xref: /linux/io_uring/io_uring.c (revision ed7171ff9fabc49ae6ed42fbd082a576473836fc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <linux/anon_inodes.h>
63 #include <linux/sched/mm.h>
64 #include <linux/uaccess.h>
65 #include <linux/nospec.h>
66 #include <linux/fsnotify.h>
67 #include <linux/fadvise.h>
68 #include <linux/task_work.h>
69 #include <linux/io_uring.h>
70 #include <linux/io_uring/cmd.h>
71 #include <linux/audit.h>
72 #include <linux/security.h>
73 #include <asm/shmparam.h>
74 
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
77 
78 #include <uapi/linux/io_uring.h>
79 
80 #include "io-wq.h"
81 
82 #include "io_uring.h"
83 #include "opdef.h"
84 #include "refs.h"
85 #include "tctx.h"
86 #include "register.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 #include "waitid.h"
95 #include "futex.h"
96 #include "napi.h"
97 #include "uring_cmd.h"
98 #include "msg_ring.h"
99 #include "memmap.h"
100 
101 #include "timeout.h"
102 #include "poll.h"
103 #include "rw.h"
104 #include "alloc_cache.h"
105 #include "eventfd.h"
106 
107 #define IORING_MAX_ENTRIES	32768
108 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
109 
110 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
111 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
112 
113 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
114 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
115 
116 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
117 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
118 				REQ_F_ASYNC_DATA)
119 
120 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
121 				 IO_REQ_CLEAN_FLAGS)
122 
123 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
124 
125 #define IO_COMPL_BATCH			32
126 #define IO_REQ_ALLOC_BATCH		8
127 
128 struct io_defer_entry {
129 	struct list_head	list;
130 	struct io_kiocb		*req;
131 	u32			seq;
132 };
133 
134 /* requests with any of those set should undergo io_disarm_next() */
135 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
136 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
137 
138 /*
139  * No waiters. It's larger than any valid value of the tw counter
140  * so that tests against ->cq_wait_nr would fail and skip wake_up().
141  */
142 #define IO_CQ_WAKE_INIT		(-1U)
143 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
144 #define IO_CQ_WAKE_FORCE	(IO_CQ_WAKE_INIT >> 1)
145 
146 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
147 					 struct task_struct *task,
148 					 bool cancel_all);
149 
150 static void io_queue_sqe(struct io_kiocb *req);
151 
152 struct kmem_cache *req_cachep;
153 static struct workqueue_struct *iou_wq __ro_after_init;
154 
155 static int __read_mostly sysctl_io_uring_disabled;
156 static int __read_mostly sysctl_io_uring_group = -1;
157 
158 #ifdef CONFIG_SYSCTL
159 static struct ctl_table kernel_io_uring_disabled_table[] = {
160 	{
161 		.procname	= "io_uring_disabled",
162 		.data		= &sysctl_io_uring_disabled,
163 		.maxlen		= sizeof(sysctl_io_uring_disabled),
164 		.mode		= 0644,
165 		.proc_handler	= proc_dointvec_minmax,
166 		.extra1		= SYSCTL_ZERO,
167 		.extra2		= SYSCTL_TWO,
168 	},
169 	{
170 		.procname	= "io_uring_group",
171 		.data		= &sysctl_io_uring_group,
172 		.maxlen		= sizeof(gid_t),
173 		.mode		= 0644,
174 		.proc_handler	= proc_dointvec,
175 	},
176 };
177 #endif
178 
179 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
180 {
181 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
182 }
183 
184 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
185 {
186 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
187 }
188 
189 static bool io_match_linked(struct io_kiocb *head)
190 {
191 	struct io_kiocb *req;
192 
193 	io_for_each_link(req, head) {
194 		if (req->flags & REQ_F_INFLIGHT)
195 			return true;
196 	}
197 	return false;
198 }
199 
200 /*
201  * As io_match_task() but protected against racing with linked timeouts.
202  * User must not hold timeout_lock.
203  */
204 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
205 			bool cancel_all)
206 {
207 	bool matched;
208 
209 	if (task && head->task != task)
210 		return false;
211 	if (cancel_all)
212 		return true;
213 
214 	if (head->flags & REQ_F_LINK_TIMEOUT) {
215 		struct io_ring_ctx *ctx = head->ctx;
216 
217 		/* protect against races with linked timeouts */
218 		spin_lock_irq(&ctx->timeout_lock);
219 		matched = io_match_linked(head);
220 		spin_unlock_irq(&ctx->timeout_lock);
221 	} else {
222 		matched = io_match_linked(head);
223 	}
224 	return matched;
225 }
226 
227 static inline void req_fail_link_node(struct io_kiocb *req, int res)
228 {
229 	req_set_fail(req);
230 	io_req_set_res(req, res, 0);
231 }
232 
233 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
234 {
235 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
236 }
237 
238 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
239 {
240 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
241 
242 	complete(&ctx->ref_comp);
243 }
244 
245 static __cold void io_fallback_req_func(struct work_struct *work)
246 {
247 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
248 						fallback_work.work);
249 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
250 	struct io_kiocb *req, *tmp;
251 	struct io_tw_state ts = {};
252 
253 	percpu_ref_get(&ctx->refs);
254 	mutex_lock(&ctx->uring_lock);
255 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
256 		req->io_task_work.func(req, &ts);
257 	io_submit_flush_completions(ctx);
258 	mutex_unlock(&ctx->uring_lock);
259 	percpu_ref_put(&ctx->refs);
260 }
261 
262 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
263 {
264 	unsigned hash_buckets = 1U << bits;
265 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
266 
267 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
268 	if (!table->hbs)
269 		return -ENOMEM;
270 
271 	table->hash_bits = bits;
272 	init_hash_table(table, hash_buckets);
273 	return 0;
274 }
275 
276 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
277 {
278 	struct io_ring_ctx *ctx;
279 	int hash_bits;
280 	bool ret;
281 
282 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
283 	if (!ctx)
284 		return NULL;
285 
286 	xa_init(&ctx->io_bl_xa);
287 
288 	/*
289 	 * Use 5 bits less than the max cq entries, that should give us around
290 	 * 32 entries per hash list if totally full and uniformly spread, but
291 	 * don't keep too many buckets to not overconsume memory.
292 	 */
293 	hash_bits = ilog2(p->cq_entries) - 5;
294 	hash_bits = clamp(hash_bits, 1, 8);
295 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
296 		goto err;
297 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
298 		goto err;
299 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
300 			    0, GFP_KERNEL))
301 		goto err;
302 
303 	ctx->flags = p->flags;
304 	atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
305 	init_waitqueue_head(&ctx->sqo_sq_wait);
306 	INIT_LIST_HEAD(&ctx->sqd_list);
307 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
308 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
309 	ret = io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
310 			    sizeof(struct io_rsrc_node));
311 	ret |= io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
312 			    sizeof(struct async_poll));
313 	ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
314 			    sizeof(struct io_async_msghdr));
315 	ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
316 			    sizeof(struct io_async_rw));
317 	ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX,
318 			    sizeof(struct uring_cache));
319 	spin_lock_init(&ctx->msg_lock);
320 	ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
321 			    sizeof(struct io_kiocb));
322 	ret |= io_futex_cache_init(ctx);
323 	if (ret)
324 		goto err;
325 	init_completion(&ctx->ref_comp);
326 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
327 	mutex_init(&ctx->uring_lock);
328 	init_waitqueue_head(&ctx->cq_wait);
329 	init_waitqueue_head(&ctx->poll_wq);
330 	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
331 	spin_lock_init(&ctx->completion_lock);
332 	spin_lock_init(&ctx->timeout_lock);
333 	INIT_WQ_LIST(&ctx->iopoll_list);
334 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
335 	INIT_LIST_HEAD(&ctx->defer_list);
336 	INIT_LIST_HEAD(&ctx->timeout_list);
337 	INIT_LIST_HEAD(&ctx->ltimeout_list);
338 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
339 	init_llist_head(&ctx->work_llist);
340 	INIT_LIST_HEAD(&ctx->tctx_list);
341 	ctx->submit_state.free_list.next = NULL;
342 	INIT_HLIST_HEAD(&ctx->waitid_list);
343 #ifdef CONFIG_FUTEX
344 	INIT_HLIST_HEAD(&ctx->futex_list);
345 #endif
346 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
347 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
348 	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
349 	io_napi_init(ctx);
350 
351 	return ctx;
352 err:
353 	io_alloc_cache_free(&ctx->rsrc_node_cache, kfree);
354 	io_alloc_cache_free(&ctx->apoll_cache, kfree);
355 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
356 	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
357 	io_alloc_cache_free(&ctx->uring_cache, kfree);
358 	io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
359 	io_futex_cache_free(ctx);
360 	kfree(ctx->cancel_table.hbs);
361 	kfree(ctx->cancel_table_locked.hbs);
362 	xa_destroy(&ctx->io_bl_xa);
363 	kfree(ctx);
364 	return NULL;
365 }
366 
367 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
368 {
369 	struct io_rings *r = ctx->rings;
370 
371 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
372 	ctx->cq_extra--;
373 }
374 
375 static bool req_need_defer(struct io_kiocb *req, u32 seq)
376 {
377 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
378 		struct io_ring_ctx *ctx = req->ctx;
379 
380 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
381 	}
382 
383 	return false;
384 }
385 
386 static void io_clean_op(struct io_kiocb *req)
387 {
388 	if (req->flags & REQ_F_BUFFER_SELECTED) {
389 		spin_lock(&req->ctx->completion_lock);
390 		io_kbuf_drop(req);
391 		spin_unlock(&req->ctx->completion_lock);
392 	}
393 
394 	if (req->flags & REQ_F_NEED_CLEANUP) {
395 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
396 
397 		if (def->cleanup)
398 			def->cleanup(req);
399 	}
400 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
401 		kfree(req->apoll->double_poll);
402 		kfree(req->apoll);
403 		req->apoll = NULL;
404 	}
405 	if (req->flags & REQ_F_INFLIGHT) {
406 		struct io_uring_task *tctx = req->task->io_uring;
407 
408 		atomic_dec(&tctx->inflight_tracked);
409 	}
410 	if (req->flags & REQ_F_CREDS)
411 		put_cred(req->creds);
412 	if (req->flags & REQ_F_ASYNC_DATA) {
413 		kfree(req->async_data);
414 		req->async_data = NULL;
415 	}
416 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
417 }
418 
419 static inline void io_req_track_inflight(struct io_kiocb *req)
420 {
421 	if (!(req->flags & REQ_F_INFLIGHT)) {
422 		req->flags |= REQ_F_INFLIGHT;
423 		atomic_inc(&req->task->io_uring->inflight_tracked);
424 	}
425 }
426 
427 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
428 {
429 	if (WARN_ON_ONCE(!req->link))
430 		return NULL;
431 
432 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
433 	req->flags |= REQ_F_LINK_TIMEOUT;
434 
435 	/* linked timeouts should have two refs once prep'ed */
436 	io_req_set_refcount(req);
437 	__io_req_set_refcount(req->link, 2);
438 	return req->link;
439 }
440 
441 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
442 {
443 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
444 		return NULL;
445 	return __io_prep_linked_timeout(req);
446 }
447 
448 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
449 {
450 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
451 }
452 
453 static inline void io_arm_ltimeout(struct io_kiocb *req)
454 {
455 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
456 		__io_arm_ltimeout(req);
457 }
458 
459 static void io_prep_async_work(struct io_kiocb *req)
460 {
461 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
462 	struct io_ring_ctx *ctx = req->ctx;
463 
464 	if (!(req->flags & REQ_F_CREDS)) {
465 		req->flags |= REQ_F_CREDS;
466 		req->creds = get_current_cred();
467 	}
468 
469 	req->work.list.next = NULL;
470 	atomic_set(&req->work.flags, 0);
471 	if (req->flags & REQ_F_FORCE_ASYNC)
472 		atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
473 
474 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
475 		req->flags |= io_file_get_flags(req->file);
476 
477 	if (req->file && (req->flags & REQ_F_ISREG)) {
478 		bool should_hash = def->hash_reg_file;
479 
480 		/* don't serialize this request if the fs doesn't need it */
481 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
482 		    (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
483 			should_hash = false;
484 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
485 			io_wq_hash_work(&req->work, file_inode(req->file));
486 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
487 		if (def->unbound_nonreg_file)
488 			atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
489 	}
490 }
491 
492 static void io_prep_async_link(struct io_kiocb *req)
493 {
494 	struct io_kiocb *cur;
495 
496 	if (req->flags & REQ_F_LINK_TIMEOUT) {
497 		struct io_ring_ctx *ctx = req->ctx;
498 
499 		spin_lock_irq(&ctx->timeout_lock);
500 		io_for_each_link(cur, req)
501 			io_prep_async_work(cur);
502 		spin_unlock_irq(&ctx->timeout_lock);
503 	} else {
504 		io_for_each_link(cur, req)
505 			io_prep_async_work(cur);
506 	}
507 }
508 
509 static void io_queue_iowq(struct io_kiocb *req)
510 {
511 	struct io_kiocb *link = io_prep_linked_timeout(req);
512 	struct io_uring_task *tctx = req->task->io_uring;
513 
514 	BUG_ON(!tctx);
515 	BUG_ON(!tctx->io_wq);
516 
517 	/* init ->work of the whole link before punting */
518 	io_prep_async_link(req);
519 
520 	/*
521 	 * Not expected to happen, but if we do have a bug where this _can_
522 	 * happen, catch it here and ensure the request is marked as
523 	 * canceled. That will make io-wq go through the usual work cancel
524 	 * procedure rather than attempt to run this request (or create a new
525 	 * worker for it).
