1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (C) 2023 Intel Corporation */
3
4 #ifndef _IDPF_TXRX_H_
5 #define _IDPF_TXRX_H_
6
7 #include <linux/dim.h>
8
9 #include <net/libeth/cache.h>
10 #include <net/tcp.h>
11 #include <net/netdev_queues.h>
12
13 #include "idpf_lan_txrx.h"
14 #include "virtchnl2_lan_desc.h"
15
16 #define IDPF_LARGE_MAX_Q 256
17 #define IDPF_MAX_Q 16
18 #define IDPF_MIN_Q 2
19 /* Mailbox Queue */
20 #define IDPF_MAX_MBXQ 1
21
22 #define IDPF_MIN_TXQ_DESC 64
23 #define IDPF_MIN_RXQ_DESC 64
24 #define IDPF_MIN_TXQ_COMPLQ_DESC 256
25 #define IDPF_MAX_QIDS 256
26
27 /* Number of descriptors in a queue should be a multiple of 32. RX queue
28 * descriptors alone should be a multiple of IDPF_REQ_RXQ_DESC_MULTIPLE
29 * to achieve BufQ descriptors aligned to 32
30 */
31 #define IDPF_REQ_DESC_MULTIPLE 32
32 #define IDPF_REQ_RXQ_DESC_MULTIPLE (IDPF_MAX_BUFQS_PER_RXQ_GRP * 32)
33 #define IDPF_MIN_TX_DESC_NEEDED (MAX_SKB_FRAGS + 6)
34 #define IDPF_TX_WAKE_THRESH ((u16)IDPF_MIN_TX_DESC_NEEDED * 2)
35
36 #define IDPF_MAX_DESCS 8160
37 #define IDPF_MAX_TXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_DESC_MULTIPLE)
38 #define IDPF_MAX_RXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_RXQ_DESC_MULTIPLE)
39 #define MIN_SUPPORT_TXDID (\
40 VIRTCHNL2_TXDID_FLEX_FLOW_SCHED |\
41 VIRTCHNL2_TXDID_FLEX_TSO_CTX)
42
43 #define IDPF_DFLT_SINGLEQ_TX_Q_GROUPS 1
44 #define IDPF_DFLT_SINGLEQ_RX_Q_GROUPS 1
45 #define IDPF_DFLT_SINGLEQ_TXQ_PER_GROUP 4
46 #define IDPF_DFLT_SINGLEQ_RXQ_PER_GROUP 4
47
48 #define IDPF_COMPLQ_PER_GROUP 1
49 #define IDPF_SINGLE_BUFQ_PER_RXQ_GRP 1
50 #define IDPF_MAX_BUFQS_PER_RXQ_GRP 2
51 #define IDPF_BUFQ2_ENA 1
52 #define IDPF_NUMQ_PER_CHUNK 1
53
54 #define IDPF_DFLT_SPLITQ_TXQ_PER_GROUP 1
55 #define IDPF_DFLT_SPLITQ_RXQ_PER_GROUP 1
56
57 /* Default vector sharing */
58 #define IDPF_MBX_Q_VEC 1
59 #define IDPF_MIN_Q_VEC 1
60
61 #define IDPF_DFLT_TX_Q_DESC_COUNT 512
62 #define IDPF_DFLT_TX_COMPLQ_DESC_COUNT 512
63 #define IDPF_DFLT_RX_Q_DESC_COUNT 512
64
65 /* IMPORTANT: We absolutely _cannot_ have more buffers in the system than a
66 * given RX completion queue has descriptors. This includes _ALL_ buffer
67 * queues. E.g.: If you have two buffer queues of 512 descriptors and buffers,
68 * you have a total of 1024 buffers so your RX queue _must_ have at least that
69 * many descriptors. This macro divides a given number of RX descriptors by
70 * number of buffer queues to calculate how many descriptors each buffer queue
71 * can have without overrunning the RX queue.
72 *
73 * If you give hardware more buffers than completion descriptors what will
74 * happen is that if hardware gets a chance to post more than ring wrap of
75 * descriptors before SW gets an interrupt and overwrites SW head, the gen bit
76 * in the descriptor will be wrong. Any overwritten descriptors' buffers will
77 * be gone forever and SW has no reasonable way to tell that this has happened.
78 * From SW perspective, when we finally get an interrupt, it looks like we're
79 * still waiting for descriptor to be done, stalling forever.
