1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.org/pub/scm/linux/kernel/git/axboe/liburing.git
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/percpu.h>
57 #include <linux/slab.h>
58 #include <linux/bvec.h>
59 #include <linux/net.h>
60 #include <net/sock.h>
61 #include <linux/anon_inodes.h>
62 #include <linux/sched/mm.h>
63 #include <linux/uaccess.h>
64 #include <linux/nospec.h>
65 #include <linux/fsnotify.h>
66 #include <linux/fadvise.h>
67 #include <linux/task_work.h>
68 #include <linux/io_uring.h>
69 #include <linux/io_uring/cmd.h>
70 #include <linux/audit.h>
71 #include <linux/security.h>
72 #include <linux/jump_label.h>
73 #include <asm/shmparam.h>
74
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
77
78 #include <uapi/linux/io_uring.h>
79
80 #include "io-wq.h"
81
82 #include "filetable.h"
83 #include "io_uring.h"
84 #include "opdef.h"
85 #include "refs.h"
86 #include "tctx.h"
87 #include "register.h"
88 #include "sqpoll.h"
89 #include "fdinfo.h"
90 #include "kbuf.h"
91 #include "rsrc.h"
92 #include "cancel.h"
93 #include "net.h"
94 #include "notif.h"
95 #include "waitid.h"
96 #include "futex.h"
97 #include "napi.h"
98 #include "uring_cmd.h"
99 #include "msg_ring.h"
100 #include "memmap.h"
101 #include "zcrx.h"
102
103 #include "timeout.h"
104 #include "poll.h"
105 #include "rw.h"
106 #include "alloc_cache.h"
107 #include "eventfd.h"
108
109 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
110 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
111
112 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
113
114 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
115 REQ_F_INFLIGHT | REQ_F_CREDS | REQ_F_ASYNC_DATA)
116
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \
118 REQ_F_REISSUE | REQ_F_POLLED | \
119 IO_REQ_CLEAN_FLAGS)
120
121 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
122
123 #define IO_COMPL_BATCH 32
124 #define IO_REQ_ALLOC_BATCH 8
125 #define IO_LOCAL_TW_DEFAULT_MAX 20
126
127 struct io_defer_entry {
128 struct list_head list;
129 struct io_kiocb *req;
130 };
131
132 /* requests with any of those set should undergo io_disarm_next() */
133 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
134
135 /*
136 * No waiters. It's larger than any valid value of the tw counter
137 * so that tests against ->cq_wait_nr would fail and skip wake_up().
138 */
139 #define IO_CQ_WAKE_INIT (-1U)
140 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
141 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1)
142
143 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
144 struct io_uring_task *tctx,
145 bool cancel_all,
146 bool is_sqpoll_thread);
147
148 static void io_queue_sqe(struct io_kiocb *req, unsigned int extra_flags);
149 static void __io_req_caches_free(struct io_ring_ctx *ctx);
150
151 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
152
153 struct kmem_cache *req_cachep;
154 static struct workqueue_struct *iou_wq __ro_after_init;
155
156 static int __read_mostly sysctl_io_uring_disabled;
157 static int __read_mostly sysctl_io_uring_group = -1;
158
159 #ifdef CONFIG_SYSCTL
160 static const struct ctl_table kernel_io_uring_disabled_table[] = {
161 {
162 .procname = "io_uring_disabled",
163 .data = &sysctl_io_uring_disabled,
164 .maxlen = sizeof(sysctl_io_uring_disabled),
165 .mode = 0644,
166 .proc_handler = proc_dointvec_minmax,
167 .extra1 = SYSCTL_ZERO,
168 .extra2 = SYSCTL_TWO,
169 },
170 {
171 .procname = "io_uring_group",
172 .data = &sysctl_io_uring_group,
173 .maxlen = sizeof(gid_t),
174 .mode = 0644,
175 .proc_handler = proc_dointvec,
176 },
177 };
178 #endif
179
io_poison_cached_req(struct io_kiocb * req)180 static void io_poison_cached_req(struct io_kiocb *req)
181 {
182 req->ctx = IO_URING_PTR_POISON;
183 req->tctx = IO_URING_PTR_POISON;
184 req->file = IO_URING_PTR_POISON;
185 req->creds = IO_URING_PTR_POISON;
186 req->io_task_work.func = IO_URING_PTR_POISON;
187 req->apoll = IO_URING_PTR_POISON;
188 }
189
io_poison_req(struct io_kiocb * req)190 static void io_poison_req(struct io_kiocb *req)
191 {
192 io_poison_cached_req(req);
193 req->async_data = IO_URING_PTR_POISON;
194 req->kbuf = IO_URING_PTR_POISON;
195 req->comp_list.next = IO_URING_PTR_POISON;
196 req->file_node = IO_URING_PTR_POISON;
197 req->link = IO_URING_PTR_POISON;
198 }
199
__io_cqring_events(struct io_ring_ctx * ctx)200 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
201 {
202 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
203 }
204
__io_cqring_events_user(struct io_ring_ctx * ctx)205 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
206 {
207 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
208 }
209
io_match_linked(struct io_kiocb * head)210 static bool io_match_linked(struct io_kiocb *head)
211 {
212 struct io_kiocb *req;
213
214 io_for_each_link(req, head) {
215 if (req->flags & REQ_F_INFLIGHT)
216 return true;
217 }
218 return false;
219 }
220
221 /*
222 * As io_match_task() but protected against racing with linked timeouts.
223 * User must not hold timeout_lock.
224 */
io_match_task_safe(struct io_kiocb * head,struct io_uring_task * tctx,bool cancel_all)225 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
226 bool cancel_all)
227 {
228 bool matched;
229
230 if (tctx && head->tctx != tctx)
231 return false;
232 if (cancel_all)
233 return true;
234
235 if (head->flags & REQ_F_LINK_TIMEOUT) {
236 struct io_ring_ctx *ctx = head->ctx;
237
238 /* protect against races with linked timeouts */
239 raw_spin_lock_irq(&ctx->timeout_lock);
240 matched = io_match_linked(head);
241 raw_spin_unlock_irq(&ctx->timeout_lock);
242 } else {
243 matched = io_match_linked(head);
244 }
245 return matched;
246 }
247
req_fail_link_node(struct io_kiocb * req,int res)248 static inline void req_fail_link_node(struct io_kiocb *req, int res)
249 {
250 req_set_fail(req);
251 io_req_set_res(req, res, 0);
252 }
253
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)254 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
255 {
256 if (IS_ENABLED(CONFIG_KASAN))
257 io_poison_cached_req(req);
258 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
259 }
260
io_ring_ctx_ref_free(struct percpu_ref * ref)261 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
262 {
263 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
264
265 complete(&ctx->ref_comp);
266 }
267
io_fallback_req_func(struct work_struct * work)268 static __cold void io_fallback_req_func(struct work_struct *work)
269 {
270 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
271 fallback_work.work);
272 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
273 struct io_kiocb *req, *tmp;
274 struct io_tw_state ts = {};
275
276 percpu_ref_get(&ctx->refs);
277 mutex_lock(&ctx->uring_lock);
278 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
279 req->io_task_work.func(req, ts);
280 io_submit_flush_completions(ctx);
281 mutex_unlock(&ctx->uring_lock);
282 percpu_ref_put(&ctx->refs);
283 }
284
io_alloc_hash_table(struct io_hash_table * table,unsigned bits)285 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
286 {
287 unsigned int hash_buckets;
288 int i;
289
290 do {
291 hash_buckets = 1U << bits;
292 table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
293 GFP_KERNEL_ACCOUNT);
294 if (table->hbs)
295 break;
296 if (bits == 1)
297 return -ENOMEM;
298 bits--;
299 } while (1);
300
301 table->hash_bits = bits;
302 for (i = 0; i < hash_buckets; i++)
303 INIT_HLIST_HEAD(&table->hbs[i].list);
304 return 0;
305 }
306
io_free_alloc_caches(struct io_ring_ctx * ctx)307 static void io_free_alloc_caches(struct io_ring_ctx *ctx)
308 {
309 io_alloc_cache_free(&ctx->apoll_cache, kfree);
310 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
311 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
312 io_alloc_cache_free(&ctx->cmd_cache, io_cmd_cache_free);
313 io_futex_cache_free(ctx);
314 io_rsrc_cache_free(ctx);
315 }
316
io_ring_ctx_alloc(struct io_uring_params * p)317 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
318 {
319 struct io_ring_ctx *ctx;
320 int hash_bits;
321 bool ret;
322
323 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
324 if (!ctx)
325 return NULL;
326
327 xa_init(&ctx->io_bl_xa);
328
329 /*
330 * Use 5 bits less than the max cq entries, that should give us around
331 * 32 entries per hash list if totally full and uniformly spread, but
332 * don't keep too many buckets to not overconsume memory.
333 */
334 hash_bits = ilog2(p->cq_entries) - 5;
335 hash_bits = clamp(hash_bits, 1, 8);
336 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
337 goto err;
338 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
339 0, GFP_KERNEL))
340 goto err;
341
342 ctx->flags = p->flags;
343 ctx->hybrid_poll_time = LLONG_MAX;
344 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
345 init_waitqueue_head(&ctx->sqo_sq_wait);
346 INIT_LIST_HEAD(&ctx->sqd_list);
347 INIT_LIST_HEAD(&ctx->cq_overflow_list);
348 ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
349 sizeof(struct async_poll), 0);
350 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
351 sizeof(struct io_async_msghdr),
352 offsetof(struct io_async_msghdr, clear));
353 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
354 sizeof(struct io_async_rw),
355 offsetof(struct io_async_rw, clear));
356 ret |= io_alloc_cache_init(&ctx->cmd_cache, IO_ALLOC_CACHE_MAX,
357 sizeof(struct io_async_cmd),
358 sizeof(struct io_async_cmd));
359 ret |= io_futex_cache_init(ctx);
360 ret |= io_rsrc_cache_init(ctx);
361 if (ret)
362 goto free_ref;
363 init_completion(&ctx->ref_comp);
364 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
365 mutex_init(&ctx->uring_lock);
366 init_waitqueue_head(&ctx->cq_wait);
367 init_waitqueue_head(&ctx->poll_wq);
368 spin_lock_init(&ctx->completion_lock);
369 raw_spin_lock_init(&ctx->timeout_lock);
370 INIT_WQ_LIST(&ctx->iopoll_list);
371 INIT_LIST_HEAD(&ctx->defer_list);
372 INIT_LIST_HEAD(&ctx->timeout_list);
373 INIT_LIST_HEAD(&ctx->ltimeout_list);
374 init_llist_head(&ctx->work_llist);
375 INIT_LIST_HEAD(&ctx->tctx_list);
376 ctx->submit_state.free_list.next = NULL;
377 INIT_HLIST_HEAD(&ctx->waitid_list);
378 xa_init_flags(&ctx->zcrx_ctxs, XA_FLAGS_ALLOC);
379 #ifdef CONFIG_FUTEX
380 INIT_HLIST_HEAD(&ctx->futex_list);
381 #endif
382 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
383 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
384 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
385 io_napi_init(ctx);
386 mutex_init(&ctx->mmap_lock);
387
388 return ctx;
389
390 free_ref:
391 percpu_ref_exit(&ctx->refs);
392 err:
393 io_free_alloc_caches(ctx);
394 kvfree(ctx->cancel_table.hbs);
395 xa_destroy(&ctx->io_bl_xa);
396 kfree(ctx);
397 return NULL;
398 }
399
io_clean_op(struct io_kiocb * req)400 static void io_clean_op(struct io_kiocb *req)
401 {
402 if (unlikely(req->flags & REQ_F_BUFFER_SELECTED))
403 io_kbuf_drop_legacy(req);
404
405 if (req->flags & REQ_F_NEED_CLEANUP) {
406 const struct io_cold_def *def = &io_cold_defs[req->opcode];
407
408 if (def->cleanup)
409 def->cleanup(req);
410 }
411 if (req->flags & REQ_F_INFLIGHT)
412 atomic_dec(&req->tctx->inflight_tracked);
413 if (req->flags & REQ_F_CREDS)
414 put_cred(req->creds);
415 if (req->flags & REQ_F_ASYNC_DATA) {
416 kfree(req->async_data);
417 req->async_data = NULL;
418 }
419 req->flags &= ~IO_REQ_CLEAN_FLAGS;
420 }
421
422 /*
423 * Mark the request as inflight, so that file cancelation will find it.
424 * Can be used if the file is an io_uring instance, or if the request itself
425 * relies on ->mm being alive for the duration of the request.
426 */
io_req_track_inflight(struct io_kiocb * req)427 inline void io_req_track_inflight(struct io_kiocb *req)
428 {
429 if (!(req->flags & REQ_F_INFLIGHT)) {
430 req->flags |= REQ_F_INFLIGHT;
431 atomic_inc(&req->tctx->inflight_tracked);
432 }
433 }
434
__io_prep_linked_timeout(struct io_kiocb * req)435 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
436 {
437 if (WARN_ON_ONCE(!req->link))
438 return NULL;
439
440 req->flags &= ~REQ_F_ARM_LTIMEOUT;
441 req->flags |= REQ_F_LINK_TIMEOUT;
442
443 /* linked timeouts should have two refs once prep'ed */
444 io_req_set_refcount(req);
445 __io_req_set_refcount(req->link, 2);
446 return req->link;
447 }
448
io_prep_async_work(struct io_kiocb * req)449 static void io_prep_async_work(struct io_kiocb *req)
450 {
451 const struct io_issue_def *def = &io_issue_defs[req->opcode];
452 struct io_ring_ctx *ctx = req->ctx;
453
454 if (!(req->flags & REQ_F_CREDS)) {
455 req->flags |= REQ_F_CREDS;
456 req->creds = get_current_cred();
457 }
458
459 req->work.list.next = NULL;
460 atomic_set(&req->work.flags, 0);
461 if (req->flags & REQ_F_FORCE_ASYNC)
462 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
463
464 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
465 req->flags |= io_file_get_flags(req->file);
466
467 if (req->file && (req->flags & REQ_F_ISREG)) {
468 bool should_hash = def->hash_reg_file;
469
470 /* don't serialize this request if the fs doesn't need it */
471 if (should_hash && (req->file->f_flags & O_DIRECT) &&
472 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
473 should_hash = false;
474 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
475 io_wq_hash_work(&req->work, file_inode(req->file));
476 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
477 if (def->unbound_nonreg_file)
478 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
479 }
480 }
481
io_prep_async_link(struct io_kiocb * req)482 static void io_prep_async_link(struct io_kiocb *req)
483 {
484 struct io_kiocb *cur;
485
486 if (req->flags & REQ_F_LINK_TIMEOUT) {
487 struct io_ring_ctx *ctx = req->ctx;
488
489 raw_spin_lock_irq(&ctx->timeout_lock);
490 io_for_each_link(cur, req)
491 io_prep_async_work(cur);
492 raw_spin_unlock_irq(&ctx->timeout_lock);
493 } else {
494 io_for_each_link(cur, req)
495 io_prep_async_work(cur);
496 }
497 }
498
io_queue_iowq(struct io_kiocb * req)499 static void io_queue_iowq(struct io_kiocb *req)
500 {
501 struct io_uring_task *tctx = req->tctx;
502
503 BUG_ON(!tctx);
504
505 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
506 io_req_task_queue_fail(req, -ECANCELED);
507 return;
508 }
509
510 /* init ->work of the whole link before punting */
511 io_prep_async_link(req);
512
513 /*
514 * Not expected to happen, but if we do have a bug where this _can_
515 * happen, catch it here and ensure the request is marked as
516 * canceled. That will make io-wq go through the usual work cancel
517 * procedure rather than attempt to run this request (or create a new
518 * worker for it).