526 	 */
527 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
528 		atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
529 
530 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
531 	io_wq_enqueue(tctx->io_wq, &req->work);
532 	if (link)
533 		io_queue_linked_timeout(link);
534 }
535 
536 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
537 {
538 	while (!list_empty(&ctx->defer_list)) {
539 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
540 						struct io_defer_entry, list);
541 
542 		if (req_need_defer(de->req, de->seq))
543 			break;
544 		list_del_init(&de->list);
545 		io_req_task_queue(de->req);
546 		kfree(de);
547 	}
548 }
549 
550 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
551 {
552 	if (ctx->poll_activated)
553 		io_poll_wq_wake(ctx);
554 	if (ctx->off_timeout_used)
555 		io_flush_timeouts(ctx);
556 	if (ctx->drain_active) {
557 		spin_lock(&ctx->completion_lock);
558 		io_queue_deferred(ctx);
559 		spin_unlock(&ctx->completion_lock);
560 	}
561 	if (ctx->has_evfd)
562 		io_eventfd_flush_signal(ctx);
563 }
564 
565 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
566 {
567 	if (!ctx->lockless_cq)
568 		spin_lock(&ctx->completion_lock);
569 }
570 
571 static inline void io_cq_lock(struct io_ring_ctx *ctx)
572 	__acquires(ctx->completion_lock)
573 {
574 	spin_lock(&ctx->completion_lock);
575 }
576 
577 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
578 {
579 	io_commit_cqring(ctx);
580 	if (!ctx->task_complete) {
581 		if (!ctx->lockless_cq)
582 			spin_unlock(&ctx->completion_lock);
583 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
584 		if (!ctx->syscall_iopoll)
585 			io_cqring_wake(ctx);
586 	}
587 	io_commit_cqring_flush(ctx);
588 }
589 
590 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
591 	__releases(ctx->completion_lock)
592 {
593 	io_commit_cqring(ctx);
594 	spin_unlock(&ctx->completion_lock);
595 	io_cqring_wake(ctx);
596 	io_commit_cqring_flush(ctx);
597 }
598 
599 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
600 {
601 	size_t cqe_size = sizeof(struct io_uring_cqe);
602 
603 	lockdep_assert_held(&ctx->uring_lock);
604 
605 	/* don't abort if we're dying, entries must get freed */
606 	if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
607 		return;
608 
609 	if (ctx->flags & IORING_SETUP_CQE32)
610 		cqe_size <<= 1;
611 
612 	io_cq_lock(ctx);
613 	while (!list_empty(&ctx->cq_overflow_list)) {
614 		struct io_uring_cqe *cqe;
615 		struct io_overflow_cqe *ocqe;
616 
617 		ocqe = list_first_entry(&ctx->cq_overflow_list,
618 					struct io_overflow_cqe, list);
619 
620 		if (!dying) {
621 			if (!io_get_cqe_overflow(ctx, &cqe, true))
622 				break;
623 			memcpy(cqe, &ocqe->cqe, cqe_size);
624 		}
625 		list_del(&ocqe->list);
626 		kfree(ocqe);
627 	}
628 
629 	if (list_empty(&ctx->cq_overflow_list)) {
630 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
631 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
632 	}
633 	io_cq_unlock_post(ctx);
634 }
635 
636 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
637 {
638 	if (ctx->rings)
639 		__io_cqring_overflow_flush(ctx, true);
640 }
641 
642 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
643 {
644 	mutex_lock(&ctx->uring_lock);
645 	__io_cqring_overflow_flush(ctx, false);
646 	mutex_unlock(&ctx->uring_lock);
647 }
648 
649 /* can be called by any task */
650 static void io_put_task_remote(struct task_struct *task)
651 {
652 	struct io_uring_task *tctx = task->io_uring;
653 
654 	percpu_counter_sub(&tctx->inflight, 1);
655 	if (unlikely(atomic_read(&tctx->in_cancel)))
656 		wake_up(&tctx->wait);
657 	put_task_struct(task);
658 }
659 
660 /* used by a task to put its own references */
661 static void io_put_task_local(struct task_struct *task)
662 {
663 	task->io_uring->cached_refs++;
664 }
665 
666 /* must to be called somewhat shortly after putting a request */
667 static inline void io_put_task(struct task_struct *task)
668 {
669 	if (likely(task == current))
670 		io_put_task_local(task);
671 	else
672 		io_put_task_remote(task);
673 }
674 
675 void io_task_refs_refill(struct io_uring_task *tctx)
676 {
677 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
678 
679 	percpu_counter_add(&tctx->inflight, refill);
680 	refcount_add(refill, &current->usage);
681 	tctx->cached_refs += refill;
682 }
683 
684 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
685 {
686 	struct io_uring_task *tctx = task->io_uring;
687 	unsigned int refs = tctx->cached_refs;
688 
689 	if (refs) {
690 		tctx->cached_refs = 0;
691 		percpu_counter_sub(&tctx->inflight, refs);
692 		put_task_struct_many(task, refs);
693 	}
694 }
695 
696 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
697 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
698 {
699 	struct io_overflow_cqe *ocqe;
700 	size_t ocq_size = sizeof(struct io_overflow_cqe);
701 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
702 
703 	lockdep_assert_held(&ctx->completion_lock);
704 
705 	if (is_cqe32)
706 		ocq_size += sizeof(struct io_uring_cqe);
707 
708 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
709 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
710 	if (!ocqe) {
711 		/*
712 		 * If we're in ring overflow flush mode, or in task cancel mode,
713 		 * or cannot allocate an overflow entry, then we need to drop it
714 		 * on the floor.
715 		 */
716 		io_account_cq_overflow(ctx);
717 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
718 		return false;
719 	}
720 	if (list_empty(&ctx->cq_overflow_list)) {
721 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
722 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
723 
724 	}
725 	ocqe->cqe.user_data = user_data;
726 	ocqe->cqe.res = res;
727 	ocqe->cqe.flags = cflags;
728 	if (is_cqe32) {
729 		ocqe->cqe.big_cqe[0] = extra1;
730 		ocqe->cqe.big_cqe[1] = extra2;
731 	}
732 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
733 	return true;
734 }
735 
736 static void io_req_cqe_overflow(struct io_kiocb *req)
737 {
738 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
739 				req->cqe.res, req->cqe.flags,
740 				req->big_cqe.extra1, req->big_cqe.extra2);
741 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
742 }
743 
744 /*
745  * writes to the cq entry need to come after reading head; the
746  * control dependency is enough as we're using WRITE_ONCE to
747  * fill the cq entry
748  */
749 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
750 {
751 	struct io_rings *rings = ctx->rings;
752 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
753 	unsigned int free, queued, len;
754 
755 	/*
756 	 * Posting into the CQ when there are pending overflowed CQEs may break
757 	 * ordering guarantees, which will affect links, F_MORE users and more.
758 	 * Force overflow the completion.
759 	 */
760 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
761 		return false;
762 
763 	/* userspace may cheat modifying the tail, be safe and do min */
764 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
765 	free = ctx->cq_entries - queued;
766 	/* we need a contiguous range, limit based on the current array offset */
767 	len = min(free, ctx->cq_entries - off);
768 	if (!len)
769 		return false;
770 
771 	if (ctx->flags & IORING_SETUP_CQE32) {
772 		off <<= 1;
773 		len <<= 1;
774 	}
775 
776 	ctx->cqe_cached = &rings->cqes[off];
777 	ctx->cqe_sentinel = ctx->cqe_cached + len;
778 	return true;
779 }
780 
781 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
782 			      u32 cflags)
783 {
784 	struct io_uring_cqe *cqe;
785 
786 	ctx->cq_extra++;
787 
788 	/*
789 	 * If we can't get a cq entry, userspace overflowed the
790 	 * submission (by quite a lot). Increment the overflow count in
791 	 * the ring.
792 	 */
793 	if (likely(io_get_cqe(ctx, &cqe))) {
794 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
795 
796 		WRITE_ONCE(cqe->user_data, user_data);
797 		WRITE_ONCE(cqe->res, res);
798 		WRITE_ONCE(cqe->flags, cflags);
799 
800 		if (ctx->flags & IORING_SETUP_CQE32) {
801 			WRITE_ONCE(cqe->big_cqe[0], 0);
802 			WRITE_ONCE(cqe->big_cqe[1], 0);
803 		}
804 		return true;
805 	}
806 	return false;
807 }
808 
809 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res,
810 			      u32 cflags)
811 {
812 	bool filled;
813 
814 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
815 	if (!filled)
816 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
817 
818 	return filled;
819 }
820 
821 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
822 {
823 	bool filled;
824 
825 	io_cq_lock(ctx);
826 	filled = __io_post_aux_cqe(ctx, user_data, res, cflags);
827 	io_cq_unlock_post(ctx);
828 	return filled;
829 }
830 
831 /*
832  * Must be called from inline task_work so we now a flush will happen later,
833  * and obviously with ctx->uring_lock held (tw always has that).
834  */
835 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
836 {
837 	if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
838 		spin_lock(&ctx->completion_lock);
839 		io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
840 		spin_unlock(&ctx->completion_lock);
841 	}
842 	ctx->submit_state.cq_flush = true;
843 }
844 
845 /*
846  * A helper for multishot requests posting additional CQEs.
847  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
848  */
849 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
850 {
851 	struct io_ring_ctx *ctx = req->ctx;
852 	bool posted;
853 
854 	lockdep_assert(!io_wq_current_is_worker());
855 	lockdep_assert_held(&ctx->uring_lock);
856 
857 	__io_cq_lock(ctx);
858 	posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
859 	ctx->submit_state.cq_flush = true;
860 	__io_cq_unlock_post(ctx);
861 	return posted;
862 }
863 
864 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
865 {
866 	struct io_ring_ctx *ctx = req->ctx;
867 
868 	/*
869 	 * All execution paths but io-wq use the deferred completions by
870 	 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
871 	 */
872 	if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
873 		return;
874 
875 	/*
876 	 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
877 	 * the submitter task context, IOPOLL protects with uring_lock.
878 	 */
879 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) {
880 		req->io_task_work.func = io_req_task_complete;
881 		io_req_task_work_add(req);
882 		return;
883 	}
884 
885 	io_cq_lock(ctx);
886 	if (!(req->flags & REQ_F_CQE_SKIP)) {
887 		if (!io_fill_cqe_req(ctx, req))
888 			io_req_cqe_overflow(req);
889 	}
890 	io_cq_unlock_post(ctx);
891 
892 	/*
893 	 * We don't free the request here because we know it's called from
894 	 * io-wq only, which holds a reference, so it cannot be the last put.
895 	 */
896 	req_ref_put(req);
897 }
898 
899 void io_req_defer_failed(struct io_kiocb *req, s32 res)
900 	__must_hold(&ctx->uring_lock)
901 {
902 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
903 
904 	lockdep_assert_held(&req->ctx->uring_lock);
905 
906 	req_set_fail(req);
907 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
908 	if (def->fail)
909 		def->fail(req);
910 	io_req_complete_defer(req);
911 }
912 
913 /*
914  * Don't initialise the fields below on every allocation, but do that in
915  * advance and keep them valid across allocations.
916  */
917 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
918 {
919 	req->ctx = ctx;
920 	req->link = NULL;
921 	req->async_data = NULL;
922 	/* not necessary, but safer to zero */
923 	memset(&req->cqe, 0, sizeof(req->cqe));
924 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
925 }
926 
927 /*
928  * A request might get retired back into the request caches even before opcode
929  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
930  * Because of that, io_alloc_req() should be called only under ->uring_lock
931  * and with extra caution to not get a request that is still worked on.
932  */
933 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
934 	__must_hold(&ctx->uring_lock)
935 {
936 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
937 	void *reqs[IO_REQ_ALLOC_BATCH];
938 	int ret;
939 
940 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
941 
942 	/*
943 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
944 	 * retry single alloc to be on the safe side.
945 	 */
946 	if (unlikely(ret <= 0)) {
947 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
948 		if (!reqs[0])
949 			return false;
950 		ret = 1;
951 	}
952 
953 	percpu_ref_get_many(&ctx->refs, ret);
954 	while (ret--) {
955 		struct io_kiocb *req = reqs[ret];
956 
957 		io_preinit_req(req, ctx);
958 		io_req_add_to_cache(req, ctx);
959 	}
960 	return true;
961 }
962 
963 __cold void io_free_req(struct io_kiocb *req)
964 {
965 	/* refs were already put, restore them for io_req_task_complete() */
966 	req->flags &= ~REQ_F_REFCOUNT;
967 	/* we only want to free it, don't post CQEs */
968 	req->flags |= REQ_F_CQE_SKIP;
969 	req->io_task_work.func = io_req_task_complete;
970 	io_req_task_work_add(req);
971 }
972 
973 static void __io_req_find_next_prep(struct io_kiocb *req)
974 {
975 	struct io_ring_ctx *ctx = req->ctx;
976 
977 	spin_lock(&ctx->completion_lock);
978 	io_disarm_next(req);
979 	spin_unlock(&ctx->completion_lock);
980 }
981 
982 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
983 {
984 	struct io_kiocb *nxt;
985 
986 	/*
987 	 * If LINK is set, we have dependent requests in this chain. If we
988 	 * didn't fail this request, queue the first one up, moving any other
989 	 * dependencies to the next request. In case of failure, fail the rest
990 	 * of the chain.
991 	 */
992 	if (unlikely(req->flags & IO_DISARM_MASK))
993 		__io_req_find_next_prep(req);
994 	nxt = req->link;
995 	req->link = NULL;
996 	return nxt;
997 }
998 
999 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1000 {
1001 	if (!ctx)
1002 		return;
1003 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1004 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1005 
1006 	io_submit_flush_completions(ctx);
1007 	mutex_unlock(&ctx->uring_lock);
1008 	percpu_ref_put(&ctx->refs);
1009 }
1010 
1011 /*
1012  * Run queued task_work, returning the number of entries processed in *count.
1013  * If more entries than max_entries are available, stop processing once this
1014  * is reached and return the rest of the list.
