1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * IEEE 802.11 defines 4 * 5 * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen 6 * <jkmaline@cc.hut.fi> 7 * Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi> 8 * Copyright (c) 2005, Devicescape Software, Inc. 9 * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net> 10 * Copyright (c) 2013 - 2014 Intel Mobile Communications GmbH 11 * Copyright (c) 2016 - 2017 Intel Deutschland GmbH 12 * Copyright (c) 2018 - 2025 Intel Corporation 13 */ 14 15 #ifndef LINUX_IEEE80211_H 16 #define LINUX_IEEE80211_H 17 18 #include <linux/types.h> 19 #include <linux/if_ether.h> 20 #include <linux/etherdevice.h> 21 #include <linux/bitfield.h> 22 #include <asm/byteorder.h> 23 #include <linux/unaligned.h> 24 25 /* 26 * DS bit usage 27 * 28 * TA = transmitter address 29 * RA = receiver address 30 * DA = destination address 31 * SA = source address 32 * 33 * ToDS FromDS A1(RA) A2(TA) A3 A4 Use 34 * ----------------------------------------------------------------- 35 * 0 0 DA SA BSSID - IBSS/DLS 36 * 0 1 DA BSSID SA - AP -> STA 37 * 1 0 BSSID SA DA - AP <- STA 38 * 1 1 RA TA DA SA unspecified (WDS) 39 */ 40 41 #define FCS_LEN 4 42 43 #define IEEE80211_FCTL_VERS 0x0003 44 #define IEEE80211_FCTL_FTYPE 0x000c 45 #define IEEE80211_FCTL_STYPE 0x00f0 46 #define IEEE80211_FCTL_TODS 0x0100 47 #define IEEE80211_FCTL_FROMDS 0x0200 48 #define IEEE80211_FCTL_MOREFRAGS 0x0400 49 #define IEEE80211_FCTL_RETRY 0x0800 50 #define IEEE80211_FCTL_PM 0x1000 51 #define IEEE80211_FCTL_MOREDATA 0x2000 52 #define IEEE80211_FCTL_PROTECTED 0x4000 53 #define IEEE80211_FCTL_ORDER 0x8000 54 #define IEEE80211_FCTL_CTL_EXT 0x0f00 55 56 #define IEEE80211_SCTL_FRAG 0x000F 57 #define IEEE80211_SCTL_SEQ 0xFFF0 58 59 #define IEEE80211_FTYPE_MGMT 0x0000 60 #define IEEE80211_FTYPE_CTL 0x0004 61 #define IEEE80211_FTYPE_DATA 0x0008 62 #define IEEE80211_FTYPE_EXT 0x000c 63 64 /* management */ 65 #define IEEE80211_STYPE_ASSOC_REQ 0x0000 66 #define IEEE80211_STYPE_ASSOC_RESP 0x0010 67 #define IEEE80211_STYPE_REASSOC_REQ 0x0020 68 #define IEEE80211_STYPE_REASSOC_RESP 0x0030 69 #define IEEE80211_STYPE_PROBE_REQ 0x0040 70 #define IEEE80211_STYPE_PROBE_RESP 0x0050 71 #define IEEE80211_STYPE_BEACON 0x0080 72 #define IEEE80211_STYPE_ATIM 0x0090 73 #define IEEE80211_STYPE_DISASSOC 0x00A0 74 #define IEEE80211_STYPE_AUTH 0x00B0 75 #define IEEE80211_STYPE_DEAUTH 0x00C0 76 #define IEEE80211_STYPE_ACTION 0x00D0 77 78 /* control */ 79 #define IEEE80211_STYPE_TRIGGER 0x0020 80 #define IEEE80211_STYPE_CTL_EXT 0x0060 81 #define IEEE80211_STYPE_BACK_REQ 0x0080 82 #define IEEE80211_STYPE_BACK 0x0090 83 #define IEEE80211_STYPE_PSPOLL 0x00A0 84 #define IEEE80211_STYPE_RTS 0x00B0 85 #define IEEE80211_STYPE_CTS 0x00C0 86 #define IEEE80211_STYPE_ACK 0x00D0 87 #define IEEE80211_STYPE_CFEND 0x00E0 88 #define IEEE80211_STYPE_CFENDACK 0x00F0 89 90 /* data */ 91 #define IEEE80211_STYPE_DATA 0x0000 92 #define IEEE80211_STYPE_DATA_CFACK 0x0010 93 #define IEEE80211_STYPE_DATA_CFPOLL 0x0020 94 #define IEEE80211_STYPE_DATA_CFACKPOLL 0x0030 95 #define IEEE80211_STYPE_NULLFUNC 0x0040 96 #define IEEE80211_STYPE_CFACK 0x0050 97 #define IEEE80211_STYPE_CFPOLL 0x0060 98 #define IEEE80211_STYPE_CFACKPOLL 0x0070 99 #define IEEE80211_STYPE_QOS_DATA 0x0080 100 #define IEEE80211_STYPE_QOS_DATA_CFACK 0x0090 101 #define IEEE80211_STYPE_QOS_DATA_CFPOLL 0x00A0 102 #define IEEE80211_STYPE_QOS_DATA_CFACKPOLL 0x00B0 103 #define IEEE80211_STYPE_QOS_NULLFUNC 0x00C0 104 #define IEEE80211_STYPE_QOS_CFACK 0x00D0 105 #define IEEE80211_STYPE_QOS_CFPOLL 0x00E0 106 #define IEEE80211_STYPE_QOS_CFACKPOLL 0x00F0 107 108 /* extension, added by 802.11ad */ 109 #define IEEE80211_STYPE_DMG_BEACON 0x0000 110 #define IEEE80211_STYPE_S1G_BEACON 0x0010 111 112 /* bits unique to S1G beacon */ 113 #define IEEE80211_S1G_BCN_NEXT_TBTT 0x100 114 #define IEEE80211_S1G_BCN_CSSID 0x200 115 #define IEEE80211_S1G_BCN_ANO 0x400 116 117 /* see 802.11ah-2016 9.9 NDP CMAC frames */ 118 #define IEEE80211_S1G_1MHZ_NDP_BITS 25 119 #define IEEE80211_S1G_1MHZ_NDP_BYTES 4 120 #define IEEE80211_S1G_2MHZ_NDP_BITS 37 121 #define IEEE80211_S1G_2MHZ_NDP_BYTES 5 122 123 #define IEEE80211_NDP_FTYPE_CTS 0 124 #define IEEE80211_NDP_FTYPE_CF_END 0 125 #define IEEE80211_NDP_FTYPE_PS_POLL 1 126 #define IEEE80211_NDP_FTYPE_ACK 2 127 #define IEEE80211_NDP_FTYPE_PS_POLL_ACK 3 128 #define IEEE80211_NDP_FTYPE_BA 4 129 #define IEEE80211_NDP_FTYPE_BF_REPORT_POLL 5 130 #define IEEE80211_NDP_FTYPE_PAGING 6 131 #define IEEE80211_NDP_FTYPE_PREQ 7 132 133 #define SM64(f, v) ((((u64)v) << f##_S) & f) 134 135 /* NDP CMAC frame fields */ 136 #define IEEE80211_NDP_FTYPE 0x0000000000000007 137 #define IEEE80211_NDP_FTYPE_S 0x0000000000000000 138 139 /* 1M Probe Request 11ah 9.9.3.1.1 */ 140 #define IEEE80211_NDP_1M_PREQ_ANO 0x0000000000000008 141 #define IEEE80211_NDP_1M_PREQ_ANO_S 3 142 #define IEEE80211_NDP_1M_PREQ_CSSID 0x00000000000FFFF0 143 #define IEEE80211_NDP_1M_PREQ_CSSID_S 4 144 #define IEEE80211_NDP_1M_PREQ_RTYPE 0x0000000000100000 145 #define IEEE80211_NDP_1M_PREQ_RTYPE_S 20 146 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000 147 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000 148 /* 2M Probe Request 11ah 9.9.3.1.2 */ 149 #define IEEE80211_NDP_2M_PREQ_ANO 0x0000000000000008 150 #define IEEE80211_NDP_2M_PREQ_ANO_S 3 151 #define IEEE80211_NDP_2M_PREQ_CSSID 0x0000000FFFFFFFF0 152 #define IEEE80211_NDP_2M_PREQ_CSSID_S 4 153 #define IEEE80211_NDP_2M_PREQ_RTYPE 0x0000001000000000 154 #define IEEE80211_NDP_2M_PREQ_RTYPE_S 36 155 156 #define IEEE80211_ANO_NETTYPE_WILD 15 157 158 /* control extension - for IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTL_EXT */ 159 #define IEEE80211_CTL_EXT_POLL 0x2000 160 #define IEEE80211_CTL_EXT_SPR 0x3000 161 #define IEEE80211_CTL_EXT_GRANT 0x4000 162 #define IEEE80211_CTL_EXT_DMG_CTS 0x5000 163 #define IEEE80211_CTL_EXT_DMG_DTS 0x6000 164 #define IEEE80211_CTL_EXT_SSW 0x8000 165 #define IEEE80211_CTL_EXT_SSW_FBACK 0x9000 166 #define IEEE80211_CTL_EXT_SSW_ACK 0xa000 167 168 169 #define IEEE80211_SN_MASK ((IEEE80211_SCTL_SEQ) >> 4) 170 #define IEEE80211_MAX_SN IEEE80211_SN_MASK 171 #define IEEE80211_SN_MODULO (IEEE80211_MAX_SN + 1) 172 173 174 /* PV1 Layout IEEE 802.11-2020 9.8.3.1 */ 175 #define IEEE80211_PV1_FCTL_VERS 0x0003 176 #define IEEE80211_PV1_FCTL_FTYPE 0x001c 177 #define IEEE80211_PV1_FCTL_STYPE 0x00e0 178 #define IEEE80211_PV1_FCTL_FROMDS 0x0100 179 #define IEEE80211_PV1_FCTL_MOREFRAGS 0x0200 180 #define IEEE80211_PV1_FCTL_PM 0x0400 181 #define IEEE80211_PV1_FCTL_MOREDATA 0x0800 182 #define IEEE80211_PV1_FCTL_PROTECTED 0x1000 183 #define IEEE80211_PV1_FCTL_END_SP 0x2000 184 #define IEEE80211_PV1_FCTL_RELAYED 0x4000 185 #define IEEE80211_PV1_FCTL_ACK_POLICY 0x8000 186 #define IEEE80211_PV1_FCTL_CTL_EXT 0x0f00 187 188 static inline bool ieee80211_sn_less(u16 sn1, u16 sn2) 189 { 190 return ((sn1 - sn2) & IEEE80211_SN_MASK) > (IEEE80211_SN_MODULO >> 1); 191 } 192 193 static inline bool ieee80211_sn_less_eq(u16 sn1, u16 sn2) 194 { 195 return ((sn2 - sn1) & IEEE80211_SN_MASK) <= (IEEE80211_SN_MODULO >> 1); 196 } 197 198 static inline u16 ieee80211_sn_add(u16 sn1, u16 sn2) 199 { 200 return (sn1 + sn2) & IEEE80211_SN_MASK; 201 } 202 203 static inline u16 ieee80211_sn_inc(u16 sn) 204 { 205 return ieee80211_sn_add(sn, 1); 206 } 207 208 static inline u16 ieee80211_sn_sub(u16 sn1, u16 sn2) 209 { 210 return (sn1 - sn2) & IEEE80211_SN_MASK; 211 } 212 213 #define IEEE80211_SEQ_TO_SN(seq) (((seq) & IEEE80211_SCTL_SEQ) >> 4) 214 #define IEEE80211_SN_TO_SEQ(ssn) (((ssn) << 4) & IEEE80211_SCTL_SEQ) 215 216 /* miscellaneous IEEE 802.11 constants */ 217 #define IEEE80211_MAX_FRAG_THRESHOLD 2352 218 #define IEEE80211_MAX_RTS_THRESHOLD 2353 219 #define IEEE80211_MAX_AID 2007 220 #define IEEE80211_MAX_AID_S1G 8191 221 #define IEEE80211_MAX_TIM_LEN 251 222 #define IEEE80211_MAX_MESH_PEERINGS 63 223 224 /* S1G encoding types */ 225 #define IEEE80211_S1G_TIM_ENC_MODE_BLOCK 0 226 #define IEEE80211_S1G_TIM_ENC_MODE_SINGLE 1 227 #define IEEE80211_S1G_TIM_ENC_MODE_OLB 2 228 229 /* Maximum size for the MA-UNITDATA primitive, 802.11 standard section 230 6.2.1.1.2. 231 232 802.11e clarifies the figure in section 7.1.2. The frame body is 233 up to 2304 octets long (maximum MSDU size) plus any crypt overhead. */ 234 #define IEEE80211_MAX_DATA_LEN 2304 235 /* 802.11ad extends maximum MSDU size for DMG (freq > 40Ghz) networks 236 * to 7920 bytes, see 8.2.3 General frame format 237 */ 238 #define IEEE80211_MAX_DATA_LEN_DMG 7920 239 /* 30 byte 4 addr hdr, 2 byte QoS, 2304 byte MSDU, 12 byte crypt, 4 byte FCS */ 240 #define IEEE80211_MAX_FRAME_LEN 2352 241 242 /* Maximal size of an A-MSDU that can be transported in a HT BA session */ 243 #define IEEE80211_MAX_MPDU_LEN_HT_BA 4095 244 245 /* Maximal size of an A-MSDU */ 246 #define IEEE80211_MAX_MPDU_LEN_HT_3839 3839 247 #define IEEE80211_MAX_MPDU_LEN_HT_7935 7935 248 249 #define IEEE80211_MAX_MPDU_LEN_VHT_3895 3895 250 #define IEEE80211_MAX_MPDU_LEN_VHT_7991 7991 251 #define IEEE80211_MAX_MPDU_LEN_VHT_11454 11454 252 253 #define IEEE80211_MAX_SSID_LEN 32 254 255 #define IEEE80211_MAX_MESH_ID_LEN 32 256 257 #define IEEE80211_FIRST_TSPEC_TSID 8 258 #define IEEE80211_NUM_TIDS 16 259 260 /* number of user priorities 802.11 uses */ 261 #define IEEE80211_NUM_UPS 8 262 /* number of ACs */ 263 #define IEEE80211_NUM_ACS 4 264 265 #define IEEE80211_QOS_CTL_LEN 2 266 /* 1d tag mask */ 267 #define IEEE80211_QOS_CTL_TAG1D_MASK 0x0007 268 /* TID mask */ 269 #define IEEE80211_QOS_CTL_TID_MASK 0x000f 270 /* EOSP */ 271 #define IEEE80211_QOS_CTL_EOSP 0x0010 272 /* ACK policy */ 273 #define IEEE80211_QOS_CTL_ACK_POLICY_NORMAL 0x0000 274 #define IEEE80211_QOS_CTL_ACK_POLICY_NOACK 0x0020 275 #define IEEE80211_QOS_CTL_ACK_POLICY_NO_EXPL 0x0040 276 #define IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK 0x0060 277 #define IEEE80211_QOS_CTL_ACK_POLICY_MASK 0x0060 278 /* A-MSDU 802.11n */ 279 #define IEEE80211_QOS_CTL_A_MSDU_PRESENT 0x0080 280 /* Mesh Control 802.11s */ 281 #define IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT 0x0100 282 283 /* Mesh Power Save Level */ 284 #define IEEE80211_QOS_CTL_MESH_PS_LEVEL 0x0200 285 /* Mesh Receiver Service Period Initiated */ 286 #define IEEE80211_QOS_CTL_RSPI 0x0400 287 288 /* U-APSD queue for WMM IEs sent by AP */ 289 #define IEEE80211_WMM_IE_AP_QOSINFO_UAPSD (1<<7) 290 #define IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK 0x0f 291 292 /* U-APSD queues for WMM IEs sent by STA */ 293 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VO (1<<0) 294 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VI (1<<1) 295 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BK (1<<2) 296 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BE (1<<3) 297 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_MASK 0x0f 298 299 /* U-APSD max SP length for WMM IEs sent by STA */ 300 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL 0x00 301 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_2 0x01 302 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_4 0x02 303 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_6 0x03 304 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_MASK 0x03 305 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT 5 306 307 #define IEEE80211_HT_CTL_LEN 4 308 309 /* trigger type within common_info of trigger frame */ 310 #define IEEE80211_TRIGGER_TYPE_MASK 0xf 311 #define IEEE80211_TRIGGER_TYPE_BASIC 0x0 312 #define IEEE80211_TRIGGER_TYPE_BFRP 0x1 313 #define IEEE80211_TRIGGER_TYPE_MU_BAR 0x2 314 #define IEEE80211_TRIGGER_TYPE_MU_RTS 0x3 315 #define IEEE80211_TRIGGER_TYPE_BSRP 0x4 316 #define IEEE80211_TRIGGER_TYPE_GCR_MU_BAR 0x5 317 #define IEEE80211_TRIGGER_TYPE_BQRP 0x6 318 #define IEEE80211_TRIGGER_TYPE_NFRP 0x7 319 320 /* UL-bandwidth within common_info of trigger frame */ 321 #define IEEE80211_TRIGGER_ULBW_MASK 0xc0000 322 #define IEEE80211_TRIGGER_ULBW_20MHZ 0x0 323 #define IEEE80211_TRIGGER_ULBW_40MHZ 0x1 324 #define IEEE80211_TRIGGER_ULBW_80MHZ 0x2 325 #define IEEE80211_TRIGGER_ULBW_160_80P80MHZ 0x3 326 327 struct ieee80211_hdr { 328 __le16 frame_control; 329 __le16 duration_id; 330 struct_group(addrs, 331 u8 addr1[ETH_ALEN]; 332 u8 addr2[ETH_ALEN]; 333 u8 addr3[ETH_ALEN]; 334 ); 335 __le16 seq_ctrl; 336 u8 addr4[ETH_ALEN]; 337 } __packed __aligned(2); 338 339 struct ieee80211_hdr_3addr { 340 __le16 frame_control; 341 __le16 duration_id; 342 u8 addr1[ETH_ALEN]; 343 u8 addr2[ETH_ALEN]; 344 u8 addr3[ETH_ALEN]; 345 __le16 seq_ctrl; 346 } __packed __aligned(2); 347 348 struct ieee80211_qos_hdr { 349 __le16 frame_control; 350 __le16 duration_id; 351 u8 addr1[ETH_ALEN]; 352 u8 addr2[ETH_ALEN]; 353 u8 addr3[ETH_ALEN]; 354 __le16 seq_ctrl; 355 __le16 qos_ctrl; 356 } __packed __aligned(2); 357 358 struct ieee80211_qos_hdr_4addr { 359 __le16 frame_control; 360 __le16 duration_id; 361 u8 addr1[ETH_ALEN]; 362 u8 addr2[ETH_ALEN]; 363 u8 addr3[ETH_ALEN]; 364 __le16 seq_ctrl; 365 u8 addr4[ETH_ALEN]; 366 __le16 qos_ctrl; 367 } __packed __aligned(2); 368 369 struct ieee80211_trigger { 370 __le16 frame_control; 371 __le16 duration; 372 u8 ra[ETH_ALEN]; 373 u8 ta[ETH_ALEN]; 374 __le64 common_info; 375 u8 variable[]; 376 } __packed __aligned(2); 377 378 /** 379 * ieee80211_has_tods - check if IEEE80211_FCTL_TODS is set 380 * @fc: frame control bytes in little-endian byteorder 381 * Return: whether or not the frame has to-DS set 382 */ 383 static inline bool ieee80211_has_tods(__le16 fc) 384 { 385 return (fc & cpu_to_le16(IEEE80211_FCTL_TODS)) != 0; 386 } 387 388 /** 389 * ieee80211_has_fromds - check if IEEE80211_FCTL_FROMDS is set 390 * @fc: frame control bytes in little-endian byteorder 391 * Return: whether or not the frame has from-DS set 392 */ 393 static inline bool ieee80211_has_fromds(__le16 fc) 394 { 395 return (fc & cpu_to_le16(IEEE80211_FCTL_FROMDS)) != 0; 396 } 397 398 /** 399 * ieee80211_has_a4 - check if IEEE80211_FCTL_TODS and IEEE80211_FCTL_FROMDS are set 400 * @fc: frame control bytes in little-endian byteorder 401 * Return: whether or not it's a 4-address frame (from-DS and to-DS set) 402 */ 403 static inline bool ieee80211_has_a4(__le16 fc) 404 { 405 __le16 tmp = cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS); 406 return (fc & tmp) == tmp; 407 } 408 409 /** 410 * ieee80211_has_morefrags - check if IEEE80211_FCTL_MOREFRAGS is set 411 * @fc: frame control bytes in little-endian byteorder 412 * Return: whether or not the frame has more fragments (more frags bit set) 413 */ 414 static inline bool ieee80211_has_morefrags(__le16 fc) 415 { 416 return (fc & cpu_to_le16(IEEE80211_FCTL_MOREFRAGS)) != 0; 417 } 418 419 /** 420 * ieee80211_has_retry - check if IEEE80211_FCTL_RETRY is set 421 * @fc: frame control bytes in little-endian byteorder 422 * Return: whether or not the retry flag is set 423 */ 424 static inline bool ieee80211_has_retry(__le16 fc) 425 { 426 return (fc & cpu_to_le16(IEEE80211_FCTL_RETRY)) != 0; 427 } 428 429 /** 430 * ieee80211_has_pm - check if IEEE80211_FCTL_PM is set 431 * @fc: frame control bytes in little-endian byteorder 432 * Return: whether or not the power management flag is set 433 */ 434 static inline bool ieee80211_has_pm(__le16 fc) 435 { 436 return (fc & cpu_to_le16(IEEE80211_FCTL_PM)) != 0; 437 } 438 439 /** 440 * ieee80211_has_moredata - check if IEEE80211_FCTL_MOREDATA is set 441 * @fc: frame control bytes in little-endian byteorder 442 * Return: whether or not the more data flag is set 443 */ 444 static inline bool ieee80211_has_moredata(__le16 fc) 445 { 446 return (fc & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) != 0; 447 } 448 449 /** 450 * ieee80211_has_protected - check if IEEE80211_FCTL_PROTECTED is set 451 * @fc: frame control bytes in little-endian byteorder 452 * Return: whether or not the protected flag is set 453 */ 454 static inline bool ieee80211_has_protected(__le16 fc) 455 { 456 return (fc & cpu_to_le16(IEEE80211_FCTL_PROTECTED)) != 0; 457 } 458 459 /** 460 * ieee80211_has_order - check if IEEE80211_FCTL_ORDER is set 461 * @fc: frame control bytes in little-endian byteorder 462 * Return: whether or not the order flag is set 463 */ 464 static inline bool ieee80211_has_order(__le16 fc) 465 { 466 return (fc & cpu_to_le16(IEEE80211_FCTL_ORDER)) != 0; 467 } 468 469 /** 470 * ieee80211_is_mgmt - check if type is IEEE80211_FTYPE_MGMT 471 * @fc: frame control bytes in little-endian byteorder 472 * Return: whether or not the frame type is management 473 */ 474 static inline bool ieee80211_is_mgmt(__le16 fc) 475 { 476 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == 477 cpu_to_le16(IEEE80211_FTYPE_MGMT); 478 } 479 480 /** 481 * ieee80211_is_ctl - check if type is IEEE80211_FTYPE_CTL 482 * @fc: frame control bytes in little-endian byteorder 483 * Return: whether or not the frame type is control 484 */ 485 static inline bool ieee80211_is_ctl(__le16 fc) 486 { 487 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == 488 cpu_to_le16(IEEE80211_FTYPE_CTL); 489 } 490 491 /** 492 * ieee80211_is_data - check if type is IEEE80211_FTYPE_DATA 493 * @fc: frame control bytes in little-endian byteorder 494 * Return: whether or not the frame is a data frame 495 */ 496 static inline bool ieee80211_is_data(__le16 fc) 497 { 498 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == 499 cpu_to_le16(IEEE80211_FTYPE_DATA); 500 } 501 502 /** 503 * ieee80211_is_ext - check if type is IEEE80211_FTYPE_EXT 504 * @fc: frame control bytes in little-endian byteorder 505 * Return: whether or not the frame type is extended 506 */ 507 static inline bool ieee80211_is_ext(__le16 fc) 508 { 509 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == 510 cpu_to_le16(IEEE80211_FTYPE_EXT); 511 } 512 513 514 /** 515 * ieee80211_is_data_qos - check if type is IEEE80211_FTYPE_DATA and IEEE80211_STYPE_QOS_DATA is set 516 * @fc: frame control bytes in little-endian byteorder 517 * Return: whether or not the frame is a QoS data frame 518 */ 519 static inline bool ieee80211_is_data_qos(__le16 fc) 520 { 521 /* 522 * mask with QOS_DATA rather than IEEE80211_FCTL_STYPE as we just need 523 * to check the one bit 524 */ 525 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_STYPE_QOS_DATA)) == 526 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA); 527 } 528 529 /** 530 * ieee80211_is_data_present - check if type is IEEE80211_FTYPE_DATA and has data 531 * @fc: frame control bytes in little-endian byteorder 532 * Return: whether or not the frame is a QoS data frame that has data 533 * (i.e. is not null data) 534 */ 535 static inline bool ieee80211_is_data_present(__le16 fc) 536 { 537 /* 538 * mask with 0x40 and test that that bit is clear to only return true 539 * for the data-containing substypes. 540 */ 541 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 0x40)) == 542 cpu_to_le16(IEEE80211_FTYPE_DATA); 543 } 544 545 /** 546 * ieee80211_is_assoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_REQ 547 * @fc: frame control bytes in little-endian byteorder 548 * Return: whether or not the frame is an association request 549 */ 550 static inline bool ieee80211_is_assoc_req(__le16 fc) 551 { 552 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 553 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ); 554 } 555 556 /** 557 * ieee80211_is_assoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_RESP 558 * @fc: frame control bytes in little-endian byteorder 559 * Return: whether or not the frame is an association response 560 */ 561 static inline bool ieee80211_is_assoc_resp(__le16 fc) 562 { 563 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 564 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_RESP); 565 } 566 567 /** 568 * ieee80211_is_reassoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_REQ 569 * @fc: frame control bytes in little-endian byteorder 570 * Return: whether or not the frame is a reassociation request 571 */ 572 static inline bool ieee80211_is_reassoc_req(__le16 fc) 573 { 574 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 575 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ); 576 } 577 578 /** 579 * ieee80211_is_reassoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_RESP 580 * @fc: frame control bytes in little-endian byteorder 581 * Return: whether or not the frame is a reassociation response 582 */ 583 static inline bool ieee80211_is_reassoc_resp(__le16 fc) 584 { 585 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 586 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_RESP); 587 } 588 589 /** 590 * ieee80211_is_probe_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_REQ 591 * @fc: frame control bytes in little-endian byteorder 592 * Return: whether or not the frame is a probe request 593 */ 594 static inline bool ieee80211_is_probe_req(__le16 fc) 595 { 596 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 597 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ); 598 } 599 600 /** 601 * ieee80211_is_probe_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_RESP 602 * @fc: frame control bytes in little-endian byteorder 603 * Return: whether or not the frame is a probe response 604 */ 605 static inline bool ieee80211_is_probe_resp(__le16 fc) 606 { 607 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 608 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP); 609 } 610 611 /** 612 * ieee80211_is_beacon - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_BEACON 613 * @fc: frame control bytes in little-endian byteorder 614 * Return: whether or not the frame is a (regular, not S1G) beacon 615 */ 616 static inline bool ieee80211_is_beacon(__le16 fc) 617 { 618 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 619 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); 620 } 621 622 /** 623 * ieee80211_is_s1g_beacon - check if IEEE80211_FTYPE_EXT && 624 * IEEE80211_STYPE_S1G_BEACON 625 * @fc: frame control bytes in little-endian byteorder 626 * Return: whether or not the frame is an S1G beacon 627 */ 628 static inline bool ieee80211_is_s1g_beacon(__le16 fc) 629 { 630 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 631 IEEE80211_FCTL_STYPE)) == 632 cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON); 633 } 634 635 /** 636 * ieee80211_s1g_has_next_tbtt - check if IEEE80211_S1G_BCN_NEXT_TBTT 637 * @fc: frame control bytes in little-endian byteorder 638 * Return: whether or not the frame contains the variable-length 639 * next TBTT field 640 */ 641 static inline bool ieee80211_s1g_has_next_tbtt(__le16 fc) 642 { 643 return ieee80211_is_s1g_beacon(fc) && 644 (fc & cpu_to_le16(IEEE80211_S1G_BCN_NEXT_TBTT)); 645 } 646 647 /** 648 * ieee80211_s1g_has_ano - check if IEEE80211_S1G_BCN_ANO 649 * @fc: frame control bytes in little-endian byteorder 650 * Return: whether or not the frame contains the variable-length 651 * ANO field 652 */ 653 static inline bool ieee80211_s1g_has_ano(__le16 fc) 654 { 655 return ieee80211_is_s1g_beacon(fc) && 656 (fc & cpu_to_le16(IEEE80211_S1G_BCN_ANO)); 657 } 658 659 /** 660 * ieee80211_s1g_has_cssid - check if IEEE80211_S1G_BCN_CSSID 661 * @fc: frame control bytes in little-endian byteorder 662 * Return: whether or not the frame contains the variable-length 663 * compressed SSID field 664 */ 665 static inline bool ieee80211_s1g_has_cssid(__le16 fc) 666 { 667 return ieee80211_is_s1g_beacon(fc) && 668 (fc & cpu_to_le16(IEEE80211_S1G_BCN_CSSID)); 669 } 670 671 /** 672 * ieee80211_is_atim - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ATIM 673 * @fc: frame control bytes in little-endian byteorder 674 * Return: whether or not the frame is an ATIM frame 675 */ 676 static inline bool ieee80211_is_atim(__le16 fc) 677 { 678 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 679 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ATIM); 680 } 681 682 /** 683 * ieee80211_is_disassoc - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DISASSOC 684 * @fc: frame control bytes in little-endian byteorder 685 * Return: whether or not the frame is a disassociation frame 686 */ 687 static inline bool ieee80211_is_disassoc(__le16 fc) 688 { 689 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 690 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DISASSOC); 691 } 692 693 /** 694 * ieee80211_is_auth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_AUTH 695 * @fc: frame control bytes in little-endian byteorder 696 * Return: whether or not the frame is an authentication frame 697 */ 698 static inline bool ieee80211_is_auth(__le16 fc) 699 { 700 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 701 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH); 702 } 703 704 /** 705 * ieee80211_is_deauth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DEAUTH 706 * @fc: frame control bytes in little-endian byteorder 707 * Return: whether or not the frame is a deauthentication frame 708 */ 709 static inline bool ieee80211_is_deauth(__le16 fc) 710 { 711 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 712 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DEAUTH); 713 } 714 715 /** 716 * ieee80211_is_action - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ACTION 717 * @fc: frame control bytes in little-endian byteorder 718 * Return: whether or not the frame is an action frame 719 */ 720 static inline bool ieee80211_is_action(__le16 fc) 721 { 722 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 723 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); 724 } 725 726 /** 727 * ieee80211_is_back_req - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK_REQ 728 * @fc: frame control bytes in little-endian byteorder 729 * Return: whether or not the frame is a block-ACK request frame 730 */ 731 static inline bool ieee80211_is_back_req(__le16 fc) 732 { 733 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 734 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ); 735 } 736 737 /** 738 * ieee80211_is_back - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK 739 * @fc: frame control bytes in little-endian byteorder 740 * Return: whether or not the frame is a block-ACK frame 741 */ 742 static inline bool ieee80211_is_back(__le16 fc) 743 { 744 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 745 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK); 746 } 747 748 /** 749 * ieee80211_is_pspoll - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_PSPOLL 750 * @fc: frame control bytes in little-endian byteorder 751 * Return: whether or not the frame is a PS-poll frame 752 */ 753 static inline bool ieee80211_is_pspoll(__le16 fc) 754 { 755 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 756 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL); 757 } 758 759 /** 760 * ieee80211_is_rts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_RTS 761 * @fc: frame control bytes in little-endian byteorder 762 * Return: whether or not the frame is an RTS frame 763 */ 764 static inline bool ieee80211_is_rts(__le16 fc) 765 { 766 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 767 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); 768 } 769 770 /** 771 * ieee80211_is_cts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CTS 772 * @fc: frame control bytes in little-endian byteorder 773 * Return: whether or not the frame is a CTS frame 774 */ 775 static inline bool ieee80211_is_cts(__le16 fc) 776 { 777 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 778 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); 779 } 780 781 /** 782 * ieee80211_is_ack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_ACK 783 * @fc: frame control bytes in little-endian byteorder 784 * Return: whether or not the frame is an ACK frame 785 */ 786 static inline bool ieee80211_is_ack(__le16 fc) 787 { 788 