519 */
520 if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
521 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
522
523 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
524 io_wq_enqueue(tctx->io_wq, &req->work);
525 }
526
io_req_queue_iowq_tw(struct io_kiocb * req,io_tw_token_t tw)527 static void io_req_queue_iowq_tw(struct io_kiocb *req, io_tw_token_t tw)
528 {
529 io_queue_iowq(req);
530 }
531
io_req_queue_iowq(struct io_kiocb * req)532 void io_req_queue_iowq(struct io_kiocb *req)
533 {
534 req->io_task_work.func = io_req_queue_iowq_tw;
535 io_req_task_work_add(req);
536 }
537
io_linked_nr(struct io_kiocb * req)538 static unsigned io_linked_nr(struct io_kiocb *req)
539 {
540 struct io_kiocb *tmp;
541 unsigned nr = 0;
542
543 io_for_each_link(tmp, req)
544 nr++;
545 return nr;
546 }
547
io_queue_deferred(struct io_ring_ctx * ctx)548 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx)
549 {
550 bool drain_seen = false, first = true;
551
552 lockdep_assert_held(&ctx->uring_lock);
553 __io_req_caches_free(ctx);
554
555 while (!list_empty(&ctx->defer_list)) {
556 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
557 struct io_defer_entry, list);
558
559 drain_seen |= de->req->flags & REQ_F_IO_DRAIN;
560 if ((drain_seen || first) && ctx->nr_req_allocated != ctx->nr_drained)
561 return;
562
563 list_del_init(&de->list);
564 ctx->nr_drained -= io_linked_nr(de->req);
565 io_req_task_queue(de->req);
566 kfree(de);
567 first = false;
568 }
569 }
570
__io_commit_cqring_flush(struct io_ring_ctx * ctx)571 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
572 {
573 if (ctx->poll_activated)
574 io_poll_wq_wake(ctx);
575 if (ctx->off_timeout_used)
576 io_flush_timeouts(ctx);
577 if (ctx->has_evfd)
578 io_eventfd_signal(ctx, true);
579 }
580
__io_cq_lock(struct io_ring_ctx * ctx)581 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
582 {
583 if (!ctx->lockless_cq)
584 spin_lock(&ctx->completion_lock);
585 }
586
io_cq_lock(struct io_ring_ctx * ctx)587 static inline void io_cq_lock(struct io_ring_ctx *ctx)
588 __acquires(ctx->completion_lock)
589 {
590 spin_lock(&ctx->completion_lock);
591 }
592
__io_cq_unlock_post(struct io_ring_ctx * ctx)593 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
594 {
595 io_commit_cqring(ctx);
596 if (!ctx->task_complete) {
597 if (!ctx->lockless_cq)
598 spin_unlock(&ctx->completion_lock);
599 /* IOPOLL rings only need to wake up if it's also SQPOLL */
600 if (!ctx->syscall_iopoll)
601 io_cqring_wake(ctx);
602 }
603 io_commit_cqring_flush(ctx);
604 }
605
io_cq_unlock_post(struct io_ring_ctx * ctx)606 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
607 __releases(ctx->completion_lock)
608 {
609 io_commit_cqring(ctx);
610 spin_unlock(&ctx->completion_lock);
611 io_cqring_wake(ctx);
612 io_commit_cqring_flush(ctx);
613 }
614
__io_cqring_overflow_flush(struct io_ring_ctx * ctx,bool dying)615 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
616 {
617 lockdep_assert_held(&ctx->uring_lock);
618
619 /* don't abort if we're dying, entries must get freed */
620 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
621 return;
622
623 io_cq_lock(ctx);
624 while (!list_empty(&ctx->cq_overflow_list)) {
625 size_t cqe_size = sizeof(struct io_uring_cqe);
626 struct io_uring_cqe *cqe;
627 struct io_overflow_cqe *ocqe;
628 bool is_cqe32 = false;
629
630 ocqe = list_first_entry(&ctx->cq_overflow_list,
631 struct io_overflow_cqe, list);
632 if (ocqe->cqe.flags & IORING_CQE_F_32 ||
633 ctx->flags & IORING_SETUP_CQE32) {
634 is_cqe32 = true;
635 cqe_size <<= 1;
636 }
637 if (ctx->flags & IORING_SETUP_CQE32)
638 is_cqe32 = false;
639
640 if (!dying) {
641 if (!io_get_cqe_overflow(ctx, &cqe, true, is_cqe32))
642 break;
643 memcpy(cqe, &ocqe->cqe, cqe_size);
644 }
645 list_del(&ocqe->list);
646 kfree(ocqe);
647
648 /*
649 * For silly syzbot cases that deliberately overflow by huge
650 * amounts, check if we need to resched and drop and
651 * reacquire the locks if so. Nothing real would ever hit this.
652 * Ideally we'd have a non-posting unlock for this, but hard
653 * to care for a non-real case.
654 */
655 if (need_resched()) {
656 ctx->cqe_sentinel = ctx->cqe_cached;
657 io_cq_unlock_post(ctx);
658 mutex_unlock(&ctx->uring_lock);
659 cond_resched();
660 mutex_lock(&ctx->uring_lock);
661 io_cq_lock(ctx);
662 }
663 }
664
665 if (list_empty(&ctx->cq_overflow_list)) {
666 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
667 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
668 }
669 io_cq_unlock_post(ctx);
670 }
671
io_cqring_overflow_kill(struct io_ring_ctx * ctx)672 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
673 {
674 if (ctx->rings)
675 __io_cqring_overflow_flush(ctx, true);
676 }
677
io_cqring_do_overflow_flush(struct io_ring_ctx * ctx)678 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
679 {
680 mutex_lock(&ctx->uring_lock);
681 __io_cqring_overflow_flush(ctx, false);
682 mutex_unlock(&ctx->uring_lock);
683 }
684
685 /* must to be called somewhat shortly after putting a request */
io_put_task(struct io_kiocb * req)686 static inline void io_put_task(struct io_kiocb *req)
687 {
688 struct io_uring_task *tctx = req->tctx;
689
690 if (likely(tctx->task == current)) {
691 tctx->cached_refs++;
692 } else {
693 percpu_counter_sub(&tctx->inflight, 1);
694 if (unlikely(atomic_read(&tctx->in_cancel)))
695 wake_up(&tctx->wait);
696 put_task_struct(tctx->task);
697 }
698 }
699
io_task_refs_refill(struct io_uring_task * tctx)700 void io_task_refs_refill(struct io_uring_task *tctx)
701 {
702 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
703
704 percpu_counter_add(&tctx->inflight, refill);
705 refcount_add(refill, ¤t->usage);
706 tctx->cached_refs += refill;
707 }
708
io_uring_drop_tctx_refs(struct task_struct * task)709 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
710 {
711 struct io_uring_task *tctx = task->io_uring;
712 unsigned int refs = tctx->cached_refs;
713
714 if (refs) {
715 tctx->cached_refs = 0;
716 percpu_counter_sub(&tctx->inflight, refs);
717 put_task_struct_many(task, refs);
718 }
719 }
720
io_cqring_add_overflow(struct io_ring_ctx * ctx,struct io_overflow_cqe * ocqe)721 static __cold bool io_cqring_add_overflow(struct io_ring_ctx *ctx,
722 struct io_overflow_cqe *ocqe)
723 {
724 lockdep_assert_held(&ctx->completion_lock);
725
726 if (!ocqe) {
727 struct io_rings *r = ctx->rings;
728
729 /*
730 * If we're in ring overflow flush mode, or in task cancel mode,
731 * or cannot allocate an overflow entry, then we need to drop it
732 * on the floor.
733 */
734 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
735 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
736 return false;
737 }
738 if (list_empty(&ctx->cq_overflow_list)) {
739 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
740 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
741
742 }
743 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
744 return true;
745 }
746
io_alloc_ocqe(struct io_ring_ctx * ctx,struct io_cqe * cqe,struct io_big_cqe * big_cqe,gfp_t gfp)747 static struct io_overflow_cqe *io_alloc_ocqe(struct io_ring_ctx *ctx,
748 struct io_cqe *cqe,
749 struct io_big_cqe *big_cqe, gfp_t gfp)
750 {
751 struct io_overflow_cqe *ocqe;
752 size_t ocq_size = sizeof(struct io_overflow_cqe);
753 bool is_cqe32 = false;
754
755 if (cqe->flags & IORING_CQE_F_32 || ctx->flags & IORING_SETUP_CQE32) {
756 is_cqe32 = true;
757 ocq_size += sizeof(struct io_uring_cqe);
758 }
759
760 ocqe = kzalloc(ocq_size, gfp | __GFP_ACCOUNT);
761 trace_io_uring_cqe_overflow(ctx, cqe->user_data, cqe->res, cqe->flags, ocqe);
762 if (ocqe) {
763 ocqe->cqe.user_data = cqe->user_data;
764 ocqe->cqe.res = cqe->res;
765 ocqe->cqe.flags = cqe->flags;
766 if (is_cqe32 && big_cqe) {
767 ocqe->cqe.big_cqe[0] = big_cqe->extra1;
768 ocqe->cqe.big_cqe[1] = big_cqe->extra2;
769 }
770 }
771 if (big_cqe)
772 big_cqe->extra1 = big_cqe->extra2 = 0;
773 return ocqe;
774 }
775
776 /*
777 * Fill an empty dummy CQE, in case alignment is off for posting a 32b CQE
778 * because the ring is a single 16b entry away from wrapping.
779 */
io_fill_nop_cqe(struct io_ring_ctx * ctx,unsigned int off)780 static bool io_fill_nop_cqe(struct io_ring_ctx *ctx, unsigned int off)
781 {
782 if (__io_cqring_events(ctx) < ctx->cq_entries) {
783 struct io_uring_cqe *cqe = &ctx->rings->cqes[off];
784
785 cqe->user_data = 0;
786 cqe->res = 0;
787 cqe->flags = IORING_CQE_F_SKIP;
788 ctx->cached_cq_tail++;
789 return true;
790 }
791 return false;
792 }
793
794 /*
795 * writes to the cq entry need to come after reading head; the
796 * control dependency is enough as we're using WRITE_ONCE to
797 * fill the cq entry
798 */
io_cqe_cache_refill(struct io_ring_ctx * ctx,bool overflow,bool cqe32)799 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow, bool cqe32)
800 {
801 struct io_rings *rings = ctx->rings;
802 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
803 unsigned int free, queued, len;
804
805 /*
806 * Posting into the CQ when there are pending overflowed CQEs may break
807 * ordering guarantees, which will affect links, F_MORE users and more.
808 * Force overflow the completion.
809 */
810 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
811 return false;
812
813 /*
814 * Post dummy CQE if a 32b CQE is needed and there's only room for a
815 * 16b CQE before the ring wraps.
816 */
817 if (cqe32 && off + 1 == ctx->cq_entries) {
818 if (!io_fill_nop_cqe(ctx, off))
819 return false;
820 off = 0;
821 }
822
823 /* userspace may cheat modifying the tail, be safe and do min */
824 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
825 free = ctx->cq_entries - queued;
826 /* we need a contiguous range, limit based on the current array offset */
827 len = min(free, ctx->cq_entries - off);
828 if (len < (cqe32 + 1))
829 return false;
830
831 if (ctx->flags & IORING_SETUP_CQE32) {
832 off <<= 1;
833 len <<= 1;
834 }
835
836 ctx->cqe_cached = &rings->cqes[off];
837 ctx->cqe_sentinel = ctx->cqe_cached + len;
838 return true;
839 }
840
io_fill_cqe_aux32(struct io_ring_ctx * ctx,struct io_uring_cqe src_cqe[2])841 static bool io_fill_cqe_aux32(struct io_ring_ctx *ctx,
842 struct io_uring_cqe src_cqe[2])
843 {
844 struct io_uring_cqe *cqe;
845
846 if (WARN_ON_ONCE(!(ctx->flags & (IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED))))
847 return false;
848 if (unlikely(!io_get_cqe(ctx, &cqe, true)))
849 return false;
850
851 memcpy(cqe, src_cqe, 2 * sizeof(*cqe));
852 trace_io_uring_complete(ctx, NULL, cqe);
853 return true;
854 }
855
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)856 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
857 u32 cflags)
858 {
859 bool cqe32 = cflags & IORING_CQE_F_32;
860 struct io_uring_cqe *cqe;
861
862 if (likely(io_get_cqe(ctx, &cqe, cqe32))) {
863 WRITE_ONCE(cqe->user_data, user_data);
864 WRITE_ONCE(cqe->res, res);
865 WRITE_ONCE(cqe->flags, cflags);
866
867 if (cqe32) {
868 WRITE_ONCE(cqe->big_cqe[0], 0);
869 WRITE_ONCE(cqe->big_cqe[1], 0);
870 }
871
872 trace_io_uring_complete(ctx, NULL, cqe);
873 return true;
874 }
875 return false;
876 }
877
io_init_cqe(u64 user_data,s32 res,u32 cflags)878 static inline struct io_cqe io_init_cqe(u64 user_data, s32 res, u32 cflags)
879 {
880 return (struct io_cqe) { .user_data = user_data, .res = res, .flags = cflags };
881 }
882
io_cqe_overflow(struct io_ring_ctx * ctx,struct io_cqe * cqe,struct io_big_cqe * big_cqe)883 static __cold void io_cqe_overflow(struct io_ring_ctx *ctx, struct io_cqe *cqe,
884 struct io_big_cqe *big_cqe)
885 {
886 struct io_overflow_cqe *ocqe;
887
888 ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_KERNEL);
889 spin_lock(&ctx->completion_lock);
890 io_cqring_add_overflow(ctx, ocqe);
891 spin_unlock(&ctx->completion_lock);
892 }
893
io_cqe_overflow_locked(struct io_ring_ctx * ctx,struct io_cqe * cqe,struct io_big_cqe * big_cqe)894 static __cold bool io_cqe_overflow_locked(struct io_ring_ctx *ctx,
895 struct io_cqe *cqe,
896 struct io_big_cqe *big_cqe)
897 {
898 struct io_overflow_cqe *ocqe;
899
900 ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_ATOMIC);
901 return io_cqring_add_overflow(ctx, ocqe);
902 }
903
io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)904 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
905 {
906 bool filled;
907
908 io_cq_lock(ctx);
909 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
910 if (unlikely(!filled)) {
911 struct io_cqe cqe = io_init_cqe(user_data, res, cflags);
912
913 filled = io_cqe_overflow_locked(ctx, &cqe, NULL);
914 }
915 io_cq_unlock_post(ctx);
916 return filled;
917 }
918
919 /*
920 * Must be called from inline task_work so we now a flush will happen later,
921 * and obviously with ctx->uring_lock held (tw always has that).
922 */
io_add_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)923 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
924 {
925 lockdep_assert_held(&ctx->uring_lock);
926 lockdep_assert(ctx->lockless_cq);
927
928 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
929 struct io_cqe cqe = io_init_cqe(user_data, res, cflags);
930
931 io_cqe_overflow(ctx, &cqe, NULL);
932 }
933 ctx->submit_state.cq_flush = true;
934 }
935
936 /*
937 * A helper for multishot requests posting additional CQEs.
938 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
939 */
io_req_post_cqe(struct io_kiocb * req,s32 res,u32 cflags)940 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
941 {
942 struct io_ring_ctx *ctx = req->ctx;
943 bool posted;
944
945 /*
946 * If multishot has already posted deferred completions, ensure that
947 * those are flushed first before posting this one. If not, CQEs
948 * could get reordered.
949 */
950 if (!wq_list_empty(&ctx->submit_state.compl_reqs))
951 __io_submit_flush_completions(ctx);
952
953 lockdep_assert(!io_wq_current_is_worker());
954 lockdep_assert_held(&ctx->uring_lock);
955
956 if (!ctx->lockless_cq) {
957 spin_lock(&ctx->completion_lock);
958 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
959 spin_unlock(&ctx->completion_lock);
960 } else {
961 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
962 }
963
964 ctx->submit_state.cq_flush = true;
965 return posted;
966 }
967
968 /*
969 * A helper for multishot requests posting additional CQEs.
970 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
971 */
io_req_post_cqe32(struct io_kiocb * req,struct io_uring_cqe cqe[2])972 bool io_req_post_cqe32(struct io_kiocb *req, struct io_uring_cqe cqe[2])
973 {
974 struct io_ring_ctx *ctx = req->ctx;
975 bool posted;
976
977 lockdep_assert(!io_wq_current_is_worker());
978 lockdep_assert_held(&ctx->uring_lock);
979
980 cqe[0].user_data = req->cqe.user_data;
981 if (!ctx->lockless_cq) {
982 spin_lock(&ctx->completion_lock);
983 posted = io_fill_cqe_aux32(ctx, cqe);
984 spin_unlock(&ctx->completion_lock);
985 } else {
986 posted = io_fill_cqe_aux32(ctx, cqe);
987 }
988
989 ctx->submit_state.cq_flush = true;
990 return posted;
991 }
992
io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)993 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
994 {
995 struct io_ring_ctx *ctx = req->ctx;
996 bool completed = true;
997
998 /*
999 * All execution paths but io-wq use the deferred completions by
1000 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
1001 */
1002 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
1003 return;
1004
1005 /*
1006 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
1007 * the submitter task context, IOPOLL protects with uring_lock.
1008 */
1009 if (ctx->lockless_cq || (req->flags & REQ_F_REISSUE)) {
1010 defer_complete:
1011 req->io_task_work.func = io_req_task_complete;
1012 io_req_task_work_add(req);
1013 return;
1014 }
1015
1016 io_cq_lock(ctx);
1017 if (!(req->flags & REQ_F_CQE_SKIP))
1018 completed = io_fill_cqe_req(ctx, req);
1019 io_cq_unlock_post(ctx);
1020
1021 if (!completed)
1022 goto defer_complete;
1023
1024 /*
1025 * We don't free the request here because we know it's called from
1026 * io-wq only, which holds a reference, so it cannot be the last put.