1015  */
1016 struct llist_node *io_handle_tw_list(struct llist_node *node,
1017 				     unsigned int *count,
1018 				     unsigned int max_entries)
1019 {
1020 	struct io_ring_ctx *ctx = NULL;
1021 	struct io_tw_state ts = { };
1022 
1023 	do {
1024 		struct llist_node *next = node->next;
1025 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1026 						    io_task_work.node);
1027 
1028 		if (req->ctx != ctx) {
1029 			ctx_flush_and_put(ctx, &ts);
1030 			ctx = req->ctx;
1031 			mutex_lock(&ctx->uring_lock);
1032 			percpu_ref_get(&ctx->refs);
1033 		}
1034 		INDIRECT_CALL_2(req->io_task_work.func,
1035 				io_poll_task_func, io_req_rw_complete,
1036 				req, &ts);
1037 		node = next;
1038 		(*count)++;
1039 		if (unlikely(need_resched())) {
1040 			ctx_flush_and_put(ctx, &ts);
1041 			ctx = NULL;
1042 			cond_resched();
1043 		}
1044 	} while (node && *count < max_entries);
1045 
1046 	ctx_flush_and_put(ctx, &ts);
1047 	return node;
1048 }
1049 
1050 /**
1051  * io_llist_xchg - swap all entries in a lock-less list
1052  * @head:	the head of lock-less list to delete all entries
1053  * @new:	new entry as the head of the list
1054  *
1055  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1056  * The order of entries returned is from the newest to the oldest added one.
1057  */
1058 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1059 					       struct llist_node *new)
1060 {
1061 	return xchg(&head->first, new);
1062 }
1063 
1064 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1065 {
1066 	struct llist_node *node = llist_del_all(&tctx->task_list);
1067 	struct io_ring_ctx *last_ctx = NULL;
1068 	struct io_kiocb *req;
1069 
1070 	while (node) {
1071 		req = container_of(node, struct io_kiocb, io_task_work.node);
1072 		node = node->next;
1073 		if (sync && last_ctx != req->ctx) {
1074 			if (last_ctx) {
1075 				flush_delayed_work(&last_ctx->fallback_work);
1076 				percpu_ref_put(&last_ctx->refs);
1077 			}
1078 			last_ctx = req->ctx;
1079 			percpu_ref_get(&last_ctx->refs);
1080 		}
1081 		if (llist_add(&req->io_task_work.node,
1082 			      &req->ctx->fallback_llist))
1083 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1084 	}
1085 
1086 	if (last_ctx) {
1087 		flush_delayed_work(&last_ctx->fallback_work);
1088 		percpu_ref_put(&last_ctx->refs);
1089 	}
1090 }
1091 
1092 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1093 				      unsigned int max_entries,
1094 				      unsigned int *count)
1095 {
1096 	struct llist_node *node;
1097 
1098 	if (unlikely(current->flags & PF_EXITING)) {
1099 		io_fallback_tw(tctx, true);
1100 		return NULL;
1101 	}
1102 
1103 	node = llist_del_all(&tctx->task_list);
1104 	if (node) {
1105 		node = llist_reverse_order(node);
1106 		node = io_handle_tw_list(node, count, max_entries);
1107 	}
1108 
1109 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1110 	if (unlikely(atomic_read(&tctx->in_cancel)))
1111 		io_uring_drop_tctx_refs(current);
1112 
1113 	trace_io_uring_task_work_run(tctx, *count);
1114 	return node;
1115 }
1116 
1117 void tctx_task_work(struct callback_head *cb)
1118 {
1119 	struct io_uring_task *tctx;
1120 	struct llist_node *ret;
1121 	unsigned int count = 0;
1122 
1123 	tctx = container_of(cb, struct io_uring_task, task_work);
1124 	ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1125 	/* can't happen */
1126 	WARN_ON_ONCE(ret);
1127 }
1128 
1129 static inline void io_req_local_work_add(struct io_kiocb *req,
1130 					 struct io_ring_ctx *ctx,
1131 					 unsigned flags)
1132 {
1133 	unsigned nr_wait, nr_tw, nr_tw_prev;
1134 	struct llist_node *head;
1135 
1136 	/* See comment above IO_CQ_WAKE_INIT */
1137 	BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1138 
1139 	/*
1140 	 * We don't know how many reuqests is there in the link and whether
1141 	 * they can even be queued lazily, fall back to non-lazy.
1142 	 */
1143 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1144 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1145 
1146 	guard(rcu)();
1147 
1148 	head = READ_ONCE(ctx->work_llist.first);
1149 	do {
1150 		nr_tw_prev = 0;
1151 		if (head) {
1152 			struct io_kiocb *first_req = container_of(head,
1153 							struct io_kiocb,
1154 							io_task_work.node);
1155 			/*
1156 			 * Might be executed at any moment, rely on
1157 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1158 			 */
1159 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1160 		}
1161 
1162 		/*
1163 		 * Theoretically, it can overflow, but that's fine as one of
1164 		 * previous adds should've tried to wake the task.
1165 		 */
1166 		nr_tw = nr_tw_prev + 1;
1167 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1168 			nr_tw = IO_CQ_WAKE_FORCE;
1169 
1170 		req->nr_tw = nr_tw;
1171 		req->io_task_work.node.next = head;
1172 	} while (!try_cmpxchg(&ctx->work_llist.first, &head,
1173 			      &req->io_task_work.node));
1174 
1175 	/*
1176 	 * cmpxchg implies a full barrier, which pairs with the barrier
1177 	 * in set_current_state() on the io_cqring_wait() side. It's used
1178 	 * to ensure that either we see updated ->cq_wait_nr, or waiters
1179 	 * going to sleep will observe the work added to the list, which
1180 	 * is similar to the wait/wawke task state sync.
1181 	 */
1182 
1183 	if (!head) {
1184 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1185 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1186 		if (ctx->has_evfd)
1187 			io_eventfd_signal(ctx);
1188 	}
1189 
1190 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1191 	/* not enough or no one is waiting */
1192 	if (nr_tw < nr_wait)
1193 		return;
1194 	/* the previous add has already woken it up */
1195 	if (nr_tw_prev >= nr_wait)
1196 		return;
1197 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1198 }
1199 
1200 static void io_req_normal_work_add(struct io_kiocb *req)
1201 {
1202 	struct io_uring_task *tctx = req->task->io_uring;
1203 	struct io_ring_ctx *ctx = req->ctx;
1204 
1205 	/* task_work already pending, we're done */
1206 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1207 		return;
1208 
1209 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1210 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1211 
1212 	/* SQPOLL doesn't need the task_work added, it'll run it itself */
1213 	if (ctx->flags & IORING_SETUP_SQPOLL) {
1214 		struct io_sq_data *sqd = ctx->sq_data;
1215 
1216 		if (sqd->thread)
1217 			__set_notify_signal(sqd->thread);
1218 		return;
1219 	}
1220 
1221 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1222 		return;
1223 
1224 	io_fallback_tw(tctx, false);
1225 }
1226 
1227 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1228 {
1229 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1230 		io_req_local_work_add(req, req->ctx, flags);
1231 	else
1232 		io_req_normal_work_add(req);
1233 }
1234 
1235 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx,
1236 				 unsigned flags)
1237 {
1238 	if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1239 		return;
1240 	io_req_local_work_add(req, ctx, flags);
1241 }
1242 
1243 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1244 {
1245 	struct llist_node *node;
1246 
1247 	node = llist_del_all(&ctx->work_llist);
1248 	while (node) {
1249 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1250 						    io_task_work.node);
1251 
1252 		node = node->next;
1253 		io_req_normal_work_add(req);
1254 	}
1255 }
1256 
1257 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1258 				       int min_events)
1259 {
1260 	if (llist_empty(&ctx->work_llist))
1261 		return false;
1262 	if (events < min_events)
1263 		return true;
1264 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1265 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1266 	return false;
1267 }
1268 
1269 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1270 			       int min_events)
1271 {
1272 	struct llist_node *node;
1273 	unsigned int loops = 0;
1274 	int ret = 0;
1275 
1276 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1277 		return -EEXIST;
1278 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1279 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1280 again:
1281 	/*
1282 	 * llists are in reverse order, flip it back the right way before
1283 	 * running the pending items.
1284 	 */
1285 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1286 	while (node) {
1287 		struct llist_node *next = node->next;
1288 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1289 						    io_task_work.node);
1290 		INDIRECT_CALL_2(req->io_task_work.func,
1291 				io_poll_task_func, io_req_rw_complete,
1292 				req, ts);
1293 		ret++;
1294 		node = next;
1295 	}
1296 	loops++;
1297 
1298 	if (io_run_local_work_continue(ctx, ret, min_events))
1299 		goto again;
1300 	io_submit_flush_completions(ctx);
1301 	if (io_run_local_work_continue(ctx, ret, min_events))
1302 		goto again;
1303 
1304 	trace_io_uring_local_work_run(ctx, ret, loops);
1305 	return ret;
1306 }
1307 
1308 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1309 					   int min_events)
1310 {
1311 	struct io_tw_state ts = {};
1312 
1313 	if (llist_empty(&ctx->work_llist))
1314 		return 0;
1315 	return __io_run_local_work(ctx, &ts, min_events);
1316 }
1317 
1318 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events)
1319 {
1320 	struct io_tw_state ts = {};
1321 	int ret;
1322 
1323 	mutex_lock(&ctx->uring_lock);
1324 	ret = __io_run_local_work(ctx, &ts, min_events);
1325 	mutex_unlock(&ctx->uring_lock);
1326 	return ret;
1327 }
1328 
1329 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1330 {
1331 	io_tw_lock(req->ctx, ts);
1332 	io_req_defer_failed(req, req->cqe.res);
1333 }
1334 
1335 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1336 {
1337 	io_tw_lock(req->ctx, ts);
1338 	/* req->task == current here, checking PF_EXITING is safe */
1339 	if (unlikely(req->task->flags & PF_EXITING))
1340 		io_req_defer_failed(req, -EFAULT);
1341 	else if (req->flags & REQ_F_FORCE_ASYNC)
1342 		io_queue_iowq(req);
1343 	else
1344 		io_queue_sqe(req);
1345 }
1346 
1347 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1348 {
1349 	io_req_set_res(req, ret, 0);
1350 	req->io_task_work.func = io_req_task_cancel;
1351 	io_req_task_work_add(req);
1352 }
1353 
1354 void io_req_task_queue(struct io_kiocb *req)
1355 {
1356 	req->io_task_work.func = io_req_task_submit;
1357 	io_req_task_work_add(req);
1358 }
1359 
1360 void io_queue_next(struct io_kiocb *req)
1361 {
1362 	struct io_kiocb *nxt = io_req_find_next(req);
1363 
1364 	if (nxt)
1365 		io_req_task_queue(nxt);
1366 }
1367 
1368 static void io_free_batch_list(struct io_ring_ctx *ctx,
1369 			       struct io_wq_work_node *node)
1370 	__must_hold(&ctx->uring_lock)
1371 {
1372 	do {
1373 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1374 						    comp_list);
1375 
1376 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1377 			if (req->flags & REQ_F_REFCOUNT) {
1378 				node = req->comp_list.next;
1379 				if (!req_ref_put_and_test(req))
1380 					continue;
1381 			}
1382 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1383 				struct async_poll *apoll = req->apoll;
1384 
1385 				if (apoll->double_poll)
1386 					kfree(apoll->double_poll);
1387 				if (!io_alloc_cache_put(&ctx->apoll_cache, apoll))
1388 					kfree(apoll);
1389 				req->flags &= ~REQ_F_POLLED;
1390 			}
1391 			if (req->flags & IO_REQ_LINK_FLAGS)
1392 				io_queue_next(req);
1393 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1394 				io_clean_op(req);
1395 		}
1396 		io_put_file(req);
1397 		io_put_rsrc_node(ctx, req->rsrc_node);
1398 		io_put_task(req->task);
1399 
1400 		node = req->comp_list.next;
1401 		io_req_add_to_cache(req, ctx);
1402 	} while (node);
1403 }
1404 
1405 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1406 	__must_hold(&ctx->uring_lock)
1407 {
1408 	struct io_submit_state *state = &ctx->submit_state;
1409 	struct io_wq_work_node *node;
1410 
1411 	__io_cq_lock(ctx);
1412 	__wq_list_for_each(node, &state->compl_reqs) {
1413 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1414 					    comp_list);
1415 
1416 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1417 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1418 			if (ctx->lockless_cq) {
1419 				spin_lock(&ctx->completion_lock);
1420 				io_req_cqe_overflow(req);
1421 				spin_unlock(&ctx->completion_lock);
1422 			} else {
1423 				io_req_cqe_overflow(req);
1424 			}
1425 		}
1426 	}
1427 	__io_cq_unlock_post(ctx);
1428 
1429 	if (!wq_list_empty(&state->compl_reqs)) {
1430 		io_free_batch_list(ctx, state->compl_reqs.first);
1431 		INIT_WQ_LIST(&state->compl_reqs);
1432 	}
1433 	ctx->submit_state.cq_flush = false;
1434 }
1435 
1436 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1437 {
1438 	/* See comment at the top of this file */
1439 	smp_rmb();
1440 	return __io_cqring_events(ctx);
1441 }
1442 
1443 /*
1444  * We can't just wait for polled events to come to us, we have to actively
1445  * find and complete them.
1446  */
1447 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1448 {
1449 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1450 		return;
1451 
1452 	mutex_lock(&ctx->uring_lock);
1453 	while (!wq_list_empty(&ctx->iopoll_list)) {
1454 		/* let it sleep and repeat later if can't complete a request */
1455 		if (io_do_iopoll(ctx, true) == 0)
1456 			break;
1457 		/*
1458 		 * Ensure we allow local-to-the-cpu processing to take place,
1459 		 * in this case we need to ensure that we reap all events.
1460 		 * Also let task_work, etc. to progress by releasing the mutex
1461 		 */
1462 		if (need_resched()) {
1463 			mutex_unlock(&ctx->uring_lock);
1464 			cond_resched();
1465 			mutex_lock(&ctx->uring_lock);
1466 		}
1467 	}
1468 	mutex_unlock(&ctx->uring_lock);
1469 }
1470 
1471 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1472 {
1473 	unsigned int nr_events = 0;
1474 	unsigned long check_cq;
1475 
1476 	lockdep_assert_held(&ctx->uring_lock);
1477 
1478 	if (!io_allowed_run_tw(ctx))
1479 		return -EEXIST;
1480 
1481 	check_cq = READ_ONCE(ctx->check_cq);
1482 	if (unlikely(check_cq)) {
1483 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1484 			__io_cqring_overflow_flush(ctx, false);
1485 		/*
1486 		 * Similarly do not spin if we have not informed the user of any
1487 		 * dropped CQE.
