1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * IEEE 802.11 defines
4 *
5 * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
6 * <jkmaline@cc.hut.fi>
7 * Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
8 * Copyright (c) 2005, Devicescape Software, Inc.
9 * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
10 * Copyright (c) 2013 - 2014 Intel Mobile Communications GmbH
11 * Copyright (c) 2016 - 2017 Intel Deutschland GmbH
12 * Copyright (c) 2018 - 2024 Intel Corporation
13 */
14
15 #ifndef LINUX_IEEE80211_H
16 #define LINUX_IEEE80211_H
17
18 #include <linux/types.h>
19 #include <linux/if_ether.h>
20 #include <linux/etherdevice.h>
21 #include <linux/bitfield.h>
22 #include <asm/byteorder.h>
23 #include <linux/unaligned.h>
24
25 /*
26 * DS bit usage
27 *
28 * TA = transmitter address
29 * RA = receiver address
30 * DA = destination address
31 * SA = source address
32 *
33 * ToDS FromDS A1(RA) A2(TA) A3 A4 Use
34 * -----------------------------------------------------------------
35 * 0 0 DA SA BSSID - IBSS/DLS
36 * 0 1 DA BSSID SA - AP -> STA
37 * 1 0 BSSID SA DA - AP <- STA
38 * 1 1 RA TA DA SA unspecified (WDS)
39 */
40
41 #define FCS_LEN 4
42
43 #define IEEE80211_FCTL_VERS 0x0003
44 #define IEEE80211_FCTL_FTYPE 0x000c
45 #define IEEE80211_FCTL_STYPE 0x00f0
46 #define IEEE80211_FCTL_TODS 0x0100
47 #define IEEE80211_FCTL_FROMDS 0x0200
48 #define IEEE80211_FCTL_MOREFRAGS 0x0400
49 #define IEEE80211_FCTL_RETRY 0x0800
50 #define IEEE80211_FCTL_PM 0x1000
51 #define IEEE80211_FCTL_MOREDATA 0x2000
52 #define IEEE80211_FCTL_PROTECTED 0x4000
53 #define IEEE80211_FCTL_ORDER 0x8000
54 #define IEEE80211_FCTL_CTL_EXT 0x0f00
55
56 #define IEEE80211_SCTL_FRAG 0x000F
57 #define IEEE80211_SCTL_SEQ 0xFFF0
58
59 #define IEEE80211_FTYPE_MGMT 0x0000
60 #define IEEE80211_FTYPE_CTL 0x0004
61 #define IEEE80211_FTYPE_DATA 0x0008
62 #define IEEE80211_FTYPE_EXT 0x000c
63
64 /* management */
65 #define IEEE80211_STYPE_ASSOC_REQ 0x0000
66 #define IEEE80211_STYPE_ASSOC_RESP 0x0010
67 #define IEEE80211_STYPE_REASSOC_REQ 0x0020
68 #define IEEE80211_STYPE_REASSOC_RESP 0x0030
69 #define IEEE80211_STYPE_PROBE_REQ 0x0040
70 #define IEEE80211_STYPE_PROBE_RESP 0x0050
71 #define IEEE80211_STYPE_BEACON 0x0080
72 #define IEEE80211_STYPE_ATIM 0x0090
73 #define IEEE80211_STYPE_DISASSOC 0x00A0
74 #define IEEE80211_STYPE_AUTH 0x00B0
75 #define IEEE80211_STYPE_DEAUTH 0x00C0
76 #define IEEE80211_STYPE_ACTION 0x00D0
77
78 /* control */
79 #define IEEE80211_STYPE_TRIGGER 0x0020
80 #define IEEE80211_STYPE_CTL_EXT 0x0060
81 #define IEEE80211_STYPE_BACK_REQ 0x0080
82 #define IEEE80211_STYPE_BACK 0x0090
83 #define IEEE80211_STYPE_PSPOLL 0x00A0
84 #define IEEE80211_STYPE_RTS 0x00B0
85 #define IEEE80211_STYPE_CTS 0x00C0
86 #define IEEE80211_STYPE_ACK 0x00D0
87 #define IEEE80211_STYPE_CFEND 0x00E0
88 #define IEEE80211_STYPE_CFENDACK 0x00F0
89
90 /* data */
91 #define IEEE80211_STYPE_DATA 0x0000
92 #define IEEE80211_STYPE_DATA_CFACK 0x0010
93 #define IEEE80211_STYPE_DATA_CFPOLL 0x0020
94 #define IEEE80211_STYPE_DATA_CFACKPOLL 0x0030
95 #define IEEE80211_STYPE_NULLFUNC 0x0040
96 #define IEEE80211_STYPE_CFACK 0x0050
97 #define IEEE80211_STYPE_CFPOLL 0x0060
98 #define IEEE80211_STYPE_CFACKPOLL 0x0070
99 #define IEEE80211_STYPE_QOS_DATA 0x0080
100 #define IEEE80211_STYPE_QOS_DATA_CFACK 0x0090
101 #define IEEE80211_STYPE_QOS_DATA_CFPOLL 0x00A0
102 #define IEEE80211_STYPE_QOS_DATA_CFACKPOLL 0x00B0
103 #define IEEE80211_STYPE_QOS_NULLFUNC 0x00C0
104 #define IEEE80211_STYPE_QOS_CFACK 0x00D0
105 #define IEEE80211_STYPE_QOS_CFPOLL 0x00E0
106 #define IEEE80211_STYPE_QOS_CFACKPOLL 0x00F0
107
108 /* extension, added by 802.11ad */
109 #define IEEE80211_STYPE_DMG_BEACON 0x0000
110 #define IEEE80211_STYPE_S1G_BEACON 0x0010
111
112 /* bits unique to S1G beacon */
113 #define IEEE80211_S1G_BCN_NEXT_TBTT 0x100
114
115 /* see 802.11ah-2016 9.9 NDP CMAC frames */
116 #define IEEE80211_S1G_1MHZ_NDP_BITS 25
117 #define IEEE80211_S1G_1MHZ_NDP_BYTES 4
118 #define IEEE80211_S1G_2MHZ_NDP_BITS 37
119 #define IEEE80211_S1G_2MHZ_NDP_BYTES 5
120
121 #define IEEE80211_NDP_FTYPE_CTS 0
122 #define IEEE80211_NDP_FTYPE_CF_END 0
123 #define IEEE80211_NDP_FTYPE_PS_POLL 1
124 #define IEEE80211_NDP_FTYPE_ACK 2
125 #define IEEE80211_NDP_FTYPE_PS_POLL_ACK 3
126 #define IEEE80211_NDP_FTYPE_BA 4
127 #define IEEE80211_NDP_FTYPE_BF_REPORT_POLL 5
128 #define IEEE80211_NDP_FTYPE_PAGING 6
129 #define IEEE80211_NDP_FTYPE_PREQ 7
130
131 #define SM64(f, v) ((((u64)v) << f##_S) & f)
132
133 /* NDP CMAC frame fields */
134 #define IEEE80211_NDP_FTYPE 0x0000000000000007
135 #define IEEE80211_NDP_FTYPE_S 0x0000000000000000
136
137 /* 1M Probe Request 11ah 9.9.3.1.1 */
138 #define IEEE80211_NDP_1M_PREQ_ANO 0x0000000000000008
139 #define IEEE80211_NDP_1M_PREQ_ANO_S 3
140 #define IEEE80211_NDP_1M_PREQ_CSSID 0x00000000000FFFF0
141 #define IEEE80211_NDP_1M_PREQ_CSSID_S 4
142 #define IEEE80211_NDP_1M_PREQ_RTYPE 0x0000000000100000
143 #define IEEE80211_NDP_1M_PREQ_RTYPE_S 20
144 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000
145 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000
146 /* 2M Probe Request 11ah 9.9.3.1.2 */
147 #define IEEE80211_NDP_2M_PREQ_ANO 0x0000000000000008
148 #define IEEE80211_NDP_2M_PREQ_ANO_S 3
149 #define IEEE80211_NDP_2M_PREQ_CSSID 0x0000000FFFFFFFF0
150 #define IEEE80211_NDP_2M_PREQ_CSSID_S 4
151 #define IEEE80211_NDP_2M_PREQ_RTYPE 0x0000001000000000
152 #define IEEE80211_NDP_2M_PREQ_RTYPE_S 36
153
154 #define IEEE80211_ANO_NETTYPE_WILD 15
155
156 /* bits unique to S1G beacon */
157 #define IEEE80211_S1G_BCN_NEXT_TBTT 0x100
158
159 /* control extension - for IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTL_EXT */
160 #define IEEE80211_CTL_EXT_POLL 0x2000
161 #define IEEE80211_CTL_EXT_SPR 0x3000
162 #define IEEE80211_CTL_EXT_GRANT 0x4000
163 #define IEEE80211_CTL_EXT_DMG_CTS 0x5000
164 #define IEEE80211_CTL_EXT_DMG_DTS 0x6000
165 #define IEEE80211_CTL_EXT_SSW 0x8000
166 #define IEEE80211_CTL_EXT_SSW_FBACK 0x9000
167 #define IEEE80211_CTL_EXT_SSW_ACK 0xa000
168
169
170 #define IEEE80211_SN_MASK ((IEEE80211_SCTL_SEQ) >> 4)
171 #define IEEE80211_MAX_SN IEEE80211_SN_MASK
172 #define IEEE80211_SN_MODULO (IEEE80211_MAX_SN + 1)
173
174
175 /* PV1 Layout IEEE 802.11-2020 9.8.3.1 */
176 #define IEEE80211_PV1_FCTL_VERS 0x0003
177 #define IEEE80211_PV1_FCTL_FTYPE 0x001c
178 #define IEEE80211_PV1_FCTL_STYPE 0x00e0
179 #define IEEE80211_PV1_FCTL_FROMDS 0x0100
180 #define IEEE80211_PV1_FCTL_MOREFRAGS 0x0200
181 #define IEEE80211_PV1_FCTL_PM 0x0400
182 #define IEEE80211_PV1_FCTL_MOREDATA 0x0800
183 #define IEEE80211_PV1_FCTL_PROTECTED 0x1000
184 #define IEEE80211_PV1_FCTL_END_SP 0x2000
185 #define IEEE80211_PV1_FCTL_RELAYED 0x4000
186 #define IEEE80211_PV1_FCTL_ACK_POLICY 0x8000
187 #define IEEE80211_PV1_FCTL_CTL_EXT 0x0f00
188
ieee80211_sn_less(u16 sn1,u16 sn2)189 static inline bool ieee80211_sn_less(u16 sn1, u16 sn2)
190 {
191 return ((sn1 - sn2) & IEEE80211_SN_MASK) > (IEEE80211_SN_MODULO >> 1);
192 }
193
ieee80211_sn_less_eq(u16 sn1,u16 sn2)194 static inline bool ieee80211_sn_less_eq(u16 sn1, u16 sn2)
195 {
196 return ((sn2 - sn1) & IEEE80211_SN_MASK) <= (IEEE80211_SN_MODULO >> 1);
197 }
198
ieee80211_sn_add(u16 sn1,u16 sn2)199 static inline u16 ieee80211_sn_add(u16 sn1, u16 sn2)
200 {
201 return (sn1 + sn2) & IEEE80211_SN_MASK;
202 }
203
ieee80211_sn_inc(u16 sn)204 static inline u16 ieee80211_sn_inc(u16 sn)
205 {
206 return ieee80211_sn_add(sn, 1);
207 }
208
ieee80211_sn_sub(u16 sn1,u16 sn2)209 static inline u16 ieee80211_sn_sub(u16 sn1, u16 sn2)
210 {
211 return (sn1 - sn2) & IEEE80211_SN_MASK;
212 }
213
214 #define IEEE80211_SEQ_TO_SN(seq) (((seq) & IEEE80211_SCTL_SEQ) >> 4)
215 #define IEEE80211_SN_TO_SEQ(ssn) (((ssn) << 4) & IEEE80211_SCTL_SEQ)
216
217 /* miscellaneous IEEE 802.11 constants */
218 #define IEEE80211_MAX_FRAG_THRESHOLD 2352
219 #define IEEE80211_MAX_RTS_THRESHOLD 2353
220 #define IEEE80211_MAX_AID 2007
221 #define IEEE80211_MAX_AID_S1G 8191
222 #define IEEE80211_MAX_TIM_LEN 251
223 #define IEEE80211_MAX_MESH_PEERINGS 63
224 /* Maximum size for the MA-UNITDATA primitive, 802.11 standard section
225 6.2.1.1.2.
226
227 802.11e clarifies the figure in section 7.1.2. The frame body is
228 up to 2304 octets long (maximum MSDU size) plus any crypt overhead. */
229 #define IEEE80211_MAX_DATA_LEN 2304
230 /* 802.11ad extends maximum MSDU size for DMG (freq > 40Ghz) networks
231 * to 7920 bytes, see 8.2.3 General frame format
232 */
233 #define IEEE80211_MAX_DATA_LEN_DMG 7920
234 /* 30 byte 4 addr hdr, 2 byte QoS, 2304 byte MSDU, 12 byte crypt, 4 byte FCS */
235 #define IEEE80211_MAX_FRAME_LEN 2352
236
237 /* Maximal size of an A-MSDU that can be transported in a HT BA session */
238 #define IEEE80211_MAX_MPDU_LEN_HT_BA 4095
239
240 /* Maximal size of an A-MSDU */
241 #define IEEE80211_MAX_MPDU_LEN_HT_3839 3839
242 #define IEEE80211_MAX_MPDU_LEN_HT_7935 7935
243
244 #define IEEE80211_MAX_MPDU_LEN_VHT_3895 3895
245 #define IEEE80211_MAX_MPDU_LEN_VHT_7991 7991
246 #define IEEE80211_MAX_MPDU_LEN_VHT_11454 11454
247
248 #define IEEE80211_MAX_SSID_LEN 32
249
250 #define IEEE80211_MAX_MESH_ID_LEN 32
251
252 #define IEEE80211_FIRST_TSPEC_TSID 8
253 #define IEEE80211_NUM_TIDS 16
254
255 /* number of user priorities 802.11 uses */
256 #define IEEE80211_NUM_UPS 8
257 /* number of ACs */
258 #define IEEE80211_NUM_ACS 4
259
260 #define IEEE80211_QOS_CTL_LEN 2
261 /* 1d tag mask */
262 #define IEEE80211_QOS_CTL_TAG1D_MASK 0x0007
263 /* TID mask */
264 #define IEEE80211_QOS_CTL_TID_MASK 0x000f
265 /* EOSP */
266 #define IEEE80211_QOS_CTL_EOSP 0x0010
267 /* ACK policy */
268 #define IEEE80211_QOS_CTL_ACK_POLICY_NORMAL 0x0000
269 #define IEEE80211_QOS_CTL_ACK_POLICY_NOACK 0x0020
270 #define IEEE80211_QOS_CTL_ACK_POLICY_NO_EXPL 0x0040
271 #define IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK 0x0060
272 #define IEEE80211_QOS_CTL_ACK_POLICY_MASK 0x0060
273 /* A-MSDU 802.11n */
274 #define IEEE80211_QOS_CTL_A_MSDU_PRESENT 0x0080
275 /* Mesh Control 802.11s */
276 #define IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT 0x0100
277
278 /* Mesh Power Save Level */
279 #define IEEE80211_QOS_CTL_MESH_PS_LEVEL 0x0200
280 /* Mesh Receiver Service Period Initiated */
281 #define IEEE80211_QOS_CTL_RSPI 0x0400
282
283 /* U-APSD queue for WMM IEs sent by AP */
284 #define IEEE80211_WMM_IE_AP_QOSINFO_UAPSD (1<<7)
285 #define IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK 0x0f
286
287 /* U-APSD queues for WMM IEs sent by STA */
288 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VO (1<<0)
289 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VI (1<<1)
290 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BK (1<<2)
291 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BE (1<<3)
292 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_MASK 0x0f
293
294 /* U-APSD max SP length for WMM IEs sent by STA */
295 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL 0x00
296 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_2 0x01
297 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_4 0x02
298 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_6 0x03
299 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_MASK 0x03
300 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT 5
301
302 #define IEEE80211_HT_CTL_LEN 4
303
304 /* trigger type within common_info of trigger frame */
305 #define IEEE80211_TRIGGER_TYPE_MASK 0xf
306 #define IEEE80211_TRIGGER_TYPE_BASIC 0x0
307 #define IEEE80211_TRIGGER_TYPE_BFRP 0x1
308 #define IEEE80211_TRIGGER_TYPE_MU_BAR 0x2
309 #define IEEE80211_TRIGGER_TYPE_MU_RTS 0x3
310 #define IEEE80211_TRIGGER_TYPE_BSRP 0x4
311 #define IEEE80211_TRIGGER_TYPE_GCR_MU_BAR 0x5
312 #define IEEE80211_TRIGGER_TYPE_BQRP 0x6
313 #define IEEE80211_TRIGGER_TYPE_NFRP 0x7
314
315 /* UL-bandwidth within common_info of trigger frame */
316 #define IEEE80211_TRIGGER_ULBW_MASK 0xc0000
317 #define IEEE80211_TRIGGER_ULBW_20MHZ 0x0
318 #define IEEE80211_TRIGGER_ULBW_40MHZ 0x1
319 #define IEEE80211_TRIGGER_ULBW_80MHZ 0x2
320 #define IEEE80211_TRIGGER_ULBW_160_80P80MHZ 0x3
321
322 struct ieee80211_hdr {
323 __le16 frame_control;
324 __le16 duration_id;
325 struct_group(addrs,
326 u8 addr1[ETH_ALEN];
327 u8 addr2[ETH_ALEN];
328 u8 addr3[ETH_ALEN];
329 );
330 __le16 seq_ctrl;
331 u8 addr4[ETH_ALEN];
332 } __packed __aligned(2);
333
334 struct ieee80211_hdr_3addr {
335 __le16 frame_control;
336 __le16 duration_id;
337 u8 addr1[ETH_ALEN];
338 u8 addr2[ETH_ALEN];
339 u8 addr3[ETH_ALEN];
340 __le16 seq_ctrl;
341 } __packed __aligned(2);
342
343 struct ieee80211_qos_hdr {
344 __le16 frame_control;
345 __le16 duration_id;
346 u8 addr1[ETH_ALEN];
347 u8 addr2[ETH_ALEN];
348 u8 addr3[ETH_ALEN];
349 __le16 seq_ctrl;
350 __le16 qos_ctrl;
351 } __packed __aligned(2);
352
353 struct ieee80211_qos_hdr_4addr {
354 __le16 frame_control;
355 __le16 duration_id;
356 u8 addr1[ETH_ALEN];
357 u8 addr2[ETH_ALEN];
358 u8 addr3[ETH_ALEN];
359 __le16 seq_ctrl;
360 u8 addr4[ETH_ALEN];
361 __le16 qos_ctrl;
362 } __packed __aligned(2);
363
364 struct ieee80211_trigger {
365 __le16 frame_control;
366 __le16 duration;
367 u8 ra[ETH_ALEN];
368 u8 ta[ETH_ALEN];
369 __le64 common_info;
370 u8 variable[];
371 } __packed __aligned(2);
372
373 /**
374 * ieee80211_has_tods - check if IEEE80211_FCTL_TODS is set
375 * @fc: frame control bytes in little-endian byteorder
376 * Return: whether or not the frame has to-DS set
377 */
ieee80211_has_tods(__le16 fc)378 static inline bool ieee80211_has_tods(__le16 fc)
379 {
380 return (fc & cpu_to_le16(IEEE80211_FCTL_TODS)) != 0;
381 }
382
383 /**
384 * ieee80211_has_fromds - check if IEEE80211_FCTL_FROMDS is set
385 * @fc: frame control bytes in little-endian byteorder
386 * Return: whether or not the frame has from-DS set
387 */
ieee80211_has_fromds(__le16 fc)388 static inline bool ieee80211_has_fromds(__le16 fc)
389 {
390 return (fc & cpu_to_le16(IEEE80211_FCTL_FROMDS)) != 0;
391 }
392
393 /**
394 * ieee80211_has_a4 - check if IEEE80211_FCTL_TODS and IEEE80211_FCTL_FROMDS are set
395 * @fc: frame control bytes in little-endian byteorder
396 * Return: whether or not it's a 4-address frame (from-DS and to-DS set)
397 */
ieee80211_has_a4(__le16 fc)398 static inline bool ieee80211_has_a4(__le16 fc)
399 {
400 __le16 tmp = cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS);
401 return (fc & tmp) == tmp;
402 }
403
404 /**
405 * ieee80211_has_morefrags - check if IEEE80211_FCTL_MOREFRAGS is set
406 * @fc: frame control bytes in little-endian byteorder
407 * Return: whether or not the frame has more fragments (more frags bit set)
408 */
ieee80211_has_morefrags(__le16 fc)409 static inline bool ieee80211_has_morefrags(__le16 fc)
410 {
411 return (fc & cpu_to_le16(IEEE80211_FCTL_MOREFRAGS)) != 0;
412 }
413
414 /**
415 * ieee80211_has_retry - check if IEEE80211_FCTL_RETRY is set
416 * @fc: frame control bytes in little-endian byteorder
417 * Return: whether or not the retry flag is set
418 */
ieee80211_has_retry(__le16 fc)419 static inline bool ieee80211_has_retry(__le16 fc)
420 {
421 return (fc & cpu_to_le16(IEEE80211_FCTL_RETRY)) != 0;
422 }
423
424 /**
425 * ieee80211_has_pm - check if IEEE80211_FCTL_PM is set
426 * @fc: frame control bytes in little-endian byteorder
427 * Return: whether or not the power management flag is set
428 */
ieee80211_has_pm(__le16 fc)429 static inline bool ieee80211_has_pm(__le16 fc)
430 {
431 return (fc & cpu_to_le16(IEEE80211_FCTL_PM)) != 0;
432 }
433
434 /**
435 * ieee80211_has_moredata - check if IEEE80211_FCTL_MOREDATA is set
436 * @fc: frame control bytes in little-endian byteorder
437 * Return: whether or not the more data flag is set
438 */
ieee80211_has_moredata(__le16 fc)439 static inline bool ieee80211_has_moredata(__le16 fc)
440 {
441 return (fc & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) != 0;
442 }
443
444 /**
445 * ieee80211_has_protected - check if IEEE80211_FCTL_PROTECTED is set
446 * @fc: frame control bytes in little-endian byteorder
447 * Return: whether or not the protected flag is set
448 */
ieee80211_has_protected(__le16 fc)449 static inline bool ieee80211_has_protected(__le16 fc)
450 {
451 return (fc & cpu_to_le16(IEEE80211_FCTL_PROTECTED)) != 0;
452 }
453
454 /**
455 * ieee80211_has_order - check if IEEE80211_FCTL_ORDER is set
456 * @fc: frame control bytes in little-endian byteorder
457 * Return: whether or not the order flag is set
458 */
ieee80211_has_order(__le16 fc)459 static inline bool ieee80211_has_order(__le16 fc)
460 {
461 return (fc & cpu_to_le16(IEEE80211_FCTL_ORDER)) != 0;
462 }
463
464 /**
465 * ieee80211_is_mgmt - check if type is IEEE80211_FTYPE_MGMT
466 * @fc: frame control bytes in little-endian byteorder
467 * Return: whether or not the frame type is management
468 */
ieee80211_is_mgmt(__le16 fc)469 static inline bool ieee80211_is_mgmt(__le16 fc)
470 {
471 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
472 cpu_to_le16(IEEE80211_FTYPE_MGMT);
473 }
474
475 /**
476 * ieee80211_is_ctl - check if type is IEEE80211_FTYPE_CTL
477 * @fc: frame control bytes in little-endian byteorder
478 * Return: whether or not the frame type is control
479 */
ieee80211_is_ctl(__le16 fc)480 static inline bool ieee80211_is_ctl(__le16 fc)
481 {
482 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
483 cpu_to_le16(IEEE80211_FTYPE_CTL);
484 }
485
486 /**
487 * ieee80211_is_data - check if type is IEEE80211_FTYPE_DATA
488 * @fc: frame control bytes in little-endian byteorder
489 * Return: whether or not the frame is a data frame
490 */
ieee80211_is_data(__le16 fc)491 static inline bool ieee80211_is_data(__le16 fc)
492 {
493 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
494 cpu_to_le16(IEEE80211_FTYPE_DATA);
495 }
496
497 /**
498 * ieee80211_is_ext - check if type is IEEE80211_FTYPE_EXT
499 * @fc: frame control bytes in little-endian byteorder
500 * Return: whether or not the frame type is extended
501 */
ieee80211_is_ext(__le16 fc)502 static inline bool ieee80211_is_ext(__le16 fc)
503 {
504 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
505 cpu_to_le16(IEEE80211_FTYPE_EXT);
506 }
507
508
509 /**
510 * ieee80211_is_data_qos - check if type is IEEE80211_FTYPE_DATA and IEEE80211_STYPE_QOS_DATA is set
511 * @fc: frame control bytes in little-endian byteorder
512 * Return: whether or not the frame is a QoS data frame
513 */
ieee80211_is_data_qos(__le16 fc)514 static inline bool ieee80211_is_data_qos(__le16 fc)
515 {
516 /*
517 * mask with QOS_DATA rather than IEEE80211_FCTL_STYPE as we just need
518 * to check the one bit
519 */
520 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_STYPE_QOS_DATA)) ==
521 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA);
522 }
523
524 /**
525 * ieee80211_is_data_present - check if type is IEEE80211_FTYPE_DATA and has data
526 * @fc: frame control bytes in little-endian byteorder
527 * Return: whether or not the frame is a QoS data frame that has data
528 * (i.e. is not null data)
529 */
ieee80211_is_data_present(__le16 fc)530 static inline bool ieee80211_is_data_present(__le16 fc)
531 {
532 /*
533 * mask with 0x40 and test that that bit is clear to only return true
534 * for the data-containing substypes.
