_coalesce_usecs_irq == 0)) {
2179 netdev_err(dev, "tx-frames-irq and tx-usecs-irq can only be set together\n");
2180 return -EINVAL;
2181 }
2182 if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXE].num) {
2183 netdev_err(dev, "tx-frames %u greater than the TX event FIFO %u\n",
2184 ec->tx_max_coalesced_frames,
2185 cdev->mcfg[MRAM_TXE].num);
2186 return -EINVAL;
2187 }
2188 if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXB].num) {
2189 netdev_err(dev, "tx-frames %u greater than the TX FIFO %u\n",
2190 ec->tx_max_coalesced_frames,
2191 cdev->mcfg[MRAM_TXB].num);
2192 return -EINVAL;
2193 }
2194 if (ec->rx_coalesce_usecs_irq != 0 && ec->tx_coalesce_usecs_irq != 0 &&
2195 ec->rx_coalesce_usecs_irq != ec->tx_coalesce_usecs_irq) {
2196 netdev_err(dev, "rx-usecs-irq %u needs to be equal to tx-usecs-irq %u if both are enabled\n",
2197 ec->rx_coalesce_usecs_irq,
2198 ec->tx_coalesce_usecs_irq);
2199 return -EINVAL;
2200 }
2201
2202 cdev->rx_max_coalesced_frames_irq = ec->rx_max_coalesced_frames_irq;
2203 cdev->rx_coalesce_usecs_irq = ec->rx_coalesce_usecs_irq;
2204 cdev->tx_max_coalesced_frames = ec->tx_max_coalesced_frames;
2205 cdev->tx_max_coalesced_frames_irq = ec->tx_max_coalesced_frames_irq;
2206 cdev->tx_coalesce_usecs_irq = ec->tx_coalesce_usecs_irq;
2207
2208 if (cdev->rx_coalesce_usecs_irq)
2209 cdev->irq_timer_wait =
2210 ns_to_ktime(cdev->rx_coalesce_usecs_irq * NSEC_PER_USEC);
2211 else
2212 cdev->irq_timer_wait =
2213 ns_to_ktime(cdev->tx_coalesce_usecs_irq * NSEC_PER_USEC);
2214
2215 return 0;
2216 }
2217
2218 static const struct ethtool_ops m_can_ethtool_ops_coalescing = {
2219 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS_IRQ |
2220 ETHTOOL_COALESCE_RX_MAX_FRAMES_IRQ |
2221 ETHTOOL_COALESCE_TX_USECS_IRQ |
2222 ETHTOOL_COALESCE_TX_MAX_FRAMES |
2223 ETHTOOL_COALESCE_TX_MAX_FRAMES_IRQ,
2224 .get_ts_info = ethtool_op_get_ts_info,
2225 .get_coalesce = m_can_get_coalesce,
2226 .set_coalesce = m_can_set_coalesce,
2227 };
2228
2229 static const struct ethtool_ops m_can_ethtool_ops = {
2230 .get_ts_info = ethtool_op_get_ts_info,
2231 };
2232
register_m_can_dev(struct m_can_classdev * cdev)2233 static int register_m_can_dev(struct m_can_classdev *cdev)
2234 {
2235 struct net_device *dev = cdev->net;
2236
2237 dev->flags |= IFF_ECHO; /* we support local echo */
2238 dev->netdev_ops = &m_can_netdev_ops;
2239 if (dev->irq && cdev->is_peripheral)
2240 dev->ethtool_ops = &m_can_ethtool_ops_coalescing;
2241 else
2242 dev->ethtool_ops = &m_can_ethtool_ops;
2243
2244 return register_candev(dev);
2245 }
2246
m_can_check_mram_cfg(struct m_can_classdev * cdev,u32 mram_max_size)2247 int m_can_check_mram_cfg(struct m_can_classdev *cdev, u32 mram_max_size)
2248 {
2249 u32 total_size;
2250
2251 total_size = cdev->mcfg[MRAM_TXB].off - cdev->mcfg[MRAM_SIDF].off +
2252 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
2253 if (total_size > mram_max_size) {
2254 dev_err(cdev->dev, "Total size of mram config(%u) exceeds mram(%u)\n",
2255 total_size, mram_max_size);
2256 return -EINVAL;
2257 }
2258
2259 return 0;
2260 }
2261 EXPORT_SYMBOL_GPL(m_can_check_mram_cfg);
2262
m_can_of_parse_mram(struct m_can_classdev * cdev,const u32 * mram_config_vals)2263 static void m_can_of_parse_mram(struct m_can_classdev *cdev,
2264 const u32 *mram_config_vals)
2265 {
2266 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
2267 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
2268 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
2269 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
2270 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
2271 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
2272 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
2273 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
2274 FIELD_MAX(RXFC_FS_MASK);
2275 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
2276 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
2277 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