1488 		 */
1489 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1490 			return -EBADR;
1491 	}
1492 	/*
1493 	 * Don't enter poll loop if we already have events pending.
1494 	 * If we do, we can potentially be spinning for commands that
1495 	 * already triggered a CQE (eg in error).
1496 	 */
1497 	if (io_cqring_events(ctx))
1498 		return 0;
1499 
1500 	do {
1501 		int ret = 0;
1502 
1503 		/*
1504 		 * If a submit got punted to a workqueue, we can have the
1505 		 * application entering polling for a command before it gets
1506 		 * issued. That app will hold the uring_lock for the duration
1507 		 * of the poll right here, so we need to take a breather every
1508 		 * now and then to ensure that the issue has a chance to add
1509 		 * the poll to the issued list. Otherwise we can spin here
1510 		 * forever, while the workqueue is stuck trying to acquire the
1511 		 * very same mutex.
1512 		 */
1513 		if (wq_list_empty(&ctx->iopoll_list) ||
1514 		    io_task_work_pending(ctx)) {
1515 			u32 tail = ctx->cached_cq_tail;
1516 
1517 			(void) io_run_local_work_locked(ctx, min);
1518 
1519 			if (task_work_pending(current) ||
1520 			    wq_list_empty(&ctx->iopoll_list)) {
1521 				mutex_unlock(&ctx->uring_lock);
1522 				io_run_task_work();
1523 				mutex_lock(&ctx->uring_lock);
1524 			}
1525 			/* some requests don't go through iopoll_list */
1526 			if (tail != ctx->cached_cq_tail ||
1527 			    wq_list_empty(&ctx->iopoll_list))
1528 				break;
1529 		}
1530 		ret = io_do_iopoll(ctx, !min);
1531 		if (unlikely(ret < 0))
1532 			return ret;
1533 
1534 		if (task_sigpending(current))
1535 			return -EINTR;
1536 		if (need_resched())
1537 			break;
1538 
1539 		nr_events += ret;
1540 	} while (nr_events < min);
1541 
1542 	return 0;
1543 }
1544 
1545 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1546 {
1547 	io_req_complete_defer(req);
1548 }
1549 
1550 /*
1551  * After the iocb has been issued, it's safe to be found on the poll list.
1552  * Adding the kiocb to the list AFTER submission ensures that we don't
1553  * find it from a io_do_iopoll() thread before the issuer is done
1554  * accessing the kiocb cookie.
1555  */
1556 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1557 {
1558 	struct io_ring_ctx *ctx = req->ctx;
1559 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1560 
1561 	/* workqueue context doesn't hold uring_lock, grab it now */
1562 	if (unlikely(needs_lock))
1563 		mutex_lock(&ctx->uring_lock);
1564 
1565 	/*
1566 	 * Track whether we have multiple files in our lists. This will impact
1567 	 * how we do polling eventually, not spinning if we're on potentially
1568 	 * different devices.
1569 	 */
1570 	if (wq_list_empty(&ctx->iopoll_list)) {
1571 		ctx->poll_multi_queue = false;
1572 	} else if (!ctx->poll_multi_queue) {
1573 		struct io_kiocb *list_req;
1574 
1575 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1576 					comp_list);
1577 		if (list_req->file != req->file)
1578 			ctx->poll_multi_queue = true;
1579 	}
1580 
1581 	/*
1582 	 * For fast devices, IO may have already completed. If it has, add
1583 	 * it to the front so we find it first.
1584 	 */
1585 	if (READ_ONCE(req->iopoll_completed))
1586 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1587 	else
1588 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1589 
1590 	if (unlikely(needs_lock)) {
1591 		/*
1592 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1593 		 * in sq thread task context or in io worker task context. If
1594 		 * current task context is sq thread, we don't need to check
1595 		 * whether should wake up sq thread.
1596 		 */
1597 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1598 		    wq_has_sleeper(&ctx->sq_data->wait))
1599 			wake_up(&ctx->sq_data->wait);
1600 
1601 		mutex_unlock(&ctx->uring_lock);
1602 	}
1603 }
1604 
1605 io_req_flags_t io_file_get_flags(struct file *file)
1606 {
1607 	io_req_flags_t res = 0;
1608 
1609 	if (S_ISREG(file_inode(file)->i_mode))
1610 		res |= REQ_F_ISREG;
1611 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1612 		res |= REQ_F_SUPPORT_NOWAIT;
1613 	return res;
1614 }
1615 
1616 bool io_alloc_async_data(struct io_kiocb *req)
1617 {
1618 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1619 
1620 	WARN_ON_ONCE(!def->async_size);
1621 	req->async_data = kmalloc(def->async_size, GFP_KERNEL);
1622 	if (req->async_data) {
1623 		req->flags |= REQ_F_ASYNC_DATA;
1624 		return false;
1625 	}
1626 	return true;
1627 }
1628 
1629 static u32 io_get_sequence(struct io_kiocb *req)
1630 {
1631 	u32 seq = req->ctx->cached_sq_head;
1632 	struct io_kiocb *cur;
1633 
1634 	/* need original cached_sq_head, but it was increased for each req */
1635 	io_for_each_link(cur, req)
1636 		seq--;
1637 	return seq;
1638 }
1639 
1640 static __cold void io_drain_req(struct io_kiocb *req)
1641 	__must_hold(&ctx->uring_lock)
1642 {
1643 	struct io_ring_ctx *ctx = req->ctx;
1644 	struct io_defer_entry *de;
1645 	int ret;
1646 	u32 seq = io_get_sequence(req);
1647 
1648 	/* Still need defer if there is pending req in defer list. */
1649 	spin_lock(&ctx->completion_lock);
1650 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1651 		spin_unlock(&ctx->completion_lock);
1652 queue:
1653 		ctx->drain_active = false;
1654 		io_req_task_queue(req);
1655 		return;
1656 	}
1657 	spin_unlock(&ctx->completion_lock);
1658 
1659 	io_prep_async_link(req);
1660 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1661 	if (!de) {
1662 		ret = -ENOMEM;
1663 		io_req_defer_failed(req, ret);
1664 		return;
1665 	}
1666 
1667 	spin_lock(&ctx->completion_lock);
1668 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1669 		spin_unlock(&ctx->completion_lock);
1670 		kfree(de);
1671 		goto queue;
1672 	}
1673 
1674 	trace_io_uring_defer(req);
1675 	de->req = req;
1676 	de->seq = seq;
1677 	list_add_tail(&de->list, &ctx->defer_list);
1678 	spin_unlock(&ctx->completion_lock);
1679 }
1680 
1681 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1682 			   unsigned int issue_flags)
1683 {
1684 	if (req->file || !def->needs_file)
1685 		return true;
1686 
1687 	if (req->flags & REQ_F_FIXED_FILE)
1688 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1689 	else
1690 		req->file = io_file_get_normal(req, req->cqe.fd);
1691 
1692 	return !!req->file;
1693 }
1694 
1695 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1696 {
1697 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1698 	const struct cred *creds = NULL;
1699 	int ret;
1700 
1701 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1702 		return -EBADF;
1703 
1704 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1705 		creds = override_creds(req->creds);
1706 
1707 	if (!def->audit_skip)
1708 		audit_uring_entry(req->opcode);
1709 
1710 	ret = def->issue(req, issue_flags);
1711 
1712 	if (!def->audit_skip)
1713 		audit_uring_exit(!ret, ret);
1714 
1715 	if (creds)
1716 		revert_creds(creds);
1717 
1718 	if (ret == IOU_OK) {
1719 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1720 			io_req_complete_defer(req);
1721 		else
1722 			io_req_complete_post(req, issue_flags);
1723 
1724 		return 0;
1725 	}
1726 
1727 	if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1728 		ret = 0;
1729 		io_arm_ltimeout(req);
1730 
1731 		/* If the op doesn't have a file, we're not polling for it */
1732 		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1733 			io_iopoll_req_issued(req, issue_flags);
1734 	}
1735 	return ret;
1736 }
1737 
1738 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1739 {
1740 	io_tw_lock(req->ctx, ts);
1741 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1742 				 IO_URING_F_COMPLETE_DEFER);
1743 }
1744 
1745 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1746 {
1747 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1748 	struct io_kiocb *nxt = NULL;
1749 
1750 	if (req_ref_put_and_test(req)) {
1751 		if (req->flags & IO_REQ_LINK_FLAGS)
1752 			nxt = io_req_find_next(req);
1753 		io_free_req(req);
1754 	}
1755 	return nxt ? &nxt->work : NULL;
1756 }
1757 
1758 void io_wq_submit_work(struct io_wq_work *work)
1759 {
1760 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1761 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1762 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1763 	bool needs_poll = false;
1764 	int ret = 0, err = -ECANCELED;
1765 
1766 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1767 	if (!(req->flags & REQ_F_REFCOUNT))
1768 		__io_req_set_refcount(req, 2);
1769 	else
1770 		req_ref_get(req);
1771 
1772 	io_arm_ltimeout(req);
1773 
1774 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1775 	if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1776 fail:
1777 		io_req_task_queue_fail(req, err);
1778 		return;
1779 	}
1780 	if (!io_assign_file(req, def, issue_flags)) {
1781 		err = -EBADF;
1782 		atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1783 		goto fail;
1784 	}
1785 
1786 	/*
1787 	 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1788 	 * submitter task context. Final request completions are handed to the
1789 	 * right context, however this is not the case of auxiliary CQEs,
1790 	 * which is the main mean of operation for multishot requests.
1791 	 * Don't allow any multishot execution from io-wq. It's more restrictive
1792 	 * than necessary and also cleaner.
1793 	 */
1794 	if (req->flags & REQ_F_APOLL_MULTISHOT) {
1795 		err = -EBADFD;
1796 		if (!io_file_can_poll(req))
1797 			goto fail;
1798 		if (req->file->f_flags & O_NONBLOCK ||
1799 		    req->file->f_mode & FMODE_NOWAIT) {
1800 			err = -ECANCELED;
1801 			if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1802 				goto fail;
1803 			return;
1804 		} else {
1805 			req->flags &= ~REQ_F_APOLL_MULTISHOT;
1806 		}
1807 	}
1808 
1809 	if (req->flags & REQ_F_FORCE_ASYNC) {
1810 		bool opcode_poll = def->pollin || def->pollout;
1811 
1812 		if (opcode_poll && io_file_can_poll(req)) {
1813 			needs_poll = true;
1814 			issue_flags |= IO_URING_F_NONBLOCK;
1815 		}
1816 	}
1817 
1818 	do {
1819 		ret = io_issue_sqe(req, issue_flags);
1820 		if (ret != -EAGAIN)
1821 			break;
1822 
1823 		/*
1824 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1825 		 * poll. -EAGAIN is final for that case.
1826 		 */
1827 		if (req->flags & REQ_F_NOWAIT)
1828 			break;
1829 
1830 		/*
1831 		 * We can get EAGAIN for iopolled IO even though we're
1832 		 * forcing a sync submission from here, since we can't
1833 		 * wait for request slots on the block side.
1834 		 */
1835 		if (!needs_poll) {
1836 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1837 				break;
1838 			if (io_wq_worker_stopped())
1839 				break;
1840 			cond_resched();
1841 			continue;
1842 		}
1843 
1844 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1845 			return;
1846 		/* aborted or ready, in either case retry blocking */
1847 		needs_poll = false;
1848 		issue_flags &= ~IO_URING_F_NONBLOCK;
1849 	} while (1);
1850 
1851 	/* avoid locking problems by failing it from a clean context */
1852 	if (ret)
1853 		io_req_task_queue_fail(req, ret);
1854 }
1855 
1856 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1857 				      unsigned int issue_flags)
1858 {
1859 	struct io_ring_ctx *ctx = req->ctx;
1860 	struct io_fixed_file *slot;
1861 	struct file *file = NULL;
1862 
1863 	io_ring_submit_lock(ctx, issue_flags);
1864 
1865 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1866 		goto out;
1867 	fd = array_index_nospec(fd, ctx->nr_user_files);
1868 	slot = io_fixed_file_slot(&ctx->file_table, fd);
1869 	if (!req->rsrc_node)
1870 		__io_req_set_rsrc_node(req, ctx);
1871 	req->flags |= io_slot_flags(slot);
1872 	file = io_slot_file(slot);
1873 out:
1874 	io_ring_submit_unlock(ctx, issue_flags);
1875 	return file;
1876 }
1877 
1878 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1879 {
1880 	struct file *file = fget(fd);
1881 
1882 	trace_io_uring_file_get(req, fd);
1883 
1884 	/* we don't allow fixed io_uring files */
1885 	if (file && io_is_uring_fops(file))
1886 		io_req_track_inflight(req);
1887 	return file;
1888 }
1889 
1890 static void io_queue_async(struct io_kiocb *req, int ret)
1891 	__must_hold(&req->ctx->uring_lock)
1892 {
1893 	struct io_kiocb *linked_timeout;
1894 
1895 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1896 		io_req_defer_failed(req, ret);
1897 		return;
1898 	}
1899 
1900 	linked_timeout = io_prep_linked_timeout(req);
1901 
1902 	switch (io_arm_poll_handler(req, 0)) {
1903 	case IO_APOLL_READY:
1904 		io_kbuf_recycle(req, 0);
1905 		io_req_task_queue(req);
1906 		break;
1907 	case IO_APOLL_ABORTED:
1908 		io_kbuf_recycle(req, 0);
1909 		io_queue_iowq(req);
1910 		break;
1911 	case IO_APOLL_OK:
1912 		break;
1913 	}
1914 
1915 	if (linked_timeout)
1916 		io_queue_linked_timeout(linked_timeout);
1917 }
1918 
1919 static inline void io_queue_sqe(struct io_kiocb *req)
1920 	__must_hold(&req->ctx->uring_lock)
1921 {
1922 	int ret;
1923 
1924 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1925 
1926 	/*
1927 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
1928 	 * doesn't support non-blocking read/write attempts
1929 	 */
1930 	if (unlikely(ret))
1931 		io_queue_async(req, ret);
1932 }
1933 
1934 static void io_queue_sqe_fallback(struct io_kiocb *req)
1935 	__must_hold(&req->ctx->uring_lock)
1936 {
1937 	if (unlikely(req->flags & REQ_F_FAIL)) {
1938 		/*
1939 		 * We don't submit, fail them all, for that replace hardlinks
1940 		 * with normal links. Extra REQ_F_LINK is tolerated.