535 */
536 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 0x40)) ==
537 cpu_to_le16(IEEE80211_FTYPE_DATA);
538 }
539
540 /**
541 * ieee80211_is_assoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_REQ
542 * @fc: frame control bytes in little-endian byteorder
543 * Return: whether or not the frame is an association request
544 */
ieee80211_is_assoc_req(__le16 fc)545 static inline bool ieee80211_is_assoc_req(__le16 fc)
546 {
547 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
548 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ);
549 }
550
551 /**
552 * ieee80211_is_assoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_RESP
553 * @fc: frame control bytes in little-endian byteorder
554 * Return: whether or not the frame is an association response
555 */
ieee80211_is_assoc_resp(__le16 fc)556 static inline bool ieee80211_is_assoc_resp(__le16 fc)
557 {
558 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
559 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_RESP);
560 }
561
562 /**
563 * ieee80211_is_reassoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_REQ
564 * @fc: frame control bytes in little-endian byteorder
565 * Return: whether or not the frame is a reassociation request
566 */
ieee80211_is_reassoc_req(__le16 fc)567 static inline bool ieee80211_is_reassoc_req(__le16 fc)
568 {
569 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
570 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ);
571 }
572
573 /**
574 * ieee80211_is_reassoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_RESP
575 * @fc: frame control bytes in little-endian byteorder
576 * Return: whether or not the frame is a reassociation response
577 */
ieee80211_is_reassoc_resp(__le16 fc)578 static inline bool ieee80211_is_reassoc_resp(__le16 fc)
579 {
580 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
581 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_RESP);
582 }
583
584 /**
585 * ieee80211_is_probe_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_REQ
586 * @fc: frame control bytes in little-endian byteorder
587 * Return: whether or not the frame is a probe request
588 */
ieee80211_is_probe_req(__le16 fc)589 static inline bool ieee80211_is_probe_req(__le16 fc)
590 {
591 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
592 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ);
593 }
594
595 /**
596 * ieee80211_is_probe_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_RESP
597 * @fc: frame control bytes in little-endian byteorder
598 * Return: whether or not the frame is a probe response
599 */
ieee80211_is_probe_resp(__le16 fc)600 static inline bool ieee80211_is_probe_resp(__le16 fc)
601 {
602 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
603 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP);
604 }
605
606 /**
607 * ieee80211_is_beacon - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_BEACON
608 * @fc: frame control bytes in little-endian byteorder
609 * Return: whether or not the frame is a (regular, not S1G) beacon
610 */
ieee80211_is_beacon(__le16 fc)611 static inline bool ieee80211_is_beacon(__le16 fc)
612 {
613 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
614 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
615 }
616
617 /**
618 * ieee80211_is_s1g_beacon - check if IEEE80211_FTYPE_EXT &&
619 * IEEE80211_STYPE_S1G_BEACON
620 * @fc: frame control bytes in little-endian byteorder
621 * Return: whether or not the frame is an S1G beacon
622 */
ieee80211_is_s1g_beacon(__le16 fc)623 static inline bool ieee80211_is_s1g_beacon(__le16 fc)
624 {
625 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE |
626 IEEE80211_FCTL_STYPE)) ==
627 cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON);
628 }
629
630 /**
631 * ieee80211_is_s1g_short_beacon - check if frame is an S1G short beacon
632 * @fc: frame control bytes in little-endian byteorder
633 * Return: whether or not the frame is an S1G short beacon,
634 * i.e. it is an S1G beacon with 'next TBTT' flag set
635 */
ieee80211_is_s1g_short_beacon(__le16 fc)636 static inline bool ieee80211_is_s1g_short_beacon(__le16 fc)
637 {
638 return ieee80211_is_s1g_beacon(fc) &&
639 (fc & cpu_to_le16(IEEE80211_S1G_BCN_NEXT_TBTT));
640 }
641
642 /**
643 * ieee80211_is_atim - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ATIM
644 * @fc: frame control bytes in little-endian byteorder
645 * Return: whether or not the frame is an ATIM frame
646 */
ieee80211_is_atim(__le16 fc)647 static inline bool ieee80211_is_atim(__le16 fc)
648 {
649 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
650 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ATIM);
651 }
652
653 /**
654 * ieee80211_is_disassoc - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DISASSOC
655 * @fc: frame control bytes in little-endian byteorder
656 * Return: whether or not the frame is a disassociation frame
657 */
ieee80211_is_disassoc(__le16 fc)658 static inline bool ieee80211_is_disassoc(__le16 fc)
659 {
660 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
661 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DISASSOC);
662 }
663
664 /**
665 * ieee80211_is_auth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_AUTH
666 * @fc: frame control bytes in little-endian byteorder
667 * Return: whether or not the frame is an authentication frame
668 */
ieee80211_is_auth(__le16 fc)669 static inline bool ieee80211_is_auth(__le16 fc)
670 {
671 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
672 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH);
673 }
674
675 /**
676 * ieee80211_is_deauth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DEAUTH
677 * @fc: frame control bytes in little-endian byteorder
678 * Return: whether or not the frame is a deauthentication frame
679 */
ieee80211_is_deauth(__le16 fc)680 static inline bool ieee80211_is_deauth(__le16 fc)
681 {
682 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
683 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DEAUTH);
684 }
685
686 /**
687 * ieee80211_is_action - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ACTION
688 * @fc: frame control bytes in little-endian byteorder
689 * Return: whether or not the frame is an action frame
690 */
ieee80211_is_action(__le16 fc)691 static inline bool ieee80211_is_action(__le16 fc)
692 {
693 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
694 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION);
695 }
696
697 /**
698 * ieee80211_is_back_req - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK_REQ
699 * @fc: frame control bytes in little-endian byteorder
700 * Return: whether or not the frame is a block-ACK request frame
701 */
ieee80211_is_back_req(__le16 fc)702 static inline bool ieee80211_is_back_req(__le16 fc)
703 {
704 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
705 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ);
706 }
707
708 /**
709 * ieee80211_is_back - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK
710 * @fc: frame control bytes in little-endian byteorder
711 * Return: whether or not the frame is a block-ACK frame
712 */
ieee80211_is_back(__le16 fc)713 static inline bool ieee80211_is_back(__le16 fc)
714 {
715 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
716 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK);
717 }
718
719 /**
720 * ieee80211_is_pspoll - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_PSPOLL
721 * @fc: frame control bytes in little-endian byteorder
722 * Return: whether or not the frame is a PS-poll frame
723 */
ieee80211_is_pspoll(__le16 fc)724 static inline bool ieee80211_is_pspoll(__le16 fc)
725 {
726 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
727 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL);
728 }
729
730 /**
731 * ieee80211_is_rts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_RTS
732 * @fc: frame control bytes in little-endian byteorder
733 * Return: whether or not the frame is an RTS frame
734 */
ieee80211_is_rts(__le16 fc)735 static inline bool ieee80211_is_rts(__le16 fc)
736 {
737 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
738 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
739 }
740
741 /**
742 * ieee80211_is_cts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CTS
743 * @fc: frame control bytes in little-endian byteorder
744 * Return: whether or not the frame is a CTS frame
745 */
ieee80211_is_cts(__le16 fc)746 static inline bool ieee80211_is_cts(__le16 fc)
747 {
748 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
749 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
750 }
751
752 /**
753 * ieee80211_is_ack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_ACK
754 * @fc: frame control bytes in little-endian byteorder
755 * Return: whether or not the frame is an ACK frame
756 */
ieee80211_is_ack(__le16 fc)757 static inline bool ieee80211_is_ack(__le16 fc)
758 {
759 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
760 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK);
761 }
762
763 /**
764 * ieee80211_is_cfend - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFEND
765 * @fc: frame control bytes in little-endian byteorder
766 * Return: whether or not the frame is a CF-end frame
767 */
ieee80211_is_cfend(__le16 fc)768 static inline bool ieee80211_is_cfend(__le16 fc)
769 {
770 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
771 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFEND);
772 }
773
774 /**
775 * ieee80211_is_cfendack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFENDACK
776 * @fc: frame control bytes in little-endian byteorder
777 * Return: whether or not the frame is a CF-end-ack frame
778 */
ieee80211_is_cfendack(__le16 fc)779 static inline bool ieee80211_is_cfendack(__le16 fc)
780 {
781 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
782 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFENDACK);
783 }
784
785 /**
786 * ieee80211_is_nullfunc - check if frame is a regular (non-QoS) nullfunc frame
787 * @fc: frame control bytes in little-endian byteorder
788 * Return: whether or not the frame is a nullfunc frame
789 */
ieee80211_is_nullfunc(__le16 fc)790 static inline bool ieee80211_is_nullfunc(__le16 fc)
791 {
792 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
793 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC);
794 }
795
796 /**
797 * ieee80211_is_qos_nullfunc - check if frame is a QoS nullfunc frame
798 * @fc: frame control bytes in little-endian byteorder
799 * Return: whether or not the frame is a QoS nullfunc frame
800 */
ieee80211_is_qos_nullfunc(__le16 fc)801 static inline bool ieee80211_is_qos_nullfunc(__le16 fc)
802 {
803 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
804 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC);
805 }
806
807 /**
808 * ieee80211_is_trigger - check if frame is trigger frame
809 * @fc: frame control field in little-endian byteorder
810 * Return: whether or not the frame is a trigger frame
811 */
ieee80211_is_trigger(__le16 fc)812 static inline bool ieee80211_is_trigger(__le16 fc)
813 {
814 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
815 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_TRIGGER);
816 }
817
818 /**
819 * ieee80211_is_any_nullfunc - check if frame is regular or QoS nullfunc frame
820 * @fc: frame control bytes in little-endian byteorder
821 * Return: whether or not the frame is a nullfunc or QoS nullfunc frame
822 */
ieee80211_is_any_nullfunc(__le16 fc)823 static inline bool ieee80211_is_any_nullfunc(__le16 fc)
824 {
825 return (ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc));
826 }
827
828 /**
829 * ieee80211_is_first_frag - check if IEEE80211_SCTL_FRAG is not set
830 * @seq_ctrl: frame sequence control bytes in little-endian byteorder
831 * Return: whether or not the frame is the first fragment (also true if
832 * it's not fragmented at all)
833 */
ieee80211_is_first_frag(__le16 seq_ctrl)834 static inline bool ieee80211_is_first_frag(__le16 seq_ctrl)
835 {
836 return (seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG)) == 0;
837 }
838
839 /**
840 * ieee80211_is_frag - check if a frame is a fragment
841 * @hdr: 802.11 header of the frame
842 * Return: whether or not the frame is a fragment
843 */
ieee80211_is_frag(struct ieee80211_hdr * hdr)844 static inline bool ieee80211_is_frag(struct ieee80211_hdr *hdr)
845 {
846 return ieee80211_has_morefrags(hdr->frame_control) ||
847 hdr->seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG);
848 }
849
ieee80211_get_sn(struct ieee80211_hdr * hdr)850 static inline u16 ieee80211_get_sn(struct ieee80211_hdr *hdr)
851 {
852 return le16_get_bits(hdr->seq_ctrl, IEEE80211_SCTL_SEQ);
853 }
854
855 struct ieee80211s_hdr {
856 u8 flags;
857 u8 ttl;
858 __le32 seqnum;
859 u8 eaddr1[ETH_ALEN];
860 u8 eaddr2[ETH_ALEN];
861 } __packed __aligned(2);
862
863 /* Mesh flags */
864 #define MESH_FLAGS_AE_A4 0x1
865 #define MESH_FLAGS_AE_A5_A6 0x2
866 #define MESH_FLAGS_AE 0x3
867 #define MESH_FLAGS_PS_DEEP 0x4
868
869 /**
870 * enum ieee80211_preq_flags - mesh PREQ element flags
871 *
872 * @IEEE80211_PREQ_PROACTIVE_PREP_FLAG: proactive PREP subfield
873 */
874 enum ieee80211_preq_flags {
875 IEEE80211_PREQ_PROACTIVE_PREP_FLAG = 1<<2,
876 };
877
878 /**
879 * enum ieee80211_preq_target_flags - mesh PREQ element per target flags
880 *
881 * @IEEE80211_PREQ_TO_FLAG: target only subfield
882 * @IEEE80211_PREQ_USN_FLAG: unknown target HWMP sequence number subfield
883 */
884 enum ieee80211_preq_target_flags {
885 IEEE80211_PREQ_TO_FLAG = 1<<0,
886 IEEE80211_PREQ_USN_FLAG = 1<<2,
887 };
888
889 /**
890 * struct ieee80211_quiet_ie - Quiet element
891 * @count: Quiet Count
892 * @period: Quiet Period
893 * @duration: Quiet Duration
894 * @offset: Quiet Offset
895 *
896 * This structure represents the payload of the "Quiet element" as
897 * described in IEEE Std 802.11-2020 section 9.4.2.22.
898 */
899 struct ieee80211_quiet_ie {
900 u8 count;
901 u8 period;
902 __le16 duration;
903 __le16 offset;
904 } __packed;
905
906 /**
907 * struct ieee80211_msrment_ie - Measurement element
908 * @token: Measurement Token
909 * @mode: Measurement Report Mode
910 * @type: Measurement Type
911 * @request: Measurement Request or Measurement Report
912 *
913 * This structure represents the payload of both the "Measurement
914 * Request element" and the "Measurement Report element" as described
915 * in IEEE Std 802.11-2020 sections 9.4.2.20 and 9.4.2.21.
916 */
917 struct ieee80211_msrment_ie {
918 u8 token;
919 u8 mode;
920 u8 type;
921 u8 request[];
922 } __packed;
923
924 /**
925 * struct ieee80211_channel_sw_ie - Channel Switch Announcement element
926 * @mode: Channel Switch Mode
927 * @new_ch_num: New Channel Number
928 * @count: Channel Switch Count
929 *
930 * This structure represents the payload of the "Channel Switch
931 * Announcement element" as described in IEEE Std 802.11-2020 section
932 * 9.4.2.18.
933 */
934 struct ieee80211_channel_sw_ie {
935 u8 mode;
936 u8 new_ch_num;
937 u8 count;
938 } __packed;
939
940 /**
941 * struct ieee80211_ext_chansw_ie - Extended Channel Switch Announcement element
942 * @mode: Channel Switch Mode
943 * @new_operating_class: New Operating Class
944 * @new_ch_num: New Channel Number
945 * @count: Channel Switch Count
946 *
947 * This structure represents the "Extended Channel Switch Announcement
948 * element" as described in IEEE Std 802.11-2020 section 9.4.2.52.
949 */
950 struct ieee80211_ext_chansw_ie {
951 u8 mode;
952 u8 new_operating_class;
953 u8 new_ch_num;
954 u8 count;
955 } __packed;
956
957 /**
958 * struct ieee80211_sec_chan_offs_ie - secondary channel offset IE
959 * @sec_chan_offs: secondary channel offset, uses IEEE80211_HT_PARAM_CHA_SEC_*
960 * values here
961 * This structure represents the "Secondary Channel Offset element"
962 */
963 struct ieee80211_sec_chan_offs_ie {
964 u8 sec_chan_offs;
965 } __packed;
966
967 /**
968 * struct ieee80211_mesh_chansw_params_ie - mesh channel switch parameters IE
969 * @mesh_ttl: Time To Live
970 * @mesh_flags: Flags
971 * @mesh_reason: Reason Code
972 * @mesh_pre_value: Precedence Value
973 *
974 * This structure represents the payload of the "Mesh Channel Switch
975 * Parameters element" as described in IEEE Std 802.11-2020 section
976 * 9.4.2.102.
977 */
978 struct ieee80211_mesh_chansw_params_ie {
979 u8 mesh_ttl;
980 u8 mesh_flags;
981 __le16 mesh_reason;
982 __le16 mesh_pre_value;
983 } __packed;
984
985 /**
986 * struct ieee80211_wide_bw_chansw_ie - wide bandwidth channel switch IE
987 * @new_channel_width: New Channel Width
988 * @new_center_freq_seg0: New Channel Center Frequency Segment 0
989 * @new_center_freq_seg1: New Channel Center Frequency Segment 1
990 *
991 * This structure represents the payload of the "Wide Bandwidth
992 * Channel Switch element" as described in IEEE Std 802.11-2020
993 * section 9.4.2.160.
994 */
995 struct ieee80211_wide_bw_chansw_ie {
996 u8 new_channel_width;
997 u8 new_center_freq_seg0, new_center_freq_seg1;
998 } __packed;
999
1000 /**
1001 * struct ieee80211_tim_ie - Traffic Indication Map information element
1002 * @dtim_count: DTIM Count
1003 * @dtim_period: DTIM Period
1004 * @bitmap_ctrl: Bitmap Control
1005 * @required_octet: "Syntatic sugar" to force the struct size to the
1006 * minimum valid size when carried in a non-S1G PPDU
1007 * @virtual_map: Partial Virtual Bitmap
1008 *
1009 * This structure represents the payload of the "TIM element" as
1010 * described in IEEE Std 802.11-2020 section 9.4.2.5. Note that this
1011 * definition is only applicable when the element is carried in a
1012 * non-S1G PPDU. When the TIM is carried in an S1G PPDU, the Bitmap
1013 * Control and Partial Virtual Bitmap may not be present.
1014 */
1015 struct ieee80211_tim_ie {
1016 u8 dtim_count;
1017 u8 dtim_period;
1018 u8 bitmap_ctrl;
1019 union {
1020 u8 required_octet;
1021 DECLARE_FLEX_ARRAY(u8, virtual_map);
1022 };
1023 } __packed;
1024
1025 /**
1026 * struct ieee80211_meshconf_ie - Mesh Configuration element
1027 * @meshconf_psel: Active Path Selection Protocol Identifier
1028 * @meshconf_pmetric: Active Path Selection Metric Identifier
1029 * @meshconf_congest: Congestion Control Mode Identifier
1030 * @meshconf_synch: Synchronization Method Identifier
1031 * @meshconf_auth: Authentication Protocol Identifier
1032 * @meshconf_form: Mesh Formation Info
1033 * @meshconf_cap: Mesh Capability (see &enum mesh_config_capab_flags)
1034 *
1035 * This structure represents the payload of the "Mesh Configuration
1036 * element" as described in IEEE Std 802.11-2020 section 9.4.2.97.
1037 */
1038 struct ieee80211_meshconf_ie {
1039 u8 meshconf_psel;
1040 u8 meshconf_pmetric;
1041 u8 meshconf_congest;
1042 u8 meshconf_synch;
1043 u8 meshconf_auth;
1044 u8 meshconf_form;
1045 u8 meshconf_cap;
1046 } __packed;
1047
1048 /**
1049 * enum mesh_config_capab_flags - Mesh Configuration IE capability field flags
1050 *
1051 * @IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS: STA is willing to establish
1052 * additional mesh peerings with other mesh STAs
1053 * @IEEE80211_MESHCONF_CAPAB_FORWARDING: the STA forwards MSDUs
1054 * @IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING: TBTT adjustment procedure
1055 * is ongoing
1056 * @IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL: STA is in deep sleep mode or has
1057 * neighbors in deep sleep mode
1058 *
1059 * Enumerates the "Mesh Capability" as described in IEEE Std
1060 * 802.11-2020 section 9.4.2.97.7.
1061 */
1062 enum mesh_config_capab_flags {
1063 IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS = 0x01,
1064 IEEE80211_MESHCONF_CAPAB_FORWARDING = 0x08,
1065 IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING = 0x20,
1066 IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL = 0x40,
1067 };
1068
1069 #define IEEE80211_MESHCONF_FORM_CONNECTED_TO_GATE 0x1
1070
1071 /*
1072 * mesh channel switch parameters element's flag indicator
1073 *
1074 */
1075 #define WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT BIT(0)
1076 #define WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR BIT(1)
1077 #define WLAN_EID_CHAN_SWITCH_PARAM_REASON BIT(2)
1078
1079 /**
1080 * struct ieee80211_rann_ie - RANN (root announcement) element
1081 * @rann_flags: Flags
1082 * @rann_hopcount: Hop Count
1083 * @rann_ttl: Element TTL
1084 * @rann_addr: Root Mesh STA Address
1085 * @rann_seq: HWMP Sequence Number
1086 * @rann_interval: Interval
1087 * @rann_metric: Metric
1088 *
1089 * This structure represents the payload of the "RANN element" as
1090 * described in IEEE Std 802.11-2020 section 9.4.2.111.
1091 */
1092 struct ieee80211_rann_ie {
1093 u8 rann_flags;
1094 u8 rann_hopcount;
1095 u8 rann_ttl;
1096 u8 rann_addr[ETH_ALEN];
1097 __le32 rann_seq;
1098 __le32 rann_interval;
1099 __le32 rann_metric;
1100 } __packed;
1101
1102 enum ieee80211_rann_flags {
1103 RANN_FLAG_IS_GATE = 1 << 0,
1104 };
1105
1106 enum ieee80211_ht_chanwidth_values {
1107 IEEE80211_HT_CHANWIDTH_20MHZ = 0,
1108 IEEE80211_HT_CHANWIDTH_ANY = 1,
1109 };
1110
1111 /**
1112 * enum ieee80211_vht_opmode_bits - VHT operating mode field bits
1113 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK: channel width mask
1114 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ: 20 MHz channel width
1115 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ: 40 MHz channel width
1116 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ: 80 MHz channel width
1117 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ: 160 MHz or 80+80 MHz channel width
1118 * @IEEE80211_OPMODE_NOTIF_BW_160_80P80: 160 / 80+80 MHz indicator flag
1119 * @IEEE80211_OPMODE_NOTIF_RX_NSS_MASK: number of spatial streams mask
1120 * (the NSS value is the value of this field + 1)
1121 * @IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT: number of spatial streams shift
1122 * @IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF: indicates streams in SU-MIMO PPDU
1123 * using a beamforming steering matrix
1124 */
1125 enum ieee80211_vht_opmode_bits {
1126 IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK = 0x03,
1127 IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ = 0,
1128 IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ = 1,
1129 IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ = 2,
1130 IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ = 3,
1131 IEEE80211_OPMODE_NOTIF_BW_160_80P80 = 0x04,
1132 IEEE80211_OPMODE_NOTIF_RX_NSS_MASK = 0x70,
1133 IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT = 4,
1134 IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF = 0x80,
1135 };
1136
1137 /**
1138 * enum ieee80211_s1g_chanwidth - S1G channel widths
1139 * These are defined in IEEE802.11-2016ah Table 10-20
1140 * as BSS Channel Width
1141 *
1142 * @IEEE80211_S1G_CHANWIDTH_1MHZ: 1MHz operating channel
1143 * @IEEE80211_S1G_CHANWIDTH_2MHZ: 2MHz operating channel
1144 * @IEEE80211_S1G_CHANWIDTH_4MHZ: 4MHz operating channel
1145 * @IEEE80211_S1G_CHANWIDTH_8MHZ: 8MHz operating channel
1146 * @IEEE80211_S1G_CHANWIDTH_16MHZ: 16MHz operating channel
1147 */
1148 enum ieee80211_s1g_chanwidth {
1149 IEEE80211_S1G_CHANWIDTH_1MHZ = 0,
1150 IEEE80211_S1G_CHANWIDTH_2MHZ = 1,
1151 IEEE80211_S1G_CHANWIDTH_4MHZ = 3,
1152 IEEE80211_S1G_CHANWIDTH_8MHZ = 7,
1153 IEEE80211_S1G_CHANWIDTH_16MHZ = 15,
1154 };
1155
1156 #define WLAN_SA_QUERY_TR_ID_LEN 2
1157 #define WLAN_MEMBERSHIP_LEN 8
1158 #define WLAN_USER_POSITION_LEN 16
1159
1160 /**
1161 * struct ieee80211_tpc_report_ie - TPC Report element
1162 * @tx_power: Transmit Power
1163 * @link_margin: Link Margin
1164 *
1165 * This structure represents the payload of the "TPC Report element" as
1166 * described in IEEE Std 802.11-2020 section 9.4.2.16.
1167 */
1168 struct ieee80211_tpc_report_ie {
1169 u8 tx_power;
1170 u8 link_margin;
1171 } __packed;
1172
1173 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_MASK GENMASK(2, 1)
1174 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_SHIFT 1
1175 #define IEEE80211_ADDBA_EXT_NO_FRAG BIT(0)
1176 #define IEEE80211_ADDBA_EXT_BUF_SIZE_MASK GENMASK(7, 5)
1177 #define IEEE80211_ADDBA_EXT_BUF_SIZE_SHIFT 10
1178
1179 struct ieee80211_addba_ext_ie {
1180 u8 data;
1181 } __packed;
1182
1183 /**
1184 * struct ieee80211_s1g_bcn_compat_ie - S1G Beacon Compatibility element
1185 * @compat_info: Compatibility Information
1186 * @beacon_int: Beacon Interval
1187 * @tsf_completion: TSF Completion
1188 *
1189 * This structure represents the payload of the "S1G Beacon
1190 * Compatibility element" as described in IEEE Std 802.11-2020 section
1191 * 9.4.2.196.
1192 */
1193 struct ieee80211_s1g_bcn_compat_ie {
1194 __le16 compat_info;
1195 __le16 beacon_int;
1196 __le32 tsf_completion;
1197 } __packed;
1198
1199 /**
1200 * struct ieee80211_s1g_oper_ie - S1G Operation element
1201 * @ch_width: S1G Operation Information Channel Width
1202 * @oper_class: S1G Operation Information Operating Class
1203 * @primary_ch: S1G Operation Information Primary Channel Number
1204 * @oper_ch: S1G Operation Information Channel Center Frequency
1205 * @basic_mcs_nss: Basic S1G-MCS and NSS Set
1206 *
1207 * This structure represents the payload of the "S1G Operation
1208 * element" as described in IEEE Std 802.11-2020 section 9.4.2.212.
1209 */
1210 struct ieee80211_s1g_oper_ie {
1211 u8 ch_width;
1212 u8 oper_class;
1213 u8 primary_ch;
1214 u8 oper_ch;
1215 __le16 basic_mcs_nss;
1216 } __packed;
1217
1218 /**
1219 * struct ieee80211_aid_response_ie - AID Response element
1220 * @aid: AID/Group AID
1221 * @switch_count: AID Switch Count
1222 * @response_int: AID Response Interval
1223 *
1224 * This structure represents the payload of the "AID Response element"
1225 * as described in IEEE Std 802.11-2020 section 9.4.2.194.
1226 */
1227 struct ieee80211_aid_response_ie {
1228 __le16 aid;
1229 u8 switch_count;
1230 __le16 response_int;
1231 } __packed;
1232
1233 struct ieee80211_s1g_cap {
1234 u8 capab_info[10];
1235 u8 supp_mcs_nss[5];
1236 } __packed;
1237
1238 struct ieee80211_ext {
1239 __le16 frame_control;
1240 __le16 duration;
1241 union {
1242 struct {
1243 u8 sa[ETH_ALEN];
1244 __le32 timestamp;
1245 u8 change_seq;
1246 u8 variable[0];
1247 } __packed s1g_beacon;
1248 struct {
1249 u8 sa[ETH_ALEN];
1250 __le32 timestamp;
1251 u8 change_seq;
1252 u8 next_tbtt[3];
1253 u8 variable[0];
1254 } __packed s1g_short_beacon;
1255 } u;
1256 } __packed __aligned(2);
1257
1258 #define IEEE80211_TWT_CONTROL_NDP BIT(0)
1259 #define IEEE80211_TWT_CONTROL_RESP_MODE BIT(1)
1260 #define IEEE80211_TWT_CONTROL_NEG_TYPE_BROADCAST BIT(3)
1261 #define IEEE80211_TWT_CONTROL_RX_DISABLED BIT(4)
1262 #define IEEE80211_TWT_CONTROL_WAKE_DUR_UNIT BIT(5)
1263
1264 #define IEEE80211_TWT_REQTYPE_REQUEST BIT(0)
1265 #define IEEE80211_TWT_REQTYPE_SETUP_CMD GENMASK(3, 1)
1266 #define IEEE80211_TWT_REQTYPE_TRIGGER BIT(4)
1267 #define IEEE80211_TWT_REQTYPE_IMPLICIT BIT(5)
1268 #define IEEE80211_TWT_REQTYPE_FLOWTYPE BIT(6)
1269 #define IEEE80211_TWT_REQTYPE_FLOWID GENMASK(9, 7)
1270 #define IEEE80211_TWT_REQTYPE_WAKE_INT_EXP GENMASK(14, 10)
1271 #define IEEE80211_TWT_REQTYPE_PROTECTION BIT(15)
1272
1273 enum ieee80211_twt_setup_cmd {
1274 TWT_SETUP_CMD_REQUEST,
1275 TWT_SETUP_CMD_SUGGEST,
1276 TWT_SETUP_CMD_DEMAND,
1277 TWT_SETUP_CMD_GROUPING,
1278 TWT_SETUP_CMD_ACCEPT,
1279 TWT_SETUP_CMD_ALTERNATE,
1280 TWT_SETUP_CMD_DICTATE,
1281 TWT_SETUP_CMD_REJECT,
1282 };
1283
1284 struct ieee80211_twt_params {
1285 __le16 req_type;
1286 __le64 twt;
1287 u8 min_twt_dur;
1288 __le16 mantissa;
1289 u8 channel;
1290 } __packed;
1291
1292 struct ieee80211_twt_setup {
1293 u8 dialog_token;
1294 u8 element_id;
1295 u8 length;
1296 u8 control;
1297 u8 params[];
1298 } __packed;
1299
1300 #define IEEE80211_TTLM_MAX_CNT 2
1301 #define IEEE80211_TTLM_CONTROL_DIRECTION 0x03
1302 #define IEEE80211_TTLM_CONTROL_DEF_LINK_MAP 0x04
1303 #define IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT 0x08
1304 #define IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT 0x10
1305 #define IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE 0x20
1306
1307 #define IEEE80211_TTLM_DIRECTION_DOWN 0
1308 #define IEEE80211_TTLM_DIRECTION_UP 1
1309 #define IEEE80211_TTLM_DIRECTION_BOTH 2
1310
1311 /**
1312 * struct ieee80211_ttlm_elem - TID-To-Link Mapping element
1313 *
1314 * Defined in section 9.4.2.314 in P802.11be_D4
1315 *
1316 * @control: the first part of control field
1317 * @optional: the second part of control field
1318 */
1319 struct ieee80211_ttlm_elem {
1320 u8 control;
1321 u8 optional[];
1322 } __packed;
1323
1324 /**
1325 * struct ieee80211_bss_load_elem - BSS Load elemen
1326 *
1327 * Defined in section 9.4.2.26 in IEEE 802.11-REVme D4.1
1328 *
1329 * @sta_count: total number of STAs currently associated with the AP.
1330 * @channel_util: Percentage of time that the access point sensed the channel
1331 * was busy. This value is in range [0, 255], the highest value means
1332 * 100% busy.
1333 * @avail_admission_capa: remaining amount of medium time used for admission
1334 * control.