1027 */
1028 req_ref_put(req);
1029 }
1030
io_req_defer_failed(struct io_kiocb * req,s32 res)1031 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1032 __must_hold(&ctx->uring_lock)
1033 {
1034 const struct io_cold_def *def = &io_cold_defs[req->opcode];
1035
1036 lockdep_assert_held(&req->ctx->uring_lock);
1037
1038 req_set_fail(req);
1039 io_req_set_res(req, res, io_put_kbuf(req, res, NULL));
1040 if (def->fail)
1041 def->fail(req);
1042 io_req_complete_defer(req);
1043 }
1044
1045 /*
1046 * A request might get retired back into the request caches even before opcode
1047 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1048 * Because of that, io_alloc_req() should be called only under ->uring_lock
1049 * and with extra caution to not get a request that is still worked on.
1050 */
__io_alloc_req_refill(struct io_ring_ctx * ctx)1051 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1052 __must_hold(&ctx->uring_lock)
1053 {
1054 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO;
1055 void *reqs[IO_REQ_ALLOC_BATCH];
1056 int ret;
1057
1058 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1059
1060 /*
1061 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1062 * retry single alloc to be on the safe side.
1063 */
1064 if (unlikely(ret <= 0)) {
1065 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1066 if (!reqs[0])
1067 return false;
1068 ret = 1;
1069 }
1070
1071 percpu_ref_get_many(&ctx->refs, ret);
1072 ctx->nr_req_allocated += ret;
1073
1074 while (ret--) {
1075 struct io_kiocb *req = reqs[ret];
1076
1077 io_req_add_to_cache(req, ctx);
1078 }
1079 return true;
1080 }
1081
io_free_req(struct io_kiocb * req)1082 __cold void io_free_req(struct io_kiocb *req)
1083 {
1084 /* refs were already put, restore them for io_req_task_complete() */
1085 req->flags &= ~REQ_F_REFCOUNT;
1086 /* we only want to free it, don't post CQEs */
1087 req->flags |= REQ_F_CQE_SKIP;
1088 req->io_task_work.func = io_req_task_complete;
1089 io_req_task_work_add(req);
1090 }
1091
__io_req_find_next_prep(struct io_kiocb * req)1092 static void __io_req_find_next_prep(struct io_kiocb *req)
1093 {
1094 struct io_ring_ctx *ctx = req->ctx;
1095
1096 spin_lock(&ctx->completion_lock);
1097 io_disarm_next(req);
1098 spin_unlock(&ctx->completion_lock);
1099 }
1100
io_req_find_next(struct io_kiocb * req)1101 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1102 {
1103 struct io_kiocb *nxt;
1104
1105 /*
1106 * If LINK is set, we have dependent requests in this chain. If we
1107 * didn't fail this request, queue the first one up, moving any other
1108 * dependencies to the next request. In case of failure, fail the rest
1109 * of the chain.
1110 */
1111 if (unlikely(req->flags & IO_DISARM_MASK))
1112 __io_req_find_next_prep(req);
1113 nxt = req->link;
1114 req->link = NULL;
1115 return nxt;
1116 }
1117
ctx_flush_and_put(struct io_ring_ctx * ctx,io_tw_token_t tw)1118 static void ctx_flush_and_put(struct io_ring_ctx *ctx, io_tw_token_t tw)
1119 {
1120 if (!ctx)
1121 return;
1122 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1123 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1124
1125 io_submit_flush_completions(ctx);
1126 mutex_unlock(&ctx->uring_lock);
1127 percpu_ref_put(&ctx->refs);
1128 }
1129
1130 /*
1131 * Run queued task_work, returning the number of entries processed in *count.
1132 * If more entries than max_entries are available, stop processing once this
1133 * is reached and return the rest of the list.
1134 */
io_handle_tw_list(struct llist_node * node,unsigned int * count,unsigned int max_entries)1135 struct llist_node *io_handle_tw_list(struct llist_node *node,
1136 unsigned int *count,
1137 unsigned int max_entries)
1138 {
1139 struct io_ring_ctx *ctx = NULL;
1140 struct io_tw_state ts = { };
1141
1142 do {
1143 struct llist_node *next = node->next;
1144 struct io_kiocb *req = container_of(node, struct io_kiocb,
1145 io_task_work.node);
1146
1147 if (req->ctx != ctx) {
1148 ctx_flush_and_put(ctx, ts);
1149 ctx = req->ctx;
1150 mutex_lock(&ctx->uring_lock);
1151 percpu_ref_get(&ctx->refs);
1152 }
1153 INDIRECT_CALL_2(req->io_task_work.func,
1154 io_poll_task_func, io_req_rw_complete,
1155 req, ts);
1156 node = next;
1157 (*count)++;
1158 if (unlikely(need_resched())) {
1159 ctx_flush_and_put(ctx, ts);
1160 ctx = NULL;
1161 cond_resched();
1162 }
1163 } while (node && *count < max_entries);
1164
1165 ctx_flush_and_put(ctx, ts);
1166 return node;
1167 }
1168
__io_fallback_tw(struct llist_node * node,bool sync)1169 static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
1170 {
1171 struct io_ring_ctx *last_ctx = NULL;
1172 struct io_kiocb *req;
1173
1174 while (node) {
1175 req = container_of(node, struct io_kiocb, io_task_work.node);
1176 node = node->next;
1177 if (last_ctx != req->ctx) {
1178 if (last_ctx) {
1179 if (sync)
1180 flush_delayed_work(&last_ctx->fallback_work);
1181 percpu_ref_put(&last_ctx->refs);
1182 }
1183 last_ctx = req->ctx;
1184 percpu_ref_get(&last_ctx->refs);
1185 }
1186 if (llist_add(&req->io_task_work.node, &last_ctx->fallback_llist))
1187 schedule_delayed_work(&last_ctx->fallback_work, 1);
1188 }
1189
1190 if (last_ctx) {
1191 if (sync)
1192 flush_delayed_work(&last_ctx->fallback_work);
1193 percpu_ref_put(&last_ctx->refs);
1194 }
1195 }
1196
io_fallback_tw(struct io_uring_task * tctx,bool sync)1197 static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1198 {
1199 struct llist_node *node = llist_del_all(&tctx->task_list);
1200
1201 __io_fallback_tw(node, sync);
1202 }
1203
tctx_task_work_run(struct io_uring_task * tctx,unsigned int max_entries,unsigned int * count)1204 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1205 unsigned int max_entries,
1206 unsigned int *count)
1207 {
1208 struct llist_node *node;
1209
1210 if (unlikely(current->flags & PF_EXITING)) {
1211 io_fallback_tw(tctx, true);
1212 return NULL;
1213 }
1214
1215 node = llist_del_all(&tctx->task_list);
1216 if (node) {
1217 node = llist_reverse_order(node);
1218 node = io_handle_tw_list(node, count, max_entries);
1219 }
1220
1221 /* relaxed read is enough as only the task itself sets ->in_cancel */
1222 if (unlikely(atomic_read(&tctx->in_cancel)))
1223 io_uring_drop_tctx_refs(current);
1224
1225 trace_io_uring_task_work_run(tctx, *count);
1226 return node;
1227 }
1228
tctx_task_work(struct callback_head * cb)1229 void tctx_task_work(struct callback_head *cb)
1230 {
1231 struct io_uring_task *tctx;
1232 struct llist_node *ret;
1233 unsigned int count = 0;
1234
1235 tctx = container_of(cb, struct io_uring_task, task_work);
1236 ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1237 /* can't happen */
1238 WARN_ON_ONCE(ret);
1239 }
1240
io_req_local_work_add(struct io_kiocb * req,unsigned flags)1241 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1242 {
1243 struct io_ring_ctx *ctx = req->ctx;
1244 unsigned nr_wait, nr_tw, nr_tw_prev;
1245 struct llist_node *head;
1246
1247 /* See comment above IO_CQ_WAKE_INIT */
1248 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1249
1250 /*
1251 * We don't know how many reuqests is there in the link and whether
1252 * they can even be queued lazily, fall back to non-lazy.
1253 */
1254 if (req->flags & IO_REQ_LINK_FLAGS)
1255 flags &= ~IOU_F_TWQ_LAZY_WAKE;
1256
1257 guard(rcu)();
1258
1259 head = READ_ONCE(ctx->work_llist.first);
1260 do {
1261 nr_tw_prev = 0;
1262 if (head) {
1263 struct io_kiocb *first_req = container_of(head,
1264 struct io_kiocb,
1265 io_task_work.node);
1266 /*
1267 * Might be executed at any moment, rely on
1268 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1269 */
1270 nr_tw_prev = READ_ONCE(first_req->nr_tw);
1271 }
1272
1273 /*
1274 * Theoretically, it can overflow, but that's fine as one of
1275 * previous adds should've tried to wake the task.
1276 */
1277 nr_tw = nr_tw_prev + 1;
1278 if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1279 nr_tw = IO_CQ_WAKE_FORCE;
1280
1281 req->nr_tw = nr_tw;
1282 req->io_task_work.node.next = head;
1283 } while (!try_cmpxchg(&ctx->work_llist.first, &head,
1284 &req->io_task_work.node));
1285
1286 /*
1287 * cmpxchg implies a full barrier, which pairs with the barrier
1288 * in set_current_state() on the io_cqring_wait() side. It's used
1289 * to ensure that either we see updated ->cq_wait_nr, or waiters
1290 * going to sleep will observe the work added to the list, which
1291 * is similar to the wait/wawke task state sync.
1292 */
1293
1294 if (!head) {
1295 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1296 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1297 if (ctx->has_evfd)
1298 io_eventfd_signal(ctx, false);
1299 }
1300
1301 nr_wait = atomic_read(&ctx->cq_wait_nr);
1302 /* not enough or no one is waiting */
1303 if (nr_tw < nr_wait)
1304 return;
1305 /* the previous add has already woken it up */
1306 if (nr_tw_prev >= nr_wait)
1307 return;
1308 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1309 }
1310
io_req_normal_work_add(struct io_kiocb * req)1311 static void io_req_normal_work_add(struct io_kiocb *req)
1312 {
1313 struct io_uring_task *tctx = req->tctx;
1314 struct io_ring_ctx *ctx = req->ctx;
1315
1316 /* task_work already pending, we're done */
1317 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1318 return;
1319
1320 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1321 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1322
1323 /* SQPOLL doesn't need the task_work added, it'll run it itself */
1324 if (ctx->flags & IORING_SETUP_SQPOLL) {
1325 __set_notify_signal(tctx->task);
1326 return;
1327 }
1328
1329 if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
1330 return;
1331
1332 io_fallback_tw(tctx, false);
1333 }
1334
__io_req_task_work_add(struct io_kiocb * req,unsigned flags)1335 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1336 {
1337 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1338 io_req_local_work_add(req, flags);
1339 else
1340 io_req_normal_work_add(req);
1341 }
1342
io_req_task_work_add_remote(struct io_kiocb * req,unsigned flags)1343 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags)
1344 {
1345 if (WARN_ON_ONCE(!(req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1346 return;
1347 __io_req_task_work_add(req, flags);
1348 }
1349
io_move_task_work_from_local(struct io_ring_ctx * ctx)1350 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1351 {
1352 struct llist_node *node = llist_del_all(&ctx->work_llist);
1353
1354 __io_fallback_tw(node, false);
1355 node = llist_del_all(&ctx->retry_llist);
1356 __io_fallback_tw(node, false);
1357 }
1358
io_run_local_work_continue(struct io_ring_ctx * ctx,int events,int min_events)1359 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1360 int min_events)
1361 {
1362 if (!io_local_work_pending(ctx))
1363 return false;
1364 if (events < min_events)
1365 return true;
1366 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1367 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1368 return false;
1369 }
1370
__io_run_local_work_loop(struct llist_node ** node,io_tw_token_t tw,int events)1371 static int __io_run_local_work_loop(struct llist_node **node,
1372 io_tw_token_t tw,
1373 int events)
1374 {
1375 int ret = 0;
1376
1377 while (*node) {
1378 struct llist_node *next = (*node)->next;
1379 struct io_kiocb *req = container_of(*node, struct io_kiocb,
1380 io_task_work.node);
1381 INDIRECT_CALL_2(req->io_task_work.func,
1382 io_poll_task_func, io_req_rw_complete,
1383 req, tw);
1384 *node = next;
1385 if (++ret >= events)
1386 break;
1387 }
1388
1389 return ret;
1390 }
1391
__io_run_local_work(struct io_ring_ctx * ctx,io_tw_token_t tw,int min_events,int max_events)1392 static int __io_run_local_work(struct io_ring_ctx *ctx, io_tw_token_t tw,
1393 int min_events, int max_events)
1394 {
1395 struct llist_node *node;
1396 unsigned int loops = 0;
1397 int ret = 0;
1398
1399 if (WARN_ON_ONCE(ctx->submitter_task != current))
1400 return -EEXIST;
1401 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1402 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1403 again:
1404 min_events -= ret;
1405 ret = __io_run_local_work_loop(&ctx->retry_llist.first, tw, max_events);
1406 if (ctx->retry_llist.first)
1407 goto retry_done;
1408
1409 /*
1410 * llists are in reverse order, flip it back the right way before
1411 * running the pending items.
1412 */
1413 node = llist_reverse_order(llist_del_all(&ctx->work_llist));
1414 ret += __io_run_local_work_loop(&node, tw, max_events - ret);
1415 ctx->retry_llist.first = node;
1416 loops++;
1417
1418 if (io_run_local_work_continue(ctx, ret, min_events))
1419 goto again;
1420 retry_done:
1421 io_submit_flush_completions(ctx);
1422 if (io_run_local_work_continue(ctx, ret, min_events))
1423 goto again;
1424
1425 trace_io_uring_local_work_run(ctx, ret, loops);
1426 return ret;
1427 }
1428
io_run_local_work_locked(struct io_ring_ctx * ctx,int min_events)1429 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1430 int min_events)
1431 {
1432 struct io_tw_state ts = {};
1433
1434 if (!io_local_work_pending(ctx))
1435 return 0;
1436 return __io_run_local_work(ctx, ts, min_events,
1437 max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
1438 }
1439
io_run_local_work(struct io_ring_ctx * ctx,int min_events,int max_events)1440 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events,
1441 int max_events)
1442 {
1443 struct io_tw_state ts = {};
1444 int ret;
1445
1446 mutex_lock(&ctx->uring_lock);
1447 ret = __io_run_local_work(ctx, ts, min_events, max_events);
1448 mutex_unlock(&ctx->uring_lock);
1449 return ret;
1450 }
1451
io_req_task_cancel(struct io_kiocb * req,io_tw_token_t tw)1452 static void io_req_task_cancel(struct io_kiocb *req, io_tw_token_t tw)
1453 {
1454 io_tw_lock(req->ctx, tw);
1455 io_req_defer_failed(req, req->cqe.res);
1456 }
1457
io_req_task_submit(struct io_kiocb * req,io_tw_token_t tw)1458 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw)
1459 {
1460 struct io_ring_ctx *ctx = req->ctx;
1461
1462 io_tw_lock(ctx, tw);
1463 if (unlikely(io_should_terminate_tw(ctx)))
1464 io_req_defer_failed(req, -EFAULT);
1465 else if (req->flags & REQ_F_FORCE_ASYNC)
1466 io_queue_iowq(req);
1467 else
1468 io_queue_sqe(req, 0);
1469 }
1470
io_req_task_queue_fail(struct io_kiocb * req,int ret)1471 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1472 {
1473 io_req_set_res(req, ret, 0);
1474 req->io_task_work.func = io_req_task_cancel;
1475 io_req_task_work_add(req);
1476 }
1477
io_req_task_queue(struct io_kiocb * req)1478 void io_req_task_queue(struct io_kiocb *req)
1479 {
1480 req->io_task_work.func = io_req_task_submit;
1481 io_req_task_work_add(req);
1482 }
1483
io_queue_next(struct io_kiocb * req)1484 void io_queue_next(struct io_kiocb *req)
1485 {
1486 struct io_kiocb *nxt = io_req_find_next(req);
1487
1488 if (nxt)
1489 io_req_task_queue(nxt);
1490 }
1491
io_req_put_rsrc_nodes(struct io_kiocb * req)1492 static inline void io_req_put_rsrc_nodes(struct io_kiocb *req)
1493 {
1494 if (req->file_node) {
1495 io_put_rsrc_node(req->ctx, req->file_node);
1496 req->file_node = NULL;
1497 }
1498 if (req->flags & REQ_F_BUF_NODE)
1499 io_put_rsrc_node(req->ctx, req->buf_node);
1500 }
1501
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)1502 static void io_free_batch_list(struct io_ring_ctx *ctx,
1503 struct io_wq_work_node *node)
1504 __must_hold(&ctx->uring_lock)
1505 {
1506 do {
1507 struct io_kiocb *req = container_of(node, struct io_kiocb,
1508 comp_list);
1509
1510 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1511 if (req->flags & REQ_F_REISSUE) {
1512 node = req->comp_list.next;
1513 req->flags &= ~REQ_F_REISSUE;
1514 io_queue_iowq(req);
1515 continue;
1516 }
1517 if (req->flags & REQ_F_REFCOUNT) {
1518 node = req->comp_list.next;
1519 if (!req_ref_put_and_test(req))
1520 continue;
1521 }
1522 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1523 struct async_poll *apoll = req->apoll;
1524
1525 if (apoll->double_poll)
1526 kfree(apoll->double_poll);
1527 io_cache_free(&ctx->apoll_cache, apoll);
1528 req->flags &= ~REQ_F_POLLED;
1529 }
1530 if (req->flags & IO_REQ_LINK_FLAGS)
1531 io_queue_next(req);
1532 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1533 io_clean_op(req);
1534 }
1535 io_put_file(req);
1536 io_req_put_rsrc_nodes(req);
1537 io_put_task(req);
1538
1539 node = req->comp_list.next;
1540 io_req_add_to_cache(req, ctx);
1541 } while (node);
1542 }
1543
__io_submit_flush_completions(struct io_ring_ctx * ctx)1544 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1545 __must_hold(&ctx->uring_lock)
1546 {
1547 struct io_submit_state *state = &ctx->submit_state;
1548 struct io_wq_work_node *node;
1549
1550 __io_cq_lock(ctx);
1551 __wq_list_for_each(node, &state->compl_reqs) {
1552 struct io_kiocb *req = container_of(node, struct io_kiocb,
1553 comp_list);
1554
1555 /*
1556 * Requests marked with REQUEUE should not post a CQE, they
1557 * will go through the io-wq retry machinery and post one
1558 * later.
