xref: /linux/drivers/nvme/host/pci.c (revision d3eeb99bbc99cc5eb94a4a75ed4415a0272254ef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq-dma.h>
11 #include <linux/blk-integrity.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/kstrtox.h>
17 #include <linux/memremap.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/nodemask.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 
31 #include "trace.h"
32 #include "nvme.h"
33 
34 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
35 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
36 
37 /* Optimisation for I/Os between 4k and 128k */
38 #define NVME_SMALL_POOL_SIZE	256
39 
40 /*
41  * Arbitrary upper bound.
42  */
43 #define NVME_MAX_BYTES		SZ_8M
44 #define NVME_MAX_NR_DESCRIPTORS	5
45 
46 /*
47  * For data SGLs we support a single descriptors worth of SGL entries.
48  * For PRPs, segments don't matter at all.
49  */
50 #define NVME_MAX_SEGS \
51 	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
52 
53 /*
54  * For metadata SGLs, only the small descriptor is supported, and the first
55  * entry is the segment descriptor, which for the data pointer sits in the SQE.
56  */
57 #define NVME_MAX_META_SEGS \
58 	((NVME_SMALL_POOL_SIZE / sizeof(struct nvme_sgl_desc)) - 1)
59 
60 /*
61  * The last entry is used to link to the next descriptor.
62  */
63 #define PRPS_PER_PAGE \
64 	(((NVME_CTRL_PAGE_SIZE / sizeof(__le64))) - 1)
65 
66 /*
67  * I/O could be non-aligned both at the beginning and end.
68  */
69 #define MAX_PRP_RANGE \
70 	(NVME_MAX_BYTES + 2 * (NVME_CTRL_PAGE_SIZE - 1))
71 
72 static_assert(MAX_PRP_RANGE / NVME_CTRL_PAGE_SIZE <=
73 	(1 /* prp1 */ + NVME_MAX_NR_DESCRIPTORS * PRPS_PER_PAGE));
74 
75 static int use_threaded_interrupts;
76 module_param(use_threaded_interrupts, int, 0444);
77 
78 static bool use_cmb_sqes = true;
79 module_param(use_cmb_sqes, bool, 0444);
80 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
81 
82 static unsigned int max_host_mem_size_mb = 128;
83 module_param(max_host_mem_size_mb, uint, 0444);
84 MODULE_PARM_DESC(max_host_mem_size_mb,
85 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
86 
87 static unsigned int sgl_threshold = SZ_32K;
88 module_param(sgl_threshold, uint, 0644);
89 MODULE_PARM_DESC(sgl_threshold,
90 		"Use SGLs when average request segment size is larger or equal to "
91 		"this size. Use 0 to disable SGLs.");
92 
93 #define NVME_PCI_MIN_QUEUE_SIZE 2
94 #define NVME_PCI_MAX_QUEUE_SIZE 4095
95 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
96 static const struct kernel_param_ops io_queue_depth_ops = {
97 	.set = io_queue_depth_set,
98 	.get = param_get_uint,
99 };
100 
101 static unsigned int io_queue_depth = 1024;
102 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
103 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
104 
io_queue_count_set(const char * val,const struct kernel_param * kp)105 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
106 {
107 	unsigned int n;
108 	int ret;
109 
110 	ret = kstrtouint(val, 10, &n);
111 	if (ret != 0 || n > blk_mq_num_possible_queues(0))
112 		return -EINVAL;
113 	return param_set_uint(val, kp);
114 }
115 
116 static const struct kernel_param_ops io_queue_count_ops = {
117 	.set = io_queue_count_set,
118 	.get = param_get_uint,
119 };
120 
121 static unsigned int write_queues;
122 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
123 MODULE_PARM_DESC(write_queues,
124 	"Number of queues to use for writes. If not set, reads and writes "
125 	"will share a queue set.");
126 
127 static unsigned int poll_queues;
128 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
129 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
130 
131 static bool noacpi;
132 module_param(noacpi, bool, 0444);
133 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
134 
135 struct nvme_dev;
136 struct nvme_queue;
137 
138 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
139 static void nvme_delete_io_queues(struct nvme_dev *dev);
140 static void nvme_update_attrs(struct nvme_dev *dev);
141 
142 struct nvme_descriptor_pools {
143 	struct dma_pool *large;
144 	struct dma_pool *small;
145 };
146 
147 /*
148  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
149  */
150 struct nvme_dev {
151 	struct nvme_queue *queues;
152 	struct blk_mq_tag_set tagset;
153 	struct blk_mq_tag_set admin_tagset;
154 	u32 __iomem *dbs;
155 	struct device *dev;
156 	unsigned online_queues;
157 	unsigned max_qid;
158 	unsigned io_queues[HCTX_MAX_TYPES];
159 	unsigned int num_vecs;
160 	u32 q_depth;
161 	int io_sqes;
162 	u32 db_stride;
163 	void __iomem *bar;
164 	unsigned long bar_mapped_size;
165 	struct mutex shutdown_lock;
166 	bool subsystem;
167 	u64 cmb_size;
168 	bool cmb_use_sqes;
169 	u32 cmbsz;
170 	u32 cmbloc;
171 	struct nvme_ctrl ctrl;
172 	u32 last_ps;
173 	bool hmb;
174 	struct sg_table *hmb_sgt;
175 	mempool_t *dmavec_mempool;
176 
177 	/* shadow doorbell buffer support: */
178 	__le32 *dbbuf_dbs;
179 	dma_addr_t dbbuf_dbs_dma_addr;
180 	__le32 *dbbuf_eis;
181 	dma_addr_t dbbuf_eis_dma_addr;
182 
183 	/* host memory buffer support: */
184 	u64 host_mem_size;
185 	u32 nr_host_mem_descs;
186 	u32 host_mem_descs_size;
187 	dma_addr_t host_mem_descs_dma;
188 	struct nvme_host_mem_buf_desc *host_mem_descs;
189 	void **host_mem_desc_bufs;
190 	unsigned int nr_allocated_queues;
191 	unsigned int nr_write_queues;
192 	unsigned int nr_poll_queues;
193 	struct nvme_descriptor_pools descriptor_pools[];
194 };
195 
io_queue_depth_set(const char * val,const struct kernel_param * kp)196 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
197 {
198 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
199 			NVME_PCI_MAX_QUEUE_SIZE);
200 }
201 
sq_idx(unsigned int qid,u32 stride)202 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
203 {
204 	return qid * 2 * stride;
205 }
206 
cq_idx(unsigned int qid,u32 stride)207 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
208 {
209 	return (qid * 2 + 1) * stride;
210 }
211 
to_nvme_dev(struct nvme_ctrl * ctrl)212 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
213 {
214 	return container_of(ctrl, struct nvme_dev, ctrl);
215 }
216 
217 /*
218  * An NVM Express queue.  Each device has at least two (one for admin
219  * commands and one for I/O commands).
220  */
221 struct nvme_queue {
222 	struct nvme_dev *dev;
223 	struct nvme_descriptor_pools descriptor_pools;
224 	spinlock_t sq_lock;
225 	void *sq_cmds;
226 	 /* only used for poll queues: */
227 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
228 	struct nvme_completion *cqes;
229 	dma_addr_t sq_dma_addr;
230 	dma_addr_t cq_dma_addr;
231 	u32 __iomem *q_db;
232 	u32 q_depth;
233 	u16 cq_vector;
234 	u16 sq_tail;
235 	u16 last_sq_tail;
236 	u16 cq_head;
237 	u16 qid;
238 	u8 cq_phase;
239 	u8 sqes;
240 	unsigned long flags;
241 #define NVMEQ_ENABLED		0
242 #define NVMEQ_SQ_CMB		1
243 #define NVMEQ_DELETE_ERROR	2
244 #define NVMEQ_POLLED		3
245 	__le32 *dbbuf_sq_db;
246 	__le32 *dbbuf_cq_db;
247 	__le32 *dbbuf_sq_ei;
248 	__le32 *dbbuf_cq_ei;
249 	struct completion delete_done;
250 };
251 
252 /* bits for iod->flags */
253 enum nvme_iod_flags {
254 	/* this command has been aborted by the timeout handler */
255 	IOD_ABORTED		= 1U << 0,
256 
257 	/* uses the small descriptor pool */
258 	IOD_SMALL_DESCRIPTOR	= 1U << 1,
259 
260 	/* single segment dma mapping */
261 	IOD_SINGLE_SEGMENT	= 1U << 2,
262 
263 	/* Data payload contains p2p memory */
264 	IOD_DATA_P2P		= 1U << 3,
265 
266 	/* Metadata contains p2p memory */
267 	IOD_META_P2P		= 1U << 4,
268 
269 	/* Data payload contains MMIO memory */
270 	IOD_DATA_MMIO		= 1U << 5,
271 
272 	/* Metadata contains MMIO memory */
273 	IOD_META_MMIO		= 1U << 6,
274 
275 	/* Metadata using non-coalesced MPTR */
276 	IOD_SINGLE_META_SEGMENT	= 1U << 7,
277 };
278 
279 struct nvme_dma_vec {
280 	dma_addr_t addr;
281 	unsigned int len;
282 };
283 
284 /*
285  * The nvme_iod describes the data in an I/O.
286  */
287 struct nvme_iod {
288 	struct nvme_request req;
289 	struct nvme_command cmd;
290 	u8 flags;
291 	u8 nr_descriptors;
292 
293 	unsigned int total_len;
294 	struct dma_iova_state dma_state;
295 	void *descriptors[NVME_MAX_NR_DESCRIPTORS];
296 	struct nvme_dma_vec *dma_vecs;
297 	unsigned int nr_dma_vecs;
298 
299 	dma_addr_t meta_dma;
300 	unsigned int meta_total_len;
301 	struct dma_iova_state meta_dma_state;
302 	struct nvme_sgl_desc *meta_descriptor;
303 };
304 
nvme_dbbuf_size(struct nvme_dev * dev)305 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
306 {
307 	return dev->nr_allocated_queues * 8 * dev->db_stride;
308 }
309 
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)310 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
311 {
312 	unsigned int mem_size = nvme_dbbuf_size(dev);
313 
314 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
315 		return;
316 
317 	if (dev->dbbuf_dbs) {
318 		/*
319 		 * Clear the dbbuf memory so the driver doesn't observe stale
320 		 * values from the previous instantiation.
321 		 */
322 		memset(dev->dbbuf_dbs, 0, mem_size);
323 		memset(dev->dbbuf_eis, 0, mem_size);
324 		return;
325 	}
326 
327 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
328 					    &dev->dbbuf_dbs_dma_addr,
329 					    GFP_KERNEL);
330 	if (!dev->dbbuf_dbs)
331 		goto fail;
332 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
333 					    &dev->dbbuf_eis_dma_addr,
334 					    GFP_KERNEL);
335 	if (!dev->dbbuf_eis)
336 		goto fail_free_dbbuf_dbs;
337 	return;
338 
339 fail_free_dbbuf_dbs:
340 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
341 			  dev->dbbuf_dbs_dma_addr);
342 	dev->dbbuf_dbs = NULL;
343 fail:
344 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
345 }
346 
nvme_dbbuf_dma_free(struct nvme_dev * dev)347 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
348 {
349 	unsigned int mem_size = nvme_dbbuf_size(dev);
350 
351 	if (dev->dbbuf_dbs) {
352 		dma_free_coherent(dev->dev, mem_size,
353 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
354 		dev->dbbuf_dbs = NULL;
355 	}
356 	if (dev->dbbuf_eis) {
357 		dma_free_coherent(dev->dev, mem_size,
358 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
359 		dev->dbbuf_eis = NULL;
360 	}
361 }
362 
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)363 static void nvme_dbbuf_init(struct nvme_dev *dev,
364 			    struct nvme_queue *nvmeq, int qid)
365 {
366 	if (!dev->dbbuf_dbs || !qid)
367 		return;
368 
369 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
370 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
371 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
372 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
373 }
374 
nvme_dbbuf_free(struct nvme_queue * nvmeq)375 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
376 {
377 	if (!nvmeq->qid)
378 		return;
379 
380 	nvmeq->dbbuf_sq_db = NULL;
381 	nvmeq->dbbuf_cq_db = NULL;
382 	nvmeq->dbbuf_sq_ei = NULL;
383 	nvmeq->dbbuf_cq_ei = NULL;
384 }
385 
nvme_dbbuf_set(struct nvme_dev * dev)386 static void nvme_dbbuf_set(struct nvme_dev *dev)
387 {
388 	struct nvme_command c = { };
389 	unsigned int i;
390 
391 	if (!dev->dbbuf_dbs)
392 		return;
393 
394 	c.dbbuf.opcode = nvme_admin_dbbuf;
395 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
396 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
397 
398 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
399 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
400 		/* Free memory and continue on */
401 		nvme_dbbuf_dma_free(dev);
402 
403 		for (i = 1; i <= dev->online_queues; i++)
404 			nvme_dbbuf_free(&dev->queues[i]);
405 	}
406 }
407 
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)408 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
409 {
410 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
411 }
412 
413 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)414 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
415 					      volatile __le32 *dbbuf_ei)
416 {
417 	if (dbbuf_db) {
418 		u16 old_value, event_idx;
419 
420 		/*
421 		 * Ensure that the queue is written before updating
422 		 * the doorbell in memory
423 		 */
424 		wmb();
425 
426 		old_value = le32_to_cpu(*dbbuf_db);
427 		*dbbuf_db = cpu_to_le32(value);
428 
429 		/*
430 		 * Ensure that the doorbell is updated before reading the event
431 		 * index from memory.  The controller needs to provide similar
432 		 * ordering to ensure the event index is updated before reading
433 		 * the doorbell.
434 		 */
435 		mb();
436 
437 		event_idx = le32_to_cpu(*dbbuf_ei);
438 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
439 			return false;
440 	}
441 
442 	return true;
443 }
444 
445 static struct nvme_descriptor_pools *
nvme_setup_descriptor_pools(struct nvme_dev * dev,unsigned numa_node)446 nvme_setup_descriptor_pools(struct nvme_dev *dev, unsigned numa_node)
447 {
448 	struct nvme_descriptor_pools *pools = &dev->descriptor_pools[numa_node];
449 	size_t small_align = NVME_SMALL_POOL_SIZE;
450 
451 	if (pools->small)
452 		return pools; /* already initialized */
453 
454 	pools->large = dma_pool_create_node("nvme descriptor page", dev->dev,
455 			NVME_CTRL_PAGE_SIZE, NVME_CTRL_PAGE_SIZE, 0, numa_node);
456 	if (!pools->large)
457 		return ERR_PTR(-ENOMEM);
458 
459 	if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512)
460 		small_align = 512;
461 
462 	pools->small = dma_pool_create_node("nvme descriptor small", dev->dev,
463 			NVME_SMALL_POOL_SIZE, small_align, 0, numa_node);
464 	if (!pools->small) {
465 		dma_pool_destroy(pools->large);
466 		pools->large = NULL;
467 		return ERR_PTR(-ENOMEM);
468 	}
469 
470 	return pools;
471 }
472 
nvme_release_descriptor_pools(struct nvme_dev * dev)473 static void nvme_release_descriptor_pools(struct nvme_dev *dev)
474 {
475 	unsigned i;
476 
477 	for (i = 0; i < nr_node_ids; i++) {
478 		struct nvme_descriptor_pools *pools = &dev->descriptor_pools[i];
479 
480 		dma_pool_destroy(pools->large);
481 		dma_pool_destroy(pools->small);
482 	}
483 }
484 
nvme_init_hctx_common(struct blk_mq_hw_ctx * hctx,void * data,unsigned qid)485 static int nvme_init_hctx_common(struct blk_mq_hw_ctx *hctx, void *data,
486 		unsigned qid)
487 {
488 	struct nvme_dev *dev = to_nvme_dev(data);
489 	struct nvme_queue *nvmeq = &dev->queues[qid];
490 	struct nvme_descriptor_pools *pools;
491 	struct blk_mq_tags *tags;
492 
493 	tags = qid ? dev->tagset.tags[qid - 1] : dev->admin_tagset.tags[0];
494 	WARN_ON(tags != hctx->tags);
495 	pools = nvme_setup_descriptor_pools(dev, hctx->numa_node);
496 	if (IS_ERR(pools))
497 		return PTR_ERR(pools);
498 
499 	nvmeq->descriptor_pools = *pools;
500 	hctx->driver_data = nvmeq;
501 	return 0;
502 }
503 
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)504 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
505 				unsigned int hctx_idx)
506 {
507 	WARN_ON(hctx_idx != 0);
508 	return nvme_init_hctx_common(hctx, data, 0);
509 }
510 
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)511 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
512 			     unsigned int hctx_idx)
513 {
514 	return nvme_init_hctx_common(hctx, data, hctx_idx + 1);
515 }
516 
nvme_pci_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)517 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
518 		struct request *req, unsigned int hctx_idx,
519 		unsigned int numa_node)
520 {
521 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
522 
523 	nvme_req(req)->ctrl = set->driver_data;
524 	nvme_req(req)->cmd = &iod->cmd;
525 	return 0;
526 }
527 
queue_irq_offset(struct nvme_dev * dev)528 static int queue_irq_offset(struct nvme_dev *dev)
529 {
530 	/* if we have more than 1 vec, admin queue offsets us by 1 */
531 	if (dev->num_vecs > 1)
532 		return 1;
533 
534 	return 0;
535 }
536 
nvme_pci_map_queues(struct blk_mq_tag_set * set)537 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
538 {
539 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
540 	int i, qoff, offset;
541 
542 	offset = queue_irq_offset(dev);
543 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
544 		struct blk_mq_queue_map *map = &set->map[i];
545 
546 		map->nr_queues = dev->io_queues[i];
547 		if (!map->nr_queues) {
548 			BUG_ON(i == HCTX_TYPE_DEFAULT);
549 			continue;
550 		}
551 
552 		/*
553 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
554 		 * affinity), so use the regular blk-mq cpu mapping
555 		 */
556 		map->queue_offset = qoff;
557 		if (i != HCTX_TYPE_POLL && offset)
558 			blk_mq_map_hw_queues(map, dev->dev, offset);
559 		else
560 			blk_mq_map_queues(map);
561 		qoff += map->nr_queues;
562 		offset += map->nr_queues;
563 	}
564 }
565 
566 /*
567  * Write sq tail if we are asked to, or if the next command would wrap.