1335 */
1336 struct ieee80211_bss_load_elem {
1337 __le16 sta_count;
1338 u8 channel_util;
1339 __le16 avail_admission_capa;
1340 } __packed;
1341
1342 struct ieee80211_mgmt {
1343 __le16 frame_control;
1344 __le16 duration;
1345 u8 da[ETH_ALEN];
1346 u8 sa[ETH_ALEN];
1347 u8 bssid[ETH_ALEN];
1348 __le16 seq_ctrl;
1349 union {
1350 struct {
1351 __le16 auth_alg;
1352 __le16 auth_transaction;
1353 __le16 status_code;
1354 /* possibly followed by Challenge text */
1355 u8 variable[];
1356 } __packed auth;
1357 struct {
1358 __le16 reason_code;
1359 } __packed deauth;
1360 struct {
1361 __le16 capab_info;
1362 __le16 listen_interval;
1363 /* followed by SSID and Supported rates */
1364 u8 variable[];
1365 } __packed assoc_req;
1366 struct {
1367 __le16 capab_info;
1368 __le16 status_code;
1369 __le16 aid;
1370 /* followed by Supported rates */
1371 u8 variable[];
1372 } __packed assoc_resp, reassoc_resp;
1373 struct {
1374 __le16 capab_info;
1375 __le16 status_code;
1376 u8 variable[];
1377 } __packed s1g_assoc_resp, s1g_reassoc_resp;
1378 struct {
1379 __le16 capab_info;
1380 __le16 listen_interval;
1381 u8 current_ap[ETH_ALEN];
1382 /* followed by SSID and Supported rates */
1383 u8 variable[];
1384 } __packed reassoc_req;
1385 struct {
1386 __le16 reason_code;
1387 } __packed disassoc;
1388 struct {
1389 __le64 timestamp;
1390 __le16 beacon_int;
1391 __le16 capab_info;
1392 /* followed by some of SSID, Supported rates,
1393 * FH Params, DS Params, CF Params, IBSS Params, TIM */
1394 u8 variable[];
1395 } __packed beacon;
1396 struct {
1397 /* only variable items: SSID, Supported rates */
1398 DECLARE_FLEX_ARRAY(u8, variable);
1399 } __packed probe_req;
1400 struct {
1401 __le64 timestamp;
1402 __le16 beacon_int;
1403 __le16 capab_info;
1404 /* followed by some of SSID, Supported rates,
1405 * FH Params, DS Params, CF Params, IBSS Params */
1406 u8 variable[];
1407 } __packed probe_resp;
1408 struct {
1409 u8 category;
1410 union {
1411 struct {
1412 u8 action_code;
1413 u8 dialog_token;
1414 u8 status_code;
1415 u8 variable[];
1416 } __packed wme_action;
1417 struct{
1418 u8 action_code;
1419 u8 variable[];
1420 } __packed chan_switch;
1421 struct{
1422 u8 action_code;
1423 struct ieee80211_ext_chansw_ie data;
1424 u8 variable[];
1425 } __packed ext_chan_switch;
1426 struct{
1427 u8 action_code;
1428 u8 dialog_token;
1429 u8 element_id;
1430 u8 length;
1431 struct ieee80211_msrment_ie msr_elem;
1432 } __packed measurement;
1433 struct{
1434 u8 action_code;
1435 u8 dialog_token;
1436 __le16 capab;
1437 __le16 timeout;
1438 __le16 start_seq_num;
1439 /* followed by BA Extension */
1440 u8 variable[];
1441 } __packed addba_req;
1442 struct{
1443 u8 action_code;
1444 u8 dialog_token;
1445 __le16 status;
1446 __le16 capab;
1447 __le16 timeout;
1448 /* followed by BA Extension */
1449 u8 variable[];
1450 } __packed addba_resp;
1451 struct{
1452 u8 action_code;
1453 __le16 params;
1454 __le16 reason_code;
1455 } __packed delba;
1456 struct {
1457 u8 action_code;
1458 u8 variable[];
1459 } __packed self_prot;
1460 struct{
1461 u8 action_code;
1462 u8 variable[];
1463 } __packed mesh_action;
1464 struct {
1465 u8 action;
1466 u8 trans_id[WLAN_SA_QUERY_TR_ID_LEN];
1467 } __packed sa_query;
1468 struct {
1469 u8 action;
1470 u8 smps_control;
1471 } __packed ht_smps;
1472 struct {
1473 u8 action_code;
1474 u8 chanwidth;
1475 } __packed ht_notify_cw;
1476 struct {
1477 u8 action_code;
1478 u8 dialog_token;
1479 __le16 capability;
1480 u8 variable[0];
1481 } __packed tdls_discover_resp;
1482 struct {
1483 u8 action_code;
1484 u8 operating_mode;
1485 } __packed vht_opmode_notif;
1486 struct {
1487 u8 action_code;
1488 u8 membership[WLAN_MEMBERSHIP_LEN];
1489 u8 position[WLAN_USER_POSITION_LEN];
1490 } __packed vht_group_notif;
1491 struct {
1492 u8 action_code;
1493 u8 dialog_token;
1494 u8 tpc_elem_id;
1495 u8 tpc_elem_length;
1496 struct ieee80211_tpc_report_ie tpc;
1497 } __packed tpc_report;
1498 struct {
1499 u8 action_code;
1500 u8 dialog_token;
1501 u8 follow_up;
1502 u8 tod[6];
1503 u8 toa[6];
1504 __le16 tod_error;
1505 __le16 toa_error;
1506 u8 variable[];
1507 } __packed ftm;
1508 struct {
1509 u8 action_code;
1510 u8 variable[];
1511 } __packed s1g;
1512 struct {
1513 u8 action_code;
1514 u8 dialog_token;
1515 u8 follow_up;
1516 u32 tod;
1517 u32 toa;
1518 u8 max_tod_error;
1519 u8 max_toa_error;
1520 } __packed wnm_timing_msr;
1521 struct {
1522 u8 action_code;
1523 u8 dialog_token;
1524 u8 variable[];
1525 } __packed ttlm_req;
1526 struct {
1527 u8 action_code;
1528 u8 dialog_token;
1529 u8 status_code;
1530 u8 variable[];
1531 } __packed ttlm_res;
1532 struct {
1533 u8 action_code;
1534 } __packed ttlm_tear_down;
1535 struct {
1536 u8 action_code;
1537 u8 dialog_token;
1538 u8 variable[];
1539 } __packed ml_reconf_req;
1540 struct {
1541 u8 action_code;
1542 u8 dialog_token;
1543 u8 count;
1544 u8 variable[];
1545 } __packed ml_reconf_resp;
1546 struct {
1547 u8 action_code;
1548 u8 variable[];
1549 } __packed epcs;
1550 } u;
1551 } __packed action;
1552 DECLARE_FLEX_ARRAY(u8, body); /* Generic frame body */
1553 } u;
1554 } __packed __aligned(2);
1555
1556 /* Supported rates membership selectors */
1557 #define BSS_MEMBERSHIP_SELECTOR_HT_PHY 127
1558 #define BSS_MEMBERSHIP_SELECTOR_VHT_PHY 126
1559 #define BSS_MEMBERSHIP_SELECTOR_GLK 125
1560 #define BSS_MEMBERSHIP_SELECTOR_EPD 124
1561 #define BSS_MEMBERSHIP_SELECTOR_SAE_H2E 123
1562 #define BSS_MEMBERSHIP_SELECTOR_HE_PHY 122
1563 #define BSS_MEMBERSHIP_SELECTOR_EHT_PHY 121
1564
1565 #define BSS_MEMBERSHIP_SELECTOR_MIN BSS_MEMBERSHIP_SELECTOR_EHT_PHY
1566
1567 /* mgmt header + 1 byte category code */
1568 #define IEEE80211_MIN_ACTION_SIZE offsetof(struct ieee80211_mgmt, u.action.u)
1569
1570
1571 /* Management MIC information element (IEEE 802.11w) */
1572 struct ieee80211_mmie {
1573 u8 element_id;
1574 u8 length;
1575 __le16 key_id;
1576 u8 sequence_number[6];
1577 u8 mic[8];
1578 } __packed;
1579
1580 /* Management MIC information element (IEEE 802.11w) for GMAC and CMAC-256 */
1581 struct ieee80211_mmie_16 {
1582 u8 element_id;
1583 u8 length;
1584 __le16 key_id;
1585 u8 sequence_number[6];
1586 u8 mic[16];
1587 } __packed;
1588
1589 struct ieee80211_vendor_ie {
1590 u8 element_id;
1591 u8 len;
1592 u8 oui[3];
1593 u8 oui_type;
1594 } __packed;
1595
1596 struct ieee80211_wmm_ac_param {
1597 u8 aci_aifsn; /* AIFSN, ACM, ACI */
1598 u8 cw; /* ECWmin, ECWmax (CW = 2^ECW - 1) */
1599 __le16 txop_limit;
1600 } __packed;
1601
1602 struct ieee80211_wmm_param_ie {
1603 u8 element_id; /* Element ID: 221 (0xdd); */
1604 u8 len; /* Length: 24 */
1605 /* required fields for WMM version 1 */
1606 u8 oui[3]; /* 00:50:f2 */
1607 u8 oui_type; /* 2 */
1608 u8 oui_subtype; /* 1 */
1609 u8 version; /* 1 for WMM version 1.0 */
1610 u8 qos_info; /* AP/STA specific QoS info */
1611 u8 reserved; /* 0 */
1612 /* AC_BE, AC_BK, AC_VI, AC_VO */
1613 struct ieee80211_wmm_ac_param ac[4];
1614 } __packed;
1615
1616 /* Control frames */
1617 struct ieee80211_rts {
1618 __le16 frame_control;
1619 __le16 duration;
1620 u8 ra[ETH_ALEN];
1621 u8 ta[ETH_ALEN];
1622 } __packed __aligned(2);
1623
1624 struct ieee80211_cts {
1625 __le16 frame_control;
1626 __le16 duration;
1627 u8 ra[ETH_ALEN];
1628 } __packed __aligned(2);
1629
1630 struct ieee80211_pspoll {
1631 __le16 frame_control;
1632 __le16 aid;
1633 u8 bssid[ETH_ALEN];
1634 u8 ta[ETH_ALEN];
1635 } __packed __aligned(2);
1636
1637 /* TDLS */
1638
1639 /* Channel switch timing */
1640 struct ieee80211_ch_switch_timing {
1641 __le16 switch_time;
1642 __le16 switch_timeout;
1643 } __packed;
1644
1645 /* Link-id information element */
1646 struct ieee80211_tdls_lnkie {
1647 u8 ie_type; /* Link Identifier IE */
1648 u8 ie_len;
1649 u8 bssid[ETH_ALEN];
1650 u8 init_sta[ETH_ALEN];
1651 u8 resp_sta[ETH_ALEN];
1652 } __packed;
1653
1654 struct ieee80211_tdls_data {
1655 u8 da[ETH_ALEN];
1656 u8 sa[ETH_ALEN];
1657 __be16 ether_type;
1658 u8 payload_type;
1659 u8 category;
1660 u8 action_code;
1661 union {
1662 struct {
1663 u8 dialog_token;
1664 __le16 capability;
1665 u8 variable[0];
1666 } __packed setup_req;
1667 struct {
1668 __le16 status_code;
1669 u8 dialog_token;
1670 __le16 capability;
1671 u8 variable[0];
1672 } __packed setup_resp;
1673 struct {
1674 __le16 status_code;
1675 u8 dialog_token;
1676 u8 variable[0];
1677 } __packed setup_cfm;
1678 struct {
1679 __le16 reason_code;
1680 u8 variable[0];
1681 } __packed teardown;
1682 struct {
1683 u8 dialog_token;
1684 u8 variable[0];
1685 } __packed discover_req;
1686 struct {
1687 u8 target_channel;
1688 u8 oper_class;
1689 u8 variable[0];
1690 } __packed chan_switch_req;
1691 struct {
1692 __le16 status_code;
1693 u8 variable[0];
1694 } __packed chan_switch_resp;
1695 } u;
1696 } __packed;
1697
1698 /*
1699 * Peer-to-Peer IE attribute related definitions.
1700 */
1701 /*
1702 * enum ieee80211_p2p_attr_id - identifies type of peer-to-peer attribute.
1703 */
1704 enum ieee80211_p2p_attr_id {
1705 IEEE80211_P2P_ATTR_STATUS = 0,
1706 IEEE80211_P2P_ATTR_MINOR_REASON,
1707 IEEE80211_P2P_ATTR_CAPABILITY,
1708 IEEE80211_P2P_ATTR_DEVICE_ID,
1709 IEEE80211_P2P_ATTR_GO_INTENT,
1710 IEEE80211_P2P_ATTR_GO_CONFIG_TIMEOUT,
1711 IEEE80211_P2P_ATTR_LISTEN_CHANNEL,
1712 IEEE80211_P2P_ATTR_GROUP_BSSID,
1713 IEEE80211_P2P_ATTR_EXT_LISTEN_TIMING,
1714 IEEE80211_P2P_ATTR_INTENDED_IFACE_ADDR,
1715 IEEE80211_P2P_ATTR_MANAGABILITY,
1716 IEEE80211_P2P_ATTR_CHANNEL_LIST,
1717 IEEE80211_P2P_ATTR_ABSENCE_NOTICE,
1718 IEEE80211_P2P_ATTR_DEVICE_INFO,
1719 IEEE80211_P2P_ATTR_GROUP_INFO,
1720 IEEE80211_P2P_ATTR_GROUP_ID,
1721 IEEE80211_P2P_ATTR_INTERFACE,
1722 IEEE80211_P2P_ATTR_OPER_CHANNEL,
1723 IEEE80211_P2P_ATTR_INVITE_FLAGS,
1724 /* 19 - 220: Reserved */
1725 IEEE80211_P2P_ATTR_VENDOR_SPECIFIC = 221,
1726
1727 IEEE80211_P2P_ATTR_MAX
1728 };
1729
1730 /* Notice of Absence attribute - described in P2P spec 4.1.14 */
1731 /* Typical max value used here */
1732 #define IEEE80211_P2P_NOA_DESC_MAX 4
1733
1734 struct ieee80211_p2p_noa_desc {
1735 u8 count;
1736 __le32 duration;
1737 __le32 interval;
1738 __le32 start_time;
1739 } __packed;
1740
1741 struct ieee80211_p2p_noa_attr {
1742 u8 index;
1743 u8 oppps_ctwindow;
1744 struct ieee80211_p2p_noa_desc desc[IEEE80211_P2P_NOA_DESC_MAX];
1745 } __packed;
1746
1747 #define IEEE80211_P2P_OPPPS_ENABLE_BIT BIT(7)
1748 #define IEEE80211_P2P_OPPPS_CTWINDOW_MASK 0x7F
1749
1750 /**
1751 * struct ieee80211_bar - Block Ack Request frame format
1752 * @frame_control: Frame Control
1753 * @duration: Duration
1754 * @ra: RA
1755 * @ta: TA
1756 * @control: BAR Control
1757 * @start_seq_num: Starting Sequence Number (see Figure 9-37)
1758 *
1759 * This structure represents the "BlockAckReq frame format"
1760 * as described in IEEE Std 802.11-2020 section 9.3.1.7.
1761 */
1762 struct ieee80211_bar {
1763 __le16 frame_control;
1764 __le16 duration;
1765 __u8 ra[ETH_ALEN];
1766 __u8 ta[ETH_ALEN];
1767 __le16 control;
1768 __le16 start_seq_num;
1769 } __packed;
1770
1771 /* 802.11 BAR control masks */
1772 #define IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL 0x0000
1773 #define IEEE80211_BAR_CTRL_MULTI_TID 0x0002
1774 #define IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA 0x0004
1775 #define IEEE80211_BAR_CTRL_TID_INFO_MASK 0xf000
1776 #define IEEE80211_BAR_CTRL_TID_INFO_SHIFT 12
1777
1778 #define IEEE80211_HT_MCS_MASK_LEN 10
1779
1780 /**
1781 * struct ieee80211_mcs_info - Supported MCS Set field
1782 * @rx_mask: RX mask
1783 * @rx_highest: highest supported RX rate. If set represents
1784 * the highest supported RX data rate in units of 1 Mbps.
1785 * If this field is 0 this value should not be used to
1786 * consider the highest RX data rate supported.
1787 * @tx_params: TX parameters
1788 * @reserved: Reserved bits
1789 *
1790 * This structure represents the "Supported MCS Set field" as
1791 * described in IEEE Std 802.11-2020 section 9.4.2.55.4.
1792 */
1793 struct ieee80211_mcs_info {
1794 u8 rx_mask[IEEE80211_HT_MCS_MASK_LEN];
1795 __le16 rx_highest;
1796 u8 tx_params;
1797 u8 reserved[3];
1798 } __packed;
1799
1800 /* 802.11n HT capability MSC set */
1801 #define IEEE80211_HT_MCS_RX_HIGHEST_MASK 0x3ff
1802 #define IEEE80211_HT_MCS_TX_DEFINED 0x01
1803 #define IEEE80211_HT_MCS_TX_RX_DIFF 0x02
1804 /* value 0 == 1 stream etc */
1805 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK 0x0C
1806 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT 2
1807 #define IEEE80211_HT_MCS_TX_MAX_STREAMS 4
1808 #define IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION 0x10
1809
1810 #define IEEE80211_HT_MCS_CHAINS(mcs) ((mcs) == 32 ? 1 : (1 + ((mcs) >> 3)))
1811
1812 /*
1813 * 802.11n D5.0 20.3.5 / 20.6 says:
1814 * - indices 0 to 7 and 32 are single spatial stream
1815 * - 8 to 31 are multiple spatial streams using equal modulation
1816 * [8..15 for two streams, 16..23 for three and 24..31 for four]
1817 * - remainder are multiple spatial streams using unequal modulation
1818 */
1819 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START 33
1820 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE \
1821 (IEEE80211_HT_MCS_UNEQUAL_MODULATION_START / 8)
1822
1823 /**
1824 * struct ieee80211_ht_cap - HT capabilities element
1825 * @cap_info: HT Capability Information
1826 * @ampdu_params_info: A-MPDU Parameters
1827 * @mcs: Supported MCS Set
1828 * @extended_ht_cap_info: HT Extended Capabilities
1829 * @tx_BF_cap_info: Transmit Beamforming Capabilities
1830 * @antenna_selection_info: ASEL Capability
1831 *
1832 * This structure represents the payload of the "HT Capabilities
1833 * element" as described in IEEE Std 802.11-2020 section 9.4.2.55.
1834 */
1835 struct ieee80211_ht_cap {
1836 __le16 cap_info;
1837 u8 ampdu_params_info;
1838
1839 /* 16 bytes MCS information */
1840 struct ieee80211_mcs_info mcs;
1841
1842 __le16 extended_ht_cap_info;
1843 __le32 tx_BF_cap_info;
1844 u8 antenna_selection_info;
1845 } __packed;
1846
1847 /* 802.11n HT capabilities masks (for cap_info) */
1848 #define IEEE80211_HT_CAP_LDPC_CODING 0x0001
1849 #define IEEE80211_HT_CAP_SUP_WIDTH_20_40 0x0002
1850 #define IEEE80211_HT_CAP_SM_PS 0x000C
1851 #define IEEE80211_HT_CAP_SM_PS_SHIFT 2
1852 #define IEEE80211_HT_CAP_GRN_FLD 0x0010
1853 #define IEEE80211_HT_CAP_SGI_20 0x0020
1854 #define IEEE80211_HT_CAP_SGI_40 0x0040
1855 #define IEEE80211_HT_CAP_TX_STBC 0x0080
1856 #define IEEE80211_HT_CAP_RX_STBC 0x0300
1857 #define IEEE80211_HT_CAP_RX_STBC_SHIFT 8
1858 #define IEEE80211_HT_CAP_DELAY_BA 0x0400
1859 #define IEEE80211_HT_CAP_MAX_AMSDU 0x0800
1860 #define IEEE80211_HT_CAP_DSSSCCK40 0x1000
1861 #define IEEE80211_HT_CAP_RESERVED 0x2000
1862 #define IEEE80211_HT_CAP_40MHZ_INTOLERANT 0x4000
1863 #define IEEE80211_HT_CAP_LSIG_TXOP_PROT 0x8000
1864
1865 /* 802.11n HT extended capabilities masks (for extended_ht_cap_info) */
1866 #define IEEE80211_HT_EXT_CAP_PCO 0x0001
1867 #define IEEE80211_HT_EXT_CAP_PCO_TIME 0x0006
1868 #define IEEE80211_HT_EXT_CAP_PCO_TIME_SHIFT 1
1869 #define IEEE80211_HT_EXT_CAP_MCS_FB 0x0300
1870 #define IEEE80211_HT_EXT_CAP_MCS_FB_SHIFT 8
1871 #define IEEE80211_HT_EXT_CAP_HTC_SUP 0x0400
1872 #define IEEE80211_HT_EXT_CAP_RD_RESPONDER 0x0800
1873
1874 /* 802.11n HT capability AMPDU settings (for ampdu_params_info) */
1875 #define IEEE80211_HT_AMPDU_PARM_FACTOR 0x03
1876 #define IEEE80211_HT_AMPDU_PARM_DENSITY 0x1C
1877 #define IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT 2
1878
1879 /*
1880 * Maximum length of AMPDU that the STA can receive in high-throughput (HT).
1881 * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
1882 */
1883 enum ieee80211_max_ampdu_length_exp {
1884 IEEE80211_HT_MAX_AMPDU_8K = 0,
1885 IEEE80211_HT_MAX_AMPDU_16K = 1,
1886 IEEE80211_HT_MAX_AMPDU_32K = 2,
1887 IEEE80211_HT_MAX_AMPDU_64K = 3
1888 };
1889
1890 /*
1891 * Maximum length of AMPDU that the STA can receive in VHT.
1892 * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
1893 */
1894 enum ieee80211_vht_max_ampdu_length_exp {
1895 IEEE80211_VHT_MAX_AMPDU_8K = 0,
1896 IEEE80211_VHT_MAX_AMPDU_16K = 1,
1897 IEEE80211_VHT_MAX_AMPDU_32K = 2,
1898 IEEE80211_VHT_MAX_AMPDU_64K = 3,
1899 IEEE80211_VHT_MAX_AMPDU_128K = 4,
1900 IEEE80211_VHT_MAX_AMPDU_256K = 5,
1901 IEEE80211_VHT_MAX_AMPDU_512K = 6,
1902 IEEE80211_VHT_MAX_AMPDU_1024K = 7
1903 };
1904
1905 #define IEEE80211_HT_MAX_AMPDU_FACTOR 13
1906
1907 /* Minimum MPDU start spacing */
1908 enum ieee80211_min_mpdu_spacing {
1909 IEEE80211_HT_MPDU_DENSITY_NONE = 0, /* No restriction */
1910 IEEE80211_HT_MPDU_DENSITY_0_25 = 1, /* 1/4 usec */
1911 IEEE80211_HT_MPDU_DENSITY_0_5 = 2, /* 1/2 usec */
1912 IEEE80211_HT_MPDU_DENSITY_1 = 3, /* 1 usec */
1913 IEEE80211_HT_MPDU_DENSITY_2 = 4, /* 2 usec */
1914 IEEE80211_HT_MPDU_DENSITY_4 = 5, /* 4 usec */
1915 IEEE80211_HT_MPDU_DENSITY_8 = 6, /* 8 usec */
1916 IEEE80211_HT_MPDU_DENSITY_16 = 7 /* 16 usec */
1917 };
1918
1919 /**
1920 * struct ieee80211_ht_operation - HT operation IE
1921 * @primary_chan: Primary Channel
1922 * @ht_param: HT Operation Information parameters
1923 * @operation_mode: HT Operation Information operation mode
1924 * @stbc_param: HT Operation Information STBC params
1925 * @basic_set: Basic HT-MCS Set
1926 *
1927 * This structure represents the payload of the "HT Operation
1928 * element" as described in IEEE Std 802.11-2020 section 9.4.2.56.
1929 */
1930 struct ieee80211_ht_operation {
1931 u8 primary_chan;
1932 u8 ht_param;
1933 __le16 operation_mode;
1934 __le16 stbc_param;
1935 u8 basic_set[16];
1936 } __packed;
1937
1938 /* for ht_param */
1939 #define IEEE80211_HT_PARAM_CHA_SEC_OFFSET 0x03
1940 #define IEEE80211_HT_PARAM_CHA_SEC_NONE 0x00
1941 #define IEEE80211_HT_PARAM_CHA_SEC_ABOVE 0x01
1942 #define IEEE80211_HT_PARAM_CHA_SEC_BELOW 0x03
1943 #define IEEE80211_HT_PARAM_CHAN_WIDTH_ANY 0x04
1944 #define IEEE80211_HT_PARAM_RIFS_MODE 0x08
1945
1946 /* for operation_mode */
1947 #define IEEE80211_HT_OP_MODE_PROTECTION 0x0003
1948 #define IEEE80211_HT_OP_MODE_PROTECTION_NONE 0
1949 #define IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER 1
1950 #define IEEE80211_HT_OP_MODE_PROTECTION_20MHZ 2
1951 #define IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED 3
1952 #define IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT 0x0004
1953 #define IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT 0x0010
1954 #define IEEE80211_HT_OP_MODE_CCFS2_SHIFT 5
1955 #define IEEE80211_HT_OP_MODE_CCFS2_MASK 0x1fe0
1956
1957 /* for stbc_param */
1958 #define IEEE80211_HT_STBC_PARAM_DUAL_BEACON 0x0040
1959 #define IEEE80211_HT_STBC_PARAM_DUAL_CTS_PROT 0x0080
1960 #define IEEE80211_HT_STBC_PARAM_STBC_BEACON 0x0100
1961 #define IEEE80211_HT_STBC_PARAM_LSIG_TXOP_FULLPROT 0x0200
1962 #define IEEE80211_HT_STBC_PARAM_PCO_ACTIVE 0x0400
1963 #define IEEE80211_HT_STBC_PARAM_PCO_PHASE 0x0800
1964
1965
1966 /* block-ack parameters */
1967 #define IEEE80211_ADDBA_PARAM_AMSDU_MASK 0x0001
1968 #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
1969 #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
1970 #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFC0
1971 #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
1972 #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
1973
1974 /*
1975 * A-MPDU buffer sizes
1976 * According to HT size varies from 8 to 64 frames
1977 * HE adds the ability to have up to 256 frames.
1978 * EHT adds the ability to have up to 1K frames.
1979 */
1980 #define IEEE80211_MIN_AMPDU_BUF 0x8
1981 #define IEEE80211_MAX_AMPDU_BUF_HT 0x40
1982 #define IEEE80211_MAX_AMPDU_BUF_HE 0x100
1983 #define IEEE80211_MAX_AMPDU_BUF_EHT 0x400
1984
1985
1986 /* Spatial Multiplexing Power Save Modes (for capability) */
1987 #define WLAN_HT_CAP_SM_PS_STATIC 0
1988 #define WLAN_HT_CAP_SM_PS_DYNAMIC 1
1989 #define WLAN_HT_CAP_SM_PS_INVALID 2
1990 #define WLAN_HT_CAP_SM_PS_DISABLED 3
1991
1992 /* for SM power control field lower two bits */
1993 #define WLAN_HT_SMPS_CONTROL_DISABLED 0
1994 #define WLAN_HT_SMPS_CONTROL_STATIC 1
1995 #define WLAN_HT_SMPS_CONTROL_DYNAMIC 3
1996
1997 /**
1998 * struct ieee80211_vht_mcs_info - VHT MCS information
1999 * @rx_mcs_map: RX MCS map 2 bits for each stream, total 8 streams
2000 * @rx_highest: Indicates highest long GI VHT PPDU data rate
2001 * STA can receive. Rate expressed in units of 1 Mbps.
2002 * If this field is 0 this value should not be used to
2003 * consider the highest RX data rate supported.
2004 * The top 3 bits of this field indicate the Maximum NSTS,total
2005 * (a beamformee capability.)
2006 * @tx_mcs_map: TX MCS map 2 bits for each stream, total 8 streams
2007 * @tx_highest: Indicates highest long GI VHT PPDU data rate
2008 * STA can transmit. Rate expressed in units of 1 Mbps.
2009 * If this field is 0 this value should not be used to
2010 * consider the highest TX data rate supported.
2011 * The top 2 bits of this field are reserved, the
2012 * 3rd bit from the top indiciates VHT Extended NSS BW
2013 * Capability.
2014 */
2015 struct ieee80211_vht_mcs_info {
2016 __le16 rx_mcs_map;
2017 __le16 rx_highest;
2018 __le16 tx_mcs_map;
2019 __le16 tx_highest;
2020 } __packed;
2021
2022 /* for rx_highest */
2023 #define IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT 13
2024 #define IEEE80211_VHT_MAX_NSTS_TOTAL_MASK (7 << IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT)
2025
2026 /* for tx_highest */
2027 #define IEEE80211_VHT_EXT_NSS_BW_CAPABLE (1 << 13)
2028
2029 /**
2030 * enum ieee80211_vht_mcs_support - VHT MCS support definitions
2031 * @IEEE80211_VHT_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
2032 * number of streams
2033 * @IEEE80211_VHT_MCS_SUPPORT_0_8: MCSes 0-8 are supported
2034 * @IEEE80211_VHT_MCS_SUPPORT_0_9: MCSes 0-9 are supported
2035 * @IEEE80211_VHT_MCS_NOT_SUPPORTED: This number of streams isn't supported
2036 *
2037 * These definitions are used in each 2-bit subfield of the @rx_mcs_map
2038 * and @tx_mcs_map fields of &struct ieee80211_vht_mcs_info, which are
2039 * both split into 8 subfields by number of streams. These values indicate
2040 * which MCSes are supported for the number of streams the value appears
2041 * for.
2042 */
2043 enum ieee80211_vht_mcs_support {
2044 IEEE80211_VHT_MCS_SUPPORT_0_7 = 0,
2045 IEEE80211_VHT_MCS_SUPPORT_0_8 = 1,
2046 IEEE80211_VHT_MCS_SUPPORT_0_9 = 2,
2047 IEEE80211_VHT_MCS_NOT_SUPPORTED = 3,
2048 };
2049
2050 /**
2051 * struct ieee80211_vht_cap - VHT capabilities
2052 *
2053 * This structure is the "VHT capabilities element" as
2054 * described in 802.11ac D3.0 8.4.2.160
2055 * @vht_cap_info: VHT capability info
2056 * @supp_mcs: VHT MCS supported rates
2057 */
2058 struct ieee80211_vht_cap {
2059 __le32 vht_cap_info;
2060 struct ieee80211_vht_mcs_info supp_mcs;
2061 } __packed;
2062
2063 /**
2064 * enum ieee80211_vht_chanwidth - VHT channel width
2065 * @IEEE80211_VHT_CHANWIDTH_USE_HT: use the HT operation IE to
2066 * determine the channel width (20 or 40 MHz)
2067 * @IEEE80211_VHT_CHANWIDTH_80MHZ: 80 MHz bandwidth
2068 * @IEEE80211_VHT_CHANWIDTH_160MHZ: 160 MHz bandwidth
2069 * @IEEE80211_VHT_CHANWIDTH_80P80MHZ: 80+80 MHz bandwidth
2070 */
2071 enum ieee80211_vht_chanwidth {
2072 IEEE80211_VHT_CHANWIDTH_USE_HT = 0,
2073 IEEE80211_VHT_CHANWIDTH_80MHZ = 1,
2074 IEEE80211_VHT_CHANWIDTH_160MHZ = 2,
2075 IEEE80211_VHT_CHANWIDTH_80P80MHZ = 3,
2076 };
2077
2078 /**
2079 * struct ieee80211_vht_operation - VHT operation IE
2080 *
2081 * This structure is the "VHT operation element" as
2082 * described in 802.11ac D3.0 8.4.2.161
2083 * @chan_width: Operating channel width
2084 * @center_freq_seg0_idx: center freq segment 0 index
2085 * @center_freq_seg1_idx: center freq segment 1 index
2086 * @basic_mcs_set: VHT Basic MCS rate set
2087 */
2088 struct ieee80211_vht_operation {
2089 u8 chan_width;
2090 u8 center_freq_seg0_idx;
2091 u8 center_freq_seg1_idx;
2092 __le16 basic_mcs_set;
2093 } __packed;
2094
2095 /**
2096 * struct ieee80211_he_cap_elem - HE capabilities element
2097 * @mac_cap_info: HE MAC Capabilities Information
2098 * @phy_cap_info: HE PHY Capabilities Information
2099 *
2100 * This structure represents the fixed fields of the payload of the
2101 * "HE capabilities element" as described in IEEE Std 802.11ax-2021
2102 * sections 9.4.2.248.2 and 9.4.2.248.3.
2103 */
2104 struct ieee80211_he_cap_elem {
2105 u8 mac_cap_info[6];
2106 u8 phy_cap_info[11];
2107 } __packed;
2108
2109 #define IEEE80211_TX_RX_MCS_NSS_DESC_MAX_LEN 5
2110
2111 /**
2112 * enum ieee80211_he_mcs_support - HE MCS support definitions
2113 * @IEEE80211_HE_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
2114 * number of streams
2115 * @IEEE80211_HE_MCS_SUPPORT_0_9: MCSes 0-9 are supported
2116 * @IEEE80211_HE_MCS_SUPPORT_0_11: MCSes 0-11 are supported
2117 * @IEEE80211_HE_MCS_NOT_SUPPORTED: This number of streams isn't supported
2118 *
2119 * These definitions are used in each 2-bit subfield of the rx_mcs_*
2120 * and tx_mcs_* fields of &struct ieee80211_he_mcs_nss_supp, which are
2121 * both split into 8 subfields by number of streams. These values indicate
2122 * which MCSes are supported for the number of streams the value appears
2123 * for.
2124 */
2125 enum ieee80211_he_mcs_support {
2126 IEEE80211_HE_MCS_SUPPORT_0_7 = 0,
2127 IEEE80211_HE_MCS_SUPPORT_0_9 = 1,
2128 IEEE80211_HE_MCS_SUPPORT_0_11 = 2,
2129 IEEE80211_HE_MCS_NOT_SUPPORTED = 3,
2130 };
2131
2132 /**
2133 * struct ieee80211_he_mcs_nss_supp - HE Tx/Rx HE MCS NSS Support Field
2134 *
2135 * This structure holds the data required for the Tx/Rx HE MCS NSS Support Field
2136 * described in P802.11ax_D2.0 section 9.4.2.237.4
2137 *
2138 * @rx_mcs_80: Rx MCS map 2 bits for each stream, total 8 streams, for channel
2139 * widths less than 80MHz.
2140 * @tx_mcs_80: Tx MCS map 2 bits for each stream, total 8 streams, for channel
2141 * widths less than 80MHz.
2142 * @rx_mcs_160: Rx MCS map 2 bits for each stream, total 8 streams, for channel
2143 * width 160MHz.
2144 * @tx_mcs_160: Tx MCS map 2 bits for each stream, total 8 streams, for channel
2145 * width 160MHz.
2146 * @rx_mcs_80p80: Rx MCS map 2 bits for each stream, total 8 streams, for
2147 * channel width 80p80MHz.
2148 * @tx_mcs_80p80: Tx MCS map 2 bits for each stream, total 8 streams, for
2149 * channel width 80p80MHz.
2150 */
2151 struct ieee80211_he_mcs_nss_supp {
2152 __le16 rx_mcs_80;
2153 __le16 tx_mcs_80;
2154 __le16 rx_mcs_160;
2155 __le16 tx_mcs_160;
2156 __le16 rx_mcs_80p80;
2157 __le16 tx_mcs_80p80;
2158 } __packed;
2159
2160 /**
2161 * struct ieee80211_he_operation - HE Operation element
2162 * @he_oper_params: HE Operation Parameters + BSS Color Information
2163 * @he_mcs_nss_set: Basic HE-MCS And NSS Set
2164 * @optional: Optional fields VHT Operation Information, Max Co-Hosted
2165 * BSSID Indicator, and 6 GHz Operation Information
2166 *
2167 * This structure represents the payload of the "HE Operation
2168 * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.249.
2169 */
2170 struct ieee80211_he_operation {
2171 __le32 he_oper_params;
2172 __le16 he_mcs_nss_set;
2173 u8 optional[];
2174 } __packed;
2175
2176 /**
2177 * struct ieee80211_he_spr - Spatial Reuse Parameter Set element
2178 * @he_sr_control: SR Control
2179 * @optional: Optional fields Non-SRG OBSS PD Max Offset, SRG OBSS PD
2180 * Min Offset, SRG OBSS PD Max Offset, SRG BSS Color
2181 * Bitmap, and SRG Partial BSSID Bitmap
2182 *
2183 * This structure represents the payload of the "Spatial Reuse
2184 * Parameter Set element" as described in IEEE Std 802.11ax-2021
2185 * section 9.4.2.252.