1559 */
1560 if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) &&
1561 unlikely(!io_fill_cqe_req(ctx, req))) {
1562 if (ctx->lockless_cq)
1563 io_cqe_overflow(ctx, &req->cqe, &req->big_cqe);
1564 else
1565 io_cqe_overflow_locked(ctx, &req->cqe, &req->big_cqe);
1566 }
1567 }
1568 __io_cq_unlock_post(ctx);
1569
1570 if (!wq_list_empty(&state->compl_reqs)) {
1571 io_free_batch_list(ctx, state->compl_reqs.first);
1572 INIT_WQ_LIST(&state->compl_reqs);
1573 }
1574
1575 if (unlikely(ctx->drain_active))
1576 io_queue_deferred(ctx);
1577
1578 ctx->submit_state.cq_flush = false;
1579 }
1580
io_cqring_events(struct io_ring_ctx * ctx)1581 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1582 {
1583 /* See comment at the top of this file */
1584 smp_rmb();
1585 return __io_cqring_events(ctx);
1586 }
1587
1588 /*
1589 * We can't just wait for polled events to come to us, we have to actively
1590 * find and complete them.
1591 */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)1592 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1593 {
1594 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1595 return;
1596
1597 mutex_lock(&ctx->uring_lock);
1598 while (!wq_list_empty(&ctx->iopoll_list)) {
1599 /* let it sleep and repeat later if can't complete a request */
1600 if (io_do_iopoll(ctx, true) == 0)
1601 break;
1602 /*
1603 * Ensure we allow local-to-the-cpu processing to take place,
1604 * in this case we need to ensure that we reap all events.
1605 * Also let task_work, etc. to progress by releasing the mutex
1606 */
1607 if (need_resched()) {
1608 mutex_unlock(&ctx->uring_lock);
1609 cond_resched();
1610 mutex_lock(&ctx->uring_lock);
1611 }
1612 }
1613 mutex_unlock(&ctx->uring_lock);
1614
1615 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1616 io_move_task_work_from_local(ctx);
1617 }
1618
io_iopoll_check(struct io_ring_ctx * ctx,unsigned int min_events)1619 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned int min_events)
1620 {
1621 unsigned int nr_events = 0;
1622 unsigned long check_cq;
1623
1624 min_events = min(min_events, ctx->cq_entries);
1625
1626 lockdep_assert_held(&ctx->uring_lock);
1627
1628 if (!io_allowed_run_tw(ctx))
1629 return -EEXIST;
1630
1631 check_cq = READ_ONCE(ctx->check_cq);
1632 if (unlikely(check_cq)) {
1633 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1634 __io_cqring_overflow_flush(ctx, false);
1635 /*
1636 * Similarly do not spin if we have not informed the user of any
1637 * dropped CQE.
1638 */
1639 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1640 return -EBADR;
1641 }
1642 /*
1643 * Don't enter poll loop if we already have events pending.
1644 * If we do, we can potentially be spinning for commands that
1645 * already triggered a CQE (eg in error).
1646 */
1647 if (io_cqring_events(ctx))
1648 return 0;
1649
1650 do {
1651 int ret = 0;
1652
1653 /*
1654 * If a submit got punted to a workqueue, we can have the
1655 * application entering polling for a command before it gets
1656 * issued. That app will hold the uring_lock for the duration
1657 * of the poll right here, so we need to take a breather every
1658 * now and then to ensure that the issue has a chance to add
1659 * the poll to the issued list. Otherwise we can spin here
1660 * forever, while the workqueue is stuck trying to acquire the
1661 * very same mutex.
1662 */
1663 if (wq_list_empty(&ctx->iopoll_list) ||
1664 io_task_work_pending(ctx)) {
1665 u32 tail = ctx->cached_cq_tail;
1666
1667 (void) io_run_local_work_locked(ctx, min_events);
1668
1669 if (task_work_pending(current) ||
1670 wq_list_empty(&ctx->iopoll_list)) {
1671 mutex_unlock(&ctx->uring_lock);
1672 io_run_task_work();
1673 mutex_lock(&ctx->uring_lock);
1674 }
1675 /* some requests don't go through iopoll_list */
1676 if (tail != ctx->cached_cq_tail ||
1677 wq_list_empty(&ctx->iopoll_list))
1678 break;
1679 }
1680 ret = io_do_iopoll(ctx, !min_events);
1681 if (unlikely(ret < 0))
1682 return ret;
1683
1684 if (task_sigpending(current))
1685 return -EINTR;
1686 if (need_resched())
1687 break;
1688
1689 nr_events += ret;
1690 } while (nr_events < min_events);
1691
1692 return 0;
1693 }
1694
io_req_task_complete(struct io_kiocb * req,io_tw_token_t tw)1695 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw)
1696 {
1697 io_req_complete_defer(req);
1698 }
1699
1700 /*
1701 * After the iocb has been issued, it's safe to be found on the poll list.
1702 * Adding the kiocb to the list AFTER submission ensures that we don't
1703 * find it from a io_do_iopoll() thread before the issuer is done
1704 * accessing the kiocb cookie.
1705 */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)1706 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1707 {
1708 struct io_ring_ctx *ctx = req->ctx;
1709 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1710
1711 /* workqueue context doesn't hold uring_lock, grab it now */
1712 if (unlikely(needs_lock))
1713 mutex_lock(&ctx->uring_lock);
1714
1715 /*
1716 * Track whether we have multiple files in our lists. This will impact
1717 * how we do polling eventually, not spinning if we're on potentially
1718 * different devices.
1719 */
1720 if (wq_list_empty(&ctx->iopoll_list)) {
1721 ctx->poll_multi_queue = false;
1722 } else if (!ctx->poll_multi_queue) {
1723 struct io_kiocb *list_req;
1724
1725 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1726 comp_list);
1727 if (list_req->file != req->file)
1728 ctx->poll_multi_queue = true;
1729 }
1730
1731 /*
1732 * For fast devices, IO may have already completed. If it has, add
1733 * it to the front so we find it first.
1734 */
1735 if (READ_ONCE(req->iopoll_completed))
1736 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1737 else
1738 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1739
1740 if (unlikely(needs_lock)) {
1741 /*
1742 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1743 * in sq thread task context or in io worker task context. If
1744 * current task context is sq thread, we don't need to check
1745 * whether should wake up sq thread.
1746 */
1747 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1748 wq_has_sleeper(&ctx->sq_data->wait))
1749 wake_up(&ctx->sq_data->wait);
1750
1751 mutex_unlock(&ctx->uring_lock);
1752 }
1753 }
1754
io_file_get_flags(struct file * file)1755 io_req_flags_t io_file_get_flags(struct file *file)
1756 {
1757 io_req_flags_t res = 0;
1758
1759 BUILD_BUG_ON(REQ_F_ISREG_BIT != REQ_F_SUPPORT_NOWAIT_BIT + 1);
1760
1761 if (S_ISREG(file_inode(file)->i_mode))
1762 res |= REQ_F_ISREG;
1763 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1764 res |= REQ_F_SUPPORT_NOWAIT;
1765 return res;
1766 }
1767
io_drain_req(struct io_kiocb * req)1768 static __cold void io_drain_req(struct io_kiocb *req)
1769 __must_hold(&ctx->uring_lock)
1770 {
1771 struct io_ring_ctx *ctx = req->ctx;
1772 bool drain = req->flags & IOSQE_IO_DRAIN;
1773 struct io_defer_entry *de;
1774
1775 de = kmalloc(sizeof(*de), GFP_KERNEL_ACCOUNT);
1776 if (!de) {
1777 io_req_defer_failed(req, -ENOMEM);
1778 return;
1779 }
1780
1781 io_prep_async_link(req);
1782 trace_io_uring_defer(req);
1783 de->req = req;
1784
1785 ctx->nr_drained += io_linked_nr(req);
1786 list_add_tail(&de->list, &ctx->defer_list);
1787 io_queue_deferred(ctx);
1788 if (!drain && list_empty(&ctx->defer_list))
1789 ctx->drain_active = false;
1790 }
1791
io_assign_file(struct io_kiocb * req,const struct io_issue_def * def,unsigned int issue_flags)1792 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1793 unsigned int issue_flags)
1794 {
1795 if (req->file || !def->needs_file)
1796 return true;
1797
1798 if (req->flags & REQ_F_FIXED_FILE)
1799 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1800 else
1801 req->file = io_file_get_normal(req, req->cqe.fd);
1802
1803 return !!req->file;
1804 }
1805
1806 #define REQ_ISSUE_SLOW_FLAGS (REQ_F_CREDS | REQ_F_ARM_LTIMEOUT)
1807
__io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags,const struct io_issue_def * def)1808 static inline int __io_issue_sqe(struct io_kiocb *req,
1809 unsigned int issue_flags,
1810 const struct io_issue_def *def)
1811 {
1812 const struct cred *creds = NULL;
1813 struct io_kiocb *link = NULL;
1814 int ret;
1815
1816 if (unlikely(req->flags & REQ_ISSUE_SLOW_FLAGS)) {
1817 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
1818 creds = override_creds(req->creds);
1819 if (req->flags & REQ_F_ARM_LTIMEOUT)
1820 link = __io_prep_linked_timeout(req);
1821 }
1822
1823 if (!def->audit_skip)
1824 audit_uring_entry(req->opcode);
1825
1826 ret = def->issue(req, issue_flags);
1827
1828 if (!def->audit_skip)
1829 audit_uring_exit(!ret, ret);
1830
1831 if (unlikely(creds || link)) {
1832 if (creds)
1833 revert_creds(creds);
1834 if (link)
1835 io_queue_linked_timeout(link);
1836 }
1837
1838 return ret;
1839 }
1840
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)1841 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1842 {
1843 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1844 int ret;
1845
1846 if (unlikely(!io_assign_file(req, def, issue_flags)))
1847 return -EBADF;
1848
1849 ret = __io_issue_sqe(req, issue_flags, def);
1850
1851 if (ret == IOU_COMPLETE) {
1852 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1853 io_req_complete_defer(req);
1854 else
1855 io_req_complete_post(req, issue_flags);
1856
1857 return 0;
1858 }
1859
1860 if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1861 ret = 0;
1862
1863 /* If the op doesn't have a file, we're not polling for it */
1864 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1865 io_iopoll_req_issued(req, issue_flags);
1866 }
1867 return ret;
1868 }
1869
io_poll_issue(struct io_kiocb * req,io_tw_token_t tw)1870 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw)
1871 {
1872 const unsigned int issue_flags = IO_URING_F_NONBLOCK |
1873 IO_URING_F_MULTISHOT |
1874 IO_URING_F_COMPLETE_DEFER;
1875 int ret;
1876
1877 io_tw_lock(req->ctx, tw);
1878
1879 WARN_ON_ONCE(!req->file);
1880 if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL))
1881 return -EFAULT;
1882
1883 ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]);
1884
1885 WARN_ON_ONCE(ret == IOU_ISSUE_SKIP_COMPLETE);
1886 return ret;
1887 }
1888
io_wq_free_work(struct io_wq_work * work)1889 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1890 {
1891 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1892 struct io_kiocb *nxt = NULL;
1893
1894 if (req_ref_put_and_test_atomic(req)) {
1895 if (req->flags & IO_REQ_LINK_FLAGS)
1896 nxt = io_req_find_next(req);
1897 io_free_req(req);
1898 }
1899 return nxt ? &nxt->work : NULL;
1900 }
1901
io_wq_submit_work(struct io_wq_work * work)1902 void io_wq_submit_work(struct io_wq_work *work)
1903 {
1904 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1905 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1906 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1907 bool needs_poll = false;
1908 int ret = 0, err = -ECANCELED;
1909
1910 /* one will be dropped by io_wq_free_work() after returning to io-wq */
1911 if (!(req->flags & REQ_F_REFCOUNT))
1912 __io_req_set_refcount(req, 2);
1913 else
1914 req_ref_get(req);
1915
1916 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1917 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1918 fail:
1919 io_req_task_queue_fail(req, err);
1920 return;
1921 }
1922 if (!io_assign_file(req, def, issue_flags)) {
1923 err = -EBADF;
1924 atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1925 goto fail;
1926 }
1927
1928 /*
1929 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1930 * submitter task context. Final request completions are handed to the
1931 * right context, however this is not the case of auxiliary CQEs,
1932 * which is the main mean of operation for multishot requests.
1933 * Don't allow any multishot execution from io-wq. It's more restrictive
1934 * than necessary and also cleaner.
1935 */
1936 if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) {
1937 err = -EBADFD;
1938 if (!io_file_can_poll(req))
1939 goto fail;
1940 if (req->file->f_flags & O_NONBLOCK ||
1941 req->file->f_mode & FMODE_NOWAIT) {
1942 err = -ECANCELED;
1943 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1944 goto fail;
1945 return;
1946 } else {
1947 req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT);
1948 }
1949 }
1950
1951 if (req->flags & REQ_F_FORCE_ASYNC) {
1952 bool opcode_poll = def->pollin || def->pollout;
1953
1954 if (opcode_poll && io_file_can_poll(req)) {
1955 needs_poll = true;
1956 issue_flags |= IO_URING_F_NONBLOCK;
1957 }
1958 }
1959
1960 do {
1961 ret = io_issue_sqe(req, issue_flags);
1962 if (ret != -EAGAIN)
1963 break;
1964
1965 /*
1966 * If REQ_F_NOWAIT is set, then don't wait or retry with
1967 * poll. -EAGAIN is final for that case.
1968 */
1969 if (req->flags & REQ_F_NOWAIT)
1970 break;
1971
1972 /*
1973 * We can get EAGAIN for iopolled IO even though we're
1974 * forcing a sync submission from here, since we can't
1975 * wait for request slots on the block side.