80 */
81 #define IDPF_RX_BUFQ_DESC_COUNT(RXD, NUM_BUFQ) ((RXD) / (NUM_BUFQ))
82
83 #define IDPF_RX_BUFQ_WORKING_SET(rxq) ((rxq)->desc_count - 1)
84
85 #define IDPF_RX_BUMP_NTC(rxq, ntc) \
86 do { \
87 if (unlikely(++(ntc) == (rxq)->desc_count)) { \
88 ntc = 0; \
89 idpf_queue_change(GEN_CHK, rxq); \
90 } \
91 } while (0)
92
93 #define IDPF_SINGLEQ_BUMP_RING_IDX(q, idx) \
94 do { \
95 if (unlikely(++(idx) == (q)->desc_count)) \
96 idx = 0; \
97 } while (0)
98
99 #define IDPF_RX_BUF_STRIDE 32
100 #define IDPF_RX_BUF_POST_STRIDE 16
101 #define IDPF_LOW_WATERMARK 64
102
103 #define IDPF_TX_TSO_MIN_MSS 88
104
105 /* Minimum number of descriptors between 2 descriptors with the RE bit set;
106 * only relevant in flow scheduling mode
107 */
108 #define IDPF_TX_SPLITQ_RE_MIN_GAP 64
109
110 #define IDPF_RX_BI_GEN_M BIT(16)
111 #define IDPF_RX_BI_BUFID_M GENMASK(15, 0)
112
113 #define IDPF_RXD_EOF_SPLITQ VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_EOF_M
114 #define IDPF_RXD_EOF_SINGLEQ VIRTCHNL2_RX_BASE_DESC_STATUS_EOF_M
115
116 #define IDPF_DESC_UNUSED(txq) \
117 ((((txq)->next_to_clean > (txq)->next_to_use) ? 0 : (txq)->desc_count) + \
118 (txq)->next_to_clean - (txq)->next_to_use - 1)
119
120 #define IDPF_TX_BUF_RSV_UNUSED(txq) ((txq)->stash->buf_stack.top)
121 #define IDPF_TX_BUF_RSV_LOW(txq) (IDPF_TX_BUF_RSV_UNUSED(txq) < \
122 (txq)->desc_count >> 2)
123
124 #define IDPF_TX_COMPLQ_OVERFLOW_THRESH(txcq) ((txcq)->desc_count >> 1)
125 /* Determine the absolute number of completions pending, i.e. the number of
126 * completions that are expected to arrive on the TX completion queue.
127 */
128 #define IDPF_TX_COMPLQ_PENDING(txq) \
129 (((txq)->num_completions_pending >= (txq)->complq->num_completions ? \
130 0 : U32_MAX) + \
131 (txq)->num_completions_pending - (txq)->complq->num_completions)
132
133 #define IDPF_TX_SPLITQ_COMPL_TAG_WIDTH 16
134 /* Adjust the generation for the completion tag and wrap if necessary */
135 #define IDPF_TX_ADJ_COMPL_TAG_GEN(txq) \
136 ((++(txq)->compl_tag_cur_gen) >= (txq)->compl_tag_gen_max ? \
137 0 : (txq)->compl_tag_cur_gen)
138
139 #define IDPF_TXD_LAST_DESC_CMD (IDPF_TX_DESC_CMD_EOP | IDPF_TX_DESC_CMD_RS)
140
141 #define IDPF_TX_FLAGS_TSO BIT(0)
142 #define IDPF_TX_FLAGS_IPV4 BIT(1)
143 #define IDPF_TX_FLAGS_IPV6 BIT(2)
144 #define IDPF_TX_FLAGS_TUNNEL BIT(3)
145
146 union idpf_tx_flex_desc {
147 struct idpf_flex_tx_desc q; /* queue based scheduling */
148 struct idpf_flex_tx_sched_desc flow; /* flow based scheduling */
149 };
150
151 #define idpf_tx_buf libeth_sqe
152
153 /**
154 * struct idpf_buf_lifo - LIFO for managing OOO completions
155 * @top: Used to know how many buffers are left
156 * @size: Total size of LIFO
157 * @bufs: Backing array
158 */
159 struct idpf_buf_lifo {
160 u16 top;
161 u16 size;
162 struct idpf_tx_stash **bufs;
163 };
164
165 /**
166 * struct idpf_tx_offload_params - Offload parameters for a given packet
167 * @tx_flags: Feature flags enabled for this packet
168 * @hdr_offsets: Offset parameter for single queue model
169 * @cd_tunneling: Type of tunneling enabled for single queue model
170 * @tso_len: Total length of payload to segment
171 * @mss: Segment size
172 * @tso_segs: Number of segments to be sent
173 * @tso_hdr_len: Length of headers to be duplicated
174 * @td_cmd: Command field to be inserted into descriptor
175 */
176 struct idpf_tx_offload_params {
177 u32 tx_flags;
178
179 u32 hdr_offsets;
180 u32 cd_tunneling;