1941 		 */
1942 		req->flags &= ~REQ_F_HARDLINK;
1943 		req->flags |= REQ_F_LINK;
1944 		io_req_defer_failed(req, req->cqe.res);
1945 	} else {
1946 		if (unlikely(req->ctx->drain_active))
1947 			io_drain_req(req);
1948 		else
1949 			io_queue_iowq(req);
1950 	}
1951 }
1952 
1953 /*
1954  * Check SQE restrictions (opcode and flags).
1955  *
1956  * Returns 'true' if SQE is allowed, 'false' otherwise.
1957  */
1958 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1959 					struct io_kiocb *req,
1960 					unsigned int sqe_flags)
1961 {
1962 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1963 		return false;
1964 
1965 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1966 	    ctx->restrictions.sqe_flags_required)
1967 		return false;
1968 
1969 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1970 			  ctx->restrictions.sqe_flags_required))
1971 		return false;
1972 
1973 	return true;
1974 }
1975 
1976 static void io_init_req_drain(struct io_kiocb *req)
1977 {
1978 	struct io_ring_ctx *ctx = req->ctx;
1979 	struct io_kiocb *head = ctx->submit_state.link.head;
1980 
1981 	ctx->drain_active = true;
1982 	if (head) {
1983 		/*
1984 		 * If we need to drain a request in the middle of a link, drain
1985 		 * the head request and the next request/link after the current
1986 		 * link. Considering sequential execution of links,
1987 		 * REQ_F_IO_DRAIN will be maintained for every request of our
1988 		 * link.
1989 		 */
1990 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
1991 		ctx->drain_next = true;
1992 	}
1993 }
1994 
1995 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
1996 {
1997 	/* ensure per-opcode data is cleared if we fail before prep */
1998 	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
1999 	return err;
2000 }
2001 
2002 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2003 		       const struct io_uring_sqe *sqe)
2004 	__must_hold(&ctx->uring_lock)
2005 {
2006 	const struct io_issue_def *def;
2007 	unsigned int sqe_flags;
2008 	int personality;
2009 	u8 opcode;
2010 
2011 	/* req is partially pre-initialised, see io_preinit_req() */
2012 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2013 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2014 	sqe_flags = READ_ONCE(sqe->flags);
2015 	req->flags = (io_req_flags_t) sqe_flags;
2016 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2017 	req->file = NULL;
2018 	req->rsrc_node = NULL;
2019 	req->task = current;
2020 	req->cancel_seq_set = false;
2021 
2022 	if (unlikely(opcode >= IORING_OP_LAST)) {
2023 		req->opcode = 0;
2024 		return io_init_fail_req(req, -EINVAL);
2025 	}
2026 	def = &io_issue_defs[opcode];
2027 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2028 		/* enforce forwards compatibility on users */
2029 		if (sqe_flags & ~SQE_VALID_FLAGS)
2030 			return io_init_fail_req(req, -EINVAL);
2031 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2032 			if (!def->buffer_select)
2033 				return io_init_fail_req(req, -EOPNOTSUPP);
2034 			req->buf_index = READ_ONCE(sqe->buf_group);
2035 		}
2036 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2037 			ctx->drain_disabled = true;
2038 		if (sqe_flags & IOSQE_IO_DRAIN) {
2039 			if (ctx->drain_disabled)
2040 				return io_init_fail_req(req, -EOPNOTSUPP);
2041 			io_init_req_drain(req);
2042 		}
2043 	}
2044 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2045 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2046 			return io_init_fail_req(req, -EACCES);
2047 		/* knock it to the slow queue path, will be drained there */
2048 		if (ctx->drain_active)
2049 			req->flags |= REQ_F_FORCE_ASYNC;
2050 		/* if there is no link, we're at "next" request and need to drain */
2051 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2052 			ctx->drain_next = false;
2053 			ctx->drain_active = true;
2054 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2055 		}
2056 	}
2057 
2058 	if (!def->ioprio && sqe->ioprio)
2059 		return io_init_fail_req(req, -EINVAL);
2060 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2061 		return io_init_fail_req(req, -EINVAL);
2062 
2063 	if (def->needs_file) {
2064 		struct io_submit_state *state = &ctx->submit_state;
2065 
2066 		req->cqe.fd = READ_ONCE(sqe->fd);
2067 
2068 		/*
2069 		 * Plug now if we have more than 2 IO left after this, and the
2070 		 * target is potentially a read/write to block based storage.
2071 		 */
2072 		if (state->need_plug && def->plug) {
2073 			state->plug_started = true;
2074 			state->need_plug = false;
2075 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2076 		}
2077 	}
2078 
2079 	personality = READ_ONCE(sqe->personality);
2080 	if (personality) {
2081 		int ret;
2082 
2083 		req->creds = xa_load(&ctx->personalities, personality);
2084 		if (!req->creds)
2085 			return io_init_fail_req(req, -EINVAL);
2086 		get_cred(req->creds);
2087 		ret = security_uring_override_creds(req->creds);
2088 		if (ret) {
2089 			put_cred(req->creds);
2090 			return io_init_fail_req(req, ret);
2091 		}
2092 		req->flags |= REQ_F_CREDS;
2093 	}
2094 
2095 	return def->prep(req, sqe);
2096 }
2097 
2098 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2099 				      struct io_kiocb *req, int ret)
2100 {
2101 	struct io_ring_ctx *ctx = req->ctx;
2102 	struct io_submit_link *link = &ctx->submit_state.link;
2103 	struct io_kiocb *head = link->head;
2104 
2105 	trace_io_uring_req_failed(sqe, req, ret);
2106 
2107 	/*
2108 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2109 	 * unusable. Instead of failing eagerly, continue assembling the link if
2110 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2111 	 * should find the flag and handle the rest.
2112 	 */
2113 	req_fail_link_node(req, ret);
2114 	if (head && !(head->flags & REQ_F_FAIL))
2115 		req_fail_link_node(head, -ECANCELED);
2116 
2117 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2118 		if (head) {
2119 			link->last->link = req;
2120 			link->head = NULL;
2121 			req = head;
2122 		}
2123 		io_queue_sqe_fallback(req);
2124 		return ret;
2125 	}
2126 
2127 	if (head)
2128 		link->last->link = req;
2129 	else
2130 		link->head = req;
2131 	link->last = req;
2132 	return 0;
2133 }
2134 
2135 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2136 			 const struct io_uring_sqe *sqe)
2137 	__must_hold(&ctx->uring_lock)
2138 {
2139 	struct io_submit_link *link = &ctx->submit_state.link;
2140 	int ret;
2141 
2142 	ret = io_init_req(ctx, req, sqe);
2143 	if (unlikely(ret))
2144 		return io_submit_fail_init(sqe, req, ret);
2145 
2146 	trace_io_uring_submit_req(req);
2147 
2148 	/*
2149 	 * If we already have a head request, queue this one for async
2150 	 * submittal once the head completes. If we don't have a head but
2151 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2152 	 * submitted sync once the chain is complete. If none of those
2153 	 * conditions are true (normal request), then just queue it.
2154 	 */
2155 	if (unlikely(link->head)) {
2156 		trace_io_uring_link(req, link->head);
2157 		link->last->link = req;
2158 		link->last = req;
2159 
2160 		if (req->flags & IO_REQ_LINK_FLAGS)
2161 			return 0;
2162 		/* last request of the link, flush it */
2163 		req = link->head;
2164 		link->head = NULL;
2165 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2166 			goto fallback;
2167 
2168 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2169 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2170 		if (req->flags & IO_REQ_LINK_FLAGS) {
2171 			link->head = req;
2172 			link->last = req;
2173 		} else {
2174 fallback:
2175 			io_queue_sqe_fallback(req);
2176 		}
2177 		return 0;
2178 	}
2179 
2180 	io_queue_sqe(req);
2181 	return 0;
2182 }
2183 
2184 /*
2185  * Batched submission is done, ensure local IO is flushed out.
2186  */
2187 static void io_submit_state_end(struct io_ring_ctx *ctx)
2188 {
2189 	struct io_submit_state *state = &ctx->submit_state;
2190 
2191 	if (unlikely(state->link.head))
2192 		io_queue_sqe_fallback(state->link.head);
2193 	/* flush only after queuing links as they can generate completions */
2194 	io_submit_flush_completions(ctx);
2195 	if (state->plug_started)
2196 		blk_finish_plug(&state->plug);
2197 }
2198 
2199 /*
2200  * Start submission side cache.
2201  */
2202 static void io_submit_state_start(struct io_submit_state *state,
2203 				  unsigned int max_ios)
2204 {
2205 	state->plug_started = false;
2206 	state->need_plug = max_ios > 2;
2207 	state->submit_nr = max_ios;
2208 	/* set only head, no need to init link_last in advance */
2209 	state->link.head = NULL;
2210 }
2211 
2212 static void io_commit_sqring(struct io_ring_ctx *ctx)
2213 {
2214 	struct io_rings *rings = ctx->rings;
2215 
2216 	/*
2217 	 * Ensure any loads from the SQEs are done at this point,
2218 	 * since once we write the new head, the application could
2219 	 * write new data to them.
2220 	 */
2221 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2222 }
2223 
2224 /*
2225  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2226  * that is mapped by userspace. This means that care needs to be taken to
2227  * ensure that reads are stable, as we cannot rely on userspace always
2228  * being a good citizen. If members of the sqe are validated and then later
2229  * used, it's important that those reads are done through READ_ONCE() to
2230  * prevent a re-load down the line.
2231  */
2232 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2233 {
2234 	unsigned mask = ctx->sq_entries - 1;
2235 	unsigned head = ctx->cached_sq_head++ & mask;
2236 
2237 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2238 		head = READ_ONCE(ctx->sq_array[head]);
2239 		if (unlikely(head >= ctx->sq_entries)) {
2240 			/* drop invalid entries */
2241 			spin_lock(&ctx->completion_lock);
2242 			ctx->cq_extra--;
2243 			spin_unlock(&ctx->completion_lock);
2244 			WRITE_ONCE(ctx->rings->sq_dropped,
2245 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2246 			return false;
2247 		}
2248 	}
2249 
2250 	/*
2251 	 * The cached sq head (or cq tail) serves two purposes:
2252 	 *
2253 	 * 1) allows us to batch the cost of updating the user visible
2254 	 *    head updates.
2255 	 * 2) allows the kernel side to track the head on its own, even
2256 	 *    though the application is the one updating it.
2257 	 */
2258 
2259 	/* double index for 128-byte SQEs, twice as long */
2260 	if (ctx->flags & IORING_SETUP_SQE128)
2261 		head <<= 1;
2262 	*sqe = &ctx->sq_sqes[head];
2263 	return true;
2264 }
2265 
2266 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2267 	__must_hold(&ctx->uring_lock)
2268 {
2269 	unsigned int entries = io_sqring_entries(ctx);
2270 	unsigned int left;
2271 	int ret;
2272 
2273 	if (unlikely(!entries))
2274 		return 0;
2275 	/* make sure SQ entry isn't read before tail */
2276 	ret = left = min(nr, entries);
2277 	io_get_task_refs(left);
2278 	io_submit_state_start(&ctx->submit_state, left);
2279 
2280 	do {
2281 		const struct io_uring_sqe *sqe;
2282 		struct io_kiocb *req;
2283 
2284 		if (unlikely(!io_alloc_req(ctx, &req)))
2285 			break;
2286 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2287 			io_req_add_to_cache(req, ctx);
2288 			break;
2289 		}
2290 
2291 		/*
2292 		 * Continue submitting even for sqe failure if the
2293 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2294 		 */
2295 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2296 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2297 			left--;
2298 			break;
2299 		}
2300 	} while (--left);
2301 
2302 	if (unlikely(left)) {
2303 		ret -= left;
2304 		/* try again if it submitted nothing and can't allocate a req */
2305 		if (!ret && io_req_cache_empty(ctx))
2306 			ret = -EAGAIN;
2307 		current->io_uring->cached_refs += left;
2308 	}
2309 
2310 	io_submit_state_end(ctx);
2311 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2312 	io_commit_sqring(ctx);
2313 	return ret;
2314 }
2315 
2316 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2317 			    int wake_flags, void *key)
2318 {
2319 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2320 
2321 	/*
2322 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2323 	 * the task, and the next invocation will do it.
2324 	 */
2325 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2326 		return autoremove_wake_function(curr, mode, wake_flags, key);
2327 	return -1;
2328 }
2329 
2330 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2331 {
2332 	if (!llist_empty(&ctx->work_llist)) {
2333 		__set_current_state(TASK_RUNNING);
2334 		if (io_run_local_work(ctx, INT_MAX) > 0)
2335 			return 0;
2336 	}
2337 	if (io_run_task_work() > 0)
2338 		return 0;
2339 	if (task_sigpending(current))
2340 		return -EINTR;
2341 	return 0;
2342 }
2343 
2344 static bool current_pending_io(void)
2345 {
2346 	struct io_uring_task *tctx = current->io_uring;
2347 
2348 	if (!tctx)
2349 		return false;
2350 	return percpu_counter_read_positive(&tctx->inflight);
2351 }
2352 
2353 /* when returns >0, the caller should retry */
2354 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2355 					  struct io_wait_queue *iowq)
2356 {
2357 	int ret;
2358 
2359 	if (unlikely(READ_ONCE(ctx->check_cq)))
2360 		return 1;
2361 	if (unlikely(!llist_empty(&ctx->work_llist)))
2362 		return 1;
2363 	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2364 		return 1;
2365 	if (unlikely(task_sigpending(current)))
2366 		return -EINTR;
2367 	if (unlikely(io_should_wake(iowq)))
2368 		return 0;
2369 
2370 	/*
2371 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2372 	 * can take into account that the task is waiting for IO - turns out
2373 	 * to be important for low QD IO.