568  */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)569 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
570 {
571 	if (!write_sq) {
572 		u16 next_tail = nvmeq->sq_tail + 1;
573 
574 		if (next_tail == nvmeq->q_depth)
575 			next_tail = 0;
576 		if (next_tail != nvmeq->last_sq_tail)
577 			return;
578 	}
579 
580 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
581 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
582 		writel(nvmeq->sq_tail, nvmeq->q_db);
583 	nvmeq->last_sq_tail = nvmeq->sq_tail;
584 }
585 
nvme_sq_copy_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)586 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
587 				    struct nvme_command *cmd)
588 {
589 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
590 		absolute_pointer(cmd), sizeof(*cmd));
591 	if (++nvmeq->sq_tail == nvmeq->q_depth)
592 		nvmeq->sq_tail = 0;
593 }
594 
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)595 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
596 {
597 	struct nvme_queue *nvmeq = hctx->driver_data;
598 
599 	spin_lock(&nvmeq->sq_lock);
600 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
601 		nvme_write_sq_db(nvmeq, true);
602 	spin_unlock(&nvmeq->sq_lock);
603 }
604 
605 enum nvme_use_sgl {
606 	SGL_UNSUPPORTED,
607 	SGL_SUPPORTED,
608 	SGL_FORCED,
609 };
610 
nvme_pci_metadata_use_sgls(struct request * req)611 static inline bool nvme_pci_metadata_use_sgls(struct request *req)
612 {
613 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
614 	struct nvme_dev *dev = nvmeq->dev;
615 
616 	if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl))
617 		return false;
618 	return req->nr_integrity_segments > 1 ||
619 		nvme_req(req)->flags & NVME_REQ_USERCMD;
620 }
621 
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req)622 static inline enum nvme_use_sgl nvme_pci_use_sgls(struct nvme_dev *dev,
623 		struct request *req)
624 {
625 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
626 
627 	if (nvmeq->qid && nvme_ctrl_sgl_supported(&dev->ctrl)) {
628 		/*
629 		 * When the controller is capable of using SGL, there are
630 		 * several conditions that we force to use it:
631 		 *
632 		 * 1. A request containing page gaps within the controller's
633 		 *    mask can not use the PRP format.
634 		 *
635 		 * 2. User commands use SGL because that lets the device
636 		 *    validate the requested transfer lengths.
637 		 *
638 		 * 3. Multiple integrity segments must use SGL as that's the
639 		 *    only way to describe such a command in NVMe.
640 		 */
641 		if (req_phys_gap_mask(req) & (NVME_CTRL_PAGE_SIZE - 1) ||
642 		    nvme_req(req)->flags & NVME_REQ_USERCMD ||
643 		    req->nr_integrity_segments > 1)
644 			return SGL_FORCED;
645 		return SGL_SUPPORTED;
646 	}
647 
648 	return SGL_UNSUPPORTED;
649 }
650 
nvme_pci_avg_seg_size(struct request * req)651 static unsigned int nvme_pci_avg_seg_size(struct request *req)
652 {
653 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
654 	unsigned int nseg;
655 
656 	if (blk_rq_dma_map_coalesce(&iod->dma_state))
657 		nseg = 1;
658 	else
659 		nseg = blk_rq_nr_phys_segments(req);
660 	return DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
661 }
662 
nvme_dma_pool(struct nvme_queue * nvmeq,struct nvme_iod * iod)663 static inline struct dma_pool *nvme_dma_pool(struct nvme_queue *nvmeq,
664 		struct nvme_iod *iod)
665 {
666 	if (iod->flags & IOD_SMALL_DESCRIPTOR)
667 		return nvmeq->descriptor_pools.small;
668 	return nvmeq->descriptor_pools.large;
669 }
670 
nvme_pci_cmd_use_meta_sgl(struct nvme_command * cmd)671 static inline bool nvme_pci_cmd_use_meta_sgl(struct nvme_command *cmd)
672 {
673 	return (cmd->common.flags & NVME_CMD_SGL_ALL) == NVME_CMD_SGL_METASEG;
674 }
675 
nvme_pci_cmd_use_sgl(struct nvme_command * cmd)676 static inline bool nvme_pci_cmd_use_sgl(struct nvme_command *cmd)
677 {
678 	return cmd->common.flags &
679 		(NVME_CMD_SGL_METABUF | NVME_CMD_SGL_METASEG);
680 }
681 
nvme_pci_first_desc_dma_addr(struct nvme_command * cmd)682 static inline dma_addr_t nvme_pci_first_desc_dma_addr(struct nvme_command *cmd)
683 {
684 	if (nvme_pci_cmd_use_sgl(cmd))
685 		return le64_to_cpu(cmd->common.dptr.sgl.addr);
686 	return le64_to_cpu(cmd->common.dptr.prp2);
687 }
688 
nvme_free_descriptors(struct request * req)689 static void nvme_free_descriptors(struct request *req)
690 {
691 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
692 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
693 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
694 	dma_addr_t dma_addr = nvme_pci_first_desc_dma_addr(&iod->cmd);
695 	int i;
696 
697 	if (iod->nr_descriptors == 1) {
698 		dma_pool_free(nvme_dma_pool(nvmeq, iod), iod->descriptors[0],
699 				dma_addr);
700 		return;
701 	}
702 
703 	for (i = 0; i < iod->nr_descriptors; i++) {
704 		__le64 *prp_list = iod->descriptors[i];
705 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
706 
707 		dma_pool_free(nvmeq->descriptor_pools.large, prp_list,
708 				dma_addr);
709 		dma_addr = next_dma_addr;
710 	}
711 }
712 
nvme_free_prps(struct request * req,unsigned int attrs)713 static void nvme_free_prps(struct request *req, unsigned int attrs)
714 {
715 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
716 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
717 	unsigned int i;
718 
719 	for (i = 0; i < iod->nr_dma_vecs; i++)
720 		dma_unmap_phys(nvmeq->dev->dev, iod->dma_vecs[i].addr,
721 			       iod->dma_vecs[i].len, rq_dma_dir(req), attrs);
722 	mempool_free(iod->dma_vecs, nvmeq->dev->dmavec_mempool);
723 }
724 
nvme_free_sgls(struct request * req,struct nvme_sgl_desc * sge,struct nvme_sgl_desc * sg_list,unsigned int attrs)725 static void nvme_free_sgls(struct request *req, struct nvme_sgl_desc *sge,
726 		struct nvme_sgl_desc *sg_list, unsigned int attrs)
727 {
728 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
729 	enum dma_data_direction dir = rq_dma_dir(req);
730 	unsigned int len = le32_to_cpu(sge->length);
731 	struct device *dma_dev = nvmeq->dev->dev;
732 	unsigned int i;
733 
734 	if (sge->type == (NVME_SGL_FMT_DATA_DESC << 4)) {
735 		dma_unmap_phys(dma_dev, le64_to_cpu(sge->addr), len, dir,
736 			       attrs);
737 		return;
738 	}
739 
740 	for (i = 0; i < len / sizeof(*sg_list); i++)
741 		dma_unmap_phys(dma_dev, le64_to_cpu(sg_list[i].addr),
742 			le32_to_cpu(sg_list[i].length), dir, attrs);
743 }
744 
nvme_unmap_metadata(struct request * req)745 static void nvme_unmap_metadata(struct request *req)
746 {
747 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
748 	enum pci_p2pdma_map_type map = PCI_P2PDMA_MAP_NONE;
749 	enum dma_data_direction dir = rq_dma_dir(req);
750 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
751 	struct device *dma_dev = nvmeq->dev->dev;
752 	struct nvme_sgl_desc *sge = iod->meta_descriptor;
753 	unsigned int attrs = 0;
754 
755 	if (iod->flags & IOD_SINGLE_META_SEGMENT) {
756 		dma_unmap_page(dma_dev, iod->meta_dma,
757 			       rq_integrity_vec(req).bv_len,
758 			       rq_dma_dir(req));
759 		return;
760 	}
761 
762 	if (iod->flags & IOD_META_P2P)
763 		map = PCI_P2PDMA_MAP_BUS_ADDR;
764 	else if (iod->flags & IOD_META_MMIO) {
765 		map = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
766 		attrs |= DMA_ATTR_MMIO;
767 	}
768 
769 	if (!blk_rq_dma_unmap(req, dma_dev, &iod->meta_dma_state,
770 			      iod->meta_total_len, map)) {
771 		if (nvme_pci_cmd_use_meta_sgl(&iod->cmd))
772 			nvme_free_sgls(req, sge, &sge[1], attrs);
773 		else
774 			dma_unmap_phys(dma_dev, iod->meta_dma,
775 				       iod->meta_total_len, dir, attrs);
776 	}
777 
778 	if (iod->meta_descriptor)
779 		dma_pool_free(nvmeq->descriptor_pools.small,
780 			      iod->meta_descriptor, iod->meta_dma);
781 }
782 
nvme_unmap_data(struct request * req)783 static void nvme_unmap_data(struct request *req)
784 {
785 	enum pci_p2pdma_map_type map = PCI_P2PDMA_MAP_NONE;
786 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
787 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
788 	struct device *dma_dev = nvmeq->dev->dev;
789 	unsigned int attrs = 0;
790 
791 	if (iod->flags & IOD_SINGLE_SEGMENT) {
792 		static_assert(offsetof(union nvme_data_ptr, prp1) ==
793 				offsetof(union nvme_data_ptr, sgl.addr));
794 		dma_unmap_page(dma_dev, le64_to_cpu(iod->cmd.common.dptr.prp1),
795 				iod->total_len, rq_dma_dir(req));
796 		return;
797 	}
798 
799 	if (iod->flags & IOD_DATA_P2P)
800 		map = PCI_P2PDMA_MAP_BUS_ADDR;
801 	else if (iod->flags & IOD_DATA_MMIO) {
802 		map = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
803 		attrs |= DMA_ATTR_MMIO;
804 	}
805 
806 	if (!blk_rq_dma_unmap(req, dma_dev, &iod->dma_state, iod->total_len,
807 			      map)) {
808 		if (nvme_pci_cmd_use_sgl(&iod->cmd))
809 			nvme_free_sgls(req, iod->descriptors[0],
810 				       &iod->cmd.common.dptr.sgl, attrs);
811 		else
812 			nvme_free_prps(req, attrs);
813 	}
814 
815 	if (iod->nr_descriptors)
816 		nvme_free_descriptors(req);
817 }
818 
nvme_pci_prp_iter_next(struct request * req,struct device * dma_dev,struct blk_dma_iter * iter)819 static bool nvme_pci_prp_iter_next(struct request *req, struct device *dma_dev,
820 		struct blk_dma_iter *iter)
821 {
822 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
823 
824 	if (iter->len)
825 		return true;
826 	if (!blk_rq_dma_map_iter_next(req, dma_dev, &iod->dma_state, iter))
827 		return false;
828 	if (!dma_use_iova(&iod->dma_state) && dma_need_unmap(dma_dev)) {
829 		iod->dma_vecs[iod->nr_dma_vecs].addr = iter->addr;
830 		iod->dma_vecs[iod->nr_dma_vecs].len = iter->len;
831 		iod->nr_dma_vecs++;
832 	}
833 	return true;
834 }
835 
nvme_pci_setup_data_prp(struct request * req,struct blk_dma_iter * iter)836 static blk_status_t nvme_pci_setup_data_prp(struct request *req,
837 		struct blk_dma_iter *iter)
838 {
839 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
840 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
841 	unsigned int length = blk_rq_payload_bytes(req);
842 	dma_addr_t prp1_dma, prp2_dma = 0;
843 	unsigned int prp_len, i;
844 	__le64 *prp_list;
845 
846 	if (!dma_use_iova(&iod->dma_state) && dma_need_unmap(nvmeq->dev->dev)) {
847 		iod->dma_vecs = mempool_alloc(nvmeq->dev->dmavec_mempool,
848 				GFP_ATOMIC);
849 		if (!iod->dma_vecs)
850 			return BLK_STS_RESOURCE;
851 		iod->dma_vecs[0].addr = iter->addr;
852 		iod->dma_vecs[0].len = iter->len;
853 		iod->nr_dma_vecs = 1;
854 	}
855 
856 	/*
857 	 * PRP1 always points to the start of the DMA transfers.
858 	 *
859 	 * This is the only PRP (except for the list entries) that could be
860 	 * non-aligned.
861 	 */
862 	prp1_dma = iter->addr;
863 	prp_len = min(length, NVME_CTRL_PAGE_SIZE -
864 			(iter->addr & (NVME_CTRL_PAGE_SIZE - 1)));
865 	iod->total_len += prp_len;
866 	iter->addr += prp_len;
867 	iter->len -= prp_len;
868 	length -= prp_len;
869 	if (!length)
870 		goto done;
871 
872 	if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) {
873 		if (WARN_ON_ONCE(!iter->status))
874 			goto bad_sgl;
875 		goto done;
876 	}
877 
878 	/*
879 	 * PRP2 is usually a list, but can point to data if all data to be
880 	 * transferred fits into PRP1 + PRP2:
881 	 */
882 	if (length <= NVME_CTRL_PAGE_SIZE) {
883 		prp2_dma = iter->addr;
884 		iod->total_len += length;
885 		goto done;
886 	}
887 
888 	if (DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE) <=
889 	    NVME_SMALL_POOL_SIZE / sizeof(__le64))
890 		iod->flags |= IOD_SMALL_DESCRIPTOR;
891 
892 	prp_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
893 			&prp2_dma);
894 	if (!prp_list) {
895 		iter->status = BLK_STS_RESOURCE;
896 		goto done;
897 	}
898 	iod->descriptors[iod->nr_descriptors++] = prp_list;
899 
900 	i = 0;
901 	for (;;) {
902 		prp_list[i++] = cpu_to_le64(iter->addr);
903 		prp_len = min(length, NVME_CTRL_PAGE_SIZE);
904 		if (WARN_ON_ONCE(iter->len < prp_len))
905 			goto bad_sgl;
906 
907 		iod->total_len += prp_len;
908 		iter->addr += prp_len;
909 		iter->len -= prp_len;
910 		length -= prp_len;
911 		if (!length)
912 			break;
913 
914 		if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) {
915 			if (WARN_ON_ONCE(!iter->status))
916 				goto bad_sgl;
917 			goto done;
918 		}
919 
920 		/*
921 		 * If we've filled the entire descriptor, allocate a new that is
922 		 * pointed to be the last entry in the previous PRP list.  To
923 		 * accommodate for that move the last actual entry to the new
924 		 * descriptor.
925 		 */
926 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
927 			__le64 *old_prp_list = prp_list;
928 			dma_addr_t prp_list_dma;
929 
930 			prp_list = dma_pool_alloc(nvmeq->descriptor_pools.large,
931 					GFP_ATOMIC, &prp_list_dma);
932 			if (!prp_list) {
933 				iter->status = BLK_STS_RESOURCE;
934 				goto done;
935 			}
936 			iod->descriptors[iod->nr_descriptors++] = prp_list;
937 
938 			prp_list[0] = old_prp_list[i - 1];
939 			old_prp_list[i - 1] = cpu_to_le64(prp_list_dma);
940 			i = 1;
941 		}
942 	}
943 
944 done:
945 	/*
946 	 * nvme_unmap_data uses the DPT field in the SQE to tear down the
947 	 * mapping, so initialize it even for failures.