1976 */
1977 if (!needs_poll) {
1978 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1979 break;
1980 if (io_wq_worker_stopped())
1981 break;
1982 cond_resched();
1983 continue;
1984 }
1985
1986 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1987 return;
1988 /* aborted or ready, in either case retry blocking */
1989 needs_poll = false;
1990 issue_flags &= ~IO_URING_F_NONBLOCK;
1991 } while (1);
1992
1993 /* avoid locking problems by failing it from a clean context */
1994 if (ret)
1995 io_req_task_queue_fail(req, ret);
1996 }
1997
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)1998 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1999 unsigned int issue_flags)
2000 {
2001 struct io_ring_ctx *ctx = req->ctx;
2002 struct io_rsrc_node *node;
2003 struct file *file = NULL;
2004
2005 io_ring_submit_lock(ctx, issue_flags);
2006 node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
2007 if (node) {
2008 node->refs++;
2009 req->file_node = node;
2010 req->flags |= io_slot_flags(node);
2011 file = io_slot_file(node);
2012 }
2013 io_ring_submit_unlock(ctx, issue_flags);
2014 return file;
2015 }
2016
io_file_get_normal(struct io_kiocb * req,int fd)2017 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2018 {
2019 struct file *file = fget(fd);
2020
2021 trace_io_uring_file_get(req, fd);
2022
2023 /* we don't allow fixed io_uring files */
2024 if (file && io_is_uring_fops(file))
2025 io_req_track_inflight(req);
2026 return file;
2027 }
2028
io_req_sqe_copy(struct io_kiocb * req,unsigned int issue_flags)2029 static int io_req_sqe_copy(struct io_kiocb *req, unsigned int issue_flags)
2030 {
2031 const struct io_cold_def *def = &io_cold_defs[req->opcode];
2032
2033 if (req->flags & REQ_F_SQE_COPIED)
2034 return 0;
2035 req->flags |= REQ_F_SQE_COPIED;
2036 if (!def->sqe_copy)
2037 return 0;
2038 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_INLINE)))
2039 return -EFAULT;
2040 def->sqe_copy(req);
2041 return 0;
2042 }
2043
io_queue_async(struct io_kiocb * req,unsigned int issue_flags,int ret)2044 static void io_queue_async(struct io_kiocb *req, unsigned int issue_flags, int ret)
2045 __must_hold(&req->ctx->uring_lock)
2046 {
2047 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2048 fail:
2049 io_req_defer_failed(req, ret);
2050 return;
2051 }
2052
2053 ret = io_req_sqe_copy(req, issue_flags);
2054 if (unlikely(ret))
2055 goto fail;
2056
2057 switch (io_arm_poll_handler(req, 0)) {
2058 case IO_APOLL_READY:
2059 io_req_task_queue(req);
2060 break;
2061 case IO_APOLL_ABORTED:
2062 io_queue_iowq(req);
2063 break;
2064 case IO_APOLL_OK:
2065 break;
2066 }
2067 }
2068
io_queue_sqe(struct io_kiocb * req,unsigned int extra_flags)2069 static inline void io_queue_sqe(struct io_kiocb *req, unsigned int extra_flags)
2070 __must_hold(&req->ctx->uring_lock)
2071 {
2072 unsigned int issue_flags = IO_URING_F_NONBLOCK |
2073 IO_URING_F_COMPLETE_DEFER | extra_flags;
2074 int ret;
2075
2076 ret = io_issue_sqe(req, issue_flags);
2077
2078 /*
2079 * We async punt it if the file wasn't marked NOWAIT, or if the file
2080 * doesn't support non-blocking read/write attempts
2081 */
2082 if (unlikely(ret))
2083 io_queue_async(req, issue_flags, ret);
2084 }
2085
io_queue_sqe_fallback(struct io_kiocb * req)2086 static void io_queue_sqe_fallback(struct io_kiocb *req)
2087 __must_hold(&req->ctx->uring_lock)
2088 {
2089 if (unlikely(req->flags & REQ_F_FAIL)) {
2090 /*
2091 * We don't submit, fail them all, for that replace hardlinks
2092 * with normal links. Extra REQ_F_LINK is tolerated.
2093 */
2094 req->flags &= ~REQ_F_HARDLINK;
2095 req->flags |= REQ_F_LINK;
2096 io_req_defer_failed(req, req->cqe.res);
2097 } else {
2098 /* can't fail with IO_URING_F_INLINE */
2099 io_req_sqe_copy(req, IO_URING_F_INLINE);
2100 if (unlikely(req->ctx->drain_active))
2101 io_drain_req(req);
2102 else
2103 io_queue_iowq(req);
2104 }
2105 }
2106
2107 /*
2108 * Check SQE restrictions (opcode and flags).
2109 *
2110 * Returns 'true' if SQE is allowed, 'false' otherwise.
2111 */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)2112 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2113 struct io_kiocb *req,
2114 unsigned int sqe_flags)
2115 {
2116 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2117 return false;
2118
2119 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2120 ctx->restrictions.sqe_flags_required)
2121 return false;
2122
2123 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2124 ctx->restrictions.sqe_flags_required))
2125 return false;
2126
2127 return true;
2128 }
2129
io_init_drain(struct io_ring_ctx * ctx)2130 static void io_init_drain(struct io_ring_ctx *ctx)
2131 {
2132 struct io_kiocb *head = ctx->submit_state.link.head;
2133
2134 ctx->drain_active = true;
2135 if (head) {
2136 /*
2137 * If we need to drain a request in the middle of a link, drain
2138 * the head request and the next request/link after the current
2139 * link. Considering sequential execution of links,
2140 * REQ_F_IO_DRAIN will be maintained for every request of our
2141 * link.
2142 */
2143 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2144 ctx->drain_next = true;
2145 }
2146 }
2147
io_init_fail_req(struct io_kiocb * req,int err)2148 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2149 {
2150 /* ensure per-opcode data is cleared if we fail before prep */
2151 memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2152 return err;
2153 }
2154
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2155 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2156 const struct io_uring_sqe *sqe)
2157 __must_hold(&ctx->uring_lock)
2158 {
2159 const struct io_issue_def *def;
2160 unsigned int sqe_flags;
2161 int personality;
2162 u8 opcode;
2163
2164 req->ctx = ctx;
2165 req->opcode = opcode = READ_ONCE(sqe->opcode);
2166 /* same numerical values with corresponding REQ_F_*, safe to copy */
2167 sqe_flags = READ_ONCE(sqe->flags);
2168 req->flags = (__force io_req_flags_t) sqe_flags;
2169 req->cqe.user_data = READ_ONCE(sqe->user_data);
2170 req->file = NULL;
2171 req->tctx = current->io_uring;
2172 req->cancel_seq_set = false;
2173 req->async_data = NULL;
2174
2175 if (unlikely(opcode >= IORING_OP_LAST)) {
2176 req->opcode = 0;
2177 return io_init_fail_req(req, -EINVAL);
2178 }
2179 opcode = array_index_nospec(opcode, IORING_OP_LAST);
2180
2181 def = &io_issue_defs[opcode];
2182 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2183 /* enforce forwards compatibility on users */
2184 if (sqe_flags & ~SQE_VALID_FLAGS)
2185 return io_init_fail_req(req, -EINVAL);
2186 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2187 if (!def->buffer_select)
2188 return io_init_fail_req(req, -EOPNOTSUPP);
2189 req->buf_index = READ_ONCE(sqe->buf_group);
2190 }
2191 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2192 ctx->drain_disabled = true;
2193 if (sqe_flags & IOSQE_IO_DRAIN) {
2194 if (ctx->drain_disabled)
2195 return io_init_fail_req(req, -EOPNOTSUPP);
2196 io_init_drain(ctx);
2197 }
2198 }
2199 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2200 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2201 return io_init_fail_req(req, -EACCES);
2202 /* knock it to the slow queue path, will be drained there */
2203 if (ctx->drain_active)
2204 req->flags |= REQ_F_FORCE_ASYNC;
2205 /* if there is no link, we're at "next" request and need to drain */
2206 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2207 ctx->drain_next = false;
2208 ctx->drain_active = true;
2209 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2210 }
2211 }
2212
2213 if (!def->ioprio && sqe->ioprio)
2214 return io_init_fail_req(req, -EINVAL);
2215 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2216 return io_init_fail_req(req, -EINVAL);
2217
2218 if (def->needs_file) {
2219 struct io_submit_state *state = &ctx->submit_state;
2220
2221 req->cqe.fd = READ_ONCE(sqe->fd);
2222
2223 /*
2224 * Plug now if we have more than 2 IO left after this, and the
2225 * target is potentially a read/write to block based storage.
2226 */
2227 if (state->need_plug && def->plug) {
2228 state->plug_started = true;
2229 state->need_plug = false;
2230 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2231 }
2232 }
2233
2234 personality = READ_ONCE(sqe->personality);
2235 if (personality) {
2236 int ret;
2237
2238 req->creds = xa_load(&ctx->personalities, personality);
2239 if (!req->creds)
2240 return io_init_fail_req(req, -EINVAL);
2241 get_cred(req->creds);
2242 ret = security_uring_override_creds(req->creds);
2243 if (ret) {
2244 put_cred(req->creds);
2245 return io_init_fail_req(req, ret);
2246 }
2247 req->flags |= REQ_F_CREDS;
2248 }
2249
2250 return def->prep(req, sqe);
2251 }
2252
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)2253 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2254 struct io_kiocb *req, int ret)
2255 {
2256 struct io_ring_ctx *ctx = req->ctx;
2257 struct io_submit_link *link = &ctx->submit_state.link;
2258 struct io_kiocb *head = link->head;
2259
2260 trace_io_uring_req_failed(sqe, req, ret);
2261
2262 /*
2263 * Avoid breaking links in the middle as it renders links with SQPOLL
2264 * unusable. Instead of failing eagerly, continue assembling the link if
2265 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2266 * should find the flag and handle the rest.
2267 */
2268 req_fail_link_node(req, ret);
2269 if (head && !(head->flags & REQ_F_FAIL))
2270 req_fail_link_node(head, -ECANCELED);
2271
2272 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2273 if (head) {
2274 link->last->link = req;
2275 link->head = NULL;
2276 req = head;
2277 }
2278 io_queue_sqe_fallback(req);
2279 return ret;
2280 }
2281
2282 if (head)
2283 link->last->link = req;
2284 else
2285 link->head = req;
2286 link->last = req;
2287 return 0;
2288 }
2289
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2290 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2291 const struct io_uring_sqe *sqe)
2292 __must_hold(&ctx->uring_lock)
2293 {
2294 struct io_submit_link *link = &ctx->submit_state.link;
2295 int ret;
2296
2297 ret = io_init_req(ctx, req, sqe);
2298 if (unlikely(ret))
2299 return io_submit_fail_init(sqe, req, ret);
2300
2301 trace_io_uring_submit_req(req);
2302
2303 /*
2304 * If we already have a head request, queue this one for async
2305 * submittal once the head completes. If we don't have a head but
2306 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2307 * submitted sync once the chain is complete. If none of those
2308 * conditions are true (normal request), then just queue it.
2309 */
2310 if (unlikely(link->head)) {
2311 trace_io_uring_link(req, link->last);
2312 io_req_sqe_copy(req, IO_URING_F_INLINE);
2313 link->last->link = req;
2314 link->last = req;
2315
2316 if (req->flags & IO_REQ_LINK_FLAGS)
2317 return 0;
2318 /* last request of the link, flush it */
2319 req = link->head;
2320 link->head = NULL;
2321 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2322 goto fallback;
2323
2324 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2325 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2326 if (req->flags & IO_REQ_LINK_FLAGS) {
2327 link->head = req;
2328 link->last = req;
2329 } else {
2330 fallback:
2331 io_queue_sqe_fallback(req);
2332 }
2333 return 0;
2334 }
2335
2336 io_queue_sqe(req, IO_URING_F_INLINE);
2337 return 0;
2338 }
2339
2340 /*
2341 * Batched submission is done, ensure local IO is flushed out.
2342 */
io_submit_state_end(struct io_ring_ctx * ctx)2343 static void io_submit_state_end(struct io_ring_ctx *ctx)
2344 {
2345 struct io_submit_state *state = &ctx->submit_state;
2346
2347 if (unlikely(state->link.head))
2348 io_queue_sqe_fallback(state->link.head);
2349 /* flush only after queuing links as they can generate completions */
2350 io_submit_flush_completions(ctx);
2351 if (state->plug_started)
2352 blk_finish_plug(&state->plug);
2353 }
2354
2355 /*
2356 * Start submission side cache.
2357 */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)2358 static void io_submit_state_start(struct io_submit_state *state,
2359 unsigned int max_ios)
2360 {
2361 state->plug_started = false;
2362 state->need_plug = max_ios > 2;
2363 state->submit_nr = max_ios;
2364 /* set only head, no need to init link_last in advance */
2365 state->link.head = NULL;
2366 }
2367
io_commit_sqring(struct io_ring_ctx * ctx)2368 static void io_commit_sqring(struct io_ring_ctx *ctx)
2369 {
2370 struct io_rings *rings = ctx->rings;
2371
2372 /*
2373 * Ensure any loads from the SQEs are done at this point,
2374 * since once we write the new head, the application could
2375 * write new data to them.
2376 */
2377 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2378 }
2379
2380 /*
2381 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2382 * that is mapped by userspace. This means that care needs to be taken to
2383 * ensure that reads are stable, as we cannot rely on userspace always
2384 * being a good citizen. If members of the sqe are validated and then later
2385 * used, it's important that those reads are done through READ_ONCE() to
2386 * prevent a re-load down the line.
2387 */
io_get_sqe(struct io_ring_ctx * ctx,const struct io_uring_sqe ** sqe)2388 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2389 {
2390 unsigned mask = ctx->sq_entries - 1;
2391 unsigned head = ctx->cached_sq_head++ & mask;
2392
2393 if (static_branch_unlikely(&io_key_has_sqarray) &&
2394 (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
2395 head = READ_ONCE(ctx->sq_array[head]);
2396 if (unlikely(head >= ctx->sq_entries)) {
2397 WRITE_ONCE(ctx->rings->sq_dropped,
2398 READ_ONCE(ctx->rings->sq_dropped) + 1);
2399 return false;
2400 }
2401 head = array_index_nospec(head, ctx->sq_entries);
2402 }
2403
2404 /*
2405 * The cached sq head (or cq tail) serves two purposes:
2406 *
2407 * 1) allows us to batch the cost of updating the user visible
2408 * head updates.
2409 * 2) allows the kernel side to track the head on its own, even
2410 * though the application is the one updating it.
2411 */
2412
2413 /* double index for 128-byte SQEs, twice as long */
2414 if (ctx->flags & IORING_SETUP_SQE128)
2415 head <<= 1;
2416 *sqe = &ctx->sq_sqes[head];
2417 return true;
2418 }
2419
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)2420 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2421 __must_hold(&ctx->uring_lock)
2422 {
2423 unsigned int entries = io_sqring_entries(ctx);
2424 unsigned int left;
2425 int ret;
2426
2427 if (unlikely(!entries))
2428 return 0;
2429 /* make sure SQ entry isn't read before tail */
2430 ret = left = min(nr, entries);
2431 io_get_task_refs(left);
2432 io_submit_state_start(&ctx->submit_state, left);
2433
2434 do {
2435 const struct io_uring_sqe *sqe;
2436 struct io_kiocb *req;
2437
2438 if (unlikely(!io_alloc_req(ctx, &req)))
2439 break;
2440 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2441 io_req_add_to_cache(req, ctx);
2442 break;
2443 }
2444
2445 /*
2446 * Continue submitting even for sqe failure if the
2447 * ring was setup with IORING_SETUP_SUBMIT_ALL
2448 */
2449 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2450 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2451 left--;
2452 break;
2453 }
2454 } while (--left);
2455
2456 if (unlikely(left)) {
2457 ret -= left;
2458 /* try again if it submitted nothing and can't allocate a req */
2459 if (!ret && io_req_cache_empty(ctx))
2460 ret = -EAGAIN;
2461 current->io_uring->cached_refs += left;
2462 }
2463
2464 io_submit_state_end(ctx);
2465 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2466 io_commit_sqring(ctx);
2467 return ret;
2468 }
2469
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2470 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2471 int wake_flags, void *key)
2472 {
2473 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2474
2475 /*
2476 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2477 * the task, and the next invocation will do it.
2478 */
2479 if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2480 return autoremove_wake_function(curr, mode, wake_flags, key);
2481 return -1;
2482 }
2483
io_run_task_work_sig(struct io_ring_ctx * ctx)2484 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2485 {
2486 if (io_local_work_pending(ctx)) {
2487 __set_current_state(TASK_RUNNING);
2488 if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0)
2489 return 0;
2490 }
2491 if (io_run_task_work() > 0)
2492 return 0;
2493 if (task_sigpending(current))
2494 return -EINTR;
2495 return 0;
2496 }
2497
current_pending_io(void)2498 static bool current_pending_io(void)
2499 {
2500 struct io_uring_task *tctx = current->io_uring;
2501
2502 if (!tctx)
2503 return false;
2504 return percpu_counter_read_positive(&tctx->inflight);
2505 }
2506
io_cqring_timer_wakeup(struct hrtimer * timer)2507 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2508 {
2509 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2510
2511 WRITE_ONCE(iowq->hit_timeout, 1);
2512 iowq->min_timeout = 0;
2513 wake_up_process(iowq->wq.private);
2514 return HRTIMER_NORESTART;
2515 }
2516
2517 /*
2518 * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2519 * wake up. If not, and we have a normal timeout, switch to that and keep
2520 * sleeping.