2186 */
2187 struct ieee80211_he_spr {
2188 u8 he_sr_control;
2189 u8 optional[];
2190 } __packed;
2191
2192 /**
2193 * struct ieee80211_he_mu_edca_param_ac_rec - MU AC Parameter Record field
2194 * @aifsn: ACI/AIFSN
2195 * @ecw_min_max: ECWmin/ECWmax
2196 * @mu_edca_timer: MU EDCA Timer
2197 *
2198 * This structure represents the "MU AC Parameter Record" as described
2199 * in IEEE Std 802.11ax-2021 section 9.4.2.251, Figure 9-788p.
2200 */
2201 struct ieee80211_he_mu_edca_param_ac_rec {
2202 u8 aifsn;
2203 u8 ecw_min_max;
2204 u8 mu_edca_timer;
2205 } __packed;
2206
2207 /**
2208 * struct ieee80211_mu_edca_param_set - MU EDCA Parameter Set element
2209 * @mu_qos_info: QoS Info
2210 * @ac_be: MU AC_BE Parameter Record
2211 * @ac_bk: MU AC_BK Parameter Record
2212 * @ac_vi: MU AC_VI Parameter Record
2213 * @ac_vo: MU AC_VO Parameter Record
2214 *
2215 * This structure represents the payload of the "MU EDCA Parameter Set
2216 * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.251.
2217 */
2218 struct ieee80211_mu_edca_param_set {
2219 u8 mu_qos_info;
2220 struct ieee80211_he_mu_edca_param_ac_rec ac_be;
2221 struct ieee80211_he_mu_edca_param_ac_rec ac_bk;
2222 struct ieee80211_he_mu_edca_param_ac_rec ac_vi;
2223 struct ieee80211_he_mu_edca_param_ac_rec ac_vo;
2224 } __packed;
2225
2226 #define IEEE80211_EHT_MCS_NSS_RX 0x0f
2227 #define IEEE80211_EHT_MCS_NSS_TX 0xf0
2228
2229 /**
2230 * struct ieee80211_eht_mcs_nss_supp_20mhz_only - EHT 20MHz only station max
2231 * supported NSS for per MCS.
2232 *
2233 * For each field below, bits 0 - 3 indicate the maximal number of spatial
2234 * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams
2235 * for Tx.
2236 *
2237 * @rx_tx_mcs7_max_nss: indicates the maximum number of spatial streams
2238 * supported for reception and the maximum number of spatial streams
2239 * supported for transmission for MCS 0 - 7.
2240 * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams
2241 * supported for reception and the maximum number of spatial streams
2242 * supported for transmission for MCS 8 - 9.
2243 * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams
2244 * supported for reception and the maximum number of spatial streams
2245 * supported for transmission for MCS 10 - 11.
2246 * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams
2247 * supported for reception and the maximum number of spatial streams
2248 * supported for transmission for MCS 12 - 13.
2249 * @rx_tx_max_nss: array of the previous fields for easier loop access
2250 */
2251 struct ieee80211_eht_mcs_nss_supp_20mhz_only {
2252 union {
2253 struct {
2254 u8 rx_tx_mcs7_max_nss;
2255 u8 rx_tx_mcs9_max_nss;
2256 u8 rx_tx_mcs11_max_nss;
2257 u8 rx_tx_mcs13_max_nss;
2258 };
2259 u8 rx_tx_max_nss[4];
2260 };
2261 };
2262
2263 /**
2264 * struct ieee80211_eht_mcs_nss_supp_bw - EHT max supported NSS per MCS (except
2265 * 20MHz only stations).
2266 *
2267 * For each field below, bits 0 - 3 indicate the maximal number of spatial
2268 * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams
2269 * for Tx.
2270 *
2271 * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams
2272 * supported for reception and the maximum number of spatial streams
2273 * supported for transmission for MCS 0 - 9.
2274 * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams
2275 * supported for reception and the maximum number of spatial streams
2276 * supported for transmission for MCS 10 - 11.
2277 * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams
2278 * supported for reception and the maximum number of spatial streams
2279 * supported for transmission for MCS 12 - 13.
2280 * @rx_tx_max_nss: array of the previous fields for easier loop access
2281 */
2282 struct ieee80211_eht_mcs_nss_supp_bw {
2283 union {
2284 struct {
2285 u8 rx_tx_mcs9_max_nss;
2286 u8 rx_tx_mcs11_max_nss;
2287 u8 rx_tx_mcs13_max_nss;
2288 };
2289 u8 rx_tx_max_nss[3];
2290 };
2291 };
2292
2293 /**
2294 * struct ieee80211_eht_cap_elem_fixed - EHT capabilities fixed data
2295 *
2296 * This structure is the "EHT Capabilities element" fixed fields as
2297 * described in P802.11be_D2.0 section 9.4.2.313.
2298 *
2299 * @mac_cap_info: MAC capabilities, see IEEE80211_EHT_MAC_CAP*
2300 * @phy_cap_info: PHY capabilities, see IEEE80211_EHT_PHY_CAP*
2301 */
2302 struct ieee80211_eht_cap_elem_fixed {
2303 u8 mac_cap_info[2];
2304 u8 phy_cap_info[9];
2305 } __packed;
2306
2307 /**
2308 * struct ieee80211_eht_cap_elem - EHT capabilities element
2309 * @fixed: fixed parts, see &ieee80211_eht_cap_elem_fixed
2310 * @optional: optional parts
2311 */
2312 struct ieee80211_eht_cap_elem {
2313 struct ieee80211_eht_cap_elem_fixed fixed;
2314
2315 /*
2316 * Followed by:
2317 * Supported EHT-MCS And NSS Set field: 4, 3, 6 or 9 octets.
2318 * EHT PPE Thresholds field: variable length.
2319 */
2320 u8 optional[];
2321 } __packed;
2322
2323 #define IEEE80211_EHT_OPER_INFO_PRESENT 0x01
2324 #define IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT 0x02
2325 #define IEEE80211_EHT_OPER_EHT_DEF_PE_DURATION 0x04
2326 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_LIMIT 0x08
2327 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_EXP_MASK 0x30
2328
2329 /**
2330 * struct ieee80211_eht_operation - eht operation element
2331 *
2332 * This structure is the "EHT Operation Element" fields as
2333 * described in P802.11be_D2.0 section 9.4.2.311
2334 *
2335 * @params: EHT operation element parameters. See &IEEE80211_EHT_OPER_*
2336 * @basic_mcs_nss: indicates the EHT-MCSs for each number of spatial streams in
2337 * EHT PPDUs that are supported by all EHT STAs in the BSS in transmit and
2338 * receive.
2339 * @optional: optional parts
2340 */
2341 struct ieee80211_eht_operation {
2342 u8 params;
2343 struct ieee80211_eht_mcs_nss_supp_20mhz_only basic_mcs_nss;
2344 u8 optional[];
2345 } __packed;
2346
2347 /**
2348 * struct ieee80211_eht_operation_info - eht operation information
2349 *
2350 * @control: EHT operation information control.
2351 * @ccfs0: defines a channel center frequency for a 20, 40, 80, 160, or 320 MHz
2352 * EHT BSS.
2353 * @ccfs1: defines a channel center frequency for a 160 or 320 MHz EHT BSS.
2354 * @optional: optional parts
2355 */
2356 struct ieee80211_eht_operation_info {
2357 u8 control;
2358 u8 ccfs0;
2359 u8 ccfs1;
2360 u8 optional[];
2361 } __packed;
2362
2363 /* 802.11ac VHT Capabilities */
2364 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895 0x00000000
2365 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991 0x00000001
2366 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 0x00000002
2367 #define IEEE80211_VHT_CAP_MAX_MPDU_MASK 0x00000003
2368 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ 0x00000004
2369 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ 0x00000008
2370 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK 0x0000000C
2371 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_SHIFT 2
2372 #define IEEE80211_VHT_CAP_RXLDPC 0x00000010
2373 #define IEEE80211_VHT_CAP_SHORT_GI_80 0x00000020
2374 #define IEEE80211_VHT_CAP_SHORT_GI_160 0x00000040
2375 #define IEEE80211_VHT_CAP_TXSTBC 0x00000080
2376 #define IEEE80211_VHT_CAP_RXSTBC_1 0x00000100
2377 #define IEEE80211_VHT_CAP_RXSTBC_2 0x00000200
2378 #define IEEE80211_VHT_CAP_RXSTBC_3 0x00000300
2379 #define IEEE80211_VHT_CAP_RXSTBC_4 0x00000400
2380 #define IEEE80211_VHT_CAP_RXSTBC_MASK 0x00000700
2381 #define IEEE80211_VHT_CAP_RXSTBC_SHIFT 8
2382 #define IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE 0x00000800
2383 #define IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE 0x00001000
2384 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT 13
2385 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK \
2386 (7 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT)
2387 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT 16
2388 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK \
2389 (7 << IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT)
2390 #define IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE 0x00080000
2391 #define IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE 0x00100000
2392 #define IEEE80211_VHT_CAP_VHT_TXOP_PS 0x00200000
2393 #define IEEE80211_VHT_CAP_HTC_VHT 0x00400000
2394 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT 23
2395 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK \
2396 (7 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT)
2397 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_UNSOL_MFB 0x08000000
2398 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB 0x0c000000
2399 #define IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN 0x10000000
2400 #define IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN 0x20000000
2401 #define IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT 30
2402 #define IEEE80211_VHT_CAP_EXT_NSS_BW_MASK 0xc0000000
2403
2404 /**
2405 * ieee80211_get_vht_max_nss - return max NSS for a given bandwidth/MCS
2406 * @cap: VHT capabilities of the peer
2407 * @bw: bandwidth to use
2408 * @mcs: MCS index to use
2409 * @ext_nss_bw_capable: indicates whether or not the local transmitter
2410 * (rate scaling algorithm) can deal with the new logic
2411 * (dot11VHTExtendedNSSBWCapable)
2412 * @max_vht_nss: current maximum NSS as advertised by the STA in
2413 * operating mode notification, can be 0 in which case the
2414 * capability data will be used to derive this (from MCS support)
2415 * Return: The maximum NSS that can be used for the given bandwidth/MCS
2416 * combination
2417 *
2418 * Due to the VHT Extended NSS Bandwidth Support, the maximum NSS can
2419 * vary for a given BW/MCS. This function parses the data.
2420 *
2421 * Note: This function is exported by cfg80211.
2422 */
2423 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2424 enum ieee80211_vht_chanwidth bw,
2425 int mcs, bool ext_nss_bw_capable,
2426 unsigned int max_vht_nss);
2427
2428 /* 802.11ax HE MAC capabilities */
2429 #define IEEE80211_HE_MAC_CAP0_HTC_HE 0x01
2430 #define IEEE80211_HE_MAC_CAP0_TWT_REQ 0x02
2431 #define IEEE80211_HE_MAC_CAP0_TWT_RES 0x04
2432 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_NOT_SUPP 0x00
2433 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_1 0x08
2434 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_2 0x10
2435 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_3 0x18
2436 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_MASK 0x18
2437 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_1 0x00
2438 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_2 0x20
2439 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_4 0x40
2440 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_8 0x60
2441 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_16 0x80
2442 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_32 0xa0
2443 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_64 0xc0
2444 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_UNLIMITED 0xe0
2445 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_MASK 0xe0
2446
2447 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_UNLIMITED 0x00
2448 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_128 0x01
2449 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_256 0x02
2450 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_512 0x03
2451 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_MASK 0x03
2452 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_0US 0x00
2453 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_8US 0x04
2454 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US 0x08
2455 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK 0x0c
2456 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_1 0x00
2457 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_2 0x10
2458 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_3 0x20
2459 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_4 0x30
2460 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_5 0x40
2461 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_6 0x50
2462 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_7 0x60
2463 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8 0x70
2464 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_MASK 0x70
2465
2466 /* Link adaptation is split between byte HE_MAC_CAP1 and
2467 * HE_MAC_CAP2. It should be set only if IEEE80211_HE_MAC_CAP0_HTC_HE
2468 * in which case the following values apply:
2469 * 0 = No feedback.
2470 * 1 = reserved.
2471 * 2 = Unsolicited feedback.
2472 * 3 = both
2473 */
2474 #define IEEE80211_HE_MAC_CAP1_LINK_ADAPTATION 0x80
2475
2476 #define IEEE80211_HE_MAC_CAP2_LINK_ADAPTATION 0x01
2477 #define IEEE80211_HE_MAC_CAP2_ALL_ACK 0x02
2478 #define IEEE80211_HE_MAC_CAP2_TRS 0x04
2479 #define IEEE80211_HE_MAC_CAP2_BSR 0x08
2480 #define IEEE80211_HE_MAC_CAP2_BCAST_TWT 0x10
2481 #define IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP 0x20
2482 #define IEEE80211_HE_MAC_CAP2_MU_CASCADING 0x40
2483 #define IEEE80211_HE_MAC_CAP2_ACK_EN 0x80
2484
2485 #define IEEE80211_HE_MAC_CAP3_OMI_CONTROL 0x02
2486 #define IEEE80211_HE_MAC_CAP3_OFDMA_RA 0x04
2487
2488 /* The maximum length of an A-MDPU is defined by the combination of the Maximum
2489 * A-MDPU Length Exponent field in the HT capabilities, VHT capabilities and the
2490 * same field in the HE capabilities.
2491 */
2492 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_0 0x00
2493 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1 0x08
2494 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2 0x10
2495 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3 0x18
2496 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK 0x18
2497 #define IEEE80211_HE_MAC_CAP3_AMSDU_FRAG 0x20
2498 #define IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED 0x40
2499 #define IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS 0x80
2500
2501 #define IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG 0x01
2502 #define IEEE80211_HE_MAC_CAP4_QTP 0x02
2503 #define IEEE80211_HE_MAC_CAP4_BQR 0x04
2504 #define IEEE80211_HE_MAC_CAP4_PSR_RESP 0x08
2505 #define IEEE80211_HE_MAC_CAP4_NDP_FB_REP 0x10
2506 #define IEEE80211_HE_MAC_CAP4_OPS 0x20
2507 #define IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU 0x40
2508 /* Multi TID agg TX is split between byte #4 and #5
2509 * The value is a combination of B39,B40,B41
2510 */
2511 #define IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39 0x80
2512
2513 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 0x01
2514 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 0x02
2515 #define IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECTIVE_TRANSMISSION 0x04
2516 #define IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU 0x08
2517 #define IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX 0x10
2518 #define IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS 0x20
2519 #define IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING 0x40
2520 #define IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX 0x80
2521
2522 #define IEEE80211_HE_VHT_MAX_AMPDU_FACTOR 20
2523 #define IEEE80211_HE_HT_MAX_AMPDU_FACTOR 16
2524 #define IEEE80211_HE_6GHZ_MAX_AMPDU_FACTOR 13
2525
2526 /* 802.11ax HE PHY capabilities */
2527 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G 0x02
2528 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G 0x04
2529 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G 0x08
2530 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G 0x10
2531 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL 0x1e
2532
2533 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G 0x20
2534 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G 0x40
2535 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK 0xfe
2536
2537 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ 0x01
2538 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ 0x02
2539 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ 0x04
2540 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ 0x08
2541 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK 0x0f
2542 #define IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A 0x10
2543 #define IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD 0x20
2544 #define IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US 0x40
2545 /* Midamble RX/TX Max NSTS is split between byte #2 and byte #3 */
2546 #define IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS 0x80
2547
2548 #define IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS 0x01
2549 #define IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US 0x02
2550 #define IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ 0x04
2551 #define IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ 0x08
2552 #define IEEE80211_HE_PHY_CAP2_DOPPLER_TX 0x10
2553 #define IEEE80211_HE_PHY_CAP2_DOPPLER_RX 0x20
2554
2555 /* Note that the meaning of UL MU below is different between an AP and a non-AP
2556 * sta, where in the AP case it indicates support for Rx and in the non-AP sta
2557 * case it indicates support for Tx.
2558 */
2559 #define IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO 0x40
2560 #define IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO 0x80
2561
2562 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM 0x00
2563 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK 0x01
2564 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK 0x02
2565 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM 0x03
2566 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK 0x03
2567 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 0x00
2568 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_2 0x04
2569 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM 0x00
2570 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK 0x08
2571 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK 0x10
2572 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM 0x18
2573 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK 0x18
2574 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1 0x00
2575 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_2 0x20
2576 #define IEEE80211_HE_PHY_CAP3_RX_PARTIAL_BW_SU_IN_20MHZ_MU 0x40
2577 #define IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER 0x80
2578
2579 #define IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE 0x01
2580 #define IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER 0x02
2581
2582 /* Minimal allowed value of Max STS under 80MHz is 3 */
2583 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4 0x0c
2584 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5 0x10
2585 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_6 0x14
2586 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_7 0x18
2587 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8 0x1c
2588 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_MASK 0x1c
2589
2590 /* Minimal allowed value of Max STS above 80MHz is 3 */
2591 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4 0x60
2592 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5 0x80
2593 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_6 0xa0
2594 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_7 0xc0
2595 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 0xe0
2596 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_MASK 0xe0
2597
2598 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_1 0x00
2599 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 0x01
2600 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_3 0x02
2601 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_4 0x03
2602 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_5 0x04
2603 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_6 0x05
2604 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_7 0x06
2605 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_8 0x07
2606 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK 0x07
2607
2608 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_1 0x00
2609 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2 0x08
2610 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_3 0x10
2611 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_4 0x18
2612 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_5 0x20
2613 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_6 0x28
2614 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_7 0x30
2615 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_8 0x38
2616 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK 0x38
2617
2618 #define IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK 0x40
2619 #define IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK 0x80
2620
2621 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU 0x01
2622 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU 0x02
2623 #define IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB 0x04
2624 #define IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB 0x08
2625 #define IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB 0x10
2626 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE 0x20
2627 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO 0x40
2628 #define IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT 0x80
2629
2630 #define IEEE80211_HE_PHY_CAP7_PSR_BASED_SR 0x01
2631 #define IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP 0x02
2632 #define IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI 0x04
2633 #define IEEE80211_HE_PHY_CAP7_MAX_NC_1 0x08
2634 #define IEEE80211_HE_PHY_CAP7_MAX_NC_2 0x10
2635 #define IEEE80211_HE_PHY_CAP7_MAX_NC_3 0x18
2636 #define IEEE80211_HE_PHY_CAP7_MAX_NC_4 0x20
2637 #define IEEE80211_HE_PHY_CAP7_MAX_NC_5 0x28
2638 #define IEEE80211_HE_PHY_CAP7_MAX_NC_6 0x30
2639 #define IEEE80211_HE_PHY_CAP7_MAX_NC_7 0x38
2640 #define IEEE80211_HE_PHY_CAP7_MAX_NC_MASK 0x38
2641 #define IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ 0x40
2642 #define IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ 0x80
2643
2644 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI 0x01
2645 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G 0x02
2646 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU 0x04
2647 #define IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU 0x08
2648 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_1XLTF_AND_08_US_GI 0x10
2649 #define IEEE80211_HE_PHY_CAP8_MIDAMBLE_RX_TX_2X_AND_1XLTF 0x20
2650 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242 0x00
2651 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484 0x40
2652 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996 0x80
2653 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996 0xc0
2654 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK 0xc0
2655
2656 #define IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM 0x01
2657 #define IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK 0x02
2658 #define IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU 0x04
2659 #define IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU 0x08
2660 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB 0x10
2661 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB 0x20
2662 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_0US 0x0
2663 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_8US 0x1
2664 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US 0x2
2665 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED 0x3
2666 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS 6
2667 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK 0xc0
2668
2669 #define IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF 0x01
2670
2671 /* 802.11ax HE TX/RX MCS NSS Support */
2672 #define IEEE80211_TX_RX_MCS_NSS_SUPP_HIGHEST_MCS_POS (3)
2673 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_POS (6)
2674 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_POS (11)
2675 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_MASK 0x07c0
2676 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_MASK 0xf800
2677
2678 /* TX/RX HE MCS Support field Highest MCS subfield encoding */
2679 enum ieee80211_he_highest_mcs_supported_subfield_enc {
2680 HIGHEST_MCS_SUPPORTED_MCS7 = 0,
2681 HIGHEST_MCS_SUPPORTED_MCS8,
2682 HIGHEST_MCS_SUPPORTED_MCS9,
2683 HIGHEST_MCS_SUPPORTED_MCS10,
2684 HIGHEST_MCS_SUPPORTED_MCS11,
2685 };
2686
2687 /* Calculate 802.11ax HE capabilities IE Tx/Rx HE MCS NSS Support Field size */
2688 static inline u8
ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem * he_cap)2689 ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap)
2690 {
2691 u8 count = 4;
2692
2693 if (he_cap->phy_cap_info[0] &
2694 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
2695 count += 4;
2696
2697 if (he_cap->phy_cap_info[0] &
2698 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G)
2699 count += 4;
2700
2701 return count;
2702 }
2703
2704 /* 802.11ax HE PPE Thresholds */
2705 #define IEEE80211_PPE_THRES_NSS_SUPPORT_2NSS (1)
2706 #define IEEE80211_PPE_THRES_NSS_POS (0)
2707 #define IEEE80211_PPE_THRES_NSS_MASK (7)
2708 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_2x966_AND_966_RU \
2709 (BIT(5) | BIT(6))
2710 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK 0x78
2711 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS (3)
2712 #define IEEE80211_PPE_THRES_INFO_PPET_SIZE (3)
2713 #define IEEE80211_HE_PPE_THRES_INFO_HEADER_SIZE (7)
2714
2715 /*
2716 * Calculate 802.11ax HE capabilities IE PPE field size
2717 * Input: Header byte of ppe_thres (first byte), and HE capa IE's PHY cap u8*
2718 */
2719 static inline u8
ieee80211_he_ppe_size(u8 ppe_thres_hdr,const u8 * phy_cap_info)2720 ieee80211_he_ppe_size(u8 ppe_thres_hdr, const u8 *phy_cap_info)
2721 {
2722 u8 n;
2723
2724 if ((phy_cap_info[6] &
2725 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0)
2726 return 0;
2727
2728 n = hweight8(ppe_thres_hdr &
2729 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK);
2730 n *= (1 + ((ppe_thres_hdr & IEEE80211_PPE_THRES_NSS_MASK) >>
2731 IEEE80211_PPE_THRES_NSS_POS));
2732
2733 /*
2734 * Each pair is 6 bits, and we need to add the 7 "header" bits to the
2735 * total size.
2736 */
2737 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7;
2738 n = DIV_ROUND_UP(n, 8);
2739
2740 return n;
2741 }
2742
ieee80211_he_capa_size_ok(const u8 * data,u8 len)2743 static inline bool ieee80211_he_capa_size_ok(const u8 *data, u8 len)
2744 {
2745 const struct ieee80211_he_cap_elem *he_cap_ie_elem = (const void *)data;
2746 u8 needed = sizeof(*he_cap_ie_elem);
2747
2748 if (len < needed)
2749 return false;
2750
2751 needed += ieee80211_he_mcs_nss_size(he_cap_ie_elem);
2752 if (len < needed)
2753 return false;
2754
2755 if (he_cap_ie_elem->phy_cap_info[6] &
2756 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) {
2757 if (len < needed + 1)
2758 return false;
2759 needed += ieee80211_he_ppe_size(data[needed],
2760 he_cap_ie_elem->phy_cap_info);
2761 }
2762
2763 return len >= needed;
2764 }
2765
2766 /* HE Operation defines */
2767 #define IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK 0x00000007
2768 #define IEEE80211_HE_OPERATION_TWT_REQUIRED 0x00000008
2769 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK 0x00003ff0
2770 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_OFFSET 4
2771 #define IEEE80211_HE_OPERATION_VHT_OPER_INFO 0x00004000
2772 #define IEEE80211_HE_OPERATION_CO_HOSTED_BSS 0x00008000
2773 #define IEEE80211_HE_OPERATION_ER_SU_DISABLE 0x00010000
2774 #define IEEE80211_HE_OPERATION_6GHZ_OP_INFO 0x00020000
2775 #define IEEE80211_HE_OPERATION_BSS_COLOR_MASK 0x3f000000
2776 #define IEEE80211_HE_OPERATION_BSS_COLOR_OFFSET 24
2777 #define IEEE80211_HE_OPERATION_PARTIAL_BSS_COLOR 0x40000000
2778 #define IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED 0x80000000
2779
2780 #define IEEE80211_6GHZ_CTRL_REG_LPI_AP 0
2781 #define IEEE80211_6GHZ_CTRL_REG_SP_AP 1
2782 #define IEEE80211_6GHZ_CTRL_REG_VLP_AP 2
2783 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP 3
2784 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP 4
2785
2786 /**
2787 * struct ieee80211_he_6ghz_oper - HE 6 GHz operation Information field
2788 * @primary: primary channel
2789 * @control: control flags
2790 * @ccfs0: channel center frequency segment 0
2791 * @ccfs1: channel center frequency segment 1
2792 * @minrate: minimum rate (in 1 Mbps units)
2793 */
2794 struct ieee80211_he_6ghz_oper {
2795 u8 primary;
2796 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH 0x3
2797 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ 0
2798 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ 1
2799 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ 2
2800 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ 3
2801 #define IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON 0x4
2802 #define IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO 0x38
2803 u8 control;
2804 u8 ccfs0;
2805 u8 ccfs1;
2806 u8 minrate;
2807 } __packed;
2808
2809 /* transmit power interpretation type of transmit power envelope element */
2810 enum ieee80211_tx_power_intrpt_type {
2811 IEEE80211_TPE_LOCAL_EIRP,
2812 IEEE80211_TPE_LOCAL_EIRP_PSD,
2813 IEEE80211_TPE_REG_CLIENT_EIRP,
2814 IEEE80211_TPE_REG_CLIENT_EIRP_PSD,
2815 };
2816
2817 /* category type of transmit power envelope element */
2818 enum ieee80211_tx_power_category_6ghz {
2819 IEEE80211_TPE_CAT_6GHZ_DEFAULT = 0,
2820 IEEE80211_TPE_CAT_6GHZ_SUBORDINATE = 1,
2821 };
2822
2823 /*
2824 * For IEEE80211_TPE_LOCAL_EIRP / IEEE80211_TPE_REG_CLIENT_EIRP,
2825 * setting to 63.5 dBm means no constraint.
2826 */
2827 #define IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT 127
2828
2829 /*
2830 * For IEEE80211_TPE_LOCAL_EIRP_PSD / IEEE80211_TPE_REG_CLIENT_EIRP_PSD,
2831 * setting to 127 indicates no PSD limit for the 20 MHz channel.
2832 */
2833 #define IEEE80211_TPE_PSD_NO_LIMIT 127
2834
2835 /**
2836 * struct ieee80211_tx_pwr_env - Transmit Power Envelope
2837 * @info: Transmit Power Information field
2838 * @variable: Maximum Transmit Power field
2839 *
2840 * This structure represents the payload of the "Transmit Power
2841 * Envelope element" as described in IEEE Std 802.11ax-2021 section
2842 * 9.4.2.161
2843 */
2844 struct ieee80211_tx_pwr_env {
2845 u8 info;
2846 u8 variable[];
2847 } __packed;
2848
2849 #define IEEE80211_TX_PWR_ENV_INFO_COUNT 0x7
2850 #define IEEE80211_TX_PWR_ENV_INFO_INTERPRET 0x38
2851 #define IEEE80211_TX_PWR_ENV_INFO_CATEGORY 0xC0
2852
2853 #define IEEE80211_TX_PWR_ENV_EXT_COUNT 0xF
2854
ieee80211_valid_tpe_element(const u8 * data,u8 len)2855 static inline bool ieee80211_valid_tpe_element(const u8 *data, u8 len)
2856 {
2857 const struct ieee80211_tx_pwr_env *env = (const void *)data;
2858 u8 count, interpret, category;
2859 u8 needed = sizeof(*env);
2860 u8 N; /* also called N in the spec */
2861
2862 if (len < needed)
2863 return false;
2864
2865 count = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_COUNT);
2866 interpret = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_INTERPRET);
2867 category = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_CATEGORY);
2868
2869 switch (category) {
2870 case IEEE80211_TPE_CAT_6GHZ_DEFAULT:
2871 case IEEE80211_TPE_CAT_6GHZ_SUBORDINATE:
2872 break;
2873 default:
2874 return false;
2875 }
2876
2877 switch (interpret) {
2878 case IEEE80211_TPE_LOCAL_EIRP:
2879 case IEEE80211_TPE_REG_CLIENT_EIRP:
2880 if (count > 3)
2881 return false;
2882
2883 /* count == 0 encodes 1 value for 20 MHz, etc. */
2884 needed += count + 1;
2885
2886 if (len < needed)
2887 return false;
2888
2889 /* there can be extension fields not accounted for in 'count' */
2890
2891 return true;
2892 case IEEE80211_TPE_LOCAL_EIRP_PSD:
2893 case IEEE80211_TPE_REG_CLIENT_EIRP_PSD:
2894 if (count > 4)
2895 return false;
2896
2897 N = count ? 1 << (count - 1) : 1;
2898 needed += N;
2899
2900 if (len < needed)
2901 return false;
2902
2903 if (len > needed) {
2904 u8 K = u8_get_bits(env->variable[N],
2905 IEEE80211_TX_PWR_ENV_EXT_COUNT);
2906
2907 needed += 1 + K;
2908 if (len < needed)
2909 return false;
2910 }
2911
2912 return true;
2913 }
2914
2915 return false;
2916 }
2917
2918 /*
2919 * ieee80211_he_oper_size - calculate 802.11ax HE Operations IE size
2920 * @he_oper_ie: byte data of the He Operations IE, stating from the byte
2921 * after the ext ID byte. It is assumed that he_oper_ie has at least
2922 * sizeof(struct ieee80211_he_operation) bytes, the caller must have
2923 * validated this.