948 	 */
949 	iod->cmd.common.dptr.prp1 = cpu_to_le64(prp1_dma);
950 	iod->cmd.common.dptr.prp2 = cpu_to_le64(prp2_dma);
951 	if (unlikely(iter->status))
952 		nvme_unmap_data(req);
953 	return iter->status;
954 
955 bad_sgl:
956 	dev_err_once(nvmeq->dev->dev,
957 		"Incorrectly formed request for payload:%d nents:%d\n",
958 		blk_rq_payload_bytes(req), blk_rq_nr_phys_segments(req));
959 	return BLK_STS_IOERR;
960 }
961 
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct blk_dma_iter * iter)962 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
963 		struct blk_dma_iter *iter)
964 {
965 	sge->addr = cpu_to_le64(iter->addr);
966 	sge->length = cpu_to_le32(iter->len);
967 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
968 }
969 
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)970 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
971 		dma_addr_t dma_addr, int entries)
972 {
973 	sge->addr = cpu_to_le64(dma_addr);
974 	sge->length = cpu_to_le32(entries * sizeof(*sge));
975 	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
976 }
977 
nvme_pci_setup_data_sgl(struct request * req,struct blk_dma_iter * iter)978 static blk_status_t nvme_pci_setup_data_sgl(struct request *req,
979 		struct blk_dma_iter *iter)
980 {
981 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
982 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
983 	unsigned int entries = blk_rq_nr_phys_segments(req);
984 	struct nvme_sgl_desc *sg_list;
985 	dma_addr_t sgl_dma;
986 	unsigned int mapped = 0;
987 
988 	/* set the transfer type as SGL */
989 	iod->cmd.common.flags = NVME_CMD_SGL_METABUF;
990 
991 	if (entries == 1 || blk_rq_dma_map_coalesce(&iod->dma_state)) {
992 		nvme_pci_sgl_set_data(&iod->cmd.common.dptr.sgl, iter);
993 		iod->total_len += iter->len;
994 		return BLK_STS_OK;
995 	}
996 
997 	if (entries <= NVME_SMALL_POOL_SIZE / sizeof(*sg_list))
998 		iod->flags |= IOD_SMALL_DESCRIPTOR;
999 
1000 	sg_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
1001 			&sgl_dma);
1002 	if (!sg_list)
1003 		return BLK_STS_RESOURCE;
1004 	iod->descriptors[iod->nr_descriptors++] = sg_list;
1005 
1006 	do {
1007 		if (WARN_ON_ONCE(mapped == entries)) {
1008 			iter->status = BLK_STS_IOERR;
1009 			break;
1010 		}
1011 		nvme_pci_sgl_set_data(&sg_list[mapped++], iter);
1012 		iod->total_len += iter->len;
1013 	} while (blk_rq_dma_map_iter_next(req, nvmeq->dev->dev, &iod->dma_state,
1014 				iter));
1015 
1016 	nvme_pci_sgl_set_seg(&iod->cmd.common.dptr.sgl, sgl_dma, mapped);
1017 	if (unlikely(iter->status))
1018 		nvme_unmap_data(req);
1019 	return iter->status;
1020 }
1021 
nvme_pci_setup_data_simple(struct request * req,enum nvme_use_sgl use_sgl)1022 static blk_status_t nvme_pci_setup_data_simple(struct request *req,
1023 		enum nvme_use_sgl use_sgl)
1024 {
1025 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1026 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1027 	struct bio_vec bv = req_bvec(req);
1028 	unsigned int prp1_offset = bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
1029 	bool prp_possible = prp1_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2;
1030 	dma_addr_t dma_addr;
1031 
1032 	if (!use_sgl && !prp_possible)
1033 		return BLK_STS_AGAIN;
1034 	if (is_pci_p2pdma_page(bv.bv_page))
1035 		return BLK_STS_AGAIN;
1036 
1037 	dma_addr = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0);
1038 	if (dma_mapping_error(nvmeq->dev->dev, dma_addr))
1039 		return BLK_STS_RESOURCE;
1040 	iod->total_len = bv.bv_len;
1041 	iod->flags |= IOD_SINGLE_SEGMENT;
1042 
1043 	if (use_sgl == SGL_FORCED || !prp_possible) {
1044 		iod->cmd.common.flags = NVME_CMD_SGL_METABUF;
1045 		iod->cmd.common.dptr.sgl.addr = cpu_to_le64(dma_addr);
1046 		iod->cmd.common.dptr.sgl.length = cpu_to_le32(bv.bv_len);
1047 		iod->cmd.common.dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
1048 	} else {
1049 		unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - prp1_offset;
1050 
1051 		iod->cmd.common.dptr.prp1 = cpu_to_le64(dma_addr);
1052 		iod->cmd.common.dptr.prp2 = 0;
1053 		if (bv.bv_len > first_prp_len)
1054 			iod->cmd.common.dptr.prp2 =
1055 				cpu_to_le64(dma_addr + first_prp_len);
1056 	}
1057 
1058 	return BLK_STS_OK;
1059 }
1060 
nvme_map_data(struct request * req)1061 static blk_status_t nvme_map_data(struct request *req)
1062 {
1063 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1064 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1065 	struct nvme_dev *dev = nvmeq->dev;
1066 	enum nvme_use_sgl use_sgl = nvme_pci_use_sgls(dev, req);
1067 	struct blk_dma_iter iter;
1068 	blk_status_t ret;
1069 
1070 	/*
1071 	 * Try to skip the DMA iterator for single segment requests, as that
1072 	 * significantly improves performances for small I/O sizes.
1073 	 */
1074 	if (blk_rq_nr_phys_segments(req) == 1) {
1075 		ret = nvme_pci_setup_data_simple(req, use_sgl);
1076 		if (ret != BLK_STS_AGAIN)
1077 			return ret;
1078 	}
1079 
1080 	if (!blk_rq_dma_map_iter_start(req, dev->dev, &iod->dma_state, &iter))
1081 		return iter.status;
1082 
1083 	switch (iter.p2pdma.map) {
1084 	case PCI_P2PDMA_MAP_BUS_ADDR:
1085 		iod->flags |= IOD_DATA_P2P;
1086 		break;
1087 	case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1088 		iod->flags |= IOD_DATA_MMIO;
1089 		break;
1090 	case PCI_P2PDMA_MAP_NONE:
1091 		break;
1092 	default:
1093 		return BLK_STS_RESOURCE;
1094 	}
1095 
1096 	if (use_sgl == SGL_FORCED ||
1097 	    (use_sgl == SGL_SUPPORTED &&
1098 	     (sgl_threshold && nvme_pci_avg_seg_size(req) >= sgl_threshold)))
1099 		return nvme_pci_setup_data_sgl(req, &iter);
1100 	return nvme_pci_setup_data_prp(req, &iter);
1101 }
1102 
nvme_pci_setup_meta_iter(struct request * req)1103 static blk_status_t nvme_pci_setup_meta_iter(struct request *req)
1104 {
1105 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1106 	unsigned int entries = req->nr_integrity_segments;
1107 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1108 	struct nvme_dev *dev = nvmeq->dev;
1109 	struct nvme_sgl_desc *sg_list;
1110 	struct blk_dma_iter iter;
1111 	dma_addr_t sgl_dma;
1112 	int i = 0;
1113 
1114 	if (!blk_rq_integrity_dma_map_iter_start(req, dev->dev,
1115 						&iod->meta_dma_state, &iter))
1116 		return iter.status;
1117 
1118 	switch (iter.p2pdma.map) {
1119 	case PCI_P2PDMA_MAP_BUS_ADDR:
1120 		iod->flags |= IOD_META_P2P;
1121 		break;
1122 	case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1123 		iod->flags |= IOD_META_MMIO;
1124 		break;
1125 	case PCI_P2PDMA_MAP_NONE:
1126 		break;
1127 	default:
1128 		return BLK_STS_RESOURCE;
1129 	}
1130 
1131 	if (blk_rq_dma_map_coalesce(&iod->meta_dma_state))
1132 		entries = 1;
1133 
1134 	/*
1135 	 * The NVMe MPTR descriptor has an implicit length that the host and
1136 	 * device must agree on to avoid data/memory corruption. We trust the
1137 	 * kernel allocated correctly based on the format's parameters, so use
1138 	 * the more efficient MPTR to avoid extra dma pool allocations for the
1139 	 * SGL indirection.
1140 	 *
1141 	 * But for user commands, we don't necessarily know what they do, so
1142 	 * the driver can't validate the metadata buffer size. The SGL
1143 	 * descriptor provides an explicit length, so we're relying on that
1144 	 * mechanism to catch any misunderstandings between the application and
1145 	 * device.
1146 	 *
1147 	 * P2P DMA also needs to use the blk_dma_iter method, so mptr setup
1148 	 * leverages this routine when that happens.
1149 	 */
1150 	if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl) ||
1151 	    (entries == 1 && !(nvme_req(req)->flags & NVME_REQ_USERCMD))) {
1152 		iod->cmd.common.metadata = cpu_to_le64(iter.addr);
1153 		iod->meta_total_len = iter.len;
1154 		iod->meta_dma = iter.addr;
1155 		iod->meta_descriptor = NULL;
1156 		return BLK_STS_OK;
1157 	}
1158 
1159 	sg_list = dma_pool_alloc(nvmeq->descriptor_pools.small, GFP_ATOMIC,
1160 			&sgl_dma);
1161 	if (!sg_list)
1162 		return BLK_STS_RESOURCE;
1163 
1164 	iod->meta_descriptor = sg_list;
1165 	iod->meta_dma = sgl_dma;
1166 	iod->cmd.common.flags = NVME_CMD_SGL_METASEG;
1167 	iod->cmd.common.metadata = cpu_to_le64(sgl_dma);
1168 	if (entries == 1) {
1169 		iod->meta_total_len = iter.len;
1170 		nvme_pci_sgl_set_data(sg_list, &iter);
1171 		return BLK_STS_OK;
1172 	}
1173 
1174 	sgl_dma += sizeof(*sg_list);
1175 	do {
1176 		nvme_pci_sgl_set_data(&sg_list[++i], &iter);
1177 		iod->meta_total_len += iter.len;
1178 	} while (blk_rq_integrity_dma_map_iter_next(req, dev->dev, &iter));
1179 
1180 	nvme_pci_sgl_set_seg(sg_list, sgl_dma, i);
1181 	if (unlikely(iter.status))
1182 		nvme_unmap_metadata(req);
1183 	return iter.status;
1184 }
1185 
nvme_pci_setup_meta_mptr(struct request * req)1186 static blk_status_t nvme_pci_setup_meta_mptr(struct request *req)
1187 {
1188 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1189 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1190 	struct bio_vec bv = rq_integrity_vec(req);
1191 
1192 	if (is_pci_p2pdma_page(bv.bv_page))
1193 		return nvme_pci_setup_meta_iter(req);
1194 
1195 	iod->meta_dma = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0);
1196 	if (dma_mapping_error(nvmeq->dev->dev, iod->meta_dma))
1197 		return BLK_STS_IOERR;
1198 	iod->cmd.common.metadata = cpu_to_le64(iod->meta_dma);
1199 	iod->flags |= IOD_SINGLE_META_SEGMENT;
1200 	return BLK_STS_OK;
1201 }
1202 
nvme_map_metadata(struct request * req)1203 static blk_status_t nvme_map_metadata(struct request *req)
1204 {
1205 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1206 
1207 	if ((iod->cmd.common.flags & NVME_CMD_SGL_METABUF) &&
1208 	    nvme_pci_metadata_use_sgls(req))
1209 		return nvme_pci_setup_meta_iter(req);
1210 	return nvme_pci_setup_meta_mptr(req);
1211 }
1212 
nvme_prep_rq(struct request * req)1213 static blk_status_t nvme_prep_rq(struct request *req)
1214 {
1215 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1216 	blk_status_t ret;
1217 
1218 	iod->flags = 0;
1219 	iod->nr_descriptors = 0;
1220 	iod->total_len = 0;
1221 	iod->meta_total_len = 0;
1222 
1223 	ret = nvme_setup_cmd(req->q->queuedata, req);
1224 	if (ret)
1225 		return ret;
1226 
1227 	if (blk_rq_nr_phys_segments(req)) {
1228 		ret = nvme_map_data(req);
1229 		if (ret)
1230 			goto out_free_cmd;
1231 	}
1232 
1233 	if (blk_integrity_rq(req)) {
1234 		ret = nvme_map_metadata(req);
1235 		if (ret)
1236 			goto out_unmap_data;
1237 	}
1238 
1239 	nvme_start_request(req);
1240 	return BLK_STS_OK;
1241 out_unmap_data:
1242 	if (blk_rq_nr_phys_segments(req))
1243 		nvme_unmap_data(req);
1244 out_free_cmd:
1245 	nvme_cleanup_cmd(req);
1246 	return ret;
1247 }
1248 
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1249 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
1250 			 const struct blk_mq_queue_data *bd)
1251 {
1252 	struct nvme_queue *nvmeq = hctx->driver_data;
1253 	struct nvme_dev *dev = nvmeq->dev;
1254 	struct request *req = bd->rq;
1255 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1256 	blk_status_t ret;
1257 
1258 	/*
1259 	 * We should not need to do this, but we're still using this to
1260 	 * ensure we can drain requests on a dying queue.
1261 	 */
1262 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1263 		return BLK_STS_IOERR;
1264 
1265 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
1266 		return nvme_fail_nonready_command(&dev->ctrl, req);
1267 
1268 	ret = nvme_prep_rq(req);
1269 	if (unlikely(ret))
1270 		return ret;
1271 	spin_lock(&nvmeq->sq_lock);
1272 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1273 	nvme_write_sq_db(nvmeq, bd->last);
1274 	spin_unlock(&nvmeq->sq_lock);
1275 	return BLK_STS_OK;
1276 }
1277 
nvme_submit_cmds(struct nvme_queue * nvmeq,struct rq_list * rqlist)1278 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist)
1279 {
1280 	struct request *req;
1281 
1282 	if (rq_list_empty(rqlist))
1283 		return;
1284 
1285 	spin_lock(&nvmeq->sq_lock);
1286 	while ((req = rq_list_pop(rqlist))) {
1287 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1288 
1289 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1290 	}
1291 	nvme_write_sq_db(nvmeq, true);
1292 	spin_unlock(&nvmeq->sq_lock);
1293 }
1294 
nvme_prep_rq_batch(struct nvme_queue * nvmeq,struct request * req)1295 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
1296 {
1297 	/*
1298 	 * We should not need to do this, but we're still using this to
1299 	 * ensure we can drain requests on a dying queue.
1300 	 */
1301 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1302 		return false;
1303 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
1304 		return false;
1305 
1306 	return nvme_prep_rq(req) == BLK_STS_OK;
1307 }
1308 
nvme_queue_rqs(struct rq_list * rqlist)1309 static void nvme_queue_rqs(struct rq_list *rqlist)
1310 {
1311 	struct rq_list submit_list = { };
1312 	struct rq_list requeue_list = { };
1313 	struct nvme_queue *nvmeq = NULL;
1314 	struct request *req;
1315 
1316 	while ((req = rq_list_pop(rqlist))) {
1317 		if (nvmeq && nvmeq != req->mq_hctx->driver_data)
1318 			nvme_submit_cmds(nvmeq, &submit_list);
1319 		nvmeq = req->mq_hctx->driver_data;
1320 
1321 		if (nvme_prep_rq_batch(nvmeq, req))
1322 			rq_list_add_tail(&submit_list, req);
1323 		else
1324 			rq_list_add_tail(&requeue_list, req);
1325 	}
1326 
1327 	if (nvmeq)
1328 		nvme_submit_cmds(nvmeq, &submit_list);
1329 	*rqlist = requeue_list;
1330 }
1331 
nvme_pci_unmap_rq(struct request * req)1332 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1333 {
1334 	if (blk_integrity_rq(req))
1335 		nvme_unmap_metadata(req);
1336 	if (blk_rq_nr_phys_segments(req))
1337 		nvme_unmap_data(req);
1338 }
1339 
nvme_pci_complete_rq(struct request * req)1340 static void nvme_pci_complete_rq(struct request *req)
1341 {
1342 	nvme_pci_unmap_rq(req);
1343 	nvme_complete_rq(req);
1344 }
1345 
nvme_pci_complete_batch(struct io_comp_batch * iob)1346 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1347 {
1348 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
1349 }
1350 
1351 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)1352 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1353 {
1354 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1355 
1356 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1357 }
1358 
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)1359 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1360 {
1361 	u16 head = nvmeq->cq_head;
1362 
1363 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1364 					      nvmeq->dbbuf_cq_ei))
1365 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1366 }
1367 
nvme_queue_tagset(struct nvme_queue * nvmeq)1368 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1369 {
1370 	if (!nvmeq->qid)
1371 		return nvmeq->dev->admin_tagset.tags[0];
1372 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1373 }
1374 
nvme_handle_cqe(struct nvme_queue * nvmeq,struct io_comp_batch * iob,u16 idx)1375 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1376 				   struct io_comp_batch *iob, u16 idx)
1377 {
1378 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1379 	__u16 command_id = READ_ONCE(cqe->command_id);
1380 	struct request *req;
1381 
1382 	/*
1383 	 * AEN requests are special as they don't time out and can
1384 	 * survive any kind of queue freeze and often don't respond to
1385 	 * aborts.  We don't even bother to allocate a struct request
1386 	 * for them but rather special case them here.