2521 */
io_cqring_min_timer_wakeup(struct hrtimer * timer)2522 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2523 {
2524 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2525 struct io_ring_ctx *ctx = iowq->ctx;
2526
2527 /* no general timeout, or shorter (or equal), we are done */
2528 if (iowq->timeout == KTIME_MAX ||
2529 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2530 goto out_wake;
2531 /* work we may need to run, wake function will see if we need to wake */
2532 if (io_has_work(ctx))
2533 goto out_wake;
2534 /* got events since we started waiting, min timeout is done */
2535 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2536 goto out_wake;
2537 /* if we have any events and min timeout expired, we're done */
2538 if (io_cqring_events(ctx))
2539 goto out_wake;
2540
2541 /*
2542 * If using deferred task_work running and application is waiting on
2543 * more than one request, ensure we reset it now where we are switching
2544 * to normal sleeps. Any request completion post min_wait should wake
2545 * the task and return.
2546 */
2547 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2548 atomic_set(&ctx->cq_wait_nr, 1);
2549 smp_mb();
2550 if (!llist_empty(&ctx->work_llist))
2551 goto out_wake;
2552 }
2553
2554 hrtimer_update_function(&iowq->t, io_cqring_timer_wakeup);
2555 hrtimer_set_expires(timer, iowq->timeout);
2556 return HRTIMER_RESTART;
2557 out_wake:
2558 return io_cqring_timer_wakeup(timer);
2559 }
2560
io_cqring_schedule_timeout(struct io_wait_queue * iowq,clockid_t clock_id,ktime_t start_time)2561 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2562 clockid_t clock_id, ktime_t start_time)
2563 {
2564 ktime_t timeout;
2565
2566 if (iowq->min_timeout) {
2567 timeout = ktime_add_ns(iowq->min_timeout, start_time);
2568 hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
2569 HRTIMER_MODE_ABS);
2570 } else {
2571 timeout = iowq->timeout;
2572 hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
2573 HRTIMER_MODE_ABS);
2574 }
2575
2576 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2577 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2578
2579 if (!READ_ONCE(iowq->hit_timeout))
2580 schedule();
2581
2582 hrtimer_cancel(&iowq->t);
2583 destroy_hrtimer_on_stack(&iowq->t);
2584 __set_current_state(TASK_RUNNING);
2585
2586 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2587 }
2588
2589 struct ext_arg {
2590 size_t argsz;
2591 struct timespec64 ts;
2592 const sigset_t __user *sig;
2593 ktime_t min_time;
2594 bool ts_set;
2595 bool iowait;
2596 };
2597
__io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,struct ext_arg * ext_arg,ktime_t start_time)2598 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2599 struct io_wait_queue *iowq,
2600 struct ext_arg *ext_arg,
2601 ktime_t start_time)
2602 {
2603 int ret = 0;
2604
2605 /*
2606 * Mark us as being in io_wait if we have pending requests, so cpufreq
2607 * can take into account that the task is waiting for IO - turns out
2608 * to be important for low QD IO.
2609 */
2610 if (ext_arg->iowait && current_pending_io())
2611 current->in_iowait = 1;
2612 if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2613 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2614 else
2615 schedule();
2616 current->in_iowait = 0;
2617 return ret;
2618 }
2619
2620 /* If this returns > 0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,struct ext_arg * ext_arg,ktime_t start_time)2621 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2622 struct io_wait_queue *iowq,
2623 struct ext_arg *ext_arg,
2624 ktime_t start_time)
2625 {
2626 if (unlikely(READ_ONCE(ctx->check_cq)))
2627 return 1;
2628 if (unlikely(io_local_work_pending(ctx)))
2629 return 1;
2630 if (unlikely(task_work_pending(current)))
2631 return 1;
2632 if (unlikely(task_sigpending(current)))
2633 return -EINTR;
2634 if (unlikely(io_should_wake(iowq)))
2635 return 0;
2636
2637 return __io_cqring_wait_schedule(ctx, iowq, ext_arg, start_time);
2638 }
2639
2640 /*
2641 * Wait until events become available, if we don't already have some. The
2642 * application must reap them itself, as they reside on the shared cq ring.
2643 */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,u32 flags,struct ext_arg * ext_arg)2644 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2645 struct ext_arg *ext_arg)
2646 {
2647 struct io_wait_queue iowq;
2648 struct io_rings *rings = ctx->rings;
2649 ktime_t start_time;
2650 int ret;
2651
2652 min_events = min_t(int, min_events, ctx->cq_entries);
2653
2654 if (!io_allowed_run_tw(ctx))
2655 return -EEXIST;
2656 if (io_local_work_pending(ctx))
2657 io_run_local_work(ctx, min_events,
2658 max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
2659 io_run_task_work();
2660
2661 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2662 io_cqring_do_overflow_flush(ctx);
2663 if (__io_cqring_events_user(ctx) >= min_events)
2664 return 0;
2665
2666 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2667 iowq.wq.private = current;
2668 INIT_LIST_HEAD(&iowq.wq.entry);
2669 iowq.ctx = ctx;
2670 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2671 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2672 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2673 iowq.hit_timeout = 0;
2674 iowq.min_timeout = ext_arg->min_time;
2675 iowq.timeout = KTIME_MAX;
2676 start_time = io_get_time(ctx);
2677
2678 if (ext_arg->ts_set) {
2679 iowq.timeout = timespec64_to_ktime(ext_arg->ts);
2680 if (!(flags & IORING_ENTER_ABS_TIMER))
2681 iowq.timeout = ktime_add(iowq.timeout, start_time);
2682 }
2683
2684 if (ext_arg->sig) {
2685 #ifdef CONFIG_COMPAT
2686 if (in_compat_syscall())
2687 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2688 ext_arg->argsz);
2689 else
2690 #endif
2691 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2692
2693 if (ret)
2694 return ret;
2695 }
2696
2697 io_napi_busy_loop(ctx, &iowq);
2698
2699 trace_io_uring_cqring_wait(ctx, min_events);
2700 do {
2701 unsigned long check_cq;
2702 int nr_wait;
2703
2704 /* if min timeout has been hit, don't reset wait count */
2705 if (!iowq.hit_timeout)
2706 nr_wait = (int) iowq.cq_tail -
2707 READ_ONCE(ctx->rings->cq.tail);
2708 else
2709 nr_wait = 1;
2710
2711 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2712 atomic_set(&ctx->cq_wait_nr, nr_wait);
2713 set_current_state(TASK_INTERRUPTIBLE);
2714 } else {
2715 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2716 TASK_INTERRUPTIBLE);
2717 }
2718
2719 ret = io_cqring_wait_schedule(ctx, &iowq, ext_arg, start_time);
2720 __set_current_state(TASK_RUNNING);
2721 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2722
2723 /*
2724 * Run task_work after scheduling and before io_should_wake().
2725 * If we got woken because of task_work being processed, run it
2726 * now rather than let the caller do another wait loop.
2727 */
2728 if (io_local_work_pending(ctx))
2729 io_run_local_work(ctx, nr_wait, nr_wait);
2730 io_run_task_work();
2731
2732 /*
2733 * Non-local task_work will be run on exit to userspace, but
2734 * if we're using DEFER_TASKRUN, then we could have waited
2735 * with a timeout for a number of requests. If the timeout
2736 * hits, we could have some requests ready to process. Ensure
2737 * this break is _after_ we have run task_work, to avoid
2738 * deferring running potentially pending requests until the
2739 * next time we wait for events.
2740 */
2741 if (ret < 0)
2742 break;
2743
2744 check_cq = READ_ONCE(ctx->check_cq);
2745 if (unlikely(check_cq)) {
2746 /* let the caller flush overflows, retry */
2747 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2748 io_cqring_do_overflow_flush(ctx);
2749 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2750 ret = -EBADR;
2751 break;
2752 }
2753 }
2754
2755 if (io_should_wake(&iowq)) {
2756 ret = 0;
2757 break;
2758 }
2759 cond_resched();
2760 } while (1);
2761
2762 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2763 finish_wait(&ctx->cq_wait, &iowq.wq);
2764 restore_saved_sigmask_unless(ret == -EINTR);
2765
2766 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2767 }
2768
io_rings_free(struct io_ring_ctx * ctx)2769 static void io_rings_free(struct io_ring_ctx *ctx)
2770 {
2771 io_free_region(ctx, &ctx->sq_region);
2772 io_free_region(ctx, &ctx->ring_region);
2773 ctx->rings = NULL;
2774 ctx->sq_sqes = NULL;
2775 }
2776
rings_size(unsigned int flags,unsigned int sq_entries,unsigned int cq_entries,size_t * sq_offset)2777 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
2778 unsigned int cq_entries, size_t *sq_offset)
2779 {
2780 struct io_rings *rings;
2781 size_t off, sq_array_size;
2782
2783 off = struct_size(rings, cqes, cq_entries);
2784 if (off == SIZE_MAX)
2785 return SIZE_MAX;
2786 if (flags & IORING_SETUP_CQE32) {
2787 if (check_shl_overflow(off, 1, &off))
2788 return SIZE_MAX;
2789 }
2790 if (flags & IORING_SETUP_CQE_MIXED) {
2791 if (cq_entries < 2)
2792 return SIZE_MAX;
2793 }
2794
2795 #ifdef CONFIG_SMP
2796 off = ALIGN(off, SMP_CACHE_BYTES);
2797 if (off == 0)
2798 return SIZE_MAX;
2799 #endif
2800
2801 if (flags & IORING_SETUP_NO_SQARRAY) {
2802 *sq_offset = SIZE_MAX;
2803 return off;
2804 }
2805
2806 *sq_offset = off;
2807
2808 sq_array_size = array_size(sizeof(u32), sq_entries);
2809 if (sq_array_size == SIZE_MAX)
2810 return SIZE_MAX;
2811
2812 if (check_add_overflow(off, sq_array_size, &off))
2813 return SIZE_MAX;
2814
2815 return off;
2816 }
2817
__io_req_caches_free(struct io_ring_ctx * ctx)2818 static __cold void __io_req_caches_free(struct io_ring_ctx *ctx)
2819 {
2820 struct io_kiocb *req;
2821 int nr = 0;
2822
2823 while (!io_req_cache_empty(ctx)) {
2824 req = io_extract_req(ctx);
2825 io_poison_req(req);
2826 kmem_cache_free(req_cachep, req);
2827 nr++;
2828 }
2829 if (nr) {
2830 ctx->nr_req_allocated -= nr;
2831 percpu_ref_put_many(&ctx->refs, nr);
2832 }
2833 }
2834
io_req_caches_free(struct io_ring_ctx * ctx)2835 static __cold void io_req_caches_free(struct io_ring_ctx *ctx)
2836 {
2837 guard(mutex)(&ctx->uring_lock);
2838 __io_req_caches_free(ctx);
2839 }
2840
io_ring_ctx_free(struct io_ring_ctx * ctx)2841 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2842 {
2843 io_sq_thread_finish(ctx);
2844
2845 mutex_lock(&ctx->uring_lock);
2846 io_sqe_buffers_unregister(ctx);
2847 io_sqe_files_unregister(ctx);
2848 io_unregister_zcrx_ifqs(ctx);
2849 io_cqring_overflow_kill(ctx);
2850 io_eventfd_unregister(ctx);
2851 io_free_alloc_caches(ctx);
2852 io_destroy_buffers(ctx);
2853 io_free_region(ctx, &ctx->param_region);
2854 mutex_unlock(&ctx->uring_lock);
2855 if (ctx->sq_creds)
2856 put_cred(ctx->sq_creds);
2857 if (ctx->submitter_task)
2858 put_task_struct(ctx->submitter_task);
2859
2860 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2861
2862 if (ctx->mm_account) {
2863 mmdrop(ctx->mm_account);
2864 ctx->mm_account = NULL;
2865 }
2866 io_rings_free(ctx);
2867
2868 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2869 static_branch_dec(&io_key_has_sqarray);
2870
2871 percpu_ref_exit(&ctx->refs);
2872 free_uid(ctx->user);
2873 io_req_caches_free(ctx);
2874
2875 WARN_ON_ONCE(ctx->nr_req_allocated);
2876
2877 if (ctx->hash_map)
2878 io_wq_put_hash(ctx->hash_map);
2879 io_napi_free(ctx);
2880 kvfree(ctx->cancel_table.hbs);
2881 xa_destroy(&ctx->io_bl_xa);
2882 kfree(ctx);
2883 }
2884
io_activate_pollwq_cb(struct callback_head * cb)2885 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2886 {
2887 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2888 poll_wq_task_work);
2889
2890 mutex_lock(&ctx->uring_lock);
2891 ctx->poll_activated = true;
2892 mutex_unlock(&ctx->uring_lock);
2893
2894 /*
2895 * Wake ups for some events between start of polling and activation
2896 * might've been lost due to loose synchronisation.
2897 */
2898 wake_up_all(&ctx->poll_wq);
2899 percpu_ref_put(&ctx->refs);
2900 }
2901
io_activate_pollwq(struct io_ring_ctx * ctx)2902 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2903 {
2904 spin_lock(&ctx->completion_lock);
2905 /* already activated or in progress */
2906 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2907 goto out;
2908 if (WARN_ON_ONCE(!ctx->task_complete))
2909 goto out;
2910 if (!ctx->submitter_task)
2911 goto out;
2912 /*
2913 * with ->submitter_task only the submitter task completes requests, we
2914 * only need to sync with it, which is done by injecting a tw
2915 */
2916 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2917 percpu_ref_get(&ctx->refs);
2918 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2919 percpu_ref_put(&ctx->refs);
2920 out:
2921 spin_unlock(&ctx->completion_lock);
2922 }
2923
io_uring_poll(struct file * file,poll_table * wait)2924 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2925 {
2926 struct io_ring_ctx *ctx = file->private_data;
2927 __poll_t mask = 0;
2928
2929 if (unlikely(!ctx->poll_activated))
2930 io_activate_pollwq(ctx);
2931 /*
2932 * provides mb() which pairs with barrier from wq_has_sleeper
2933 * call in io_commit_cqring
2934 */
2935 poll_wait(file, &ctx->poll_wq, wait);
2936
2937 if (!io_sqring_full(ctx))
2938 mask |= EPOLLOUT | EPOLLWRNORM;
2939
2940 /*
2941 * Don't flush cqring overflow list here, just do a simple check.
2942 * Otherwise there could possible be ABBA deadlock:
2943 * CPU0 CPU1
2944 * ---- ----
2945 * lock(&ctx->uring_lock);
2946 * lock(&ep->mtx);
2947 * lock(&ctx->uring_lock);
2948 * lock(&ep->mtx);
2949 *
2950 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2951 * pushes them to do the flush.
2952 */
2953
2954 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2955 mask |= EPOLLIN | EPOLLRDNORM;
2956
2957 return mask;
2958 }
2959
2960 struct io_tctx_exit {
2961 struct callback_head task_work;
2962 struct completion completion;
2963 struct io_ring_ctx *ctx;
2964 };
2965
io_tctx_exit_cb(struct callback_head * cb)2966 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2967 {
2968 struct io_uring_task *tctx = current->io_uring;
2969 struct io_tctx_exit *work;
2970
2971 work = container_of(cb, struct io_tctx_exit, task_work);
2972 /*
2973 * When @in_cancel, we're in cancellation and it's racy to remove the
2974 * node. It'll be removed by the end of cancellation, just ignore it.
2975 * tctx can be NULL if the queueing of this task_work raced with
2976 * work cancelation off the exec path.
2977 */
2978 if (tctx && !atomic_read(&tctx->in_cancel))
2979 io_uring_del_tctx_node((unsigned long)work->ctx);
2980 complete(&work->completion);
2981 }
2982
io_cancel_ctx_cb(struct io_wq_work * work,void * data)2983 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2984 {
2985 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2986
2987 return req->ctx == data;
2988 }
2989
io_ring_exit_work(struct work_struct * work)2990 static __cold void io_ring_exit_work(struct work_struct *work)
2991 {
2992 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2993 unsigned long timeout = jiffies + HZ * 60 * 5;
2994 unsigned long interval = HZ / 20;
2995 struct io_tctx_exit exit;
2996 struct io_tctx_node *node;
2997 int ret;
2998
2999 /*
3000 * If we're doing polled IO and end up having requests being
3001 * submitted async (out-of-line), then completions can come in while
3002 * we're waiting for refs to drop. We need to reap these manually,
3003 * as nobody else will be looking for them.