2924 * @return the actual size of the IE data (not including header), or 0 on error
2925 */
2926 static inline u8
ieee80211_he_oper_size(const u8 * he_oper_ie)2927 ieee80211_he_oper_size(const u8 *he_oper_ie)
2928 {
2929 const struct ieee80211_he_operation *he_oper = (const void *)he_oper_ie;
2930 u8 oper_len = sizeof(struct ieee80211_he_operation);
2931 u32 he_oper_params;
2932
2933 /* Make sure the input is not NULL */
2934 if (!he_oper_ie)
2935 return 0;
2936
2937 /* Calc required length */
2938 he_oper_params = le32_to_cpu(he_oper->he_oper_params);
2939 if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO)
2940 oper_len += 3;
2941 if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS)
2942 oper_len++;
2943 if (he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO)
2944 oper_len += sizeof(struct ieee80211_he_6ghz_oper);
2945
2946 /* Add the first byte (extension ID) to the total length */
2947 oper_len++;
2948
2949 return oper_len;
2950 }
2951
2952 /**
2953 * ieee80211_he_6ghz_oper - obtain 6 GHz operation field
2954 * @he_oper: HE operation element (must be pre-validated for size)
2955 * but may be %NULL
2956 *
2957 * Return: a pointer to the 6 GHz operation field, or %NULL
2958 */
2959 static inline const struct ieee80211_he_6ghz_oper *
ieee80211_he_6ghz_oper(const struct ieee80211_he_operation * he_oper)2960 ieee80211_he_6ghz_oper(const struct ieee80211_he_operation *he_oper)
2961 {
2962 const u8 *ret;
2963 u32 he_oper_params;
2964
2965 if (!he_oper)
2966 return NULL;
2967
2968 ret = (const void *)&he_oper->optional;
2969
2970 he_oper_params = le32_to_cpu(he_oper->he_oper_params);
2971
2972 if (!(he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO))
2973 return NULL;
2974 if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO)
2975 ret += 3;
2976 if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS)
2977 ret++;
2978
2979 return (const void *)ret;
2980 }
2981
2982 /* HE Spatial Reuse defines */
2983 #define IEEE80211_HE_SPR_PSR_DISALLOWED BIT(0)
2984 #define IEEE80211_HE_SPR_NON_SRG_OBSS_PD_SR_DISALLOWED BIT(1)
2985 #define IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT BIT(2)
2986 #define IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT BIT(3)
2987 #define IEEE80211_HE_SPR_HESIGA_SR_VAL15_ALLOWED BIT(4)
2988
2989 /*
2990 * ieee80211_he_spr_size - calculate 802.11ax HE Spatial Reuse IE size
2991 * @he_spr_ie: byte data of the He Spatial Reuse IE, stating from the byte
2992 * after the ext ID byte. It is assumed that he_spr_ie has at least
2993 * sizeof(struct ieee80211_he_spr) bytes, the caller must have validated
2994 * this
2995 * @return the actual size of the IE data (not including header), or 0 on error
2996 */
2997 static inline u8
ieee80211_he_spr_size(const u8 * he_spr_ie)2998 ieee80211_he_spr_size(const u8 *he_spr_ie)
2999 {
3000 const struct ieee80211_he_spr *he_spr = (const void *)he_spr_ie;
3001 u8 spr_len = sizeof(struct ieee80211_he_spr);
3002 u8 he_spr_params;
3003
3004 /* Make sure the input is not NULL */
3005 if (!he_spr_ie)
3006 return 0;
3007
3008 /* Calc required length */
3009 he_spr_params = he_spr->he_sr_control;
3010 if (he_spr_params & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT)
3011 spr_len++;
3012 if (he_spr_params & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT)
3013 spr_len += 18;
3014
3015 /* Add the first byte (extension ID) to the total length */
3016 spr_len++;
3017
3018 return spr_len;
3019 }
3020
3021 /* S1G Capabilities Information field */
3022 #define IEEE80211_S1G_CAPABILITY_LEN 15
3023
3024 #define S1G_CAP0_S1G_LONG BIT(0)
3025 #define S1G_CAP0_SGI_1MHZ BIT(1)
3026 #define S1G_CAP0_SGI_2MHZ BIT(2)
3027 #define S1G_CAP0_SGI_4MHZ BIT(3)
3028 #define S1G_CAP0_SGI_8MHZ BIT(4)
3029 #define S1G_CAP0_SGI_16MHZ BIT(5)
3030 #define S1G_CAP0_SUPP_CH_WIDTH GENMASK(7, 6)
3031
3032 #define S1G_SUPP_CH_WIDTH_2 0
3033 #define S1G_SUPP_CH_WIDTH_4 1
3034 #define S1G_SUPP_CH_WIDTH_8 2
3035 #define S1G_SUPP_CH_WIDTH_16 3
3036 #define S1G_SUPP_CH_WIDTH_MAX(cap) ((1 << FIELD_GET(S1G_CAP0_SUPP_CH_WIDTH, \
3037 cap[0])) << 1)
3038
3039 #define S1G_CAP1_RX_LDPC BIT(0)
3040 #define S1G_CAP1_TX_STBC BIT(1)
3041 #define S1G_CAP1_RX_STBC BIT(2)
3042 #define S1G_CAP1_SU_BFER BIT(3)
3043 #define S1G_CAP1_SU_BFEE BIT(4)
3044 #define S1G_CAP1_BFEE_STS GENMASK(7, 5)
3045
3046 #define S1G_CAP2_SOUNDING_DIMENSIONS GENMASK(2, 0)
3047 #define S1G_CAP2_MU_BFER BIT(3)
3048 #define S1G_CAP2_MU_BFEE BIT(4)
3049 #define S1G_CAP2_PLUS_HTC_VHT BIT(5)
3050 #define S1G_CAP2_TRAVELING_PILOT GENMASK(7, 6)
3051
3052 #define S1G_CAP3_RD_RESPONDER BIT(0)
3053 #define S1G_CAP3_HT_DELAYED_BA BIT(1)
3054 #define S1G_CAP3_MAX_MPDU_LEN BIT(2)
3055 #define S1G_CAP3_MAX_AMPDU_LEN_EXP GENMASK(4, 3)
3056 #define S1G_CAP3_MIN_MPDU_START GENMASK(7, 5)
3057
3058 #define S1G_CAP4_UPLINK_SYNC BIT(0)
3059 #define S1G_CAP4_DYNAMIC_AID BIT(1)
3060 #define S1G_CAP4_BAT BIT(2)
3061 #define S1G_CAP4_TIME_ADE BIT(3)
3062 #define S1G_CAP4_NON_TIM BIT(4)
3063 #define S1G_CAP4_GROUP_AID BIT(5)
3064 #define S1G_CAP4_STA_TYPE GENMASK(7, 6)
3065
3066 #define S1G_CAP5_CENT_AUTH_CONTROL BIT(0)
3067 #define S1G_CAP5_DIST_AUTH_CONTROL BIT(1)
3068 #define S1G_CAP5_AMSDU BIT(2)
3069 #define S1G_CAP5_AMPDU BIT(3)
3070 #define S1G_CAP5_ASYMMETRIC_BA BIT(4)
3071 #define S1G_CAP5_FLOW_CONTROL BIT(5)
3072 #define S1G_CAP5_SECTORIZED_BEAM GENMASK(7, 6)
3073
3074 #define S1G_CAP6_OBSS_MITIGATION BIT(0)
3075 #define S1G_CAP6_FRAGMENT_BA BIT(1)
3076 #define S1G_CAP6_NDP_PS_POLL BIT(2)
3077 #define S1G_CAP6_RAW_OPERATION BIT(3)
3078 #define S1G_CAP6_PAGE_SLICING BIT(4)
3079 #define S1G_CAP6_TXOP_SHARING_IMP_ACK BIT(5)
3080 #define S1G_CAP6_VHT_LINK_ADAPT GENMASK(7, 6)
3081
3082 #define S1G_CAP7_TACK_AS_PS_POLL BIT(0)
3083 #define S1G_CAP7_DUP_1MHZ BIT(1)
3084 #define S1G_CAP7_MCS_NEGOTIATION BIT(2)
3085 #define S1G_CAP7_1MHZ_CTL_RESPONSE_PREAMBLE BIT(3)
3086 #define S1G_CAP7_NDP_BFING_REPORT_POLL BIT(4)
3087 #define S1G_CAP7_UNSOLICITED_DYN_AID BIT(5)
3088 #define S1G_CAP7_SECTOR_TRAINING_OPERATION BIT(6)
3089 #define S1G_CAP7_TEMP_PS_MODE_SWITCH BIT(7)
3090
3091 #define S1G_CAP8_TWT_GROUPING BIT(0)
3092 #define S1G_CAP8_BDT BIT(1)
3093 #define S1G_CAP8_COLOR GENMASK(4, 2)
3094 #define S1G_CAP8_TWT_REQUEST BIT(5)
3095 #define S1G_CAP8_TWT_RESPOND BIT(6)
3096 #define S1G_CAP8_PV1_FRAME BIT(7)
3097
3098 #define S1G_CAP9_LINK_ADAPT_PER_CONTROL_RESPONSE BIT(0)
3099
3100 #define S1G_OPER_CH_WIDTH_PRIMARY_1MHZ BIT(0)
3101 #define S1G_OPER_CH_WIDTH_OPER GENMASK(4, 1)
3102
3103 /* EHT MAC capabilities as defined in P802.11be_D2.0 section 9.4.2.313.2 */
3104 #define IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS 0x01
3105 #define IEEE80211_EHT_MAC_CAP0_OM_CONTROL 0x02
3106 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 0x04
3107 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 0x08
3108 #define IEEE80211_EHT_MAC_CAP0_RESTRICTED_TWT 0x10
3109 #define IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC 0x20
3110 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK 0xc0
3111 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_3895 0
3112 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_7991 1
3113 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454 2
3114
3115 #define IEEE80211_EHT_MAC_CAP1_MAX_AMPDU_LEN_MASK 0x01
3116 #define IEEE80211_EHT_MAC_CAP1_EHT_TRS 0x02
3117 #define IEEE80211_EHT_MAC_CAP1_TXOP_RET 0x04
3118 #define IEEE80211_EHT_MAC_CAP1_TWO_BQRS 0x08
3119 #define IEEE80211_EHT_MAC_CAP1_EHT_LINK_ADAPT_MASK 0x30
3120 #define IEEE80211_EHT_MAC_CAP1_UNSOL_EPCS_PRIO_ACCESS 0x40
3121
3122 /* EHT PHY capabilities as defined in P802.11be_D2.0 section 9.4.2.313.3 */
3123 #define IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ 0x02
3124 #define IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ 0x04
3125 #define IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI 0x08
3126 #define IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO 0x10
3127 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER 0x20
3128 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE 0x40
3129
3130 /* EHT beamformee number of spatial streams <= 80MHz is split */
3131 #define IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK 0x80
3132 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK 0x03
3133
3134 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK 0x1c
3135 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK 0xe0
3136
3137 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK 0x07
3138 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK 0x38
3139
3140 /* EHT number of sounding dimensions for 320MHz is split */
3141 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK 0xc0
3142 #define IEEE80211_EHT_PHY_CAP3_SOUNDING_DIM_320MHZ_MASK 0x01
3143 #define IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK 0x02
3144 #define IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK 0x04
3145 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK 0x08
3146 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK 0x10
3147 #define IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK 0x20
3148 #define IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK 0x40
3149 #define IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK 0x80
3150
3151 #define IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO 0x01
3152 #define IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP 0x02
3153 #define IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP 0x04
3154 #define IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI 0x08
3155 #define IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK 0xf0
3156
3157 #define IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK 0x01
3158 #define IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP 0x02
3159 #define IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP 0x04
3160 #define IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT 0x08
3161 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK 0x30
3162 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_0US 0
3163 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_8US 1
3164 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US 2
3165 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_20US 3
3166
3167 /* Maximum number of supported EHT LTF is split */
3168 #define IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK 0xc0
3169 #define IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF 0x40
3170 #define IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK 0x07
3171
3172 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ 0x08
3173 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ 0x30
3174 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ 0x40
3175 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK 0x78
3176 #define IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP 0x80
3177
3178 #define IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW 0x01
3179 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ 0x02
3180 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ 0x04
3181 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ 0x08
3182 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ 0x10
3183 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ 0x20
3184 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ 0x40
3185 #define IEEE80211_EHT_PHY_CAP7_TB_SOUNDING_FDBK_RATE_LIMIT 0x80
3186
3187 #define IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA 0x01
3188 #define IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA 0x02
3189
3190 /*
3191 * EHT operation channel width as defined in P802.11be_D2.0 section 9.4.2.311
3192 */
3193 #define IEEE80211_EHT_OPER_CHAN_WIDTH 0x7
3194 #define IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ 0
3195 #define IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ 1
3196 #define IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ 2
3197 #define IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ 3
3198 #define IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ 4
3199
3200 /* Calculate 802.11be EHT capabilities IE Tx/Rx EHT MCS NSS Support Field size */
3201 static inline u8
ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem * he_cap,const struct ieee80211_eht_cap_elem_fixed * eht_cap,bool from_ap)3202 ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap,
3203 const struct ieee80211_eht_cap_elem_fixed *eht_cap,
3204 bool from_ap)
3205 {
3206 u8 count = 0;
3207
3208 /* on 2.4 GHz, if it supports 40 MHz, the result is 3 */
3209 if (he_cap->phy_cap_info[0] &
3210 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G)
3211 return 3;
3212
3213 /* on 2.4 GHz, these three bits are reserved, so should be 0 */
3214 if (he_cap->phy_cap_info[0] &
3215 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G)
3216 count += 3;
3217
3218 if (he_cap->phy_cap_info[0] &
3219 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
3220 count += 3;
3221
3222 if (eht_cap->phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ)
3223 count += 3;
3224
3225 if (count)
3226 return count;
3227
3228 return from_ap ? 3 : 4;
3229 }
3230
3231 /* 802.11be EHT PPE Thresholds */
3232 #define IEEE80211_EHT_PPE_THRES_NSS_POS 0
3233 #define IEEE80211_EHT_PPE_THRES_NSS_MASK 0xf
3234 #define IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK 0x1f0
3235 #define IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE 3
3236 #define IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE 9
3237
3238 /*
3239 * Calculate 802.11be EHT capabilities IE EHT field size
3240 */
3241 static inline u8
ieee80211_eht_ppe_size(u16 ppe_thres_hdr,const u8 * phy_cap_info)3242 ieee80211_eht_ppe_size(u16 ppe_thres_hdr, const u8 *phy_cap_info)
3243 {
3244 u32 n;
3245
3246 if (!(phy_cap_info[5] &
3247 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT))
3248 return 0;
3249
3250 n = hweight16(ppe_thres_hdr &
3251 IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK);
3252 n *= 1 + u16_get_bits(ppe_thres_hdr, IEEE80211_EHT_PPE_THRES_NSS_MASK);
3253
3254 /*
3255 * Each pair is 6 bits, and we need to add the 9 "header" bits to the
3256 * total size.
3257 */
3258 n = n * IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE * 2 +
3259 IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE;
3260 return DIV_ROUND_UP(n, 8);
3261 }
3262
3263 static inline bool
ieee80211_eht_capa_size_ok(const u8 * he_capa,const u8 * data,u8 len,bool from_ap)3264 ieee80211_eht_capa_size_ok(const u8 *he_capa, const u8 *data, u8 len,
3265 bool from_ap)
3266 {
3267 const struct ieee80211_eht_cap_elem_fixed *elem = (const void *)data;
3268 u8 needed = sizeof(struct ieee80211_eht_cap_elem_fixed);
3269
3270 if (len < needed || !he_capa)
3271 return false;
3272
3273 needed += ieee80211_eht_mcs_nss_size((const void *)he_capa,
3274 (const void *)data,
3275 from_ap);
3276 if (len < needed)
3277 return false;
3278
3279 if (elem->phy_cap_info[5] &
3280 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) {
3281 u16 ppe_thres_hdr;
3282
3283 if (len < needed + sizeof(ppe_thres_hdr))
3284 return false;
3285
3286 ppe_thres_hdr = get_unaligned_le16(data + needed);
3287 needed += ieee80211_eht_ppe_size(ppe_thres_hdr,
3288 elem->phy_cap_info);
3289 }
3290
3291 return len >= needed;
3292 }
3293
3294 static inline bool
ieee80211_eht_oper_size_ok(const u8 * data,u8 len)3295 ieee80211_eht_oper_size_ok(const u8 *data, u8 len)
3296 {
3297 const struct ieee80211_eht_operation *elem = (const void *)data;
3298 u8 needed = sizeof(*elem);
3299
3300 if (len < needed)
3301 return false;
3302
3303 if (elem->params & IEEE80211_EHT_OPER_INFO_PRESENT) {
3304 needed += 3;
3305
3306 if (elem->params &
3307 IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT)
3308 needed += 2;
3309 }
3310
3311 return len >= needed;
3312 }
3313
3314 /* must validate ieee80211_eht_oper_size_ok() first */
3315 static inline u16
ieee80211_eht_oper_dis_subchan_bitmap(const struct ieee80211_eht_operation * eht_oper)3316 ieee80211_eht_oper_dis_subchan_bitmap(const struct ieee80211_eht_operation *eht_oper)
3317 {
3318 const struct ieee80211_eht_operation_info *info =
3319 (const void *)eht_oper->optional;
3320
3321 if (!(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT))
3322 return 0;
3323
3324 if (!(eht_oper->params & IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT))
3325 return 0;
3326
3327 return get_unaligned_le16(info->optional);
3328 }
3329
3330 #define IEEE80211_BW_IND_DIS_SUBCH_PRESENT BIT(1)
3331
3332 struct ieee80211_bandwidth_indication {
3333 u8 params;
3334 struct ieee80211_eht_operation_info info;
3335 } __packed;
3336
3337 static inline bool
ieee80211_bandwidth_indication_size_ok(const u8 * data,u8 len)3338 ieee80211_bandwidth_indication_size_ok(const u8 *data, u8 len)
3339 {
3340 const struct ieee80211_bandwidth_indication *bwi = (const void *)data;
3341
3342 if (len < sizeof(*bwi))
3343 return false;
3344
3345 if (bwi->params & IEEE80211_BW_IND_DIS_SUBCH_PRESENT &&
3346 len < sizeof(*bwi) + 2)
3347 return false;
3348
3349 return true;
3350 }
3351
3352 #define LISTEN_INT_USF GENMASK(15, 14)
3353 #define LISTEN_INT_UI GENMASK(13, 0)
3354
3355 #define IEEE80211_MAX_USF FIELD_MAX(LISTEN_INT_USF)
3356 #define IEEE80211_MAX_UI FIELD_MAX(LISTEN_INT_UI)
3357
3358 /* Authentication algorithms */
3359 #define WLAN_AUTH_OPEN 0
3360 #define WLAN_AUTH_SHARED_KEY 1
3361 #define WLAN_AUTH_FT 2
3362 #define WLAN_AUTH_SAE 3
3363 #define WLAN_AUTH_FILS_SK 4
3364 #define WLAN_AUTH_FILS_SK_PFS 5
3365 #define WLAN_AUTH_FILS_PK 6
3366 #define WLAN_AUTH_LEAP 128
3367
3368 #define WLAN_AUTH_CHALLENGE_LEN 128
3369
3370 #define WLAN_CAPABILITY_ESS (1<<0)
3371 #define WLAN_CAPABILITY_IBSS (1<<1)
3372
3373 /*
3374 * A mesh STA sets the ESS and IBSS capability bits to zero.
3375 * however, this holds true for p2p probe responses (in the p2p_find
3376 * phase) as well.
3377 */
3378 #define WLAN_CAPABILITY_IS_STA_BSS(cap) \
3379 (!((cap) & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)))
3380
3381 #define WLAN_CAPABILITY_CF_POLLABLE (1<<2)
3382 #define WLAN_CAPABILITY_CF_POLL_REQUEST (1<<3)
3383 #define WLAN_CAPABILITY_PRIVACY (1<<4)
3384 #define WLAN_CAPABILITY_SHORT_PREAMBLE (1<<5)
3385 #define WLAN_CAPABILITY_PBCC (1<<6)
3386 #define WLAN_CAPABILITY_CHANNEL_AGILITY (1<<7)
3387
3388 /* 802.11h */
3389 #define WLAN_CAPABILITY_SPECTRUM_MGMT (1<<8)
3390 #define WLAN_CAPABILITY_QOS (1<<9)
3391 #define WLAN_CAPABILITY_SHORT_SLOT_TIME (1<<10)
3392 #define WLAN_CAPABILITY_APSD (1<<11)
3393 #define WLAN_CAPABILITY_RADIO_MEASURE (1<<12)
3394 #define WLAN_CAPABILITY_DSSS_OFDM (1<<13)
3395 #define WLAN_CAPABILITY_DEL_BACK (1<<14)
3396 #define WLAN_CAPABILITY_IMM_BACK (1<<15)
3397
3398 /* DMG (60gHz) 802.11ad */
3399 /* type - bits 0..1 */
3400 #define WLAN_CAPABILITY_DMG_TYPE_MASK (3<<0)
3401 #define WLAN_CAPABILITY_DMG_TYPE_IBSS (1<<0) /* Tx by: STA */
3402 #define WLAN_CAPABILITY_DMG_TYPE_PBSS (2<<0) /* Tx by: PCP */
3403 #define WLAN_CAPABILITY_DMG_TYPE_AP (3<<0) /* Tx by: AP */
3404
3405 #define WLAN_CAPABILITY_DMG_CBAP_ONLY (1<<2)
3406 #define WLAN_CAPABILITY_DMG_CBAP_SOURCE (1<<3)
3407 #define WLAN_CAPABILITY_DMG_PRIVACY (1<<4)
3408 #define WLAN_CAPABILITY_DMG_ECPAC (1<<5)
3409
3410 #define WLAN_CAPABILITY_DMG_SPECTRUM_MGMT (1<<8)
3411 #define WLAN_CAPABILITY_DMG_RADIO_MEASURE (1<<12)
3412
3413 /* measurement */
3414 #define IEEE80211_SPCT_MSR_RPRT_MODE_LATE (1<<0)
3415 #define IEEE80211_SPCT_MSR_RPRT_MODE_INCAPABLE (1<<1)
3416 #define IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED (1<<2)
3417
3418 #define IEEE80211_SPCT_MSR_RPRT_TYPE_BASIC 0
3419 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CCA 1
3420 #define IEEE80211_SPCT_MSR_RPRT_TYPE_RPI 2
3421 #define IEEE80211_SPCT_MSR_RPRT_TYPE_LCI 8
3422 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CIVIC 11
3423
3424 /* 802.11g ERP information element */
3425 #define WLAN_ERP_NON_ERP_PRESENT (1<<0)
3426 #define WLAN_ERP_USE_PROTECTION (1<<1)
3427 #define WLAN_ERP_BARKER_PREAMBLE (1<<2)
3428
3429 /* WLAN_ERP_BARKER_PREAMBLE values */
3430 enum {
3431 WLAN_ERP_PREAMBLE_SHORT = 0,
3432 WLAN_ERP_PREAMBLE_LONG = 1,
3433 };
3434
3435 /* Band ID, 802.11ad #8.4.1.45 */
3436 enum {
3437 IEEE80211_BANDID_TV_WS = 0, /* TV white spaces */
3438 IEEE80211_BANDID_SUB1 = 1, /* Sub-1 GHz (excluding TV white spaces) */
3439 IEEE80211_BANDID_2G = 2, /* 2.4 GHz */
3440 IEEE80211_BANDID_3G = 3, /* 3.6 GHz */
3441 IEEE80211_BANDID_5G = 4, /* 4.9 and 5 GHz */
3442 IEEE80211_BANDID_60G = 5, /* 60 GHz */
3443 };
3444
3445 /* Status codes */
3446 enum ieee80211_statuscode {
3447 WLAN_STATUS_SUCCESS = 0,
3448 WLAN_STATUS_UNSPECIFIED_FAILURE = 1,
3449 WLAN_STATUS_CAPS_UNSUPPORTED = 10,
3450 WLAN_STATUS_REASSOC_NO_ASSOC = 11,
3451 WLAN_STATUS_ASSOC_DENIED_UNSPEC = 12,
3452 WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG = 13,
3453 WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION = 14,
3454 WLAN_STATUS_CHALLENGE_FAIL = 15,
3455 WLAN_STATUS_AUTH_TIMEOUT = 16,
3456 WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA = 17,
3457 WLAN_STATUS_ASSOC_DENIED_RATES = 18,
3458 /* 802.11b */
3459 WLAN_STATUS_ASSOC_DENIED_NOSHORTPREAMBLE = 19,
3460 WLAN_STATUS_ASSOC_DENIED_NOPBCC = 20,
3461 WLAN_STATUS_ASSOC_DENIED_NOAGILITY = 21,
3462 /* 802.11h */
3463 WLAN_STATUS_ASSOC_DENIED_NOSPECTRUM = 22,
3464 WLAN_STATUS_ASSOC_REJECTED_BAD_POWER = 23,
3465 WLAN_STATUS_ASSOC_REJECTED_BAD_SUPP_CHAN = 24,
3466 /* 802.11g */
3467 WLAN_STATUS_ASSOC_DENIED_NOSHORTTIME = 25,
3468 WLAN_STATUS_ASSOC_DENIED_NODSSSOFDM = 26,
3469 /* 802.11w */
3470 WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY = 30,
3471 WLAN_STATUS_ROBUST_MGMT_FRAME_POLICY_VIOLATION = 31,
3472 /* 802.11i */
3473 WLAN_STATUS_INVALID_IE = 40,
3474 WLAN_STATUS_INVALID_GROUP_CIPHER = 41,
3475 WLAN_STATUS_INVALID_PAIRWISE_CIPHER = 42,
3476 WLAN_STATUS_INVALID_AKMP = 43,
3477 WLAN_STATUS_UNSUPP_RSN_VERSION = 44,
3478 WLAN_STATUS_INVALID_RSN_IE_CAP = 45,
3479 WLAN_STATUS_CIPHER_SUITE_REJECTED = 46,
3480 /* 802.11e */