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 789 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK); 790 } 791 792 /** 793 * ieee80211_is_cfend - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFEND 794 * @fc: frame control bytes in little-endian byteorder 795 * Return: whether or not the frame is a CF-end frame 796 */ 797 static inline bool ieee80211_is_cfend(__le16 fc) 798 { 799 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 800 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFEND); 801 } 802 803 /** 804 * ieee80211_is_cfendack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFENDACK 805 * @fc: frame control bytes in little-endian byteorder 806 * Return: whether or not the frame is a CF-end-ack frame 807 */ 808 static inline bool ieee80211_is_cfendack(__le16 fc) 809 { 810 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 811 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFENDACK); 812 } 813 814 /** 815 * ieee80211_is_nullfunc - check if frame is a regular (non-QoS) nullfunc frame 816 * @fc: frame control bytes in little-endian byteorder 817 * Return: whether or not the frame is a nullfunc frame 818 */ 819 static inline bool ieee80211_is_nullfunc(__le16 fc) 820 { 821 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 822 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC); 823 } 824 825 /** 826 * ieee80211_is_qos_nullfunc - check if frame is a QoS nullfunc frame 827 * @fc: frame control bytes in little-endian byteorder 828 * Return: whether or not the frame is a QoS nullfunc frame 829 */ 830 static inline bool ieee80211_is_qos_nullfunc(__le16 fc) 831 { 832 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 833 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC); 834 } 835 836 /** 837 * ieee80211_is_trigger - check if frame is trigger frame 838 * @fc: frame control field in little-endian byteorder 839 * Return: whether or not the frame is a trigger frame 840 */ 841 static inline bool ieee80211_is_trigger(__le16 fc) 842 { 843 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 844 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_TRIGGER); 845 } 846 847 /** 848 * ieee80211_is_any_nullfunc - check if frame is regular or QoS nullfunc frame 849 * @fc: frame control bytes in little-endian byteorder 850 * Return: whether or not the frame is a nullfunc or QoS nullfunc frame 851 */ 852 static inline bool ieee80211_is_any_nullfunc(__le16 fc) 853 { 854 return (ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc)); 855 } 856 857 /** 858 * ieee80211_is_first_frag - check if IEEE80211_SCTL_FRAG is not set 859 * @seq_ctrl: frame sequence control bytes in little-endian byteorder 860 * Return: whether or not the frame is the first fragment (also true if 861 * it's not fragmented at all) 862 */ 863 static inline bool ieee80211_is_first_frag(__le16 seq_ctrl) 864 { 865 return (seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG)) == 0; 866 } 867 868 /** 869 * ieee80211_is_frag - check if a frame is a fragment 870 * @hdr: 802.11 header of the frame 871 * Return: whether or not the frame is a fragment 872 */ 873 static inline bool ieee80211_is_frag(struct ieee80211_hdr *hdr) 874 { 875 return ieee80211_has_morefrags(hdr->frame_control) || 876 hdr->seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG); 877 } 878 879 static inline u16 ieee80211_get_sn(struct ieee80211_hdr *hdr) 880 { 881 return le16_get_bits(hdr->seq_ctrl, IEEE80211_SCTL_SEQ); 882 } 883 884 struct ieee80211s_hdr { 885 u8 flags; 886 u8 ttl; 887 __le32 seqnum; 888 u8 eaddr1[ETH_ALEN]; 889 u8 eaddr2[ETH_ALEN]; 890 } __packed __aligned(2); 891 892 /* Mesh flags */ 893 #define MESH_FLAGS_AE_A4 0x1 894 #define MESH_FLAGS_AE_A5_A6 0x2 895 #define MESH_FLAGS_AE 0x3 896 #define MESH_FLAGS_PS_DEEP 0x4 897 898 /** 899 * enum ieee80211_preq_flags - mesh PREQ element flags 900 * 901 * @IEEE80211_PREQ_PROACTIVE_PREP_FLAG: proactive PREP subfield 902 */ 903 enum ieee80211_preq_flags { 904 IEEE80211_PREQ_PROACTIVE_PREP_FLAG = 1<<2, 905 }; 906 907 /** 908 * enum ieee80211_preq_target_flags - mesh PREQ element per target flags 909 * 910 * @IEEE80211_PREQ_TO_FLAG: target only subfield 911 * @IEEE80211_PREQ_USN_FLAG: unknown target HWMP sequence number subfield 912 */ 913 enum ieee80211_preq_target_flags { 914 IEEE80211_PREQ_TO_FLAG = 1<<0, 915 IEEE80211_PREQ_USN_FLAG = 1<<2, 916 }; 917 918 /** 919 * struct ieee80211_quiet_ie - Quiet element 920 * @count: Quiet Count 921 * @period: Quiet Period 922 * @duration: Quiet Duration 923 * @offset: Quiet Offset 924 * 925 * This structure represents the payload of the "Quiet element" as 926 * described in IEEE Std 802.11-2020 section 9.4.2.22. 927 */ 928 struct ieee80211_quiet_ie { 929 u8 count; 930 u8 period; 931 __le16 duration; 932 __le16 offset; 933 } __packed; 934 935 /** 936 * struct ieee80211_msrment_ie - Measurement element 937 * @token: Measurement Token 938 * @mode: Measurement Report Mode 939 * @type: Measurement Type 940 * @request: Measurement Request or Measurement Report 941 * 942 * This structure represents the payload of both the "Measurement 943 * Request element" and the "Measurement Report element" as described 944 * in IEEE Std 802.11-2020 sections 9.4.2.20 and 9.4.2.21. 945 */ 946 struct ieee80211_msrment_ie { 947 u8 token; 948 u8 mode; 949 u8 type; 950 u8 request[]; 951 } __packed; 952 953 /** 954 * struct ieee80211_channel_sw_ie - Channel Switch Announcement element 955 * @mode: Channel Switch Mode 956 * @new_ch_num: New Channel Number 957 * @count: Channel Switch Count 958 * 959 * This structure represents the payload of the "Channel Switch 960 * Announcement element" as described in IEEE Std 802.11-2020 section 961 * 9.4.2.18. 962 */ 963 struct ieee80211_channel_sw_ie { 964 u8 mode; 965 u8 new_ch_num; 966 u8 count; 967 } __packed; 968 969 /** 970 * struct ieee80211_ext_chansw_ie - Extended Channel Switch Announcement element 971 * @mode: Channel Switch Mode 972 * @new_operating_class: New Operating Class 973 * @new_ch_num: New Channel Number 974 * @count: Channel Switch Count 975 * 976 * This structure represents the "Extended Channel Switch Announcement 977 * element" as described in IEEE Std 802.11-2020 section 9.4.2.52. 978 */ 979 struct ieee80211_ext_chansw_ie { 980 u8 mode; 981 u8 new_operating_class; 982 u8 new_ch_num; 983 u8 count; 984 } __packed; 985 986 /** 987 * struct ieee80211_sec_chan_offs_ie - secondary channel offset IE 988 * @sec_chan_offs: secondary channel offset, uses IEEE80211_HT_PARAM_CHA_SEC_* 989 * values here 990 * This structure represents the "Secondary Channel Offset element" 991 */ 992 struct ieee80211_sec_chan_offs_ie { 993 u8 sec_chan_offs; 994 } __packed; 995 996 /** 997 * struct ieee80211_mesh_chansw_params_ie - mesh channel switch parameters IE 998 * @mesh_ttl: Time To Live 999 * @mesh_flags: Flags 1000 * @mesh_reason: Reason Code 1001 * @mesh_pre_value: Precedence Value 1002 * 1003 * This structure represents the payload of the "Mesh Channel Switch 1004 * Parameters element" as described in IEEE Std 802.11-2020 section 1005 * 9.4.2.102. 1006 */ 1007 struct ieee80211_mesh_chansw_params_ie { 1008 u8 mesh_ttl; 1009 u8 mesh_flags; 1010 __le16 mesh_reason; 1011 __le16 mesh_pre_value; 1012 } __packed; 1013 1014 /** 1015 * struct ieee80211_wide_bw_chansw_ie - wide bandwidth channel switch IE 1016 * @new_channel_width: New Channel Width 1017 * @new_center_freq_seg0: New Channel Center Frequency Segment 0 1018 * @new_center_freq_seg1: New Channel Center Frequency Segment 1 1019 * 1020 * This structure represents the payload of the "Wide Bandwidth 1021 * Channel Switch element" as described in IEEE Std 802.11-2020 1022 * section 9.4.2.160. 1023 */ 1024 struct ieee80211_wide_bw_chansw_ie { 1025 u8 new_channel_width; 1026 u8 new_center_freq_seg0, new_center_freq_seg1; 1027 } __packed; 1028 1029 /** 1030 * struct ieee80211_tim_ie - Traffic Indication Map information element 1031 * @dtim_count: DTIM Count 1032 * @dtim_period: DTIM Period 1033 * @bitmap_ctrl: Bitmap Control 1034 * @required_octet: "Syntatic sugar" to force the struct size to the 1035 * minimum valid size when carried in a non-S1G PPDU 1036 * @virtual_map: Partial Virtual Bitmap 1037 * 1038 * This structure represents the payload of the "TIM element" as 1039 * described in IEEE Std 802.11-2020 section 9.4.2.5. Note that this 1040 * definition is only applicable when the element is carried in a 1041 * non-S1G PPDU. When the TIM is carried in an S1G PPDU, the Bitmap 1042 * Control and Partial Virtual Bitmap may not be present. 1043 */ 1044 struct ieee80211_tim_ie { 1045 u8 dtim_count; 1046 u8 dtim_period; 1047 u8 bitmap_ctrl; 1048 union { 1049 u8 required_octet; 1050 DECLARE_FLEX_ARRAY(u8, virtual_map); 1051 }; 1052 } __packed; 1053 1054 /** 1055 * struct ieee80211_meshconf_ie - Mesh Configuration element 1056 * @meshconf_psel: Active Path Selection Protocol Identifier 1057 * @meshconf_pmetric: Active Path Selection Metric Identifier 1058 * @meshconf_congest: Congestion Control Mode Identifier 1059 * @meshconf_synch: Synchronization Method Identifier 1060 * @meshconf_auth: Authentication Protocol Identifier 1061 * @meshconf_form: Mesh Formation Info 1062 * @meshconf_cap: Mesh Capability (see &enum mesh_config_capab_flags) 1063 * 1064 * This structure represents the payload of the "Mesh Configuration 1065 * element" as described in IEEE Std 802.11-2020 section 9.4.2.97. 1066 */ 1067 struct ieee80211_meshconf_ie { 1068 u8 meshconf_psel; 1069 u8 meshconf_pmetric; 1070 u8 meshconf_congest; 1071 u8 meshconf_synch; 1072 u8 meshconf_auth; 1073 u8 meshconf_form; 1074 u8 meshconf_cap; 1075 } __packed; 1076 1077 /** 1078 * enum mesh_config_capab_flags - Mesh Configuration IE capability field flags 1079 * 1080 * @IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS: STA is willing to establish 1081 * additional mesh peerings with other mesh STAs 1082 * @IEEE80211_MESHCONF_CAPAB_FORWARDING: the STA forwards MSDUs 1083 * @IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING: TBTT adjustment procedure 1084 * is ongoing 1085 * @IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL: STA is in deep sleep mode or has 1086 * neighbors in deep sleep mode 1087 * 1088 * Enumerates the "Mesh Capability" as described in IEEE Std 1089 * 802.11-2020 section 9.4.2.97.7. 1090 */ 1091 enum mesh_config_capab_flags { 1092 IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS = 0x01, 1093 IEEE80211_MESHCONF_CAPAB_FORWARDING = 0x08, 1094 IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING = 0x20, 1095 IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL = 0x40, 1096 }; 1097 1098 #define IEEE80211_MESHCONF_FORM_CONNECTED_TO_GATE 0x1 1099 1100 /* 1101 * mesh channel switch parameters element's flag indicator 1102 * 1103 */ 1104 #define WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT BIT(0) 1105 #define WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR BIT(1) 1106 #define WLAN_EID_CHAN_SWITCH_PARAM_REASON BIT(2) 1107 1108 /** 1109 * struct ieee80211_rann_ie - RANN (root announcement) element 1110 * @rann_flags: Flags 1111 * @rann_hopcount: Hop Count 1112 * @rann_ttl: Element TTL 1113 * @rann_addr: Root Mesh STA Address 1114 * @rann_seq: HWMP Sequence Number 1115 * @rann_interval: Interval 1116 * @rann_metric: Metric 1117 * 1118 * This structure represents the payload of the "RANN element" as 1119 * described in IEEE Std 802.11-2020 section 9.4.2.111. 1120 */ 1121 struct ieee80211_rann_ie { 1122 u8 rann_flags; 1123 u8 rann_hopcount; 1124 u8 rann_ttl; 1125 u8 rann_addr[ETH_ALEN]; 1126 __le32 rann_seq; 1127 __le32 rann_interval; 1128 __le32 rann_metric; 1129 } __packed; 1130 1131 enum ieee80211_rann_flags { 1132 RANN_FLAG_IS_GATE = 1 << 0, 1133 }; 1134 1135 enum ieee80211_ht_chanwidth_values { 1136 IEEE80211_HT_CHANWIDTH_20MHZ = 0, 1137 IEEE80211_HT_CHANWIDTH_ANY = 1, 1138 }; 1139 1140 /** 1141 * enum ieee80211_vht_opmode_bits - VHT operating mode field bits 1142 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK: channel width mask 1143 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ: 20 MHz channel width 1144 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ: 40 MHz channel width 1145 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ: 80 MHz channel width 1146 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ: 160 MHz or 80+80 MHz channel width 1147 * @IEEE80211_OPMODE_NOTIF_BW_160_80P80: 160 / 80+80 MHz indicator flag 1148 * @IEEE80211_OPMODE_NOTIF_RX_NSS_MASK: number of spatial streams mask 1149 * (the NSS value is the value of this field + 1) 1150 * @IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT: number of spatial streams shift 1151 * @IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF: indicates streams in SU-MIMO PPDU 1152 * using a beamforming steering matrix 1153 */ 1154 enum ieee80211_vht_opmode_bits { 1155 IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK = 0x03, 1156 IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ = 0, 1157 IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ = 1, 1158 IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ = 2, 1159 IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ = 3, 1160 IEEE80211_OPMODE_NOTIF_BW_160_80P80 = 0x04, 1161 IEEE80211_OPMODE_NOTIF_RX_NSS_MASK = 0x70, 1162 IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT = 4, 1163 IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF = 0x80, 1164 }; 1165 1166 /** 1167 * enum ieee80211_s1g_chanwidth - S1G channel widths 1168 * These are defined in IEEE802.11-2016ah Table 10-20 1169 * as BSS Channel Width 1170 * 1171 * @IEEE80211_S1G_CHANWIDTH_1MHZ: 1MHz operating channel 1172 * @IEEE80211_S1G_CHANWIDTH_2MHZ: 2MHz operating channel 1173 * @IEEE80211_S1G_CHANWIDTH_4MHZ: 4MHz operating channel 1174 * @IEEE80211_S1G_CHANWIDTH_8MHZ: 8MHz operating channel 1175 * @IEEE80211_S1G_CHANWIDTH_16MHZ: 16MHz operating channel 1176 */ 1177 enum ieee80211_s1g_chanwidth { 1178 IEEE80211_S1G_CHANWIDTH_1MHZ = 0, 1179 IEEE80211_S1G_CHANWIDTH_2MHZ = 1, 1180 IEEE80211_S1G_CHANWIDTH_4MHZ = 3, 1181 IEEE80211_S1G_CHANWIDTH_8MHZ = 7, 1182 IEEE80211_S1G_CHANWIDTH_16MHZ = 15, 1183 }; 1184 1185 /** 1186 * enum ieee80211_s1g_pri_chanwidth - S1G primary channel widths 1187 * described in IEEE80211-2024 Table 10-39. 1188 * 1189 * @IEEE80211_S1G_PRI_CHANWIDTH_2MHZ: 2MHz primary channel 1190 * @IEEE80211_S1G_PRI_CHANWIDTH_1MHZ: 1MHz primary channel 1191 */ 1192 enum ieee80211_s1g_pri_chanwidth { 1193 IEEE80211_S1G_PRI_CHANWIDTH_2MHZ = 0, 1194 IEEE80211_S1G_PRI_CHANWIDTH_1MHZ = 1, 1195 }; 1196 1197 #define WLAN_SA_QUERY_TR_ID_LEN 2 1198 #define WLAN_MEMBERSHIP_LEN 8 1199 #define WLAN_USER_POSITION_LEN 16 1200 1201 /** 1202 * struct ieee80211_tpc_report_ie - TPC Report element 1203 * @tx_power: Transmit Power 1204 * @link_margin: Link Margin 1205 * 1206 * This structure represents the payload of the "TPC Report element" as 1207 * described in IEEE Std 802.11-2020 section 9.4.2.16. 1208 */ 1209 struct ieee80211_tpc_report_ie { 1210 u8 tx_power; 1211 u8 link_margin; 1212 } __packed; 1213 1214 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_MASK GENMASK(2, 1) 1215 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_SHIFT 1 1216 #define IEEE80211_ADDBA_EXT_NO_FRAG BIT(0) 1217 #define IEEE80211_ADDBA_EXT_BUF_SIZE_MASK GENMASK(7, 5) 1218 #define IEEE80211_ADDBA_EXT_BUF_SIZE_SHIFT 10 1219 1220 struct ieee80211_addba_ext_ie { 1221 u8 data; 1222 } __packed; 1223 1224 /** 1225 * struct ieee80211_s1g_bcn_compat_ie - S1G Beacon Compatibility element 1226 * @compat_info: Compatibility Information 1227 * @beacon_int: Beacon Interval 1228 * @tsf_completion: TSF Completion 1229 * 1230 * This structure represents the payload of the "S1G Beacon 1231 * Compatibility element" as described in IEEE Std 802.11-2020 section 1232 * 9.4.2.196. 1233 */ 1234 struct ieee80211_s1g_bcn_compat_ie { 1235 __le16 compat_info; 1236 __le16 beacon_int; 1237 __le32 tsf_completion; 1238 } __packed; 1239 1240 /** 1241 * struct ieee80211_s1g_oper_ie - S1G Operation element 1242 * @ch_width: S1G Operation Information Channel Width 1243 * @oper_class: S1G Operation Information Operating Class 1244 * @primary_ch: S1G Operation Information Primary Channel Number 1245 * @oper_ch: S1G Operation Information Channel Center Frequency 1246 * @basic_mcs_nss: Basic S1G-MCS and NSS Set 1247 * 1248 * This structure represents the payload of the "S1G Operation 1249 * element" as described in IEEE Std 802.11-2020 section 9.4.2.212. 1250 */ 1251 struct ieee80211_s1g_oper_ie { 1252 u8 ch_width; 1253 u8 oper_class; 1254 u8 primary_ch; 1255 u8 oper_ch; 1256 __le16 basic_mcs_nss; 1257 } __packed; 1258 1259 /** 1260 * struct ieee80211_aid_response_ie - AID Response element 1261 * @aid: AID/Group AID 1262 * @switch_count: AID Switch Count 1263 * @response_int: AID Response Interval 1264 * 1265 * This structure represents the payload of the "AID Response element" 1266 * as described in IEEE Std 802.11-2020 section 9.4.2.194. 1267 */ 1268 struct ieee80211_aid_response_ie { 1269 __le16 aid; 1270 u8 switch_count; 1271 __le16 response_int; 1272 } __packed; 1273 1274 struct ieee80211_s1g_cap { 1275 u8 capab_info[10]; 1276 u8 supp_mcs_nss[5]; 1277 } __packed; 1278 1279 struct ieee80211_ext { 1280 __le16 frame_control; 1281 __le16 duration; 1282 union { 1283 struct { 1284 u8 sa[ETH_ALEN]; 1285 __le32 timestamp; 1286 u8 change_seq; 1287 u8 variable[]; 1288 } __packed s1g_beacon; 1289 } u; 1290 } __packed __aligned(2); 1291 1292 /** 1293 * ieee80211_s1g_optional_len - determine length of optional S1G beacon fields 1294 * @fc: frame control bytes in little-endian byteorder 1295 * Return: total length in bytes of the optional fixed-length fields 1296 * 1297 * S1G beacons may contain up to three optional fixed-length fields that 1298 * precede the variable-length elements. Whether these fields are present 1299 * is indicated by flags in the frame control field. 1300 * 1301 * From IEEE 802.11-2024 section 9.3.4.3: 1302 * - Next TBTT field may be 0 or 3 bytes 1303 * - Short SSID field may be 0 or 4 bytes 1304 * - Access Network Options (ANO) field may be 0 or 1 byte 1305 */ 1306 static inline size_t 1307 ieee80211_s1g_optional_len(__le16 fc) 1308 { 1309 size_t len = 0; 1310 1311 if (ieee80211_s1g_has_next_tbtt(fc)) 1312 len += 3; 1313 1314 if (ieee80211_s1g_has_cssid(fc)) 1315 len += 4; 1316 1317 if (ieee80211_s1g_has_ano(fc)) 1318 len += 1; 1319 1320 return len; 1321 } 1322 1323 #define IEEE80211_TWT_CONTROL_NDP BIT(0) 1324 #define IEEE80211_TWT_CONTROL_RESP_MODE BIT(1) 1325 #define IEEE80211_TWT_CONTROL_NEG_TYPE_BROADCAST BIT(3) 1326 #define IEEE80211_TWT_CONTROL_RX_DISABLED BIT(4) 1327 #define IEEE80211_TWT_CONTROL_WAKE_DUR_UNIT BIT(5) 1328 1329 #define IEEE80211_TWT_REQTYPE_REQUEST BIT(0) 1330 #define IEEE80211_TWT_REQTYPE_SETUP_CMD GENMASK(3, 1) 1331 #define IEEE80211_TWT_REQTYPE_TRIGGER BIT(4) 1332 #define IEEE80211_TWT_REQTYPE_IMPLICIT BIT(5) 1333 #define IEEE80211_TWT_REQTYPE_FLOWTYPE BIT(6) 1334 #define IEEE80211_TWT_REQTYPE_FLOWID GENMASK(9, 7) 1335 #define IEEE80211_TWT_REQTYPE_WAKE_INT_EXP GENMASK(14, 10) 1336 #define IEEE80211_TWT_REQTYPE_PROTECTION BIT(15) 1337 1338 enum ieee80211_twt_setup_cmd { 1339 TWT_SETUP_CMD_REQUEST, 1340 TWT_SETUP_CMD_SUGGEST, 1341 TWT_SETUP_CMD_DEMAND, 1342 TWT_SETUP_CMD_GROUPING, 1343 TWT_SETUP_CMD_ACCEPT, 1344 TWT_SETUP_CMD_ALTERNATE, 1345 TWT_SETUP_CMD_DICTATE, 1346 TWT_SETUP_CMD_REJECT, 1347 }; 1348 1349 struct ieee80211_twt_params { 1350 __le16 req_type; 1351 __le64 twt; 1352 u8 min_twt_dur; 1353 __le16 mantissa; 1354 u8 channel; 1355 } __packed; 1356 1357 struct ieee80211_twt_setup { 1358 u8 dialog_token; 1359 u8 element_id; 1360 u8 length; 1361 u8 control; 1362 u8 params[]; 1363 } __packed; 1364 1365 #define IEEE80211_TTLM_MAX_CNT 2 1366 #define IEEE80211_TTLM_CONTROL_DIRECTION 0x03 1367 #define IEEE80211_TTLM_CONTROL_DEF_LINK_MAP 0x04 1368 #define IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT 0x08 1369 #define IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT 0x10 1370 #define IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE 0x20 1371 1372 #define IEEE80211_TTLM_DIRECTION_DOWN 0 1373 #define IEEE80211_TTLM_DIRECTION_UP 1 1374 #define IEEE80211_TTLM_DIRECTION_BOTH 2 1375 1376 /** 1377 * struct ieee80211_ttlm_elem - TID-To-Link Mapping element 1378 * 1379 * Defined in section 9.4.2.314 in P802.11be_D4 1380 * 1381 * @control: the first part of control field 1382 * @optional: the second part of control field 1383 */ 1384 struct ieee80211_ttlm_elem { 1385 u8 control; 1386 u8 optional[]; 1387 } __packed; 1388 1389 /** 1390 * struct ieee80211_bss_load_elem - BSS Load elemen 1391 * 1392 * Defined in section 9.4.2.26 in IEEE 802.11-REVme D4.1 1393 * 1394 * @sta_count: total number of STAs currently associated with the AP. 1395 * @channel_util: Percentage of time that the access point sensed the channel 1396 * was busy. This value is in range [0, 255], the highest value means 1397 * 100% busy. 1398 * @avail_admission_capa: remaining amount of medium time used for admission 1399 * control. 1400 */ 1401 struct ieee80211_bss_load_elem { 1402 __le16 sta_count; 1403 u8 channel_util; 1404 __le16 avail_admission_capa; 1405 } __packed; 1406 1407 struct ieee80211_mgmt { 1408 __le16 frame_control; 1409 __le16 duration; 1410 u8 da[ETH_ALEN]; 1411 u8 sa[ETH_ALEN]; 1412 u8 bssid[ETH_ALEN]; 1413 __le16 seq_ctrl; 1414 union { 1415 struct { 1416 __le16 auth_alg; 1417 __le16 auth_transaction; 1418 __le16 status_code; 1419 /* possibly followed by Challenge text */ 1420 u8 variable[]; 1421 } __packed auth; 1422 struct { 1423 __le16 reason_code; 1424 } __packed deauth; 1425 struct { 1426 __le16 capab_info; 1427 __le16 listen_interval; 1428 /* followed by SSID and Supported rates */ 1429 u8 variable[]; 1430 } __packed assoc_req; 1431 struct { 1432 __le16 capab_info; 1433 __le16 status_code; 1434 __le16 aid; 1435 /* followed by Supported rates */ 1436 u8 variable[]; 1437 } __packed assoc_resp, reassoc_resp; 1438 struct { 1439 __le16 capab_info; 1440 __le16 status_code; 1441 u8 variable[]; 1442 } __packed s1g_assoc_resp, s1g_reassoc_resp; 1443 struct { 1444 __le16 capab_info; 1445 __le16 listen_interval; 1446 u8 current_ap[ETH_ALEN]; 1447 /* followed by SSID and Supported rates */ 1448 u8 variable[]; 1449 } __packed reassoc_req; 1450 struct { 1451 __le16 reason_code; 1452 } __packed disassoc; 1453 struct { 1454 __le64 timestamp; 1455 __le16 beacon_int; 1456 __le16 capab_info; 1457 /* followed by some of SSID, Supported rates, 1458 * FH Params, DS Params, CF Params, IBSS Params, TIM */ 1459 u8 variable[]; 1460 } __packed beacon; 1461 struct { 1462 /* only variable items: SSID, Supported rates */ 1463 DECLARE_FLEX_ARRAY(u8, variable); 1464 } __packed probe_req; 1465 struct { 1466 __le64 timestamp; 1467 __le16 beacon_int; 1468 __le16 capab_info; 1469 /* followed by some of SSID, Supported rates, 1470 * FH Params, DS Params, CF Params, IBSS Params */ 1471 u8 variable[]; 1472 } __packed probe_resp; 1473 struct { 1474 u8 category; 1475 union { 1476 struct { 1477 u8 action_code; 1478 u8 dialog_token; 1479 u8 status_code; 1480 u8 variable[]; 1481 } __packed wme_action; 1482 struct{ 1483 u8 action_code; 1484 u8 variable[]; 1485 } __packed chan_switch; 1486 struct{ 1487 u8 action_code; 1488 struct ieee80211_ext_chansw_ie data; 1489 u8 variable[]; 1490 } __packed ext_chan_switch; 1491 struct{ 1492 u8 action_code; 1493 u8 dialog_token; 1494 u8 element_id; 1495 u8 length; 1496 struct ieee80211_msrment_ie msr_elem; 1497 } __packed measurement; 1498 struct{ 1499 u8 action_code; 1500 u8 dialog_token; 1501 __le16 capab; 1502 __le16 timeout; 1503 __le16 start_seq_num; 1504 /* followed by BA Extension */ 1505 u8 variable[]; 1506 } __packed addba_req; 1507 struct{ 1508 u8 action_code; 1509 u8 dialog_token; 1510 __le16 status; 1511 __le16 capab; 1512 __le16 timeout; 1513 /* followed by BA Extension */ 1514 u8 variable[]; 1515 } __packed addba_resp; 1516 struct{ 1517 u8 action_code; 1518 __le16 params; 1519 __le16 reason_code; 1520 } __packed delba; 1521 struct { 1522 u8 action_code; 1523 u8 variable[]; 1524 } __packed self_prot; 1525 struct{ 1526 u8 action_code; 1527 u8 variable[]; 1528 } __packed mesh_action; 1529 struct { 1530 u8 action; 1531 u8 trans_id[WLAN_SA_QUERY_TR_ID_LEN]; 1532 } __packed sa_query; 1533 struct { 1534 u8 action; 1535 u8 smps_control; 1536 } __packed ht_smps; 1537 struct { 1538 u8 action_code; 1539 u8 chanwidth; 1540 } __packed ht_notify_cw; 1541 struct { 1542 u8 action_code; 1543 u8 dialog_token; 1544 __le16 capability; 1545 u8 variable[]; 1546 } __packed tdls_discover_resp; 1547 struct { 1548 u8 action_code; 1549 u8 operating_mode; 1550 } __packed vht_opmode_notif; 1551 struct { 1552 u8 action_code; 1553 u8 membership[WLAN_MEMBERSHIP_LEN]; 1554 u8 position[WLAN_USER_POSITION_LEN]; 1555 } __packed vht_group_notif; 1556 struct { 1557 u8 action_code; 1558 u8 dialog_token; 1559 u8 tpc_elem_id; 1560 u8 tpc_elem_length; 1561 struct ieee80211_tpc_report_ie tpc; 1562 } __packed tpc_report; 1563 struct { 1564 u8 action_code; 1565 u8 dialog_token; 1566 u8 follow_up; 1567 u8 tod[6]; 1568 u8 toa[6]; 1569 __le16 tod_error; 1570 __le16 toa_error; 1571 u8 variable[]; 1572 } __packed ftm; 1573 struct { 1574 u8 action_code; 1575 u8 variable[]; 1576 } __packed s1g; 1577 struct { 1578 u8 action_code; 1579 u8 dialog_token; 1580 u8 follow_up; 1581 u32 tod; 1582 u32 toa; 1583 u8 max_tod_error; 1584 u8 max_toa_error; 1585 } __packed wnm_timing_msr; 1586 struct { 1587 u8 action_code; 1588 u8 dialog_token; 1589 u8 variable[]; 1590 } __packed ttlm_req; 1591 struct { 1592 u8 action_code; 1593 u8 dialog_token; 1594 __le16 status_code; 1595 u8 variable[]; 1596 } __packed ttlm_res; 1597 struct { 1598 u8 action_code; 1599 } __packed ttlm_tear_down; 1600 struct { 1601 u8 action_code; 1602 u8 dialog_token; 1603 u8 variable[]; 1604 } __packed ml_reconf_req; 1605 struct { 1606 u8 action_code; 1607 u8 dialog_token; 1608 u8 count; 1609 u8 variable[]; 1610 } __packed ml_reconf_resp; 1611 struct { 1612 u8 action_code; 1613 u8 variable[]; 1614 } __packed epcs; 1615 } u; 1616 } __packed action; 1617 DECLARE_FLEX_ARRAY(u8, body); /* Generic frame body */ 1618 } u; 1619 } __packed __aligned(2); 1620 1621 /* Supported rates membership selectors */ 1622 #define BSS_MEMBERSHIP_SELECTOR_HT_PHY 127 1623 #define BSS_MEMBERSHIP_SELECTOR_VHT_PHY 126 1624 #define BSS_MEMBERSHIP_SELECTOR_GLK 125 1625 #define BSS_MEMBERSHIP_SELECTOR_EPD 124 1626 #define BSS_MEMBERSHIP_SELECTOR_SAE_H2E 123 1627 #define BSS_MEMBERSHIP_SELECTOR_HE_PHY 122 1628 #define BSS_MEMBERSHIP_SELECTOR_EHT_PHY 121 1629 1630 #define BSS_MEMBERSHIP_SELECTOR_MIN BSS_MEMBERSHIP_SELECTOR_EHT_PHY 1631 1632 /* mgmt header + 1 byte category code */ 1633 #define IEEE80211_MIN_ACTION_SIZE offsetof(struct ieee80211_mgmt, u.action.u) 1634 1635 1636 /* Management MIC information element (IEEE 802.11w) */ 1637 struct ieee80211_mmie { 1638 u8 element_id; 1639 u8 length; 1640 __le16 key_id; 1641 u8 sequence_number[6]; 1642 u8 mic[8]; 1643 } __packed; 1644 1645 /* Management MIC information element (IEEE 802.11w) for GMAC and CMAC-256 */ 1646 struct ieee80211_mmie_16 { 1647 u8 element_id; 1648 u8 length; 1649 __le16 key_id; 1650 u8 sequence_number[6]; 1651 u8 mic[16]; 1652 } __packed; 1653 1654 struct ieee80211_vendor_ie { 1655 u8 element_id; 1656 u8 len; 1657 u8 oui[3]; 1658 u8 oui_type; 1659 } __packed; 1660 1661 struct ieee80211_wmm_ac_param { 1662 u8 aci_aifsn; /* AIFSN, ACM, ACI */ 1663 u8 cw; /* ECWmin, ECWmax (CW = 2^ECW - 1) */ 1664 __le16 txop_limit; 1665 } __packed; 1666 1667 struct ieee80211_wmm_param_ie { 1668 u8 element_id; /* Element ID: 221 (0xdd); */ 1669 u8 len; /* Length: 24 */ 1670 /* required fields for WMM version 1 */ 1671 u8 oui[3]; /* 00:50:f2 */ 1672 u8 oui_type; /* 2 */ 1673 u8 oui_subtype; /* 1 */ 1674 u8 version; /* 1 for WMM version 1.0 */ 1675 u8 qos_info; /* AP/STA specific QoS info */ 1676 u8 reserved; /* 0 */ 1677 /* AC_BE, AC_BK, AC_VI, AC_VO */ 1678 struct ieee80211_wmm_ac_param ac[4]; 1679 } __packed; 1680 1681 /* Control frames */ 1682 struct ieee80211_rts { 1683 __le16 frame_control; 1684 __le16 duration; 1685 u8 ra[ETH_ALEN]; 1686 u8 ta[ETH_ALEN]; 1687 } __packed __aligned(2); 1688 1689 struct ieee80211_cts { 1690 __le16 frame_control; 1691 __le16 duration; 1692 u8 ra[ETH_ALEN]; 1693 } __packed __aligned(2); 1694 1695 struct ieee80211_pspoll { 1696 __le16 frame_control; 1697 __le16 aid; 1698 u8 bssid[ETH_ALEN]; 1699 u8 ta[ETH_ALEN]; 1700 } __packed __aligned(2); 1701 1702 /* TDLS */ 1703 1704 /* Channel switch timing */ 1705 struct ieee80211_ch_switch_timing { 1706 __le16 switch_time; 1707 __le16 switch_timeout; 1708 } __packed; 1709 1710 /* Link-id information element */ 1711 struct ieee80211_tdls_lnkie { 1712 u8 ie_type; /* Link Identifier IE */ 1713 u8 ie_len; 1714 u8 bssid[ETH_ALEN]; 1715 u8 init_sta[ETH_ALEN]; 1716 u8 resp_sta[ETH_ALEN]; 1717 } __packed; 1718 1719 struct ieee80211_tdls_data { 1720 u8 da[ETH_ALEN]; 1721 u8 sa[ETH_ALEN]; 1722 __be16 ether_type; 1723 u8 payload_type; 1724 u8 category; 1725 u8 action_code; 1726 union { 1727 struct { 1728 u8 dialog_token; 1729 __le16 capability; 1730 u8 variable[]; 1731 } __packed setup_req; 1732 struct { 1733 __le16 status_code; 1734 u8 dialog_token; 1735 __le16 capability; 1736 u8 variable[]; 1737 } __packed setup_resp; 1738 struct { 1739 __le16 status_code; 1740 u8 dialog_token; 1741 u8 variable[]; 1742 } __packed setup_cfm; 1743 struct { 1744 __le16 reason_code; 1745 u8 variable[]; 1746 } __packed teardown; 1747 struct { 1748 u8 dialog_token; 1749 u8 variable[]; 1750 } __packed discover_req; 1751 struct { 1752 u8 target_channel; 1753 u8 oper_class; 1754 u8 variable[]; 1755 } __packed chan_switch_req; 1756 struct { 1757 __le16 status_code; 1758 u8 variable[]; 1759 } __packed chan_switch_resp; 1760 } u; 1761 } __packed; 1762 1763 /* 1764 * Peer-to-Peer IE attribute related definitions. 