3004 */
3005 do {
3006 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3007 mutex_lock(&ctx->uring_lock);
3008 io_cqring_overflow_kill(ctx);
3009 mutex_unlock(&ctx->uring_lock);
3010 }
3011 if (!xa_empty(&ctx->zcrx_ctxs)) {
3012 mutex_lock(&ctx->uring_lock);
3013 io_shutdown_zcrx_ifqs(ctx);
3014 mutex_unlock(&ctx->uring_lock);
3015 }
3016
3017 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3018 io_move_task_work_from_local(ctx);
3019
3020 /* The SQPOLL thread never reaches this path */
3021 while (io_uring_try_cancel_requests(ctx, NULL, true, false))
3022 cond_resched();
3023
3024 if (ctx->sq_data) {
3025 struct io_sq_data *sqd = ctx->sq_data;
3026 struct task_struct *tsk;
3027
3028 io_sq_thread_park(sqd);
3029 tsk = sqpoll_task_locked(sqd);
3030 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3031 io_wq_cancel_cb(tsk->io_uring->io_wq,
3032 io_cancel_ctx_cb, ctx, true);
3033 io_sq_thread_unpark(sqd);
3034 }
3035
3036 io_req_caches_free(ctx);
3037
3038 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3039 /* there is little hope left, don't run it too often */
3040 interval = HZ * 60;
3041 }
3042 /*
3043 * This is really an uninterruptible wait, as it has to be
3044 * complete. But it's also run from a kworker, which doesn't
3045 * take signals, so it's fine to make it interruptible. This
3046 * avoids scenarios where we knowingly can wait much longer
3047 * on completions, for example if someone does a SIGSTOP on
3048 * a task that needs to finish task_work to make this loop
3049 * complete. That's a synthetic situation that should not
3050 * cause a stuck task backtrace, and hence a potential panic
3051 * on stuck tasks if that is enabled.
3052 */
3053 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3054
3055 init_completion(&exit.completion);
3056 init_task_work(&exit.task_work, io_tctx_exit_cb);
3057 exit.ctx = ctx;
3058
3059 mutex_lock(&ctx->uring_lock);
3060 while (!list_empty(&ctx->tctx_list)) {
3061 WARN_ON_ONCE(time_after(jiffies, timeout));
3062
3063 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3064 ctx_node);
3065 /* don't spin on a single task if cancellation failed */
3066 list_rotate_left(&ctx->tctx_list);
3067 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3068 if (WARN_ON_ONCE(ret))
3069 continue;
3070
3071 mutex_unlock(&ctx->uring_lock);
3072 /*
3073 * See comment above for
3074 * wait_for_completion_interruptible_timeout() on why this
3075 * wait is marked as interruptible.
3076 */
3077 wait_for_completion_interruptible(&exit.completion);
3078 mutex_lock(&ctx->uring_lock);
3079 }
3080 mutex_unlock(&ctx->uring_lock);
3081 spin_lock(&ctx->completion_lock);
3082 spin_unlock(&ctx->completion_lock);
3083
3084 /* pairs with RCU read section in io_req_local_work_add() */
3085 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3086 synchronize_rcu();
3087
3088 io_ring_ctx_free(ctx);
3089 }
3090
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)3091 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3092 {
3093 unsigned long index;
3094 struct creds *creds;
3095
3096 mutex_lock(&ctx->uring_lock);
3097 percpu_ref_kill(&ctx->refs);
3098 xa_for_each(&ctx->personalities, index, creds)
3099 io_unregister_personality(ctx, index);
3100 mutex_unlock(&ctx->uring_lock);
3101
3102 flush_delayed_work(&ctx->fallback_work);
3103
3104 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3105 /*
3106 * Use system_dfl_wq to avoid spawning tons of event kworkers
3107 * if we're exiting a ton of rings at the same time. It just adds
3108 * noise and overhead, there's no discernable change in runtime
3109 * over using system_percpu_wq.
3110 */
3111 queue_work(iou_wq, &ctx->exit_work);
3112 }
3113
io_uring_release(struct inode * inode,struct file * file)3114 static int io_uring_release(struct inode *inode, struct file *file)
3115 {
3116 struct io_ring_ctx *ctx = file->private_data;
3117
3118 file->private_data = NULL;
3119 io_ring_ctx_wait_and_kill(ctx);
3120 return 0;
3121 }
3122
3123 struct io_task_cancel {
3124 struct io_uring_task *tctx;
3125 bool all;
3126 };
3127
io_cancel_task_cb(struct io_wq_work * work,void * data)3128 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3129 {
3130 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3131 struct io_task_cancel *cancel = data;
3132
3133 return io_match_task_safe(req, cancel->tctx, cancel->all);
3134 }
3135
io_cancel_defer_files(struct io_ring_ctx * ctx,struct io_uring_task * tctx,bool cancel_all)3136 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3137 struct io_uring_task *tctx,
3138 bool cancel_all)
3139 {
3140 struct io_defer_entry *de;
3141 LIST_HEAD(list);
3142
3143 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3144 if (io_match_task_safe(de->req, tctx, cancel_all)) {
3145 list_cut_position(&list, &ctx->defer_list, &de->list);
3146 break;
3147 }
3148 }
3149 if (list_empty(&list))
3150 return false;
3151
3152 while (!list_empty(&list)) {
3153 de = list_first_entry(&list, struct io_defer_entry, list);
3154 list_del_init(&de->list);
3155 ctx->nr_drained -= io_linked_nr(de->req);
3156 io_req_task_queue_fail(de->req, -ECANCELED);
3157 kfree(de);
3158 }
3159 return true;
3160 }
3161
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)3162 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3163 {
3164 struct io_tctx_node *node;
3165 enum io_wq_cancel cret;
3166 bool ret = false;
3167
3168 mutex_lock(&ctx->uring_lock);
3169 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3170 struct io_uring_task *tctx = node->task->io_uring;
3171
3172 /*
3173 * io_wq will stay alive while we hold uring_lock, because it's
3174 * killed after ctx nodes, which requires to take the lock.
3175 */
3176 if (!tctx || !tctx->io_wq)
3177 continue;
3178 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3179 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3180 }
3181 mutex_unlock(&ctx->uring_lock);
3182
3183 return ret;
3184 }
3185
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct io_uring_task * tctx,bool cancel_all,bool is_sqpoll_thread)3186 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3187 struct io_uring_task *tctx,
3188 bool cancel_all,
3189 bool is_sqpoll_thread)
3190 {
3191 struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, };
3192 enum io_wq_cancel cret;
3193 bool ret = false;
3194
3195 /* set it so io_req_local_work_add() would wake us up */
3196 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3197 atomic_set(&ctx->cq_wait_nr, 1);
3198 smp_mb();
3199 }
3200
3201 /* failed during ring init, it couldn't have issued any requests */
3202 if (!ctx->rings)
3203 return false;
3204
3205 if (!tctx) {
3206 ret |= io_uring_try_cancel_iowq(ctx);
3207 } else if (tctx->io_wq) {
3208 /*
3209 * Cancels requests of all rings, not only @ctx, but
3210 * it's fine as the task is in exit/exec.
3211 */
3212 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3213 &cancel, true);
3214 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3215 }
3216
3217 /* SQPOLL thread does its own polling */
3218 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3219 is_sqpoll_thread) {
3220 while (!wq_list_empty(&ctx->iopoll_list)) {
3221 io_iopoll_try_reap_events(ctx);
3222 ret = true;
3223 cond_resched();
3224 }
3225 }
3226
3227 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3228 io_allowed_defer_tw_run(ctx))
3229 ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0;
3230 mutex_lock(&ctx->uring_lock);
3231 ret |= io_cancel_defer_files(ctx, tctx, cancel_all);
3232 ret |= io_poll_remove_all(ctx, tctx, cancel_all);
3233 ret |= io_waitid_remove_all(ctx, tctx, cancel_all);
3234 ret |= io_futex_remove_all(ctx, tctx, cancel_all);
3235 ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all);
3236 mutex_unlock(&ctx->uring_lock);
3237 ret |= io_kill_timeouts(ctx, tctx, cancel_all);
3238 if (tctx)
3239 ret |= io_run_task_work() > 0;
3240 else
3241 ret |= flush_delayed_work(&ctx->fallback_work);
3242 return ret;
3243 }
3244
tctx_inflight(struct io_uring_task * tctx,bool tracked)3245 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3246 {
3247 if (tracked)
3248 return atomic_read(&tctx->inflight_tracked);
3249 return percpu_counter_sum(&tctx->inflight);
3250 }
3251
3252 /*
3253 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3254 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3255 */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)3256 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3257 {
3258 struct io_uring_task *tctx = current->io_uring;
3259 struct io_ring_ctx *ctx;
3260 struct io_tctx_node *node;
3261 unsigned long index;
3262 s64 inflight;
3263 DEFINE_WAIT(wait);
3264
3265 WARN_ON_ONCE(sqd && sqpoll_task_locked(sqd) != current);
3266
3267 if (!current->io_uring)
3268 return;
3269 if (tctx->io_wq)
3270 io_wq_exit_start(tctx->io_wq);
3271
3272 atomic_inc(&tctx->in_cancel);
3273 do {
3274 bool loop = false;
3275
3276 io_uring_drop_tctx_refs(current);
3277 if (!tctx_inflight(tctx, !cancel_all))
3278 break;
3279
3280 /* read completions before cancelations */
3281 inflight = tctx_inflight(tctx, false);
3282 if (!inflight)
3283 break;
3284
3285 if (!sqd) {
3286 xa_for_each(&tctx->xa, index, node) {
3287 /* sqpoll task will cancel all its requests */
3288 if (node->ctx->sq_data)
3289 continue;
3290 loop |= io_uring_try_cancel_requests(node->ctx,
3291 current->io_uring,
3292 cancel_all,
3293 false);
3294 }
3295 } else {
3296 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3297 loop |= io_uring_try_cancel_requests(ctx,
3298 current->io_uring,
3299 cancel_all,
3300 true);
3301 }
3302
3303 if (loop) {
3304 cond_resched();
3305 continue;
3306 }
3307
3308 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3309 io_run_task_work();
3310 io_uring_drop_tctx_refs(current);
3311 xa_for_each(&tctx->xa, index, node) {
3312 if (io_local_work_pending(node->ctx)) {
3313 WARN_ON_ONCE(node->ctx->submitter_task &&
3314 node->ctx->submitter_task != current);
3315 goto end_wait;
3316 }
3317 }
3318 /*
3319 * If we've seen completions, retry without waiting. This
3320 * avoids a race where a completion comes in before we did
3321 * prepare_to_wait().
3322 */
3323 if (inflight == tctx_inflight(tctx, !cancel_all))
3324 schedule();
3325 end_wait:
3326 finish_wait(&tctx->wait, &wait);
3327 } while (1);
3328
3329 io_uring_clean_tctx(tctx);
3330 if (cancel_all) {
3331 /*
3332 * We shouldn't run task_works after cancel, so just leave
3333 * ->in_cancel set for normal exit.
3334 */
3335 atomic_dec(&tctx->in_cancel);
3336 /* for exec all current's requests should be gone, kill tctx */
3337 __io_uring_free(current);
3338 }
3339 }
3340
__io_uring_cancel(bool cancel_all)3341 void __io_uring_cancel(bool cancel_all)
3342 {
3343 io_uring_unreg_ringfd();
3344 io_uring_cancel_generic(cancel_all, NULL);
3345 }
3346
io_get_ext_arg_reg(struct io_ring_ctx * ctx,const struct io_uring_getevents_arg __user * uarg)3347 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
3348 const struct io_uring_getevents_arg __user *uarg)
3349 {
3350 unsigned long size = sizeof(struct io_uring_reg_wait);
3351 unsigned long offset = (uintptr_t)uarg;
3352 unsigned long end;
3353
3354 if (unlikely(offset % sizeof(long)))
3355 return ERR_PTR(-EFAULT);
3356
3357 /* also protects from NULL ->cq_wait_arg as the size would be 0 */
3358 if (unlikely(check_add_overflow(offset, size, &end) ||
3359 end > ctx->cq_wait_size))
3360 return ERR_PTR(-EFAULT);
3361
3362 offset = array_index_nospec(offset, ctx->cq_wait_size - size);
3363 return ctx->cq_wait_arg + offset;
3364 }
3365
io_validate_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,size_t argsz)3366 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3367 const void __user *argp, size_t argsz)
3368 {
3369 struct io_uring_getevents_arg arg;
3370
3371 if (!(flags & IORING_ENTER_EXT_ARG))
3372 return 0;
3373 if (flags & IORING_ENTER_EXT_ARG_REG)
3374 return -EINVAL;
3375 if (argsz != sizeof(arg))
3376 return -EINVAL;
3377 if (copy_from_user(&arg, argp, sizeof(arg)))
3378 return -EFAULT;
3379 return 0;
3380 }
3381
io_get_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,struct ext_arg * ext_arg)3382 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3383 const void __user *argp, struct ext_arg *ext_arg)
3384 {
3385 const struct io_uring_getevents_arg __user *uarg = argp;
3386 struct io_uring_getevents_arg arg;
3387
3388 ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT);
3389
3390 /*
3391 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3392 * is just a pointer to the sigset_t.
3393 */
3394 if (!(flags & IORING_ENTER_EXT_ARG)) {
3395 ext_arg->sig = (const sigset_t __user *) argp;
3396 return 0;
3397 }
3398
3399 if (flags & IORING_ENTER_EXT_ARG_REG) {
3400 struct io_uring_reg_wait *w;
3401
3402 if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
3403 return -EINVAL;
3404 w = io_get_ext_arg_reg(ctx, argp);
3405 if (IS_ERR(w))
3406 return PTR_ERR(w);
3407
3408 if (w->flags & ~IORING_REG_WAIT_TS)
3409 return -EINVAL;
3410 ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
3411 ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
3412 ext_arg->argsz = READ_ONCE(w->sigmask_sz);
3413 if (w->flags & IORING_REG_WAIT_TS) {
3414 ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
3415 ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
3416 ext_arg->ts_set = true;
3417 }
3418 return 0;
3419 }
3420
3421 /*
3422 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3423 * timespec and sigset_t pointers if good.
3424 */
3425 if (ext_arg->argsz != sizeof(arg))
3426 return -EINVAL;
3427 #ifdef CONFIG_64BIT
3428 if (!user_access_begin(uarg, sizeof(*uarg)))
3429 return -EFAULT;
3430 unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
3431 unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
3432 unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
3433 unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
3434 user_access_end();
3435 #else
3436 if (copy_from_user(&arg, uarg, sizeof(arg)))
3437 return -EFAULT;
3438 #endif
3439 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3440 ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3441 ext_arg->argsz = arg.sigmask_sz;
3442 if (arg.ts) {
3443 if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
3444 return -EFAULT;
3445 ext_arg->ts_set = true;
3446 }
3447 return 0;
3448 #ifdef CONFIG_64BIT
3449 uaccess_end:
3450 user_access_end();
3451 return -EFAULT;
3452 #endif
3453 }
3454
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)3455 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3456 u32, min_complete, u32, flags, const void __user *, argp,
3457 size_t, argsz)
3458 {
3459 struct io_ring_ctx *ctx;
3460 struct file *file;
3461 long ret;
3462
3463 if (unlikely(flags & ~IORING_ENTER_FLAGS))
3464 return -EINVAL;
3465
3466 /*
3467 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3468 * need only dereference our task private array to find it.
3469 */
3470 if (flags & IORING_ENTER_REGISTERED_RING) {
3471 struct io_uring_task *tctx = current->io_uring;
3472
3473 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3474 return -EINVAL;
3475 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3476 file = tctx->registered_rings[fd];
3477 if (unlikely(!file))
3478 return -EBADF;
3479 } else {
3480 file = fget(fd);
3481 if (unlikely(!file))
3482 return -EBADF;
3483 ret = -EOPNOTSUPP;
3484 if (unlikely(!io_is_uring_fops(file)))
3485 goto out;
3486 }
3487
3488 ctx = file->private_data;
3489 ret = -EBADFD;
3490 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3491 goto out;
3492
3493 /*
3494 * For SQ polling, the thread will do all submissions and completions.
3495 * Just return the requested submit count, and wake the thread if
3496 * we were asked to.
3497 */
3498 ret = 0;
3499 if (ctx->flags & IORING_SETUP_SQPOLL) {
3500 if (unlikely(ctx->sq_data->thread == NULL)) {
3501 ret = -EOWNERDEAD;
3502 goto out;
3503 }
3504 if (flags & IORING_ENTER_SQ_WAKEUP)
3505 wake_up(&ctx->sq_data->wait);
3506 if (flags & IORING_ENTER_SQ_WAIT)
3507 io_sqpoll_wait_sq(ctx);
3508
3509 ret = to_submit;
3510 } else if (to_submit) {
3511 ret = io_uring_add_tctx_node(ctx);
3512 if (unlikely(ret))
3513 goto out;
3514
3515 mutex_lock(&ctx->uring_lock);
3516 ret = io_submit_sqes(ctx, to_submit);
3517 if (ret != to_submit) {
3518 mutex_unlock(&ctx->uring_lock);
3519 goto out;
3520 }
3521 if (flags & IORING_ENTER_GETEVENTS) {
3522 if (ctx->syscall_iopoll)
3523 goto iopoll_locked;
3524 /*
3525 * Ignore errors, we'll soon call io_cqring_wait() and
3526 * it should handle ownership problems if any.