2374 	 */
2375 	if (current_pending_io())
2376 		current->in_iowait = 1;
2377 	ret = 0;
2378 	if (iowq->timeout == KTIME_MAX)
2379 		schedule();
2380 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2381 		ret = -ETIME;
2382 	current->in_iowait = 0;
2383 	return ret;
2384 }
2385 
2386 /*
2387  * Wait until events become available, if we don't already have some. The
2388  * application must reap them itself, as they reside on the shared cq ring.
2389  */
2390 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2391 			  const sigset_t __user *sig, size_t sigsz,
2392 			  struct __kernel_timespec __user *uts)
2393 {
2394 	struct io_wait_queue iowq;
2395 	struct io_rings *rings = ctx->rings;
2396 	int ret;
2397 
2398 	if (!io_allowed_run_tw(ctx))
2399 		return -EEXIST;
2400 	if (!llist_empty(&ctx->work_llist))
2401 		io_run_local_work(ctx, min_events);
2402 	io_run_task_work();
2403 
2404 	if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2405 		io_cqring_do_overflow_flush(ctx);
2406 	if (__io_cqring_events_user(ctx) >= min_events)
2407 		return 0;
2408 
2409 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2410 	iowq.wq.private = current;
2411 	INIT_LIST_HEAD(&iowq.wq.entry);
2412 	iowq.ctx = ctx;
2413 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2414 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2415 	iowq.timeout = KTIME_MAX;
2416 
2417 	if (uts) {
2418 		struct timespec64 ts;
2419 		ktime_t dt;
2420 
2421 		if (get_timespec64(&ts, uts))
2422 			return -EFAULT;
2423 
2424 		dt = timespec64_to_ktime(ts);
2425 		iowq.timeout = ktime_add(dt, ktime_get());
2426 		io_napi_adjust_timeout(ctx, &iowq, dt);
2427 	}
2428 
2429 	if (sig) {
2430 #ifdef CONFIG_COMPAT
2431 		if (in_compat_syscall())
2432 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2433 						      sigsz);
2434 		else
2435 #endif
2436 			ret = set_user_sigmask(sig, sigsz);
2437 
2438 		if (ret)
2439 			return ret;
2440 	}
2441 
2442 	io_napi_busy_loop(ctx, &iowq);
2443 
2444 	trace_io_uring_cqring_wait(ctx, min_events);
2445 	do {
2446 		int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2447 		unsigned long check_cq;
2448 
2449 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2450 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2451 			set_current_state(TASK_INTERRUPTIBLE);
2452 		} else {
2453 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2454 							TASK_INTERRUPTIBLE);
2455 		}
2456 
2457 		ret = io_cqring_wait_schedule(ctx, &iowq);
2458 		__set_current_state(TASK_RUNNING);
2459 		atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2460 
2461 		/*
2462 		 * Run task_work after scheduling and before io_should_wake().
2463 		 * If we got woken because of task_work being processed, run it
2464 		 * now rather than let the caller do another wait loop.
2465 		 */
2466 		io_run_task_work();
2467 		if (!llist_empty(&ctx->work_llist))
2468 			io_run_local_work(ctx, nr_wait);
2469 
2470 		/*
2471 		 * Non-local task_work will be run on exit to userspace, but
2472 		 * if we're using DEFER_TASKRUN, then we could have waited
2473 		 * with a timeout for a number of requests. If the timeout
2474 		 * hits, we could have some requests ready to process. Ensure
2475 		 * this break is _after_ we have run task_work, to avoid
2476 		 * deferring running potentially pending requests until the
2477 		 * next time we wait for events.
2478 		 */
2479 		if (ret < 0)
2480 			break;
2481 
2482 		check_cq = READ_ONCE(ctx->check_cq);
2483 		if (unlikely(check_cq)) {
2484 			/* let the caller flush overflows, retry */
2485 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2486 				io_cqring_do_overflow_flush(ctx);
2487 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2488 				ret = -EBADR;
2489 				break;
2490 			}
2491 		}
2492 
2493 		if (io_should_wake(&iowq)) {
2494 			ret = 0;
2495 			break;
2496 		}
2497 		cond_resched();
2498 	} while (1);
2499 
2500 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2501 		finish_wait(&ctx->cq_wait, &iowq.wq);
2502 	restore_saved_sigmask_unless(ret == -EINTR);
2503 
2504 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2505 }
2506 
2507 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2508 			  size_t size)
2509 {
2510 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2511 				size);
2512 }
2513 
2514 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2515 			 size_t size)
2516 {
2517 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2518 				size);
2519 }
2520 
2521 static void io_rings_free(struct io_ring_ctx *ctx)
2522 {
2523 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2524 		io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages,
2525 				true);
2526 		io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages,
2527 				true);
2528 	} else {
2529 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2530 		ctx->n_ring_pages = 0;
2531 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2532 		ctx->n_sqe_pages = 0;
2533 		vunmap(ctx->rings);
2534 		vunmap(ctx->sq_sqes);
2535 	}
2536 
2537 	ctx->rings = NULL;
2538 	ctx->sq_sqes = NULL;
2539 }
2540 
2541 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2542 				unsigned int cq_entries, size_t *sq_offset)
2543 {
2544 	struct io_rings *rings;
2545 	size_t off, sq_array_size;
2546 
2547 	off = struct_size(rings, cqes, cq_entries);
2548 	if (off == SIZE_MAX)
2549 		return SIZE_MAX;
2550 	if (ctx->flags & IORING_SETUP_CQE32) {
2551 		if (check_shl_overflow(off, 1, &off))
2552 			return SIZE_MAX;
2553 	}
2554 
2555 #ifdef CONFIG_SMP
2556 	off = ALIGN(off, SMP_CACHE_BYTES);
2557 	if (off == 0)
2558 		return SIZE_MAX;
2559 #endif
2560 
2561 	if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2562 		*sq_offset = SIZE_MAX;
2563 		return off;
2564 	}
2565 
2566 	*sq_offset = off;
2567 
2568 	sq_array_size = array_size(sizeof(u32), sq_entries);
2569 	if (sq_array_size == SIZE_MAX)
2570 		return SIZE_MAX;
2571 
2572 	if (check_add_overflow(off, sq_array_size, &off))
2573 		return SIZE_MAX;
2574 
2575 	return off;
2576 }
2577 
2578 static void io_req_caches_free(struct io_ring_ctx *ctx)
2579 {
2580 	struct io_kiocb *req;
2581 	int nr = 0;
2582 
2583 	mutex_lock(&ctx->uring_lock);
2584 
2585 	while (!io_req_cache_empty(ctx)) {
2586 		req = io_extract_req(ctx);
2587 		kmem_cache_free(req_cachep, req);
2588 		nr++;
2589 	}
2590 	if (nr)
2591 		percpu_ref_put_many(&ctx->refs, nr);
2592 	mutex_unlock(&ctx->uring_lock);
2593 }
2594 
2595 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2596 {
2597 	io_sq_thread_finish(ctx);
2598 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2599 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2600 		return;
2601 
2602 	mutex_lock(&ctx->uring_lock);
2603 	if (ctx->buf_data)
2604 		__io_sqe_buffers_unregister(ctx);
2605 	if (ctx->file_data)
2606 		__io_sqe_files_unregister(ctx);
2607 	io_cqring_overflow_kill(ctx);
2608 	io_eventfd_unregister(ctx);
2609 	io_alloc_cache_free(&ctx->apoll_cache, kfree);
2610 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2611 	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
2612 	io_alloc_cache_free(&ctx->uring_cache, kfree);
2613 	io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
2614 	io_futex_cache_free(ctx);
2615 	io_destroy_buffers(ctx);
2616 	mutex_unlock(&ctx->uring_lock);
2617 	if (ctx->sq_creds)
2618 		put_cred(ctx->sq_creds);
2619 	if (ctx->submitter_task)
2620 		put_task_struct(ctx->submitter_task);
2621 
2622 	/* there are no registered resources left, nobody uses it */
2623 	if (ctx->rsrc_node)
2624 		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2625 
2626 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2627 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2628 
2629 	io_alloc_cache_free(&ctx->rsrc_node_cache, kfree);
2630 	if (ctx->mm_account) {
2631 		mmdrop(ctx->mm_account);
2632 		ctx->mm_account = NULL;
2633 	}
2634 	io_rings_free(ctx);
2635 
2636 	percpu_ref_exit(&ctx->refs);
2637 	free_uid(ctx->user);
2638 	io_req_caches_free(ctx);
2639 	if (ctx->hash_map)
2640 		io_wq_put_hash(ctx->hash_map);
2641 	io_napi_free(ctx);
2642 	kfree(ctx->cancel_table.hbs);
2643 	kfree(ctx->cancel_table_locked.hbs);
2644 	xa_destroy(&ctx->io_bl_xa);
2645 	kfree(ctx);
2646 }
2647 
2648 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2649 {
2650 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2651 					       poll_wq_task_work);
2652 
2653 	mutex_lock(&ctx->uring_lock);
2654 	ctx->poll_activated = true;
2655 	mutex_unlock(&ctx->uring_lock);
2656 
2657 	/*
2658 	 * Wake ups for some events between start of polling and activation
2659 	 * might've been lost due to loose synchronisation.
2660 	 */
2661 	wake_up_all(&ctx->poll_wq);
2662 	percpu_ref_put(&ctx->refs);
2663 }
2664 
2665 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2666 {
2667 	spin_lock(&ctx->completion_lock);
2668 	/* already activated or in progress */
2669 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2670 		goto out;
2671 	if (WARN_ON_ONCE(!ctx->task_complete))
2672 		goto out;
2673 	if (!ctx->submitter_task)
2674 		goto out;
2675 	/*
2676 	 * with ->submitter_task only the submitter task completes requests, we
2677 	 * only need to sync with it, which is done by injecting a tw
2678 	 */
2679 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2680 	percpu_ref_get(&ctx->refs);
2681 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2682 		percpu_ref_put(&ctx->refs);
2683 out:
2684 	spin_unlock(&ctx->completion_lock);
2685 }
2686 
2687 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2688 {
2689 	struct io_ring_ctx *ctx = file->private_data;
2690 	__poll_t mask = 0;
2691 
2692 	if (unlikely(!ctx->poll_activated))
2693 		io_activate_pollwq(ctx);
2694 
2695 	poll_wait(file, &ctx->poll_wq, wait);
2696 	/*
2697 	 * synchronizes with barrier from wq_has_sleeper call in
2698 	 * io_commit_cqring
2699 	 */
2700 	smp_rmb();
2701 	if (!io_sqring_full(ctx))
2702 		mask |= EPOLLOUT | EPOLLWRNORM;
2703 
2704 	/*
2705 	 * Don't flush cqring overflow list here, just do a simple check.
2706 	 * Otherwise there could possible be ABBA deadlock:
2707 	 *      CPU0                    CPU1
2708 	 *      ----                    ----
2709 	 * lock(&ctx->uring_lock);
2710 	 *                              lock(&ep->mtx);
2711 	 *                              lock(&ctx->uring_lock);
2712 	 * lock(&ep->mtx);
2713 	 *
2714 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2715 	 * pushes them to do the flush.
2716 	 */
2717 
2718 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2719 		mask |= EPOLLIN | EPOLLRDNORM;
2720 
2721 	return mask;
2722 }
2723 
2724 struct io_tctx_exit {
2725 	struct callback_head		task_work;
2726 	struct completion		completion;
2727 	struct io_ring_ctx		*ctx;
2728 };
2729 
2730 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2731 {
2732 	struct io_uring_task *tctx = current->io_uring;
2733 	struct io_tctx_exit *work;
2734 
2735 	work = container_of(cb, struct io_tctx_exit, task_work);
2736 	/*
2737 	 * When @in_cancel, we're in cancellation and it's racy to remove the
2738 	 * node. It'll be removed by the end of cancellation, just ignore it.
2739 	 * tctx can be NULL if the queueing of this task_work raced with
2740 	 * work cancelation off the exec path.
2741 	 */
2742 	if (tctx && !atomic_read(&tctx->in_cancel))
2743 		io_uring_del_tctx_node((unsigned long)work->ctx);
2744 	complete(&work->completion);
2745 }
2746 
2747 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2748 {
2749 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2750 
2751 	return req->ctx == data;
2752 }
2753 
2754 static __cold void io_ring_exit_work(struct work_struct *work)
2755 {
2756 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2757 	unsigned long timeout = jiffies + HZ * 60 * 5;
2758 	unsigned long interval = HZ / 20;
2759 	struct io_tctx_exit exit;
2760 	struct io_tctx_node *node;
2761 	int ret;
2762 
2763 	/*
2764 	 * If we're doing polled IO and end up having requests being
2765 	 * submitted async (out-of-line), then completions can come in while
2766 	 * we're waiting for refs to drop. We need to reap these manually,
2767 	 * as nobody else will be looking for them.