2278 FIELD_MAX(RXFC_FS_MASK);
2279 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
2280 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
2281 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
2282 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
2283 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
2284 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
2285 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
2286 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
2287 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
2288 FIELD_MAX(TXBC_NDTB_MASK);
2289
2290 dev_dbg(cdev->dev,
2291 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
2292 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
2293 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
2294 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
2295 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
2296 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
2297 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
2298 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
2299 }
2300
m_can_init_ram(struct m_can_classdev * cdev)2301 int m_can_init_ram(struct m_can_classdev *cdev)
2302 {
2303 int end, i, start;
2304 int err = 0;
2305
2306 /* initialize the entire Message RAM in use to avoid possible
2307 * ECC/parity checksum errors when reading an uninitialized buffer
2308 */
2309 start = cdev->mcfg[MRAM_SIDF].off;
2310 end = cdev->mcfg[MRAM_TXB].off +
2311 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
2312
2313 for (i = start; i < end; i += 4) {
2314 err = m_can_fifo_write_no_off(cdev, i, 0x0);
2315 if (err)
2316 break;
2317 }
2318
2319 return err;
2320 }
2321 EXPORT_SYMBOL_GPL(m_can_init_ram);
2322
m_can_class_get_clocks(struct m_can_classdev * cdev)2323 int m_can_class_get_clocks(struct m_can_classdev *cdev)
2324 {
2325 int ret = 0;
2326
2327 cdev->hclk = devm_clk_get(cdev->dev, "hclk");
2328 cdev->cclk = devm_clk_get(cdev->dev, "cclk");
2329
2330 if (IS_ERR(cdev->hclk) || IS_ERR(cdev->cclk)) {
2331 dev_err(cdev->dev, "no clock found\n");
2332 ret = -ENODEV;
2333 }
2334
2335 return ret;
2336 }
2337 EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
2338
m_can_class_allocate_dev(struct device * dev,int sizeof_priv)2339 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
2340 int sizeof_priv)
2341 {
2342 struct m_can_classdev *class_dev = NULL;
2343 u32 mram_config_vals[MRAM_CFG_LEN];
2344 struct net_device *net_dev;
2345 u32 tx_fifo_size;
2346 int ret;
2347
2348 ret = fwnode_property_read_u32_array(dev_fwnode(dev),
2349 "bosch,mram-cfg",
2350 mram_config_vals,
2351 sizeof(mram_config_vals) / 4);
2352 if (ret) {
2353 dev_err(dev, "Could not get Message RAM configuration.");
2354 goto out;
2355 }
2356
2357 /* Get TX FIFO size
2358 * Defines the total amount of echo buffers for loopback
2359 */
2360 tx_fifo_size = mram_config_vals[7];
2361
2362 /* allocate the m_can device */
2363 net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
2364 if (!net_dev) {
2365 dev_err(dev, "Failed to allocate CAN device");
2366 goto out;
2367 }
2368
2369 class_dev = netdev_priv(net_dev);
2370 class_dev->net = net_dev;
2371 class_dev->dev = dev;
2372 SET_NETDEV_DEV(net_dev, dev);
2373
2374 m_can_of_parse_mram(class_dev, mram_config_vals);
2375 out:
2376 return class_dev;
2377 }
2378 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
2379
m_can_class_free_dev(struct net_device * net)2380 void m_can_class_free_dev(struct net_device *net)
2381 {
2382 free_candev(net);
2383 }
2384 EXPORT_SYMBOL_GPL(m_can_class_free_dev);
2385
m_can_class_register(struct m_can_classdev * cdev)2386 int m_can_class_register(struct m_can_classdev *cdev)
2387 {
2388 int ret;
2389
2390 cdev->tx_fifo_size = max(1, min(cdev->mcfg[MRAM_TXB].num,
2391 cdev->mcfg[MRAM_TXE].num));
2392 if (cdev->is_peripheral) {
2393 cdev->tx_ops =
2394 devm_kzalloc(cdev->dev,
2395 cdev->tx_fifo_size * sizeof(*cdev->tx_ops),
2396 GFP_KERNEL);
2397 if (!cdev->tx_ops) {