1765 */ 1766 /* 1767 * enum ieee80211_p2p_attr_id - identifies type of peer-to-peer attribute. 1768 */ 1769 enum ieee80211_p2p_attr_id { 1770 IEEE80211_P2P_ATTR_STATUS = 0, 1771 IEEE80211_P2P_ATTR_MINOR_REASON, 1772 IEEE80211_P2P_ATTR_CAPABILITY, 1773 IEEE80211_P2P_ATTR_DEVICE_ID, 1774 IEEE80211_P2P_ATTR_GO_INTENT, 1775 IEEE80211_P2P_ATTR_GO_CONFIG_TIMEOUT, 1776 IEEE80211_P2P_ATTR_LISTEN_CHANNEL, 1777 IEEE80211_P2P_ATTR_GROUP_BSSID, 1778 IEEE80211_P2P_ATTR_EXT_LISTEN_TIMING, 1779 IEEE80211_P2P_ATTR_INTENDED_IFACE_ADDR, 1780 IEEE80211_P2P_ATTR_MANAGABILITY, 1781 IEEE80211_P2P_ATTR_CHANNEL_LIST, 1782 IEEE80211_P2P_ATTR_ABSENCE_NOTICE, 1783 IEEE80211_P2P_ATTR_DEVICE_INFO, 1784 IEEE80211_P2P_ATTR_GROUP_INFO, 1785 IEEE80211_P2P_ATTR_GROUP_ID, 1786 IEEE80211_P2P_ATTR_INTERFACE, 1787 IEEE80211_P2P_ATTR_OPER_CHANNEL, 1788 IEEE80211_P2P_ATTR_INVITE_FLAGS, 1789 /* 19 - 220: Reserved */ 1790 IEEE80211_P2P_ATTR_VENDOR_SPECIFIC = 221, 1791 1792 IEEE80211_P2P_ATTR_MAX 1793 }; 1794 1795 /* Notice of Absence attribute - described in P2P spec 4.1.14 */ 1796 /* Typical max value used here */ 1797 #define IEEE80211_P2P_NOA_DESC_MAX 4 1798 1799 struct ieee80211_p2p_noa_desc { 1800 u8 count; 1801 __le32 duration; 1802 __le32 interval; 1803 __le32 start_time; 1804 } __packed; 1805 1806 struct ieee80211_p2p_noa_attr { 1807 u8 index; 1808 u8 oppps_ctwindow; 1809 struct ieee80211_p2p_noa_desc desc[IEEE80211_P2P_NOA_DESC_MAX]; 1810 } __packed; 1811 1812 #define IEEE80211_P2P_OPPPS_ENABLE_BIT BIT(7) 1813 #define IEEE80211_P2P_OPPPS_CTWINDOW_MASK 0x7F 1814 1815 /** 1816 * struct ieee80211_bar - Block Ack Request frame format 1817 * @frame_control: Frame Control 1818 * @duration: Duration 1819 * @ra: RA 1820 * @ta: TA 1821 * @control: BAR Control 1822 * @start_seq_num: Starting Sequence Number (see Figure 9-37) 1823 * 1824 * This structure represents the "BlockAckReq frame format" 1825 * as described in IEEE Std 802.11-2020 section 9.3.1.7. 1826 */ 1827 struct ieee80211_bar { 1828 __le16 frame_control; 1829 __le16 duration; 1830 __u8 ra[ETH_ALEN]; 1831 __u8 ta[ETH_ALEN]; 1832 __le16 control; 1833 __le16 start_seq_num; 1834 } __packed; 1835 1836 /* 802.11 BAR control masks */ 1837 #define IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL 0x0000 1838 #define IEEE80211_BAR_CTRL_MULTI_TID 0x0002 1839 #define IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA 0x0004 1840 #define IEEE80211_BAR_CTRL_TID_INFO_MASK 0xf000 1841 #define IEEE80211_BAR_CTRL_TID_INFO_SHIFT 12 1842 1843 #define IEEE80211_HT_MCS_MASK_LEN 10 1844 1845 /** 1846 * struct ieee80211_mcs_info - Supported MCS Set field 1847 * @rx_mask: RX mask 1848 * @rx_highest: highest supported RX rate. If set represents 1849 * the highest supported RX data rate in units of 1 Mbps. 1850 * If this field is 0 this value should not be used to 1851 * consider the highest RX data rate supported. 1852 * @tx_params: TX parameters 1853 * @reserved: Reserved bits 1854 * 1855 * This structure represents the "Supported MCS Set field" as 1856 * described in IEEE Std 802.11-2020 section 9.4.2.55.4. 1857 */ 1858 struct ieee80211_mcs_info { 1859 u8 rx_mask[IEEE80211_HT_MCS_MASK_LEN]; 1860 __le16 rx_highest; 1861 u8 tx_params; 1862 u8 reserved[3]; 1863 } __packed; 1864 1865 /* 802.11n HT capability MSC set */ 1866 #define IEEE80211_HT_MCS_RX_HIGHEST_MASK 0x3ff 1867 #define IEEE80211_HT_MCS_TX_DEFINED 0x01 1868 #define IEEE80211_HT_MCS_TX_RX_DIFF 0x02 1869 /* value 0 == 1 stream etc */ 1870 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK 0x0C 1871 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT 2 1872 #define IEEE80211_HT_MCS_TX_MAX_STREAMS 4 1873 #define IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION 0x10 1874 1875 #define IEEE80211_HT_MCS_CHAINS(mcs) ((mcs) == 32 ? 1 : (1 + ((mcs) >> 3))) 1876 1877 /* 1878 * 802.11n D5.0 20.3.5 / 20.6 says: 1879 * - indices 0 to 7 and 32 are single spatial stream 1880 * - 8 to 31 are multiple spatial streams using equal modulation 1881 * [8..15 for two streams, 16..23 for three and 24..31 for four] 1882 * - remainder are multiple spatial streams using unequal modulation 1883 */ 1884 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START 33 1885 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE \ 1886 (IEEE80211_HT_MCS_UNEQUAL_MODULATION_START / 8) 1887 1888 /** 1889 * struct ieee80211_ht_cap - HT capabilities element 1890 * @cap_info: HT Capability Information 1891 * @ampdu_params_info: A-MPDU Parameters 1892 * @mcs: Supported MCS Set 1893 * @extended_ht_cap_info: HT Extended Capabilities 1894 * @tx_BF_cap_info: Transmit Beamforming Capabilities 1895 * @antenna_selection_info: ASEL Capability 1896 * 1897 * This structure represents the payload of the "HT Capabilities 1898 * element" as described in IEEE Std 802.11-2020 section 9.4.2.55. 1899 */ 1900 struct ieee80211_ht_cap { 1901 __le16 cap_info; 1902 u8 ampdu_params_info; 1903 1904 /* 16 bytes MCS information */ 1905 struct ieee80211_mcs_info mcs; 1906 1907 __le16 extended_ht_cap_info; 1908 __le32 tx_BF_cap_info; 1909 u8 antenna_selection_info; 1910 } __packed; 1911 1912 /* 802.11n HT capabilities masks (for cap_info) */ 1913 #define IEEE80211_HT_CAP_LDPC_CODING 0x0001 1914 #define IEEE80211_HT_CAP_SUP_WIDTH_20_40 0x0002 1915 #define IEEE80211_HT_CAP_SM_PS 0x000C 1916 #define IEEE80211_HT_CAP_SM_PS_SHIFT 2 1917 #define IEEE80211_HT_CAP_GRN_FLD 0x0010 1918 #define IEEE80211_HT_CAP_SGI_20 0x0020 1919 #define IEEE80211_HT_CAP_SGI_40 0x0040 1920 #define IEEE80211_HT_CAP_TX_STBC 0x0080 1921 #define IEEE80211_HT_CAP_RX_STBC 0x0300 1922 #define IEEE80211_HT_CAP_RX_STBC_SHIFT 8 1923 #define IEEE80211_HT_CAP_DELAY_BA 0x0400 1924 #define IEEE80211_HT_CAP_MAX_AMSDU 0x0800 1925 #define IEEE80211_HT_CAP_DSSSCCK40 0x1000 1926 #define IEEE80211_HT_CAP_RESERVED 0x2000 1927 #define IEEE80211_HT_CAP_40MHZ_INTOLERANT 0x4000 1928 #define IEEE80211_HT_CAP_LSIG_TXOP_PROT 0x8000 1929 1930 /* 802.11n HT extended capabilities masks (for extended_ht_cap_info) */ 1931 #define IEEE80211_HT_EXT_CAP_PCO 0x0001 1932 #define IEEE80211_HT_EXT_CAP_PCO_TIME 0x0006 1933 #define IEEE80211_HT_EXT_CAP_PCO_TIME_SHIFT 1 1934 #define IEEE80211_HT_EXT_CAP_MCS_FB 0x0300 1935 #define IEEE80211_HT_EXT_CAP_MCS_FB_SHIFT 8 1936 #define IEEE80211_HT_EXT_CAP_HTC_SUP 0x0400 1937 #define IEEE80211_HT_EXT_CAP_RD_RESPONDER 0x0800 1938 1939 /* 802.11n HT capability AMPDU settings (for ampdu_params_info) */ 1940 #define IEEE80211_HT_AMPDU_PARM_FACTOR 0x03 1941 #define IEEE80211_HT_AMPDU_PARM_DENSITY 0x1C 1942 #define IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT 2 1943 1944 /* 1945 * Maximum length of AMPDU that the STA can receive in high-throughput (HT). 1946 * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets) 1947 */ 1948 enum ieee80211_max_ampdu_length_exp { 1949 IEEE80211_HT_MAX_AMPDU_8K = 0, 1950 IEEE80211_HT_MAX_AMPDU_16K = 1, 1951 IEEE80211_HT_MAX_AMPDU_32K = 2, 1952 IEEE80211_HT_MAX_AMPDU_64K = 3 1953 }; 1954 1955 /* 1956 * Maximum length of AMPDU that the STA can receive in VHT. 1957 * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets) 1958 */ 1959 enum ieee80211_vht_max_ampdu_length_exp { 1960 IEEE80211_VHT_MAX_AMPDU_8K = 0, 1961 IEEE80211_VHT_MAX_AMPDU_16K = 1, 1962 IEEE80211_VHT_MAX_AMPDU_32K = 2, 1963 IEEE80211_VHT_MAX_AMPDU_64K = 3, 1964 IEEE80211_VHT_MAX_AMPDU_128K = 4, 1965 IEEE80211_VHT_MAX_AMPDU_256K = 5, 1966 IEEE80211_VHT_MAX_AMPDU_512K = 6, 1967 IEEE80211_VHT_MAX_AMPDU_1024K = 7 1968 }; 1969 1970 #define IEEE80211_HT_MAX_AMPDU_FACTOR 13 1971 1972 /* Minimum MPDU start spacing */ 1973 enum ieee80211_min_mpdu_spacing { 1974 IEEE80211_HT_MPDU_DENSITY_NONE = 0, /* No restriction */ 1975 IEEE80211_HT_MPDU_DENSITY_0_25 = 1, /* 1/4 usec */ 1976 IEEE80211_HT_MPDU_DENSITY_0_5 = 2, /* 1/2 usec */ 1977 IEEE80211_HT_MPDU_DENSITY_1 = 3, /* 1 usec */ 1978 IEEE80211_HT_MPDU_DENSITY_2 = 4, /* 2 usec */ 1979 IEEE80211_HT_MPDU_DENSITY_4 = 5, /* 4 usec */ 1980 IEEE80211_HT_MPDU_DENSITY_8 = 6, /* 8 usec */ 1981 IEEE80211_HT_MPDU_DENSITY_16 = 7 /* 16 usec */ 1982 }; 1983 1984 /** 1985 * struct ieee80211_ht_operation - HT operation IE 1986 * @primary_chan: Primary Channel 1987 * @ht_param: HT Operation Information parameters 1988 * @operation_mode: HT Operation Information operation mode 1989 * @stbc_param: HT Operation Information STBC params 1990 * @basic_set: Basic HT-MCS Set 1991 * 1992 * This structure represents the payload of the "HT Operation 1993 * element" as described in IEEE Std 802.11-2020 section 9.4.2.56. 1994 */ 1995 struct ieee80211_ht_operation { 1996 u8 primary_chan; 1997 u8 ht_param; 1998 __le16 operation_mode; 1999 __le16 stbc_param; 2000 u8 basic_set[16]; 2001 } __packed; 2002 2003 /* for ht_param */ 2004 #define IEEE80211_HT_PARAM_CHA_SEC_OFFSET 0x03 2005 #define IEEE80211_HT_PARAM_CHA_SEC_NONE 0x00 2006 #define IEEE80211_HT_PARAM_CHA_SEC_ABOVE 0x01 2007 #define IEEE80211_HT_PARAM_CHA_SEC_BELOW 0x03 2008 #define IEEE80211_HT_PARAM_CHAN_WIDTH_ANY 0x04 2009 #define IEEE80211_HT_PARAM_RIFS_MODE 0x08 2010 2011 /* for operation_mode */ 2012 #define IEEE80211_HT_OP_MODE_PROTECTION 0x0003 2013 #define IEEE80211_HT_OP_MODE_PROTECTION_NONE 0 2014 #define IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER 1 2015 #define IEEE80211_HT_OP_MODE_PROTECTION_20MHZ 2 2016 #define IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED 3 2017 #define IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT 0x0004 2018 #define IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT 0x0010 2019 #define IEEE80211_HT_OP_MODE_CCFS2_SHIFT 5 2020 #define IEEE80211_HT_OP_MODE_CCFS2_MASK 0x1fe0 2021 2022 /* for stbc_param */ 2023 #define IEEE80211_HT_STBC_PARAM_DUAL_BEACON 0x0040 2024 #define IEEE80211_HT_STBC_PARAM_DUAL_CTS_PROT 0x0080 2025 #define IEEE80211_HT_STBC_PARAM_STBC_BEACON 0x0100 2026 #define IEEE80211_HT_STBC_PARAM_LSIG_TXOP_FULLPROT 0x0200 2027 #define IEEE80211_HT_STBC_PARAM_PCO_ACTIVE 0x0400 2028 #define IEEE80211_HT_STBC_PARAM_PCO_PHASE 0x0800 2029 2030 2031 /* block-ack parameters */ 2032 #define IEEE80211_ADDBA_PARAM_AMSDU_MASK 0x0001 2033 #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002 2034 #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C 2035 #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFC0 2036 #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000 2037 #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800 2038 2039 /* 2040 * A-MPDU buffer sizes 2041 * According to HT size varies from 8 to 64 frames 2042 * HE adds the ability to have up to 256 frames. 2043 * EHT adds the ability to have up to 1K frames. 2044 */ 2045 #define IEEE80211_MIN_AMPDU_BUF 0x8 2046 #define IEEE80211_MAX_AMPDU_BUF_HT 0x40 2047 #define IEEE80211_MAX_AMPDU_BUF_HE 0x100 2048 #define IEEE80211_MAX_AMPDU_BUF_EHT 0x400 2049 2050 2051 /* Spatial Multiplexing Power Save Modes (for capability) */ 2052 #define WLAN_HT_CAP_SM_PS_STATIC 0 2053 #define WLAN_HT_CAP_SM_PS_DYNAMIC 1 2054 #define WLAN_HT_CAP_SM_PS_INVALID 2 2055 #define WLAN_HT_CAP_SM_PS_DISABLED 3 2056 2057 /* for SM power control field lower two bits */ 2058 #define WLAN_HT_SMPS_CONTROL_DISABLED 0 2059 #define WLAN_HT_SMPS_CONTROL_STATIC 1 2060 #define WLAN_HT_SMPS_CONTROL_DYNAMIC 3 2061 2062 /** 2063 * struct ieee80211_vht_mcs_info - VHT MCS information 2064 * @rx_mcs_map: RX MCS map 2 bits for each stream, total 8 streams 2065 * @rx_highest: Indicates highest long GI VHT PPDU data rate 2066 * STA can receive. Rate expressed in units of 1 Mbps. 2067 * If this field is 0 this value should not be used to 2068 * consider the highest RX data rate supported. 2069 * The top 3 bits of this field indicate the Maximum NSTS,total 2070 * (a beamformee capability.) 2071 * @tx_mcs_map: TX MCS map 2 bits for each stream, total 8 streams 2072 * @tx_highest: Indicates highest long GI VHT PPDU data rate 2073 * STA can transmit. Rate expressed in units of 1 Mbps. 2074 * If this field is 0 this value should not be used to 2075 * consider the highest TX data rate supported. 2076 * The top 2 bits of this field are reserved, the 2077 * 3rd bit from the top indiciates VHT Extended NSS BW 2078 * Capability. 2079 */ 2080 struct ieee80211_vht_mcs_info { 2081 __le16 rx_mcs_map; 2082 __le16 rx_highest; 2083 __le16 tx_mcs_map; 2084 __le16 tx_highest; 2085 } __packed; 2086 2087 /* for rx_highest */ 2088 #define IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT 13 2089 #define IEEE80211_VHT_MAX_NSTS_TOTAL_MASK (7 << IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT) 2090 2091 /* for tx_highest */ 2092 #define IEEE80211_VHT_EXT_NSS_BW_CAPABLE (1 << 13) 2093 2094 /** 2095 * enum ieee80211_vht_mcs_support - VHT MCS support definitions 2096 * @IEEE80211_VHT_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the 2097 * number of streams 2098 * @IEEE80211_VHT_MCS_SUPPORT_0_8: MCSes 0-8 are supported 2099 * @IEEE80211_VHT_MCS_SUPPORT_0_9: MCSes 0-9 are supported 2100 * @IEEE80211_VHT_MCS_NOT_SUPPORTED: This number of streams isn't supported 2101 * 2102 * These definitions are used in each 2-bit subfield of the @rx_mcs_map 2103 * and @tx_mcs_map fields of &struct ieee80211_vht_mcs_info, which are 2104 * both split into 8 subfields by number of streams. These values indicate 2105 * which MCSes are supported for the number of streams the value appears 2106 * for. 2107 */ 2108 enum ieee80211_vht_mcs_support { 2109 IEEE80211_VHT_MCS_SUPPORT_0_7 = 0, 2110 IEEE80211_VHT_MCS_SUPPORT_0_8 = 1, 2111 IEEE80211_VHT_MCS_SUPPORT_0_9 = 2, 2112 IEEE80211_VHT_MCS_NOT_SUPPORTED = 3, 2113 }; 2114 2115 /** 2116 * struct ieee80211_vht_cap - VHT capabilities 2117 * 2118 * This structure is the "VHT capabilities element" as 2119 * described in 802.11ac D3.0 8.4.2.160 2120 * @vht_cap_info: VHT capability info 2121 * @supp_mcs: VHT MCS supported rates 2122 */ 2123 struct ieee80211_vht_cap { 2124 __le32 vht_cap_info; 2125 struct ieee80211_vht_mcs_info supp_mcs; 2126 } __packed; 2127 2128 /** 2129 * enum ieee80211_vht_chanwidth - VHT channel width 2130 * @IEEE80211_VHT_CHANWIDTH_USE_HT: use the HT operation IE to 2131 * determine the channel width (20 or 40 MHz) 2132 * @IEEE80211_VHT_CHANWIDTH_80MHZ: 80 MHz bandwidth 2133 * @IEEE80211_VHT_CHANWIDTH_160MHZ: 160 MHz bandwidth 2134 * @IEEE80211_VHT_CHANWIDTH_80P80MHZ: 80+80 MHz bandwidth 2135 */ 2136 enum ieee80211_vht_chanwidth { 2137 IEEE80211_VHT_CHANWIDTH_USE_HT = 0, 2138 IEEE80211_VHT_CHANWIDTH_80MHZ = 1, 2139 IEEE80211_VHT_CHANWIDTH_160MHZ = 2, 2140 IEEE80211_VHT_CHANWIDTH_80P80MHZ = 3, 2141 }; 2142 2143 /** 2144 * struct ieee80211_vht_operation - VHT operation IE 2145 * 2146 * This structure is the "VHT operation element" as 2147 * described in 802.11ac D3.0 8.4.2.161 2148 * @chan_width: Operating channel width 2149 * @center_freq_seg0_idx: center freq segment 0 index 2150 * @center_freq_seg1_idx: center freq segment 1 index 2151 * @basic_mcs_set: VHT Basic MCS rate set 2152 */ 2153 struct ieee80211_vht_operation { 2154 u8 chan_width; 2155 u8 center_freq_seg0_idx; 2156 u8 center_freq_seg1_idx; 2157 __le16 basic_mcs_set; 2158 } __packed; 2159 2160 /** 2161 * struct ieee80211_he_cap_elem - HE capabilities element 2162 * @mac_cap_info: HE MAC Capabilities Information 2163 * @phy_cap_info: HE PHY Capabilities Information 2164 * 2165 * This structure represents the fixed fields of the payload of the 2166 * "HE capabilities element" as described in IEEE Std 802.11ax-2021 2167 * sections 9.4.2.248.2 and 9.4.2.248.3. 2168 */ 2169 struct ieee80211_he_cap_elem { 2170 u8 mac_cap_info[6]; 2171 u8 phy_cap_info[11]; 2172 } __packed; 2173 2174 #define IEEE80211_TX_RX_MCS_NSS_DESC_MAX_LEN 5 2175 2176 /** 2177 * enum ieee80211_he_mcs_support - HE MCS support definitions 2178 * @IEEE80211_HE_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the 2179 * number of streams 2180 * @IEEE80211_HE_MCS_SUPPORT_0_9: MCSes 0-9 are supported 2181 * @IEEE80211_HE_MCS_SUPPORT_0_11: MCSes 0-11 are supported 2182 * @IEEE80211_HE_MCS_NOT_SUPPORTED: This number of streams isn't supported 2183 * 2184 * These definitions are used in each 2-bit subfield of the rx_mcs_* 2185 * and tx_mcs_* fields of &struct ieee80211_he_mcs_nss_supp, which are 2186 * both split into 8 subfields by number of streams. These values indicate 2187 * which MCSes are supported for the number of streams the value appears 2188 * for. 2189 */ 2190 enum ieee80211_he_mcs_support { 2191 IEEE80211_HE_MCS_SUPPORT_0_7 = 0, 2192 IEEE80211_HE_MCS_SUPPORT_0_9 = 1, 2193 IEEE80211_HE_MCS_SUPPORT_0_11 = 2, 2194 IEEE80211_HE_MCS_NOT_SUPPORTED = 3, 2195 }; 2196 2197 /** 2198 * struct ieee80211_he_mcs_nss_supp - HE Tx/Rx HE MCS NSS Support Field 2199 * 2200 * This structure holds the data required for the Tx/Rx HE MCS NSS Support Field 2201 * described in P802.11ax_D2.0 section 9.4.2.237.4 2202 * 2203 * @rx_mcs_80: Rx MCS map 2 bits for each stream, total 8 streams, for channel 2204 * widths less than 80MHz. 2205 * @tx_mcs_80: Tx MCS map 2 bits for each stream, total 8 streams, for channel 2206 * widths less than 80MHz. 2207 * @rx_mcs_160: Rx MCS map 2 bits for each stream, total 8 streams, for channel 2208 * width 160MHz. 2209 * @tx_mcs_160: Tx MCS map 2 bits for each stream, total 8 streams, for channel 2210 * width 160MHz. 2211 * @rx_mcs_80p80: Rx MCS map 2 bits for each stream, total 8 streams, for 2212 * channel width 80p80MHz. 2213 * @tx_mcs_80p80: Tx MCS map 2 bits for each stream, total 8 streams, for 2214 * channel width 80p80MHz. 2215 */ 2216 struct ieee80211_he_mcs_nss_supp { 2217 __le16 rx_mcs_80; 2218 __le16 tx_mcs_80; 2219 __le16 rx_mcs_160; 2220 __le16 tx_mcs_160; 2221 __le16 rx_mcs_80p80; 2222 __le16 tx_mcs_80p80; 2223 } __packed; 2224 2225 /** 2226 * struct ieee80211_he_operation - HE Operation element 2227 * @he_oper_params: HE Operation Parameters + BSS Color Information 2228 * @he_mcs_nss_set: Basic HE-MCS And NSS Set 2229 * @optional: Optional fields VHT Operation Information, Max Co-Hosted 2230 * BSSID Indicator, and 6 GHz Operation Information 2231 * 2232 * This structure represents the payload of the "HE Operation 2233 * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.249. 2234 */ 2235 struct ieee80211_he_operation { 2236 __le32 he_oper_params; 2237 __le16 he_mcs_nss_set; 2238 u8 optional[]; 2239 } __packed; 2240 2241 /** 2242 * struct ieee80211_he_spr - Spatial Reuse Parameter Set element 2243 * @he_sr_control: SR Control 2244 * @optional: Optional fields Non-SRG OBSS PD Max Offset, SRG OBSS PD 2245 * Min Offset, SRG OBSS PD Max Offset, SRG BSS Color 2246 * Bitmap, and SRG Partial BSSID Bitmap 2247 * 2248 * This structure represents the payload of the "Spatial Reuse 2249 * Parameter Set element" as described in IEEE Std 802.11ax-2021 2250 * section 9.4.2.252. 2251 */ 2252 struct ieee80211_he_spr { 2253 u8 he_sr_control; 2254 u8 optional[]; 2255 } __packed; 2256 2257 /** 2258 * struct ieee80211_he_mu_edca_param_ac_rec - MU AC Parameter Record field 2259 * @aifsn: ACI/AIFSN 2260 * @ecw_min_max: ECWmin/ECWmax 2261 * @mu_edca_timer: MU EDCA Timer 2262 * 2263 * This structure represents the "MU AC Parameter Record" as described 2264 * in IEEE Std 802.11ax-2021 section 9.4.2.251, Figure 9-788p. 2265 */ 2266 struct ieee80211_he_mu_edca_param_ac_rec { 2267 u8 aifsn; 2268 u8 ecw_min_max; 2269 u8 mu_edca_timer; 2270 } __packed; 2271 2272 /** 2273 * struct ieee80211_mu_edca_param_set - MU EDCA Parameter Set element 2274 * @mu_qos_info: QoS Info 2275 * @ac_be: MU AC_BE Parameter Record 2276 * @ac_bk: MU AC_BK Parameter Record 2277 * @ac_vi: MU AC_VI Parameter Record 2278 * @ac_vo: MU AC_VO Parameter Record 2279 * 2280 * This structure represents the payload of the "MU EDCA Parameter Set 2281 * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.251. 2282 */ 2283 struct ieee80211_mu_edca_param_set { 2284 u8 mu_qos_info; 2285 struct ieee80211_he_mu_edca_param_ac_rec ac_be; 2286 struct ieee80211_he_mu_edca_param_ac_rec ac_bk; 2287 struct ieee80211_he_mu_edca_param_ac_rec ac_vi; 2288 struct ieee80211_he_mu_edca_param_ac_rec ac_vo; 2289 } __packed; 2290 2291 #define IEEE80211_EHT_MCS_NSS_RX 0x0f 2292 #define IEEE80211_EHT_MCS_NSS_TX 0xf0 2293 2294 /** 2295 * struct ieee80211_eht_mcs_nss_supp_20mhz_only - EHT 20MHz only station max 2296 * supported NSS for per MCS. 2297 * 2298 * For each field below, bits 0 - 3 indicate the maximal number of spatial 2299 * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams 2300 * for Tx. 2301 * 2302 * @rx_tx_mcs7_max_nss: indicates the maximum number of spatial streams 2303 * supported for reception and the maximum number of spatial streams 2304 * supported for transmission for MCS 0 - 7. 2305 * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams 2306 * supported for reception and the maximum number of spatial streams 2307 * supported for transmission for MCS 8 - 9. 2308 * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams 2309 * supported for reception and the maximum number of spatial streams 2310 * supported for transmission for MCS 10 - 11. 2311 * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams 2312 * supported for reception and the maximum number of spatial streams 2313 * supported for transmission for MCS 12 - 13. 2314 * @rx_tx_max_nss: array of the previous fields for easier loop access 2315 */ 2316 struct ieee80211_eht_mcs_nss_supp_20mhz_only { 2317 union { 2318 struct { 2319 u8 rx_tx_mcs7_max_nss; 2320 u8 rx_tx_mcs9_max_nss; 2321 u8 rx_tx_mcs11_max_nss; 2322 u8 rx_tx_mcs13_max_nss; 2323 }; 2324 u8 rx_tx_max_nss[4]; 2325 }; 2326 }; 2327 2328 /** 2329 * struct ieee80211_eht_mcs_nss_supp_bw - EHT max supported NSS per MCS (except 2330 * 20MHz only stations). 2331 * 2332 * For each field below, bits 0 - 3 indicate the maximal number of spatial 2333 * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams 2334 * for Tx. 2335 * 2336 * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams 2337 * supported for reception and the maximum number of spatial streams 2338 * supported for transmission for MCS 0 - 9. 2339 * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams 2340 * supported for reception and the maximum number of spatial streams 2341 * supported for transmission for MCS 10 - 11. 2342 * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams 2343 * supported for reception and the maximum number of spatial streams 2344 * supported for transmission for MCS 12 - 13. 2345 * @rx_tx_max_nss: array of the previous fields for easier loop access 2346 */ 2347 struct ieee80211_eht_mcs_nss_supp_bw { 2348 union { 2349 struct { 2350 u8 rx_tx_mcs9_max_nss; 2351 u8 rx_tx_mcs11_max_nss; 2352 u8 rx_tx_mcs13_max_nss; 2353 }; 2354 u8 rx_tx_max_nss[3]; 2355 }; 2356 }; 2357 2358 /** 2359 * struct ieee80211_eht_cap_elem_fixed - EHT capabilities fixed data 2360 * 2361 * This structure is the "EHT Capabilities element" fixed fields as 2362 * described in P802.11be_D2.0 section 9.4.2.313. 2363 * 2364 * @mac_cap_info: MAC capabilities, see IEEE80211_EHT_MAC_CAP* 2365 * @phy_cap_info: PHY capabilities, see IEEE80211_EHT_PHY_CAP* 2366 */ 2367 struct ieee80211_eht_cap_elem_fixed { 2368 u8 mac_cap_info[2]; 2369 u8 phy_cap_info[9]; 2370 } __packed; 2371 2372 /** 2373 * struct ieee80211_eht_cap_elem - EHT capabilities element 2374 * @fixed: fixed parts, see &ieee80211_eht_cap_elem_fixed 2375 * @optional: optional parts 2376 */ 2377 struct ieee80211_eht_cap_elem { 2378 struct ieee80211_eht_cap_elem_fixed fixed; 2379 2380 /* 2381 * Followed by: 2382 * Supported EHT-MCS And NSS Set field: 4, 3, 6 or 9 octets. 2383 * EHT PPE Thresholds field: variable length. 2384 */ 2385 u8 optional[]; 2386 } __packed; 2387 2388 #define IEEE80211_EHT_OPER_INFO_PRESENT 0x01 2389 #define IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT 0x02 2390 #define IEEE80211_EHT_OPER_EHT_DEF_PE_DURATION 0x04 2391 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_LIMIT 0x08 2392 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_EXP_MASK 0x30 2393 #define IEEE80211_EHT_OPER_MCS15_DISABLE 0x40 2394 2395 /** 2396 * struct ieee80211_eht_operation - eht operation element 2397 * 2398 * This structure is the "EHT Operation Element" fields as 2399 * described in P802.11be_D2.0 section 9.4.2.311 2400 * 2401 * @params: EHT operation element parameters. See &IEEE80211_EHT_OPER_* 2402 * @basic_mcs_nss: indicates the EHT-MCSs for each number of spatial streams in 2403 * EHT PPDUs that are supported by all EHT STAs in the BSS in transmit and 2404 * receive. 2405 * @optional: optional parts 2406 */ 2407 struct ieee80211_eht_operation { 2408 u8 params; 2409 struct ieee80211_eht_mcs_nss_supp_20mhz_only basic_mcs_nss; 2410 u8 optional[]; 2411 } __packed; 2412 2413 /** 2414 * struct ieee80211_eht_operation_info - eht operation information 2415 * 2416 * @control: EHT operation information control. 