1387 	 */
1388 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1389 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1390 				cqe->status, &cqe->result);
1391 		return;
1392 	}
1393 
1394 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1395 	if (unlikely(!req)) {
1396 		dev_warn(nvmeq->dev->ctrl.device,
1397 			"invalid id %d completed on queue %d\n",
1398 			command_id, le16_to_cpu(cqe->sq_id));
1399 		return;
1400 	}
1401 
1402 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1403 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1404 	    !blk_mq_add_to_batch(req, iob,
1405 				 nvme_req(req)->status != NVME_SC_SUCCESS,
1406 				 nvme_pci_complete_batch))
1407 		nvme_pci_complete_rq(req);
1408 }
1409 
nvme_update_cq_head(struct nvme_queue * nvmeq)1410 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1411 {
1412 	u32 tmp = nvmeq->cq_head + 1;
1413 
1414 	if (tmp == nvmeq->q_depth) {
1415 		nvmeq->cq_head = 0;
1416 		nvmeq->cq_phase ^= 1;
1417 	} else {
1418 		nvmeq->cq_head = tmp;
1419 	}
1420 }
1421 
nvme_poll_cq(struct nvme_queue * nvmeq,struct io_comp_batch * iob)1422 static inline bool nvme_poll_cq(struct nvme_queue *nvmeq,
1423 			        struct io_comp_batch *iob)
1424 {
1425 	bool found = false;
1426 
1427 	while (nvme_cqe_pending(nvmeq)) {
1428 		found = true;
1429 		/*
1430 		 * load-load control dependency between phase and the rest of
1431 		 * the cqe requires a full read memory barrier
1432 		 */
1433 		dma_rmb();
1434 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1435 		nvme_update_cq_head(nvmeq);
1436 	}
1437 
1438 	if (found)
1439 		nvme_ring_cq_doorbell(nvmeq);
1440 	return found;
1441 }
1442 
nvme_irq(int irq,void * data)1443 static irqreturn_t nvme_irq(int irq, void *data)
1444 {
1445 	struct nvme_queue *nvmeq = data;
1446 	DEFINE_IO_COMP_BATCH(iob);
1447 
1448 	if (nvme_poll_cq(nvmeq, &iob)) {
1449 		if (!rq_list_empty(&iob.req_list))
1450 			nvme_pci_complete_batch(&iob);
1451 		return IRQ_HANDLED;
1452 	}
1453 	return IRQ_NONE;
1454 }
1455 
nvme_irq_check(int irq,void * data)1456 static irqreturn_t nvme_irq_check(int irq, void *data)
1457 {
1458 	struct nvme_queue *nvmeq = data;
1459 
1460 	if (nvme_cqe_pending(nvmeq))
1461 		return IRQ_WAKE_THREAD;
1462 	return IRQ_NONE;
1463 }
1464 
1465 /*
1466  * Poll for completions for any interrupt driven queue
1467  * Can be called from any context.
1468  */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1469 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1470 {
1471 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1472 
1473 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1474 
1475 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1476 	spin_lock(&nvmeq->cq_poll_lock);
1477 	nvme_poll_cq(nvmeq, NULL);
1478 	spin_unlock(&nvmeq->cq_poll_lock);
1479 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1480 }
1481 
nvme_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1482 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1483 {
1484 	struct nvme_queue *nvmeq = hctx->driver_data;
1485 	bool found;
1486 
1487 	if (!nvme_cqe_pending(nvmeq))
1488 		return 0;
1489 
1490 	spin_lock(&nvmeq->cq_poll_lock);
1491 	found = nvme_poll_cq(nvmeq, iob);
1492 	spin_unlock(&nvmeq->cq_poll_lock);
1493 
1494 	return found;
1495 }
1496 
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1497 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1498 {
1499 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1500 	struct nvme_queue *nvmeq = &dev->queues[0];
1501 	struct nvme_command c = { };
1502 
1503 	c.common.opcode = nvme_admin_async_event;
1504 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1505 
1506 	spin_lock(&nvmeq->sq_lock);
1507 	nvme_sq_copy_cmd(nvmeq, &c);
1508 	nvme_write_sq_db(nvmeq, true);
1509 	spin_unlock(&nvmeq->sq_lock);
1510 }
1511 
nvme_pci_subsystem_reset(struct nvme_ctrl * ctrl)1512 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl)
1513 {
1514 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1515 	int ret = 0;
1516 
1517 	/*
1518 	 * Taking the shutdown_lock ensures the BAR mapping is not being
1519 	 * altered by reset_work. Holding this lock before the RESETTING state
1520 	 * change, if successful, also ensures nvme_remove won't be able to
1521 	 * proceed to iounmap until we're done.
1522 	 */
1523 	mutex_lock(&dev->shutdown_lock);
1524 	if (!dev->bar_mapped_size) {
1525 		ret = -ENODEV;
1526 		goto unlock;
1527 	}
1528 
1529 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
1530 		ret = -EBUSY;
1531 		goto unlock;
1532 	}
1533 
1534 	writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR);
1535 
1536 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING) ||
1537 	    !nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
1538 		goto unlock;
1539 
1540 	/*
1541 	 * Read controller status to flush the previous write and trigger a
1542 	 * pcie read error.
1543 	 */
1544 	readl(dev->bar + NVME_REG_CSTS);
1545 unlock:
1546 	mutex_unlock(&dev->shutdown_lock);
1547 	return ret;
1548 }
1549 
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1550 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1551 {
1552 	struct nvme_command c = { };
1553 
1554 	c.delete_queue.opcode = opcode;
1555 	c.delete_queue.qid = cpu_to_le16(id);
1556 
1557 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1558 }
1559 
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1560 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1561 		struct nvme_queue *nvmeq, s16 vector)
1562 {
1563 	struct nvme_command c = { };
1564 	int flags = NVME_QUEUE_PHYS_CONTIG;
1565 
1566 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1567 		flags |= NVME_CQ_IRQ_ENABLED;
1568 
1569 	/*
1570 	 * Note: we (ab)use the fact that the prp fields survive if no data
1571 	 * is attached to the request.
1572 	 */
1573 	c.create_cq.opcode = nvme_admin_create_cq;
1574 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1575 	c.create_cq.cqid = cpu_to_le16(qid);
1576 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1577 	c.create_cq.cq_flags = cpu_to_le16(flags);
1578 	c.create_cq.irq_vector = cpu_to_le16(vector);
1579 
1580 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1581 }
1582 
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1583 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1584 						struct nvme_queue *nvmeq)
1585 {
1586 	struct nvme_ctrl *ctrl = &dev->ctrl;
1587 	struct nvme_command c = { };
1588 	int flags = NVME_QUEUE_PHYS_CONTIG;
1589 
1590 	/*
1591 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1592 	 * set. Since URGENT priority is zeroes, it makes all queues
1593 	 * URGENT.
1594 	 */
1595 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1596 		flags |= NVME_SQ_PRIO_MEDIUM;
1597 
1598 	/*
1599 	 * Note: we (ab)use the fact that the prp fields survive if no data
1600 	 * is attached to the request.
1601 	 */
1602 	c.create_sq.opcode = nvme_admin_create_sq;
1603 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1604 	c.create_sq.sqid = cpu_to_le16(qid);
1605 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1606 	c.create_sq.sq_flags = cpu_to_le16(flags);
1607 	c.create_sq.cqid = cpu_to_le16(qid);
1608 
1609 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1610 }
1611 
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1612 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1613 {
1614 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1615 }
1616 
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1617 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1618 {
1619 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1620 }
1621 
abort_endio(struct request * req,blk_status_t error)1622 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1623 {
1624 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1625 
1626 	dev_warn(nvmeq->dev->ctrl.device,
1627 		 "Abort status: 0x%x", nvme_req(req)->status);
1628 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1629 	blk_mq_free_request(req);
1630 	return RQ_END_IO_NONE;
1631 }
1632 
nvme_should_reset(struct nvme_dev * dev,u32 csts)1633 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1634 {
1635 	/* If true, indicates loss of adapter communication, possibly by a
1636 	 * NVMe Subsystem reset.
1637 	 */
1638 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1639 
1640 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1641 	switch (nvme_ctrl_state(&dev->ctrl)) {
1642 	case NVME_CTRL_RESETTING:
1643 	case NVME_CTRL_CONNECTING:
1644 		return false;
1645 	default:
1646 		break;
1647 	}
1648 
1649 	/* We shouldn't reset unless the controller is on fatal error state
1650 	 * _or_ if we lost the communication with it.
1651 	 */
1652 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1653 		return false;
1654 
1655 	return true;
1656 }
1657 
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1658 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1659 {
1660 	/* Read a config register to help see what died. */
1661 	u16 pci_status;
1662 	int result;
1663 
1664 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1665 				      &pci_status);
1666 	if (result == PCIBIOS_SUCCESSFUL)
1667 		dev_warn(dev->ctrl.device,
1668 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1669 			 csts, pci_status);
1670 	else
1671 		dev_warn(dev->ctrl.device,
1672 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1673 			 csts, result);
1674 
1675 	if (csts != ~0)
1676 		return;
1677 
1678 	dev_warn(dev->ctrl.device,
1679 		 "Does your device have a faulty power saving mode enabled?\n");
1680 	dev_warn(dev->ctrl.device,
1681 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1682 }
1683 
nvme_timeout(struct request * req)1684 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1685 {
1686 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1687 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1688 	struct nvme_dev *dev = nvmeq->dev;
1689 	struct request *abort_req;
1690 	struct nvme_command cmd = { };
1691 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1692 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1693 	u8 opcode;
1694 
1695 	/*
1696 	 * Shutdown the device immediately if we see it is disconnected. This
1697 	 * unblocks PCIe error handling if the nvme driver is waiting in
1698 	 * error_resume for a device that has been removed. We can't unbind the
1699 	 * driver while the driver's error callback is waiting to complete, so
1700 	 * we're relying on a timeout to break that deadlock if a removal
1701 	 * occurs while reset work is running.
1702 	 */
1703 	if (pci_dev_is_disconnected(pdev))
1704 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1705 	if (nvme_state_terminal(&dev->ctrl))
1706 		goto disable;
1707 
1708 	/* If PCI error recovery process is happening, we cannot reset or
1709 	 * the recovery mechanism will surely fail.
1710 	 */
1711 	mb();
1712 	if (pci_channel_offline(pdev))
1713 		return BLK_EH_RESET_TIMER;
1714 
1715 	/*
1716 	 * Reset immediately if the controller is failed
1717 	 */
1718 	if (nvme_should_reset(dev, csts)) {
1719 		nvme_warn_reset(dev, csts);
1720 		goto disable;
1721 	}
1722 
1723 	/*
1724 	 * Did we miss an interrupt?
1725 	 */
1726 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1727 		nvme_poll(req->mq_hctx, NULL);
1728 	else
1729 		nvme_poll_irqdisable(nvmeq);
1730 
1731 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1732 		dev_warn(dev->ctrl.device,
1733 			 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1734 			 req->tag, nvme_cid(req), nvmeq->qid);
1735 		return BLK_EH_DONE;
1736 	}
1737 
1738 	/*
1739 	 * Shutdown immediately if controller times out while starting. The
1740 	 * reset work will see the pci device disabled when it gets the forced
1741 	 * cancellation error. All outstanding requests are completed on
1742 	 * shutdown, so we return BLK_EH_DONE.
1743 	 */
1744 	switch (nvme_ctrl_state(&dev->ctrl)) {
1745 	case NVME_CTRL_CONNECTING:
1746 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1747 		fallthrough;
1748 	case NVME_CTRL_DELETING:
1749 		dev_warn_ratelimited(dev->ctrl.device,
1750 			 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1751 			 req->tag, nvme_cid(req), nvmeq->qid);
1752 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1753 		nvme_dev_disable(dev, true);
1754 		return BLK_EH_DONE;
1755 	case NVME_CTRL_RESETTING:
1756 		return BLK_EH_RESET_TIMER;
1757 	default:
1758 		break;
1759 	}
1760 
1761 	/*
1762 	 * Shutdown the controller immediately and schedule a reset if the
1763 	 * command was already aborted once before and still hasn't been
1764 	 * returned to the driver, or if this is the admin queue.
1765 	 */
1766 	opcode = nvme_req(req)->cmd->common.opcode;
1767 	if (!nvmeq->qid || (iod->flags & IOD_ABORTED)) {
1768 		dev_warn(dev->ctrl.device,
1769 			 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1770 			 req->tag, nvme_cid(req), opcode,
1771 			 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1772 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1773 		goto disable;
1774 	}
1775 
1776 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1777 		atomic_inc(&dev->ctrl.abort_limit);
1778 		return BLK_EH_RESET_TIMER;
1779 	}
1780 	iod->flags |= IOD_ABORTED;
1781 
1782 	cmd.abort.opcode = nvme_admin_abort_cmd;
1783 	cmd.abort.cid = nvme_cid(req);
1784 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1785 
1786 	dev_warn(nvmeq->dev->ctrl.device,
1787 		 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1788 		 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1789 		 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1790 		 blk_rq_bytes(req));
1791 
1792 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1793 					 BLK_MQ_REQ_NOWAIT);
1794 	if (IS_ERR(abort_req)) {
1795 		atomic_inc(&dev->ctrl.abort_limit);
1796 		return BLK_EH_RESET_TIMER;
1797 	}
1798 	nvme_init_request(abort_req, &cmd);
1799 
1800 	abort_req->end_io = abort_endio;
1801 	abort_req->end_io_data = NULL;
1802 	blk_execute_rq_nowait(abort_req, false);
1803 
1804 	/*
1805 	 * The aborted req will be completed on receiving the abort req.
1806 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1807 	 * as the device then is in a faulty state.
1808 	 */
1809 	return BLK_EH_RESET_TIMER;
1810 
1811 disable:
1812 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1813 		if (nvme_state_terminal(&dev->ctrl))
1814 			nvme_dev_disable(dev, true);
1815 		return BLK_EH_DONE;
1816 	}
1817 
1818 	nvme_dev_disable(dev, false);
1819 	if (nvme_try_sched_reset(&dev->ctrl))
1820 		nvme_unquiesce_io_queues(&dev->ctrl);
1821 	return BLK_EH_DONE;
1822 }
1823 
nvme_free_queue(struct nvme_queue * nvmeq)1824 static void nvme_free_queue(struct nvme_queue *nvmeq)
1825 {
1826 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1827 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1828 	if (!nvmeq->sq_cmds)
1829 		return;
1830 
1831 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1832 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1833 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1834 	} else {
1835 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1836 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1837 	}
1838 }
1839 
nvme_free_queues(struct nvme_dev * dev,int lowest)1840 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1841 {
1842 	int i;
1843 
1844 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1845 		dev->ctrl.queue_count--;
1846 		nvme_free_queue(&dev->queues[i]);
1847 	}
1848 }
1849 
nvme_suspend_queue(struct nvme_dev * dev,unsigned int qid)1850 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1851 {
1852 	struct nvme_queue *nvmeq = &dev->queues[qid];
1853 
1854 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1855 		return;
1856 
1857 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1858 	mb();
1859 
1860 	nvmeq->dev->online_queues--;
1861 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1862 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1863 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1864 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1865 }
1866 
nvme_suspend_io_queues(struct nvme_dev * dev)1867 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1868 {
1869 	int i;
1870 
1871 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1872 		nvme_suspend_queue(dev, i);
1873 }
1874 
1875 /*
1876  * Called only on a device that has been disabled and after all other threads
1877  * that can check this device's completion queues have synced, except
1878  * nvme_poll(). This is the last chance for the driver to see a natural
1879  * completion before nvme_cancel_request() terminates all incomplete requests.