2768 	 */
2769 	do {
2770 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2771 			mutex_lock(&ctx->uring_lock);
2772 			io_cqring_overflow_kill(ctx);
2773 			mutex_unlock(&ctx->uring_lock);
2774 		}
2775 
2776 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2777 			io_move_task_work_from_local(ctx);
2778 
2779 		while (io_uring_try_cancel_requests(ctx, NULL, true))
2780 			cond_resched();
2781 
2782 		if (ctx->sq_data) {
2783 			struct io_sq_data *sqd = ctx->sq_data;
2784 			struct task_struct *tsk;
2785 
2786 			io_sq_thread_park(sqd);
2787 			tsk = sqd->thread;
2788 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2789 				io_wq_cancel_cb(tsk->io_uring->io_wq,
2790 						io_cancel_ctx_cb, ctx, true);
2791 			io_sq_thread_unpark(sqd);
2792 		}
2793 
2794 		io_req_caches_free(ctx);
2795 
2796 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2797 			/* there is little hope left, don't run it too often */
2798 			interval = HZ * 60;
2799 		}
2800 		/*
2801 		 * This is really an uninterruptible wait, as it has to be
2802 		 * complete. But it's also run from a kworker, which doesn't
2803 		 * take signals, so it's fine to make it interruptible. This
2804 		 * avoids scenarios where we knowingly can wait much longer
2805 		 * on completions, for example if someone does a SIGSTOP on
2806 		 * a task that needs to finish task_work to make this loop
2807 		 * complete. That's a synthetic situation that should not
2808 		 * cause a stuck task backtrace, and hence a potential panic
2809 		 * on stuck tasks if that is enabled.
2810 		 */
2811 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2812 
2813 	init_completion(&exit.completion);
2814 	init_task_work(&exit.task_work, io_tctx_exit_cb);
2815 	exit.ctx = ctx;
2816 
2817 	mutex_lock(&ctx->uring_lock);
2818 	while (!list_empty(&ctx->tctx_list)) {
2819 		WARN_ON_ONCE(time_after(jiffies, timeout));
2820 
2821 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2822 					ctx_node);
2823 		/* don't spin on a single task if cancellation failed */
2824 		list_rotate_left(&ctx->tctx_list);
2825 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2826 		if (WARN_ON_ONCE(ret))
2827 			continue;
2828 
2829 		mutex_unlock(&ctx->uring_lock);
2830 		/*
2831 		 * See comment above for
2832 		 * wait_for_completion_interruptible_timeout() on why this
2833 		 * wait is marked as interruptible.
2834 		 */
2835 		wait_for_completion_interruptible(&exit.completion);
2836 		mutex_lock(&ctx->uring_lock);
2837 	}
2838 	mutex_unlock(&ctx->uring_lock);
2839 	spin_lock(&ctx->completion_lock);
2840 	spin_unlock(&ctx->completion_lock);
2841 
2842 	/* pairs with RCU read section in io_req_local_work_add() */
2843 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2844 		synchronize_rcu();
2845 
2846 	io_ring_ctx_free(ctx);
2847 }
2848 
2849 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2850 {
2851 	unsigned long index;
2852 	struct creds *creds;
2853 
2854 	mutex_lock(&ctx->uring_lock);
2855 	percpu_ref_kill(&ctx->refs);
2856 	xa_for_each(&ctx->personalities, index, creds)
2857 		io_unregister_personality(ctx, index);
2858 	mutex_unlock(&ctx->uring_lock);
2859 
2860 	flush_delayed_work(&ctx->fallback_work);
2861 
2862 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2863 	/*
2864 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
2865 	 * if we're exiting a ton of rings at the same time. It just adds
2866 	 * noise and overhead, there's no discernable change in runtime
2867 	 * over using system_wq.
2868 	 */
2869 	queue_work(iou_wq, &ctx->exit_work);
2870 }
2871 
2872 static int io_uring_release(struct inode *inode, struct file *file)
2873 {
2874 	struct io_ring_ctx *ctx = file->private_data;
2875 
2876 	file->private_data = NULL;
2877 	io_ring_ctx_wait_and_kill(ctx);
2878 	return 0;
2879 }
2880 
2881 struct io_task_cancel {
2882 	struct task_struct *task;
2883 	bool all;
2884 };
2885 
2886 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
2887 {
2888 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2889 	struct io_task_cancel *cancel = data;
2890 
2891 	return io_match_task_safe(req, cancel->task, cancel->all);
2892 }
2893 
2894 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
2895 					 struct task_struct *task,
2896 					 bool cancel_all)
2897 {
2898 	struct io_defer_entry *de;
2899 	LIST_HEAD(list);
2900 
2901 	spin_lock(&ctx->completion_lock);
2902 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
2903 		if (io_match_task_safe(de->req, task, cancel_all)) {
2904 			list_cut_position(&list, &ctx->defer_list, &de->list);
2905 			break;
2906 		}
2907 	}
2908 	spin_unlock(&ctx->completion_lock);
2909 	if (list_empty(&list))
2910 		return false;
2911 
2912 	while (!list_empty(&list)) {
2913 		de = list_first_entry(&list, struct io_defer_entry, list);
2914 		list_del_init(&de->list);
2915 		io_req_task_queue_fail(de->req, -ECANCELED);
2916 		kfree(de);
2917 	}
2918 	return true;
2919 }
2920 
2921 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
2922 {
2923 	struct io_tctx_node *node;
2924 	enum io_wq_cancel cret;
2925 	bool ret = false;
2926 
2927 	mutex_lock(&ctx->uring_lock);
2928 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
2929 		struct io_uring_task *tctx = node->task->io_uring;
2930 
2931 		/*
2932 		 * io_wq will stay alive while we hold uring_lock, because it's
2933 		 * killed after ctx nodes, which requires to take the lock.
2934 		 */
2935 		if (!tctx || !tctx->io_wq)
2936 			continue;
2937 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
2938 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
2939 	}
2940 	mutex_unlock(&ctx->uring_lock);
2941 
2942 	return ret;
2943 }
2944 
2945 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
2946 						struct task_struct *task,
2947 						bool cancel_all)
2948 {
2949 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
2950 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
2951 	enum io_wq_cancel cret;
2952 	bool ret = false;
2953 
2954 	/* set it so io_req_local_work_add() would wake us up */
2955 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2956 		atomic_set(&ctx->cq_wait_nr, 1);
2957 		smp_mb();
2958 	}
2959 
2960 	/* failed during ring init, it couldn't have issued any requests */
2961 	if (!ctx->rings)
2962 		return false;
2963 
2964 	if (!task) {
2965 		ret |= io_uring_try_cancel_iowq(ctx);
2966 	} else if (tctx && tctx->io_wq) {
2967 		/*
2968 		 * Cancels requests of all rings, not only @ctx, but
2969 		 * it's fine as the task is in exit/exec.
2970 		 */
2971 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
2972 				       &cancel, true);
2973 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
2974 	}
2975 
2976 	/* SQPOLL thread does its own polling */
2977 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
2978 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
2979 		while (!wq_list_empty(&ctx->iopoll_list)) {
2980 			io_iopoll_try_reap_events(ctx);
2981 			ret = true;
2982 			cond_resched();
2983 		}
2984 	}
2985 
2986 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
2987 	    io_allowed_defer_tw_run(ctx))
2988 		ret |= io_run_local_work(ctx, INT_MAX) > 0;
2989 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
2990 	mutex_lock(&ctx->uring_lock);
2991 	ret |= io_poll_remove_all(ctx, task, cancel_all);
2992 	ret |= io_waitid_remove_all(ctx, task, cancel_all);
2993 	ret |= io_futex_remove_all(ctx, task, cancel_all);
2994 	ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all);
2995 	mutex_unlock(&ctx->uring_lock);
2996 	ret |= io_kill_timeouts(ctx, task, cancel_all);
2997 	if (task)
2998 		ret |= io_run_task_work() > 0;
2999 	else
3000 		ret |= flush_delayed_work(&ctx->fallback_work);
3001 	return ret;
3002 }
3003 
3004 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3005 {
3006 	if (tracked)
3007 		return atomic_read(&tctx->inflight_tracked);
3008 	return percpu_counter_sum(&tctx->inflight);
3009 }
3010 
3011 /*
3012  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3013  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3014  */
3015 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3016 {
3017 	struct io_uring_task *tctx = current->io_uring;
3018 	struct io_ring_ctx *ctx;
3019 	struct io_tctx_node *node;
3020 	unsigned long index;
3021 	s64 inflight;
3022 	DEFINE_WAIT(wait);
3023 
3024 	WARN_ON_ONCE(sqd && sqd->thread != current);
3025 
3026 	if (!current->io_uring)
3027 		return;
3028 	if (tctx->io_wq)
3029 		io_wq_exit_start(tctx->io_wq);
3030 
3031 	atomic_inc(&tctx->in_cancel);
3032 	do {
3033 		bool loop = false;
3034 
3035 		io_uring_drop_tctx_refs(current);
3036 		if (!tctx_inflight(tctx, !cancel_all))
3037 			break;
3038 
3039 		/* read completions before cancelations */
3040 		inflight = tctx_inflight(tctx, false);
3041 		if (!inflight)
3042 			break;
3043 
3044 		if (!sqd) {
3045 			xa_for_each(&tctx->xa, index, node) {
3046 				/* sqpoll task will cancel all its requests */
3047 				if (node->ctx->sq_data)
3048 					continue;
3049 				loop |= io_uring_try_cancel_requests(node->ctx,
3050 							current, cancel_all);
3051 			}
3052 		} else {
3053 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3054 				loop |= io_uring_try_cancel_requests(ctx,
3055 								     current,
3056 								     cancel_all);
3057 		}
3058 
3059 		if (loop) {
3060 			cond_resched();
3061 			continue;
3062 		}
3063 
3064 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3065 		io_run_task_work();
3066 		io_uring_drop_tctx_refs(current);
3067 		xa_for_each(&tctx->xa, index, node) {
3068 			if (!llist_empty(&node->ctx->work_llist)) {
3069 				WARN_ON_ONCE(node->ctx->submitter_task &&
3070 					     node->ctx->submitter_task != current);
3071 				goto end_wait;
3072 			}
3073 		}
3074 		/*
3075 		 * If we've seen completions, retry without waiting. This
3076 		 * avoids a race where a completion comes in before we did
3077 		 * prepare_to_wait().
3078 		 */
3079 		if (inflight == tctx_inflight(tctx, !cancel_all))
3080 			schedule();
3081 end_wait:
3082 		finish_wait(&tctx->wait, &wait);
3083 	} while (1);
3084 
3085 	io_uring_clean_tctx(tctx);
3086 	if (cancel_all) {
3087 		/*
3088 		 * We shouldn't run task_works after cancel, so just leave
3089 		 * ->in_cancel set for normal exit.
3090 		 */
3091 		atomic_dec(&tctx->in_cancel);
3092 		/* for exec all current's requests should be gone, kill tctx */
3093 		__io_uring_free(current);
3094 	}
3095 }
3096 
3097 void __io_uring_cancel(bool cancel_all)
3098 {
3099 	io_uring_cancel_generic(cancel_all, NULL);
3100 }
3101 
3102 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3103 {
3104 	if (flags & IORING_ENTER_EXT_ARG) {
3105 		struct io_uring_getevents_arg arg;
3106 
3107 		if (argsz != sizeof(arg))
3108 			return -EINVAL;
3109 		if (copy_from_user(&arg, argp, sizeof(arg)))
3110 			return -EFAULT;
3111 	}
3112 	return 0;
3113 }
3114 
3115 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3116 			  struct __kernel_timespec __user **ts,
3117 			  const sigset_t __user **sig)
3118 {
3119 	struct io_uring_getevents_arg arg;
3120 
3121 	/*
3122 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3123 	 * is just a pointer to the sigset_t.
3124 	 */
3125 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3126 		*sig = (const sigset_t __user *) argp;
3127 		*ts = NULL;
3128 		return 0;
3129 	}
3130 
3131 	/*
3132 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3133 	 * timespec and sigset_t pointers if good.
3134 	 */
3135 	if (*argsz != sizeof(arg))
3136 		return -EINVAL;
3137 	if (copy_from_user(&arg, argp, sizeof(arg)))
3138 		return -EFAULT;
3139 	if (arg.pad)
3140 		return -EINVAL;
3141 	*sig = u64_to_user_ptr(arg.sigmask);
3142 	*argsz = arg.sigmask_sz;
3143 	*ts = u64_to_user_ptr(arg.ts);
3144 	return 0;
3145 }
3146 
3147 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3148 		u32, min_complete, u32, flags, const void __user *, argp,
3149 		size_t, argsz)
3150 {
3151 	struct io_ring_ctx *ctx;
3152 	struct file *file;
3153 	long ret;
3154 
3155 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3156 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3157 			       IORING_ENTER_REGISTERED_RING)))
3158 		return -EINVAL;
3159 
3160 	/*
3161 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3162 	 * need only dereference our task private array to find it.
3163 	 */
3164 	if (flags & IORING_ENTER_REGISTERED_RING) {
3165 		struct io_uring_task *tctx = current->io_uring;
3166 
3167 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3168 			return -EINVAL;
3169 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3170 		file = tctx->registered_rings[fd];
3171 		if (unlikely(!file))
3172 			return -EBADF;
3173 	} else {
3174 		file = fget(fd);
3175 		if (unlikely(!file))
3176 			return -EBADF;
3177 		ret = -EOPNOTSUPP;
3178 		if (unlikely(!io_is_uring_fops(file)))
3179 			goto out;
3180 	}
3181 
3182 	ctx = file->private_data;
3183 	ret = -EBADFD;
3184 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3185 		goto out;
3186 
3187 	/*
3188 	 * For SQ polling, the thread will do all submissions and completions.
3189 	 * Just return the requested submit count, and wake the thread if
3190 	 * we were asked to.
3191 	 */
3192 	ret = 0;
3193 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3194 		if (unlikely(ctx->sq_data->thread == NULL)) {
3195 			ret = -EOWNERDEAD;
3196 			goto out;
3197 		}
3198 		if (flags & IORING_ENTER_SQ_WAKEUP)
3199 			wake_up(&ctx->sq_data->wait);
3200 		if (flags & IORING_ENTER_SQ_WAIT)
3201 			io_sqpoll_wait_sq(ctx);
3202 
3203 		ret = to_submit;
3204 	} else if (to_submit) {
3205 		ret = io_uring_add_tctx_node(ctx);
3206 		if (unlikely(ret))
3207 			goto out;
3208 
3209 		mutex_lock(&ctx->uring_lock);
3210 		ret = io_submit_sqes(ctx, to_submit);
3211 		if (ret != to_submit) {
3212 			mutex_unlock(&ctx->uring_lock);
3213 			goto out;
3214 		}
3215 		if (flags & IORING_ENTER_GETEVENTS) {
3216 			if (ctx->syscall_iopoll)
3217 				goto iopoll_locked;
3218 			/*
3219 			 * Ignore errors, we'll soon call io_cqring_wait() and
3220 			 * it should handle ownership problems if any.