3527 */
3528 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3529 (void)io_run_local_work_locked(ctx, min_complete);
3530 }
3531 mutex_unlock(&ctx->uring_lock);
3532 }
3533
3534 if (flags & IORING_ENTER_GETEVENTS) {
3535 int ret2;
3536
3537 if (ctx->syscall_iopoll) {
3538 /*
3539 * We disallow the app entering submit/complete with
3540 * polling, but we still need to lock the ring to
3541 * prevent racing with polled issue that got punted to
3542 * a workqueue.
3543 */
3544 mutex_lock(&ctx->uring_lock);
3545 iopoll_locked:
3546 ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
3547 if (likely(!ret2))
3548 ret2 = io_iopoll_check(ctx, min_complete);
3549 mutex_unlock(&ctx->uring_lock);
3550 } else {
3551 struct ext_arg ext_arg = { .argsz = argsz };
3552
3553 ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
3554 if (likely(!ret2))
3555 ret2 = io_cqring_wait(ctx, min_complete, flags,
3556 &ext_arg);
3557 }
3558
3559 if (!ret) {
3560 ret = ret2;
3561
3562 /*
3563 * EBADR indicates that one or more CQE were dropped.
3564 * Once the user has been informed we can clear the bit
3565 * as they are obviously ok with those drops.
3566 */
3567 if (unlikely(ret2 == -EBADR))
3568 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3569 &ctx->check_cq);
3570 }
3571 }
3572 out:
3573 if (!(flags & IORING_ENTER_REGISTERED_RING))
3574 fput(file);
3575 return ret;
3576 }
3577
3578 static const struct file_operations io_uring_fops = {
3579 .release = io_uring_release,
3580 .mmap = io_uring_mmap,
3581 .get_unmapped_area = io_uring_get_unmapped_area,
3582 #ifndef CONFIG_MMU
3583 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3584 #endif
3585 .poll = io_uring_poll,
3586 #ifdef CONFIG_PROC_FS
3587 .show_fdinfo = io_uring_show_fdinfo,
3588 #endif
3589 };
3590
io_is_uring_fops(struct file * file)3591 bool io_is_uring_fops(struct file *file)
3592 {
3593 return file->f_op == &io_uring_fops;
3594 }
3595
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)3596 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3597 struct io_uring_params *p)
3598 {
3599 struct io_uring_region_desc rd;
3600 struct io_rings *rings;
3601 size_t size, sq_array_offset;
3602 int ret;
3603
3604 /* make sure these are sane, as we already accounted them */
3605 ctx->sq_entries = p->sq_entries;
3606 ctx->cq_entries = p->cq_entries;
3607
3608 size = rings_size(ctx->flags, p->sq_entries, p->cq_entries,
3609 &sq_array_offset);
3610 if (size == SIZE_MAX)
3611 return -EOVERFLOW;
3612
3613 memset(&rd, 0, sizeof(rd));
3614 rd.size = PAGE_ALIGN(size);
3615 if (ctx->flags & IORING_SETUP_NO_MMAP) {
3616 rd.user_addr = p->cq_off.user_addr;
3617 rd.flags |= IORING_MEM_REGION_TYPE_USER;
3618 }
3619 ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING);
3620 if (ret)
3621 return ret;
3622 ctx->rings = rings = io_region_get_ptr(&ctx->ring_region);
3623
3624 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3625 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3626 rings->sq_ring_mask = p->sq_entries - 1;
3627 rings->cq_ring_mask = p->cq_entries - 1;
3628 rings->sq_ring_entries = p->sq_entries;
3629 rings->cq_ring_entries = p->cq_entries;
3630
3631 if (p->flags & IORING_SETUP_SQE128)
3632 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3633 else
3634 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3635 if (size == SIZE_MAX) {
3636 io_rings_free(ctx);
3637 return -EOVERFLOW;
3638 }
3639
3640 memset(&rd, 0, sizeof(rd));
3641 rd.size = PAGE_ALIGN(size);
3642 if (ctx->flags & IORING_SETUP_NO_MMAP) {
3643 rd.user_addr = p->sq_off.user_addr;
3644 rd.flags |= IORING_MEM_REGION_TYPE_USER;
3645 }
3646 ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES);
3647 if (ret) {
3648 io_rings_free(ctx);
3649 return ret;
3650 }
3651 ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region);
3652 return 0;
3653 }
3654
io_uring_install_fd(struct file * file)3655 static int io_uring_install_fd(struct file *file)
3656 {
3657 int fd;
3658
3659 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3660 if (fd < 0)
3661 return fd;
3662 fd_install(fd, file);
3663 return fd;
3664 }
3665
3666 /*
3667 * Allocate an anonymous fd, this is what constitutes the application
3668 * visible backing of an io_uring instance. The application mmaps this
3669 * fd to gain access to the SQ/CQ ring details.
3670 */
io_uring_get_file(struct io_ring_ctx * ctx)3671 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3672 {
3673 /* Create a new inode so that the LSM can block the creation. */
3674 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3675 O_RDWR | O_CLOEXEC, NULL);
3676 }
3677
io_uring_sanitise_params(struct io_uring_params * p)3678 static int io_uring_sanitise_params(struct io_uring_params *p)
3679 {
3680 unsigned flags = p->flags;
3681
3682 /* There is no way to mmap rings without a real fd */
3683 if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) &&
3684 !(flags & IORING_SETUP_NO_MMAP))
3685 return -EINVAL;
3686
3687 if (flags & IORING_SETUP_SQPOLL) {
3688 /* IPI related flags don't make sense with SQPOLL */
3689 if (flags & (IORING_SETUP_COOP_TASKRUN |
3690 IORING_SETUP_TASKRUN_FLAG |
3691 IORING_SETUP_DEFER_TASKRUN))
3692 return -EINVAL;
3693 }
3694
3695 if (flags & IORING_SETUP_TASKRUN_FLAG) {
3696 if (!(flags & (IORING_SETUP_COOP_TASKRUN |
3697 IORING_SETUP_DEFER_TASKRUN)))
3698 return -EINVAL;
3699 }
3700
3701 /* HYBRID_IOPOLL only valid with IOPOLL */
3702 if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL))
3703 return -EINVAL;
3704
3705 /*
3706 * For DEFER_TASKRUN we require the completion task to be the same as
3707 * the submission task. This implies that there is only one submitter.
3708 */
3709 if ((flags & IORING_SETUP_DEFER_TASKRUN) &&
3710 !(flags & IORING_SETUP_SINGLE_ISSUER))
3711 return -EINVAL;
3712
3713 /*
3714 * Nonsensical to ask for CQE32 and mixed CQE support, it's not
3715 * supported to post 16b CQEs on a ring setup with CQE32.
3716 */
3717 if ((flags & (IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED)) ==
3718 (IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED))
3719 return -EINVAL;
3720
3721 return 0;
3722 }
3723
io_uring_fill_params(unsigned entries,struct io_uring_params * p)3724 int io_uring_fill_params(unsigned entries, struct io_uring_params *p)
3725 {
3726 if (!entries)
3727 return -EINVAL;
3728 if (entries > IORING_MAX_ENTRIES) {
3729 if (!(p->flags & IORING_SETUP_CLAMP))
3730 return -EINVAL;
3731 entries = IORING_MAX_ENTRIES;
3732 }
3733
3734 /*
3735 * Use twice as many entries for the CQ ring. It's possible for the
3736 * application to drive a higher depth than the size of the SQ ring,
3737 * since the sqes are only used at submission time. This allows for
3738 * some flexibility in overcommitting a bit. If the application has
3739 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3740 * of CQ ring entries manually.
3741 */
3742 p->sq_entries = roundup_pow_of_two(entries);
3743 if (p->flags & IORING_SETUP_CQSIZE) {
3744 /*
3745 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3746 * to a power-of-two, if it isn't already. We do NOT impose
3747 * any cq vs sq ring sizing.
3748 */
3749 if (!p->cq_entries)
3750 return -EINVAL;
3751 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3752 if (!(p->flags & IORING_SETUP_CLAMP))
3753 return -EINVAL;
3754 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3755 }
3756 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3757 if (p->cq_entries < p->sq_entries)
3758 return -EINVAL;
3759 } else {
3760 p->cq_entries = 2 * p->sq_entries;
3761 }
3762
3763 p->sq_off.head = offsetof(struct io_rings, sq.head);
3764 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3765 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3766 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3767 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3768 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3769 p->sq_off.resv1 = 0;
3770 if (!(p->flags & IORING_SETUP_NO_MMAP))
3771 p->sq_off.user_addr = 0;
3772
3773 p->cq_off.head = offsetof(struct io_rings, cq.head);
3774 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3775 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3776 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3777 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3778 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3779 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3780 p->cq_off.resv1 = 0;
3781 if (!(p->flags & IORING_SETUP_NO_MMAP))
3782 p->cq_off.user_addr = 0;
3783
3784 return 0;
3785 }
3786
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)3787 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3788 struct io_uring_params __user *params)
3789 {
3790 struct io_ring_ctx *ctx;
3791 struct io_uring_task *tctx;
3792 struct file *file;
3793 int ret;
3794
3795 ret = io_uring_sanitise_params(p);
3796 if (ret)
3797 return ret;
3798
3799 ret = io_uring_fill_params(entries, p);
3800 if (unlikely(ret))
3801 return ret;
3802
3803 ctx = io_ring_ctx_alloc(p);
3804 if (!ctx)
3805 return -ENOMEM;
3806
3807 ctx->clockid = CLOCK_MONOTONIC;
3808 ctx->clock_offset = 0;
3809
3810 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3811 static_branch_inc(&io_key_has_sqarray);
3812
3813 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3814 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3815 !(ctx->flags & IORING_SETUP_SQPOLL))
3816 ctx->task_complete = true;
3817
3818 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3819 ctx->lockless_cq = true;
3820
3821 /*
3822 * lazy poll_wq activation relies on ->task_complete for synchronisation
3823 * purposes, see io_activate_pollwq()
3824 */
3825 if (!ctx->task_complete)
3826 ctx->poll_activated = true;
3827
3828 /*
3829 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3830 * space applications don't need to do io completion events
3831 * polling again, they can rely on io_sq_thread to do polling
3832 * work, which can reduce cpu usage and uring_lock contention.
3833 */
3834 if (ctx->flags & IORING_SETUP_IOPOLL &&
3835 !(ctx->flags & IORING_SETUP_SQPOLL))
3836 ctx->syscall_iopoll = 1;
3837
3838 ctx->compat = in_compat_syscall();
3839 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3840 ctx->user = get_uid(current_user());
3841
3842 /*
3843 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3844 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3845 */
3846 if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN))
3847 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3848 else
3849 ctx->notify_method = TWA_SIGNAL;
3850
3851 /*
3852 * This is just grabbed for accounting purposes. When a process exits,
3853 * the mm is exited and dropped before the files, hence we need to hang
3854 * on to this mm purely for the purposes of being able to unaccount
3855 * memory (locked/pinned vm). It's not used for anything else.
3856 */
3857 mmgrab(current->mm);
3858 ctx->mm_account = current->mm;
3859
3860 ret = io_allocate_scq_urings(ctx, p);
3861 if (ret)
3862 goto err;
3863
3864 if (!(p->flags & IORING_SETUP_NO_SQARRAY))
3865 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3866
3867 ret = io_sq_offload_create(ctx, p);
3868 if (ret)
3869 goto err;
3870
3871 p->features = IORING_FEAT_FLAGS;
3872
3873 if (copy_to_user(params, p, sizeof(*p))) {
3874 ret = -EFAULT;
3875 goto err;
3876 }
3877
3878 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3879 && !(ctx->flags & IORING_SETUP_R_DISABLED)) {
3880 /*
3881 * Unlike io_register_enable_rings(), don't need WRITE_ONCE()
3882 * since ctx isn't yet accessible from other tasks
3883 */
3884 ctx->submitter_task = get_task_struct(current);
3885 }
3886
3887 file = io_uring_get_file(ctx);
3888 if (IS_ERR(file)) {
3889 ret = PTR_ERR(file);
3890 goto err;
3891 }
3892
3893 ret = __io_uring_add_tctx_node(ctx);
3894 if (ret)
3895 goto err_fput;
3896 tctx = current->io_uring;
3897
3898 /*
3899 * Install ring fd as the very last thing, so we don't risk someone
3900 * having closed it before we finish setup
3901 */
3902 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3903 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3904 else
3905 ret = io_uring_install_fd(file);
3906 if (ret < 0)
3907 goto err_fput;
3908
3909 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3910 return ret;
3911 err:
3912 io_ring_ctx_wait_and_kill(ctx);
3913 return ret;
3914 err_fput:
3915 fput(file);
3916 return ret;
3917 }
3918
3919 /*
3920 * Sets up an aio uring context, and returns the fd. Applications asks for a
3921 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3922 * params structure passed in.
3923 */
io_uring_setup(u32 entries,struct io_uring_params __user * params)3924 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3925 {
3926 struct io_uring_params p;
3927 int i;
3928
3929 if (copy_from_user(&p, params, sizeof(p)))
3930 return -EFAULT;
3931 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3932 if (p.resv[i])
3933 return -EINVAL;
3934 }
3935
3936 if (p.flags & ~IORING_SETUP_FLAGS)
3937 return -EINVAL;
3938 return io_uring_create(entries, &p, params);
3939 }
3940
io_uring_allowed(void)3941 static inline int io_uring_allowed(void)
3942 {
3943 int disabled = READ_ONCE(sysctl_io_uring_disabled);
3944 kgid_t io_uring_group;
3945
3946 if (disabled == 2)
3947 return -EPERM;
3948
3949 if (disabled == 0 || capable(CAP_SYS_ADMIN))
3950 goto allowed_lsm;
3951
3952 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3953 if (!gid_valid(io_uring_group))
3954 return -EPERM;
3955
3956 if (!in_group_p(io_uring_group))
3957 return -EPERM;
3958
3959 allowed_lsm:
3960 return security_uring_allowed();
3961 }
3962
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)3963 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3964 struct io_uring_params __user *, params)
3965 {
3966 int ret;
3967
3968 ret = io_uring_allowed();
3969 if (ret)
3970 return ret;
3971
3972 return io_uring_setup(entries, params);
3973 }
3974
io_uring_init(void)3975 static int __init io_uring_init(void)
3976 {
3977 struct kmem_cache_args kmem_args = {
3978 .useroffset = offsetof(struct io_kiocb, cmd.data),
3979 .usersize = sizeof_field(struct io_kiocb, cmd.data),
3980 .freeptr_offset = offsetof(struct io_kiocb, work),
3981 .use_freeptr_offset = true,
3982 };
3983
3984 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3985 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3986 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3987 } while (0)
3988
3989 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3990 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3991 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3992 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3993 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3994 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
3995 BUILD_BUG_SQE_ELEM(1, __u8, flags);
3996 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
3997 BUILD_BUG_SQE_ELEM(4, __s32, fd);
3998 BUILD_BUG_SQE_ELEM(8, __u64, off);
3999 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
4000 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
4001 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4002 BUILD_BUG_SQE_ELEM(16, __u64, addr);
4003 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
4004 BUILD_BUG_SQE_ELEM(24, __u32, len);
4005 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
4006 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
4007 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4008 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
4009 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
4010 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
4011 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
4012 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
4013 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
4014 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
4015 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
4016 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
4017 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
4018 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
4019 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
4020 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
4021 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
4022 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
4023 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
4024 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
4025 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
4026 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
4027 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
4028 BUILD_BUG_SQE_ELEM(42, __u16, personality);
4029 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
4030 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
4031 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
4032 BUILD_BUG_SQE_ELEM(44, __u8, write_stream);
4033 BUILD_BUG_SQE_ELEM(45, __u8, __pad4[0]);
4034 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
4035 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
4036 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4037 BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr);
4038 BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask);
4039 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
4040
4041 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4042 sizeof(struct io_uring_rsrc_update));
4043 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4044 sizeof(struct io_uring_rsrc_update2));
4045
4046 /* ->buf_index is u16 */
4047 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4048 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4049 offsetof(struct io_uring_buf_ring, tail));
4050
4051 /* should fit into one byte */
4052 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4053 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4054 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4055
4056 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
4057
4058 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4059
4060 /* top 8bits are for internal use */
4061 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
4062
4063 io_uring_optable_init();
4064
4065 /* imu->dir is u8 */
4066 BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX);
4067
4068 /*
4069 * Allow user copy in the per-command field, which starts after the
4070 * file in io_kiocb and until the opcode field. The openat2 handling
4071 * requires copying in user memory into the io_kiocb object in that
4072 * range, and HARDENED_USERCOPY will complain if we haven't
4073 * correctly annotated this range.
4074 */
4075 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
4076 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
4077 SLAB_TYPESAFE_BY_RCU);
4078
4079 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
4080 BUG_ON(!iou_wq);
4081
4082 #ifdef CONFIG_SYSCTL
4083 register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4084 #endif
4085
4086 return 0;
4087 };
4088 __initcall(io_uring_init);
4089