181
182 u32 tso_len;
183 u16 mss;
184 u16 tso_segs;
185 u16 tso_hdr_len;
186
187 u16 td_cmd;
188 };
189
190 /**
191 * struct idpf_tx_splitq_params
192 * @dtype: General descriptor info
193 * @eop_cmd: Type of EOP
194 * @compl_tag: Associated tag for completion
195 * @td_tag: Descriptor tunneling tag
196 * @offload: Offload parameters
197 */
198 struct idpf_tx_splitq_params {
199 enum idpf_tx_desc_dtype_value dtype;
200 u16 eop_cmd;
201 union {
202 u16 compl_tag;
203 u16 td_tag;
204 };
205
206 struct idpf_tx_offload_params offload;
207 };
208
209 enum idpf_tx_ctx_desc_eipt_offload {
210 IDPF_TX_CTX_EXT_IP_NONE = 0x0,
211 IDPF_TX_CTX_EXT_IP_IPV6 = 0x1,
212 IDPF_TX_CTX_EXT_IP_IPV4_NO_CSUM = 0x2,
213 IDPF_TX_CTX_EXT_IP_IPV4 = 0x3
214 };
215
216 #define IDPF_TX_COMPLQ_CLEAN_BUDGET 256
217 #define IDPF_TX_MIN_PKT_LEN 17
218 #define IDPF_TX_DESCS_FOR_SKB_DATA_PTR 1
219 #define IDPF_TX_DESCS_PER_CACHE_LINE (L1_CACHE_BYTES / \
220 sizeof(struct idpf_flex_tx_desc))
221 #define IDPF_TX_DESCS_FOR_CTX 1
222 /* TX descriptors needed, worst case */
223 #define IDPF_TX_DESC_NEEDED (MAX_SKB_FRAGS + IDPF_TX_DESCS_FOR_CTX + \
224 IDPF_TX_DESCS_PER_CACHE_LINE + \
225 IDPF_TX_DESCS_FOR_SKB_DATA_PTR)
226
227 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
228 * In order to align with the read requests we will align the value to
229 * the nearest 4K which represents our maximum read request size.
230 */
231 #define IDPF_TX_MAX_READ_REQ_SIZE SZ_4K
232 #define IDPF_TX_MAX_DESC_DATA (SZ_16K - 1)
233 #define IDPF_TX_MAX_DESC_DATA_ALIGNED \
234 ALIGN_DOWN(IDPF_TX_MAX_DESC_DATA, IDPF_TX_MAX_READ_REQ_SIZE)
235
236 #define idpf_rx_buf libeth_fqe
237
238 #define IDPF_RX_MAX_PTYPE_PROTO_IDS 32
239 #define IDPF_RX_MAX_PTYPE_SZ (sizeof(struct virtchnl2_ptype) + \
240 (sizeof(u16) * IDPF_RX_MAX_PTYPE_PROTO_IDS))
241 #define IDPF_RX_PTYPE_HDR_SZ sizeof(struct virtchnl2_get_ptype_info)
242 #define IDPF_RX_MAX_PTYPES_PER_BUF \
243 DIV_ROUND_DOWN_ULL((IDPF_CTLQ_MAX_BUF_LEN - IDPF_RX_PTYPE_HDR_SZ), \
244 IDPF_RX_MAX_PTYPE_SZ)
245
246 #define IDPF_GET_PTYPE_SIZE(p) struct_size((p), proto_id, (p)->proto_id_count)
247
248 #define IDPF_TUN_IP_GRE (\
249 IDPF_PTYPE_TUNNEL_IP |\
250 IDPF_PTYPE_TUNNEL_IP_GRENAT)
251
252 #define IDPF_TUN_IP_GRE_MAC (\
253 IDPF_TUN_IP_GRE |\
254 IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC)
255
256 #define IDPF_RX_MAX_PTYPE 1024
257 #define IDPF_RX_MAX_BASE_PTYPE 256
258 #define IDPF_INVALID_PTYPE_ID 0xFFFF
259
260 enum idpf_tunnel_state {
261 IDPF_PTYPE_TUNNEL_IP = BIT(0),
262 IDPF_PTYPE_TUNNEL_IP_GRENAT = BIT(1),
263 IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC = BIT(2),
264 };
265
266 struct idpf_ptype_state {
267 bool outer_ip:1;
268 bool outer_frag:1;
269 u8 tunnel_state:6;
270 };
271
272 /**
273 * enum idpf_queue_flags_t
274 * @__IDPF_Q_GEN_CHK: Queues operating in splitq mode use a generation bit to
275 * identify new descriptor writebacks on the ring. HW sets
276 * the gen bit to 1 on the first writeback of any given
277 * descriptor. After the ring wraps, HW sets the gen bit of
278 * those descriptors to 0, and continues flipping
279 * 0->1 or 1->0 on each ring wrap. SW maintains its own
280 * gen bit to know what value will indicate writebacks on
281 * the next pass around the ring. E.g. it is initialized
282 * to 1 and knows that reading a gen bit of 1 in any
283 * descriptor on the initial pass of the ring indicates a
284 * writeback. It also flips on every ring wrap.