2417 * @ccfs0: defines a channel center frequency for a 20, 40, 80, 160, or 320 MHz 2418 * EHT BSS. 2419 * @ccfs1: defines a channel center frequency for a 160 or 320 MHz EHT BSS. 2420 * @optional: optional parts 2421 */ 2422 struct ieee80211_eht_operation_info { 2423 u8 control; 2424 u8 ccfs0; 2425 u8 ccfs1; 2426 u8 optional[]; 2427 } __packed; 2428 2429 /* 802.11ac VHT Capabilities */ 2430 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895 0x00000000 2431 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991 0x00000001 2432 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 0x00000002 2433 #define IEEE80211_VHT_CAP_MAX_MPDU_MASK 0x00000003 2434 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ 0x00000004 2435 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ 0x00000008 2436 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK 0x0000000C 2437 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_SHIFT 2 2438 #define IEEE80211_VHT_CAP_RXLDPC 0x00000010 2439 #define IEEE80211_VHT_CAP_SHORT_GI_80 0x00000020 2440 #define IEEE80211_VHT_CAP_SHORT_GI_160 0x00000040 2441 #define IEEE80211_VHT_CAP_TXSTBC 0x00000080 2442 #define IEEE80211_VHT_CAP_RXSTBC_1 0x00000100 2443 #define IEEE80211_VHT_CAP_RXSTBC_2 0x00000200 2444 #define IEEE80211_VHT_CAP_RXSTBC_3 0x00000300 2445 #define IEEE80211_VHT_CAP_RXSTBC_4 0x00000400 2446 #define IEEE80211_VHT_CAP_RXSTBC_MASK 0x00000700 2447 #define IEEE80211_VHT_CAP_RXSTBC_SHIFT 8 2448 #define IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE 0x00000800 2449 #define IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE 0x00001000 2450 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT 13 2451 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK \ 2452 (7 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT) 2453 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT 16 2454 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK \ 2455 (7 << IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT) 2456 #define IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE 0x00080000 2457 #define IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE 0x00100000 2458 #define IEEE80211_VHT_CAP_VHT_TXOP_PS 0x00200000 2459 #define IEEE80211_VHT_CAP_HTC_VHT 0x00400000 2460 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT 23 2461 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK \ 2462 (7 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT) 2463 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_UNSOL_MFB 0x08000000 2464 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB 0x0c000000 2465 #define IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN 0x10000000 2466 #define IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN 0x20000000 2467 #define IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT 30 2468 #define IEEE80211_VHT_CAP_EXT_NSS_BW_MASK 0xc0000000 2469 2470 /** 2471 * ieee80211_get_vht_max_nss - return max NSS for a given bandwidth/MCS 2472 * @cap: VHT capabilities of the peer 2473 * @bw: bandwidth to use 2474 * @mcs: MCS index to use 2475 * @ext_nss_bw_capable: indicates whether or not the local transmitter 2476 * (rate scaling algorithm) can deal with the new logic 2477 * (dot11VHTExtendedNSSBWCapable) 2478 * @max_vht_nss: current maximum NSS as advertised by the STA in 2479 * operating mode notification, can be 0 in which case the 2480 * capability data will be used to derive this (from MCS support) 2481 * Return: The maximum NSS that can be used for the given bandwidth/MCS 2482 * combination 2483 * 2484 * Due to the VHT Extended NSS Bandwidth Support, the maximum NSS can 2485 * vary for a given BW/MCS. This function parses the data. 2486 * 2487 * Note: This function is exported by cfg80211. 2488 */ 2489 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2490 enum ieee80211_vht_chanwidth bw, 2491 int mcs, bool ext_nss_bw_capable, 2492 unsigned int max_vht_nss); 2493 2494 /* 802.11ax HE MAC capabilities */ 2495 #define IEEE80211_HE_MAC_CAP0_HTC_HE 0x01 2496 #define IEEE80211_HE_MAC_CAP0_TWT_REQ 0x02 2497 #define IEEE80211_HE_MAC_CAP0_TWT_RES 0x04 2498 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_NOT_SUPP 0x00 2499 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_1 0x08 2500 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_2 0x10 2501 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_3 0x18 2502 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_MASK 0x18 2503 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_1 0x00 2504 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_2 0x20 2505 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_4 0x40 2506 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_8 0x60 2507 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_16 0x80 2508 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_32 0xa0 2509 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_64 0xc0 2510 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_UNLIMITED 0xe0 2511 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_MASK 0xe0 2512 2513 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_UNLIMITED 0x00 2514 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_128 0x01 2515 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_256 0x02 2516 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_512 0x03 2517 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_MASK 0x03 2518 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_0US 0x00 2519 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_8US 0x04 2520 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US 0x08 2521 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK 0x0c 2522 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_1 0x00 2523 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_2 0x10 2524 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_3 0x20 2525 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_4 0x30 2526 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_5 0x40 2527 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_6 0x50 2528 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_7 0x60 2529 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8 0x70 2530 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_MASK 0x70 2531 2532 /* Link adaptation is split between byte HE_MAC_CAP1 and 2533 * HE_MAC_CAP2. It should be set only if IEEE80211_HE_MAC_CAP0_HTC_HE 2534 * in which case the following values apply: 2535 * 0 = No feedback. 2536 * 1 = reserved. 2537 * 2 = Unsolicited feedback. 2538 * 3 = both 2539 */ 2540 #define IEEE80211_HE_MAC_CAP1_LINK_ADAPTATION 0x80 2541 2542 #define IEEE80211_HE_MAC_CAP2_LINK_ADAPTATION 0x01 2543 #define IEEE80211_HE_MAC_CAP2_ALL_ACK 0x02 2544 #define IEEE80211_HE_MAC_CAP2_TRS 0x04 2545 #define IEEE80211_HE_MAC_CAP2_BSR 0x08 2546 #define IEEE80211_HE_MAC_CAP2_BCAST_TWT 0x10 2547 #define IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP 0x20 2548 #define IEEE80211_HE_MAC_CAP2_MU_CASCADING 0x40 2549 #define IEEE80211_HE_MAC_CAP2_ACK_EN 0x80 2550 2551 #define IEEE80211_HE_MAC_CAP3_OMI_CONTROL 0x02 2552 #define IEEE80211_HE_MAC_CAP3_OFDMA_RA 0x04 2553 2554 /* The maximum length of an A-MDPU is defined by the combination of the Maximum 2555 * A-MDPU Length Exponent field in the HT capabilities, VHT capabilities and the 2556 * same field in the HE capabilities. 2557 */ 2558 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_0 0x00 2559 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1 0x08 2560 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2 0x10 2561 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3 0x18 2562 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK 0x18 2563 #define IEEE80211_HE_MAC_CAP3_AMSDU_FRAG 0x20 2564 #define IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED 0x40 2565 #define IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS 0x80 2566 2567 #define IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG 0x01 2568 #define IEEE80211_HE_MAC_CAP4_QTP 0x02 2569 #define IEEE80211_HE_MAC_CAP4_BQR 0x04 2570 #define IEEE80211_HE_MAC_CAP4_PSR_RESP 0x08 2571 #define IEEE80211_HE_MAC_CAP4_NDP_FB_REP 0x10 2572 #define IEEE80211_HE_MAC_CAP4_OPS 0x20 2573 #define IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU 0x40 2574 /* Multi TID agg TX is split between byte #4 and #5 2575 * The value is a combination of B39,B40,B41 2576 */ 2577 #define IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39 0x80 2578 2579 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 0x01 2580 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 0x02 2581 #define IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECTIVE_TRANSMISSION 0x04 2582 #define IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU 0x08 2583 #define IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX 0x10 2584 #define IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS 0x20 2585 #define IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING 0x40 2586 #define IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX 0x80 2587 2588 #define IEEE80211_HE_VHT_MAX_AMPDU_FACTOR 20 2589 #define IEEE80211_HE_HT_MAX_AMPDU_FACTOR 16 2590 #define IEEE80211_HE_6GHZ_MAX_AMPDU_FACTOR 13 2591 2592 /* 802.11ax HE PHY capabilities */ 2593 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G 0x02 2594 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G 0x04 2595 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G 0x08 2596 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G 0x10 2597 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL 0x1e 2598 2599 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G 0x20 2600 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G 0x40 2601 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK 0xfe 2602 2603 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ 0x01 2604 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ 0x02 2605 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ 0x04 2606 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ 0x08 2607 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK 0x0f 2608 #define IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A 0x10 2609 #define IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD 0x20 2610 #define IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US 0x40 2611 /* Midamble RX/TX Max NSTS is split between byte #2 and byte #3 */ 2612 #define IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS 0x80 2613 2614 #define IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS 0x01 2615 #define IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US 0x02 2616 #define IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ 0x04 2617 #define IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ 0x08 2618 #define IEEE80211_HE_PHY_CAP2_DOPPLER_TX 0x10 2619 #define IEEE80211_HE_PHY_CAP2_DOPPLER_RX 0x20 2620 2621 /* Note that the meaning of UL MU below is different between an AP and a non-AP 2622 * sta, where in the AP case it indicates support for Rx and in the non-AP sta 2623 * case it indicates support for Tx. 2624 */ 2625 #define IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO 0x40 2626 #define IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO 0x80 2627 2628 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM 0x00 2629 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK 0x01 2630 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK 0x02 2631 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM 0x03 2632 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK 0x03 2633 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 0x00 2634 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_2 0x04 2635 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM 0x00 2636 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK 0x08 2637 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK 0x10 2638 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM 0x18 2639 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK 0x18 2640 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1 0x00 2641 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_2 0x20 2642 #define IEEE80211_HE_PHY_CAP3_RX_PARTIAL_BW_SU_IN_20MHZ_MU 0x40 2643 #define IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER 0x80 2644 2645 #define IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE 0x01 2646 #define IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER 0x02 2647 2648 /* Minimal allowed value of Max STS under 80MHz is 3 */ 2649 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4 0x0c 2650 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5 0x10 2651 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_6 0x14 2652 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_7 0x18 2653 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8 0x1c 2654 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_MASK 0x1c 2655 2656 /* Minimal allowed value of Max STS above 80MHz is 3 */ 2657 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4 0x60 2658 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5 0x80 2659 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_6 0xa0 2660 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_7 0xc0 2661 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 0xe0 2662 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_MASK 0xe0 2663 2664 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_1 0x00 2665 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 0x01 2666 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_3 0x02 2667 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_4 0x03 2668 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_5 0x04 2669 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_6 0x05 2670 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_7 0x06 2671 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_8 0x07 2672 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK 0x07 2673 2674 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_1 0x00 2675 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2 0x08 2676 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_3 0x10 2677 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_4 0x18 2678 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_5 0x20 2679 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_6 0x28 2680 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_7 0x30 2681 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_8 0x38 2682 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK 0x38 2683 2684 #define IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK 0x40 2685 #define IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK 0x80 2686 2687 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU 0x01 2688 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU 0x02 2689 #define IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB 0x04 2690 #define IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB 0x08 2691 #define IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB 0x10 2692 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE 0x20 2693 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO 0x40 2694 #define IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT 0x80 2695 2696 #define IEEE80211_HE_PHY_CAP7_PSR_BASED_SR 0x01 2697 #define IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP 0x02 2698 #define IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI 0x04 2699 #define IEEE80211_HE_PHY_CAP7_MAX_NC_1 0x08 2700 #define IEEE80211_HE_PHY_CAP7_MAX_NC_2 0x10 2701 #define IEEE80211_HE_PHY_CAP7_MAX_NC_3 0x18 2702 #define IEEE80211_HE_PHY_CAP7_MAX_NC_4 0x20 2703 #define IEEE80211_HE_PHY_CAP7_MAX_NC_5 0x28 2704 #define IEEE80211_HE_PHY_CAP7_MAX_NC_6 0x30 2705 #define IEEE80211_HE_PHY_CAP7_MAX_NC_7 0x38 2706 #define IEEE80211_HE_PHY_CAP7_MAX_NC_MASK 0x38 2707 #define IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ 0x40 2708 #define IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ 0x80 2709 2710 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI 0x01 2711 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G 0x02 2712 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU 0x04 2713 #define IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU 0x08 2714 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_1XLTF_AND_08_US_GI 0x10 2715 #define IEEE80211_HE_PHY_CAP8_MIDAMBLE_RX_TX_2X_AND_1XLTF 0x20 2716 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242 0x00 2717 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484 0x40 2718 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996 0x80 2719 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996 0xc0 2720 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK 0xc0 2721 2722 #define IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM 0x01 2723 #define IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK 0x02 2724 #define IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU 0x04 2725 #define IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU 0x08 2726 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB 0x10 2727 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB 0x20 2728 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_0US 0x0 2729 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_8US 0x1 2730 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US 0x2 2731 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED 0x3 2732 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS 6 2733 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK 0xc0 2734 2735 #define IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF 0x01 2736 2737 /* 802.11ax HE TX/RX MCS NSS Support */ 2738 #define IEEE80211_TX_RX_MCS_NSS_SUPP_HIGHEST_MCS_POS (3) 2739 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_POS (6) 2740 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_POS (11) 2741 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_MASK 0x07c0 2742 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_MASK 0xf800 2743 2744 /* TX/RX HE MCS Support field Highest MCS subfield encoding */ 2745 enum ieee80211_he_highest_mcs_supported_subfield_enc { 2746 HIGHEST_MCS_SUPPORTED_MCS7 = 0, 2747 HIGHEST_MCS_SUPPORTED_MCS8, 2748 HIGHEST_MCS_SUPPORTED_MCS9, 2749 HIGHEST_MCS_SUPPORTED_MCS10, 2750 HIGHEST_MCS_SUPPORTED_MCS11, 2751 }; 2752 2753 /* Calculate 802.11ax HE capabilities IE Tx/Rx HE MCS NSS Support Field size */ 2754 static inline u8 2755 ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap) 2756 { 2757 u8 count = 4; 2758 2759 if (he_cap->phy_cap_info[0] & 2760 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) 2761 count += 4; 2762 2763 if (he_cap->phy_cap_info[0] & 2764 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) 2765 count += 4; 2766 2767 return count; 2768 } 2769 2770 /* 802.11ax HE PPE Thresholds */ 2771 #define IEEE80211_PPE_THRES_NSS_SUPPORT_2NSS (1) 2772 #define IEEE80211_PPE_THRES_NSS_POS (0) 2773 #define IEEE80211_PPE_THRES_NSS_MASK (7) 2774 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_2x966_AND_966_RU \ 2775 (BIT(5) | BIT(6)) 2776 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK 0x78 2777 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS (3) 2778 #define IEEE80211_PPE_THRES_INFO_PPET_SIZE (3) 2779 #define IEEE80211_HE_PPE_THRES_INFO_HEADER_SIZE (7) 2780 2781 /* 2782 * Calculate 802.11ax HE capabilities IE PPE field size 2783 * Input: Header byte of ppe_thres (first byte), and HE capa IE's PHY cap u8* 2784 */ 2785 static inline u8 2786 ieee80211_he_ppe_size(u8 ppe_thres_hdr, const u8 *phy_cap_info) 2787 { 2788 u8 n; 2789 2790 if ((phy_cap_info[6] & 2791 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 2792 return 0; 2793 2794 n = hweight8(ppe_thres_hdr & 2795 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 2796 n *= (1 + ((ppe_thres_hdr & IEEE80211_PPE_THRES_NSS_MASK) >> 2797 IEEE80211_PPE_THRES_NSS_POS)); 2798 2799 /* 2800 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 2801 * total size. 2802 */ 2803 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 2804 n = DIV_ROUND_UP(n, 8); 2805 2806 return n; 2807 } 2808 2809 static inline bool ieee80211_he_capa_size_ok(const u8 *data, u8 len) 2810 { 2811 const struct ieee80211_he_cap_elem *he_cap_ie_elem = (const void *)data; 2812 u8 needed = sizeof(*he_cap_ie_elem); 2813 2814 if (len < needed) 2815 return false; 2816 2817 needed += ieee80211_he_mcs_nss_size(he_cap_ie_elem); 2818 if (len < needed) 2819 return false; 2820 2821 if (he_cap_ie_elem->phy_cap_info[6] & 2822 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) { 2823 if (len < needed + 1) 2824 return false; 2825 needed += ieee80211_he_ppe_size(data[needed], 2826 he_cap_ie_elem->phy_cap_info); 2827 } 2828 2829 return len >= needed; 2830 } 2831 2832 /* HE Operation defines */ 2833 #define IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK 0x00000007 2834 #define IEEE80211_HE_OPERATION_TWT_REQUIRED 0x00000008 2835 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK 0x00003ff0 2836 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_OFFSET 4 2837 #define IEEE80211_HE_OPERATION_VHT_OPER_INFO 0x00004000 2838 #define IEEE80211_HE_OPERATION_CO_HOSTED_BSS 0x00008000 2839 #define IEEE80211_HE_OPERATION_ER_SU_DISABLE 0x00010000 2840 #define IEEE80211_HE_OPERATION_6GHZ_OP_INFO 0x00020000 2841 #define IEEE80211_HE_OPERATION_BSS_COLOR_MASK 0x3f000000 2842 #define IEEE80211_HE_OPERATION_BSS_COLOR_OFFSET 24 2843 #define IEEE80211_HE_OPERATION_PARTIAL_BSS_COLOR 0x40000000 2844 #define IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED 0x80000000 2845 2846 #define IEEE80211_6GHZ_CTRL_REG_LPI_AP 0 2847 #define IEEE80211_6GHZ_CTRL_REG_SP_AP 1 2848 #define IEEE80211_6GHZ_CTRL_REG_VLP_AP 2 2849 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP 3 2850 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP_OLD 4 2851 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP 8 2852 2853 /** 2854 * struct ieee80211_he_6ghz_oper - HE 6 GHz operation Information field 2855 * @primary: primary channel 2856 * @control: control flags 2857 * @ccfs0: channel center frequency segment 0 2858 * @ccfs1: channel center frequency segment 1 2859 * @minrate: minimum rate (in 1 Mbps units) 2860 */ 2861 struct ieee80211_he_6ghz_oper { 2862 u8 primary; 2863 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH 0x3 2864 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ 0 2865 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ 1 2866 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ 2 2867 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ 3 2868 #define IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON 0x4 2869 #define IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO 0x78 2870 u8 control; 2871 u8 ccfs0; 2872 u8 ccfs1; 2873 u8 minrate; 2874 } __packed; 2875 2876 /** 2877 * enum ieee80211_reg_conn_bits - represents Regulatory connectivity field bits. 2878 * 2879 * This enumeration defines bit flags used to represent regulatory connectivity 2880 * field bits. 2881 * 2882 * @IEEE80211_REG_CONN_LPI_VALID: Indicates whether the LPI bit is valid. 2883 * @IEEE80211_REG_CONN_LPI_VALUE: Represents the value of the LPI bit. 2884 * @IEEE80211_REG_CONN_SP_VALID: Indicates whether the SP bit is valid. 2885 * @IEEE80211_REG_CONN_SP_VALUE: Represents the value of the SP bit. 2886 */ 2887 enum ieee80211_reg_conn_bits { 2888 IEEE80211_REG_CONN_LPI_VALID = BIT(0), 2889 IEEE80211_REG_CONN_LPI_VALUE = BIT(1), 2890 IEEE80211_REG_CONN_SP_VALID = BIT(2), 2891 IEEE80211_REG_CONN_SP_VALUE = BIT(3), 2892 }; 2893 2894 /* transmit power interpretation type of transmit power envelope element */ 2895 enum ieee80211_tx_power_intrpt_type { 2896 IEEE80211_TPE_LOCAL_EIRP, 2897 IEEE80211_TPE_LOCAL_EIRP_PSD, 2898 IEEE80211_TPE_REG_CLIENT_EIRP, 2899 IEEE80211_TPE_REG_CLIENT_EIRP_PSD, 2900 }; 2901 2902 /* category type of transmit power envelope element */ 2903 enum ieee80211_tx_power_category_6ghz { 2904 IEEE80211_TPE_CAT_6GHZ_DEFAULT = 0, 2905 IEEE80211_TPE_CAT_6GHZ_SUBORDINATE = 1, 2906 }; 2907 2908 /* 2909 * For IEEE80211_TPE_LOCAL_EIRP / IEEE80211_TPE_REG_CLIENT_EIRP, 2910 * setting to 63.5 dBm means no constraint. 2911 */ 2912 #define IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT 127 2913 2914 /* 2915 * For IEEE80211_TPE_LOCAL_EIRP_PSD / IEEE80211_TPE_REG_CLIENT_EIRP_PSD, 2916 * setting to 127 indicates no PSD limit for the 20 MHz channel. 2917 */ 2918 #define IEEE80211_TPE_PSD_NO_LIMIT 127 2919 2920 /** 2921 * struct ieee80211_tx_pwr_env - Transmit Power Envelope 2922 * @info: Transmit Power Information field 2923 * @variable: Maximum Transmit Power field 2924 * 2925 * This structure represents the payload of the "Transmit Power 2926 * Envelope element" as described in IEEE Std 802.11ax-2021 section 2927 * 9.4.2.161 2928 */ 2929 struct ieee80211_tx_pwr_env { 2930 u8 info; 2931 u8 variable[]; 2932 } __packed; 2933 2934 #define IEEE80211_TX_PWR_ENV_INFO_COUNT 0x7 2935 #define IEEE80211_TX_PWR_ENV_INFO_INTERPRET 0x38 2936 #define IEEE80211_TX_PWR_ENV_INFO_CATEGORY 0xC0 2937 2938 #define IEEE80211_TX_PWR_ENV_EXT_COUNT 0xF 2939 2940 static inline bool ieee80211_valid_tpe_element(const u8 *data, u8 len) 2941 { 2942 const struct ieee80211_tx_pwr_env *env = (const void *)data; 2943 u8 count, interpret, category; 2944 u8 needed = sizeof(*env); 2945 u8 N; /* also called N in the spec */ 2946 2947 if (len < needed) 2948 return false; 2949 2950 count = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_COUNT); 2951 interpret = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_INTERPRET); 2952 category = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_CATEGORY); 2953 2954 switch (category) { 2955 case IEEE80211_TPE_CAT_6GHZ_DEFAULT: 2956 case IEEE80211_TPE_CAT_6GHZ_SUBORDINATE: 2957 break; 2958 default: 2959 return false; 2960 } 2961 2962 switch (interpret) { 2963 case IEEE80211_TPE_LOCAL_EIRP: 2964 case IEEE80211_TPE_REG_CLIENT_EIRP: 2965 if (count > 3) 2966 return false; 2967 2968 /* count == 0 encodes 1 value for 20 MHz, etc. */ 2969 needed += count + 1; 2970 2971 if (len < needed) 2972 return false; 2973 2974 /* there can be extension fields not accounted for in 'count' */ 2975 2976 return true; 2977 case IEEE80211_TPE_LOCAL_EIRP_PSD: 2978 case IEEE80211_TPE_REG_CLIENT_EIRP_PSD: 2979 if (count > 4) 2980 return false; 2981 2982 N = count ? 1 << (count - 1) : 1; 2983 needed += N; 2984 2985 if (len < needed) 2986 return false; 2987 2988 if (len > needed) { 2989 u8 K = u8_get_bits(env->variable[N], 2990 IEEE80211_TX_PWR_ENV_EXT_COUNT); 2991 2992 needed += 1 + K; 2993 if (len < needed) 2994 return false; 2995 } 2996 2997 return true; 2998 } 2999 3000 return false; 3001 } 3002 3003 /* 3004 * ieee80211_he_oper_size - calculate 802.11ax HE Operations IE size 3005 * @he_oper_ie: byte data of the He Operations IE, stating from the byte 3006 * after the ext ID byte. It is assumed that he_oper_ie has at least 3007 * sizeof(struct ieee80211_he_operation) bytes, the caller must have 3008 * validated this. 3009 * @return the actual size of the IE data (not including header), or 0 on error 3010 */ 3011 static inline u8 3012 ieee80211_he_oper_size(const u8 *he_oper_ie) 3013 { 3014 const struct ieee80211_he_operation *he_oper = (const void *)he_oper_ie; 3015 u8 oper_len = sizeof(struct ieee80211_he_operation); 3016 u32 he_oper_params; 3017 3018 /* Make sure the input is not NULL */ 3019 if (!he_oper_ie) 3020 return 0; 3021 3022 /* Calc required length */ 3023 he_oper_params = le32_to_cpu(he_oper->he_oper_params); 3024 if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO) 3025 oper_len += 3; 3026 if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS) 3027 oper_len++; 3028 if (he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO) 3029 oper_len += sizeof(struct ieee80211_he_6ghz_oper); 3030 3031 /* Add the first byte (extension ID) to the total length */ 3032 oper_len++; 3033 3034 return oper_len; 3035 } 3036 3037 /** 3038 * ieee80211_he_6ghz_oper - obtain 6 GHz operation field 3039 * @he_oper: HE operation element (must be pre-validated for size) 3040 * but may be %NULL 3041 * 3042 * Return: a pointer to the 6 GHz operation field, or %NULL 3043 */ 3044 static inline const struct ieee80211_he_6ghz_oper * 3045 ieee80211_he_6ghz_oper(const struct ieee80211_he_operation *he_oper) 3046 { 3047 const u8 *ret; 3048 u32 he_oper_params; 3049 3050 if (!he_oper) 3051 return NULL; 3052 3053 ret = (const void *)&he_oper->optional; 3054 3055 he_oper_params = le32_to_cpu(he_oper->he_oper_params); 3056 3057 if (!