1880  */
nvme_reap_pending_cqes(struct nvme_dev * dev)1881 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1882 {
1883 	int i;
1884 
1885 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1886 		spin_lock(&dev->queues[i].cq_poll_lock);
1887 		nvme_poll_cq(&dev->queues[i], NULL);
1888 		spin_unlock(&dev->queues[i].cq_poll_lock);
1889 	}
1890 }
1891 
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1892 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1893 				int entry_size)
1894 {
1895 	int q_depth = dev->q_depth;
1896 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1897 					  NVME_CTRL_PAGE_SIZE);
1898 
1899 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1900 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1901 
1902 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1903 		q_depth = div_u64(mem_per_q, entry_size);
1904 
1905 		/*
1906 		 * Ensure the reduced q_depth is above some threshold where it
1907 		 * would be better to map queues in system memory with the
1908 		 * original depth
1909 		 */
1910 		if (q_depth < 64)
1911 			return -ENOMEM;
1912 	}
1913 
1914 	return q_depth;
1915 }
1916 
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1917 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1918 				int qid)
1919 {
1920 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1921 
1922 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1923 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1924 		if (nvmeq->sq_cmds) {
1925 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1926 							nvmeq->sq_cmds);
1927 			if (nvmeq->sq_dma_addr) {
1928 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1929 				return 0;
1930 			}
1931 
1932 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1933 		}
1934 	}
1935 
1936 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1937 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1938 	if (!nvmeq->sq_cmds)
1939 		return -ENOMEM;
1940 	return 0;
1941 }
1942 
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1943 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1944 {
1945 	struct nvme_queue *nvmeq = &dev->queues[qid];
1946 
1947 	if (dev->ctrl.queue_count > qid)
1948 		return 0;
1949 
1950 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1951 	nvmeq->q_depth = depth;
1952 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1953 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1954 	if (!nvmeq->cqes)
1955 		goto free_nvmeq;
1956 
1957 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1958 		goto free_cqdma;
1959 
1960 	nvmeq->dev = dev;
1961 	spin_lock_init(&nvmeq->sq_lock);
1962 	spin_lock_init(&nvmeq->cq_poll_lock);
1963 	nvmeq->cq_head = 0;
1964 	nvmeq->cq_phase = 1;
1965 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1966 	nvmeq->qid = qid;
1967 	dev->ctrl.queue_count++;
1968 
1969 	return 0;
1970 
1971  free_cqdma:
1972 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1973 			  nvmeq->cq_dma_addr);
1974  free_nvmeq:
1975 	return -ENOMEM;
1976 }
1977 
queue_request_irq(struct nvme_queue * nvmeq)1978 static int queue_request_irq(struct nvme_queue *nvmeq)
1979 {
1980 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1981 	int nr = nvmeq->dev->ctrl.instance;
1982 
1983 	if (use_threaded_interrupts) {
1984 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1985 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1986 	} else {
1987 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1988 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1989 	}
1990 }
1991 
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1992 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1993 {
1994 	struct nvme_dev *dev = nvmeq->dev;
1995 
1996 	nvmeq->sq_tail = 0;
1997 	nvmeq->last_sq_tail = 0;
1998 	nvmeq->cq_head = 0;
1999 	nvmeq->cq_phase = 1;
2000 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
2001 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
2002 	nvme_dbbuf_init(dev, nvmeq, qid);
2003 	dev->online_queues++;
2004 	wmb(); /* ensure the first interrupt sees the initialization */
2005 }
2006 
2007 /*
2008  * Try getting shutdown_lock while setting up IO queues.
2009  */
nvme_setup_io_queues_trylock(struct nvme_dev * dev)2010 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
2011 {
2012 	/*
2013 	 * Give up if the lock is being held by nvme_dev_disable.
2014 	 */
2015 	if (!mutex_trylock(&dev->shutdown_lock))
2016 		return -ENODEV;
2017 
2018 	/*
2019 	 * Controller is in wrong state, fail early.
2020 	 */
2021 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
2022 		mutex_unlock(&dev->shutdown_lock);
2023 		return -ENODEV;
2024 	}
2025 
2026 	return 0;
2027 }
2028 
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)2029 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
2030 {
2031 	struct nvme_dev *dev = nvmeq->dev;
2032 	int result;
2033 	u16 vector = 0;
2034 
2035 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2036 
2037 	/*
2038 	 * A queue's vector matches the queue identifier unless the controller
2039 	 * has only one vector available.
2040 	 */
2041 	if (!polled)
2042 		vector = dev->num_vecs == 1 ? 0 : qid;
2043 	else
2044 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
2045 
2046 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
2047 	if (result)
2048 		return result;
2049 
2050 	result = adapter_alloc_sq(dev, qid, nvmeq);
2051 	if (result < 0)
2052 		return result;
2053 	if (result)
2054 		goto release_cq;
2055 
2056 	nvmeq->cq_vector = vector;
2057 
2058 	result = nvme_setup_io_queues_trylock(dev);
2059 	if (result)
2060 		return result;
2061 	nvme_init_queue(nvmeq, qid);
2062 	if (!polled) {
2063 		result = queue_request_irq(nvmeq);
2064 		if (result < 0)
2065 			goto release_sq;
2066 	}
2067 
2068 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
2069 	mutex_unlock(&dev->shutdown_lock);
2070 	return result;
2071 
2072 release_sq:
2073 	dev->online_queues--;
2074 	mutex_unlock(&dev->shutdown_lock);
2075 	adapter_delete_sq(dev, qid);
2076 release_cq:
2077 	adapter_delete_cq(dev, qid);
2078 	return result;
2079 }
2080 
2081 static const struct blk_mq_ops nvme_mq_admin_ops = {
2082 	.queue_rq	= nvme_queue_rq,
2083 	.complete	= nvme_pci_complete_rq,
2084 	.init_hctx	= nvme_admin_init_hctx,
2085 	.init_request	= nvme_pci_init_request,
2086 	.timeout	= nvme_timeout,
2087 };
2088 
2089 static const struct blk_mq_ops nvme_mq_ops = {
2090 	.queue_rq	= nvme_queue_rq,
2091 	.queue_rqs	= nvme_queue_rqs,
2092 	.complete	= nvme_pci_complete_rq,
2093 	.commit_rqs	= nvme_commit_rqs,
2094 	.init_hctx	= nvme_init_hctx,
2095 	.init_request	= nvme_pci_init_request,
2096 	.map_queues	= nvme_pci_map_queues,
2097 	.timeout	= nvme_timeout,
2098 	.poll		= nvme_poll,
2099 };
2100 
nvme_dev_remove_admin(struct nvme_dev * dev)2101 static void nvme_dev_remove_admin(struct nvme_dev *dev)
2102 {
2103 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
2104 		/*
2105 		 * If the controller was reset during removal, it's possible
2106 		 * user requests may be waiting on a stopped queue. Start the
2107 		 * queue to flush these to completion.
2108 		 */
2109 		nvme_unquiesce_admin_queue(&dev->ctrl);
2110 		nvme_remove_admin_tag_set(&dev->ctrl);
2111 	}
2112 }
2113 
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)2114 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2115 {
2116 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
2117 }
2118 
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)2119 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
2120 {
2121 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2122 
2123 	if (size <= dev->bar_mapped_size)
2124 		return 0;
2125 	if (size > pci_resource_len(pdev, 0))
2126 		return -ENOMEM;
2127 	if (dev->bar)
2128 		iounmap(dev->bar);
2129 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2130 	if (!dev->bar) {
2131 		dev->bar_mapped_size = 0;
2132 		return -ENOMEM;
2133 	}
2134 	dev->bar_mapped_size = size;
2135 	dev->dbs = dev->bar + NVME_REG_DBS;
2136 
2137 	return 0;
2138 }
2139 
nvme_pci_configure_admin_queue(struct nvme_dev * dev)2140 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
2141 {
2142 	int result;
2143 	u32 aqa;
2144 	struct nvme_queue *nvmeq;
2145 
2146 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
2147 	if (result < 0)
2148 		return result;
2149 
2150 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
2151 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
2152 
2153 	if (dev->subsystem &&
2154 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
2155 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
2156 
2157 	/*
2158 	 * If the device has been passed off to us in an enabled state, just
2159 	 * clear the enabled bit.  The spec says we should set the 'shutdown
2160 	 * notification bits', but doing so may cause the device to complete
2161 	 * commands to the admin queue ... and we don't know what memory that
2162 	 * might be pointing at!
2163 	 */
2164 	result = nvme_disable_ctrl(&dev->ctrl, false);
2165 	if (result < 0) {
2166 		struct pci_dev *pdev = to_pci_dev(dev->dev);
2167 
2168 		/*
2169 		 * The NVMe Controller Reset method did not get an expected
2170 		 * CSTS.RDY transition, so something with the device appears to
2171 		 * be stuck. Use the lower level and bigger hammer PCIe
2172 		 * Function Level Reset to attempt restoring the device to its
2173 		 * initial state, and try again.
2174 		 */
2175 		result = pcie_reset_flr(pdev, false);
2176 		if (result < 0)
2177 			return result;
2178 
2179 		pci_restore_state(pdev);
2180 		result = nvme_disable_ctrl(&dev->ctrl, false);
2181 		if (result < 0)
2182 			return result;
2183 
2184 		dev_info(dev->ctrl.device,
2185 			"controller reset completed after pcie flr\n");
2186 	}
2187 
2188 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
2189 	if (result)
2190 		return result;
2191 
2192 	dev->ctrl.numa_node = dev_to_node(dev->dev);
2193 
2194 	nvmeq = &dev->queues[0];
2195 	aqa = nvmeq->q_depth - 1;
2196 	aqa |= aqa << 16;
2197 
2198 	writel(aqa, dev->bar + NVME_REG_AQA);
2199 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
2200 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
2201 
2202 	result = nvme_enable_ctrl(&dev->ctrl);
2203 	if (result)
2204 		return result;
2205 
2206 	nvmeq->cq_vector = 0;
2207 	nvme_init_queue(nvmeq, 0);
2208 	result = queue_request_irq(nvmeq);
2209 	if (result) {
2210 		dev->online_queues--;
2211 		return result;
2212 	}
2213 
2214 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
2215 	return result;
2216 }
2217 
nvme_create_io_queues(struct nvme_dev * dev)2218 static int nvme_create_io_queues(struct nvme_dev *dev)
2219 {
2220 	unsigned i, max, rw_queues;
2221 	int ret = 0;
2222 
2223 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
2224 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
2225 			ret = -ENOMEM;
2226 			break;
2227 		}
2228 	}
2229 
2230 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
2231 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
2232 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
2233 				dev->io_queues[HCTX_TYPE_READ];
2234 	} else {
2235 		rw_queues = max;
2236 	}
2237 
2238 	for (i = dev->online_queues; i <= max; i++) {
2239 		bool polled = i > rw_queues;
2240 
2241 		ret = nvme_create_queue(&dev->queues[i], i, polled);
2242 		if (ret)
2243 			break;
2244 	}
2245 
2246 	/*
2247 	 * Ignore failing Create SQ/CQ commands, we can continue with less
2248 	 * than the desired amount of queues, and even a controller without
2249 	 * I/O queues can still be used to issue admin commands.  This might
2250 	 * be useful to upgrade a buggy firmware for example.
2251 	 */
2252 	return ret >= 0 ? 0 : ret;
2253 }
2254 
nvme_cmb_size_unit(struct nvme_dev * dev)2255 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
2256 {
2257 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
2258 
2259 	return 1ULL << (12 + 4 * szu);
2260 }
2261 
nvme_cmb_size(struct nvme_dev * dev)2262 static u32 nvme_cmb_size(struct nvme_dev *dev)
2263 {
2264 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
2265 }
2266 
nvme_map_cmb(struct nvme_dev * dev)2267 static void nvme_map_cmb(struct nvme_dev *dev)
2268 {
2269 	u64 size, offset;
2270 	resource_size_t bar_size;
2271 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2272 	int bar;
2273 
2274 	if (dev->cmb_size)
2275 		return;
2276 
2277 	if (NVME_CAP_CMBS(dev->ctrl.cap))
2278 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
2279 
2280 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
2281 	if (!dev->cmbsz)
2282 		return;
2283 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
2284 
2285 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
2286 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
2287 	bar = NVME_CMB_BIR(dev->cmbloc);
2288 	bar_size = pci_resource_len(pdev, bar);
2289 
2290 	if (offset > bar_size)
2291 		return;
2292 
2293 	/*
2294 	 * Controllers may support a CMB size larger than their BAR, for
2295 	 * example, due to being behind a bridge. Reduce the CMB to the
2296 	 * reported size of the BAR
2297 	 */
2298 	size = min(size, bar_size - offset);
2299 
2300 	if (!IS_ALIGNED(size, memremap_compat_align()) ||
2301 	    !IS_ALIGNED(pci_resource_start(pdev, bar),
2302 			memremap_compat_align()))
2303 		return;
2304 
2305 	/*
2306 	 * Tell the controller about the host side address mapping the CMB,
2307 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
2308 	 */
2309 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
2310 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
2311 			     (pci_bus_address(pdev, bar) + offset),
2312 			     dev->bar + NVME_REG_CMBMSC);
2313 	}
2314 
2315 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
2316 		dev_warn(dev->ctrl.device,
2317 			 "failed to register the CMB\n");
2318 		hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC);
2319 		return;
2320 	}
2321 
2322 	dev->cmb_size = size;
2323 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
2324 
2325 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
2326 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
2327 		pci_p2pmem_publish(pdev, true);
2328 }
2329 
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)2330 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
2331 {
2332 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
2333 	u64 dma_addr = dev->host_mem_descs_dma;
2334 	struct nvme_command c = { };
2335 	int ret;
2336 
2337 	c.features.opcode	= nvme_admin_set_features;
2338 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
2339 	c.features.dword11	= cpu_to_le32(bits);
2340 	c.features.dword12	= cpu_to_le32(host_mem_size);
2341 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
2342 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
2343 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
2344 
2345 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
2346 	if (ret) {
2347 		dev_warn(dev->ctrl.device,
2348 			 "failed to set host mem (err %d, flags %#x).\n",
2349 			 ret, bits);
2350 	} else
2351 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
2352 
2353 	return ret;
2354 }
2355 
nvme_free_host_mem_multi(struct nvme_dev * dev)2356 static void nvme_free_host_mem_multi(struct nvme_dev *dev)
2357 {
2358 	int i;
2359 
2360 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
2361 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2362 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2363 
2364 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2365 			       le64_to_cpu(desc->addr),
2366 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2367 	}
2368 
2369 	kfree(dev->host_mem_desc_bufs);
2370 	dev->host_mem_desc_bufs = NULL;
2371 }
2372 
nvme_free_host_mem(struct nvme_dev * dev)2373 static void nvme_free_host_mem(struct nvme_dev *dev)
2374 {
2375 	if (dev->hmb_sgt)
2376 		dma_free_noncontiguous(dev->dev, dev->host_mem_size,
2377 				dev->hmb_sgt, DMA_BIDIRECTIONAL);
2378 	else
2379 		nvme_free_host_mem_multi(dev);
2380 
2381 	dma_free_coherent(dev->dev, dev->host_mem_descs_size,
2382 			dev->host_mem_descs, dev->host_mem_descs_dma);
2383 	dev->host_mem_descs = NULL;
2384 	dev->host_mem_descs_size = 0;
2385 	dev->nr_host_mem_descs = 0;
2386 }
2387 
nvme_alloc_host_mem_single(struct nvme_dev * dev,u64 size)2388 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size)
2389 {
2390 	dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size,
2391 				DMA_BIDIRECTIONAL, GFP_KERNEL, 0);
2392 	if (!dev->hmb_sgt)
2393 		return -ENOMEM;
2394 
2395 	dev->host_mem_descs = dma_alloc_coherent(dev->dev,
2396 			sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma,
2397 			GFP_KERNEL);
2398 	if (!dev->host_mem_descs) {
2399 		dma_free_noncontiguous(dev->dev, size, dev->hmb_sgt,
2400 				DMA_BIDIRECTIONAL);
2401 		dev->hmb_sgt = NULL;
2402 		return -ENOMEM;
2403 	}
2404 	dev->host_mem_size = size;
2405 	dev->host_mem_descs_size = sizeof(*dev->host_mem_descs);
2406 	dev->nr_host_mem_descs = 1;
2407 
2408 	dev->host_mem_descs[0].addr =
2409 		cpu_to_le64(dev->hmb_sgt->sgl->dma_address);
2410 	dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE);
2411 	return 0;
2412 }
2413 
nvme_alloc_host_mem_multi(struct nvme_dev * dev,u64 preferred,u32 chunk_size)2414 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred,
2415 		u32 chunk_size)
2416 {
2417 	struct nvme_host_mem_buf_desc *descs;
2418 	u32 max_entries, len, descs_size;
2419 	dma_addr_t descs_dma;
2420 	int i = 0;
2421 	void **bufs;
2422 	u64 size, tmp;
2423 
2424 	tmp = (preferred + chunk_size - 1);
2425 	do_div(tmp, chunk_size);
2426 	max_entries = tmp;
2427 
2428 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2429 		max_entries = dev->ctrl.hmmaxd;
2430 
2431 	descs_size = max_entries * sizeof(*descs);
2432 	descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
2433 			GFP_KERNEL);
2434 	if (!descs)
2435 		goto out;
2436 
2437 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2438 	if (!bufs)
2439 		goto out_free_descs;
2440 
2441 	for (size = 0; size < preferred && i < max_entries; size += len) {
2442 		dma_addr_t dma_addr;
2443 
2444 		len = min_t(u64, chunk_size, preferred - size);
2445 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2446 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2447 		if (!bufs[i])
2448 			break;
2449 
2450 		descs[i].addr = cpu_to_le64(dma_addr);
2451 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2452 		i++;
2453 	}
2454 
2455 	if (!size)
2456 		goto out_free_bufs;
2457 
2458 	dev->nr_host_mem_descs = i;
2459 	dev->host_mem_size = size;
2460 	dev->host_mem_descs = descs;
2461 	dev->host_mem_descs_dma = descs_dma;
2462 	dev->host_mem_descs_size = descs_size;
2463 	dev->host_mem_desc_bufs = bufs;
2464 	return 0;
2465 
2466 out_free_bufs:
2467 	kfree(bufs);
2468 out_free_descs:
2469 	dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2470 out:
2471 	dev->host_mem_descs = NULL;
2472 	return -ENOMEM;
2473 }
2474 
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2475 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2476 {
2477 	unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev);
2478 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2479 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2480 	u64 chunk_size;
2481 
2482 	/*
2483 	 * If there is an IOMMU that can merge pages, try a virtually
2484 	 * non-contiguous allocation for a single segment first.