3481 WLAN_STATUS_UNSPECIFIED_QOS = 32,
3482 WLAN_STATUS_ASSOC_DENIED_NOBANDWIDTH = 33,
3483 WLAN_STATUS_ASSOC_DENIED_LOWACK = 34,
3484 WLAN_STATUS_ASSOC_DENIED_UNSUPP_QOS = 35,
3485 WLAN_STATUS_REQUEST_DECLINED = 37,
3486 WLAN_STATUS_INVALID_QOS_PARAM = 38,
3487 WLAN_STATUS_CHANGE_TSPEC = 39,
3488 WLAN_STATUS_WAIT_TS_DELAY = 47,
3489 WLAN_STATUS_NO_DIRECT_LINK = 48,
3490 WLAN_STATUS_STA_NOT_PRESENT = 49,
3491 WLAN_STATUS_STA_NOT_QSTA = 50,
3492 /* 802.11s */
3493 WLAN_STATUS_ANTI_CLOG_REQUIRED = 76,
3494 WLAN_STATUS_FCG_NOT_SUPP = 78,
3495 WLAN_STATUS_STA_NO_TBTT = 78,
3496 /* 802.11ad */
3497 WLAN_STATUS_REJECTED_WITH_SUGGESTED_CHANGES = 39,
3498 WLAN_STATUS_REJECTED_FOR_DELAY_PERIOD = 47,
3499 WLAN_STATUS_REJECT_WITH_SCHEDULE = 83,
3500 WLAN_STATUS_PENDING_ADMITTING_FST_SESSION = 86,
3501 WLAN_STATUS_PERFORMING_FST_NOW = 87,
3502 WLAN_STATUS_PENDING_GAP_IN_BA_WINDOW = 88,
3503 WLAN_STATUS_REJECT_U_PID_SETTING = 89,
3504 WLAN_STATUS_REJECT_DSE_BAND = 96,
3505 WLAN_STATUS_DENIED_WITH_SUGGESTED_BAND_AND_CHANNEL = 99,
3506 WLAN_STATUS_DENIED_DUE_TO_SPECTRUM_MANAGEMENT = 103,
3507 /* 802.11ai */
3508 WLAN_STATUS_FILS_AUTHENTICATION_FAILURE = 108,
3509 WLAN_STATUS_UNKNOWN_AUTHENTICATION_SERVER = 109,
3510 WLAN_STATUS_SAE_HASH_TO_ELEMENT = 126,
3511 WLAN_STATUS_SAE_PK = 127,
3512 WLAN_STATUS_DENIED_TID_TO_LINK_MAPPING = 133,
3513 WLAN_STATUS_PREF_TID_TO_LINK_MAPPING_SUGGESTED = 134,
3514 };
3515
3516
3517 /* Reason codes */
3518 enum ieee80211_reasoncode {
3519 WLAN_REASON_UNSPECIFIED = 1,
3520 WLAN_REASON_PREV_AUTH_NOT_VALID = 2,
3521 WLAN_REASON_DEAUTH_LEAVING = 3,
3522 WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY = 4,
3523 WLAN_REASON_DISASSOC_AP_BUSY = 5,
3524 WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA = 6,
3525 WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA = 7,
3526 WLAN_REASON_DISASSOC_STA_HAS_LEFT = 8,
3527 WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH = 9,
3528 /* 802.11h */
3529 WLAN_REASON_DISASSOC_BAD_POWER = 10,
3530 WLAN_REASON_DISASSOC_BAD_SUPP_CHAN = 11,
3531 /* 802.11i */
3532 WLAN_REASON_INVALID_IE = 13,
3533 WLAN_REASON_MIC_FAILURE = 14,
3534 WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT = 15,
3535 WLAN_REASON_GROUP_KEY_HANDSHAKE_TIMEOUT = 16,
3536 WLAN_REASON_IE_DIFFERENT = 17,
3537 WLAN_REASON_INVALID_GROUP_CIPHER = 18,
3538 WLAN_REASON_INVALID_PAIRWISE_CIPHER = 19,
3539 WLAN_REASON_INVALID_AKMP = 20,
3540 WLAN_REASON_UNSUPP_RSN_VERSION = 21,
3541 WLAN_REASON_INVALID_RSN_IE_CAP = 22,
3542 WLAN_REASON_IEEE8021X_FAILED = 23,
3543 WLAN_REASON_CIPHER_SUITE_REJECTED = 24,
3544 /* TDLS (802.11z) */
3545 WLAN_REASON_TDLS_TEARDOWN_UNREACHABLE = 25,
3546 WLAN_REASON_TDLS_TEARDOWN_UNSPECIFIED = 26,
3547 /* 802.11e */
3548 WLAN_REASON_DISASSOC_UNSPECIFIED_QOS = 32,
3549 WLAN_REASON_DISASSOC_QAP_NO_BANDWIDTH = 33,
3550 WLAN_REASON_DISASSOC_LOW_ACK = 34,
3551 WLAN_REASON_DISASSOC_QAP_EXCEED_TXOP = 35,
3552 WLAN_REASON_QSTA_LEAVE_QBSS = 36,
3553 WLAN_REASON_QSTA_NOT_USE = 37,
3554 WLAN_REASON_QSTA_REQUIRE_SETUP = 38,
3555 WLAN_REASON_QSTA_TIMEOUT = 39,
3556 WLAN_REASON_QSTA_CIPHER_NOT_SUPP = 45,
3557 /* 802.11s */
3558 WLAN_REASON_MESH_PEER_CANCELED = 52,
3559 WLAN_REASON_MESH_MAX_PEERS = 53,
3560 WLAN_REASON_MESH_CONFIG = 54,
3561 WLAN_REASON_MESH_CLOSE = 55,
3562 WLAN_REASON_MESH_MAX_RETRIES = 56,
3563 WLAN_REASON_MESH_CONFIRM_TIMEOUT = 57,
3564 WLAN_REASON_MESH_INVALID_GTK = 58,
3565 WLAN_REASON_MESH_INCONSISTENT_PARAM = 59,
3566 WLAN_REASON_MESH_INVALID_SECURITY = 60,
3567 WLAN_REASON_MESH_PATH_ERROR = 61,
3568 WLAN_REASON_MESH_PATH_NOFORWARD = 62,
3569 WLAN_REASON_MESH_PATH_DEST_UNREACHABLE = 63,
3570 WLAN_REASON_MAC_EXISTS_IN_MBSS = 64,
3571 WLAN_REASON_MESH_CHAN_REGULATORY = 65,
3572 WLAN_REASON_MESH_CHAN = 66,
3573 };
3574
3575
3576 /* Information Element IDs */
3577 enum ieee80211_eid {
3578 WLAN_EID_SSID = 0,
3579 WLAN_EID_SUPP_RATES = 1,
3580 WLAN_EID_FH_PARAMS = 2, /* reserved now */
3581 WLAN_EID_DS_PARAMS = 3,
3582 WLAN_EID_CF_PARAMS = 4,
3583 WLAN_EID_TIM = 5,
3584 WLAN_EID_IBSS_PARAMS = 6,
3585 WLAN_EID_COUNTRY = 7,
3586 /* 8, 9 reserved */
3587 WLAN_EID_REQUEST = 10,
3588 WLAN_EID_QBSS_LOAD = 11,
3589 WLAN_EID_EDCA_PARAM_SET = 12,
3590 WLAN_EID_TSPEC = 13,
3591 WLAN_EID_TCLAS = 14,
3592 WLAN_EID_SCHEDULE = 15,
3593 WLAN_EID_CHALLENGE = 16,
3594 /* 17-31 reserved for challenge text extension */
3595 WLAN_EID_PWR_CONSTRAINT = 32,
3596 WLAN_EID_PWR_CAPABILITY = 33,
3597 WLAN_EID_TPC_REQUEST = 34,
3598 WLAN_EID_TPC_REPORT = 35,
3599 WLAN_EID_SUPPORTED_CHANNELS = 36,
3600 WLAN_EID_CHANNEL_SWITCH = 37,
3601 WLAN_EID_MEASURE_REQUEST = 38,
3602 WLAN_EID_MEASURE_REPORT = 39,
3603 WLAN_EID_QUIET = 40,
3604 WLAN_EID_IBSS_DFS = 41,
3605 WLAN_EID_ERP_INFO = 42,
3606 WLAN_EID_TS_DELAY = 43,
3607 WLAN_EID_TCLAS_PROCESSING = 44,
3608 WLAN_EID_HT_CAPABILITY = 45,
3609 WLAN_EID_QOS_CAPA = 46,
3610 /* 47 reserved for Broadcom */
3611 WLAN_EID_RSN = 48,
3612 WLAN_EID_802_15_COEX = 49,
3613 WLAN_EID_EXT_SUPP_RATES = 50,
3614 WLAN_EID_AP_CHAN_REPORT = 51,
3615 WLAN_EID_NEIGHBOR_REPORT = 52,
3616 WLAN_EID_RCPI = 53,
3617 WLAN_EID_MOBILITY_DOMAIN = 54,
3618 WLAN_EID_FAST_BSS_TRANSITION = 55,
3619 WLAN_EID_TIMEOUT_INTERVAL = 56,
3620 WLAN_EID_RIC_DATA = 57,
3621 WLAN_EID_DSE_REGISTERED_LOCATION = 58,
3622 WLAN_EID_SUPPORTED_REGULATORY_CLASSES = 59,
3623 WLAN_EID_EXT_CHANSWITCH_ANN = 60,
3624 WLAN_EID_HT_OPERATION = 61,
3625 WLAN_EID_SECONDARY_CHANNEL_OFFSET = 62,
3626 WLAN_EID_BSS_AVG_ACCESS_DELAY = 63,
3627 WLAN_EID_ANTENNA_INFO = 64,
3628 WLAN_EID_RSNI = 65,
3629 WLAN_EID_MEASUREMENT_PILOT_TX_INFO = 66,
3630 WLAN_EID_BSS_AVAILABLE_CAPACITY = 67,
3631 WLAN_EID_BSS_AC_ACCESS_DELAY = 68,
3632 WLAN_EID_TIME_ADVERTISEMENT = 69,
3633 WLAN_EID_RRM_ENABLED_CAPABILITIES = 70,
3634 WLAN_EID_MULTIPLE_BSSID = 71,
3635 WLAN_EID_BSS_COEX_2040 = 72,
3636 WLAN_EID_BSS_INTOLERANT_CHL_REPORT = 73,
3637 WLAN_EID_OVERLAP_BSS_SCAN_PARAM = 74,
3638 WLAN_EID_RIC_DESCRIPTOR = 75,
3639 WLAN_EID_MMIE = 76,
3640 WLAN_EID_ASSOC_COMEBACK_TIME = 77,
3641 WLAN_EID_EVENT_REQUEST = 78,
3642 WLAN_EID_EVENT_REPORT = 79,
3643 WLAN_EID_DIAGNOSTIC_REQUEST = 80,
3644 WLAN_EID_DIAGNOSTIC_REPORT = 81,
3645 WLAN_EID_LOCATION_PARAMS = 82,
3646 WLAN_EID_NON_TX_BSSID_CAP = 83,
3647 WLAN_EID_SSID_LIST = 84,
3648 WLAN_EID_MULTI_BSSID_IDX = 85,
3649 WLAN_EID_FMS_DESCRIPTOR = 86,
3650 WLAN_EID_FMS_REQUEST = 87,
3651 WLAN_EID_FMS_RESPONSE = 88,
3652 WLAN_EID_QOS_TRAFFIC_CAPA = 89,
3653 WLAN_EID_BSS_MAX_IDLE_PERIOD = 90,
3654 WLAN_EID_TSF_REQUEST = 91,
3655 WLAN_EID_TSF_RESPOSNE = 92,
3656 WLAN_EID_WNM_SLEEP_MODE = 93,
3657 WLAN_EID_TIM_BCAST_REQ = 94,
3658 WLAN_EID_TIM_BCAST_RESP = 95,
3659 WLAN_EID_COLL_IF_REPORT = 96,
3660 WLAN_EID_CHANNEL_USAGE = 97,
3661 WLAN_EID_TIME_ZONE = 98,
3662 WLAN_EID_DMS_REQUEST = 99,
3663 WLAN_EID_DMS_RESPONSE = 100,
3664 WLAN_EID_LINK_ID = 101,
3665 WLAN_EID_WAKEUP_SCHEDUL = 102,
3666 /* 103 reserved */
3667 WLAN_EID_CHAN_SWITCH_TIMING = 104,
3668 WLAN_EID_PTI_CONTROL = 105,
3669 WLAN_EID_PU_BUFFER_STATUS = 106,
3670 WLAN_EID_INTERWORKING = 107,
3671 WLAN_EID_ADVERTISEMENT_PROTOCOL = 108,
3672 WLAN_EID_EXPEDITED_BW_REQ = 109,
3673 WLAN_EID_QOS_MAP_SET = 110,
3674 WLAN_EID_ROAMING_CONSORTIUM = 111,
3675 WLAN_EID_EMERGENCY_ALERT = 112,
3676 WLAN_EID_MESH_CONFIG = 113,
3677 WLAN_EID_MESH_ID = 114,
3678 WLAN_EID_LINK_METRIC_REPORT = 115,
3679 WLAN_EID_CONGESTION_NOTIFICATION = 116,
3680 WLAN_EID_PEER_MGMT = 117,
3681 WLAN_EID_CHAN_SWITCH_PARAM = 118,
3682 WLAN_EID_MESH_AWAKE_WINDOW = 119,
3683 WLAN_EID_BEACON_TIMING = 120,
3684 WLAN_EID_MCCAOP_SETUP_REQ = 121,
3685 WLAN_EID_MCCAOP_SETUP_RESP = 122,
3686 WLAN_EID_MCCAOP_ADVERT = 123,
3687 WLAN_EID_MCCAOP_TEARDOWN = 124,
3688 WLAN_EID_GANN = 125,
3689 WLAN_EID_RANN = 126,
3690 WLAN_EID_EXT_CAPABILITY = 127,
3691 /* 128, 129 reserved for Agere */
3692 WLAN_EID_PREQ = 130,
3693 WLAN_EID_PREP = 131,
3694 WLAN_EID_PERR = 132,
3695 /* 133-136 reserved for Cisco */
3696 WLAN_EID_PXU = 137,
3697 WLAN_EID_PXUC = 138,
3698 WLAN_EID_AUTH_MESH_PEER_EXCH = 139,
3699 WLAN_EID_MIC = 140,
3700 WLAN_EID_DESTINATION_URI = 141,
3701 WLAN_EID_UAPSD_COEX = 142,
3702 WLAN_EID_WAKEUP_SCHEDULE = 143,
3703 WLAN_EID_EXT_SCHEDULE = 144,
3704 WLAN_EID_STA_AVAILABILITY = 145,
3705 WLAN_EID_DMG_TSPEC = 146,
3706 WLAN_EID_DMG_AT = 147,
3707 WLAN_EID_DMG_CAP = 148,
3708 /* 149 reserved for Cisco */
3709 WLAN_EID_CISCO_VENDOR_SPECIFIC = 150,
3710 WLAN_EID_DMG_OPERATION = 151,
3711 WLAN_EID_DMG_BSS_PARAM_CHANGE = 152,
3712 WLAN_EID_DMG_BEAM_REFINEMENT = 153,
3713 WLAN_EID_CHANNEL_MEASURE_FEEDBACK = 154,
3714 /* 155-156 reserved for Cisco */
3715 WLAN_EID_AWAKE_WINDOW = 157,
3716 WLAN_EID_MULTI_BAND = 158,
3717 WLAN_EID_ADDBA_EXT = 159,
3718 WLAN_EID_NEXT_PCP_LIST = 160,
3719 WLAN_EID_PCP_HANDOVER = 161,
3720 WLAN_EID_DMG_LINK_MARGIN = 162,
3721 WLAN_EID_SWITCHING_STREAM = 163,
3722 WLAN_EID_SESSION_TRANSITION = 164,
3723 WLAN_EID_DYN_TONE_PAIRING_REPORT = 165,
3724 WLAN_EID_CLUSTER_REPORT = 166,
3725 WLAN_EID_RELAY_CAP = 167,
3726 WLAN_EID_RELAY_XFER_PARAM_SET = 168,
3727 WLAN_EID_BEAM_LINK_MAINT = 169,
3728 WLAN_EID_MULTIPLE_MAC_ADDR = 170,
3729 WLAN_EID_U_PID = 171,
3730 WLAN_EID_DMG_LINK_ADAPT_ACK = 172,
3731 /* 173 reserved for Symbol */
3732 WLAN_EID_MCCAOP_ADV_OVERVIEW = 174,
3733 WLAN_EID_QUIET_PERIOD_REQ = 175,
3734 /* 176 reserved for Symbol */
3735 WLAN_EID_QUIET_PERIOD_RESP = 177,
3736 /* 178-179 reserved for Symbol */
3737 /* 180 reserved for ISO/IEC 20011 */
3738 WLAN_EID_EPAC_POLICY = 182,
3739 WLAN_EID_CLISTER_TIME_OFF = 183,
3740 WLAN_EID_INTER_AC_PRIO = 184,
3741 WLAN_EID_SCS_DESCRIPTOR = 185,
3742 WLAN_EID_QLOAD_REPORT = 186,
3743 WLAN_EID_HCCA_TXOP_UPDATE_COUNT = 187,
3744 WLAN_EID_HL_STREAM_ID = 188,
3745 WLAN_EID_GCR_GROUP_ADDR = 189,
3746 WLAN_EID_ANTENNA_SECTOR_ID_PATTERN = 190,
3747 WLAN_EID_VHT_CAPABILITY = 191,
3748 WLAN_EID_VHT_OPERATION = 192,
3749 WLAN_EID_EXTENDED_BSS_LOAD = 193,
3750 WLAN_EID_WIDE_BW_CHANNEL_SWITCH = 194,
3751 WLAN_EID_TX_POWER_ENVELOPE = 195,
3752 WLAN_EID_CHANNEL_SWITCH_WRAPPER = 196,
3753 WLAN_EID_AID = 197,
3754 WLAN_EID_QUIET_CHANNEL = 198,
3755 WLAN_EID_OPMODE_NOTIF = 199,
3756
3757 WLAN_EID_REDUCED_NEIGHBOR_REPORT = 201,
3758
3759 WLAN_EID_AID_REQUEST = 210,
3760 WLAN_EID_AID_RESPONSE = 211,
3761 WLAN_EID_S1G_BCN_COMPAT = 213,
3762 WLAN_EID_S1G_SHORT_BCN_INTERVAL = 214,
3763 WLAN_EID_S1G_TWT = 216,
3764 WLAN_EID_S1G_CAPABILITIES = 217,
3765 WLAN_EID_VENDOR_SPECIFIC = 221,
3766 WLAN_EID_QOS_PARAMETER = 222,
3767 WLAN_EID_S1G_OPERATION = 232,
3768 WLAN_EID_CAG_NUMBER = 237,
3769 WLAN_EID_AP_CSN = 239,
3770 WLAN_EID_FILS_INDICATION = 240,
3771 WLAN_EID_DILS = 241,
3772 WLAN_EID_FRAGMENT = 242,
3773 WLAN_EID_RSNX = 244,
3774 WLAN_EID_EXTENSION = 255
3775 };
3776
3777 /* Element ID Extensions for Element ID 255 */
3778 enum ieee80211_eid_ext {
3779 WLAN_EID_EXT_ASSOC_DELAY_INFO = 1,
3780 WLAN_EID_EXT_FILS_REQ_PARAMS = 2,
3781 WLAN_EID_EXT_FILS_KEY_CONFIRM = 3,
3782 WLAN_EID_EXT_FILS_SESSION = 4,
3783 WLAN_EID_EXT_FILS_HLP_CONTAINER = 5,
3784 WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN = 6,
3785 WLAN_EID_EXT_KEY_DELIVERY = 7,
3786 WLAN_EID_EXT_FILS_WRAPPED_DATA = 8,
3787 WLAN_EID_EXT_FILS_PUBLIC_KEY = 12,
3788 WLAN_EID_EXT_FILS_NONCE = 13,
3789 WLAN_EID_EXT_FUTURE_CHAN_GUIDANCE = 14,
3790 WLAN_EID_EXT_HE_CAPABILITY = 35,
3791 WLAN_EID_EXT_HE_OPERATION = 36,
3792 WLAN_EID_EXT_UORA = 37,
3793 WLAN_EID_EXT_HE_MU_EDCA = 38,
3794 WLAN_EID_EXT_HE_SPR = 39,
3795 WLAN_EID_EXT_NDP_FEEDBACK_REPORT_PARAMSET = 41,
3796 WLAN_EID_EXT_BSS_COLOR_CHG_ANN = 42,
3797 WLAN_EID_EXT_QUIET_TIME_PERIOD_SETUP = 43,
3798 WLAN_EID_EXT_ESS_REPORT = 45,
3799 WLAN_EID_EXT_OPS = 46,
3800 WLAN_EID_EXT_HE_BSS_LOAD = 47,
3801 WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME = 52,
3802 WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION = 55,
3803 WLAN_EID_EXT_NON_INHERITANCE = 56,
3804 WLAN_EID_EXT_KNOWN_BSSID = 57,
3805 WLAN_EID_EXT_SHORT_SSID_LIST = 58,
3806 WLAN_EID_EXT_HE_6GHZ_CAPA = 59,
3807 WLAN_EID_EXT_UL_MU_POWER_CAPA = 60,
3808 WLAN_EID_EXT_EHT_OPERATION = 106,
3809 WLAN_EID_EXT_EHT_MULTI_LINK = 107,
3810 WLAN_EID_EXT_EHT_CAPABILITY = 108,
3811 WLAN_EID_EXT_TID_TO_LINK_MAPPING = 109,
3812 WLAN_EID_EXT_BANDWIDTH_INDICATION = 135,
3813 };
3814
3815 /* Action category code */
3816 enum ieee80211_category {
3817 WLAN_CATEGORY_SPECTRUM_MGMT = 0,
3818 WLAN_CATEGORY_QOS = 1,
3819 WLAN_CATEGORY_DLS = 2,
3820 WLAN_CATEGORY_BACK = 3,
3821 WLAN_CATEGORY_PUBLIC = 4,
3822 WLAN_CATEGORY_RADIO_MEASUREMENT = 5,
3823 WLAN_CATEGORY_FAST_BBS_TRANSITION = 6,
3824 WLAN_CATEGORY_HT = 7,
3825 WLAN_CATEGORY_SA_QUERY = 8,
3826 WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION = 9,
3827 WLAN_CATEGORY_WNM = 10,
3828 WLAN_CATEGORY_WNM_UNPROTECTED = 11,
3829 WLAN_CATEGORY_TDLS = 12,
3830 WLAN_CATEGORY_MESH_ACTION = 13,
3831 WLAN_CATEGORY_MULTIHOP_ACTION = 14,
3832 WLAN_CATEGORY_SELF_PROTECTED = 15,
3833 WLAN_CATEGORY_DMG = 16,
3834 WLAN_CATEGORY_WMM = 17,
3835 WLAN_CATEGORY_FST = 18,
3836 WLAN_CATEGORY_UNPROT_DMG = 20,
3837 WLAN_CATEGORY_VHT = 21,
3838 WLAN_CATEGORY_S1G = 22,
3839 WLAN_CATEGORY_PROTECTED_EHT = 37,
3840 WLAN_CATEGORY_VENDOR_SPECIFIC_PROTECTED = 126,
3841 WLAN_CATEGORY_VENDOR_SPECIFIC = 127,
3842 };
3843
3844 /* SPECTRUM_MGMT action code */
3845 enum ieee80211_spectrum_mgmt_actioncode {
3846 WLAN_ACTION_SPCT_MSR_REQ = 0,
3847 WLAN_ACTION_SPCT_MSR_RPRT = 1,
3848 WLAN_ACTION_SPCT_TPC_REQ = 2,
3849 WLAN_ACTION_SPCT_TPC_RPRT = 3,
3850 WLAN_ACTION_SPCT_CHL_SWITCH = 4,
3851 };
3852
3853 /* HT action codes */
3854 enum ieee80211_ht_actioncode {
3855 WLAN_HT_ACTION_NOTIFY_CHANWIDTH = 0,
3856 WLAN_HT_ACTION_SMPS = 1,
3857 WLAN_HT_ACTION_PSMP = 2,
3858 WLAN_HT_ACTION_PCO_PHASE = 3,
3859 WLAN_HT_ACTION_CSI = 4,
3860 WLAN_HT_ACTION_NONCOMPRESSED_BF = 5,
3861 WLAN_HT_ACTION_COMPRESSED_BF = 6,
3862 WLAN_HT_ACTION_ASEL_IDX_FEEDBACK = 7,
3863 };
3864
3865 /* VHT action codes */
3866 enum ieee80211_vht_actioncode {
3867 WLAN_VHT_ACTION_COMPRESSED_BF = 0,
3868 WLAN_VHT_ACTION_GROUPID_MGMT = 1,
3869 WLAN_VHT_ACTION_OPMODE_NOTIF = 2,
3870 };
3871
3872 /* Self Protected Action codes */
3873 enum ieee80211_self_protected_actioncode {
3874 WLAN_SP_RESERVED = 0,
3875 WLAN_SP_MESH_PEERING_OPEN = 1,
3876 WLAN_SP_MESH_PEERING_CONFIRM = 2,
3877 WLAN_SP_MESH_PEERING_CLOSE = 3,
3878 WLAN_SP_MGK_INFORM = 4,
3879 WLAN_SP_MGK_ACK = 5,
3880 };
3881
3882 /* Mesh action codes */
3883 enum ieee80211_mesh_actioncode {
3884 WLAN_MESH_ACTION_LINK_METRIC_REPORT,
3885 WLAN_MESH_ACTION_HWMP_PATH_SELECTION,
3886 WLAN_MESH_ACTION_GATE_ANNOUNCEMENT,
3887 WLAN_MESH_ACTION_CONGESTION_CONTROL_NOTIFICATION,
3888 WLAN_MESH_ACTION_MCCA_SETUP_REQUEST,
3889 WLAN_MESH_ACTION_MCCA_SETUP_REPLY,
3890 WLAN_MESH_ACTION_MCCA_ADVERTISEMENT_REQUEST,
3891 WLAN_MESH_ACTION_MCCA_ADVERTISEMENT,
3892 WLAN_MESH_ACTION_MCCA_TEARDOWN,
3893 WLAN_MESH_ACTION_TBTT_ADJUSTMENT_REQUEST,
3894 WLAN_MESH_ACTION_TBTT_ADJUSTMENT_RESPONSE,
3895 };
3896
3897 /* Unprotected WNM action codes */
3898 enum ieee80211_unprotected_wnm_actioncode {
3899 WLAN_UNPROTECTED_WNM_ACTION_TIM = 0,
3900 WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE = 1,
3901 };
3902
3903 /* Protected EHT action codes */
3904 enum ieee80211_protected_eht_actioncode {
3905 WLAN_PROTECTED_EHT_ACTION_TTLM_REQ = 0,
3906 WLAN_PROTECTED_EHT_ACTION_TTLM_RES = 1,
3907 WLAN_PROTECTED_EHT_ACTION_TTLM_TEARDOWN = 2,
3908 WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_REQ = 3,
3909 WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_RESP = 4,
3910 WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_TEARDOWN = 5,
3911 WLAN_PROTECTED_EHT_ACTION_EML_OP_MODE_NOTIF = 6,
3912 WLAN_PROTECTED_EHT_ACTION_LINK_RECOMMEND = 7,
3913 WLAN_PROTECTED_EHT_ACTION_ML_OP_UPDATE_REQ = 8,
3914 WLAN_PROTECTED_EHT_ACTION_ML_OP_UPDATE_RESP = 9,
3915 WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_NOTIF = 10,
3916 WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_REQ = 11,
3917 WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_RESP = 12,
3918 };
3919
3920 /* Security key length */
3921 enum ieee80211_key_len {
3922 WLAN_KEY_LEN_WEP40 = 5,
3923 WLAN_KEY_LEN_WEP104 = 13,
3924 WLAN_KEY_LEN_CCMP = 16,
3925 WLAN_KEY_LEN_CCMP_256 = 32,
3926 WLAN_KEY_LEN_TKIP = 32,
3927 WLAN_KEY_LEN_AES_CMAC = 16,
3928 WLAN_KEY_LEN_SMS4 = 32,
3929 WLAN_KEY_LEN_GCMP = 16,
3930 WLAN_KEY_LEN_GCMP_256 = 32,
3931 WLAN_KEY_LEN_BIP_CMAC_256 = 32,
3932 WLAN_KEY_LEN_BIP_GMAC_128 = 16,
3933 WLAN_KEY_LEN_BIP_GMAC_256 = 32,
3934 };
3935
3936 enum ieee80211_s1g_actioncode {
3937 WLAN_S1G_AID_SWITCH_REQUEST,
3938 WLAN_S1G_AID_SWITCH_RESPONSE,
3939 WLAN_S1G_SYNC_CONTROL,
3940 WLAN_S1G_STA_INFO_ANNOUNCE,
3941 WLAN_S1G_EDCA_PARAM_SET,
3942 WLAN_S1G_EL_OPERATION,
3943 WLAN_S1G_TWT_SETUP,
3944 WLAN_S1G_TWT_TEARDOWN,
3945 WLAN_S1G_SECT_GROUP_ID_LIST,
3946 WLAN_S1G_SECT_ID_FEEDBACK,
3947 WLAN_S1G_TWT_INFORMATION = 11,
3948 };
3949
3950 #define IEEE80211_WEP_IV_LEN 4
3951 #define IEEE80211_WEP_ICV_LEN 4
3952 #define IEEE80211_CCMP_HDR_LEN 8
3953 #define IEEE80211_CCMP_MIC_LEN 8
3954 #define IEEE80211_CCMP_PN_LEN 6
3955 #define IEEE80211_CCMP_256_HDR_LEN 8
3956 #define IEEE80211_CCMP_256_MIC_LEN 16
3957 #define IEEE80211_CCMP_256_PN_LEN 6
3958 #define IEEE80211_TKIP_IV_LEN 8
3959 #define IEEE80211_TKIP_ICV_LEN 4
3960 #define IEEE80211_CMAC_PN_LEN 6
3961 #define IEEE80211_GMAC_PN_LEN 6
3962 #define IEEE80211_GCMP_HDR_LEN 8
3963 #define IEEE80211_GCMP_MIC_LEN 16
3964 #define IEEE80211_GCMP_PN_LEN 6
3965
3966 #define FILS_NONCE_LEN 16
3967 #define FILS_MAX_KEK_LEN 64
3968
3969 #define FILS_ERP_MAX_USERNAME_LEN 16
3970 #define FILS_ERP_MAX_REALM_LEN 253
3971 #define FILS_ERP_MAX_RRK_LEN 64
3972
3973 #define PMK_MAX_LEN 64
3974 #define SAE_PASSWORD_MAX_LEN 128
3975
3976 /* Public action codes (IEEE Std 802.11-2016, 9.6.8.1, Table 9-307) */
3977 enum ieee80211_pub_actioncode {
3978 WLAN_PUB_ACTION_20_40_BSS_COEX = 0,
3979 WLAN_PUB_ACTION_DSE_ENABLEMENT = 1,
3980 WLAN_PUB_ACTION_DSE_DEENABLEMENT = 2,
3981 WLAN_PUB_ACTION_DSE_REG_LOC_ANN = 3,
3982 WLAN_PUB_ACTION_EXT_CHANSW_ANN = 4,
3983 WLAN_PUB_ACTION_DSE_MSMT_REQ = 5,
3984 WLAN_PUB_ACTION_DSE_MSMT_RESP = 6,
3985 WLAN_PUB_ACTION_MSMT_PILOT = 7,
3986 WLAN_PUB_ACTION_DSE_PC = 8,
3987 WLAN_PUB_ACTION_VENDOR_SPECIFIC = 9,
3988 WLAN_PUB_ACTION_GAS_INITIAL_REQ = 10,
3989 WLAN_PUB_ACTION_GAS_INITIAL_RESP = 11,
3990 WLAN_PUB_ACTION_GAS_COMEBACK_REQ = 12,
3991 WLAN_PUB_ACTION_GAS_COMEBACK_RESP = 13,
3992 WLAN_PUB_ACTION_TDLS_DISCOVER_RES = 14,
3993 WLAN_PUB_ACTION_LOC_TRACK_NOTI = 15,
3994 WLAN_PUB_ACTION_QAB_REQUEST_FRAME = 16,
3995 WLAN_PUB_ACTION_QAB_RESPONSE_FRAME = 17,
3996 WLAN_PUB_ACTION_QMF_POLICY = 18,
3997 WLAN_PUB_ACTION_QMF_POLICY_CHANGE = 19,
3998 WLAN_PUB_ACTION_QLOAD_REQUEST = 20,
3999 WLAN_PUB_ACTION_QLOAD_REPORT = 21,
4000 WLAN_PUB_ACTION_HCCA_TXOP_ADVERT = 22,
4001 WLAN_PUB_ACTION_HCCA_TXOP_RESPONSE = 23,
4002 WLAN_PUB_ACTION_PUBLIC_KEY = 24,
4003 WLAN_PUB_ACTION_CHANNEL_AVAIL_QUERY = 25,
4004 WLAN_PUB_ACTION_CHANNEL_SCHEDULE_MGMT = 26,
4005 WLAN_PUB_ACTION_CONTACT_VERI_SIGNAL = 27,
4006 WLAN_PUB_ACTION_GDD_ENABLEMENT_REQ = 28,
4007 WLAN_PUB_ACTION_GDD_ENABLEMENT_RESP = 29,
4008 WLAN_PUB_ACTION_NETWORK_CHANNEL_CONTROL = 30,
4009 WLAN_PUB_ACTION_WHITE_SPACE_MAP_ANN = 31,
4010 WLAN_PUB_ACTION_FTM_REQUEST = 32,
4011 WLAN_PUB_ACTION_FTM_RESPONSE = 33,
4012 WLAN_PUB_ACTION_FILS_DISCOVERY = 34,
4013 };
4014
4015 /* TDLS action codes */
4016 enum ieee80211_tdls_actioncode {
4017 WLAN_TDLS_SETUP_REQUEST = 0,
4018 WLAN_TDLS_SETUP_RESPONSE = 1,
4019 WLAN_TDLS_SETUP_CONFIRM = 2,
4020 WLAN_TDLS_TEARDOWN = 3,
4021 WLAN_TDLS_PEER_TRAFFIC_INDICATION = 4,
4022 WLAN_TDLS_CHANNEL_SWITCH_REQUEST = 5,
4023 WLAN_TDLS_CHANNEL_SWITCH_RESPONSE = 6,
4024 WLAN_TDLS_PEER_PSM_REQUEST = 7,
4025 WLAN_TDLS_PEER_PSM_RESPONSE = 8,
4026 WLAN_TDLS_PEER_TRAFFIC_RESPONSE = 9,
4027 WLAN_TDLS_DISCOVERY_REQUEST = 10,
4028 };
4029
4030 /* Extended Channel Switching capability to be set in the 1st byte of
4031 * the @WLAN_EID_EXT_CAPABILITY information element
4032 */
4033 #define WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING BIT(2)
4034
4035 /* Multiple BSSID capability is set in the 6th bit of 3rd byte of the
4036 * @WLAN_EID_EXT_CAPABILITY information element
4037 */
4038 #define WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT BIT(6)
4039
4040 /* Timing Measurement protocol for time sync is set in the 7th bit of 3rd byte
4041 * of the @WLAN_EID_EXT_CAPABILITY information element
4042 */
4043 #define WLAN_EXT_CAPA3_TIMING_MEASUREMENT_SUPPORT BIT(7)
4044
4045 /* TDLS capabilities in the 4th byte of @WLAN_EID_EXT_CAPABILITY */
4046 #define WLAN_EXT_CAPA4_TDLS_BUFFER_STA BIT(4)
4047 #define WLAN_EXT_CAPA4_TDLS_PEER_PSM BIT(5)
4048 #define WLAN_EXT_CAPA4_TDLS_CHAN_SWITCH BIT(6)
4049
4050 /* Interworking capabilities are set in 7th bit of 4th byte of the
4051 * @WLAN_EID_EXT_CAPABILITY information element
4052 */
4053 #define WLAN_EXT_CAPA4_INTERWORKING_ENABLED BIT(7)
4054
4055 /*
4056 * TDLS capabililites to be enabled in the 5th byte of the
4057 * @WLAN_EID_EXT_CAPABILITY information element
4058 */
4059 #define WLAN_EXT_CAPA5_TDLS_ENABLED BIT(5)
4060 #define WLAN_EXT_CAPA5_TDLS_PROHIBITED BIT(6)
4061 #define WLAN_EXT_CAPA5_TDLS_CH_SW_PROHIBITED BIT(7)
4062
4063 #define WLAN_EXT_CAPA8_TDLS_WIDE_BW_ENABLED BIT(5)
4064 #define WLAN_EXT_CAPA8_OPMODE_NOTIF BIT(6)
4065
4066 /* Defines the maximal number of MSDUs in an A-MSDU. */
4067 #define WLAN_EXT_CAPA8_MAX_MSDU_IN_AMSDU_LSB BIT(7)
4068 #define WLAN_EXT_CAPA9_MAX_MSDU_IN_AMSDU_MSB BIT(0)
4069
4070 /*
4071 * Fine Timing Measurement Initiator - bit 71 of @WLAN_EID_EXT_CAPABILITY
4072 * information element
4073 */
4074 #define WLAN_EXT_CAPA9_FTM_INITIATOR BIT(7)
4075
4076 /* Defines support for TWT Requester and TWT Responder */
4077 #define WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT BIT(5)
4078 #define WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT BIT(6)
4079
4080 /*
4081 * When set, indicates that the AP is able to tolerate 26-tone RU UL
4082 * OFDMA transmissions using HE TB PPDU from OBSS (not falsely classify the
4083 * 26-tone RU UL OFDMA transmissions as radar pulses).