3221 			 */
3222 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3223 				(void)io_run_local_work_locked(ctx, min_complete);
3224 		}
3225 		mutex_unlock(&ctx->uring_lock);
3226 	}
3227 
3228 	if (flags & IORING_ENTER_GETEVENTS) {
3229 		int ret2;
3230 
3231 		if (ctx->syscall_iopoll) {
3232 			/*
3233 			 * We disallow the app entering submit/complete with
3234 			 * polling, but we still need to lock the ring to
3235 			 * prevent racing with polled issue that got punted to
3236 			 * a workqueue.
3237 			 */
3238 			mutex_lock(&ctx->uring_lock);
3239 iopoll_locked:
3240 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3241 			if (likely(!ret2)) {
3242 				min_complete = min(min_complete,
3243 						   ctx->cq_entries);
3244 				ret2 = io_iopoll_check(ctx, min_complete);
3245 			}
3246 			mutex_unlock(&ctx->uring_lock);
3247 		} else {
3248 			const sigset_t __user *sig;
3249 			struct __kernel_timespec __user *ts;
3250 
3251 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3252 			if (likely(!ret2)) {
3253 				min_complete = min(min_complete,
3254 						   ctx->cq_entries);
3255 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3256 						      argsz, ts);
3257 			}
3258 		}
3259 
3260 		if (!ret) {
3261 			ret = ret2;
3262 
3263 			/*
3264 			 * EBADR indicates that one or more CQE were dropped.
3265 			 * Once the user has been informed we can clear the bit
3266 			 * as they are obviously ok with those drops.
3267 			 */
3268 			if (unlikely(ret2 == -EBADR))
3269 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3270 					  &ctx->check_cq);
3271 		}
3272 	}
3273 out:
3274 	if (!(flags & IORING_ENTER_REGISTERED_RING))
3275 		fput(file);
3276 	return ret;
3277 }
3278 
3279 static const struct file_operations io_uring_fops = {
3280 	.release	= io_uring_release,
3281 	.mmap		= io_uring_mmap,
3282 	.get_unmapped_area = io_uring_get_unmapped_area,
3283 #ifndef CONFIG_MMU
3284 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3285 #endif
3286 	.poll		= io_uring_poll,
3287 #ifdef CONFIG_PROC_FS
3288 	.show_fdinfo	= io_uring_show_fdinfo,
3289 #endif
3290 };
3291 
3292 bool io_is_uring_fops(struct file *file)
3293 {
3294 	return file->f_op == &io_uring_fops;
3295 }
3296 
3297 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3298 					 struct io_uring_params *p)
3299 {
3300 	struct io_rings *rings;
3301 	size_t size, sq_array_offset;
3302 	void *ptr;
3303 
3304 	/* make sure these are sane, as we already accounted them */
3305 	ctx->sq_entries = p->sq_entries;
3306 	ctx->cq_entries = p->cq_entries;
3307 
3308 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3309 	if (size == SIZE_MAX)
3310 		return -EOVERFLOW;
3311 
3312 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3313 		rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size);
3314 	else
3315 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3316 
3317 	if (IS_ERR(rings))
3318 		return PTR_ERR(rings);
3319 
3320 	ctx->rings = rings;
3321 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3322 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3323 	rings->sq_ring_mask = p->sq_entries - 1;
3324 	rings->cq_ring_mask = p->cq_entries - 1;
3325 	rings->sq_ring_entries = p->sq_entries;
3326 	rings->cq_ring_entries = p->cq_entries;
3327 
3328 	if (p->flags & IORING_SETUP_SQE128)
3329 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3330 	else
3331 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3332 	if (size == SIZE_MAX) {
3333 		io_rings_free(ctx);
3334 		return -EOVERFLOW;
3335 	}
3336 
3337 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3338 		ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size);
3339 	else
3340 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3341 
3342 	if (IS_ERR(ptr)) {
3343 		io_rings_free(ctx);
3344 		return PTR_ERR(ptr);
3345 	}
3346 
3347 	ctx->sq_sqes = ptr;
3348 	return 0;
3349 }
3350 
3351 static int io_uring_install_fd(struct file *file)
3352 {
3353 	int fd;
3354 
3355 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3356 	if (fd < 0)
3357 		return fd;
3358 	fd_install(fd, file);
3359 	return fd;
3360 }
3361 
3362 /*
3363  * Allocate an anonymous fd, this is what constitutes the application
3364  * visible backing of an io_uring instance. The application mmaps this
3365  * fd to gain access to the SQ/CQ ring details.
3366  */
3367 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3368 {
3369 	/* Create a new inode so that the LSM can block the creation.  */
3370 	return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3371 					 O_RDWR | O_CLOEXEC, NULL);
3372 }
3373 
3374 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3375 				  struct io_uring_params __user *params)
3376 {
3377 	struct io_ring_ctx *ctx;
3378 	struct io_uring_task *tctx;
3379 	struct file *file;
3380 	int ret;
3381 
3382 	if (!entries)
3383 		return -EINVAL;
3384 	if (entries > IORING_MAX_ENTRIES) {
3385 		if (!(p->flags & IORING_SETUP_CLAMP))
3386 			return -EINVAL;
3387 		entries = IORING_MAX_ENTRIES;
3388 	}
3389 
3390 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3391 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3392 		return -EINVAL;
3393 
3394 	/*
3395 	 * Use twice as many entries for the CQ ring. It's possible for the
3396 	 * application to drive a higher depth than the size of the SQ ring,
3397 	 * since the sqes are only used at submission time. This allows for
3398 	 * some flexibility in overcommitting a bit. If the application has
3399 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3400 	 * of CQ ring entries manually.
3401 	 */
3402 	p->sq_entries = roundup_pow_of_two(entries);
3403 	if (p->flags & IORING_SETUP_CQSIZE) {
3404 		/*
3405 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3406 		 * to a power-of-two, if it isn't already. We do NOT impose
3407 		 * any cq vs sq ring sizing.
3408 		 */
3409 		if (!p->cq_entries)
3410 			return -EINVAL;
3411 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3412 			if (!(p->flags & IORING_SETUP_CLAMP))
3413 				return -EINVAL;
3414 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3415 		}
3416 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3417 		if (p->cq_entries < p->sq_entries)
3418 			return -EINVAL;
3419 	} else {
3420 		p->cq_entries = 2 * p->sq_entries;
3421 	}
3422 
3423 	ctx = io_ring_ctx_alloc(p);
3424 	if (!ctx)
3425 		return -ENOMEM;
3426 
3427 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3428 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3429 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3430 		ctx->task_complete = true;
3431 
3432 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3433 		ctx->lockless_cq = true;
3434 
3435 	/*
3436 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3437 	 * purposes, see io_activate_pollwq()
3438 	 */
3439 	if (!ctx->task_complete)
3440 		ctx->poll_activated = true;
3441 
3442 	/*
3443 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3444 	 * space applications don't need to do io completion events
3445 	 * polling again, they can rely on io_sq_thread to do polling
3446 	 * work, which can reduce cpu usage and uring_lock contention.
3447 	 */
3448 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3449 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3450 		ctx->syscall_iopoll = 1;
3451 
3452 	ctx->compat = in_compat_syscall();
3453 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3454 		ctx->user = get_uid(current_user());
3455 
3456 	/*
3457 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3458 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3459 	 */
3460 	ret = -EINVAL;
3461 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3462 		/* IPI related flags don't make sense with SQPOLL */
3463 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3464 				  IORING_SETUP_TASKRUN_FLAG |
3465 				  IORING_SETUP_DEFER_TASKRUN))
3466 			goto err;
3467 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3468 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3469 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3470 	} else {
3471 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3472 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3473 			goto err;
3474 		ctx->notify_method = TWA_SIGNAL;
3475 	}
3476 
3477 	/*
3478 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3479 	 * submission task. This implies that there is only one submitter, so enforce
3480 	 * that.
3481 	 */
3482 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3483 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3484 		goto err;
3485 	}
3486 
3487 	/*
3488 	 * This is just grabbed for accounting purposes. When a process exits,
3489 	 * the mm is exited and dropped before the files, hence we need to hang
3490 	 * on to this mm purely for the purposes of being able to unaccount
3491 	 * memory (locked/pinned vm). It's not used for anything else.
3492 	 */
3493 	mmgrab(current->mm);
3494 	ctx->mm_account = current->mm;
3495 
3496 	ret = io_allocate_scq_urings(ctx, p);
3497 	if (ret)
3498 		goto err;
3499 
3500 	ret = io_sq_offload_create(ctx, p);
3501 	if (ret)
3502 		goto err;
3503 
3504 	ret = io_rsrc_init(ctx);
3505 	if (ret)
3506 		goto err;
3507 
3508 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3509 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3510 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3511 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3512 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3513 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3514 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3515 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3516 	p->sq_off.resv1 = 0;
3517 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3518 		p->sq_off.user_addr = 0;
3519 
3520 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3521 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3522 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3523 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3524 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3525 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3526 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3527 	p->cq_off.resv1 = 0;
3528 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3529 		p->cq_off.user_addr = 0;
3530 
3531 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3532 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3533 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3534 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3535 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3536 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3537 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3538 			IORING_FEAT_RECVSEND_BUNDLE;
3539 
3540 	if (copy_to_user(params, p, sizeof(*p))) {
3541 		ret = -EFAULT;
3542 		goto err;
3543 	}
3544 
3545 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3546 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3547 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3548 
3549 	file = io_uring_get_file(ctx);
3550 	if (IS_ERR(file)) {
3551 		ret = PTR_ERR(file);
3552 		goto err;
3553 	}
3554 
3555 	ret = __io_uring_add_tctx_node(ctx);
3556 	if (ret)
3557 		goto err_fput;
3558 	tctx = current->io_uring;
3559 
3560 	/*
3561 	 * Install ring fd as the very last thing, so we don't risk someone
3562 	 * having closed it before we finish setup
3563 	 */
3564 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3565 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3566 	else
3567 		ret = io_uring_install_fd(file);
3568 	if (ret < 0)
3569 		goto err_fput;
3570 
3571 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3572 	return ret;
3573 err:
3574 	io_ring_ctx_wait_and_kill(ctx);
3575 	return ret;
3576 err_fput:
3577 	fput(file);
3578 	return ret;
3579 }
3580 
3581 /*
3582  * Sets up an aio uring context, and returns the fd. Applications asks for a
3583  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3584  * params structure passed in.
3585  */
3586 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3587 {
3588 	struct io_uring_params p;
3589 	int i;
3590 
3591 	if (copy_from_user(&p, params, sizeof(p)))
3592 		return -EFAULT;
3593 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3594 		if (p.resv[i])
3595 			return -EINVAL;
3596 	}
3597 
3598 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3599 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3600 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3601 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3602 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3603 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3604 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3605 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3606 			IORING_SETUP_NO_SQARRAY))
3607 		return -EINVAL;
3608 
3609 	return io_uring_create(entries, &p, params);
3610 }
3611 
3612 static inline bool io_uring_allowed(void)
3613 {
3614 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
3615 	kgid_t io_uring_group;
3616 
3617 	if (disabled == 2)
3618 		return false;
3619 
3620 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
3621 		return true;
3622 
3623 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3624 	if (!gid_valid(io_uring_group))
3625 		return false;
3626 
3627 	return in_group_p(io_uring_group);
3628 }
3629 
3630 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3631 		struct io_uring_params __user *, params)
3632 {
3633 	if (!io_uring_allowed())
3634 		return -EPERM;
3635 
3636 	return io_uring_setup(entries, params);
3637 }
3638 
3639 static int __init io_uring_init(void)
3640 {
3641 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3642 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3643 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3644 } while (0)
3645 
3646 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3647 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3648 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3649 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3650 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3651 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
3652 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
3653 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
3654 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
3655 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
3656 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
3657 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
3658 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3659 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
3660 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
3661 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
3662 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
3663 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
3664 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3665 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
3666 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
3667 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
3668 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
3669 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
3670 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
3671 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
3672 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
3673 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
3674 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
3675 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
3676 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
3677 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
3678 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
3679 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
3680 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
3681 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
3682 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
3683 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
3684 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
3685 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
3686 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
3687 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
3688 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
3689 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
3690 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
3691 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3692 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
3693 
3694 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3695 		     sizeof(struct io_uring_rsrc_update));
3696 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3697 		     sizeof(struct io_uring_rsrc_update2));
3698 
3699 	/* ->buf_index is u16 */
3700 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3701 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3702 		     offsetof(struct io_uring_buf_ring, tail));
3703 
3704 	/* should fit into one byte */
3705 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3706 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3707 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3708 
3709 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3710 
3711 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3712 
3713 	/* top 8bits are for internal use */
3714 	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3715 
3716 	io_uring_optable_init();
3717 
3718 	/*
3719 	 * Allow user copy in the per-command field, which starts after the
3720 	 * file in io_kiocb and until the opcode field. The openat2 handling
3721 	 * requires copying in user memory into the io_kiocb object in that
3722 	 * range, and HARDENED_USERCOPY will complain if we haven't
3723 	 * correctly annotated this range.
3724 	 */
3725 	req_cachep = kmem_cache_create_usercopy("io_kiocb",
3726 				sizeof(struct io_kiocb), 0,
3727 				SLAB_HWCACHE_ALIGN | SLAB_PANIC |
3728 				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
3729 				offsetof(struct io_kiocb, cmd.data),
3730 				sizeof_field(struct io_kiocb, cmd.data), NULL);
3731 	io_buf_cachep = KMEM_CACHE(io_buffer,
3732 					  SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
3733 
3734 	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3735 
3736 #ifdef CONFIG_SYSCTL
3737 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3738 #endif
3739 
3740 	return 0;
3741 };
3742 __initcall(io_uring_init);
3743