2485 	 */
2486 	if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) {
2487 		if (!nvme_alloc_host_mem_single(dev, preferred))
2488 			return 0;
2489 	}
2490 
2491 	/* start big and work our way down */
2492 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2493 		if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) {
2494 			if (!min || dev->host_mem_size >= min)
2495 				return 0;
2496 			nvme_free_host_mem(dev);
2497 		}
2498 	}
2499 
2500 	return -ENOMEM;
2501 }
2502 
nvme_setup_host_mem(struct nvme_dev * dev)2503 static int nvme_setup_host_mem(struct nvme_dev *dev)
2504 {
2505 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2506 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2507 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2508 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2509 	int ret;
2510 
2511 	if (!dev->ctrl.hmpre)
2512 		return 0;
2513 
2514 	preferred = min(preferred, max);
2515 	if (min > max) {
2516 		dev_warn(dev->ctrl.device,
2517 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2518 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2519 		nvme_free_host_mem(dev);
2520 		return 0;
2521 	}
2522 
2523 	/*
2524 	 * If we already have a buffer allocated check if we can reuse it.
2525 	 */
2526 	if (dev->host_mem_descs) {
2527 		if (dev->host_mem_size >= min)
2528 			enable_bits |= NVME_HOST_MEM_RETURN;
2529 		else
2530 			nvme_free_host_mem(dev);
2531 	}
2532 
2533 	if (!dev->host_mem_descs) {
2534 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2535 			dev_warn(dev->ctrl.device,
2536 				"failed to allocate host memory buffer.\n");
2537 			return 0; /* controller must work without HMB */
2538 		}
2539 
2540 		dev_info(dev->ctrl.device,
2541 			"allocated %lld MiB host memory buffer (%u segment%s).\n",
2542 			dev->host_mem_size >> ilog2(SZ_1M),
2543 			dev->nr_host_mem_descs,
2544 			str_plural(dev->nr_host_mem_descs));
2545 	}
2546 
2547 	ret = nvme_set_host_mem(dev, enable_bits);
2548 	if (ret)
2549 		nvme_free_host_mem(dev);
2550 	return ret;
2551 }
2552 
cmb_show(struct device * dev,struct device_attribute * attr,char * buf)2553 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2554 		char *buf)
2555 {
2556 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2557 
2558 	return sysfs_emit(buf, "cmbloc : 0x%08x\ncmbsz  : 0x%08x\n",
2559 		       ndev->cmbloc, ndev->cmbsz);
2560 }
2561 static DEVICE_ATTR_RO(cmb);
2562 
cmbloc_show(struct device * dev,struct device_attribute * attr,char * buf)2563 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2564 		char *buf)
2565 {
2566 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2567 
2568 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2569 }
2570 static DEVICE_ATTR_RO(cmbloc);
2571 
cmbsz_show(struct device * dev,struct device_attribute * attr,char * buf)2572 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2573 		char *buf)
2574 {
2575 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2576 
2577 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2578 }
2579 static DEVICE_ATTR_RO(cmbsz);
2580 
hmb_show(struct device * dev,struct device_attribute * attr,char * buf)2581 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2582 			char *buf)
2583 {
2584 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2585 
2586 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2587 }
2588 
hmb_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2589 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2590 			 const char *buf, size_t count)
2591 {
2592 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2593 	bool new;
2594 	int ret;
2595 
2596 	if (kstrtobool(buf, &new) < 0)
2597 		return -EINVAL;
2598 
2599 	if (new == ndev->hmb)
2600 		return count;
2601 
2602 	if (new) {
2603 		ret = nvme_setup_host_mem(ndev);
2604 	} else {
2605 		ret = nvme_set_host_mem(ndev, 0);
2606 		if (!ret)
2607 			nvme_free_host_mem(ndev);
2608 	}
2609 
2610 	if (ret < 0)
2611 		return ret;
2612 
2613 	return count;
2614 }
2615 static DEVICE_ATTR_RW(hmb);
2616 
nvme_pci_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2617 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2618 		struct attribute *a, int n)
2619 {
2620 	struct nvme_ctrl *ctrl =
2621 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2622 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2623 
2624 	if (a == &dev_attr_cmb.attr ||
2625 	    a == &dev_attr_cmbloc.attr ||
2626 	    a == &dev_attr_cmbsz.attr) {
2627 	    	if (!dev->cmbsz)
2628 			return 0;
2629 	}
2630 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2631 		return 0;
2632 
2633 	return a->mode;
2634 }
2635 
2636 static struct attribute *nvme_pci_attrs[] = {
2637 	&dev_attr_cmb.attr,
2638 	&dev_attr_cmbloc.attr,
2639 	&dev_attr_cmbsz.attr,
2640 	&dev_attr_hmb.attr,
2641 	NULL,
2642 };
2643 
2644 static const struct attribute_group nvme_pci_dev_attrs_group = {
2645 	.attrs		= nvme_pci_attrs,
2646 	.is_visible	= nvme_pci_attrs_are_visible,
2647 };
2648 
2649 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2650 	&nvme_dev_attrs_group,
2651 	&nvme_pci_dev_attrs_group,
2652 	NULL,
2653 };
2654 
nvme_update_attrs(struct nvme_dev * dev)2655 static void nvme_update_attrs(struct nvme_dev *dev)
2656 {
2657 	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2658 }
2659 
2660 /*
2661  * nirqs is the number of interrupts available for write and read
2662  * queues. The core already reserved an interrupt for the admin queue.
2663  */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2664 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2665 {
2666 	struct nvme_dev *dev = affd->priv;
2667 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2668 
2669 	/*
2670 	 * If there is no interrupt available for queues, ensure that
2671 	 * the default queue is set to 1. The affinity set size is
2672 	 * also set to one, but the irq core ignores it for this case.
2673 	 *
2674 	 * If only one interrupt is available or 'write_queue' == 0, combine
2675 	 * write and read queues.
2676 	 *
2677 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2678 	 * queue.
2679 	 */
2680 	if (!nrirqs) {
2681 		nrirqs = 1;
2682 		nr_read_queues = 0;
2683 	} else if (nrirqs == 1 || !nr_write_queues) {
2684 		nr_read_queues = 0;
2685 	} else if (nr_write_queues >= nrirqs) {
2686 		nr_read_queues = 1;
2687 	} else {
2688 		nr_read_queues = nrirqs - nr_write_queues;
2689 	}
2690 
2691 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2692 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2693 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2694 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2695 	affd->nr_sets = nr_read_queues ? 2 : 1;
2696 }
2697 
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2698 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2699 {
2700 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2701 	struct irq_affinity affd = {
2702 		.pre_vectors	= 1,
2703 		.calc_sets	= nvme_calc_irq_sets,
2704 		.priv		= dev,
2705 	};
2706 	unsigned int irq_queues, poll_queues;
2707 	unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2708 
2709 	/*
2710 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2711 	 * left over for non-polled I/O.
2712 	 */
2713 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2714 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2715 
2716 	/*
2717 	 * Initialize for the single interrupt case, will be updated in
2718 	 * nvme_calc_irq_sets().
2719 	 */
2720 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2721 	dev->io_queues[HCTX_TYPE_READ] = 0;
2722 
2723 	/*
2724 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2725 	 * but some Apple controllers require all queues to use the first
2726 	 * vector.
2727 	 */
2728 	irq_queues = 1;
2729 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2730 		irq_queues += (nr_io_queues - poll_queues);
2731 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2732 		flags &= ~PCI_IRQ_MSI;
2733 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2734 					      &affd);
2735 }
2736 
nvme_max_io_queues(struct nvme_dev * dev)2737 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2738 {
2739 	/*
2740 	 * If tags are shared with admin queue (Apple bug), then
2741 	 * make sure we only use one IO queue.
2742 	 */
2743 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2744 		return 1;
2745 	return blk_mq_num_possible_queues(0) + dev->nr_write_queues +
2746 		dev->nr_poll_queues;
2747 }
2748 
nvme_setup_io_queues(struct nvme_dev * dev)2749 static int nvme_setup_io_queues(struct nvme_dev *dev)
2750 {
2751 	struct nvme_queue *adminq = &dev->queues[0];
2752 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2753 	unsigned int nr_io_queues;
2754 	unsigned long size;
2755 	int result;
2756 
2757 	/*
2758 	 * Sample the module parameters once at reset time so that we have
2759 	 * stable values to work with.
2760 	 */
2761 	dev->nr_write_queues = write_queues;
2762 	dev->nr_poll_queues = poll_queues;
2763 
2764 	nr_io_queues = dev->nr_allocated_queues - 1;
2765 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2766 	if (result < 0)
2767 		return result;
2768 
2769 	if (nr_io_queues == 0)
2770 		return 0;
2771 
2772 	/*
2773 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2774 	 * from set to unset. If there is a window to it is truely freed,
2775 	 * pci_free_irq_vectors() jumping into this window will crash.
2776 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2777 	 * nvme_dev_disable() path.
2778 	 */
2779 	result = nvme_setup_io_queues_trylock(dev);
2780 	if (result)
2781 		return result;
2782 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2783 		pci_free_irq(pdev, 0, adminq);
2784 
2785 	if (dev->cmb_use_sqes) {
2786 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2787 				sizeof(struct nvme_command));
2788 		if (result > 0) {
2789 			dev->q_depth = result;
2790 			dev->ctrl.sqsize = result - 1;
2791 		} else {
2792 			dev->cmb_use_sqes = false;
2793 		}
2794 	}
2795 
2796 	do {
2797 		size = db_bar_size(dev, nr_io_queues);
2798 		result = nvme_remap_bar(dev, size);
2799 		if (!result)
2800 			break;
2801 		if (!--nr_io_queues) {
2802 			result = -ENOMEM;
2803 			goto out_unlock;
2804 		}
2805 	} while (1);
2806 	adminq->q_db = dev->dbs;
2807 
2808  retry:
2809 	/* Deregister the admin queue's interrupt */
2810 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2811 		pci_free_irq(pdev, 0, adminq);
2812 
2813 	/*
2814 	 * If we enable msix early due to not intx, disable it again before
2815 	 * setting up the full range we need.
2816 	 */
2817 	pci_free_irq_vectors(pdev);
2818 
2819 	result = nvme_setup_irqs(dev, nr_io_queues);
2820 	if (result <= 0) {
2821 		result = -EIO;
2822 		goto out_unlock;
2823 	}
2824 
2825 	dev->num_vecs = result;
2826 	result = max(result - 1, 1);
2827 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2828 
2829 	/*
2830 	 * Should investigate if there's a performance win from allocating
2831 	 * more queues than interrupt vectors; it might allow the submission
2832 	 * path to scale better, even if the receive path is limited by the
2833 	 * number of interrupts.
2834 	 */
2835 	result = queue_request_irq(adminq);
2836 	if (result)
2837 		goto out_unlock;
2838 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2839 	mutex_unlock(&dev->shutdown_lock);
2840 
2841 	result = nvme_create_io_queues(dev);
2842 	if (result || dev->online_queues < 2)
2843 		return result;
2844 
2845 	if (dev->online_queues - 1 < dev->max_qid) {
2846 		nr_io_queues = dev->online_queues - 1;
2847 		nvme_delete_io_queues(dev);
2848 		result = nvme_setup_io_queues_trylock(dev);
2849 		if (result)
2850 			return result;
2851 		nvme_suspend_io_queues(dev);
2852 		goto retry;
2853 	}
2854 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2855 					dev->io_queues[HCTX_TYPE_DEFAULT],
2856 					dev->io_queues[HCTX_TYPE_READ],
2857 					dev->io_queues[HCTX_TYPE_POLL]);
2858 	return 0;
2859 out_unlock:
2860 	mutex_unlock(&dev->shutdown_lock);
2861 	return result;
2862 }
2863 
nvme_del_queue_end(struct request * req,blk_status_t error)2864 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2865 					     blk_status_t error)
2866 {
2867 	struct nvme_queue *nvmeq = req->end_io_data;
2868 
2869 	blk_mq_free_request(req);
2870 	complete(&nvmeq->delete_done);
2871 	return RQ_END_IO_NONE;
2872 }
2873 
nvme_del_cq_end(struct request * req,blk_status_t error)2874 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2875 					  blk_status_t error)
2876 {
2877 	struct nvme_queue *nvmeq = req->end_io_data;
2878 
2879 	if (error)
2880 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2881 
2882 	return nvme_del_queue_end(req, error);
2883 }
2884 
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2885 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2886 {
2887 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2888 	struct request *req;
2889 	struct nvme_command cmd = { };
2890 
2891 	cmd.delete_queue.opcode = opcode;
2892 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2893 
2894 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2895 	if (IS_ERR(req))
2896 		return PTR_ERR(req);
2897 	nvme_init_request(req, &cmd);
2898 
2899 	if (opcode == nvme_admin_delete_cq)
2900 		req->end_io = nvme_del_cq_end;
2901 	else
2902 		req->end_io = nvme_del_queue_end;
2903 	req->end_io_data = nvmeq;
2904 
2905 	init_completion(&nvmeq->delete_done);
2906 	blk_execute_rq_nowait(req, false);
2907 	return 0;
2908 }
2909 
__nvme_delete_io_queues(struct nvme_dev * dev,u8 opcode)2910 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2911 {
2912 	int nr_queues = dev->online_queues - 1, sent = 0;
2913 	unsigned long timeout;
2914 
2915  retry:
2916 	timeout = NVME_ADMIN_TIMEOUT;
2917 	while (nr_queues > 0) {
2918 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2919 			break;
2920 		nr_queues--;
2921 		sent++;
2922 	}
2923 	while (sent) {
2924 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2925 
2926 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2927 				timeout);
2928 		if (timeout == 0)
2929 			return false;
2930 
2931 		sent--;
2932 		if (nr_queues)
2933 			goto retry;
2934 	}
2935 	return true;
2936 }
2937 
nvme_delete_io_queues(struct nvme_dev * dev)2938 static void nvme_delete_io_queues(struct nvme_dev *dev)
2939 {
2940 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2941 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2942 }
2943 
nvme_pci_nr_maps(struct nvme_dev * dev)2944 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2945 {
2946 	if (dev->io_queues[HCTX_TYPE_POLL])
2947 		return 3;
2948 	if (dev->io_queues[HCTX_TYPE_READ])
2949 		return 2;
2950 	return 1;
2951 }
2952 
nvme_pci_update_nr_queues(struct nvme_dev * dev)2953 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2954 {
2955 	if (!dev->ctrl.tagset) {
2956 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2957 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2958 		return true;
2959 	}
2960 
2961 	/* Give up if we are racing with nvme_dev_disable() */
2962 	if (!mutex_trylock(&dev->shutdown_lock))
2963 		return false;
2964 
2965 	/* Check if nvme_dev_disable() has been executed already */
2966 	if (!dev->online_queues) {
2967 		mutex_unlock(&dev->shutdown_lock);
2968 		return false;
2969 	}
2970 
2971 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2972 	/* free previously allocated queues that are no longer usable */
2973 	nvme_free_queues(dev, dev->online_queues);
2974 	mutex_unlock(&dev->shutdown_lock);
2975 	return true;
2976 }
2977 
nvme_pci_enable(struct nvme_dev * dev)2978 static int nvme_pci_enable(struct nvme_dev *dev)
2979 {
2980 	int result = -ENOMEM;
2981 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2982 	unsigned int flags = PCI_IRQ_ALL_TYPES;
2983 
2984 	if (pci_enable_device_mem(pdev))
2985 		return result;
2986 
2987 	pci_set_master(pdev);
2988 
2989 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2990 		dev_dbg(dev->ctrl.device, "reading CSTS register failed\n");
2991 		result = -ENODEV;
2992 		goto disable;
2993 	}
2994 
2995 	/*
2996 	 * Some devices and/or platforms don't advertise or work with INTx
2997 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2998 	 * adjust this later.