(he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO)) 3058 return NULL; 3059 if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO) 3060 ret += 3; 3061 if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS) 3062 ret++; 3063 3064 return (const void *)ret; 3065 } 3066 3067 /* HE Spatial Reuse defines */ 3068 #define IEEE80211_HE_SPR_PSR_DISALLOWED BIT(0) 3069 #define IEEE80211_HE_SPR_NON_SRG_OBSS_PD_SR_DISALLOWED BIT(1) 3070 #define IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT BIT(2) 3071 #define IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT BIT(3) 3072 #define IEEE80211_HE_SPR_HESIGA_SR_VAL15_ALLOWED BIT(4) 3073 3074 /* 3075 * ieee80211_he_spr_size - calculate 802.11ax HE Spatial Reuse IE size 3076 * @he_spr_ie: byte data of the He Spatial Reuse IE, stating from the byte 3077 * after the ext ID byte. It is assumed that he_spr_ie has at least 3078 * sizeof(struct ieee80211_he_spr) bytes, the caller must have validated 3079 * this 3080 * @return the actual size of the IE data (not including header), or 0 on error 3081 */ 3082 static inline u8 3083 ieee80211_he_spr_size(const u8 *he_spr_ie) 3084 { 3085 const struct ieee80211_he_spr *he_spr = (const void *)he_spr_ie; 3086 u8 spr_len = sizeof(struct ieee80211_he_spr); 3087 u8 he_spr_params; 3088 3089 /* Make sure the input is not NULL */ 3090 if (!he_spr_ie) 3091 return 0; 3092 3093 /* Calc required length */ 3094 he_spr_params = he_spr->he_sr_control; 3095 if (he_spr_params & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT) 3096 spr_len++; 3097 if (he_spr_params & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT) 3098 spr_len += 18; 3099 3100 /* Add the first byte (extension ID) to the total length */ 3101 spr_len++; 3102 3103 return spr_len; 3104 } 3105 3106 /* S1G Capabilities Information field */ 3107 #define IEEE80211_S1G_CAPABILITY_LEN 15 3108 3109 #define S1G_CAP0_S1G_LONG BIT(0) 3110 #define S1G_CAP0_SGI_1MHZ BIT(1) 3111 #define S1G_CAP0_SGI_2MHZ BIT(2) 3112 #define S1G_CAP0_SGI_4MHZ BIT(3) 3113 #define S1G_CAP0_SGI_8MHZ BIT(4) 3114 #define S1G_CAP0_SGI_16MHZ BIT(5) 3115 #define S1G_CAP0_SUPP_CH_WIDTH GENMASK(7, 6) 3116 3117 #define S1G_SUPP_CH_WIDTH_2 0 3118 #define S1G_SUPP_CH_WIDTH_4 1 3119 #define S1G_SUPP_CH_WIDTH_8 2 3120 #define S1G_SUPP_CH_WIDTH_16 3 3121 #define S1G_SUPP_CH_WIDTH_MAX(cap) ((1 << FIELD_GET(S1G_CAP0_SUPP_CH_WIDTH, \ 3122 cap[0])) << 1) 3123 3124 #define S1G_CAP1_RX_LDPC BIT(0) 3125 #define S1G_CAP1_TX_STBC BIT(1) 3126 #define S1G_CAP1_RX_STBC BIT(2) 3127 #define S1G_CAP1_SU_BFER BIT(3) 3128 #define S1G_CAP1_SU_BFEE BIT(4) 3129 #define S1G_CAP1_BFEE_STS GENMASK(7, 5) 3130 3131 #define S1G_CAP2_SOUNDING_DIMENSIONS GENMASK(2, 0) 3132 #define S1G_CAP2_MU_BFER BIT(3) 3133 #define S1G_CAP2_MU_BFEE BIT(4) 3134 #define S1G_CAP2_PLUS_HTC_VHT BIT(5) 3135 #define S1G_CAP2_TRAVELING_PILOT GENMASK(7, 6) 3136 3137 #define S1G_CAP3_RD_RESPONDER BIT(0) 3138 #define S1G_CAP3_HT_DELAYED_BA BIT(1) 3139 #define S1G_CAP3_MAX_MPDU_LEN BIT(2) 3140 #define S1G_CAP3_MAX_AMPDU_LEN_EXP GENMASK(4, 3) 3141 #define S1G_CAP3_MIN_MPDU_START GENMASK(7, 5) 3142 3143 #define S1G_CAP4_UPLINK_SYNC BIT(0) 3144 #define S1G_CAP4_DYNAMIC_AID BIT(1) 3145 #define S1G_CAP4_BAT BIT(2) 3146 #define S1G_CAP4_TIME_ADE BIT(3) 3147 #define S1G_CAP4_NON_TIM BIT(4) 3148 #define S1G_CAP4_GROUP_AID BIT(5) 3149 #define S1G_CAP4_STA_TYPE GENMASK(7, 6) 3150 3151 #define S1G_CAP5_CENT_AUTH_CONTROL BIT(0) 3152 #define S1G_CAP5_DIST_AUTH_CONTROL BIT(1) 3153 #define S1G_CAP5_AMSDU BIT(2) 3154 #define S1G_CAP5_AMPDU BIT(3) 3155 #define S1G_CAP5_ASYMMETRIC_BA BIT(4) 3156 #define S1G_CAP5_FLOW_CONTROL BIT(5) 3157 #define S1G_CAP5_SECTORIZED_BEAM GENMASK(7, 6) 3158 3159 #define S1G_CAP6_OBSS_MITIGATION BIT(0) 3160 #define S1G_CAP6_FRAGMENT_BA BIT(1) 3161 #define S1G_CAP6_NDP_PS_POLL BIT(2) 3162 #define S1G_CAP6_RAW_OPERATION BIT(3) 3163 #define S1G_CAP6_PAGE_SLICING BIT(4) 3164 #define S1G_CAP6_TXOP_SHARING_IMP_ACK BIT(5) 3165 #define S1G_CAP6_VHT_LINK_ADAPT GENMASK(7, 6) 3166 3167 #define S1G_CAP7_TACK_AS_PS_POLL BIT(0) 3168 #define S1G_CAP7_DUP_1MHZ BIT(1) 3169 #define S1G_CAP7_MCS_NEGOTIATION BIT(2) 3170 #define S1G_CAP7_1MHZ_CTL_RESPONSE_PREAMBLE BIT(3) 3171 #define S1G_CAP7_NDP_BFING_REPORT_POLL BIT(4) 3172 #define S1G_CAP7_UNSOLICITED_DYN_AID BIT(5) 3173 #define S1G_CAP7_SECTOR_TRAINING_OPERATION BIT(6) 3174 #define S1G_CAP7_TEMP_PS_MODE_SWITCH BIT(7) 3175 3176 #define S1G_CAP8_TWT_GROUPING BIT(0) 3177 #define S1G_CAP8_BDT BIT(1) 3178 #define S1G_CAP8_COLOR GENMASK(4, 2) 3179 #define S1G_CAP8_TWT_REQUEST BIT(5) 3180 #define S1G_CAP8_TWT_RESPOND BIT(6) 3181 #define S1G_CAP8_PV1_FRAME BIT(7) 3182 3183 #define S1G_CAP9_LINK_ADAPT_PER_CONTROL_RESPONSE BIT(0) 3184 3185 #define S1G_OPER_CH_WIDTH_PRIMARY BIT(0) 3186 #define S1G_OPER_CH_WIDTH_OPER GENMASK(4, 1) 3187 #define S1G_OPER_CH_PRIMARY_LOCATION BIT(5) 3188 3189 #define S1G_2M_PRIMARY_LOCATION_LOWER 0 3190 #define S1G_2M_PRIMARY_LOCATION_UPPER 1 3191 3192 /* EHT MAC capabilities as defined in P802.11be_D2.0 section 9.4.2.313.2 */ 3193 #define IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS 0x01 3194 #define IEEE80211_EHT_MAC_CAP0_OM_CONTROL 0x02 3195 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 0x04 3196 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 0x08 3197 #define IEEE80211_EHT_MAC_CAP0_RESTRICTED_TWT 0x10 3198 #define IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC 0x20 3199 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK 0xc0 3200 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_3895 0 3201 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_7991 1 3202 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454 2 3203 3204 #define IEEE80211_EHT_MAC_CAP1_MAX_AMPDU_LEN_MASK 0x01 3205 #define IEEE80211_EHT_MAC_CAP1_EHT_TRS 0x02 3206 #define IEEE80211_EHT_MAC_CAP1_TXOP_RET 0x04 3207 #define IEEE80211_EHT_MAC_CAP1_TWO_BQRS 0x08 3208 #define IEEE80211_EHT_MAC_CAP1_EHT_LINK_ADAPT_MASK 0x30 3209 #define IEEE80211_EHT_MAC_CAP1_UNSOL_EPCS_PRIO_ACCESS 0x40 3210 3211 /* EHT PHY capabilities as defined in P802.11be_D2.0 section 9.4.2.313.3 */ 3212 #define IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ 0x02 3213 #define IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ 0x04 3214 #define IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI 0x08 3215 #define IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO 0x10 3216 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER 0x20 3217 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE 0x40 3218 3219 /* EHT beamformee number of spatial streams <= 80MHz is split */ 3220 #define IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK 0x80 3221 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK 0x03 3222 3223 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK 0x1c 3224 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK 0xe0 3225 3226 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK 0x07 3227 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK 0x38 3228 3229 /* EHT number of sounding dimensions for 320MHz is split */ 3230 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK 0xc0 3231 #define IEEE80211_EHT_PHY_CAP3_SOUNDING_DIM_320MHZ_MASK 0x01 3232 #define IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK 0x02 3233 #define IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK 0x04 3234 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK 0x08 3235 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK 0x10 3236 #define IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK 0x20 3237 #define IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK 0x40 3238 #define IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK 0x80 3239 3240 #define IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO 0x01 3241 #define IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP 0x02 3242 #define IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP 0x04 3243 #define IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI 0x08 3244 #define IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK 0xf0 3245 3246 #define IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK 0x01 3247 #define IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP 0x02 3248 #define IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP 0x04 3249 #define IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT 0x08 3250 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK 0x30 3251 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_0US 0 3252 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_8US 1 3253 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US 2 3254 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_20US 3 3255 3256 /* Maximum number of supported EHT LTF is split */ 3257 #define IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK 0xc0 3258 #define IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF 0x40 3259 #define IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK 0x07 3260 3261 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ 0x08 3262 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ 0x30 3263 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ 0x40 3264 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK 0x78 3265 #define IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP 0x80 3266 3267 #define IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW 0x01 3268 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ 0x02 3269 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ 0x04 3270 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ 0x08 3271 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ 0x10 3272 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ 0x20 3273 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ 0x40 3274 #define IEEE80211_EHT_PHY_CAP7_TB_SOUNDING_FDBK_RATE_LIMIT 0x80 3275 3276 #define IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA 0x01 3277 #define IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA 0x02 3278 3279 /* 3280 * EHT operation channel width as defined in P802.11be_D2.0 section 9.4.2.311 3281 */ 3282 #define IEEE80211_EHT_OPER_CHAN_WIDTH 0x7 3283 #define IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ 0 3284 #define IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ 1 3285 #define IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ 2 3286 #define IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ 3 3287 #define IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ 4 3288 3289 /* Calculate 802.11be EHT capabilities IE Tx/Rx EHT MCS NSS Support Field size */ 3290 static inline u8 3291 ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap, 3292 const struct ieee80211_eht_cap_elem_fixed *eht_cap, 3293 bool from_ap) 3294 { 3295 u8 count = 0; 3296 3297 /* on 2.4 GHz, if it supports 40 MHz, the result is 3 */ 3298 if (he_cap->phy_cap_info[0] & 3299 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G) 3300 return 3; 3301 3302 /* on 2.4 GHz, these three bits are reserved, so should be 0 */ 3303 if (he_cap->phy_cap_info[0] & 3304 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G) 3305 count += 3; 3306 3307 if (he_cap->phy_cap_info[0] & 3308 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) 3309 count += 3; 3310 3311 if (eht_cap->phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) 3312 count += 3; 3313 3314 if (count) 3315 return count; 3316 3317 return from_ap ? 3 : 4; 3318 } 3319 3320 /* 802.11be EHT PPE Thresholds */ 3321 #define IEEE80211_EHT_PPE_THRES_NSS_POS 0 3322 #define IEEE80211_EHT_PPE_THRES_NSS_MASK 0xf 3323 #define IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK 0x1f0 3324 #define IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE 3 3325 #define IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE 9 3326 3327 /* 3328 * Calculate 802.11be EHT capabilities IE EHT field size 3329 */ 3330 static inline u8 3331 ieee80211_eht_ppe_size(u16 ppe_thres_hdr, const u8 *phy_cap_info) 3332 { 3333 u32 n; 3334 3335 if (!(phy_cap_info[5] & 3336 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT)) 3337 return 0; 3338 3339 n = hweight16(ppe_thres_hdr & 3340 IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK); 3341 n *= 1 + u16_get_bits(ppe_thres_hdr, IEEE80211_EHT_PPE_THRES_NSS_MASK); 3342 3343 /* 3344 * Each pair is 6 bits, and we need to add the 9 "header" bits to the 3345 * total size. 3346 */ 3347 n = n * IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE * 2 + 3348 IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE; 3349 return DIV_ROUND_UP(n, 8); 3350 } 3351 3352 static inline bool 3353 ieee80211_eht_capa_size_ok(const u8 *he_capa, const u8 *data, u8 len, 3354 bool from_ap) 3355 { 3356 const struct ieee80211_eht_cap_elem_fixed *elem = (const void *)data; 3357 u8 needed = sizeof(struct ieee80211_eht_cap_elem_fixed); 3358 3359 if (len < needed || !he_capa) 3360 return false; 3361 3362 needed += ieee80211_eht_mcs_nss_size((const void *)he_capa, 3363 (const void *)data, 3364 from_ap); 3365 if (len < needed) 3366 return false; 3367 3368 if (elem->phy_cap_info[5] & 3369 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) { 3370 u16 ppe_thres_hdr; 3371 3372 if (len < needed + sizeof(ppe_thres_hdr)) 3373 return false; 3374 3375 ppe_thres_hdr = get_unaligned_le16(data + needed); 3376 needed += ieee80211_eht_ppe_size(ppe_thres_hdr, 3377 elem->phy_cap_info); 3378 } 3379 3380 return len >= needed; 3381 } 3382 3383 static inline bool 3384 ieee80211_eht_oper_size_ok(const u8 *data, u8 len) 3385 { 3386 const struct ieee80211_eht_operation *elem = (const void *)data; 3387 u8 needed = sizeof(*elem); 3388 3389 if (len < needed) 3390 return false; 3391 3392 if (elem->params & IEEE80211_EHT_OPER_INFO_PRESENT) { 3393 needed += 3; 3394 3395 if (elem->params & 3396 IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT) 3397 needed += 2; 3398 } 3399 3400 return len >= needed; 3401 } 3402 3403 /* must validate ieee80211_eht_oper_size_ok() first */ 3404 static inline u16 3405 ieee80211_eht_oper_dis_subchan_bitmap(const struct ieee80211_eht_operation *eht_oper) 3406 { 3407 const struct ieee80211_eht_operation_info *info = 3408 (const void *)eht_oper->optional; 3409 3410 if (!(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) 3411 return 0; 3412 3413 if (!(eht_oper->params & IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT)) 3414 return 0; 3415 3416 return get_unaligned_le16(info->optional); 3417 } 3418 3419 #define IEEE80211_BW_IND_DIS_SUBCH_PRESENT BIT(1) 3420 3421 struct ieee80211_bandwidth_indication { 3422 u8 params; 3423 struct ieee80211_eht_operation_info info; 3424 } __packed; 3425 3426 static inline bool 3427 ieee80211_bandwidth_indication_size_ok(const u8 *data, u8 len) 3428 { 3429 const struct ieee80211_bandwidth_indication *bwi = (const void *)data; 3430 3431 if (len < sizeof(*bwi)) 3432 return false; 3433 3434 if (bwi->params & IEEE80211_BW_IND_DIS_SUBCH_PRESENT && 3435 len < sizeof(*bwi) + 2) 3436 return false; 3437 3438 return true; 3439 } 3440 3441 #define LISTEN_INT_USF GENMASK(15, 14) 3442 #define LISTEN_INT_UI GENMASK(13, 0) 3443 3444 #define IEEE80211_MAX_USF FIELD_MAX(LISTEN_INT_USF) 3445 #define IEEE80211_MAX_UI FIELD_MAX(LISTEN_INT_UI) 3446 3447 /* Authentication algorithms */ 3448 #define WLAN_AUTH_OPEN 0 3449 #define WLAN_AUTH_SHARED_KEY 1 3450 #define WLAN_AUTH_FT 2 3451 #define WLAN_AUTH_SAE 3 3452 #define WLAN_AUTH_FILS_SK 4 3453 #define WLAN_AUTH_FILS_SK_PFS 5 3454 #define WLAN_AUTH_FILS_PK 6 3455 #define WLAN_AUTH_LEAP 128 3456 3457 #define WLAN_AUTH_CHALLENGE_LEN 128 3458 3459 #define WLAN_CAPABILITY_ESS (1<<0) 3460 #define WLAN_CAPABILITY_IBSS (1<<1) 3461 3462 /* 3463 * A mesh STA sets the ESS and IBSS capability bits to zero. 3464 * however, this holds true for p2p probe responses (in the p2p_find 3465 * phase) as well. 3466 */ 3467 #define WLAN_CAPABILITY_IS_STA_BSS(cap) \ 3468 (!((cap) & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS))) 3469 3470 #define WLAN_CAPABILITY_CF_POLLABLE (1<<2) 3471 #define WLAN_CAPABILITY_CF_POLL_REQUEST (1<<3) 3472 #define WLAN_CAPABILITY_PRIVACY (1<<4) 3473 #define WLAN_CAPABILITY_SHORT_PREAMBLE (1<<5) 3474 #define WLAN_CAPABILITY_PBCC (1<<6) 3475 #define WLAN_CAPABILITY_CHANNEL_AGILITY (1<<7) 3476 3477 /* 802.11h */ 3478 #define WLAN_CAPABILITY_SPECTRUM_MGMT (1<<8) 3479 #define WLAN_CAPABILITY_QOS (1<<9) 3480 #define WLAN_CAPABILITY_SHORT_SLOT_TIME (1<<10) 3481 #define WLAN_CAPABILITY_APSD (1<<11) 3482 #define WLAN_CAPABILITY_RADIO_MEASURE (1<<12) 3483 #define WLAN_CAPABILITY_DSSS_OFDM (1<<13) 3484 #define WLAN_CAPABILITY_DEL_BACK (1<<14) 3485 #define WLAN_CAPABILITY_IMM_BACK (1<<15) 3486 3487 /* DMG (60gHz) 802.11ad */ 3488 /* type - bits 0..1 */ 3489 #define WLAN_CAPABILITY_DMG_TYPE_MASK (3<<0) 3490 #define WLAN_CAPABILITY_DMG_TYPE_IBSS (1<<0) /* Tx by: STA */ 3491 #define WLAN_CAPABILITY_DMG_TYPE_PBSS (2<<0) /* Tx by: PCP */ 3492 #define WLAN_CAPABILITY_DMG_TYPE_AP (3<<0) /* Tx by: AP */ 3493 3494 #define WLAN_CAPABILITY_DMG_CBAP_ONLY (1<<2) 3495 #define WLAN_CAPABILITY_DMG_CBAP_SOURCE (1<<3) 3496 #define WLAN_CAPABILITY_DMG_PRIVACY (1<<4) 3497 #define WLAN_CAPABILITY_DMG_ECPAC (1<<5) 3498 3499 #define WLAN_CAPABILITY_DMG_SPECTRUM_MGMT (1<<8) 3500 #define WLAN_CAPABILITY_DMG_RADIO_MEASURE (1<<12) 3501 3502 /* measurement */ 3503 #define IEEE80211_SPCT_MSR_RPRT_MODE_LATE (1<<0) 3504 #define IEEE80211_SPCT_MSR_RPRT_MODE_INCAPABLE (1<<1) 3505 #define IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED (1<<2) 3506 3507 #define IEEE80211_SPCT_MSR_RPRT_TYPE_BASIC 0 3508 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CCA 1 3509 #define IEEE80211_SPCT_MSR_RPRT_TYPE_RPI 2 3510 #define IEEE80211_SPCT_MSR_RPRT_TYPE_LCI 8 3511 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CIVIC 11 3512 3513 /* 802.11g ERP information element */ 3514 #define WLAN_ERP_NON_ERP_PRESENT (1<<0) 3515 #define WLAN_ERP_USE_PROTECTION (1<<1) 3516 #define WLAN_ERP_BARKER_PREAMBLE (1<<2) 3517 3518 /* WLAN_ERP_BARKER_PREAMBLE values */ 3519 enum { 3520 WLAN_ERP_PREAMBLE_SHORT = 0, 3521 WLAN_ERP_PREAMBLE_LONG = 1, 3522 }; 3523 3524 /* Band ID, 802.11ad #8.4.1.45 */ 3525 enum { 3526 IEEE80211_BANDID_TV_WS = 0, /* TV white spaces */ 3527 IEEE80211_BANDID_SUB1 = 1, /* Sub-1 GHz (excluding TV white spaces) */ 3528 IEEE80211_BANDID_2G = 2, /* 2.4 GHz */ 3529 IEEE80211_BANDID_3G = 3, /* 3.6 GHz */ 3530 IEEE80211_BANDID_5G = 4, /* 4.9 and 5 GHz */ 3531 IEEE80211_BANDID_60G = 5, /* 60 GHz */ 3532 }; 3533 3534 /* Status codes */ 3535 enum ieee80211_statuscode { 3536 WLAN_STATUS_SUCCESS = 0, 3537 WLAN_STATUS_UNSPECIFIED_FAILURE = 1, 3538 WLAN_STATUS_CAPS_UNSUPPORTED = 10, 3539 WLAN_STATUS_REASSOC_NO_ASSOC = 11, 3540 WLAN_STATUS_ASSOC_DENIED_UNSPEC = 12, 3541 WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG = 13, 3542 WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION = 14, 3543 WLAN_STATUS_CHALLENGE_FAIL = 15, 3544 WLAN_STATUS_AUTH_TIMEOUT = 16, 3545 WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA = 17, 3546 WLAN_STATUS_ASSOC_DENIED_RATES = 18, 3547 /* 802.11b */ 3548 WLAN_STATUS_ASSOC_DENIED_NOSHORTPREAMBLE = 19, 3549 WLAN_STATUS_ASSOC_DENIED_NOPBCC = 20, 3550 WLAN_STATUS_ASSOC_DENIED_NOAGILITY = 21, 3551 /* 802.11h */ 3552 WLAN_STATUS_ASSOC_DENIED_NOSPECTRUM = 22, 3553 WLAN_STATUS_ASSOC_REJECTED_BAD_POWER = 23, 3554 WLAN_STATUS_ASSOC_REJECTED_BAD_SUPP_CHAN = 24, 3555 /* 802.11g */ 3556 WLAN_STATUS_ASSOC_DENIED_NOSHORTTIME = 25, 3557 WLAN_STATUS_ASSOC_DENIED_NODSSSOFDM = 26, 3558 /* 802.11w */ 3559 WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY = 30, 3560 WLAN_STATUS_ROBUST_MGMT_FRAME_POLICY_VIOLATION = 31, 3561 /* 802.11i */ 3562 WLAN_STATUS_INVALID_IE = 40, 3563 WLAN_STATUS_INVALID_GROUP_CIPHER = 41, 3564 WLAN_STATUS_INVALID_PAIRWISE_CIPHER = 42, 3565 WLAN_STATUS_INVALID_AKMP = 43, 3566 WLAN_STATUS_UNSUPP_RSN_VERSION = 44, 3567 WLAN_STATUS_INVALID_RSN_IE_CAP = 45, 3568 WLAN_STATUS_CIPHER_SUITE_REJECTED = 46, 3569 /* 802.11e */ 3570 WLAN_STATUS_UNSPECIFIED_QOS = 32, 3571 WLAN_STATUS_ASSOC_DENIED_NOBANDWIDTH = 33, 3572 WLAN_STATUS_ASSOC_DENIED_LOWACK = 34, 3573 WLAN_STATUS_ASSOC_DENIED_UNSUPP_QOS = 35, 3574 WLAN_STATUS_REQUEST_DECLINED = 37, 3575 WLAN_STATUS_INVALID_QOS_PARAM = 38, 3576 WLAN_STATUS_CHANGE_TSPEC = 39, 3577 WLAN_STATUS_WAIT_TS_DELAY = 47, 3578 WLAN_STATUS_NO_DIRECT_LINK = 48, 3579 WLAN_STATUS_STA_NOT_PRESENT = 49, 3580 WLAN_STATUS_STA_NOT_QSTA = 50, 3581 /* 802.11s */ 3582 WLAN_STATUS_ANTI_CLOG_REQUIRED = 76, 3583 WLAN_STATUS_FCG_NOT_SUPP = 78, 3584 WLAN_STATUS_STA_NO_TBTT = 78, 3585 /* 802.11ad */ 3586 WLAN_STATUS_REJECTED_WITH_SUGGESTED_CHANGES = 39, 3587 WLAN_STATUS_REJECTED_FOR_DELAY_PERIOD = 47, 3588 WLAN_STATUS_REJECT_WITH_SCHEDULE = 83, 3589 WLAN_STATUS_PENDING_ADMITTING_FST_SESSION = 86, 3590 WLAN_STATUS_PERFORMING_FST_NOW = 87, 3591 WLAN_STATUS_PENDING_GAP_IN_BA_WINDOW = 88, 3592 WLAN_STATUS_REJECT_U_PID_SETTING = 89, 3593 WLAN_STATUS_REJECT_DSE_BAND = 96, 3594 WLAN_STATUS_DENIED_WITH_SUGGESTED_BAND_AND_CHANNEL = 99, 3595 WLAN_STATUS_DENIED_DUE_TO_SPECTRUM_MANAGEMENT = 103, 3596 /* 802.11ai */ 3597 WLAN_STATUS_FILS_AUTHENTICATION_FAILURE = 108, 3598 WLAN_STATUS_UNKNOWN_AUTHENTICATION_SERVER = 109, 3599 WLAN_STATUS_SAE_HASH_TO_ELEMENT = 126, 3600 WLAN_STATUS_SAE_PK = 127, 3601 WLAN_STATUS_DENIED_TID_TO_LINK_MAPPING = 133, 3602 WLAN_STATUS_PREF_TID_TO_LINK_MAPPING_SUGGESTED = 134, 3603 }; 3604 3605 3606 /* Reason codes */ 3607 enum ieee80211_reasoncode { 3608 WLAN_REASON_UNSPECIFIED = 1, 3609 WLAN_REASON_PREV_AUTH_NOT_VALID = 2, 3610 WLAN_REASON_DEAUTH_LEAVING = 3, 3611 WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY = 4, 3612 WLAN_REASON_DISASSOC_AP_BUSY = 5, 3613 WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA = 6, 3614 WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA = 7, 3615 WLAN_REASON_DISASSOC_STA_HAS_LEFT = 8, 3616 WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH = 9, 3617 /* 802.11h */ 3618 WLAN_REASON_DISASSOC_BAD_POWER = 10, 3619 WLAN_REASON_DISASSOC_BAD_SUPP_CHAN = 11, 3620 /* 802.11i */ 3621 WLAN_REASON_INVALID_IE = 13, 3622 WLAN_REASON_MIC_FAILURE = 14, 3623 WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT = 15, 3624 WLAN_REASON_GROUP_KEY_HANDSHAKE_TIMEOUT = 16, 3625 WLAN_REASON_IE_DIFFERENT = 17, 3626 WLAN_REASON_INVALID_GROUP_CIPHER = 18, 3627 WLAN_REASON_INVALID_PAIRWISE_CIPHER = 19, 3628 WLAN_REASON_INVALID_AKMP = 20, 3629 WLAN_REASON_UNSUPP_RSN_VERSION = 21, 3630 WLAN_REASON_INVALID_RSN_IE_CAP = 22, 3631 WLAN_REASON_IEEE8021X_FAILED = 23, 3632 WLAN_REASON_CIPHER_SUITE_REJECTED = 24, 3633 /* TDLS (802.11z) */ 3634 WLAN_REASON_TDLS_TEARDOWN_UNREACHABLE = 25, 3635 WLAN_REASON_TDLS_TEARDOWN_UNSPECIFIED = 26, 3636 /* 802.11e */ 3637 WLAN_REASON_DISASSOC_UNSPECIFIED_QOS = 32, 3638 WLAN_REASON_DISASSOC_QAP_NO_BANDWIDTH = 33, 3639 WLAN_REASON_DISASSOC_LOW_ACK = 34, 3640 WLAN_REASON_DISASSOC_QAP_EXCEED_TXOP = 35, 3641 WLAN_REASON_QSTA_LEAVE_QBSS = 36, 3642 WLAN_REASON_QSTA_NOT_USE = 37, 3643 WLAN_REASON_QSTA_REQUIRE_SETUP = 38, 3644 WLAN_REASON_QSTA_TIMEOUT = 39, 3645 WLAN_REASON_QSTA_CIPHER_NOT_SUPP = 45, 3646 /* 802.11s */ 3647 WLAN_REASON_MESH_PEER_CANCELED = 52, 3648 WLAN_REASON_MESH_MAX_PEERS = 53, 3649 WLAN_REASON_MESH_CONFIG = 54, 3650 WLAN_REASON_MESH_CLOSE = 55, 3651 WLAN_REASON_MESH_MAX_RETRIES = 56, 3652 WLAN_REASON_MESH_CONFIRM_TIMEOUT = 57, 3653 WLAN_REASON_MESH_INVALID_GTK = 58, 3654 WLAN_REASON_MESH_INCONSISTENT_PARAM = 59, 3655 WLAN_REASON_MESH_INVALID_SECURITY = 60, 3656 WLAN_REASON_MESH_PATH_ERROR = 61, 3657 WLAN_REASON_MESH_PATH_NOFORWARD = 62, 3658 WLAN_REASON_MESH_PATH_DEST_UNREACHABLE = 63, 3659 WLAN_REASON_MAC_EXISTS_IN_MBSS = 64, 3660 WLAN_REASON_MESH_CHAN_REGULATORY = 65, 3661 WLAN_REASON_MESH_CHAN = 66, 3662 }; 3663 3664 3665 /* Information Element IDs */ 3666 enum ieee80211_eid { 3667 WLAN_EID_SSID = 0, 3668 WLAN_EID_SUPP_RATES = 1, 3669 WLAN_EID_FH_PARAMS = 2, /* reserved now */ 3670 WLAN_EID_DS_PARAMS = 3, 3671 WLAN_EID_CF_PARAMS = 4, 3672 WLAN_EID_TIM = 5, 3673 WLAN_EID_IBSS_PARAMS = 6, 3674 WLAN_EID_COUNTRY = 7, 3675 /* 8, 9 reserved */ 3676 WLAN_EID_REQUEST = 10, 3677 WLAN_EID_QBSS_LOAD = 11, 3678 WLAN_EID_EDCA_PARAM_SET = 12, 3679 WLAN_EID_TSPEC = 13, 3680 WLAN_EID_TCLAS = 14, 3681 WLAN_EID_SCHEDULE = 15, 3682 WLAN_EID_CHALLENGE = 16, 3683 /* 17-31 reserved for challenge text extension */ 3684 WLAN_EID_PWR_CONSTRAINT = 32, 3685 WLAN_EID_PWR_CAPABILITY = 33, 3686 WLAN_EID_TPC_REQUEST = 34, 3687 WLAN_EID_TPC_REPORT = 35, 3688 WLAN_EID_SUPPORTED_CHANNELS = 36, 3689 WLAN_EID_CHANNEL_SWITCH = 37, 3690 WLAN_EID_MEASURE_REQUEST = 38, 3691 WLAN_EID_MEASURE_REPORT = 39, 3692 WLAN_EID_QUIET = 40, 3693 WLAN_EID_IBSS_DFS = 41, 3694 WLAN_EID_ERP_INFO = 42, 3695 WLAN_EID_TS_DELAY = 43, 3696 WLAN_EID_TCLAS_PROCESSING = 44, 3697 WLAN_EID_HT_CAPABILITY = 45, 3698 WLAN_EID_QOS_CAPA = 46, 3699 /* 47 reserved for Broadcom */ 3700 WLAN_EID_RSN = 48, 3701 WLAN_EID_802_15_COEX = 49, 3702 WLAN_EID_EXT_SUPP_RATES = 50, 3703 WLAN_EID_AP_CHAN_REPORT = 51, 3704 WLAN_EID_NEIGHBOR_REPORT = 52, 3705 WLAN_EID_RCPI = 53, 3706 WLAN_EID_MOBILITY_DOMAIN = 54, 3707 WLAN_EID_FAST_BSS_TRANSITION = 55, 3708 WLAN_EID_TIMEOUT_INTERVAL = 56, 3709 WLAN_EID_RIC_DATA = 57, 3710 WLAN_EID_DSE_REGISTERED_LOCATION = 58, 3711 WLAN_EID_SUPPORTED_REGULATORY_CLASSES = 59, 3712 WLAN_EID_EXT_CHANSWITCH_ANN = 60, 3713 WLAN_EID_HT_OPERATION = 61, 3714 WLAN_EID_SECONDARY_CHANNEL_OFFSET = 62, 3715 WLAN_EID_BSS_AVG_ACCESS_DELAY = 63, 3716 WLAN_EID_ANTENNA_INFO = 64, 3717 WLAN_EID_RSNI = 65, 3718 WLAN_EID_MEASUREMENT_PILOT_TX_INFO = 66, 3719 WLAN_EID_BSS_AVAILABLE_CAPACITY = 67, 3720 WLAN_EID_BSS_AC_ACCESS_DELAY = 68, 3721 WLAN_EID_TIME_ADVERTISEMENT = 69, 3722 WLAN_EID_RRM_ENABLED_CAPABILITIES = 70, 3723 WLAN_EID_MULTIPLE_BSSID = 71, 3724 WLAN_EID_BSS_COEX_2040 = 72, 3725 WLAN_EID_BSS_INTOLERANT_CHL_REPORT = 73, 3726 WLAN_EID_OVERLAP_BSS_SCAN_PARAM = 74, 3727 WLAN_EID_RIC_DESCRIPTOR = 75, 3728 WLAN_EID_MMIE = 76, 3729 WLAN_EID_ASSOC_COMEBACK_TIME = 77, 3730 WLAN_EID_EVENT_REQUEST = 78, 3731 WLAN_EID_EVENT_REPORT = 79, 3732 WLAN_EID_DIAGNOSTIC_REQUEST = 80, 3733 WLAN_EID_DIAGNOSTIC_REPORT = 81, 3734 WLAN_EID_LOCATION_PARAMS = 82, 3735 WLAN_EID_NON_TX_BSSID_CAP = 83, 3736 WLAN_EID_SSID_LIST = 84, 3737 WLAN_EID_MULTI_BSSID_IDX = 85, 3738 WLAN_EID_FMS_DESCRIPTOR = 86, 3739 WLAN_EID_FMS_REQUEST = 87, 3740 WLAN_EID_FMS_RESPONSE = 88, 3741 WLAN_EID_QOS_TRAFFIC_CAPA = 89, 3742 WLAN_EID_BSS_MAX_IDLE_PERIOD = 90, 3743 WLAN_EID_TSF_REQUEST = 91, 3744 WLAN_EID_TSF_RESPOSNE = 92, 3745 WLAN_EID_WNM_SLEEP_MODE = 93, 3746 WLAN_EID_TIM_BCAST_REQ = 94, 3747 WLAN_EID_TIM_BCAST_RESP = 95, 3748 WLAN_EID_COLL_IF_REPORT = 96, 3749 WLAN_EID_CHANNEL_USAGE = 97, 3750 WLAN_EID_TIME_ZONE = 98, 3751 WLAN_EID_DMS_REQUEST = 99, 3752 WLAN_EID_DMS_RESPONSE = 100, 3753 WLAN_EID_LINK_ID = 101, 3754 WLAN_EID_WAKEUP_SCHEDUL = 102, 3755 /* 103 reserved */ 3756 WLAN_EID_CHAN_SWITCH_TIMING = 104, 3757 WLAN_EID_PTI_CONTROL = 105, 3758 WLAN_EID_PU_BUFFER_STATUS = 106, 3759 WLAN_EID_INTERWORKING = 107, 3760 WLAN_EID_ADVERTISEMENT_PROTOCOL = 108, 3761 WLAN_EID_EXPEDITED_BW_REQ = 109, 3762 WLAN_EID_QOS_MAP_SET = 110, 3763 WLAN_EID_ROAMING_CONSORTIUM = 111, 3764 WLAN_EID_EMERGENCY_ALERT = 112, 3765 WLAN_EID_MESH_CONFIG = 113, 3766 WLAN_EID_MESH_ID = 114, 3767 WLAN_EID_LINK_METRIC_REPORT = 115, 3768 WLAN_EID_CONGESTION_NOTIFICATION = 116, 3769 WLAN_EID_PEER_MGMT = 117, 3770 WLAN_EID_CHAN_SWITCH_PARAM = 118, 3771 WLAN_EID_MESH_AWAKE_WINDOW = 119, 3772 WLAN_EID_BEACON_TIMING = 120, 3773 WLAN_EID_MCCAOP_SETUP_REQ = 121, 3774 WLAN_EID_MCCAOP_SETUP_RESP = 122, 3775 WLAN_EID_MCCAOP_ADVERT = 123, 3776 WLAN_EID_MCCAOP_TEARDOWN = 124, 3777 WLAN_EID_GANN = 125, 3778 WLAN_EID_RANN = 126, 3779 WLAN_EID_EXT_CAPABILITY = 127, 3780 /* 128, 129 reserved