2398 dev_err(cdev->dev, "Failed to allocate tx_ops for workqueue\n");
2399 return -ENOMEM;
2400 }
2401 }
2402
2403 ret = m_can_clk_start(cdev);
2404 if (ret)
2405 return ret;
2406
2407 if (cdev->is_peripheral) {
2408 ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
2409 NAPI_POLL_WEIGHT);
2410 if (ret)
2411 goto clk_disable;
2412 }
2413
2414 if (!cdev->net->irq) {
2415 dev_dbg(cdev->dev, "Polling enabled, initialize hrtimer");
2416 hrtimer_init(&cdev->hrtimer, CLOCK_MONOTONIC,
2417 HRTIMER_MODE_REL_PINNED);
2418 cdev->hrtimer.function = &hrtimer_callback;
2419 } else {
2420 hrtimer_init(&cdev->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2421 cdev->hrtimer.function = m_can_coalescing_timer;
2422 }
2423
2424 ret = m_can_dev_setup(cdev);
2425 if (ret)
2426 goto rx_offload_del;
2427
2428 ret = register_m_can_dev(cdev);
2429 if (ret) {
2430 dev_err(cdev->dev, "registering %s failed (err=%d)\n",
2431 cdev->net->name, ret);
2432 goto rx_offload_del;
2433 }
2434
2435 of_can_transceiver(cdev->net);
2436
2437 dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
2438 KBUILD_MODNAME, cdev->net->irq, cdev->version);
2439
2440 /* Probe finished
2441 * Stop clocks. They will be reactivated once the M_CAN device is opened
2442 */
2443 m_can_clk_stop(cdev);
2444
2445 return 0;
2446
2447 rx_offload_del:
2448 if (cdev->is_peripheral)
2449 can_rx_offload_del(&cdev->offload);
2450 clk_disable:
2451 m_can_clk_stop(cdev);
2452
2453 return ret;
2454 }
2455 EXPORT_SYMBOL_GPL(m_can_class_register);
2456
m_can_class_unregister(struct m_can_classdev * cdev)2457 void m_can_class_unregister(struct m_can_classdev *cdev)
2458 {
2459 if (cdev->is_peripheral)
2460 can_rx_offload_del(&cdev->offload);
2461 unregister_candev(cdev->net);
2462 }
2463 EXPORT_SYMBOL_GPL(m_can_class_unregister);
2464
m_can_class_suspend(struct device * dev)2465 int m_can_class_suspend(struct device *dev)
2466 {
2467 struct m_can_classdev *cdev = dev_get_drvdata(dev);
2468 struct net_device *ndev = cdev->net;
2469
2470 if (netif_running(ndev)) {
2471 netif_stop_queue(ndev);
2472 netif_device_detach(ndev);
2473
2474 /* leave the chip running with rx interrupt enabled if it is
2475 * used as a wake-up source. Coalescing needs to be reset then,
2476 * the timer is cancelled here, interrupts are done in resume.
2477 */
2478 if (cdev->pm_wake_source) {
2479 hrtimer_cancel(&cdev->hrtimer);
2480 m_can_write(cdev, M_CAN_IE, IR_RF0N);
2481 } else {
2482 m_can_stop(ndev);
2483 }
2484
2485 m_can_clk_stop(cdev);
2486 }
2487
2488 pinctrl_pm_select_sleep_state(dev);
2489
2490 cdev->can.state = CAN_STATE_SLEEPING;
2491
2492 return 0;
2493 }
2494 EXPORT_SYMBOL_GPL(m_can_class_suspend);
2495
m_can_class_resume(struct device * dev)2496 int m_can_class_resume(struct device *dev)
2497 {
2498 struct m_can_classdev *cdev = dev_get_drvdata(dev);
2499 struct net_device *ndev = cdev->net;
2500
2501 pinctrl_pm_select_default_state(dev);
2502
2503 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
2504
2505 if (netif_running(ndev)) {
2506 int ret;
2507
2508 ret = m_can_clk_start(cdev);
2509 if (ret)
2510 return ret;
2511
2512 if (cdev->pm_wake_source) {
2513 /* Restore active interrupts but disable coalescing as
2514 * we may have missed important waterlevel interrupts
2515 * between suspend and resume. Timers are already
2516 * stopped in suspend. Here we enable all interrupts
2517 * again.
2518 */
2519 cdev->active_interrupts |= IR_RF0N | IR_TEFN;
2520 m_can_write(cdev, M_CAN_IE, cdev->active_interrupts);
2521 } else {
2522 ret = m_can_start(ndev);
2523 if (ret) {
2524 m_can_clk_stop(cdev);
2525 return ret;
2526 }
2527 }
2528
2529 netif_device_attach(ndev);
2530 netif_start_queue(ndev);
2531 }
2532
2533 return 0;
2534 }
2535 EXPORT_SYMBOL_GPL(m_can_class_resume);
2536
2537 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
2538 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
2539 MODULE_LICENSE("GPL v2");
2540 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
2541