2999 	 */
3000 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
3001 		flags &= ~PCI_IRQ_MSI;
3002 	result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
3003 	if (result < 0)
3004 		goto disable;
3005 
3006 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
3007 
3008 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
3009 				io_queue_depth);
3010 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
3011 	dev->dbs = dev->bar + 4096;
3012 
3013 	/*
3014 	 * Some Apple controllers require a non-standard SQE size.
3015 	 * Interestingly they also seem to ignore the CC:IOSQES register
3016 	 * so we don't bother updating it here.
3017 	 */
3018 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
3019 		dev->io_sqes = 7;
3020 	else
3021 		dev->io_sqes = NVME_NVM_IOSQES;
3022 
3023 	if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
3024 		dev->q_depth = 2;
3025 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
3026 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
3027 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
3028 		dev->q_depth = 64;
3029 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
3030                         "set queue depth=%u\n", dev->q_depth);
3031 	}
3032 
3033 	/*
3034 	 * Controllers with the shared tags quirk need the IO queue to be
3035 	 * big enough so that we get 32 tags for the admin queue
3036 	 */
3037 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
3038 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
3039 		dev->q_depth = NVME_AQ_DEPTH + 2;
3040 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
3041 			 dev->q_depth);
3042 	}
3043 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
3044 
3045 	nvme_map_cmb(dev);
3046 
3047 	pci_save_state(pdev);
3048 
3049 	result = nvme_pci_configure_admin_queue(dev);
3050 	if (result)
3051 		goto free_irq;
3052 	return result;
3053 
3054  free_irq:
3055 	pci_free_irq_vectors(pdev);
3056  disable:
3057 	pci_disable_device(pdev);
3058 	return result;
3059 }
3060 
nvme_dev_unmap(struct nvme_dev * dev)3061 static void nvme_dev_unmap(struct nvme_dev *dev)
3062 {
3063 	if (dev->bar)
3064 		iounmap(dev->bar);
3065 	pci_release_mem_regions(to_pci_dev(dev->dev));
3066 }
3067 
nvme_pci_ctrl_is_dead(struct nvme_dev * dev)3068 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
3069 {
3070 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3071 	u32 csts;
3072 
3073 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
3074 		return true;
3075 	if (pdev->error_state != pci_channel_io_normal)
3076 		return true;
3077 
3078 	csts = readl(dev->bar + NVME_REG_CSTS);
3079 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
3080 }
3081 
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)3082 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
3083 {
3084 	enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
3085 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3086 	bool dead;
3087 
3088 	mutex_lock(&dev->shutdown_lock);
3089 	dead = nvme_pci_ctrl_is_dead(dev);
3090 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
3091 		if (pci_is_enabled(pdev))
3092 			nvme_start_freeze(&dev->ctrl);
3093 		/*
3094 		 * Give the controller a chance to complete all entered requests
3095 		 * if doing a safe shutdown.
3096 		 */
3097 		if (!dead && shutdown)
3098 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
3099 	}
3100 
3101 	nvme_quiesce_io_queues(&dev->ctrl);
3102 
3103 	if (!dead && dev->ctrl.queue_count > 0) {
3104 		nvme_delete_io_queues(dev);
3105 		nvme_disable_ctrl(&dev->ctrl, shutdown);
3106 		nvme_poll_irqdisable(&dev->queues[0]);
3107 	}
3108 	nvme_suspend_io_queues(dev);
3109 	nvme_suspend_queue(dev, 0);
3110 	pci_free_irq_vectors(pdev);
3111 	if (pci_is_enabled(pdev))
3112 		pci_disable_device(pdev);
3113 	nvme_reap_pending_cqes(dev);
3114 
3115 	nvme_cancel_tagset(&dev->ctrl);
3116 	nvme_cancel_admin_tagset(&dev->ctrl);
3117 
3118 	/*
3119 	 * The driver will not be starting up queues again if shutting down so
3120 	 * must flush all entered requests to their failed completion to avoid
3121 	 * deadlocking blk-mq hot-cpu notifier.
3122 	 */
3123 	if (shutdown) {
3124 		nvme_unquiesce_io_queues(&dev->ctrl);
3125 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
3126 			nvme_unquiesce_admin_queue(&dev->ctrl);
3127 	}
3128 	mutex_unlock(&dev->shutdown_lock);
3129 }
3130 
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)3131 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
3132 {
3133 	if (!nvme_wait_reset(&dev->ctrl))
3134 		return -EBUSY;
3135 	nvme_dev_disable(dev, shutdown);
3136 	return 0;
3137 }
3138 
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)3139 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
3140 {
3141 	size_t alloc_size = sizeof(struct nvme_dma_vec) * NVME_MAX_SEGS;
3142 
3143 	dev->dmavec_mempool = mempool_create_node(1,
3144 			mempool_kmalloc, mempool_kfree,
3145 			(void *)alloc_size, GFP_KERNEL,
3146 			dev_to_node(dev->dev));
3147 	if (!dev->dmavec_mempool)
3148 		return -ENOMEM;
3149 	return 0;
3150 }
3151 
nvme_free_tagset(struct nvme_dev * dev)3152 static void nvme_free_tagset(struct nvme_dev *dev)
3153 {
3154 	if (dev->tagset.tags)
3155 		nvme_remove_io_tag_set(&dev->ctrl);
3156 	dev->ctrl.tagset = NULL;
3157 }
3158 
3159 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)3160 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
3161 {
3162 	struct nvme_dev *dev = to_nvme_dev(ctrl);
3163 
3164 	nvme_free_tagset(dev);
3165 	put_device(dev->dev);
3166 	kfree(dev->queues);
3167 	kfree(dev);
3168 }
3169 
nvme_reset_work(struct work_struct * work)3170 static void nvme_reset_work(struct work_struct *work)
3171 {
3172 	struct nvme_dev *dev =
3173 		container_of(work, struct nvme_dev, ctrl.reset_work);
3174 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
3175 	int result;
3176 
3177 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
3178 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
3179 			 dev->ctrl.state);
3180 		result = -ENODEV;
3181 		goto out;
3182 	}
3183 
3184 	/*
3185 	 * If we're called to reset a live controller first shut it down before
3186 	 * moving on.
3187 	 */
3188 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
3189 		nvme_dev_disable(dev, false);
3190 	nvme_sync_queues(&dev->ctrl);
3191 
3192 	mutex_lock(&dev->shutdown_lock);
3193 	result = nvme_pci_enable(dev);
3194 	if (result)
3195 		goto out_unlock;
3196 	nvme_unquiesce_admin_queue(&dev->ctrl);
3197 	mutex_unlock(&dev->shutdown_lock);
3198 
3199 	/*
3200 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
3201 	 * initializing procedure here.
3202 	 */
3203 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3204 		dev_warn(dev->ctrl.device,
3205 			"failed to mark controller CONNECTING\n");
3206 		result = -EBUSY;
3207 		goto out;
3208 	}
3209 
3210 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
3211 	if (result)
3212 		goto out;
3213 
3214 	if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3215 		dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3216 	else
3217 		dev->ctrl.max_integrity_segments = 1;
3218 
3219 	nvme_dbbuf_dma_alloc(dev);
3220 
3221 	result = nvme_setup_host_mem(dev);
3222 	if (result < 0)
3223 		goto out;
3224 
3225 	nvme_update_attrs(dev);
3226 
3227 	result = nvme_setup_io_queues(dev);
3228 	if (result)
3229 		goto out;
3230 
3231 	/*
3232 	 * Freeze and update the number of I/O queues as those might have
3233 	 * changed.  If there are no I/O queues left after this reset, keep the
3234 	 * controller around but remove all namespaces.
3235 	 */
3236 	if (dev->online_queues > 1) {
3237 		nvme_dbbuf_set(dev);
3238 		nvme_unquiesce_io_queues(&dev->ctrl);
3239 		nvme_wait_freeze(&dev->ctrl);
3240 		if (!nvme_pci_update_nr_queues(dev))
3241 			goto out;
3242 		nvme_unfreeze(&dev->ctrl);
3243 	} else {
3244 		dev_warn(dev->ctrl.device, "IO queues lost\n");
3245 		nvme_mark_namespaces_dead(&dev->ctrl);
3246 		nvme_unquiesce_io_queues(&dev->ctrl);
3247 		nvme_remove_namespaces(&dev->ctrl);
3248 		nvme_free_tagset(dev);
3249 	}
3250 
3251 	/*
3252 	 * If only admin queue live, keep it to do further investigation or
3253 	 * recovery.
3254 	 */
3255 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3256 		dev_warn(dev->ctrl.device,
3257 			"failed to mark controller live state\n");
3258 		result = -ENODEV;
3259 		goto out;
3260 	}
3261 
3262 	nvme_start_ctrl(&dev->ctrl);
3263 	return;
3264 
3265  out_unlock:
3266 	mutex_unlock(&dev->shutdown_lock);
3267  out:
3268 	/*
3269 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
3270 	 * may be holding this pci_dev's device lock.
3271 	 */
3272 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
3273 		 result);
3274 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3275 	nvme_dev_disable(dev, true);
3276 	nvme_sync_queues(&dev->ctrl);
3277 	nvme_mark_namespaces_dead(&dev->ctrl);
3278 	nvme_unquiesce_io_queues(&dev->ctrl);
3279 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3280 }
3281 
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)3282 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
3283 {
3284 	*val = readl(to_nvme_dev(ctrl)->bar + off);
3285 	return 0;
3286 }
3287 
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)3288 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
3289 {
3290 	writel(val, to_nvme_dev(ctrl)->bar + off);
3291 	return 0;
3292 }
3293 
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)3294 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
3295 {
3296 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
3297 	return 0;
3298 }
3299 
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)3300 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
3301 {
3302 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3303 
3304 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
3305 }
3306 
nvme_pci_print_device_info(struct nvme_ctrl * ctrl)3307 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
3308 {
3309 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3310 	struct nvme_subsystem *subsys = ctrl->subsys;
3311 
3312 	dev_err(ctrl->device,
3313 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
3314 		pdev->vendor, pdev->device,
3315 		nvme_strlen(subsys->model, sizeof(subsys->model)),
3316 		subsys->model, nvme_strlen(subsys->firmware_rev,
3317 					   sizeof(subsys->firmware_rev)),
3318 		subsys->firmware_rev);
3319 }
3320 
nvme_pci_supports_pci_p2pdma(struct nvme_ctrl * ctrl)3321 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
3322 {
3323 	struct nvme_dev *dev = to_nvme_dev(ctrl);
3324 
3325 	return dma_pci_p2pdma_supported(dev->dev);
3326 }
3327 
nvme_pci_get_virt_boundary(struct nvme_ctrl * ctrl,bool is_admin)3328 static unsigned long nvme_pci_get_virt_boundary(struct nvme_ctrl *ctrl,
3329 						bool is_admin)
3330 {
3331 	if (!nvme_ctrl_sgl_supported(ctrl) || is_admin)
3332 		return NVME_CTRL_PAGE_SIZE - 1;
3333 	return 0;
3334 }
3335 
3336 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3337 	.name			= "pcie",
3338 	.module			= THIS_MODULE,
3339 	.flags			= NVME_F_METADATA_SUPPORTED,
3340 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
3341 	.reg_read32		= nvme_pci_reg_read32,
3342 	.reg_write32		= nvme_pci_reg_write32,
3343 	.reg_read64		= nvme_pci_reg_read64,
3344 	.free_ctrl		= nvme_pci_free_ctrl,
3345 	.submit_async_event	= nvme_pci_submit_async_event,
3346 	.subsystem_reset	= nvme_pci_subsystem_reset,
3347 	.get_address		= nvme_pci_get_address,
3348 	.print_device_info	= nvme_pci_print_device_info,
3349 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
3350 	.get_virt_boundary	= nvme_pci_get_virt_boundary,
3351 };
3352 
nvme_dev_map(struct nvme_dev * dev)3353 static int nvme_dev_map(struct nvme_dev *dev)
3354 {
3355 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3356 
3357 	if (pci_request_mem_regions(pdev, "nvme"))
3358 		return -ENODEV;
3359 
3360 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3361 		goto release;
3362 
3363 	return 0;
3364   release:
3365 	pci_release_mem_regions(pdev);
3366 	return -ENODEV;
3367 }
3368 
check_vendor_combination_bug(struct pci_dev * pdev)3369 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3370 {
3371 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3372 		/*
3373 		 * Several Samsung devices seem to drop off the PCIe bus
3374 		 * randomly when APST is on and uses the deepest sleep state.
3375 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3376 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3377 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
3378 		 * laptops.
3379 		 */
3380 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3381 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3382 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3383 			return NVME_QUIRK_NO_DEEPEST_PS;
3384 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3385 		/*
3386 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
3387 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3388 		 * within few minutes after bootup on a Coffee Lake board -
3389 		 * ASUS PRIME Z370-A
3390 		 */
3391 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3392 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3393 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3394 			return NVME_QUIRK_NO_APST;
3395 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3396 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3397 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3398 		/*
3399 		 * Forcing to use host managed nvme power settings for
3400 		 * lowest idle power with quick resume latency on
3401 		 * Samsung and Toshiba SSDs based on suspend behavior
3402 		 * on Coffee Lake board for LENOVO C640
3403 		 */
3404 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3405 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3406 			return NVME_QUIRK_SIMPLE_SUSPEND;
3407 	} else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
3408 		   pdev->device == 0x500f)) {
3409 		/*
3410 		 * Exclude some Kingston NV1 and A2000 devices from
3411 		 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
3412 		 * lot of energy with s2idle sleep on some TUXEDO platforms.
3413 		 */
3414 		if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3415 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
3416 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
3417 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
3418 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3419 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
3420 		/*
3421 		 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
3422 		 * because of high power consumption (> 2 Watt) in s2idle
3423 		 * sleep. Only some boards with Intel CPU are affected.
3424 		 * (Note for testing: Samsung 990 Evo Plus has same PCI ID)
3425 		 */
3426 		if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") ||
3427 		    dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
3428 		    dmi_match(DMI_BOARD_NAME, "GXxMRXx") ||
3429 		    dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3430 		    dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
3431 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
3432 		    dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
3433 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3434 	}
3435 
3436 	/*
3437 	 * NVMe SSD drops off the PCIe bus after system idle
3438 	 * for 10 hours on a Lenovo N60z board.
3439 	 */
3440 	if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
3441 		return NVME_QUIRK_NO_APST;
3442 
3443 	return 0;
3444 }
3445 
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)3446 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3447 		const struct pci_device_id *id)
3448 {
3449 	unsigned long quirks = id->driver_data;
3450 	int node = dev_to_node(&pdev->dev);
3451 	struct nvme_dev *dev;
3452 	int ret = -ENOMEM;
3453 
3454 	dev = kzalloc_node(struct_size(dev, descriptor_pools, nr_node_ids),
3455 			GFP_KERNEL, node);
3456 	if (!dev)
3457 		return ERR_PTR(-ENOMEM);
3458 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3459 	mutex_init(&dev->shutdown_lock);
3460 
3461 	dev->nr_write_queues = write_queues;
3462 	dev->nr_poll_queues = poll_queues;
3463 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3464 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3465 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3466 	if (!dev->queues)
3467 		goto out_free_dev;
3468 
3469 	dev->dev = get_device(&pdev->dev);
3470 
3471 	quirks |= check_vendor_combination_bug(pdev);
3472 	if (!noacpi &&
3473 	    !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3474 	    acpi_storage_d3(&pdev->dev)) {
3475 		/*
3476 		 * Some systems use a bios work around to ask for D3 on
3477 		 * platforms that support kernel managed suspend.
3478 		 */
3479 		dev_info(&pdev->dev,
3480 			 "platform quirk: setting simple suspend\n");
3481 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3482 	}
3483 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3484 			     quirks);
3485 	if (ret)
3486 		goto out_put_device;
3487 
3488 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3489 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3490 	else
3491 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3492 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3493 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3494 
3495 	/*
3496 	 * Limit the max command size to prevent iod->sg allocations going
3497 	 * over a single page.
3498 	 */
3499 	dev->ctrl.max_hw_sectors = min_t(u32,
3500 			NVME_MAX_BYTES >> SECTOR_SHIFT,
3501 			dma_opt_mapping_size(&pdev->dev) >> 9);
3502 	dev->ctrl.max_segments = NVME_MAX_SEGS;
3503 	dev->ctrl.max_integrity_segments = 1;
3504 	return dev;
3505 
3506 out_put_device:
3507 	put_device(dev->dev);
3508 	kfree(dev->queues);
3509 out_free_dev:
3510 	kfree(dev);
3511 	return ERR_PTR(ret);
3512 }
3513 
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)3514 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3515 {
3516 	struct nvme_dev *dev;
3517 	int result = -ENOMEM;
3518 
3519 	dev = nvme_pci_alloc_dev(pdev, id);
3520 	if (IS_ERR(dev))
3521 		return PTR_ERR(dev);
3522 
3523 	result = nvme_add_ctrl(&dev->ctrl);
3524 	if (result)
3525 		goto out_put_ctrl;
3526 
3527 	result = nvme_dev_map(dev);
3528 	if (result)
3529 		goto out_uninit_ctrl;
3530 
3531 	result = nvme_pci_alloc_iod_mempool(dev);
3532 	if (result)
3533 		goto out_dev_unmap;
3534 
3535 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3536 
3537 	result = nvme_pci_enable(dev);
3538 	if (result)
3539 		goto out_release_iod_mempool;
3540 
3541 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3542 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3543 	if (result)
3544 		goto out_disable;
3545 
3546 	/*
3547 	 * Mark the controller as connecting before sending admin commands to
3548 	 * allow the timeout handler to do the right thing.