4084 */
4085 #define WLAN_EXT_CAPA10_OBSS_NARROW_BW_RU_TOLERANCE_SUPPORT BIT(7)
4086
4087 /* Defines support for enhanced multi-bssid advertisement*/
4088 #define WLAN_EXT_CAPA11_EMA_SUPPORT BIT(3)
4089
4090 /* TDLS specific payload type in the LLC/SNAP header */
4091 #define WLAN_TDLS_SNAP_RFTYPE 0x2
4092
4093 /* BSS Coex IE information field bits */
4094 #define WLAN_BSS_COEX_INFORMATION_REQUEST BIT(0)
4095
4096 /**
4097 * enum ieee80211_mesh_sync_method - mesh synchronization method identifier
4098 *
4099 * @IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET: the default synchronization method
4100 * @IEEE80211_SYNC_METHOD_VENDOR: a vendor specific synchronization method
4101 * that will be specified in a vendor specific information element
4102 */
4103 enum ieee80211_mesh_sync_method {
4104 IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET = 1,
4105 IEEE80211_SYNC_METHOD_VENDOR = 255,
4106 };
4107
4108 /**
4109 * enum ieee80211_mesh_path_protocol - mesh path selection protocol identifier
4110 *
4111 * @IEEE80211_PATH_PROTOCOL_HWMP: the default path selection protocol
4112 * @IEEE80211_PATH_PROTOCOL_VENDOR: a vendor specific protocol that will
4113 * be specified in a vendor specific information element
4114 */
4115 enum ieee80211_mesh_path_protocol {
4116 IEEE80211_PATH_PROTOCOL_HWMP = 1,
4117 IEEE80211_PATH_PROTOCOL_VENDOR = 255,
4118 };
4119
4120 /**
4121 * enum ieee80211_mesh_path_metric - mesh path selection metric identifier
4122 *
4123 * @IEEE80211_PATH_METRIC_AIRTIME: the default path selection metric
4124 * @IEEE80211_PATH_METRIC_VENDOR: a vendor specific metric that will be
4125 * specified in a vendor specific information element
4126 */
4127 enum ieee80211_mesh_path_metric {
4128 IEEE80211_PATH_METRIC_AIRTIME = 1,
4129 IEEE80211_PATH_METRIC_VENDOR = 255,
4130 };
4131
4132 /**
4133 * enum ieee80211_root_mode_identifier - root mesh STA mode identifier
4134 *
4135 * These attribute are used by dot11MeshHWMPRootMode to set root mesh STA mode
4136 *
4137 * @IEEE80211_ROOTMODE_NO_ROOT: the mesh STA is not a root mesh STA (default)
4138 * @IEEE80211_ROOTMODE_ROOT: the mesh STA is a root mesh STA if greater than
4139 * this value
4140 * @IEEE80211_PROACTIVE_PREQ_NO_PREP: the mesh STA is a root mesh STA supports
4141 * the proactive PREQ with proactive PREP subfield set to 0
4142 * @IEEE80211_PROACTIVE_PREQ_WITH_PREP: the mesh STA is a root mesh STA
4143 * supports the proactive PREQ with proactive PREP subfield set to 1
4144 * @IEEE80211_PROACTIVE_RANN: the mesh STA is a root mesh STA supports
4145 * the proactive RANN
4146 */
4147 enum ieee80211_root_mode_identifier {
4148 IEEE80211_ROOTMODE_NO_ROOT = 0,
4149 IEEE80211_ROOTMODE_ROOT = 1,
4150 IEEE80211_PROACTIVE_PREQ_NO_PREP = 2,
4151 IEEE80211_PROACTIVE_PREQ_WITH_PREP = 3,
4152 IEEE80211_PROACTIVE_RANN = 4,
4153 };
4154
4155 /*
4156 * IEEE 802.11-2007 7.3.2.9 Country information element
4157 *
4158 * Minimum length is 8 octets, ie len must be evenly
4159 * divisible by 2
4160 */
4161
4162 /* Although the spec says 8 I'm seeing 6 in practice */
4163 #define IEEE80211_COUNTRY_IE_MIN_LEN 6
4164
4165 /* The Country String field of the element shall be 3 octets in length */
4166 #define IEEE80211_COUNTRY_STRING_LEN 3
4167
4168 /*
4169 * For regulatory extension stuff see IEEE 802.11-2007
4170 * Annex I (page 1141) and Annex J (page 1147). Also
4171 * review 7.3.2.9.
4172 *
4173 * When dot11RegulatoryClassesRequired is true and the
4174 * first_channel/reg_extension_id is >= 201 then the IE
4175 * compromises of the 'ext' struct represented below:
4176 *
4177 * - Regulatory extension ID - when generating IE this just needs
4178 * to be monotonically increasing for each triplet passed in
4179 * the IE
4180 * - Regulatory class - index into set of rules
4181 * - Coverage class - index into air propagation time (Table 7-27),
4182 * in microseconds, you can compute the air propagation time from
4183 * the index by multiplying by 3, so index 10 yields a propagation
4184 * of 10 us. Valid values are 0-31, values 32-255 are not defined
4185 * yet. A value of 0 inicates air propagation of <= 1 us.
4186 *
4187 * See also Table I.2 for Emission limit sets and table
4188 * I.3 for Behavior limit sets. Table J.1 indicates how to map
4189 * a reg_class to an emission limit set and behavior limit set.
4190 */
4191 #define IEEE80211_COUNTRY_EXTENSION_ID 201
4192
4193 /*
4194 * Channels numbers in the IE must be monotonically increasing
4195 * if dot11RegulatoryClassesRequired is not true.
4196 *
4197 * If dot11RegulatoryClassesRequired is true consecutive
4198 * subband triplets following a regulatory triplet shall
4199 * have monotonically increasing first_channel number fields.
4200 *
4201 * Channel numbers shall not overlap.
4202 *
4203 * Note that max_power is signed.
4204 */
4205 struct ieee80211_country_ie_triplet {
4206 union {
4207 struct {
4208 u8 first_channel;
4209 u8 num_channels;
4210 s8 max_power;
4211 } __packed chans;
4212 struct {
4213 u8 reg_extension_id;
4214 u8 reg_class;
4215 u8 coverage_class;
4216 } __packed ext;
4217 };
4218 } __packed;
4219
4220 enum ieee80211_timeout_interval_type {
4221 WLAN_TIMEOUT_REASSOC_DEADLINE = 1 /* 802.11r */,
4222 WLAN_TIMEOUT_KEY_LIFETIME = 2 /* 802.11r */,
4223 WLAN_TIMEOUT_ASSOC_COMEBACK = 3 /* 802.11w */,
4224 };
4225
4226 /**
4227 * struct ieee80211_timeout_interval_ie - Timeout Interval element
4228 * @type: type, see &enum ieee80211_timeout_interval_type
4229 * @value: timeout interval value
4230 */
4231 struct ieee80211_timeout_interval_ie {
4232 u8 type;
4233 __le32 value;
4234 } __packed;
4235
4236 /**
4237 * enum ieee80211_idle_options - BSS idle options
4238 * @WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE: the station should send an RSN
4239 * protected frame to the AP to reset the idle timer at the AP for
4240 * the station.
4241 */
4242 enum ieee80211_idle_options {
4243 WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE = BIT(0),
4244 };
4245
4246 /**
4247 * struct ieee80211_bss_max_idle_period_ie - BSS max idle period element struct
4248 *
4249 * This structure refers to "BSS Max idle period element"
4250 *
4251 * @max_idle_period: indicates the time period during which a station can
4252 * refrain from transmitting frames to its associated AP without being
4253 * disassociated. In units of 1000 TUs.
4254 * @idle_options: indicates the options associated with the BSS idle capability
4255 * as specified in &enum ieee80211_idle_options.
4256 */
4257 struct ieee80211_bss_max_idle_period_ie {
4258 __le16 max_idle_period;
4259 u8 idle_options;
4260 } __packed;
4261
4262 /* BACK action code */
4263 enum ieee80211_back_actioncode {
4264 WLAN_ACTION_ADDBA_REQ = 0,
4265 WLAN_ACTION_ADDBA_RESP = 1,
4266 WLAN_ACTION_DELBA = 2,
4267 };
4268
4269 /* BACK (block-ack) parties */
4270 enum ieee80211_back_parties {
4271 WLAN_BACK_RECIPIENT = 0,
4272 WLAN_BACK_INITIATOR = 1,
4273 };
4274
4275 /* SA Query action */
4276 enum ieee80211_sa_query_action {
4277 WLAN_ACTION_SA_QUERY_REQUEST = 0,
4278 WLAN_ACTION_SA_QUERY_RESPONSE = 1,
4279 };
4280
4281 /**
4282 * struct ieee80211_bssid_index - multiple BSSID index element structure
4283 *
4284 * This structure refers to "Multiple BSSID-index element"
4285 *
4286 * @bssid_index: BSSID index
4287 * @dtim_period: optional, overrides transmitted BSS dtim period
4288 * @dtim_count: optional, overrides transmitted BSS dtim count
4289 */
4290 struct ieee80211_bssid_index {
4291 u8 bssid_index;
4292 u8 dtim_period;
4293 u8 dtim_count;
4294 };
4295
4296 /**
4297 * struct ieee80211_multiple_bssid_configuration - multiple BSSID configuration
4298 * element structure
4299 *
4300 * This structure refers to "Multiple BSSID Configuration element"
4301 *
4302 * @bssid_count: total number of active BSSIDs in the set
4303 * @profile_periodicity: the least number of beacon frames need to be received
4304 * in order to discover all the nontransmitted BSSIDs in the set.
4305 */
4306 struct ieee80211_multiple_bssid_configuration {
4307 u8 bssid_count;
4308 u8 profile_periodicity;
4309 };
4310
4311 #define SUITE(oui, id) (((oui) << 8) | (id))
4312
4313 /* cipher suite selectors */
4314 #define WLAN_CIPHER_SUITE_USE_GROUP SUITE(0x000FAC, 0)
4315 #define WLAN_CIPHER_SUITE_WEP40 SUITE(0x000FAC, 1)
4316 #define WLAN_CIPHER_SUITE_TKIP SUITE(0x000FAC, 2)
4317 /* reserved: SUITE(0x000FAC, 3) */
4318 #define WLAN_CIPHER_SUITE_CCMP SUITE(0x000FAC, 4)
4319 #define WLAN_CIPHER_SUITE_WEP104 SUITE(0x000FAC, 5)
4320 #define WLAN_CIPHER_SUITE_AES_CMAC SUITE(0x000FAC, 6)
4321 #define WLAN_CIPHER_SUITE_GCMP SUITE(0x000FAC, 8)
4322 #define WLAN_CIPHER_SUITE_GCMP_256 SUITE(0x000FAC, 9)
4323 #define WLAN_CIPHER_SUITE_CCMP_256 SUITE(0x000FAC, 10)
4324 #define WLAN_CIPHER_SUITE_BIP_GMAC_128 SUITE(0x000FAC, 11)
4325 #define WLAN_CIPHER_SUITE_BIP_GMAC_256 SUITE(0x000FAC, 12)
4326 #define WLAN_CIPHER_SUITE_BIP_CMAC_256 SUITE(0x000FAC, 13)
4327
4328 #define WLAN_CIPHER_SUITE_SMS4 SUITE(0x001472, 1)
4329
4330 /* AKM suite selectors */
4331 #define WLAN_AKM_SUITE_8021X SUITE(0x000FAC, 1)
4332 #define WLAN_AKM_SUITE_PSK SUITE(0x000FAC, 2)
4333 #define WLAN_AKM_SUITE_FT_8021X SUITE(0x000FAC, 3)
4334 #define WLAN_AKM_SUITE_FT_PSK SUITE(0x000FAC, 4)
4335 #define WLAN_AKM_SUITE_8021X_SHA256 SUITE(0x000FAC, 5)
4336 #define WLAN_AKM_SUITE_PSK_SHA256 SUITE(0x000FAC, 6)
4337 #define WLAN_AKM_SUITE_TDLS SUITE(0x000FAC, 7)
4338 #define WLAN_AKM_SUITE_SAE SUITE(0x000FAC, 8)
4339 #define WLAN_AKM_SUITE_FT_OVER_SAE SUITE(0x000FAC, 9)
4340 #define WLAN_AKM_SUITE_AP_PEER_KEY SUITE(0x000FAC, 10)
4341 #define WLAN_AKM_SUITE_8021X_SUITE_B SUITE(0x000FAC, 11)
4342 #define WLAN_AKM_SUITE_8021X_SUITE_B_192 SUITE(0x000FAC, 12)
4343 #define WLAN_AKM_SUITE_FT_8021X_SHA384 SUITE(0x000FAC, 13)
4344 #define WLAN_AKM_SUITE_FILS_SHA256 SUITE(0x000FAC, 14)
4345 #define WLAN_AKM_SUITE_FILS_SHA384 SUITE(0x000FAC, 15)
4346 #define WLAN_AKM_SUITE_FT_FILS_SHA256 SUITE(0x000FAC, 16)
4347 #define WLAN_AKM_SUITE_FT_FILS_SHA384 SUITE(0x000FAC, 17)
4348 #define WLAN_AKM_SUITE_OWE SUITE(0x000FAC, 18)
4349 #define WLAN_AKM_SUITE_FT_PSK_SHA384 SUITE(0x000FAC, 19)
4350 #define WLAN_AKM_SUITE_PSK_SHA384 SUITE(0x000FAC, 20)
4351
4352 #define WLAN_AKM_SUITE_WFA_DPP SUITE(WLAN_OUI_WFA, 2)
4353
4354 #define WLAN_MAX_KEY_LEN 32
4355
4356 #define WLAN_PMK_NAME_LEN 16
4357 #define WLAN_PMKID_LEN 16
4358 #define WLAN_PMK_LEN_EAP_LEAP 16
4359 #define WLAN_PMK_LEN 32
4360 #define WLAN_PMK_LEN_SUITE_B_192 48
4361
4362 #define WLAN_OUI_WFA 0x506f9a
4363 #define WLAN_OUI_TYPE_WFA_P2P 9
4364 #define WLAN_OUI_TYPE_WFA_DPP 0x1A
4365 #define WLAN_OUI_MICROSOFT 0x0050f2
4366 #define WLAN_OUI_TYPE_MICROSOFT_WPA 1
4367 #define WLAN_OUI_TYPE_MICROSOFT_WMM 2
4368 #define WLAN_OUI_TYPE_MICROSOFT_WPS 4
4369 #define WLAN_OUI_TYPE_MICROSOFT_TPC 8
4370
4371 /*
4372 * WMM/802.11e Tspec Element
4373 */
4374 #define IEEE80211_WMM_IE_TSPEC_TID_MASK 0x0F
4375 #define IEEE80211_WMM_IE_TSPEC_TID_SHIFT 1
4376
4377 enum ieee80211_tspec_status_code {
4378 IEEE80211_TSPEC_STATUS_ADMISS_ACCEPTED = 0,
4379 IEEE80211_TSPEC_STATUS_ADDTS_INVAL_PARAMS = 0x1,
4380 };
4381
4382 struct ieee80211_tspec_ie {
4383 u8 element_id;
4384 u8 len;
4385 u8 oui[3];
4386 u8 oui_type;
4387 u8 oui_subtype;
4388 u8 version;
4389 __le16 tsinfo;
4390 u8 tsinfo_resvd;
4391 __le16 nominal_msdu;
4392 __le16 max_msdu;
4393 __le32 min_service_int;
4394 __le32 max_service_int;
4395 __le32 inactivity_int;
4396 __le32 suspension_int;
4397 __le32 service_start_time;
4398 __le32 min_data_rate;
4399 __le32 mean_data_rate;
4400 __le32 peak_data_rate;
4401 __le32 max_burst_size;
4402 __le32 delay_bound;
4403 __le32 min_phy_rate;
4404 __le16 sba;
4405 __le16 medium_time;
4406 } __packed;
4407
4408 struct ieee80211_he_6ghz_capa {
4409 /* uses IEEE80211_HE_6GHZ_CAP_* below */
4410 __le16 capa;
4411 } __packed;
4412
4413 /* HE 6 GHz band capabilities */
4414 /* uses enum ieee80211_min_mpdu_spacing values */
4415 #define IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START 0x0007
4416 /* uses enum ieee80211_vht_max_ampdu_length_exp values */
4417 #define IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP 0x0038
4418 /* uses IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_* values */
4419 #define IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN 0x00c0
4420 /* WLAN_HT_CAP_SM_PS_* values */
4421 #define IEEE80211_HE_6GHZ_CAP_SM_PS 0x0600
4422 #define IEEE80211_HE_6GHZ_CAP_RD_RESPONDER 0x0800
4423 #define IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS 0x1000
4424 #define IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS 0x2000
4425
4426 /**
4427 * ieee80211_get_qos_ctl - get pointer to qos control bytes
4428 * @hdr: the frame
4429 * Return: a pointer to the QoS control field in the frame header
4430 *
4431 * The qos ctrl bytes come after the frame_control, duration, seq_num
4432 * and 3 or 4 addresses of length ETH_ALEN. Checks frame_control to choose
4433 * between struct ieee80211_qos_hdr_4addr and struct ieee80211_qos_hdr.
4434 */
ieee80211_get_qos_ctl(struct ieee80211_hdr * hdr)4435 static inline u8 *ieee80211_get_qos_ctl(struct ieee80211_hdr *hdr)
4436 {
4437 union {
4438 struct ieee80211_qos_hdr addr3;
4439 struct ieee80211_qos_hdr_4addr addr4;
4440 } *qos;
4441
4442 qos = (void *)hdr;
4443 if (ieee80211_has_a4(qos->addr3.frame_control))
4444 return (u8 *)&qos->addr4.qos_ctrl;
4445 else
4446 return (u8 *)&qos->addr3.qos_ctrl;
4447 }
4448
4449 /**
4450 * ieee80211_get_tid - get qos TID
4451 * @hdr: the frame
4452 * Return: the TID from the QoS control field
4453 */
ieee80211_get_tid(struct ieee80211_hdr * hdr)4454 static inline u8 ieee80211_get_tid(struct ieee80211_hdr *hdr)
4455 {
4456 u8 *qc = ieee80211_get_qos_ctl(hdr);
4457
4458 return qc[0] & IEEE80211_QOS_CTL_TID_MASK;
4459 }
4460
4461 /**
4462 * ieee80211_get_SA - get pointer to SA
4463 * @hdr: the frame
4464 * Return: a pointer to the source address (SA)
4465 *
4466 * Given an 802.11 frame, this function returns the offset
4467 * to the source address (SA). It does not verify that the
4468 * header is long enough to contain the address, and the
4469 * header must be long enough to contain the frame control
4470 * field.
4471 */
ieee80211_get_SA(struct ieee80211_hdr * hdr)4472 static inline u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr)
4473 {
4474 if (ieee80211_has_a4(hdr->frame_control))
4475 return hdr->addr4;
4476 if (ieee80211_has_fromds(hdr->frame_control))
4477 return hdr->addr3;
4478 return hdr->addr2;
4479 }
4480
4481 /**
4482 * ieee80211_get_DA - get pointer to DA
4483 * @hdr: the frame
4484 * Return: a pointer to the destination address (DA)
4485 *
4486 * Given an 802.11 frame, this function returns the offset
4487 * to the destination address (DA). It does not verify that
4488 * the header is long enough to contain the address, and the
4489 * header must be long enough to contain the frame control
4490 * field.
4491 */
ieee80211_get_DA(struct ieee80211_hdr * hdr)4492 static inline u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr)
4493 {
4494 if (ieee80211_has_tods(hdr->frame_control))
4495 return hdr->addr3;
4496 else
4497 return hdr->addr1;
4498 }
4499
4500 /**
4501 * ieee80211_is_bufferable_mmpdu - check if frame is bufferable MMPDU
4502 * @skb: the skb to check, starting with the 802.11 header
4503 * Return: whether or not the MMPDU is bufferable
4504 */
ieee80211_is_bufferable_mmpdu(struct sk_buff * skb)4505 static inline bool ieee80211_is_bufferable_mmpdu(struct sk_buff *skb)
4506 {
4507 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4508 __le16 fc = mgmt->frame_control;
4509
4510 /*
4511 * IEEE 802.11 REVme D2.0 definition of bufferable MMPDU;
4512 * note that this ignores the IBSS special case.
4513 */
4514 if (!ieee80211_is_mgmt(fc))
4515 return false;
4516
4517 if (ieee80211_is_disassoc(fc) || ieee80211_is_deauth(fc))
4518 return true;
4519
4520 if (!ieee80211_is_action(fc))
4521 return false;
4522
4523 if (skb->len < offsetofend(typeof(*mgmt), u.action.u.ftm.action_code))
4524 return true;
4525
4526 /* action frame - additionally check for non-bufferable FTM */
4527
4528 if (mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
4529 mgmt->u.action.category != WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION)
4530 return true;
4531
4532 if (mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_REQUEST ||
4533 mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_RESPONSE)
4534 return false;
4535
4536 return true;
4537 }
4538
4539 /**
4540 * _ieee80211_is_robust_mgmt_frame - check if frame is a robust management frame
4541 * @hdr: the frame (buffer must include at least the first octet of payload)
4542 * Return: whether or not the frame is a robust management frame
4543 */
_ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr * hdr)4544 static inline bool _ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr *hdr)
4545 {
4546 if (ieee80211_is_disassoc(hdr->frame_control) ||
4547 ieee80211_is_deauth(hdr->frame_control))
4548 return true;
4549
4550 if (ieee80211_is_action(hdr->frame_control)) {
4551 u8 *category;
4552
4553 /*
4554 * Action frames, excluding Public Action frames, are Robust
4555 * Management Frames. However, if we are looking at a Protected
4556 * frame, skip the check since the data may be encrypted and
4557 * the frame has already been found to be a Robust Management
4558 * Frame (by the other end).
4559 */
4560 if (ieee80211_has_protected(hdr->frame_control))
4561 return true;
4562 category = ((u8 *) hdr) + 24;
4563 return *category != WLAN_CATEGORY_PUBLIC &&
4564 *category != WLAN_CATEGORY_HT &&
4565 *category != WLAN_CATEGORY_WNM_UNPROTECTED &&
4566 *category != WLAN_CATEGORY_SELF_PROTECTED &&
4567 *category != WLAN_CATEGORY_UNPROT_DMG &&
4568 *category != WLAN_CATEGORY_VHT &&
4569 *category != WLAN_CATEGORY_S1G &&
4570 *category != WLAN_CATEGORY_VENDOR_SPECIFIC;
4571 }
4572
4573 return false;
4574 }
4575
4576 /**
4577 * ieee80211_is_robust_mgmt_frame - check if skb contains a robust mgmt frame
4578 * @skb: the skb containing the frame, length will be checked
4579 * Return: whether or not the frame is a robust management frame
4580 */
ieee80211_is_robust_mgmt_frame(struct sk_buff * skb)4581 static inline bool ieee80211_is_robust_mgmt_frame(struct sk_buff *skb)
4582 {
4583 if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4584 return false;
4585 return _ieee80211_is_robust_mgmt_frame((void *)skb->data);
4586 }
4587
4588 /**
4589 * ieee80211_is_public_action - check if frame is a public action frame
4590 * @hdr: the frame
4591 * @len: length of the frame
4592 * Return: whether or not the frame is a public action frame
4593 */
ieee80211_is_public_action(struct ieee80211_hdr * hdr,size_t len)4594 static inline bool ieee80211_is_public_action(struct ieee80211_hdr *hdr,
4595 size_t len)
4596 {
4597 struct ieee80211_mgmt *mgmt = (void *)hdr;
4598
4599 if (len < IEEE80211_MIN_ACTION_SIZE)
4600 return false;
4601 if (!ieee80211_is_action(hdr->frame_control))
4602 return false;
4603 return mgmt->u.action.category == WLAN_CATEGORY_PUBLIC;
4604 }
4605
4606 /**
4607 * ieee80211_is_protected_dual_of_public_action - check if skb contains a
4608 * protected dual of public action management frame
4609 * @skb: the skb containing the frame, length will be checked
4610 *
4611 * Return: true if the skb contains a protected dual of public action
4612 * management frame, false otherwise.
4613 */
4614 static inline bool
ieee80211_is_protected_dual_of_public_action(struct sk_buff * skb)4615 ieee80211_is_protected_dual_of_public_action(struct sk_buff *skb)
4616 {
4617 u8 action;
4618
4619 if (!ieee80211_is_public_action((void *)skb->data, skb->len) ||
4620 skb->len < IEEE80211_MIN_ACTION_SIZE + 1)
4621 return false;
4622
4623 action = *(u8 *)(skb->data + IEEE80211_MIN_ACTION_SIZE);
4624
4625 return action != WLAN_PUB_ACTION_20_40_BSS_COEX &&
4626 action != WLAN_PUB_ACTION_DSE_REG_LOC_ANN &&
4627 action != WLAN_PUB_ACTION_MSMT_PILOT &&
4628 action != WLAN_PUB_ACTION_TDLS_DISCOVER_RES &&
4629 action != WLAN_PUB_ACTION_LOC_TRACK_NOTI &&
4630 action != WLAN_PUB_ACTION_FTM_REQUEST &&
4631 action != WLAN_PUB_ACTION_FTM_RESPONSE &&
4632 action != WLAN_PUB_ACTION_FILS_DISCOVERY &&
4633 action != WLAN_PUB_ACTION_VENDOR_SPECIFIC;
4634 }
4635
4636 /**
4637 * _ieee80211_is_group_privacy_action - check if frame is a group addressed
4638 * privacy action frame
4639 * @hdr: the frame
4640 * Return: whether or not the frame is a group addressed privacy action frame
4641 */
_ieee80211_is_group_privacy_action(struct ieee80211_hdr * hdr)4642 static inline bool _ieee80211_is_group_privacy_action(struct ieee80211_hdr *hdr)
4643 {
4644 struct ieee80211_mgmt *mgmt = (void *)hdr;
4645
4646 if (!ieee80211_is_action(hdr->frame_control) ||
4647 !is_multicast_ether_addr(hdr->addr1))
4648 return false;
4649
4650 return mgmt->u.action.category == WLAN_CATEGORY_MESH_ACTION ||
4651 mgmt->u.action.category == WLAN_CATEGORY_MULTIHOP_ACTION;
4652 }
4653
4654 /**
4655 * ieee80211_is_group_privacy_action - check if frame is a group addressed
4656 * privacy action frame
4657 * @skb: the skb containing the frame, length will be checked
4658 * Return: whether or not the frame is a group addressed privacy action frame
4659 */
ieee80211_is_group_privacy_action(struct sk_buff * skb)4660 static inline bool ieee80211_is_group_privacy_action(struct sk_buff *skb)
4661 {
4662 if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4663 return false;
4664 return _ieee80211_is_group_privacy_action((void *)skb->data);
4665 }
4666
4667 /**
4668 * ieee80211_tu_to_usec - convert time units (TU) to microseconds
4669 * @tu: the TUs
4670 * Return: the time value converted to microseconds
4671 */
ieee80211_tu_to_usec(unsigned long tu)4672 static inline unsigned long ieee80211_tu_to_usec(unsigned long tu)
4673 {
4674 return 1024 * tu;
4675 }
4676
4677 /**
4678 * ieee80211_check_tim - check if AID bit is set in TIM
4679 * @tim: the TIM IE
4680 * @tim_len: length of the TIM IE
4681 * @aid: the AID to look for
4682 * Return: whether or not traffic is indicated in the TIM for the given AID
4683 */
ieee80211_check_tim(const struct ieee80211_tim_ie * tim,u8 tim_len,u16 aid)4684 static inline bool ieee80211_check_tim(const struct ieee80211_tim_ie *tim,
4685 u8 tim_len, u16 aid)
4686 {
4687 u8 mask;
4688 u8 index, indexn1, indexn2;
4689
4690 if (unlikely(!tim || tim_len < sizeof(*tim)))
4691 return false;
4692
4693 aid &= 0x3fff;
4694 index = aid / 8;
4695 mask = 1 << (aid & 7);
4696
4697 indexn1 = tim->bitmap_ctrl & 0xfe;
4698 indexn2 = tim_len + indexn1 - 4;
4699
4700 if (index < indexn1 || index > indexn2)
4701 return false;
4702
4703 index -= indexn1;
4704
4705 return !!(tim->virtual_map[index] & mask);
4706 }
4707
4708 /**
4709 * ieee80211_get_tdls_action - get TDLS action code
4710 * @skb: the skb containing the frame, length will not be checked
4711 * Return: the TDLS action code, or -1 if it's not an encapsulated TDLS action
4712 * frame
4713 *
4714 * This function assumes the frame is a data frame, and that the network header
4715 * is in the correct place.
4716 */
ieee80211_get_tdls_action(struct sk_buff * skb)4717 static inline int ieee80211_get_tdls_action(struct sk_buff *skb)
4718 {
4719 if (!skb_is_nonlinear(skb) &&
4720 skb->len > (skb_network_offset(skb) + 2)) {
4721 /* Point to where the indication of TDLS should start */
4722 const u8 *tdls_data = skb_network_header(skb) - 2;
4723
4724 if (get_unaligned_be16(tdls_data) == ETH_P_TDLS &&
4725 tdls_data[2] == WLAN_TDLS_SNAP_RFTYPE &&
4726 tdls_data[3] == WLAN_CATEGORY_TDLS)
4727 return tdls_data[4];
4728 }
4729
4730 return -1;
4731 }
4732
4733 /* convert time units */
4734 #define TU_TO_JIFFIES(x) (usecs_to_jiffies((x) * 1024))
4735 #define TU_TO_EXP_TIME(x) (jiffies + TU_TO_JIFFIES(x))
4736
4737 /* convert frequencies */
4738 #define MHZ_TO_KHZ(freq) ((freq) * 1000)
4739 #define KHZ_TO_MHZ(freq) ((freq) / 1000)
4740 #define PR_KHZ(f) KHZ_TO_MHZ(f), f % 1000
4741 #define KHZ_F "%d.%03d"
4742
4743 /* convert powers */
4744 #define DBI_TO_MBI(gain) ((gain) * 100)
4745 #define MBI_TO_DBI(gain) ((gain) / 100)
4746 #define DBM_TO_MBM(gain) ((gain) * 100)
4747 #define MBM_TO_DBM(gain) ((gain) / 100)
4748
4749 /**
4750 * ieee80211_action_contains_tpc - checks if the frame contains TPC element
4751 * @skb: the skb containing the frame, length will be checked
4752 * Return: %true if the frame contains a TPC element, %false otherwise
4753 *
4754 * This function checks if it's either TPC report action frame or Link
4755 * Measurement report action frame as defined in IEEE Std. 802.11-2012 8.5.2.5
4756 * and 8.5.7.5 accordingly.
4757 */
ieee80211_action_contains_tpc(struct sk_buff * skb)4758 static inline bool ieee80211_action_contains_tpc(struct sk_buff *skb)
4759 {
4760 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4761
4762 if (!ieee80211_is_action(mgmt->frame_control))
4763 return false;
4764
4765 if (skb->len < IEEE80211_MIN_ACTION_SIZE +
4766 sizeof(mgmt->u.action.u.tpc_report))
4767 return false;
4768
4769 /*
4770 * TPC report - check that:
4771 * category = 0 (Spectrum Management) or 5 (Radio Measurement)
4772 * spectrum management action = 3 (TPC/Link Measurement report)
4773 * TPC report EID = 35
4774 * TPC report element length = 2
4775 *
4776 * The spectrum management's tpc_report struct is used here both for
4777 * parsing tpc_report and radio measurement's link measurement report
4778 * frame, since the relevant part is identical in both frames.