for Agere */ 3781 WLAN_EID_PREQ = 130, 3782 WLAN_EID_PREP = 131, 3783 WLAN_EID_PERR = 132, 3784 /* 133-136 reserved for Cisco */ 3785 WLAN_EID_PXU = 137, 3786 WLAN_EID_PXUC = 138, 3787 WLAN_EID_AUTH_MESH_PEER_EXCH = 139, 3788 WLAN_EID_MIC = 140, 3789 WLAN_EID_DESTINATION_URI = 141, 3790 WLAN_EID_UAPSD_COEX = 142, 3791 WLAN_EID_WAKEUP_SCHEDULE = 143, 3792 WLAN_EID_EXT_SCHEDULE = 144, 3793 WLAN_EID_STA_AVAILABILITY = 145, 3794 WLAN_EID_DMG_TSPEC = 146, 3795 WLAN_EID_DMG_AT = 147, 3796 WLAN_EID_DMG_CAP = 148, 3797 /* 149 reserved for Cisco */ 3798 WLAN_EID_CISCO_VENDOR_SPECIFIC = 150, 3799 WLAN_EID_DMG_OPERATION = 151, 3800 WLAN_EID_DMG_BSS_PARAM_CHANGE = 152, 3801 WLAN_EID_DMG_BEAM_REFINEMENT = 153, 3802 WLAN_EID_CHANNEL_MEASURE_FEEDBACK = 154, 3803 /* 155-156 reserved for Cisco */ 3804 WLAN_EID_AWAKE_WINDOW = 157, 3805 WLAN_EID_MULTI_BAND = 158, 3806 WLAN_EID_ADDBA_EXT = 159, 3807 WLAN_EID_NEXT_PCP_LIST = 160, 3808 WLAN_EID_PCP_HANDOVER = 161, 3809 WLAN_EID_DMG_LINK_MARGIN = 162, 3810 WLAN_EID_SWITCHING_STREAM = 163, 3811 WLAN_EID_SESSION_TRANSITION = 164, 3812 WLAN_EID_DYN_TONE_PAIRING_REPORT = 165, 3813 WLAN_EID_CLUSTER_REPORT = 166, 3814 WLAN_EID_RELAY_CAP = 167, 3815 WLAN_EID_RELAY_XFER_PARAM_SET = 168, 3816 WLAN_EID_BEAM_LINK_MAINT = 169, 3817 WLAN_EID_MULTIPLE_MAC_ADDR = 170, 3818 WLAN_EID_U_PID = 171, 3819 WLAN_EID_DMG_LINK_ADAPT_ACK = 172, 3820 /* 173 reserved for Symbol */ 3821 WLAN_EID_MCCAOP_ADV_OVERVIEW = 174, 3822 WLAN_EID_QUIET_PERIOD_REQ = 175, 3823 /* 176 reserved for Symbol */ 3824 WLAN_EID_QUIET_PERIOD_RESP = 177, 3825 /* 178-179 reserved for Symbol */ 3826 /* 180 reserved for ISO/IEC 20011 */ 3827 WLAN_EID_EPAC_POLICY = 182, 3828 WLAN_EID_CLISTER_TIME_OFF = 183, 3829 WLAN_EID_INTER_AC_PRIO = 184, 3830 WLAN_EID_SCS_DESCRIPTOR = 185, 3831 WLAN_EID_QLOAD_REPORT = 186, 3832 WLAN_EID_HCCA_TXOP_UPDATE_COUNT = 187, 3833 WLAN_EID_HL_STREAM_ID = 188, 3834 WLAN_EID_GCR_GROUP_ADDR = 189, 3835 WLAN_EID_ANTENNA_SECTOR_ID_PATTERN = 190, 3836 WLAN_EID_VHT_CAPABILITY = 191, 3837 WLAN_EID_VHT_OPERATION = 192, 3838 WLAN_EID_EXTENDED_BSS_LOAD = 193, 3839 WLAN_EID_WIDE_BW_CHANNEL_SWITCH = 194, 3840 WLAN_EID_TX_POWER_ENVELOPE = 195, 3841 WLAN_EID_CHANNEL_SWITCH_WRAPPER = 196, 3842 WLAN_EID_AID = 197, 3843 WLAN_EID_QUIET_CHANNEL = 198, 3844 WLAN_EID_OPMODE_NOTIF = 199, 3845 3846 WLAN_EID_REDUCED_NEIGHBOR_REPORT = 201, 3847 3848 WLAN_EID_AID_REQUEST = 210, 3849 WLAN_EID_AID_RESPONSE = 211, 3850 WLAN_EID_S1G_BCN_COMPAT = 213, 3851 WLAN_EID_S1G_SHORT_BCN_INTERVAL = 214, 3852 WLAN_EID_S1G_TWT = 216, 3853 WLAN_EID_S1G_CAPABILITIES = 217, 3854 WLAN_EID_VENDOR_SPECIFIC = 221, 3855 WLAN_EID_QOS_PARAMETER = 222, 3856 WLAN_EID_S1G_OPERATION = 232, 3857 WLAN_EID_CAG_NUMBER = 237, 3858 WLAN_EID_AP_CSN = 239, 3859 WLAN_EID_FILS_INDICATION = 240, 3860 WLAN_EID_DILS = 241, 3861 WLAN_EID_FRAGMENT = 242, 3862 WLAN_EID_RSNX = 244, 3863 WLAN_EID_EXTENSION = 255 3864 }; 3865 3866 /* Element ID Extensions for Element ID 255 */ 3867 enum ieee80211_eid_ext { 3868 WLAN_EID_EXT_ASSOC_DELAY_INFO = 1, 3869 WLAN_EID_EXT_FILS_REQ_PARAMS = 2, 3870 WLAN_EID_EXT_FILS_KEY_CONFIRM = 3, 3871 WLAN_EID_EXT_FILS_SESSION = 4, 3872 WLAN_EID_EXT_FILS_HLP_CONTAINER = 5, 3873 WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN = 6, 3874 WLAN_EID_EXT_KEY_DELIVERY = 7, 3875 WLAN_EID_EXT_FILS_WRAPPED_DATA = 8, 3876 WLAN_EID_EXT_FILS_PUBLIC_KEY = 12, 3877 WLAN_EID_EXT_FILS_NONCE = 13, 3878 WLAN_EID_EXT_FUTURE_CHAN_GUIDANCE = 14, 3879 WLAN_EID_EXT_DH_PARAMETER = 32, 3880 WLAN_EID_EXT_HE_CAPABILITY = 35, 3881 WLAN_EID_EXT_HE_OPERATION = 36, 3882 WLAN_EID_EXT_UORA = 37, 3883 WLAN_EID_EXT_HE_MU_EDCA = 38, 3884 WLAN_EID_EXT_HE_SPR = 39, 3885 WLAN_EID_EXT_NDP_FEEDBACK_REPORT_PARAMSET = 41, 3886 WLAN_EID_EXT_BSS_COLOR_CHG_ANN = 42, 3887 WLAN_EID_EXT_QUIET_TIME_PERIOD_SETUP = 43, 3888 WLAN_EID_EXT_ESS_REPORT = 45, 3889 WLAN_EID_EXT_OPS = 46, 3890 WLAN_EID_EXT_HE_BSS_LOAD = 47, 3891 WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME = 52, 3892 WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION = 55, 3893 WLAN_EID_EXT_NON_INHERITANCE = 56, 3894 WLAN_EID_EXT_KNOWN_BSSID = 57, 3895 WLAN_EID_EXT_SHORT_SSID_LIST = 58, 3896 WLAN_EID_EXT_HE_6GHZ_CAPA = 59, 3897 WLAN_EID_EXT_UL_MU_POWER_CAPA = 60, 3898 WLAN_EID_EXT_EHT_OPERATION = 106, 3899 WLAN_EID_EXT_EHT_MULTI_LINK = 107, 3900 WLAN_EID_EXT_EHT_CAPABILITY = 108, 3901 WLAN_EID_EXT_TID_TO_LINK_MAPPING = 109, 3902 WLAN_EID_EXT_BANDWIDTH_INDICATION = 135, 3903 WLAN_EID_EXT_KNOWN_STA_IDENTIFCATION = 136, 3904 WLAN_EID_EXT_NON_AP_STA_REG_CON = 137, 3905 }; 3906 3907 /* Action category code */ 3908 enum ieee80211_category { 3909 WLAN_CATEGORY_SPECTRUM_MGMT = 0, 3910 WLAN_CATEGORY_QOS = 1, 3911 WLAN_CATEGORY_DLS = 2, 3912 WLAN_CATEGORY_BACK = 3, 3913 WLAN_CATEGORY_PUBLIC = 4, 3914 WLAN_CATEGORY_RADIO_MEASUREMENT = 5, 3915 WLAN_CATEGORY_FAST_BBS_TRANSITION = 6, 3916 WLAN_CATEGORY_HT = 7, 3917 WLAN_CATEGORY_SA_QUERY = 8, 3918 WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION = 9, 3919 WLAN_CATEGORY_WNM = 10, 3920 WLAN_CATEGORY_WNM_UNPROTECTED = 11, 3921 WLAN_CATEGORY_TDLS = 12, 3922 WLAN_CATEGORY_MESH_ACTION = 13, 3923 WLAN_CATEGORY_MULTIHOP_ACTION = 14, 3924 WLAN_CATEGORY_SELF_PROTECTED = 15, 3925 WLAN_CATEGORY_DMG = 16, 3926 WLAN_CATEGORY_WMM = 17, 3927 WLAN_CATEGORY_FST = 18, 3928 WLAN_CATEGORY_UNPROT_DMG = 20, 3929 WLAN_CATEGORY_VHT = 21, 3930 WLAN_CATEGORY_S1G = 22, 3931 WLAN_CATEGORY_PROTECTED_EHT = 37, 3932 WLAN_CATEGORY_VENDOR_SPECIFIC_PROTECTED = 126, 3933 WLAN_CATEGORY_VENDOR_SPECIFIC = 127, 3934 }; 3935 3936 /* SPECTRUM_MGMT action code */ 3937 enum ieee80211_spectrum_mgmt_actioncode { 3938 WLAN_ACTION_SPCT_MSR_REQ = 0, 3939 WLAN_ACTION_SPCT_MSR_RPRT = 1, 3940 WLAN_ACTION_SPCT_TPC_REQ = 2, 3941 WLAN_ACTION_SPCT_TPC_RPRT = 3, 3942 WLAN_ACTION_SPCT_CHL_SWITCH = 4, 3943 }; 3944 3945 /* HT action codes */ 3946 enum ieee80211_ht_actioncode { 3947 WLAN_HT_ACTION_NOTIFY_CHANWIDTH = 0, 3948 WLAN_HT_ACTION_SMPS = 1, 3949 WLAN_HT_ACTION_PSMP = 2, 3950 WLAN_HT_ACTION_PCO_PHASE = 3, 3951 WLAN_HT_ACTION_CSI = 4, 3952 WLAN_HT_ACTION_NONCOMPRESSED_BF = 5, 3953 WLAN_HT_ACTION_COMPRESSED_BF = 6, 3954 WLAN_HT_ACTION_ASEL_IDX_FEEDBACK = 7, 3955 }; 3956 3957 /* VHT action codes */ 3958 enum ieee80211_vht_actioncode { 3959 WLAN_VHT_ACTION_COMPRESSED_BF = 0, 3960 WLAN_VHT_ACTION_GROUPID_MGMT = 1, 3961 WLAN_VHT_ACTION_OPMODE_NOTIF = 2, 3962 }; 3963 3964 /* Self Protected Action codes */ 3965 enum ieee80211_self_protected_actioncode { 3966 WLAN_SP_RESERVED = 0, 3967 WLAN_SP_MESH_PEERING_OPEN = 1, 3968 WLAN_SP_MESH_PEERING_CONFIRM = 2, 3969 WLAN_SP_MESH_PEERING_CLOSE = 3, 3970 WLAN_SP_MGK_INFORM = 4, 3971 WLAN_SP_MGK_ACK = 5, 3972 }; 3973 3974 /* Mesh action codes */ 3975 enum ieee80211_mesh_actioncode { 3976 WLAN_MESH_ACTION_LINK_METRIC_REPORT, 3977 WLAN_MESH_ACTION_HWMP_PATH_SELECTION, 3978 WLAN_MESH_ACTION_GATE_ANNOUNCEMENT, 3979 WLAN_MESH_ACTION_CONGESTION_CONTROL_NOTIFICATION, 3980 WLAN_MESH_ACTION_MCCA_SETUP_REQUEST, 3981 WLAN_MESH_ACTION_MCCA_SETUP_REPLY, 3982 WLAN_MESH_ACTION_MCCA_ADVERTISEMENT_REQUEST, 3983 WLAN_MESH_ACTION_MCCA_ADVERTISEMENT, 3984 WLAN_MESH_ACTION_MCCA_TEARDOWN, 3985 WLAN_MESH_ACTION_TBTT_ADJUSTMENT_REQUEST, 3986 WLAN_MESH_ACTION_TBTT_ADJUSTMENT_RESPONSE, 3987 }; 3988 3989 /* Unprotected WNM action codes */ 3990 enum ieee80211_unprotected_wnm_actioncode { 3991 WLAN_UNPROTECTED_WNM_ACTION_TIM = 0, 3992 WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE = 1, 3993 }; 3994 3995 /* Protected EHT action codes */ 3996 enum ieee80211_protected_eht_actioncode { 3997 WLAN_PROTECTED_EHT_ACTION_TTLM_REQ = 0, 3998 WLAN_PROTECTED_EHT_ACTION_TTLM_RES = 1, 3999 WLAN_PROTECTED_EHT_ACTION_TTLM_TEARDOWN = 2, 4000 WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_REQ = 3, 4001 WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_RESP = 4, 4002 WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_TEARDOWN = 5, 4003 WLAN_PROTECTED_EHT_ACTION_EML_OP_MODE_NOTIF = 6, 4004 WLAN_PROTECTED_EHT_ACTION_LINK_RECOMMEND = 7, 4005 WLAN_PROTECTED_EHT_ACTION_ML_OP_UPDATE_REQ = 8, 4006 WLAN_PROTECTED_EHT_ACTION_ML_OP_UPDATE_RESP = 9, 4007 WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_NOTIF = 10, 4008 WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_REQ = 11, 4009 WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_RESP = 12, 4010 }; 4011 4012 /* Security key length */ 4013 enum ieee80211_key_len { 4014 WLAN_KEY_LEN_WEP40 = 5, 4015 WLAN_KEY_LEN_WEP104 = 13, 4016 WLAN_KEY_LEN_CCMP = 16, 4017 WLAN_KEY_LEN_CCMP_256 = 32, 4018 WLAN_KEY_LEN_TKIP = 32, 4019 WLAN_KEY_LEN_AES_CMAC = 16, 4020 WLAN_KEY_LEN_SMS4 = 32, 4021 WLAN_KEY_LEN_GCMP = 16, 4022 WLAN_KEY_LEN_GCMP_256 = 32, 4023 WLAN_KEY_LEN_BIP_CMAC_256 = 32, 4024 WLAN_KEY_LEN_BIP_GMAC_128 = 16, 4025 WLAN_KEY_LEN_BIP_GMAC_256 = 32, 4026 }; 4027 4028 enum ieee80211_s1g_actioncode { 4029 WLAN_S1G_AID_SWITCH_REQUEST, 4030 WLAN_S1G_AID_SWITCH_RESPONSE, 4031 WLAN_S1G_SYNC_CONTROL, 4032 WLAN_S1G_STA_INFO_ANNOUNCE, 4033 WLAN_S1G_EDCA_PARAM_SET, 4034 WLAN_S1G_EL_OPERATION, 4035 WLAN_S1G_TWT_SETUP, 4036 WLAN_S1G_TWT_TEARDOWN, 4037 WLAN_S1G_SECT_GROUP_ID_LIST, 4038 WLAN_S1G_SECT_ID_FEEDBACK, 4039 WLAN_S1G_TWT_INFORMATION = 11, 4040 }; 4041 4042 /* Radio measurement action codes as defined in IEEE 802.11-2024 - Table 9-470 */ 4043 enum ieee80211_radio_measurement_actioncode { 4044 WLAN_RM_ACTION_RADIO_MEASUREMENT_REQUEST = 0, 4045 WLAN_RM_ACTION_RADIO_MEASUREMENT_REPORT = 1, 4046 WLAN_RM_ACTION_LINK_MEASUREMENT_REQUEST = 2, 4047 WLAN_RM_ACTION_LINK_MEASUREMENT_REPORT = 3, 4048 WLAN_RM_ACTION_NEIGHBOR_REPORT_REQUEST = 4, 4049 WLAN_RM_ACTION_NEIGHBOR_REPORT_RESPONSE = 5, 4050 }; 4051 4052 #define IEEE80211_WEP_IV_LEN 4 4053 #define IEEE80211_WEP_ICV_LEN 4 4054 #define IEEE80211_CCMP_HDR_LEN 8 4055 #define IEEE80211_CCMP_MIC_LEN 8 4056 #define IEEE80211_CCMP_PN_LEN 6 4057 #define IEEE80211_CCMP_256_HDR_LEN 8 4058 #define IEEE80211_CCMP_256_MIC_LEN 16 4059 #define IEEE80211_CCMP_256_PN_LEN 6 4060 #define IEEE80211_TKIP_IV_LEN 8 4061 #define IEEE80211_TKIP_ICV_LEN 4 4062 #define IEEE80211_CMAC_PN_LEN 6 4063 #define IEEE80211_GMAC_PN_LEN 6 4064 #define IEEE80211_GCMP_HDR_LEN 8 4065 #define IEEE80211_GCMP_MIC_LEN 16 4066 #define IEEE80211_GCMP_PN_LEN 6 4067 4068 #define FILS_NONCE_LEN 16 4069 #define FILS_MAX_KEK_LEN 64 4070 4071 #define FILS_ERP_MAX_USERNAME_LEN 16 4072 #define FILS_ERP_MAX_REALM_LEN 253 4073 #define FILS_ERP_MAX_RRK_LEN 64 4074 4075 #define PMK_MAX_LEN 64 4076 #define SAE_PASSWORD_MAX_LEN 128 4077 4078 /* Public action codes (IEEE Std 802.11-2016, 9.6.8.1, Table 9-307) */ 4079 enum ieee80211_pub_actioncode { 4080 WLAN_PUB_ACTION_20_40_BSS_COEX = 0, 4081 WLAN_PUB_ACTION_DSE_ENABLEMENT = 1, 4082 WLAN_PUB_ACTION_DSE_DEENABLEMENT = 2, 4083 WLAN_PUB_ACTION_DSE_REG_LOC_ANN = 3, 4084 WLAN_PUB_ACTION_EXT_CHANSW_ANN = 4, 4085 WLAN_PUB_ACTION_DSE_MSMT_REQ = 5, 4086 WLAN_PUB_ACTION_DSE_MSMT_RESP = 6, 4087 WLAN_PUB_ACTION_MSMT_PILOT = 7, 4088 WLAN_PUB_ACTION_DSE_PC = 8, 4089 WLAN_PUB_ACTION_VENDOR_SPECIFIC = 9, 4090 WLAN_PUB_ACTION_GAS_INITIAL_REQ = 10, 4091 WLAN_PUB_ACTION_GAS_INITIAL_RESP = 11, 4092 WLAN_PUB_ACTION_GAS_COMEBACK_REQ = 12, 4093 WLAN_PUB_ACTION_GAS_COMEBACK_RESP = 13, 4094 WLAN_PUB_ACTION_TDLS_DISCOVER_RES = 14, 4095 WLAN_PUB_ACTION_LOC_TRACK_NOTI = 15, 4096 WLAN_PUB_ACTION_QAB_REQUEST_FRAME = 16, 4097 WLAN_PUB_ACTION_QAB_RESPONSE_FRAME = 17, 4098 WLAN_PUB_ACTION_QMF_POLICY = 18, 4099 WLAN_PUB_ACTION_QMF_POLICY_CHANGE = 19, 4100 WLAN_PUB_ACTION_QLOAD_REQUEST = 20, 4101 WLAN_PUB_ACTION_QLOAD_REPORT = 21, 4102 WLAN_PUB_ACTION_HCCA_TXOP_ADVERT = 22, 4103 WLAN_PUB_ACTION_HCCA_TXOP_RESPONSE = 23, 4104 WLAN_PUB_ACTION_PUBLIC_KEY = 24, 4105 WLAN_PUB_ACTION_CHANNEL_AVAIL_QUERY = 25, 4106 WLAN_PUB_ACTION_CHANNEL_SCHEDULE_MGMT = 26, 4107 WLAN_PUB_ACTION_CONTACT_VERI_SIGNAL = 27, 4108 WLAN_PUB_ACTION_GDD_ENABLEMENT_REQ = 28, 4109 WLAN_PUB_ACTION_GDD_ENABLEMENT_RESP = 29, 4110 WLAN_PUB_ACTION_NETWORK_CHANNEL_CONTROL = 30, 4111 WLAN_PUB_ACTION_WHITE_SPACE_MAP_ANN = 31, 4112 WLAN_PUB_ACTION_FTM_REQUEST = 32, 4113 WLAN_PUB_ACTION_FTM_RESPONSE = 33, 4114 WLAN_PUB_ACTION_FILS_DISCOVERY = 34, 4115 }; 4116 4117 /* TDLS action codes */ 4118 enum ieee80211_tdls_actioncode { 4119 WLAN_TDLS_SETUP_REQUEST = 0, 4120 WLAN_TDLS_SETUP_RESPONSE = 1, 4121 WLAN_TDLS_SETUP_CONFIRM = 2, 4122 WLAN_TDLS_TEARDOWN = 3, 4123 WLAN_TDLS_PEER_TRAFFIC_INDICATION = 4, 4124 WLAN_TDLS_CHANNEL_SWITCH_REQUEST = 5, 4125 WLAN_TDLS_CHANNEL_SWITCH_RESPONSE = 6, 4126 WLAN_TDLS_PEER_PSM_REQUEST = 7, 4127 WLAN_TDLS_PEER_PSM_RESPONSE = 8, 4128 WLAN_TDLS_PEER_TRAFFIC_RESPONSE = 9, 4129 WLAN_TDLS_DISCOVERY_REQUEST = 10, 4130 }; 4131 4132 /* Extended Channel Switching capability to be set in the 1st byte of 4133 * the @WLAN_EID_EXT_CAPABILITY information element 4134 */ 4135 #define WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING BIT(2) 4136 4137 /* Multiple BSSID capability is set in the 6th bit of 3rd byte of the 4138 * @WLAN_EID_EXT_CAPABILITY information element 4139 */ 4140 #define WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT BIT(6) 4141 4142 /* Timing Measurement protocol for time sync is set in the 7th bit of 3rd byte 4143 * of the @WLAN_EID_EXT_CAPABILITY information element 4144 */ 4145 #define WLAN_EXT_CAPA3_TIMING_MEASUREMENT_SUPPORT BIT(7) 4146 4147 /* TDLS capabilities in the 4th byte of @WLAN_EID_EXT_CAPABILITY */ 4148 #define WLAN_EXT_CAPA4_TDLS_BUFFER_STA BIT(4) 4149 #define WLAN_EXT_CAPA4_TDLS_PEER_PSM BIT(5) 4150 #define WLAN_EXT_CAPA4_TDLS_CHAN_SWITCH BIT(6) 4151 4152 /* Interworking capabilities are set in 7th bit of 4th byte of the 4153 * @WLAN_EID_EXT_CAPABILITY information element 4154 */ 4155 #define WLAN_EXT_CAPA4_INTERWORKING_ENABLED BIT(7) 4156 4157 /* 4158 * TDLS capabililites to be enabled in the 5th byte of the 4159 * @WLAN_EID_EXT_CAPABILITY information element 4160 */ 4161 #define WLAN_EXT_CAPA5_TDLS_ENABLED BIT(5) 4162 #define WLAN_EXT_CAPA5_TDLS_PROHIBITED BIT(6) 4163 #define WLAN_EXT_CAPA5_TDLS_CH_SW_PROHIBITED BIT(7) 4164 4165 #define WLAN_EXT_CAPA8_TDLS_WIDE_BW_ENABLED BIT(5) 4166 #define WLAN_EXT_CAPA8_OPMODE_NOTIF BIT(6) 4167 4168 /* Defines the maximal number of MSDUs in an A-MSDU. */ 4169 #define WLAN_EXT_CAPA8_MAX_MSDU_IN_AMSDU_LSB BIT(7) 4170 #define WLAN_EXT_CAPA9_MAX_MSDU_IN_AMSDU_MSB BIT(0) 4171 4172 /* 4173 * Fine Timing Measurement Initiator - bit 71 of @WLAN_EID_EXT_CAPABILITY 4174 * information element 4175 */ 4176 #define WLAN_EXT_CAPA9_FTM_INITIATOR BIT(7) 4177 4178 /* Defines support for TWT Requester and TWT Responder */ 4179 #define WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT BIT(5) 4180 #define WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT BIT(6) 4181 4182 /* 4183 * When set, indicates that the AP is able to tolerate 26-tone RU UL 4184 * OFDMA transmissions using HE TB PPDU from OBSS (not falsely classify the 4185 * 26-tone RU UL OFDMA transmissions as radar pulses). 4186 */ 4187 #define WLAN_EXT_CAPA10_OBSS_NARROW_BW_RU_TOLERANCE_SUPPORT BIT(7) 4188 4189 /* Defines support for enhanced multi-bssid advertisement*/ 4190 #define WLAN_EXT_CAPA11_EMA_SUPPORT BIT(3) 4191 4192 /* Enable Beacon Protection */ 4193 #define WLAN_EXT_CAPA11_BCN_PROTECT BIT(4) 4194 4195 /* TDLS specific payload type in the LLC/SNAP header */ 4196 #define WLAN_TDLS_SNAP_RFTYPE 0x2 4197 4198 /* BSS Coex IE information field bits */ 4199 #define WLAN_BSS_COEX_INFORMATION_REQUEST BIT(0) 4200 4201 /** 4202 * enum ieee80211_mesh_sync_method - mesh synchronization method identifier 4203 * 4204 * @IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET: the default synchronization method 4205 * @IEEE80211_SYNC_METHOD_VENDOR: a vendor specific synchronization method 4206 * that will be specified in a vendor specific information element 4207 */ 4208 enum ieee80211_mesh_sync_method { 4209 IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET = 1, 4210 IEEE80211_SYNC_METHOD_VENDOR = 255, 4211 }; 4212 4213 /** 4214 * enum ieee80211_mesh_path_protocol - mesh path selection protocol identifier 4215 * 4216 * @IEEE80211_PATH_PROTOCOL_HWMP: the default path selection protocol 4217 * @IEEE80211_PATH_PROTOCOL_VENDOR: a vendor specific protocol that will 4218 * be specified in a vendor specific information element 4219 */ 4220 enum ieee80211_mesh_path_protocol { 4221 IEEE80211_PATH_PROTOCOL_HWMP = 1, 4222 IEEE80211_PATH_PROTOCOL_VENDOR = 255, 4223 }; 4224 4225 /** 4226 * enum ieee80211_mesh_path_metric - mesh path selection metric identifier 4227 * 4228 * @IEEE80211_PATH_METRIC_AIRTIME: the default path selection metric 4229 * @IEEE80211_PATH_METRIC_VENDOR: a vendor specific metric that will be 4230 * specified in a vendor specific information element 4231 */ 4232 enum ieee80211_mesh_path_metric { 4233 IEEE80211_PATH_METRIC_AIRTIME = 1, 4234 IEEE80211_PATH_METRIC_VENDOR = 255, 4235 }; 4236 4237 /** 4238 * enum ieee80211_root_mode_identifier - root mesh STA mode identifier 4239 * 4240 * These attribute are used by dot11MeshHWMPRootMode to set root mesh STA mode 4241 * 4242 * @IEEE80211_ROOTMODE_NO_ROOT: the mesh STA is not a root mesh STA (default) 4243 * @IEEE80211_ROOTMODE_ROOT: the mesh STA is a root mesh STA if greater than 4244 * this value 4245 * @IEEE80211_PROACTIVE_PREQ_NO_PREP: the mesh STA is a root mesh STA supports 4246 * the proactive PREQ with proactive PREP subfield set to 0 4247 * @IEEE80211_PROACTIVE_PREQ_WITH_PREP: the mesh STA is a root mesh STA 4248 * supports the proactive PREQ with proactive PREP subfield set to 1 4249 * @IEEE80211_PROACTIVE_RANN: the mesh STA is a root mesh STA supports 4250 * the proactive RANN 4251 */ 4252 enum ieee80211_root_mode_identifier { 4253 IEEE80211_ROOTMODE_NO_ROOT = 0, 4254 IEEE80211_ROOTMODE_ROOT = 1, 4255 IEEE80211_PROACTIVE_PREQ_NO_PREP = 2, 4256 IEEE80211_PROACTIVE_PREQ_WITH_PREP = 3, 4257 IEEE80211_PROACTIVE_RANN = 4, 4258 }; 4259 4260 /* 4261 * IEEE 802.11-2007 7.3.2.9 Country information element 4262 * 4263 * Minimum length is 8 octets, ie len must be evenly 4264 * divisible by 2 4265 */ 4266 4267 /* Although the spec says 8 I'm seeing 6 in practice */ 4268 #define IEEE80211_COUNTRY_IE_MIN_LEN 6 4269 4270 /* The Country String field of the element shall be 3 octets in length */ 4271 #define IEEE80211_COUNTRY_STRING_LEN 3 4272 4273 /* 4274 * For regulatory extension stuff see IEEE 802.11-2007 4275 * Annex I (page 1141) and Annex J (page 1147). Also 4276 * review 7.3.2.9. 4277 * 4278 * When dot11RegulatoryClassesRequired is true and the 4279 * first_channel/reg_extension_id is >= 201 then the IE 4280 * compromises of the 'ext' struct represented below: 4281 * 4282 * - Regulatory extension ID - when generating IE this just needs 4283 * to be monotonically increasing for each triplet passed in 4284 * the IE 4285 * - Regulatory class - index into set of rules 4286 * - Coverage class - index into air propagation time (Table 7-27), 4287 * in microseconds, you can compute the air propagation time from 4288 * the index by multiplying by 3, so index 10 yields a propagation 4289 * of 10 us. Valid values are 0-31, values 32-255 are not defined 4290 * yet. A value of 0 inicates air propagation of <= 1 us. 4291 * 4292 * See also Table I.2 for Emission limit sets and table 4293 * I.3 for Behavior limit sets. Table J.1 indicates how to map 4294 * a reg_class to an emission limit set and behavior limit set. 4295 */ 4296 #define IEEE80211_COUNTRY_EXTENSION_ID 201 4297 4298 /* 4299 * Channels numbers in the IE must be monotonically increasing 4300 * if dot11RegulatoryClassesRequired is not true. 4301 * 4302 * If dot11RegulatoryClassesRequired is true consecutive 4303 * subband triplets following a regulatory triplet shall 4304 * have monotonically increasing first_channel number fields. 4305 * 4306 * Channel numbers shall not overlap. 4307 * 4308 * Note that max_power is signed. 4309 */ 4310 struct ieee80211_country_ie_triplet { 4311 union { 4312 struct { 4313 u8 first_channel; 4314 u8 num_channels; 4315 s8 max_power; 4316 } __packed chans; 4317 struct { 4318 u8 reg_extension_id; 4319 u8 reg_class; 4320 u8 coverage_class; 4321 } __packed ext; 4322 }; 4323 } __packed; 4324 4325 enum ieee80211_timeout_interval_type { 4326 WLAN_TIMEOUT_REASSOC_DEADLINE = 1 /* 802.11r */, 4327 WLAN_TIMEOUT_KEY_LIFETIME = 2 /* 802.11r */, 4328 WLAN_TIMEOUT_ASSOC_COMEBACK = 3 /* 802.11w */, 4329 }; 4330 4331 /** 4332 * struct ieee80211_timeout_interval_ie - Timeout Interval element 4333 * @type: type, see &enum ieee80211_timeout_interval_type 4334 * @value: timeout interval value 4335 */ 4336 struct ieee80211_timeout_interval_ie { 4337 u8 type; 4338 __le32 value; 4339 } __packed; 4340 4341 /** 4342 * enum ieee80211_idle_options - BSS idle options 4343 * @WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE: the station should send an RSN 4344 * protected frame to the AP to reset the idle timer at the AP for 4345 * the station. 4346 */ 4347 enum ieee80211_idle_options { 4348 WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE = BIT(0), 4349 }; 4350 4351 /** 4352 * struct ieee80211_bss_max_idle_period_ie - BSS max idle period element struct 4353 * 4354 * This structure refers to "BSS Max idle period element" 4355 * 4356 * @max_idle_period: indicates the time period during which a station can 4357 * refrain from transmitting frames to its associated AP without being 4358 * disassociated. In units of 1000 TUs. 4359 * @idle_options: indicates the options associated with the BSS idle capability 4360 * as specified in &enum ieee80211_idle_options. 4361 */ 4362 struct ieee80211_bss_max_idle_period_ie { 4363 __le16 max_idle_period; 4364 u8 idle_options; 4365 } __packed; 4366 4367 /* BACK action code */ 4368 enum ieee80211_back_actioncode { 4369 WLAN_ACTION_ADDBA_REQ = 0, 4370 WLAN_ACTION_ADDBA_RESP = 1, 4371 WLAN_ACTION_DELBA = 2, 4372 }; 4373 4374 /* BACK (block-ack) parties */ 4375 enum ieee80211_back_parties { 4376 WLAN_BACK_RECIPIENT = 0, 4377 WLAN_BACK_INITIATOR = 1, 4378 }; 4379 4380 /* SA Query action */ 4381 enum ieee80211_sa_query_action { 4382 WLAN_ACTION_SA_QUERY_REQUEST = 0, 4383 WLAN_ACTION_SA_QUERY_RESPONSE = 1, 4384 }; 4385 4386 /** 4387 * struct ieee80211_bssid_index - multiple BSSID index element structure 4388 * 4389 * This structure refers to "Multiple BSSID-index element" 4390 * 4391 * @bssid_index: BSSID index 4392 * @dtim_period: optional, overrides transmitted BSS dtim period 4393 * @dtim_count: optional, overrides transmitted BSS dtim count 4394 */ 4395 struct ieee80211_bssid_index { 4396 u8 bssid_index; 4397 u8 dtim_period; 4398 u8 dtim_count; 4399 }; 4400 4401 /** 4402 * struct ieee80211_multiple_bssid_configuration - multiple BSSID configuration 4403 * element structure 4404 * 4405 * This structure refers to "Multiple BSSID Configuration element" 4406 * 4407 * @bssid_count: total number of active BSSIDs in the set 4408 * @profile_periodicity: the least number of beacon frames need to be received 4409 * in order to discover all the nontransmitted BSSIDs in the set. 4410 */ 4411 struct ieee80211_multiple_bssid_configuration { 4412 u8 bssid_count; 4413 u8 profile_periodicity; 4414 }; 4415 4416 #define SUITE(oui, id) (((oui) << 8) | (id)) 4417 4418 /* cipher suite selectors */ 4419 #define WLAN_CIPHER_SUITE_USE_GROUP SUITE(0x000FAC, 0) 4420 #define WLAN_CIPHER_SUITE_WEP40 SUITE(0x000FAC, 1) 4421 #define WLAN_CIPHER_SUITE_TKIP SUITE(0x000FAC, 2) 4422 /* reserved: SUITE(0x000FAC, 3) */ 4423 #define WLAN_CIPHER_SUITE_CCMP SUITE(0x000FAC, 4) 4424 #define WLAN_CIPHER_SUITE_WEP104 SUITE(0x000FAC, 5) 4425 #define WLAN_CIPHER_SUITE_AES_CMAC SUITE(0x000FAC, 6) 4426 #define WLAN_CIPHER_SUITE_GCMP SUITE(0x000FAC, 8) 4427 #define WLAN_CIPHER_SUITE_GCMP_256 SUITE(0x000FAC, 9) 4428 #define WLAN_CIPHER_SUITE_CCMP_256 SUITE(0x000FAC, 10) 4429 #define WLAN_CIPHER_SUITE_BIP_GMAC_128 SUITE(0x000FAC, 11) 4430 #define WLAN_CIPHER_SUITE_BIP_GMAC_256 SUITE(0x000FAC, 12) 4431 #define WLAN_CIPHER_SUITE_BIP_CMAC_256 SUITE(0x000FAC, 13) 4432 4433 #define WLAN_CIPHER_SUITE_SMS4 SUITE(0x001472, 1) 4434 4435 /* AKM suite selectors */ 4436 #define WLAN_AKM_SUITE_8021X SUITE(0x000FAC, 1) 4437 #define WLAN_AKM_SUITE_PSK SUITE(0x000FAC, 2) 4438 #define WLAN_AKM_SUITE_FT_8021X SUITE(0x000FAC, 3) 4439 #define WLAN_AKM_SUITE_FT_PSK SUITE(0x000FAC, 4) 4440 #define WLAN_AKM_SUITE_8021X_SHA256 SUITE(0x000FAC, 5) 4441 #define WLAN_AKM_SUITE_PSK_SHA256 SUITE(0x000FAC, 6) 4442 #define WLAN_AKM_SUITE_TDLS SUITE(0x000FAC, 7) 4443 #define WLAN_AKM_SUITE_SAE SUITE(0x000FAC, 8) 4444 #define WLAN_AKM_SUITE_FT_OVER_SAE SUITE(0x000FAC, 9) 4445 #define WLAN_AKM_SUITE_AP_PEER_KEY SUITE(0x000FAC, 10) 4446 #define WLAN_AKM_SUITE_8021X_SUITE_B SUITE(0x000FAC, 11) 4447 #define WLAN_AKM_SUITE_8021X_SUITE_B_192 SUITE(0x000FAC, 12) 4448 #define WLAN_AKM_SUITE_FT_8021X_SHA384 SUITE(0x000FAC, 13) 4449 #define WLAN_AKM_SUITE_FILS_SHA256 SUITE(0x000FAC, 14) 4450 #define WLAN_AKM_SUITE_FILS_SHA384 SUITE(0x000FAC, 15) 4451 #define WLAN_AKM_SUITE_FT_FILS_SHA256 SUITE(0x000FAC, 16) 4452 #define WLAN_AKM_SUITE_FT_FILS_SHA384 SUITE(0x000FAC, 17) 4453 #define WLAN_AKM_SUITE_OWE SUITE(0x000FAC, 18) 4454 #define WLAN_AKM_SUITE_FT_PSK_SHA384 SUITE(0x000FAC, 19) 4455 #define WLAN_AKM_SUITE_PSK_SHA384 SUITE(0x000FAC, 20) 4456 4457 #define WLAN_AKM_SUITE_WFA_DPP SUITE(WLAN_OUI_WFA, 2) 4458 4459 #define WLAN_MAX_KEY_LEN 32 4460 4461 #define WLAN_PMK_NAME_LEN 16 4462 #define WLAN_PMKID_LEN 16 4463 #define WLAN_PMK_LEN_EAP_LEAP 16 4464 #define WLAN_PMK_LEN 32 4465 #define WLAN_PMK_LEN_SUITE_B_192 48 4466 4467 #define WLAN_OUI_WFA 0x506f9a 4468 #define WLAN_OUI_TYPE_WFA_P2P 9 4469 #define WLAN_OUI_TYPE_WFA_DPP 0x1A 4470 #define WLAN_OUI_MICROSOFT 0x0050f2 4471 #define WLAN_OUI_TYPE_MICROSOFT_WPA 1 4472 #define WLAN_OUI_TYPE_MICROSOFT_WMM 2 4473 #define WLAN_OUI_TYPE_MICROSOFT_WPS 4 4474 #define WLAN_OUI_TYPE_MICROSOFT_TPC 8 4475 4476 /* 4477 * WMM/802.11e Tspec Element 4478 */ 4479 #define IEEE80211_WMM_IE_TSPEC_TID_MASK 0x0F 4480 #define IEEE80211_WMM_IE_TSPEC_TID_SHIFT 1 4481 4482 enum ieee80211_tspec_status_code { 4483 IEEE80211_TSPEC_STATUS_ADMISS_ACCEPTED = 0, 4484 IEEE80211_TSPEC_STATUS_ADDTS_INVAL_PARAMS = 0x1, 4485 }; 4486 4487 struct ieee80211_tspec_ie { 4488 u8 element_id; 4489 u8 len; 4490 u8 oui[3]; 4491 u8 oui_type; 4492 u8 oui_subtype; 4493 u8 version; 4494 __le16 tsinfo; 4495 u8 tsinfo_resvd; 4496 __le16 nominal_msdu; 4497 __le16 max_msdu; 4498 __le32 min_service_int; 4499 __le32 max_service_int; 4500 __le32 inactivity_int; 4501 __le32 suspension_int; 4502 __le32 service_start_time; 4503 __le32 min_data_rate; 4504 __le32 mean_data_rate; 4505 __le32 peak_data_rate; 4506 __le32 max_burst_size; 4507 __le32 delay_bound; 4508 __le32 min_phy_rate; 4509 __le16 sba; 4510 __le16 medium_time; 4511 } __packed; 4512 4513 struct ieee80211_he_6ghz_capa { 4514 /* uses IEEE80211_HE_6GHZ_CAP_* below */ 4515 __le16 capa; 4516 } __packed; 4517 4518 /* HE 6 GHz band capabilities */ 4519 /* uses enum ieee80211_min_mpdu_spacing values */ 4520 #define IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START 0x0007 4521 /* uses enum ieee80211_vht_max_ampdu_length_exp values */ 4522 #define IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP 0x0038 4523 /* uses IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_* values */ 4524 #define IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN 0x00c0 4525 /* WLAN_HT_CAP_SM_PS_* values */ 4526 #define IEEE80211_HE_6GHZ_CAP_SM_PS 0x0600 4527 #define IEEE80211_HE_6GHZ_CAP_RD_RESPONDER 0x0800 4528 #define IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS 0x1000 4529 #define IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS 0x2000 4530 4531 /** 4532 * ieee80211_get_qos_ctl - get pointer to qos control bytes 4533 * @hdr: the frame 4534 * Return: a pointer to the QoS control field in the frame header 4535 * 4536 * The qos ctrl bytes come after the frame_control, duration, seq_num 4537 * and 3 or 4 addresses of length ETH_ALEN. Checks frame_control to choose 4538 * between struct ieee80211_qos_hdr_4addr and struct ieee80211_qos_hdr. 4539 */ 4540 static inline u8 *ieee80211_get_qos_ctl(struct ieee80211_hdr *hdr) 4541 { 4542 union { 4543 struct ieee80211_qos_hdr addr3; 4544 struct ieee80211_qos_hdr_4addr addr4; 4545 } *qos; 4546 4547 qos = (void *)hdr; 4548 if (ieee80211_has_a4(qos->addr3.frame_control)) 4549 return (u8 *)&qos->addr4.qos_ctrl; 4550 else 4551 return (u8 *)&qos->addr3.qos_ctrl; 4552 } 4553 4554 /** 4555 * ieee80211_get_tid - get qos TID 4556 * @hdr: the frame 4557 * Return: the TID from the QoS control field 4558 */ 4559 static inline u8 ieee80211_get_tid(struct ieee80211_hdr *hdr) 4560 { 4561 u8 *qc = ieee80211_get_qos_ctl(hdr); 4562 4563 return qc[0] & IEEE80211_QOS_CTL_TID_MASK; 4564 } 4565 4566 /** 4567 * ieee80211_get_SA - get pointer to SA 4568 * @hdr: the frame 4569 * Return: a pointer to the source address (SA) 4570 * 4571 * Given an 802.11 frame, this function returns the offset 4572 * to the source address (SA). It does not verify that the 4573 * header is long enough to contain the address, and the 4574 * header must be long enough to contain the frame control 4575 * field. 