3549 	 */
3550 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3551 		dev_warn(dev->ctrl.device,
3552 			"failed to mark controller CONNECTING\n");
3553 		result = -EBUSY;
3554 		goto out_disable;
3555 	}
3556 
3557 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3558 	if (result)
3559 		goto out_disable;
3560 
3561 	if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3562 		dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3563 	else
3564 		dev->ctrl.max_integrity_segments = 1;
3565 
3566 	nvme_dbbuf_dma_alloc(dev);
3567 
3568 	result = nvme_setup_host_mem(dev);
3569 	if (result < 0)
3570 		goto out_disable;
3571 
3572 	nvme_update_attrs(dev);
3573 
3574 	result = nvme_setup_io_queues(dev);
3575 	if (result)
3576 		goto out_disable;
3577 
3578 	if (dev->online_queues > 1) {
3579 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3580 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3581 		nvme_dbbuf_set(dev);
3582 	}
3583 
3584 	if (!dev->ctrl.tagset)
3585 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3586 
3587 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3588 		dev_warn(dev->ctrl.device,
3589 			"failed to mark controller live state\n");
3590 		result = -ENODEV;
3591 		goto out_disable;
3592 	}
3593 
3594 	pci_set_drvdata(pdev, dev);
3595 
3596 	nvme_start_ctrl(&dev->ctrl);
3597 	nvme_put_ctrl(&dev->ctrl);
3598 	flush_work(&dev->ctrl.scan_work);
3599 	return 0;
3600 
3601 out_disable:
3602 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3603 	nvme_dev_disable(dev, true);
3604 	nvme_free_host_mem(dev);
3605 	nvme_dev_remove_admin(dev);
3606 	nvme_dbbuf_dma_free(dev);
3607 	nvme_free_queues(dev, 0);
3608 out_release_iod_mempool:
3609 	mempool_destroy(dev->dmavec_mempool);
3610 out_dev_unmap:
3611 	nvme_dev_unmap(dev);
3612 out_uninit_ctrl:
3613 	nvme_uninit_ctrl(&dev->ctrl);
3614 out_put_ctrl:
3615 	nvme_put_ctrl(&dev->ctrl);
3616 	dev_err_probe(&pdev->dev, result, "probe failed\n");
3617 	return result;
3618 }
3619 
nvme_reset_prepare(struct pci_dev * pdev)3620 static void nvme_reset_prepare(struct pci_dev *pdev)
3621 {
3622 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3623 
3624 	/*
3625 	 * We don't need to check the return value from waiting for the reset
3626 	 * state as pci_dev device lock is held, making it impossible to race
3627 	 * with ->remove().
3628 	 */
3629 	nvme_disable_prepare_reset(dev, false);
3630 	nvme_sync_queues(&dev->ctrl);
3631 }
3632 
nvme_reset_done(struct pci_dev * pdev)3633 static void nvme_reset_done(struct pci_dev *pdev)
3634 {
3635 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3636 
3637 	if (!nvme_try_sched_reset(&dev->ctrl))
3638 		flush_work(&dev->ctrl.reset_work);
3639 }
3640 
nvme_shutdown(struct pci_dev * pdev)3641 static void nvme_shutdown(struct pci_dev *pdev)
3642 {
3643 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3644 
3645 	nvme_disable_prepare_reset(dev, true);
3646 }
3647 
3648 /*
3649  * The driver's remove may be called on a device in a partially initialized
3650  * state. This function must not have any dependencies on the device state in
3651  * order to proceed.
3652  */
nvme_remove(struct pci_dev * pdev)3653 static void nvme_remove(struct pci_dev *pdev)
3654 {
3655 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3656 
3657 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3658 	pci_set_drvdata(pdev, NULL);
3659 
3660 	if (!pci_device_is_present(pdev)) {
3661 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3662 		nvme_dev_disable(dev, true);
3663 	}
3664 
3665 	flush_work(&dev->ctrl.reset_work);
3666 	nvme_stop_ctrl(&dev->ctrl);
3667 	nvme_remove_namespaces(&dev->ctrl);
3668 	nvme_dev_disable(dev, true);
3669 	nvme_free_host_mem(dev);
3670 	nvme_dev_remove_admin(dev);
3671 	nvme_dbbuf_dma_free(dev);
3672 	nvme_free_queues(dev, 0);
3673 	mempool_destroy(dev->dmavec_mempool);
3674 	nvme_release_descriptor_pools(dev);
3675 	nvme_dev_unmap(dev);
3676 	nvme_uninit_ctrl(&dev->ctrl);
3677 }
3678 
3679 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3680 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3681 {
3682 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3683 }
3684 
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3685 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3686 {
3687 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3688 }
3689 
nvme_resume(struct device * dev)3690 static int nvme_resume(struct device *dev)
3691 {
3692 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3693 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3694 
3695 	if (ndev->last_ps == U32_MAX ||
3696 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3697 		goto reset;
3698 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3699 		goto reset;
3700 
3701 	return 0;
3702 reset:
3703 	return nvme_try_sched_reset(ctrl);
3704 }
3705 
nvme_suspend(struct device * dev)3706 static int nvme_suspend(struct device *dev)
3707 {
3708 	struct pci_dev *pdev = to_pci_dev(dev);
3709 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3710 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3711 	int ret = -EBUSY;
3712 
3713 	ndev->last_ps = U32_MAX;
3714 
3715 	/*
3716 	 * The platform does not remove power for a kernel managed suspend so
3717 	 * use host managed nvme power settings for lowest idle power if
3718 	 * possible. This should have quicker resume latency than a full device
3719 	 * shutdown.  But if the firmware is involved after the suspend or the
3720 	 * device does not support any non-default power states, shut down the
3721 	 * device fully.
3722 	 *
3723 	 * If ASPM is not enabled for the device, shut down the device and allow
3724 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3725 	 * down, so as to allow the platform to achieve its minimum low-power
3726 	 * state (which may not be possible if the link is up).
3727 	 */
3728 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3729 	    !pcie_aspm_enabled(pdev) ||
3730 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3731 		return nvme_disable_prepare_reset(ndev, true);
3732 
3733 	nvme_start_freeze(ctrl);
3734 	nvme_wait_freeze(ctrl);
3735 	nvme_sync_queues(ctrl);
3736 
3737 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3738 		goto unfreeze;
3739 
3740 	/*
3741 	 * Host memory access may not be successful in a system suspend state,
3742 	 * but the specification allows the controller to access memory in a
3743 	 * non-operational power state.
3744 	 */
3745 	if (ndev->hmb) {
3746 		ret = nvme_set_host_mem(ndev, 0);
3747 		if (ret < 0)
3748 			goto unfreeze;
3749 	}
3750 
3751 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3752 	if (ret < 0)
3753 		goto unfreeze;
3754 
3755 	/*
3756 	 * A saved state prevents pci pm from generically controlling the
3757 	 * device's power. If we're using protocol specific settings, we don't
3758 	 * want pci interfering.
3759 	 */
3760 	pci_save_state(pdev);
3761 
3762 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3763 	if (ret < 0)
3764 		goto unfreeze;
3765 
3766 	if (ret) {
3767 		/* discard the saved state */
3768 		pci_load_saved_state(pdev, NULL);
3769 
3770 		/*
3771 		 * Clearing npss forces a controller reset on resume. The
3772 		 * correct value will be rediscovered then.
3773 		 */
3774 		ret = nvme_disable_prepare_reset(ndev, true);
3775 		ctrl->npss = 0;
3776 	}
3777 unfreeze:
3778 	nvme_unfreeze(ctrl);
3779 	return ret;
3780 }
3781 
nvme_simple_suspend(struct device * dev)3782 static int nvme_simple_suspend(struct device *dev)
3783 {
3784 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3785 
3786 	return nvme_disable_prepare_reset(ndev, true);
3787 }
3788 
nvme_simple_resume(struct device * dev)3789 static int nvme_simple_resume(struct device *dev)
3790 {
3791 	struct pci_dev *pdev = to_pci_dev(dev);
3792 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3793 
3794 	return nvme_try_sched_reset(&ndev->ctrl);
3795 }
3796 
3797 static const struct dev_pm_ops nvme_dev_pm_ops = {
3798 	.suspend	= nvme_suspend,
3799 	.resume		= nvme_resume,
3800 	.freeze		= nvme_simple_suspend,
3801 	.thaw		= nvme_simple_resume,
3802 	.poweroff	= nvme_simple_suspend,
3803 	.restore	= nvme_simple_resume,
3804 };
3805 #endif /* CONFIG_PM_SLEEP */
3806 
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3807 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3808 						pci_channel_state_t state)
3809 {
3810 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3811 
3812 	/*
3813 	 * A frozen channel requires a reset. When detected, this method will
3814 	 * shutdown the controller to quiesce. The controller will be restarted
3815 	 * after the slot reset through driver's slot_reset callback.
3816 	 */
3817 	switch (state) {
3818 	case pci_channel_io_normal:
3819 		return PCI_ERS_RESULT_CAN_RECOVER;
3820 	case pci_channel_io_frozen:
3821 		dev_warn(dev->ctrl.device,
3822 			"frozen state error detected, reset controller\n");
3823 		if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3824 			nvme_dev_disable(dev, true);
3825 			return PCI_ERS_RESULT_DISCONNECT;
3826 		}
3827 		nvme_dev_disable(dev, false);
3828 		return PCI_ERS_RESULT_NEED_RESET;
3829 	case pci_channel_io_perm_failure:
3830 		dev_warn(dev->ctrl.device,
3831 			"failure state error detected, request disconnect\n");
3832 		return PCI_ERS_RESULT_DISCONNECT;
3833 	}
3834 	return PCI_ERS_RESULT_NEED_RESET;
3835 }
3836 
nvme_slot_reset(struct pci_dev * pdev)3837 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3838 {
3839 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3840 
3841 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3842 	pci_restore_state(pdev);
3843 	if (nvme_try_sched_reset(&dev->ctrl))
3844 		nvme_unquiesce_io_queues(&dev->ctrl);
3845 	return PCI_ERS_RESULT_RECOVERED;
3846 }
3847 
nvme_error_resume(struct pci_dev * pdev)3848 static void nvme_error_resume(struct pci_dev *pdev)
3849 {
3850 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3851 
3852 	flush_work(&dev->ctrl.reset_work);
3853 }
3854 
3855 static const struct pci_error_handlers nvme_err_handler = {
3856 	.error_detected	= nvme_error_detected,
3857 	.slot_reset	= nvme_slot_reset,
3858 	.resume		= nvme_error_resume,
3859 	.reset_prepare	= nvme_reset_prepare,
3860 	.reset_done	= nvme_reset_done,
3861 };
3862 
3863 static const struct pci_device_id nvme_id_table[] = {
3864 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3865 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3866 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3867 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3868 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3869 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3870 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3871 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3872 				NVME_QUIRK_IGNORE_DEV_SUBNQN |
3873 				NVME_QUIRK_BOGUS_NID, },
3874 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3875 		.driver_data = NVME_QUIRK_STRIPE_SIZE, },
3876 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3877 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3878 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3879 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3880 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3881 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3882 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3883 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3884 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3885 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3886 				NVME_QUIRK_BOGUS_NID, },
3887 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3888 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3889 	{ PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3890 		.driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, },
3891 	{ PCI_DEVICE(0x126f, 0x1001),	/* Silicon Motion generic */
3892 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3893 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3894 	{ PCI_DEVICE(0x126f, 0x2262),	/* Silicon Motion generic */
3895 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3896 				NVME_QUIRK_BOGUS_NID, },
3897 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3898 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3899 				NVME_QUIRK_BOGUS_NID, },
3900 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3901 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3902 				NVME_QUIRK_NO_NS_DESC_LIST, },
3903 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3904 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3905 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3906 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3907 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3908 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3909 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3910 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3911 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3912 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3913 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3914 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3915 	{ PCI_DEVICE(0x15b7, 0x5008),   /* Sandisk SN530 */
3916 		.driver_data = NVME_QUIRK_BROKEN_MSI },
3917 	{ PCI_DEVICE(0x15b7, 0x5009),   /* Sandisk SN550 */
3918 		.driver_data = NVME_QUIRK_BROKEN_MSI |
3919 				NVME_QUIRK_NO_DEEPEST_PS },
3920 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3921 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3922 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3923 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3924 				NVME_QUIRK_BOGUS_NID, },
3925 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3926 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3927 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3928 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3929 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3930 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3931 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3932 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3933 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3934 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3935 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3936 				NVME_QUIRK_BOGUS_NID, },
3937 	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3938 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3939 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3940 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3941 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3942 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3943 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3944 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3945 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3946 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3947 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3948 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3949 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3950 	{ PCI_DEVICE(0x1c5c, 0x1D59),   /* SK Hynix BC901 */
3951 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3952 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3953 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3954 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3955 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3956 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3957 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3958 				NVME_QUIRK_BOGUS_NID, },
3959 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3960 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3961 	{ PCI_DEVICE(0x144d, 0xa802),   /* Samsung SM953 */
3962 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3963 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3964 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3965 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3966 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3967 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3968 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3969 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3970 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3971 	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3972 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3973 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3974 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3975 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3976 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3977 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3978 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3979 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3980 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3981 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3982 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3983 	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3984 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3985 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3986 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3987 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3988 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3989 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3990 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3991 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3992 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3993 	{ PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
3994 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3995 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3996 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3997 	{ PCI_DEVICE(0x1dbe, 0x5216),   /* Acer/INNOGRIT FA100/5216 NVMe SSD */
3998 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3999 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
4000 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4001 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
4002 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
4003 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
4004 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
4005 	{ PCI_DEVICE(0x1fa0, 0x2283),   /* Wodposit WPBSNM8-256GTP */
4006 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
4007 	{ PCI_DEVICE(0x025e, 0xf1ac),   /* SOLIDIGM  P44 pro SSDPFKKW020X7  */
4008 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
4009 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
4010 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4011 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
4012 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4013 	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
4014 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4015 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
4016 		.driver_data = NVME_QUIRK_BOGUS_NID |
4017 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
4018 	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
4019 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4020 	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
4021 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4022 	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
4023 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4024 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
4025 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4026 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
4027 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4028 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
4029 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4030 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
4031 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4032 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
4033 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4034 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
4035 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4036 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
4037 		/*
4038 		 * Fix for the Apple controller found in the MacBook8,1 and
4039 		 * some MacBook7,1 to avoid controller resets and data loss.
4040 		 */
4041 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
4042 				NVME_QUIRK_QDEPTH_ONE },
4043 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
4044 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
4045 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
4046 				NVME_QUIRK_128_BYTES_SQES |
4047 				NVME_QUIRK_SHARED_TAGS |
4048 				NVME_QUIRK_SKIP_CID_GEN |
4049 				NVME_QUIRK_IDENTIFY_CNS },
4050 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
4051 	{ 0, }
4052 };
4053 MODULE_DEVICE_TABLE(pci, nvme_id_table);
4054 
4055 static struct pci_driver nvme_driver = {
4056 	.name		= "nvme",
4057 	.id_table	= nvme_id_table,
4058 	.probe		= nvme_probe,
4059 	.remove		= nvme_remove,
4060 	.shutdown	= nvme_shutdown,
4061 	.driver		= {
4062 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
4063 #ifdef CONFIG_PM_SLEEP
4064 		.pm		= &nvme_dev_pm_ops,
4065 #endif
4066 	},
4067 	.sriov_configure = pci_sriov_configure_simple,
4068 	.err_handler	= &nvme_err_handler,
4069 };
4070 
nvme_init(void)4071 static int __init nvme_init(void)
4072 {
4073 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
4074 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
4075 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
4076 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
4077 
4078 	return pci_register_driver(&nvme_driver);
4079 }
4080 
nvme_exit(void)4081 static void __exit nvme_exit(void)
4082 {
4083 	pci_unregister_driver(&nvme_driver);
4084 	flush_workqueue(nvme_wq);
4085 }
4086 
4087 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
4088 MODULE_LICENSE("GPL");
4089 MODULE_VERSION("1.0");
4090 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
4091 module_init(nvme_init);
4092 module_exit(nvme_exit);
4093