4779 */
4780 if (mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT &&
4781 mgmt->u.action.category != WLAN_CATEGORY_RADIO_MEASUREMENT)
4782 return false;
4783
4784 /* both spectrum mgmt and link measurement have same action code */
4785 if (mgmt->u.action.u.tpc_report.action_code !=
4786 WLAN_ACTION_SPCT_TPC_RPRT)
4787 return false;
4788
4789 if (mgmt->u.action.u.tpc_report.tpc_elem_id != WLAN_EID_TPC_REPORT ||
4790 mgmt->u.action.u.tpc_report.tpc_elem_length !=
4791 sizeof(struct ieee80211_tpc_report_ie))
4792 return false;
4793
4794 return true;
4795 }
4796
4797 /**
4798 * ieee80211_is_timing_measurement - check if frame is timing measurement response
4799 * @skb: the SKB to check
4800 * Return: whether or not the frame is a valid timing measurement response
4801 */
ieee80211_is_timing_measurement(struct sk_buff * skb)4802 static inline bool ieee80211_is_timing_measurement(struct sk_buff *skb)
4803 {
4804 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4805
4806 if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4807 return false;
4808
4809 if (!ieee80211_is_action(mgmt->frame_control))
4810 return false;
4811
4812 if (mgmt->u.action.category == WLAN_CATEGORY_WNM_UNPROTECTED &&
4813 mgmt->u.action.u.wnm_timing_msr.action_code ==
4814 WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE &&
4815 skb->len >= offsetofend(typeof(*mgmt), u.action.u.wnm_timing_msr))
4816 return true;
4817
4818 return false;
4819 }
4820
4821 /**
4822 * ieee80211_is_ftm - check if frame is FTM response
4823 * @skb: the SKB to check
4824 * Return: whether or not the frame is a valid FTM response action frame
4825 */
ieee80211_is_ftm(struct sk_buff * skb)4826 static inline bool ieee80211_is_ftm(struct sk_buff *skb)
4827 {
4828 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4829
4830 if (!ieee80211_is_public_action((void *)mgmt, skb->len))
4831 return false;
4832
4833 if (mgmt->u.action.u.ftm.action_code ==
4834 WLAN_PUB_ACTION_FTM_RESPONSE &&
4835 skb->len >= offsetofend(typeof(*mgmt), u.action.u.ftm))
4836 return true;
4837
4838 return false;
4839 }
4840
4841 struct element {
4842 u8 id;
4843 u8 datalen;
4844 u8 data[];
4845 } __packed;
4846
4847 /* element iteration helpers */
4848 #define for_each_element(_elem, _data, _datalen) \
4849 for (_elem = (const struct element *)(_data); \
4850 (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \
4851 (int)sizeof(*_elem) && \
4852 (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \
4853 (int)sizeof(*_elem) + _elem->datalen; \
4854 _elem = (const struct element *)(_elem->data + _elem->datalen))
4855
4856 #define for_each_element_id(element, _id, data, datalen) \
4857 for_each_element(element, data, datalen) \
4858 if (element->id == (_id))
4859
4860 #define for_each_element_extid(element, extid, _data, _datalen) \
4861 for_each_element(element, _data, _datalen) \
4862 if (element->id == WLAN_EID_EXTENSION && \
4863 element->datalen > 0 && \
4864 element->data[0] == (extid))
4865
4866 #define for_each_subelement(sub, element) \
4867 for_each_element(sub, (element)->data, (element)->datalen)
4868
4869 #define for_each_subelement_id(sub, id, element) \
4870 for_each_element_id(sub, id, (element)->data, (element)->datalen)
4871
4872 #define for_each_subelement_extid(sub, extid, element) \
4873 for_each_element_extid(sub, extid, (element)->data, (element)->datalen)
4874
4875 /**
4876 * for_each_element_completed - determine if element parsing consumed all data
4877 * @element: element pointer after for_each_element() or friends
4878 * @data: same data pointer as passed to for_each_element() or friends
4879 * @datalen: same data length as passed to for_each_element() or friends
4880 * Return: %true if all elements were iterated, %false otherwise; see notes
4881 *
4882 * This function returns %true if all the data was parsed or considered
4883 * while walking the elements. Only use this if your for_each_element()
4884 * loop cannot be broken out of, otherwise it always returns %false.
4885 *
4886 * If some data was malformed, this returns %false since the last parsed
4887 * element will not fill the whole remaining data.
4888 */
for_each_element_completed(const struct element * element,const void * data,size_t datalen)4889 static inline bool for_each_element_completed(const struct element *element,
4890 const void *data, size_t datalen)
4891 {
4892 return (const u8 *)element == (const u8 *)data + datalen;
4893 }
4894
4895 /*
4896 * RSNX Capabilities:
4897 * bits 0-3: Field length (n-1)
4898 */
4899 #define WLAN_RSNX_CAPA_PROTECTED_TWT BIT(4)
4900 #define WLAN_RSNX_CAPA_SAE_H2E BIT(5)
4901
4902 /*
4903 * reduced neighbor report, based on Draft P802.11ax_D6.1,
4904 * section 9.4.2.170 and accepted contributions.
4905 */
4906 #define IEEE80211_AP_INFO_TBTT_HDR_TYPE 0x03
4907 #define IEEE80211_AP_INFO_TBTT_HDR_FILTERED 0x04
4908 #define IEEE80211_AP_INFO_TBTT_HDR_COLOC 0x08
4909 #define IEEE80211_AP_INFO_TBTT_HDR_COUNT 0xF0
4910 #define IEEE80211_TBTT_INFO_TYPE_TBTT 0
4911 #define IEEE80211_TBTT_INFO_TYPE_MLD 1
4912
4913 #define IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED 0x01
4914 #define IEEE80211_RNR_TBTT_PARAMS_SAME_SSID 0x02
4915 #define IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID 0x04
4916 #define IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID 0x08
4917 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS 0x10
4918 #define IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE 0x20
4919 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_AP 0x40
4920
4921 #define IEEE80211_RNR_TBTT_PARAMS_PSD_NO_LIMIT 127
4922 #define IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED -128
4923
4924 struct ieee80211_neighbor_ap_info {
4925 u8 tbtt_info_hdr;
4926 u8 tbtt_info_len;
4927 u8 op_class;
4928 u8 channel;
4929 } __packed;
4930
4931 enum ieee80211_range_params_max_total_ltf {
4932 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_4 = 0,
4933 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_8,
4934 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_16,
4935 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_UNSPECIFIED,
4936 };
4937
4938 /*
4939 * reduced neighbor report, based on Draft P802.11be_D3.0,
4940 * section 9.4.2.170.2.
4941 */
4942 struct ieee80211_rnr_mld_params {
4943 u8 mld_id;
4944 __le16 params;
4945 } __packed;
4946
4947 #define IEEE80211_RNR_MLD_PARAMS_LINK_ID 0x000F
4948 #define IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT 0x0FF0
4949 #define IEEE80211_RNR_MLD_PARAMS_UPDATES_INCLUDED 0x1000
4950 #define IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK 0x2000
4951
4952 /* Format of the TBTT information element if it has 7, 8 or 9 bytes */
4953 struct ieee80211_tbtt_info_7_8_9 {
4954 u8 tbtt_offset;
4955 u8 bssid[ETH_ALEN];
4956
4957 /* The following element is optional, structure may not grow */
4958 u8 bss_params;
4959 s8 psd_20;
4960 } __packed;
4961
4962 /* Format of the TBTT information element if it has >= 11 bytes */
4963 struct ieee80211_tbtt_info_ge_11 {
4964 u8 tbtt_offset;
4965 u8 bssid[ETH_ALEN];
4966 __le32 short_ssid;
4967
4968 /* The following elements are optional, structure may grow */
4969 u8 bss_params;
4970 s8 psd_20;
4971 struct ieee80211_rnr_mld_params mld_params;
4972 } __packed;
4973
4974 /* multi-link device */
4975 #define IEEE80211_MLD_MAX_NUM_LINKS 15
4976
4977 #define IEEE80211_ML_CONTROL_TYPE 0x0007
4978 #define IEEE80211_ML_CONTROL_TYPE_BASIC 0
4979 #define IEEE80211_ML_CONTROL_TYPE_PREQ 1
4980 #define IEEE80211_ML_CONTROL_TYPE_RECONF 2
4981 #define IEEE80211_ML_CONTROL_TYPE_TDLS 3
4982 #define IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS 4
4983 #define IEEE80211_ML_CONTROL_PRESENCE_MASK 0xfff0
4984
4985 struct ieee80211_multi_link_elem {
4986 __le16 control;
4987 u8 variable[];
4988 } __packed;
4989
4990 #define IEEE80211_MLC_BASIC_PRES_LINK_ID 0x0010
4991 #define IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT 0x0020
4992 #define IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY 0x0040
4993 #define IEEE80211_MLC_BASIC_PRES_EML_CAPA 0x0080
4994 #define IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP 0x0100
4995 #define IEEE80211_MLC_BASIC_PRES_MLD_ID 0x0200
4996 #define IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP 0x0400
4997
4998 #define IEEE80211_MED_SYNC_DELAY_DURATION 0x00ff
4999 #define IEEE80211_MED_SYNC_DELAY_SYNC_OFDM_ED_THRESH 0x0f00
5000 #define IEEE80211_MED_SYNC_DELAY_SYNC_MAX_NUM_TXOPS 0xf000
5001
5002 /*
5003 * Described in P802.11be_D3.0
5004 * dot11MSDTimerDuration should default to 5484 (i.e. 171.375)
5005 * dot11MSDOFDMEDthreshold defaults to -72 (i.e. 0)
5006 * dot11MSDTXOPMAX defaults to 1
5007 */
5008 #define IEEE80211_MED_SYNC_DELAY_DEFAULT 0x10ac
5009
5010 #define IEEE80211_EML_CAP_EMLSR_SUPP 0x0001
5011 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY 0x000e
5012 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_0US 0
5013 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_32US 1
5014 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_64US 2
5015 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_128US 3
5016 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_256US 4
5017 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY 0x0070
5018 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_0US 0
5019 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_16US 1
5020 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_32US 2
5021 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_64US 3
5022 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_128US 4
5023 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_256US 5
5024 #define IEEE80211_EML_CAP_EMLMR_SUPPORT 0x0080
5025 #define IEEE80211_EML_CAP_EMLMR_DELAY 0x0700
5026 #define IEEE80211_EML_CAP_EMLMR_DELAY_0US 0
5027 #define IEEE80211_EML_CAP_EMLMR_DELAY_32US 1
5028 #define IEEE80211_EML_CAP_EMLMR_DELAY_64US 2
5029 #define IEEE80211_EML_CAP_EMLMR_DELAY_128US 3
5030 #define IEEE80211_EML_CAP_EMLMR_DELAY_256US 4
5031 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT 0x7800
5032 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_0 0
5033 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128US 1
5034 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_256US 2
5035 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_512US 3
5036 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_1TU 4
5037 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_2TU 5
5038 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_4TU 6
5039 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_8TU 7
5040 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_16TU 8
5041 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_32TU 9
5042 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_64TU 10
5043 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128TU 11
5044
5045 #define IEEE80211_MLD_CAP_OP_MAX_SIMUL_LINKS 0x000f
5046 #define IEEE80211_MLD_CAP_OP_SRS_SUPPORT 0x0010
5047 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP 0x0060
5048 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_NO_SUPP 0
5049 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_SAME 1
5050 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_RESERVED 2
5051 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_DIFF 3
5052 #define IEEE80211_MLD_CAP_OP_FREQ_SEP_TYPE_IND 0x0f80
5053 #define IEEE80211_MLD_CAP_OP_AAR_SUPPORT 0x1000
5054 #define IEEE80211_MLD_CAP_OP_LINK_RECONF_SUPPORT 0x2000
5055 #define IEEE80211_MLD_CAP_OP_ALIGNED_TWT_SUPPORT 0x4000
5056
5057 struct ieee80211_mle_basic_common_info {
5058 u8 len;
5059 u8 mld_mac_addr[ETH_ALEN];
5060 u8 variable[];
5061 } __packed;
5062
5063 #define IEEE80211_MLC_PREQ_PRES_MLD_ID 0x0010
5064
5065 struct ieee80211_mle_preq_common_info {
5066 u8 len;
5067 u8 variable[];
5068 } __packed;
5069
5070 #define IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR 0x0010
5071 #define IEEE80211_MLC_RECONF_PRES_EML_CAPA 0x0020
5072 #define IEEE80211_MLC_RECONF_PRES_MLD_CAPA_OP 0x0040
5073 #define IEEE80211_MLC_RECONF_PRES_EXT_MLD_CAPA_OP 0x0080
5074
5075 /* no fixed fields in RECONF */
5076
5077 struct ieee80211_mle_tdls_common_info {
5078 u8 len;
5079 u8 ap_mld_mac_addr[ETH_ALEN];
5080 } __packed;
5081
5082 #define IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR 0x0010
5083
5084 /* no fixed fields in PRIO_ACCESS */
5085
5086 /**
5087 * ieee80211_mle_common_size - check multi-link element common size
5088 * @data: multi-link element, must already be checked for size using
5089 * ieee80211_mle_size_ok()
5090 * Return: the size of the multi-link element's "common" subfield
5091 */
ieee80211_mle_common_size(const u8 * data)5092 static inline u8 ieee80211_mle_common_size(const u8 *data)
5093 {
5094 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5095 u16 control = le16_to_cpu(mle->control);
5096
5097 switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) {
5098 case IEEE80211_ML_CONTROL_TYPE_BASIC:
5099 case IEEE80211_ML_CONTROL_TYPE_PREQ:
5100 case IEEE80211_ML_CONTROL_TYPE_TDLS:
5101 case IEEE80211_ML_CONTROL_TYPE_RECONF:
5102 case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS:
5103 /*
5104 * The length is the first octet pointed by mle->variable so no
5105 * need to add anything
5106 */
5107 break;
5108 default:
5109 WARN_ON(1);
5110 return 0;
5111 }
5112
5113 return sizeof(*mle) + mle->variable[0];
5114 }
5115
5116 /**
5117 * ieee80211_mle_get_link_id - returns the link ID
5118 * @data: the basic multi link element
5119 * Return: the link ID, or -1 if not present
5120 *
5121 * The element is assumed to be of the correct type (BASIC) and big enough,
5122 * this must be checked using ieee80211_mle_type_ok().
5123 */
ieee80211_mle_get_link_id(const u8 * data)5124 static inline int ieee80211_mle_get_link_id(const u8 *data)
5125 {
5126 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5127 u16 control = le16_to_cpu(mle->control);
5128 const u8 *common = mle->variable;
5129
5130 /* common points now at the beginning of ieee80211_mle_basic_common_info */
5131 common += sizeof(struct ieee80211_mle_basic_common_info);
5132
5133 if (!(control & IEEE80211_MLC_BASIC_PRES_LINK_ID))
5134 return -1;
5135
5136 return *common;
5137 }
5138
5139 /**
5140 * ieee80211_mle_get_bss_param_ch_cnt - returns the BSS parameter change count
5141 * @data: pointer to the basic multi link element
5142 * Return: the BSS Parameter Change Count field value, or -1 if not present
5143 *
5144 * The element is assumed to be of the correct type (BASIC) and big enough,
5145 * this must be checked using ieee80211_mle_type_ok().
5146 */
5147 static inline int
ieee80211_mle_get_bss_param_ch_cnt(const u8 * data)5148 ieee80211_mle_get_bss_param_ch_cnt(const u8 *data)
5149 {
5150 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5151 u16 control = le16_to_cpu(mle->control);
5152 const u8 *common = mle->variable;
5153
5154 /* common points now at the beginning of ieee80211_mle_basic_common_info */
5155 common += sizeof(struct ieee80211_mle_basic_common_info);
5156
5157 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT))
5158 return -1;
5159
5160 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5161 common += 1;
5162
5163 return *common;
5164 }
5165
5166 /**
5167 * ieee80211_mle_get_eml_med_sync_delay - returns the medium sync delay
5168 * @data: pointer to the multi-link element
5169 * Return: the medium synchronization delay field value from the multi-link
5170 * element, or the default value (%IEEE80211_MED_SYNC_DELAY_DEFAULT)
5171 * if not present
5172 *
5173 * The element is assumed to be of the correct type (BASIC) and big enough,
5174 * this must be checked using ieee80211_mle_type_ok().
5175 */
ieee80211_mle_get_eml_med_sync_delay(const u8 * data)5176 static inline u16 ieee80211_mle_get_eml_med_sync_delay(const u8 *data)
5177 {
5178 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5179 u16 control = le16_to_cpu(mle->control);
5180 const u8 *common = mle->variable;
5181
5182 /* common points now at the beginning of ieee80211_mle_basic_common_info */
5183 common += sizeof(struct ieee80211_mle_basic_common_info);
5184
5185 if (!(control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
5186 return IEEE80211_MED_SYNC_DELAY_DEFAULT;
5187
5188 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5189 common += 1;
5190 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5191 common += 1;
5192
5193 return get_unaligned_le16(common);
5194 }
5195
5196 /**
5197 * ieee80211_mle_get_eml_cap - returns the EML capability
5198 * @data: pointer to the multi-link element
5199 * Return: the EML capability field value from the multi-link element,
5200 * or 0 if not present
5201 *
5202 * The element is assumed to be of the correct type (BASIC) and big enough,
5203 * this must be checked using ieee80211_mle_type_ok().
5204 */
ieee80211_mle_get_eml_cap(const u8 * data)5205 static inline u16 ieee80211_mle_get_eml_cap(const u8 *data)
5206 {
5207 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5208 u16 control = le16_to_cpu(mle->control);
5209 const u8 *common = mle->variable;
5210
5211 /* common points now at the beginning of ieee80211_mle_basic_common_info */
5212 common += sizeof(struct ieee80211_mle_basic_common_info);
5213
5214 if (!(control & IEEE80211_MLC_BASIC_PRES_EML_CAPA))
5215 return 0;
5216
5217 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5218 common += 1;
5219 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5220 common += 1;
5221 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5222 common += 2;
5223
5224 return get_unaligned_le16(common);
5225 }
5226
5227 /**
5228 * ieee80211_mle_get_mld_capa_op - returns the MLD capabilities and operations.
5229 * @data: pointer to the multi-link element
5230 * Return: the MLD capabilities and operations field value from the multi-link
5231 * element, or 0 if not present
5232 *
5233 * The element is assumed to be of the correct type (BASIC) and big enough,
5234 * this must be checked using ieee80211_mle_type_ok().
5235 */
ieee80211_mle_get_mld_capa_op(const u8 * data)5236 static inline u16 ieee80211_mle_get_mld_capa_op(const u8 *data)
5237 {
5238 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5239 u16 control = le16_to_cpu(mle->control);
5240 const u8 *common = mle->variable;
5241
5242 /*
5243 * common points now at the beginning of
5244 * ieee80211_mle_basic_common_info
5245 */
5246 common += sizeof(struct ieee80211_mle_basic_common_info);
5247
5248 if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
5249 return 0;
5250
5251 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5252 common += 1;
5253 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5254 common += 1;
5255 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5256 common += 2;
5257 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5258 common += 2;
5259
5260 return get_unaligned_le16(common);
5261 }
5262
5263 /**
5264 * ieee80211_mle_get_ext_mld_capa_op - returns the extended MLD capabilities
5265 * and operations.
5266 * @data: pointer to the multi-link element
5267 * Return: the extended MLD capabilities and operations field value from
5268 * the multi-link element, or 0 if not present
5269 *
5270 * The element is assumed to be of the correct type (BASIC) and big enough,
5271 * this must be checked using ieee80211_mle_type_ok().
5272 */
ieee80211_mle_get_ext_mld_capa_op(const u8 * data)5273 static inline u16 ieee80211_mle_get_ext_mld_capa_op(const u8 *data)
5274 {
5275 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5276 u16 control = le16_to_cpu(mle->control);
5277 const u8 *common = mle->variable;
5278
5279 /*
5280 * common points now at the beginning of
5281 * ieee80211_mle_basic_common_info
5282 */
5283 common += sizeof(struct ieee80211_mle_basic_common_info);
5284
5285 if (!(control & IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP))
5286 return 0;
5287
5288 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5289 common += 1;
5290 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5291 common += 1;
5292 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5293 common += 2;
5294 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5295 common += 2;
5296 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5297 common += 2;
5298 if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID)
5299 common += 1;
5300
5301 return get_unaligned_le16(common);
5302 }
5303
5304 /**
5305 * ieee80211_mle_get_mld_id - returns the MLD ID
5306 * @data: pointer to the multi-link element
5307 * Return: The MLD ID in the given multi-link element, or 0 if not present
5308 *
5309 * The element is assumed to be of the correct type (BASIC) and big enough,
5310 * this must be checked using ieee80211_mle_type_ok().
5311 */
ieee80211_mle_get_mld_id(const u8 * data)5312 static inline u8 ieee80211_mle_get_mld_id(const u8 *data)
5313 {
5314 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5315 u16 control = le16_to_cpu(mle->control);
5316 const u8 *common = mle->variable;
5317
5318 /*
5319 * common points now at the beginning of
5320 * ieee80211_mle_basic_common_info
5321 */
5322 common += sizeof(struct ieee80211_mle_basic_common_info);
5323
5324 if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_ID))
5325 return 0;
5326
5327 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5328 common += 1;
5329 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5330 common += 1;
5331 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5332 common += 2;
5333 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5334 common += 2;
5335 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5336 common += 2;
5337
5338 return *common;
5339 }
5340
5341 /**
5342 * ieee80211_mle_size_ok - validate multi-link element size
5343 * @data: pointer to the element data
5344 * @len: length of the containing element
5345 * Return: whether or not the multi-link element size is OK
5346 */
ieee80211_mle_size_ok(const u8 * data,size_t len)5347 static inline bool ieee80211_mle_size_ok(const u8 *data, size_t len)
5348 {
5349 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5350 u8 fixed = sizeof(*mle);
5351 u8 common = 0;
5352 bool check_common_len = false;
5353 u16 control;
5354
5355 if (!data || len < fixed)
5356 return false;
5357
5358 control = le16_to_cpu(mle->control);
5359
5360 switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) {
5361 case IEEE80211_ML_CONTROL_TYPE_BASIC:
5362 common += sizeof(struct ieee80211_mle_basic_common_info);
5363 check_common_len = true;
5364 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5365 common += 1;
5366 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5367 common += 1;
5368 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5369 common += 2;
5370 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5371 common += 2;
5372 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5373 common += 2;
5374 if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID)
5375 common += 1;
5376 if (control & IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP)
5377 common += 2;
5378 break;
5379 case IEEE80211_ML_CONTROL_TYPE_PREQ:
5380 common += sizeof(struct ieee80211_mle_preq_common_info);
5381 if (control & IEEE80211_MLC_PREQ_PRES_MLD_ID)
5382 common += 1;
5383 check_common_len = true;
5384 break;
5385 case IEEE80211_ML_CONTROL_TYPE_RECONF:
5386 if (control & IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR)
5387 common += ETH_ALEN;
5388 if (control & IEEE80211_MLC_RECONF_PRES_EML_CAPA)
5389 common += 2;
5390 if (control & IEEE80211_MLC_RECONF_PRES_MLD_CAPA_OP)
5391 common += 2;
5392 if (control & IEEE80211_MLC_RECONF_PRES_EXT_MLD_CAPA_OP)
5393 common += 2;
5394 break;
5395 case IEEE80211_ML_CONTROL_TYPE_TDLS:
5396 common += sizeof(struct ieee80211_mle_tdls_common_info);
5397 check_common_len = true;
5398 break;
5399 case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS:
5400 common = ETH_ALEN + 1;
5401 break;
5402 default:
5403 /* we don't know this type */
5404 return true;
5405 }
5406
5407 if (len < fixed + common)
5408 return false;
5409
5410 if (!check_common_len)
5411 return true;
5412
5413 /* if present, common length is the first octet there */
5414 return mle->variable[0] >= common;
5415 }
5416
5417 /**
5418 * ieee80211_mle_type_ok - validate multi-link element type and size
5419 * @data: pointer to the element data
5420 * @type: expected type of the element
5421 * @len: length of the containing element
5422 * Return: whether or not the multi-link element type matches and size is OK
5423 */
ieee80211_mle_type_ok(const u8 * data,u8 type,size_t len)5424 static inline bool ieee80211_mle_type_ok(const u8 *data, u8 type, size_t len)
5425 {
5426 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5427 u16 control;
5428
5429 if (!ieee80211_mle_size_ok(data, len))
5430 return false;
5431
5432 control = le16_to_cpu(mle->control);
5433
5434 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) == type)
5435 return true;
5436
5437 return false;
5438 }
5439
5440 enum ieee80211_mle_subelems {
5441 IEEE80211_MLE_SUBELEM_PER_STA_PROFILE = 0,
5442 IEEE80211_MLE_SUBELEM_FRAGMENT = 254,
5443 };
5444
5445 #define IEEE80211_MLE_STA_CONTROL_LINK_ID 0x000f
5446 #define IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE 0x0010
5447 #define IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT 0x0020
5448 #define IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT 0x0040
5449 #define IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT 0x0080
5450 #define IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT 0x0100
5451 #define IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT 0x0200
5452 #define IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE 0x0400
5453 #define IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT 0x0800
5454
5455 struct ieee80211_mle_per_sta_profile {
5456 __le16 control;
5457 u8 sta_info_len;
5458 u8 variable[];
5459 } __packed;
5460
5461 /**
5462 * ieee80211_mle_basic_sta_prof_size_ok - validate basic multi-link element sta
5463 * profile size
5464 * @data: pointer to the sub element data
5465 * @len: length of the containing sub element
5466 * Return: %true if the STA profile is large enough, %false otherwise
5467 */
ieee80211_mle_basic_sta_prof_size_ok(const u8 * data,size_t len)5468 static inline bool ieee80211_mle_basic_sta_prof_size_ok(const u8 *data,
5469 size_t len)
5470 {
5471 const struct ieee80211_mle_per_sta_profile *prof = (const void *)data;
5472 u16 control;
5473 u8 fixed = sizeof(*prof);
5474 u8 info_len = 1;
5475
5476 if (len < fixed)
5477 return false;
5478
5479 control = le16_to_cpu(prof->control);
5480
5481 if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)
5482 info_len += 6;
5483 if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT)
5484 info_len += 2;
5485 if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT)
5486 info_len += 8;
5487 if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT)
5488 info_len += 2;
5489 if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE &&
5490 control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) {
5491 if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE)
5492 info_len += 2;
5493 else
5494 info_len += 1;
5495 }
5496 if (control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT)
5497 info_len += 1;
5498
5499 return prof->sta_info_len >= info_len &&
5500 fixed + prof->sta_info_len - 1 <= len;
5501 }
5502
5503 /**
5504 * ieee80211_mle_basic_sta_prof_bss_param_ch_cnt - get per-STA profile BSS
5505 * parameter change count
5506 * @prof: the per-STA profile, having been checked with
5507 * ieee80211_mle_basic_sta_prof_size_ok() for the correct length
5508 *
5509 * Return: The BSS parameter change count value if present, 0 otherwise.
5510 */
5511 static inline u8
ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile * prof)5512 ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile *prof)
5513 {
5514 u16 control = le16_to_cpu(prof->control);
5515 const u8 *pos = prof->variable;
5516
5517 if (!(control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT))
5518 return 0;
5519
5520 if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)
5521 pos += 6;
5522 if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT)
5523 pos += 2;
5524 if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT)
5525 pos += 8;
5526 if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT)
5527 pos += 2;
5528 if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE &&
5529 control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) {
5530 if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE)
5531 pos += 2;
5532 else
5533 pos += 1;
5534 }
5535
5536 return *pos;
5537 }
5538
5539 #define IEEE80211_MLE_STA_RECONF_CONTROL_LINK_ID 0x000f
5540 #define IEEE80211_MLE_STA_RECONF_CONTROL_COMPLETE_PROFILE 0x0010
5541 #define IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT 0x0020
5542 #define IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT 0x0040
5543 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE 0x0780
5544 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_AP_REM 0
5545 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_OP_PARAM_UPDATE 1
5546 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_ADD_LINK 2
5547 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_DEL_LINK 3
5548 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_NSTR_STATUS 4
5549 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT 0x0800
5550
5551 /**
5552 * ieee80211_mle_reconf_sta_prof_size_ok - validate reconfiguration multi-link
5553 * element sta profile size.
5554 * @data: pointer to the sub element data
5555 * @len: length of the containing sub element
5556 * Return: %true if the STA profile is large enough, %false otherwise
5557 */
ieee80211_mle_reconf_sta_prof_size_ok(const u8 * data,size_t len)5558 static inline bool ieee80211_mle_reconf_sta_prof_size_ok(const u8 *data,
5559 size_t len)
5560 {
5561 const struct ieee80211_mle_per_sta_profile *prof = (const void *)data;
5562 u16 control;
5563 u8 fixed = sizeof(*prof);
5564 u8 info_len = 1;
5565
5566 if (len < fixed)
5567 return false;
5568
5569 control = le16_to_cpu(prof->control);
5570
5571 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT)
5572 info_len += ETH_ALEN;
5573 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT)
5574 info_len += 2;
5575 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT)
5576 info_len += 2;
5577
5578 return prof->sta_info_len >= info_len &&
5579 fixed + prof->sta_info_len - 1 <= len;
5580 }
5581
5582 #define IEEE80211_MLE_STA_EPCS_CONTROL_LINK_ID 0x000f
5583 #define IEEE80211_EPCS_ENA_RESP_BODY_LEN 3
5584
ieee80211_tid_to_link_map_size_ok(const u8 * data,size_t len)5585 static inline bool ieee80211_tid_to_link_map_size_ok(const u8 *data, size_t len)
5586 {
5587 const struct ieee80211_ttlm_elem *t2l = (const void *)data;
5588 u8 control, fixed = sizeof(*t2l), elem_len = 0;
5589
5590 if (len < fixed)
5591 return false;
5592
5593 control = t2l->control;
5594
5595 if (control & IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT)
5596 elem_len += 2;
5597 if (control & IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT)
5598 elem_len += 3;
5599
5600 if (!(control & IEEE80211_TTLM_CONTROL_DEF_LINK_MAP)) {
5601 u8 bm_size;
5602
5603 elem_len += 1;
5604 if (len < fixed + elem_len)
5605 return false;
5606
5607 if (control & IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE)
5608 bm_size = 1;
5609 else
5610 bm_size = 2;
5611
5612 elem_len += hweight8(t2l->optional[0]) * bm_size;
5613 }
5614
5615 return len >= fixed + elem_len;
5616 }
5617
5618 #define for_each_mle_subelement(_elem, _data, _len) \
5619 if (ieee80211_mle_size_ok(_data, _len)) \
5620 for_each_element(_elem, \
5621 _data + ieee80211_mle_common_size(_data),\
5622 _len - ieee80211_mle_common_size(_data))
5623
5624 #endif /* LINUX_IEEE80211_H */
5625