4576 */ 4577 static inline u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr) 4578 { 4579 if (ieee80211_has_a4(hdr->frame_control)) 4580 return hdr->addr4; 4581 if (ieee80211_has_fromds(hdr->frame_control)) 4582 return hdr->addr3; 4583 return hdr->addr2; 4584 } 4585 4586 /** 4587 * ieee80211_get_DA - get pointer to DA 4588 * @hdr: the frame 4589 * Return: a pointer to the destination address (DA) 4590 * 4591 * Given an 802.11 frame, this function returns the offset 4592 * to the destination address (DA). It does not verify that 4593 * the header is long enough to contain the address, and the 4594 * header must be long enough to contain the frame control 4595 * field. 4596 */ 4597 static inline u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr) 4598 { 4599 if (ieee80211_has_tods(hdr->frame_control)) 4600 return hdr->addr3; 4601 else 4602 return hdr->addr1; 4603 } 4604 4605 /** 4606 * ieee80211_is_bufferable_mmpdu - check if frame is bufferable MMPDU 4607 * @skb: the skb to check, starting with the 802.11 header 4608 * Return: whether or not the MMPDU is bufferable 4609 */ 4610 static inline bool ieee80211_is_bufferable_mmpdu(struct sk_buff *skb) 4611 { 4612 struct ieee80211_mgmt *mgmt = (void *)skb->data; 4613 __le16 fc = mgmt->frame_control; 4614 4615 /* 4616 * IEEE 802.11 REVme D2.0 definition of bufferable MMPDU; 4617 * note that this ignores the IBSS special case. 4618 */ 4619 if (!ieee80211_is_mgmt(fc)) 4620 return false; 4621 4622 if (ieee80211_is_disassoc(fc) || ieee80211_is_deauth(fc)) 4623 return true; 4624 4625 if (!ieee80211_is_action(fc)) 4626 return false; 4627 4628 if (skb->len < offsetofend(typeof(*mgmt), u.action.u.ftm.action_code)) 4629 return true; 4630 4631 /* action frame - additionally check for non-bufferable FTM */ 4632 4633 if (mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 4634 mgmt->u.action.category != WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION) 4635 return true; 4636 4637 if (mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_REQUEST || 4638 mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_RESPONSE) 4639 return false; 4640 4641 return true; 4642 } 4643 4644 /** 4645 * _ieee80211_is_robust_mgmt_frame - check if frame is a robust management frame 4646 * @hdr: the frame (buffer must include at least the first octet of payload) 4647 * Return: whether or not the frame is a robust management frame 4648 */ 4649 static inline bool _ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr *hdr) 4650 { 4651 if (ieee80211_is_disassoc(hdr->frame_control) || 4652 ieee80211_is_deauth(hdr->frame_control)) 4653 return true; 4654 4655 if (ieee80211_is_action(hdr->frame_control)) { 4656 u8 *category; 4657 4658 /* 4659 * Action frames, excluding Public Action frames, are Robust 4660 * Management Frames. However, if we are looking at a Protected 4661 * frame, skip the check since the data may be encrypted and 4662 * the frame has already been found to be a Robust Management 4663 * Frame (by the other end). 4664 */ 4665 if (ieee80211_has_protected(hdr->frame_control)) 4666 return true; 4667 category = ((u8 *) hdr) + 24; 4668 return *category != WLAN_CATEGORY_PUBLIC && 4669 *category != WLAN_CATEGORY_HT && 4670 *category != WLAN_CATEGORY_WNM_UNPROTECTED && 4671 *category != WLAN_CATEGORY_SELF_PROTECTED && 4672 *category != WLAN_CATEGORY_UNPROT_DMG && 4673 *category != WLAN_CATEGORY_VHT && 4674 *category != WLAN_CATEGORY_S1G && 4675 *category != WLAN_CATEGORY_VENDOR_SPECIFIC; 4676 } 4677 4678 return false; 4679 } 4680 4681 /** 4682 * ieee80211_is_robust_mgmt_frame - check if skb contains a robust mgmt frame 4683 * @skb: the skb containing the frame, length will be checked 4684 * Return: whether or not the frame is a robust management frame 4685 */ 4686 static inline bool ieee80211_is_robust_mgmt_frame(struct sk_buff *skb) 4687 { 4688 if (skb->len < IEEE80211_MIN_ACTION_SIZE) 4689 return false; 4690 return _ieee80211_is_robust_mgmt_frame((void *)skb->data); 4691 } 4692 4693 /** 4694 * ieee80211_is_public_action - check if frame is a public action frame 4695 * @hdr: the frame 4696 * @len: length of the frame 4697 * Return: whether or not the frame is a public action frame 4698 */ 4699 static inline bool ieee80211_is_public_action(struct ieee80211_hdr *hdr, 4700 size_t len) 4701 { 4702 struct ieee80211_mgmt *mgmt = (void *)hdr; 4703 4704 if (len < IEEE80211_MIN_ACTION_SIZE) 4705 return false; 4706 if (!ieee80211_is_action(hdr->frame_control)) 4707 return false; 4708 return mgmt->u.action.category == WLAN_CATEGORY_PUBLIC; 4709 } 4710 4711 /** 4712 * ieee80211_is_protected_dual_of_public_action - check if skb contains a 4713 * protected dual of public action management frame 4714 * @skb: the skb containing the frame, length will be checked 4715 * 4716 * Return: true if the skb contains a protected dual of public action 4717 * management frame, false otherwise. 4718 */ 4719 static inline bool 4720 ieee80211_is_protected_dual_of_public_action(struct sk_buff *skb) 4721 { 4722 u8 action; 4723 4724 if (!ieee80211_is_public_action((void *)skb->data, skb->len) || 4725 skb->len < IEEE80211_MIN_ACTION_SIZE + 1) 4726 return false; 4727 4728 action = *(u8 *)(skb->data + IEEE80211_MIN_ACTION_SIZE); 4729 4730 return action != WLAN_PUB_ACTION_20_40_BSS_COEX && 4731 action != WLAN_PUB_ACTION_DSE_REG_LOC_ANN && 4732 action != WLAN_PUB_ACTION_MSMT_PILOT && 4733 action != WLAN_PUB_ACTION_TDLS_DISCOVER_RES && 4734 action != WLAN_PUB_ACTION_LOC_TRACK_NOTI && 4735 action != WLAN_PUB_ACTION_FTM_REQUEST && 4736 action != WLAN_PUB_ACTION_FTM_RESPONSE && 4737 action != WLAN_PUB_ACTION_FILS_DISCOVERY && 4738 action != WLAN_PUB_ACTION_VENDOR_SPECIFIC; 4739 } 4740 4741 /** 4742 * _ieee80211_is_group_privacy_action - check if frame is a group addressed 4743 * privacy action frame 4744 * @hdr: the frame 4745 * Return: whether or not the frame is a group addressed privacy action frame 4746 */ 4747 static inline bool _ieee80211_is_group_privacy_action(struct ieee80211_hdr *hdr) 4748 { 4749 struct ieee80211_mgmt *mgmt = (void *)hdr; 4750 4751 if (!ieee80211_is_action(hdr->frame_control) || 4752 !is_multicast_ether_addr(hdr->addr1)) 4753 return false; 4754 4755 return mgmt->u.action.category == WLAN_CATEGORY_MESH_ACTION || 4756 mgmt->u.action.category == WLAN_CATEGORY_MULTIHOP_ACTION; 4757 } 4758 4759 /** 4760 * ieee80211_is_group_privacy_action - check if frame is a group addressed 4761 * privacy action frame 4762 * @skb: the skb containing the frame, length will be checked 4763 * Return: whether or not the frame is a group addressed privacy action frame 4764 */ 4765 static inline bool ieee80211_is_group_privacy_action(struct sk_buff *skb) 4766 { 4767 if (skb->len < IEEE80211_MIN_ACTION_SIZE) 4768 return false; 4769 return _ieee80211_is_group_privacy_action((void *)skb->data); 4770 } 4771 4772 /** 4773 * ieee80211_tu_to_usec - convert time units (TU) to microseconds 4774 * @tu: the TUs 4775 * Return: the time value converted to microseconds 4776 */ 4777 static inline unsigned long ieee80211_tu_to_usec(unsigned long tu) 4778 { 4779 return 1024 * tu; 4780 } 4781 4782 static inline bool __ieee80211_check_tim(const struct ieee80211_tim_ie *tim, 4783 u8 tim_len, u16 aid) 4784 { 4785 u8 mask; 4786 u8 index, indexn1, indexn2; 4787 4788 if (unlikely(!tim || tim_len < sizeof(*tim))) 4789 return false; 4790 4791 aid &= 0x3fff; 4792 index = aid / 8; 4793 mask = 1 << (aid & 7); 4794 4795 indexn1 = tim->bitmap_ctrl & 0xfe; 4796 indexn2 = tim_len + indexn1 - 4; 4797 4798 if (index < indexn1 || index > indexn2) 4799 return false; 4800 4801 index -= indexn1; 4802 4803 return !!(tim->virtual_map[index] & mask); 4804 } 4805 4806 struct s1g_tim_aid { 4807 u16 aid; 4808 u8 target_blk; /* Target block index */ 4809 u8 target_subblk; /* Target subblock index */ 4810 u8 target_subblk_bit; /* Target subblock bit */ 4811 }; 4812 4813 struct s1g_tim_enc_block { 4814 u8 enc_mode; 4815 bool inverse; 4816 const u8 *ptr; 4817 u8 len; 4818 4819 /* 4820 * For an OLB encoded block that spans multiple blocks, this 4821 * is the offset into the span described by that encoded block. 4822 */ 4823 u8 olb_blk_offset; 4824 }; 4825 4826 /* 4827 * Helper routines to quickly extract the length of an encoded block. Validation 4828 * is also performed to ensure the length extracted lies within the TIM. 4829 */ 4830 4831 static inline int ieee80211_s1g_len_bitmap(const u8 *ptr, const u8 *end) 4832 { 4833 u8 blkmap; 4834 u8 n_subblks; 4835 4836 if (ptr >= end) 4837 return -EINVAL; 4838 4839 blkmap = *ptr; 4840 n_subblks = hweight8(blkmap); 4841 4842 if (ptr + 1 + n_subblks > end) 4843 return -EINVAL; 4844 4845 return 1 + n_subblks; 4846 } 4847 4848 static inline int ieee80211_s1g_len_single(const u8 *ptr, const u8 *end) 4849 { 4850 return (ptr + 1 > end) ? -EINVAL : 1; 4851 } 4852 4853 static inline int ieee80211_s1g_len_olb(const u8 *ptr, const u8 *end) 4854 { 4855 if (ptr >= end) 4856 return -EINVAL; 4857 4858 return (ptr + 1 + *ptr > end) ? -EINVAL : 1 + *ptr; 4859 } 4860 4861 /* 4862 * Enumerate all encoded blocks until we find the encoded block that describes 4863 * our target AID. OLB is a special case as a single encoded block can describe 4864 * multiple blocks as a single encoded block. 4865 */ 4866 static inline int ieee80211_s1g_find_target_block(struct s1g_tim_enc_block *enc, 4867 const struct s1g_tim_aid *aid, 4868 const u8 *ptr, const u8 *end) 4869 { 4870 /* need at least block-control octet */ 4871 while (ptr + 1 <= end) { 4872 u8 ctrl = *ptr++; 4873 u8 mode = ctrl & 0x03; 4874 bool contains, inverse = ctrl & BIT(2); 4875 u8 span, blk_off = ctrl >> 3; 4876 int len; 4877 4878 switch (mode) { 4879 case IEEE80211_S1G_TIM_ENC_MODE_BLOCK: 4880 len = ieee80211_s1g_len_bitmap(ptr, end); 4881 contains = blk_off == aid->target_blk; 4882 break; 4883 case IEEE80211_S1G_TIM_ENC_MODE_SINGLE: 4884 len = ieee80211_s1g_len_single(ptr, end); 4885 contains = blk_off == aid->target_blk; 4886 break; 4887 case IEEE80211_S1G_TIM_ENC_MODE_OLB: 4888 len = ieee80211_s1g_len_olb(ptr, end); 4889 /* 4890 * An OLB encoded block can describe more then one 4891 * block, meaning an encoded OLB block can span more 4892 * then a single block. 4893 */ 4894 if (len > 0) { 4895 /* Minus one for the length octet */ 4896 span = DIV_ROUND_UP(len - 1, 8); 4897 /* 4898 * Check if our target block lies within the 4899 * block span described by this encoded block. 4900 */ 4901 contains = (aid->target_blk >= blk_off) && 4902 (aid->target_blk < blk_off + span); 4903 } 4904 break; 4905 default: 4906 return -EOPNOTSUPP; 4907 } 4908 4909 if (len < 0) 4910 return len; 4911 4912 if (contains) { 4913 enc->enc_mode = mode; 4914 enc->inverse = inverse; 4915 enc->ptr = ptr; 4916 enc->len = (u8)len; 4917 enc->olb_blk_offset = blk_off; 4918 return 0; 4919 } 4920 4921 ptr += len; 4922 } 4923 4924 return -ENOENT; 4925 } 4926 4927 static inline bool ieee80211_s1g_parse_bitmap(struct s1g_tim_enc_block *enc, 4928 struct s1g_tim_aid *aid) 4929 { 4930 const u8 *ptr = enc->ptr; 4931 u8 blkmap = *ptr++; 4932 4933 /* 4934 * If our block bitmap does not contain a set bit that corresponds 4935 * to our AID, it could mean a variety of things depending on if 4936 * the encoding mode is inverted or not. 4937 * 4938 * 1. If inverted, it means the entire subblock is present and hence 4939 * our AID has been set. 4940 * 2. If not inverted, it means our subblock is not present and hence 4941 * it is all zero meaning our AID is not set. 4942 */ 4943 if (!(blkmap & BIT(aid->target_subblk))) 4944 return enc->inverse; 4945 4946 /* 4947 * Increment ptr by the number of set subblocks that appear before our 4948 * target subblock. If our target subblock is 0, do nothing as ptr 4949 * already points to our target subblock. 4950 */ 4951 if (aid->target_subblk) 4952 ptr += hweight8(blkmap & GENMASK(aid->target_subblk - 1, 0)); 4953 4954 return !!(*ptr & BIT(aid->target_subblk_bit)) ^ enc->inverse; 4955 } 4956 4957 static inline bool ieee80211_s1g_parse_single(struct s1g_tim_enc_block *enc, 4958 struct s1g_tim_aid *aid) 4959 { 4960 /* 4961 * Single AID mode describes, as the name suggests, a single AID 4962 * within the block described by the encoded block. The octet 4963 * contains the 6 LSBs of the AID described in the block. The other 4964 * 2 bits are reserved. When inversed, every single AID described 4965 * by the current block have buffered traffic except for the AID 4966 * described in the single AID octet. 4967 */ 4968 return ((*enc->ptr & 0x3f) == (aid->aid & 0x3f)) ^ enc->inverse; 4969 } 4970 4971 static inline bool ieee80211_s1g_parse_olb(struct s1g_tim_enc_block *enc, 4972 struct s1g_tim_aid *aid) 4973 { 4974 const u8 *ptr = enc->ptr; 4975 u8 blk_len = *ptr++; 4976 /* 4977 * Given an OLB encoded block that describes multiple blocks, 4978 * calculate the offset into the span. Then calculate the 4979 * subblock location normally. 4980 */ 4981 u16 span_offset = aid->target_blk - enc->olb_blk_offset; 4982 u16 subblk_idx = span_offset * 8 + aid->target_subblk; 4983 4984 if (subblk_idx >= blk_len) 4985 return enc->inverse; 4986 4987 return !!(ptr[subblk_idx] & BIT(aid->target_subblk_bit)) ^ enc->inverse; 4988 } 4989 4990 /* 4991 * An S1G PVB has 3 non optional encoding types, each that can be inverted. 4992 * An S1G PVB is constructed with zero or more encoded block subfields. Each 4993 * encoded block represents a single "block" of AIDs (64), and each encoded 4994 * block can contain one of the 3 encoding types alongside a single bit for 4995 * whether the bits should be inverted. 4996 * 4997 * As the standard makes no guarantee about the ordering of encoded blocks, 4998 * we must parse every encoded block in the worst case scenario given an 4999 * AID that lies within the last block. 5000 */ 5001 static inline bool ieee80211_s1g_check_tim(const struct ieee80211_tim_ie *tim, 5002 u8 tim_len, u16 aid) 5003 { 5004 int err; 5005 struct s1g_tim_aid target_aid; 5006 struct s1g_tim_enc_block enc_blk; 5007 5008 if (tim_len < 3) 5009 return false; 5010 5011 target_aid.aid = aid; 5012 target_aid.target_blk = (aid >> 6) & 0x1f; 5013 target_aid.target_subblk = (aid >> 3) & 0x7; 5014 target_aid.target_subblk_bit = aid & 0x7; 5015 5016 /* 5017 * Find our AIDs target encoded block and fill &enc_blk with the 5018 * encoded blocks information. If no entry is found or an error 5019 * occurs return false. 5020 */ 5021 err = ieee80211_s1g_find_target_block(&enc_blk, &target_aid, 5022 tim->virtual_map, 5023 (const u8 *)tim + tim_len + 2); 5024 if (err) 5025 return false; 5026 5027 switch (enc_blk.enc_mode) { 5028 case IEEE80211_S1G_TIM_ENC_MODE_BLOCK: 5029 return ieee80211_s1g_parse_bitmap(&enc_blk, &target_aid); 5030 case IEEE80211_S1G_TIM_ENC_MODE_SINGLE: 5031 return ieee80211_s1g_parse_single(&enc_blk, &target_aid); 5032 case IEEE80211_S1G_TIM_ENC_MODE_OLB: 5033 return ieee80211_s1g_parse_olb(&enc_blk, &target_aid); 5034 default: 5035 return false; 5036 } 5037 } 5038 5039 /** 5040 * ieee80211_check_tim - check if AID bit is set in TIM 5041 * @tim: the TIM IE 5042 * @tim_len: length of the TIM IE 5043 * @aid: the AID to look for 5044 * @s1g: whether the TIM is from an S1G PPDU 5045 * Return: whether or not traffic is indicated in the TIM for the given AID 5046 */ 5047 static inline bool ieee80211_check_tim(const struct ieee80211_tim_ie *tim, 5048 u8 tim_len, u16 aid, bool s1g) 5049 { 5050 return s1g ? ieee80211_s1g_check_tim(tim, tim_len, aid) : 5051 __ieee80211_check_tim(tim, tim_len, aid); 5052 } 5053 5054 /** 5055 * ieee80211_get_tdls_action - get TDLS action code 5056 * @skb: the skb containing the frame, length will not be checked 5057 * Return: the TDLS action code, or -1 if it's not an encapsulated TDLS action 5058 * frame 5059 * 5060 * This function assumes the frame is a data frame, and that the network header 5061 * is in the correct place. 5062 */ 5063 static inline int ieee80211_get_tdls_action(struct sk_buff *skb) 5064 { 5065 if (!skb_is_nonlinear(skb) && 5066 skb->len > (skb_network_offset(skb) + 2)) { 5067 /* Point to where the indication of TDLS should start */ 5068 const u8 *tdls_data = skb_network_header(skb) - 2; 5069 5070 if (get_unaligned_be16(tdls_data) == ETH_P_TDLS && 5071 tdls_data[2] == WLAN_TDLS_SNAP_RFTYPE && 5072 tdls_data[3] == WLAN_CATEGORY_TDLS) 5073 return tdls_data[4]; 5074 } 5075 5076 return -1; 5077 } 5078 5079 /* convert time units */ 5080 #define TU_TO_JIFFIES(x) (usecs_to_jiffies((x) * 1024)) 5081 #define TU_TO_EXP_TIME(x) (jiffies + TU_TO_JIFFIES(x)) 5082 5083 /* convert frequencies */ 5084 #define MHZ_TO_KHZ(freq) ((freq) * 1000) 5085 #define KHZ_TO_MHZ(freq) ((freq) / 1000) 5086 #define PR_KHZ(f) KHZ_TO_MHZ(f), f % 1000 5087 #define KHZ_F "%d.%03d" 5088 5089 /* convert powers */ 5090 #define DBI_TO_MBI(gain) ((gain) * 100) 5091 #define MBI_TO_DBI(gain) ((gain) / 100) 5092 #define DBM_TO_MBM(gain) ((gain) * 100) 5093 #define MBM_TO_DBM(gain) ((gain) / 100) 5094 5095 /** 5096 * ieee80211_action_contains_tpc - checks if the frame contains TPC element 5097 * @skb: the skb containing the frame, length will be checked 5098 * Return: %true if the frame contains a TPC element, %false otherwise 5099 * 5100 * This function checks if it's either TPC report action frame or Link 5101 * Measurement report action frame as defined in IEEE Std. 802.11-2012 8.5.2.5 5102 * and 8.5.7.5 accordingly. 5103 */ 5104 static inline bool ieee80211_action_contains_tpc(struct sk_buff *skb) 5105 { 5106 struct ieee80211_mgmt *mgmt = (void *)skb->data; 5107 5108 if (!ieee80211_is_action(mgmt->frame_control)) 5109 return false; 5110 5111 if (skb->len < IEEE80211_MIN_ACTION_SIZE + 5112 sizeof(mgmt->u.action.u.tpc_report)) 5113 return false; 5114 5115 /* 5116 * TPC report - check that: 5117 * category = 0 (Spectrum Management) or 5 (Radio Measurement) 5118 * spectrum management action = 3 (TPC/Link Measurement report) 5119 * TPC report EID = 35 5120 * TPC report element length = 2 5121 * 5122 * The spectrum management's tpc_report struct is used here both for 5123 * parsing tpc_report and radio measurement's link measurement report 5124 * frame, since the relevant part is identical in both frames. 5125 */ 5126 if (mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT && 5127 mgmt->u.action.category != WLAN_CATEGORY_RADIO_MEASUREMENT) 5128 return false; 5129 5130 /* both spectrum mgmt and link measurement have same action code */ 5131 if (mgmt->u.action.u.tpc_report.action_code != 5132 WLAN_ACTION_SPCT_TPC_RPRT) 5133 return false; 5134 5135 if (mgmt->u.action.u.tpc_report.tpc_elem_id != WLAN_EID_TPC_REPORT || 5136 mgmt->u.action.u.tpc_report.tpc_elem_length != 5137 sizeof(struct ieee80211_tpc_report_ie)) 5138 return false; 5139 5140 return true; 5141 } 5142 5143 /** 5144 * ieee80211_is_timing_measurement - check if frame is timing measurement response 5145 * @skb: the SKB to check 5146 * Return: whether or not the frame is a valid timing measurement response 5147 */ 5148 static inline bool ieee80211_is_timing_measurement(struct sk_buff *skb) 5149 { 5150 struct ieee80211_mgmt *mgmt = (void *)skb->data; 5151 5152 if (skb->len < IEEE80211_MIN_ACTION_SIZE) 5153 return false; 5154 5155 if (!ieee80211_is_action(mgmt->frame_control)) 5156 return false; 5157 5158 if (mgmt->u.action.category == WLAN_CATEGORY_WNM_UNPROTECTED && 5159 mgmt->u.action.u.wnm_timing_msr.action_code == 5160 WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE && 5161 skb->len >= offsetofend(typeof(*mgmt), u.action.u.wnm_timing_msr)) 5162 return true; 5163 5164 return false; 5165 } 5166 5167 /** 5168 * ieee80211_is_ftm - check if frame is FTM response 5169 * @skb: the SKB to check 5170 * Return: whether or not the frame is a valid FTM response action frame 5171 */ 5172 static inline bool ieee80211_is_ftm(struct sk_buff *skb) 5173 { 5174 struct ieee80211_mgmt *mgmt = (void *)skb->data; 5175 5176 if (!ieee80211_is_public_action((void *)mgmt, skb->len)) 5177 return false; 5178 5179 if (mgmt->u.action.u.ftm.action_code == 5180 WLAN_PUB_ACTION_FTM_RESPONSE && 5181 skb->len >= offsetofend(typeof(*mgmt), u.action.u.ftm)) 5182 return true; 5183 5184 return false; 5185 } 5186 5187 /** 5188 * ieee80211_is_s1g_short_beacon - check if frame is an S1G short beacon 5189 * @fc: frame control bytes in little-endian byteorder 5190 * @variable: pointer to the beacon frame elements 5191 * @variable_len: length of the frame elements 5192 * Return: whether or not the frame is an S1G short beacon. As per 5193 * IEEE80211-2024 11.1.3.10.1, The S1G beacon compatibility element shall 5194 * always be present as the first element in beacon frames generated at a 5195 * TBTT (Target Beacon Transmission Time), so any frame not containing 5196 * this element must have been generated at a TSBTT (Target Short Beacon 5197 * Transmission Time) that is not a TBTT. Additionally, short beacons are 5198 * prohibited from containing the S1G beacon compatibility element as per 5199 * IEEE80211-2024 9.3.4.3 Table 9-76, so if we have an S1G beacon with 5200 * either no elements or the first element is not the beacon compatibility 5201 * element, we have a short beacon. 5202 */ 5203 static inline bool ieee80211_is_s1g_short_beacon(__le16 fc, const u8 *variable, 5204 size_t variable_len) 5205 { 5206 if (!ieee80211_is_s1g_beacon(fc)) 5207 return false; 5208 5209 /* 5210 * If the frame does not contain at least 1 element (this is perfectly 5211 * valid in a short beacon) and is an S1G beacon, we have a short 5212 * beacon. 5213 */ 5214 if (variable_len < 2) 5215 return true; 5216 5217 return variable[0] != WLAN_EID_S1G_BCN_COMPAT; 5218 } 5219 5220 struct element { 5221 u8 id; 5222 u8 datalen; 5223 u8 data[]; 5224 } __packed; 5225 5226 /* element iteration helpers */ 5227 #define for_each_element(_elem, _data, _datalen) \ 5228 for (_elem = (const struct element *)(_data); \ 5229 (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \ 5230 (int)sizeof(*_elem) && \ 5231 (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \ 5232 (int)sizeof(*_elem) + _elem->datalen; \ 5233 _elem = (const struct element *)(_elem->data + _elem->datalen)) 5234 5235 #define for_each_element_id(element, _id, data, datalen) \ 5236 for_each_element(element, data, datalen) \ 5237 if (element->id == (_id)) 5238 5239 #define for_each_element_extid(element, extid, _data, _datalen) \ 5240 for_each_element(element, _data, _datalen) \ 5241 if (element->id == WLAN_EID_EXTENSION && \ 5242 element->datalen > 0 && \ 5243 element->data[0] == (extid)) 5244 5245 #define for_each_subelement(sub, element) \ 5246 for_each_element(sub, (element)->data, (element)->datalen) 5247 5248 #define for_each_subelement_id(sub, id, element) \ 5249 for_each_element_id(sub, id, (element)->data, (element)->datalen) 5250 5251 #define for_each_subelement_extid(sub, extid, element) \ 5252 for_each_element_extid(sub, extid, (element)->data, (element)->datalen) 5253 5254 /** 5255 * for_each_element_completed - determine if element parsing consumed all data 5256 * @element: element pointer after for_each_element() or friends 5257 * @data: same data pointer as passed to for_each_element() or friends 5258 * @datalen: same data length as passed to for_each_element() or friends 5259 * Return: %true if all elements were iterated, %false otherwise; see notes 5260 * 5261 * This function returns %true if all the data was parsed or considered 5262 * while walking the elements. Only use this if your for_each_element() 5263 * loop cannot be broken out of, otherwise it always returns %false. 5264 * 5265 * If some data was malformed, this returns %false since the last parsed 5266 * element will not fill the whole remaining data. 5267 */ 5268 static inline bool for_each_element_completed(const struct element *element, 5269 const void *data, size_t datalen) 5270 { 5271 return (const u8 *)element == (const u8 *)data + datalen; 5272 } 5273 5274 /* 5275 * RSNX Capabilities: 5276 * bits 0-3: Field length (n-1) 5277 */ 5278 #define WLAN_RSNX_CAPA_PROTECTED_TWT BIT(4) 5279 #define WLAN_RSNX_CAPA_SAE_H2E BIT(5) 5280 5281 /* 5282 * reduced neighbor report, based on Draft P802.11ax_D6.1, 5283 * section 9.4.2.170 and accepted contributions. 5284 */ 5285 #define IEEE80211_AP_INFO_TBTT_HDR_TYPE 0x03 5286 #define IEEE80211_AP_INFO_TBTT_HDR_FILTERED 0x04 5287 #define IEEE80211_AP_INFO_TBTT_HDR_COLOC 0x08 5288 #define IEEE80211_AP_INFO_TBTT_HDR_COUNT 0xF0 5289 #define IEEE80211_TBTT_INFO_TYPE_TBTT 0 5290 #define IEEE80211_TBTT_INFO_TYPE_MLD 1 5291 5292 #define IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED 0x01 5293 #define IEEE80211_RNR_TBTT_PARAMS_SAME_SSID 0x02 5294 #define IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID 0x04 5295 #define IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID 0x08 5296 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS 0x10 5297 #define IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE 0x20 5298 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_AP 0x40 5299 5300 #define IEEE80211_RNR_TBTT_PARAMS_PSD_NO_LIMIT 127 5301 #define IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED -128 5302 5303 struct ieee80211_neighbor_ap_info { 5304 u8 tbtt_info_hdr; 5305 u8 tbtt_info_len; 5306 u8 op_class; 5307 u8 channel; 5308 } __packed; 5309 5310 enum ieee80211_range_params_max_total_ltf { 5311 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_4 = 0, 5312 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_8, 5313 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_16, 5314 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_UNSPECIFIED, 5315 }; 5316 5317 /* 5318 * reduced neighbor report, based on Draft P802.11be_D3.0, 5319 * section 9.4.2.170.2. 5320 */ 5321 struct ieee80211_rnr_mld_params { 5322 u8 mld_id; 5323 __le16 params; 5324 } __packed; 5325 5326 #define IEEE80211_RNR_MLD_PARAMS_LINK_ID 0x000F 5327 #define IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT 0x0FF0 5328 #define IEEE80211_RNR_MLD_PARAMS_UPDATES_INCLUDED 0x1000 5329 #define IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK 0x2000 5330 5331 /* Format of the TBTT information element if it has 7, 8 or 9 bytes */ 5332 struct ieee80211_tbtt_info_7_8_9 { 5333 u8 tbtt_offset; 5334 u8 bssid[ETH_ALEN]; 5335 5336 /* The following element is optional, structure may not grow */ 5337 u8 bss_params; 5338 s8 psd_20; 5339 } __packed; 5340 5341 /* Format of the TBTT information element if it has >= 11 bytes */ 5342 struct ieee80211_tbtt_info_ge_11 { 5343 u8 tbtt_offset; 5344 u8 bssid[ETH_ALEN]; 5345 __le32 short_ssid; 5346 5347 /* The following elements are optional, structure may grow */ 5348 u8 bss_params; 5349 s8 psd_20; 5350 struct ieee80211_rnr_mld_params mld_params; 5351 } __packed; 5352 5353 /* multi-link device */ 5354 #define IEEE80211_MLD_MAX_NUM_LINKS 15 5355 5356 #define IEEE80211_ML_CONTROL_TYPE 0x0007 5357 #define IEEE80211_ML_CONTROL_TYPE_BASIC 0 5358 #define IEEE80211_ML_CONTROL_TYPE_PREQ 1 5359 #define IEEE80211_ML_CONTROL_TYPE_RECONF 2 5360 #define IEEE80211_ML_CONTROL_TYPE_TDLS 3 5361 #define IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS 4 5362 #define IEEE80211_ML_CONTROL_PRESENCE_MASK 0xfff0 5363 5364 struct ieee80211_multi_link_elem { 5365 __le16 control; 5366 u8 variable[]; 5367 } __packed; 5368 5369 #define IEEE80211_MLC_BASIC_PRES_LINK_ID 0x0010 5370 #define IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT 0x0020 5371 #define IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY 0x0040 5372 #define IEEE80211_MLC_BASIC_PRES_EML_CAPA 0x0080 5373 #define IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP 0x0100 5374 #define IEEE80211_MLC_BASIC_PRES_MLD_ID 0x0200 5375 #define IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP 0x0400 5376 5377 #define IEEE80211_MED_SYNC_DELAY_DURATION 0x00ff 5378 #define IEEE80211_MED_SYNC_DELAY_SYNC_OFDM_ED_THRESH 0x0f00 5379 #define IEEE80211_MED_SYNC_DELAY_SYNC_MAX_NUM_TXOPS 0xf000 5380 5381 /* 5382 * Described in P802.11be_D3.0 5383 * dot11MSDTimerDuration should default to 5484 (i.e. 171.375) 5384 * dot11MSDOFDMEDthreshold defaults to -72 (i.e. 0) 5385 * dot11MSDTXOPMAX defaults to 1 5386 */ 5387 #define IEEE80211_MED_SYNC_DELAY_DEFAULT 0x10ac 5388 5389 #define IEEE80211_EML_CAP_EMLSR_SUPP 0x0001 5390 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY 0x000e 5391 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_0US 0 5392 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_32US 1 5393 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_64US 2 5394 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_128US 3 5395 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_256US 4 5396 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY 0x0070 5397 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_0US 0 5398 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_16US 1 5399 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_32US 2 5400 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_64US 3 5401 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_128US 4 5402 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_256US 5 5403 #define IEEE80211_EML_CAP_EMLMR_SUPPORT 0x0080 5404 #define IEEE80211_EML_CAP_EMLMR_DELAY 0x0700 5405 #define IEEE80211_EML_CAP_EMLMR_DELAY_0US 0 5406 #define IEEE80211_EML_CAP_EMLMR_DELAY_32US 1 5407 #define IEEE80211_EML_CAP_EMLMR_DELAY_64US 2 5408 #define IEEE80211_EML_CAP_EMLMR_DELAY_128US 3 5409 #define IEEE80211_EML_CAP_EMLMR_DELAY_256US 4 5410 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT 0x7800 5411 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_0 0 5412 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128US 1 5413 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_256US 2 5414 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_512US 3 5415 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_1TU 4 5416 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_2TU 5 5417 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_4TU 6 5418 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_8TU 7 5419 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_16TU 8 5420 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_32TU 9 5421 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_64TU 10 5422 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128TU 11 5423 5424 #define IEEE80211_MLD_CAP_OP_MAX_SIMUL_LINKS 0x000f 5425 #define IEEE80211_MLD_CAP_OP_SRS_SUPPORT 0x0010 5426 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP 0x0060 5427 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_NO_SUPP 0 5428 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_SAME 1 5429 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_RESERVED 2 5430 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_DIFF 3 5431 #define IEEE80211_MLD_CAP_OP_FREQ_SEP_TYPE_IND 0x0f80 5432 #define IEEE80211_MLD_CAP_OP_AAR_SUPPORT 0x1000 5433 #define IEEE80211_MLD_CAP_OP_LINK_RECONF_SUPPORT 0x2000 5434 #define IEEE80211_MLD_CAP_OP_ALIGNED_TWT_SUPPORT 0x4000 5435 5436 struct ieee80211_mle_basic_common_info { 5437 u8 len; 5438 u8 mld_mac_addr[ETH_ALEN]; 5439 u8 variable[]; 5440 } __packed; 5441 5442 #define IEEE80211_MLC_PREQ_PRES_MLD_ID 0x0010 5443 5444 struct ieee80211_mle_preq_common_info { 5445 u8 len; 5446 u8 variable[]; 5447 } __packed; 5448 5449 #define IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR 0x0010 5450 #define IEEE80211_MLC_RECONF_PRES_EML_CAPA 0x0020 5451 #define IEEE80211_MLC_RECONF_PRES_MLD_CAPA_OP 0x0040 5452 #define IEEE80211_MLC_RECONF_PRES_EXT_MLD_CAPA_OP 0x0080 5453 5454 /* no fixed fields in RECONF */ 5455 5456 struct ieee80211_mle_tdls_common_info { 5457 u8 len; 5458 u8 ap_mld_mac_addr[ETH_ALEN]; 5459 } __packed; 5460 5461 #define IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR 0x0010 5462 5463 /* no fixed fields in PRIO_ACCESS */ 5464 5465 /** 5466 * ieee80211_mle_common_size - check multi-link element common size 5467 * @data: multi-link element, must already be checked for size using 5468 * ieee80211_mle_size_ok() 5469 * Return: the size of the multi-link element's "common" subfield 5470 */ 5471 static inline u8 ieee80211_mle_common_size(const u8 *data) 5472 { 5473 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5474 u16 control = le16_to_cpu(mle->control); 5475 5476 switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) { 5477 case IEEE80211_ML_CONTROL_TYPE_BASIC: 5478 case IEEE80211_ML_CONTROL_TYPE_PREQ: 5479 case IEEE80211_ML_CONTROL_TYPE_TDLS: 5480 case IEEE80211_ML_CONTROL_TYPE_RECONF: 5481 case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS: 5482 /* 5483 * The length is the first octet pointed by mle->variable so no 5484 * need to add anything 5485 */ 5486 break; 5487 default: 5488 WARN_ON(1); 5489 return 0; 5490 } 5491 5492 return sizeof(*mle) + mle->variable[0]; 5493 } 5494 5495 /** 5496 * ieee80211_mle_get_link_id - returns the link ID 5497 * @data: the basic multi link element 5498 * Return: the link ID, or -1 if not present 5499 * 5500 * The element is assumed to be of the correct type (BASIC) and big enough, 5501 * this must be checked using ieee80211_mle_type_ok(). 5502 */ 5503 static inline int ieee80211_mle_get_link_id(const u8 *data) 5504 { 5505 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5506 u16 control = le16_to_cpu(mle->control); 5507 const u8 *common = mle->variable; 5508 5509 /* common points now at the beginning of ieee80211_mle_basic_common_info */ 5510 common += sizeof(struct ieee80211_mle_basic_common_info); 5511 5512 if (!(control & IEEE80211_MLC_BASIC_PRES_LINK_ID)) 5513 return -1; 5514 5515 return *common; 5516 } 5517 5518 /** 5519 * ieee80211_mle_get_bss_param_ch_cnt - returns the BSS parameter change count 5520 * @data: pointer to the basic multi link element 5521 * Return: the BSS Parameter Change Count field value, or -1 if not present 5522 * 5523 * The element is assumed to be of the correct type (BASIC) and big enough, 5524 * this must be checked using ieee80211_mle_type_ok(). 5525 */ 5526 static inline int 5527 ieee80211_mle_get_bss_param_ch_cnt(const u8 *data) 5528 { 5529 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5530 u16 control = le16_to_cpu(mle->control); 5531 const u8 *common = mle->variable; 5532 5533 /* common points now at the beginning of ieee80211_mle_basic_common_info */ 5534 common += sizeof(struct ieee80211_mle_basic_common_info); 5535 5536 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)) 5537 return -1; 5538 5539 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5540 common += 1; 5541 5542 return *common; 5543 } 5544 5545 /** 5546 * ieee80211_mle_get_eml_med_sync_delay - returns the medium sync delay 5547 * @data: pointer to the multi-link element 5548 * Return: the medium synchronization delay field value from the multi-link 5549 * element, or the default value (%IEEE80211_MED_SYNC_DELAY_DEFAULT) 5550 * if not present 5551 * 5552 * The element is assumed to be of the correct type (BASIC) and big enough, 5553 * this must be checked using ieee80211_mle_type_ok(). 5554 */ 5555 static inline u16 ieee80211_mle_get_eml_med_sync_delay(const u8 *data) 5556 { 5557 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5558 u16 control = le16_to_cpu(mle->control); 5559 const u8 *common = mle->variable; 5560 5561 /* common points now at the beginning of ieee80211_mle_basic_common_info */ 5562 common += sizeof(struct ieee80211_mle_basic_common_info); 5563 5564 if (!(control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)) 5565 return IEEE80211_MED_SYNC_DELAY_DEFAULT; 5566 5567 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5568 common += 1; 5569 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) 5570 common += 1; 5571 5572 return get_unaligned_le16(common); 5573 } 5574 5575 /** 5576 * ieee80211_mle_get_eml_cap - returns the EML capability 5577 * @data: pointer to the multi-link element 5578 * Return: the EML capability field value from the multi-link element, 5579 * or 0 if not present 5580 * 5581 * The element is assumed to be of the correct type (BASIC) and big enough, 5582 * this must be checked using ieee80211_mle_type_ok(). 5583 */ 5584 static inline u16 ieee80211_mle_get_eml_cap(const u8 *data) 5585 { 5586 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5587 u16 control = le16_to_cpu(mle->control); 5588 const u8 *common = mle->variable; 5589 5590 /* common points now at the beginning of ieee80211_mle_basic_common_info */ 5591 common += sizeof(struct ieee80211_mle_basic_common_info); 5592 5593 if (!(control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)) 5594 return 0; 5595 5596 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5597 common += 1; 5598 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) 5599 common += 1; 5600 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY) 5601 common += 2; 5602 5603 return get_unaligned_le16(common); 5604 } 5605 5606 /** 5607 * ieee80211_mle_get_mld_capa_op - returns the MLD capabilities and operations. 5608 * @data: pointer to the multi-link element 5609 * Return: the MLD capabilities and operations field value from the multi-link 5610 * element, or 0 if not present 5611 * 5612 * The element is assumed to be of the correct type (BASIC) and big enough, 5613 * this must be checked using ieee80211_mle_type_ok(). 5614 */ 5615 static inline u16 ieee80211_mle_get_mld_capa_op(const u8 *data) 5616 { 5617 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5618 u16 control = le16_to_cpu(mle->control); 5619 const u8 *common = mle->variable; 5620 5621 /* 5622 * common points now at the beginning of 5623 * ieee80211_mle_basic_common_info 5624 */ 5625 common += sizeof(struct ieee80211_mle_basic_common_info); 5626 5627 if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)) 5628 return 0; 5629 5630 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5631 common += 1; 5632 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) 5633 common += 1; 5634 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY) 5635 common += 2; 5636 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA) 5637 common += 2; 5638 5639 return get_unaligned_le16(common); 5640 } 5641 5642 /* Defined in Figure 9-1074t in P802.11be_D7.0 */ 5643 #define IEEE80211_EHT_ML_EXT_MLD_CAPA_OP_PARAM_UPDATE 0x0001 5644 #define IEEE80211_EHT_ML_EXT_MLD_CAPA_OP_RECO_MAX_LINKS_MASK 0x001e 5645 #define IEEE80211_EHT_ML_EXT_MLD_CAPA_NSTR_UPDATE 0x0020 5646 #define IEEE80211_EHT_ML_EXT_MLD_CAPA_EMLSR_ENA_ON_ONE_LINK 0x0040 5647 #define IEEE80211_EHT_ML_EXT_MLD_CAPA_BTM_MLD_RECO_MULTI_AP 0x0080 5648 5649 /** 5650 * ieee80211_mle_get_ext_mld_capa_op - returns the extended MLD capabilities 5651 * and operations. 5652 * @data: pointer to the multi-link element 5653 * Return: the extended MLD capabilities and operations field value from 5654 * the multi-link element, or 0 if not present 5655 * 5656 * The element is assumed to be of the correct type (BASIC) and big enough, 5657 * this must be checked using ieee80211_mle_type_ok(). 5658 */ 5659 static inline u16 ieee80211_mle_get_ext_mld_capa_op(const u8 *data) 5660 { 5661 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5662 u16 control = le16_to_cpu(mle->control); 5663 const u8 *common = mle->variable; 5664 5665 /* 5666 * common points now at the beginning of 5667 * ieee80211_mle_basic_common_info 5668 */ 5669 common += sizeof(struct ieee80211_mle_basic_common_info); 5670 5671 if (!(control & IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP)) 5672 return 0; 5673 5674 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5675 common += 1; 5676 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) 5677 common += 1; 5678 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY) 5679 common += 2; 5680 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA) 5681 common += 2; 5682 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP) 5683 common += 2; 5684 if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID) 5685 common += 1; 5686 5687 return get_unaligned_le16(common); 5688 } 5689 5690 /** 5691 * ieee80211_mle_get_mld_id - returns the MLD ID 5692 * @data: pointer to the multi-link element 5693 * Return: The MLD ID in the given multi-link element, or 0 if not present 5694 * 5695 * The element is assumed to be of the correct type (BASIC) and big enough, 5696 * this must be checked using ieee80211_mle_type_ok(). 5697 */ 5698 static inline u8 ieee80211_mle_get_mld_id(const u8 *data) 5699 { 5700 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5701 u16 control = le16_to_cpu(mle->control); 5702 const u8 *common = mle->variable; 5703 5704 /* 5705 * common points now at the beginning of 5706 * ieee80211_mle_basic_common_info 5707 */ 5708 common += sizeof(struct ieee80211_mle_basic_common_info); 5709 5710 if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_ID)) 5711 return 0; 5712 5713 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5714 common += 1; 5715 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) 5716 common += 1; 5717 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY) 5718 common += 2; 5719 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA) 5720 common += 2; 5721 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP) 5722 common += 2; 5723 5724 return *common; 5725 } 5726 5727 /** 5728 * ieee80211_mle_size_ok - validate multi-link element size 5729 * @data: pointer to the element data 5730 * @len: length of the containing element 5731 * Return: whether or not the multi-link element size is OK 5732 */ 5733 static inline bool ieee80211_mle_size_ok(const u8 *data, size_t len) 5734 { 5735 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5736 u8 fixed = sizeof(*mle); 5737 u8 common = 0; 5738 bool check_common_len = false; 5739 u16 control; 5740 5741 if (!data || len < fixed) 5742 return false; 5743 5744 control = le16_to_cpu(mle->control); 5745 5746 switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) { 5747 case IEEE80211_ML_CONTROL_TYPE_BASIC: 5748 common += sizeof(struct ieee80211_mle_basic_common_info); 5749 check_common_len = true; 5750 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5751 common += 1; 5752 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) 5753 common += 1; 5754 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY) 5755 common += 2; 5756 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA) 5757 common += 2; 5758 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP) 5759 common += 2; 5760 if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID) 5761 common += 1; 5762 if (control & IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP) 5763 common += 2; 5764 break; 5765 case IEEE80211_ML_CONTROL_TYPE_PREQ: 5766 common += sizeof(struct ieee80211_mle_preq_common_info); 5767 if (control & IEEE80211_MLC_PREQ_PRES_MLD_ID) 5768 common += 1; 5769 check_common_len = true; 5770 break; 5771 case IEEE80211_ML_CONTROL_TYPE_RECONF: 5772 if (control & IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR) 5773 common += ETH_ALEN; 5774 if (control & IEEE80211_MLC_RECONF_PRES_EML_CAPA) 5775 common += 2; 5776 if (control & IEEE80211_MLC_RECONF_PRES_MLD_CAPA_OP) 5777 common += 2; 5778 if (control & IEEE80211_MLC_RECONF_PRES_EXT_MLD_CAPA_OP) 5779 common += 2; 5780 break; 5781 case IEEE80211_ML_CONTROL_TYPE_TDLS: 5782 common += sizeof(struct ieee80211_mle_tdls_common_info); 5783 check_common_len = true; 5784 break; 5785 case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS: 5786 common = ETH_ALEN + 1; 5787 break; 5788 default: 5789 /* we don't know this type */ 5790 return true; 5791 } 5792 5793 if (len < fixed + common) 5794 return false; 5795 5796 if (!check_common_len) 5797 return true; 5798 5799 /* if present, common length is the first octet there */ 5800 return mle->variable[0] >= common; 5801 } 5802 5803 /** 5804 * ieee80211_mle_type_ok - validate multi-link element type and size 5805 * @data: pointer to the element data 5806 * @type: expected type of the element 5807 * @len: length of the containing element 5808 * Return: whether or not the multi-link element type matches and size is OK 5809 */ 5810 static inline bool ieee80211_mle_type_ok(const u8 *data, u8 type, size_t len) 5811 { 5812 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5813 u16 control; 5814 5815 if (!ieee80211_mle_size_ok(data, len)) 5816 return false; 5817 5818 control = le16_to_cpu(mle->control); 5819 5820 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) == type) 5821 return true; 5822 5823 return false; 5824 } 5825 5826 enum ieee80211_mle_subelems { 5827 IEEE80211_MLE_SUBELEM_PER_STA_PROFILE = 0, 5828 IEEE80211_MLE_SUBELEM_FRAGMENT = 254, 5829 }; 5830 5831 #define IEEE80211_MLE_STA_CONTROL_LINK_ID 0x000f 5832 #define IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE 0x0010 5833 #define IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT 0x0020 5834 #define IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT 0x0040 5835 #define IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT 0x0080 5836 #define IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT 0x0100 5837 #define IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT 0x0200 5838 #define IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE 0x0400 5839 #define IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT 0x0800 5840 5841 struct ieee80211_mle_per_sta_profile { 5842 __le16 control; 5843 u8 sta_info_len; 5844 u8 variable[]; 5845 } __packed; 5846 5847 /** 5848 * ieee80211_mle_basic_sta_prof_size_ok - validate basic multi-link element sta 5849 * profile size 5850 * @data: pointer to the sub element data 5851 * @len: length of the containing sub element 5852 * Return: %true if the STA profile is large enough, %false otherwise 5853 */ 5854 static inline bool ieee80211_mle_basic_sta_prof_size_ok(const u8 *data, 5855 size_t len) 5856 { 5857 const struct ieee80211_mle_per_sta_profile *prof = (const void *)data; 5858 u16 control; 5859 u8 fixed = sizeof(*prof); 5860 u8 info_len = 1; 5861 5862 if (len < fixed) 5863 return false; 5864 5865 control = le16_to_cpu(prof->control); 5866 5867 if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT) 5868 info_len += 6; 5869 if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) 5870 info_len += 2; 5871 if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) 5872 info_len += 8; 5873 if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT) 5874 info_len += 2; 5875 if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE && 5876 control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) { 5877 if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE) 5878 info_len += 2; 5879 else 5880 info_len += 1; 5881 } 5882 if (control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT) 5883 info_len += 1; 5884 5885 return prof->sta_info_len >= info_len && 5886 fixed + prof->sta_info_len - 1 <= len; 5887 } 5888 5889 /** 5890 * ieee80211_mle_basic_sta_prof_bss_param_ch_cnt - get per-STA profile BSS 5891 * parameter change count 5892 * @prof: the per-STA profile, having been checked with 5893 * ieee80211_mle_basic_sta_prof_size_ok() for the correct length 5894 * 5895 * Return: The BSS parameter change count value if present, 0 otherwise. 5896 */ 5897 static inline u8 5898 ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile *prof) 5899 { 5900 u16 control = le16_to_cpu(prof->control); 5901 const u8 *pos = prof->variable; 5902 5903 if (!(control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT)) 5904 return 0; 5905 5906 if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT) 5907 pos += 6; 5908 if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) 5909 pos += 2; 5910 if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) 5911 pos += 8; 5912 if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT) 5913 pos += 2; 5914 if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE && 5915 control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) { 5916 if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE) 5917 pos += 2; 5918 else 5919 pos += 1; 5920 } 5921 5922 return *pos; 5923 } 5924 5925 #define IEEE80211_MLE_STA_RECONF_CONTROL_LINK_ID 0x000f 5926 #define IEEE80211_MLE_STA_RECONF_CONTROL_COMPLETE_PROFILE 0x0010 5927 #define IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT 0x0020 5928 #define IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT 0x0040 5929 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE 0x0780 5930 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_AP_REM 0 5931 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_OP_PARAM_UPDATE 1 5932 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_ADD_LINK 2 5933 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_DEL_LINK 3 5934 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_NSTR_STATUS 4 5935 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT 0x0800 5936 5937 /** 5938 * ieee80211_mle_reconf_sta_prof_size_ok - validate reconfiguration multi-link 5939 * element sta profile size. 5940 * @data: pointer to the sub element data 5941 * @len: length of the containing sub element 5942 * Return: %true if the STA profile is large enough, %false otherwise 5943 */ 5944 static inline bool ieee80211_mle_reconf_sta_prof_size_ok(const u8 *data, 5945 size_t len) 5946 { 5947 const struct ieee80211_mle_per_sta_profile *prof = (const void *)data; 5948 u16 control; 5949 u8 fixed = sizeof(*prof); 5950 u8 info_len = 1; 5951 5952 if (len < fixed) 5953 return false; 5954 5955 control = le16_to_cpu(prof->control); 5956 5957 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT) 5958 info_len += ETH_ALEN; 5959 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT) 5960 info_len += 2; 5961 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT) 5962 info_len += 2; 5963 5964 return prof->sta_info_len >= info_len && 5965 fixed + prof->sta_info_len - 1 <= len; 5966 } 5967 5968 #define IEEE80211_MLE_STA_EPCS_CONTROL_LINK_ID 0x000f 5969 #define IEEE80211_EPCS_ENA_RESP_BODY_LEN 3 5970 5971 static inline bool ieee80211_tid_to_link_map_size_ok(const u8 *data, size_t len) 5972 { 5973 const struct ieee80211_ttlm_elem *t2l = (const void *)data; 5974 u8 control, fixed = sizeof(*t2l), elem_len = 0; 5975 5976 if (len < fixed) 5977 return false; 5978 5979 control = t2l->control; 5980 5981 if (control & IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT) 5982 elem_len += 2; 5983 if (control & IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT) 5984 elem_len += 3; 5985 5986 if (!(control & IEEE80211_TTLM_CONTROL_DEF_LINK_MAP)) { 5987 u8 bm_size; 5988 5989 elem_len += 1; 5990 if (len < fixed + elem_len) 5991 return false; 5992 5993 if (control & IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE) 5994 bm_size = 1; 5995 else 5996 bm_size = 2; 5997 5998 elem_len += hweight8(t2l->optional[0]) * bm_size; 5999 } 6000 6001 return len >= fixed + elem_len; 6002 } 6003 6004 /** 6005 * ieee80211_emlsr_pad_delay_in_us - Fetch the EMLSR Padding delay 6006 * in microseconds 6007 * @eml_cap: EML capabilities field value from common info field of 6008 * the Multi-link element 6009 * Return: the EMLSR Padding delay (in microseconds) encoded in the 6010 * EML Capabilities field 6011 */ 6012 6013 static inline u32 ieee80211_emlsr_pad_delay_in_us(u16 eml_cap) 6014 { 6015 /* IEEE Std 802.11be-2024 Table 9-417i—Encoding of the EMLSR 6016 * Padding Delay subfield. 6017 */ 6018 u32 pad_delay = u16_get_bits(eml_cap, 6019 IEEE80211_EML_CAP_EMLSR_PADDING_DELAY); 6020 6021 if (!pad_delay || 6022 pad_delay > IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_256US) 6023 return 0; 6024 6025 return 32 * (1 << (pad_delay - 1)); 6026 } 6027 6028 /** 6029 * ieee80211_emlsr_trans_delay_in_us - Fetch the EMLSR Transition 6030 * delay in microseconds 6031 * @eml_cap: EML capabilities field value from common info field of 6032 * the Multi-link element 6033 * Return: the EMLSR Transition delay (in microseconds) encoded in the 6034 * EML Capabilities field 6035 */ 6036 6037 static inline u32 ieee80211_emlsr_trans_delay_in_us(u16 eml_cap) 6038 { 6039 /* IEEE Std 802.11be-2024 Table 9-417j—Encoding of the EMLSR 6040 * Transition Delay subfield. 6041 */ 6042 u32 trans_delay = 6043 u16_get_bits(eml_cap, 6044 IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY); 6045 6046 /* invalid values also just use 0 */ 6047 if (!trans_delay || 6048 trans_delay > IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_256US) 6049 return 0; 6050 6051 return 16 * (1 << (trans_delay - 1)); 6052 } 6053 6054 /** 6055 * ieee80211_eml_trans_timeout_in_us - Fetch the EMLSR Transition 6056 * timeout value in microseconds 6057 * @eml_cap: EML capabilities field value from common info field of 6058 * the Multi-link element 6059 * Return: the EMLSR Transition timeout (in microseconds) encoded in 6060 * the EML Capabilities field 6061 */ 6062 6063 static inline u32 ieee80211_eml_trans_timeout_in_us(u16 eml_cap) 6064 { 6065 /* IEEE Std 802.11be-2024 Table 9-417m—Encoding of the 6066 * Transition Timeout subfield. 6067 */ 6068 u8 timeout = u16_get_bits(eml_cap, 6069 IEEE80211_EML_CAP_TRANSITION_TIMEOUT); 6070 6071 /* invalid values also just use 0 */ 6072 if (!timeout || timeout > IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128TU) 6073 return 0; 6074 6075 return 128 * (1 << (timeout - 1)); 6076 } 6077 6078 #define for_each_mle_subelement(_elem, _data, _len) \ 6079 if (ieee80211_mle_size_ok(_data, _len)) \ 6080 for_each_element(_elem, \ 6081 _data + ieee80211_mle_common_size(_data),\ 6082 _len - ieee80211_mle_common_size(_data)) 6083 6084 /* NAN operation mode, as defined in Wi-Fi Aware (TM) specification Table 81 */ 6085 #define NAN_OP_MODE_PHY_MODE_VHT 0x01 6086 #define NAN_OP_MODE_PHY_MODE_HE 0x10 6087 #define NAN_OP_MODE_PHY_MODE_MASK 0x11 6088 #define NAN_OP_MODE_80P80MHZ 0x02 6089 #define NAN_OP_MODE_160MHZ 0x04 6090 #define NAN_OP_MODE_PNDL_SUPPRTED 0x08 6091 6092 /* NAN Device capabilities, as defined in Wi-Fi Aware (TM) specification 6093 * Table 79 6094 */ 6095 #define NAN_DEV_CAPA_DFS_OWNER 0x01 6096 #define NAN_DEV_CAPA_EXT_KEY_ID_SUPPORTED 0x02 6097 #define NAN_DEV_CAPA_SIM_NDP_RX_SUPPORTED 0x04 6098 #define NAN_DEV_CAPA_NDPE_SUPPORTED 0x08 6099 #define NAN_DEV_CAPA_S3_SUPPORTED 0x10 6100 6101 #endif /* LINUX_IEEE80211_H */ 6102