285 * @__IDPF_Q_RFL_GEN_CHK: Refill queues are SW only, so Q_GEN acts as the HW
286 * bit and Q_RFL_GEN is the SW bit.
287 * @__IDPF_Q_FLOW_SCH_EN: Enable flow scheduling
288 * @__IDPF_Q_SW_MARKER: Used to indicate TX queue marker completions
289 * @__IDPF_Q_POLL_MODE: Enable poll mode
290 * @__IDPF_Q_CRC_EN: enable CRC offload in singleq mode
291 * @__IDPF_Q_HSPLIT_EN: enable header split on Rx (splitq)
292 * @__IDPF_Q_FLAGS_NBITS: Must be last
293 */
294 enum idpf_queue_flags_t {
295 __IDPF_Q_GEN_CHK,
296 __IDPF_Q_RFL_GEN_CHK,
297 __IDPF_Q_FLOW_SCH_EN,
298 __IDPF_Q_SW_MARKER,
299 __IDPF_Q_POLL_MODE,
300 __IDPF_Q_CRC_EN,
301 __IDPF_Q_HSPLIT_EN,
302
303 __IDPF_Q_FLAGS_NBITS,
304 };
305
306 #define idpf_queue_set(f, q) __set_bit(__IDPF_Q_##f, (q)->flags)
307 #define idpf_queue_clear(f, q) __clear_bit(__IDPF_Q_##f, (q)->flags)
308 #define idpf_queue_change(f, q) __change_bit(__IDPF_Q_##f, (q)->flags)
309 #define idpf_queue_has(f, q) test_bit(__IDPF_Q_##f, (q)->flags)
310
311 #define idpf_queue_has_clear(f, q) \
312 __test_and_clear_bit(__IDPF_Q_##f, (q)->flags)
313 #define idpf_queue_assign(f, q, v) \
314 __assign_bit(__IDPF_Q_##f, (q)->flags, v)
315
316 /**
317 * struct idpf_vec_regs
318 * @dyn_ctl_reg: Dynamic control interrupt register offset
319 * @itrn_reg: Interrupt Throttling Rate register offset
320 * @itrn_index_spacing: Register spacing between ITR registers of the same
321 * vector
322 */
323 struct idpf_vec_regs {
324 u32 dyn_ctl_reg;
325 u32 itrn_reg;
326 u32 itrn_index_spacing;
327 };
328
329 /**
330 * struct idpf_intr_reg
331 * @dyn_ctl: Dynamic control interrupt register
332 * @dyn_ctl_intena_m: Mask for dyn_ctl interrupt enable
333 * @dyn_ctl_intena_msk_m: Mask for dyn_ctl interrupt enable mask
334 * @dyn_ctl_itridx_s: Register bit offset for ITR index
335 * @dyn_ctl_itridx_m: Mask for ITR index
336 * @dyn_ctl_intrvl_s: Register bit offset for ITR interval
337 * @dyn_ctl_wb_on_itr_m: Mask for WB on ITR feature
338 * @dyn_ctl_sw_itridx_ena_m: Mask for SW ITR index
339 * @dyn_ctl_swint_trig_m: Mask for dyn_ctl SW triggered interrupt enable
340 * @rx_itr: RX ITR register
341 * @tx_itr: TX ITR register
342 * @icr_ena: Interrupt cause register offset
343 * @icr_ena_ctlq_m: Mask for ICR
344 */
345 struct idpf_intr_reg {
346 void __iomem *dyn_ctl;
347 u32 dyn_ctl_intena_m;
348 u32 dyn_ctl_intena_msk_m;
349 u32 dyn_ctl_itridx_s;
350 u32 dyn_ctl_itridx_m;
351 u32 dyn_ctl_intrvl_s;
352 u32 dyn_ctl_wb_on_itr_m;
353 u32 dyn_ctl_sw_itridx_ena_m;
354 u32 dyn_ctl_swint_trig_m;
355 void __iomem *rx_itr;
356 void __iomem *tx_itr;
357 void __iomem *icr_ena;
358 u32 icr_ena_ctlq_m;
359 };
360
361 /**
362 * struct idpf_q_vector
363 * @vport: Vport back pointer
364 * @num_rxq: Number of RX queues
365 * @num_txq: Number of TX queues
366 * @num_bufq: Number of buffer queues
367 * @num_complq: number of completion queues
368 * @rx: Array of RX queues to service
369 * @tx: Array of TX queues to service
370 * @bufq: Array of buffer queues to service
371 * @complq: array of completion queues
372 * @intr_reg: See struct idpf_intr_reg
373 * @napi: napi handler
374 * @total_events: Number of interrupts processed
375 * @wb_on_itr: whether WB on ITR is enabled
376 * @tx_dim: Data for TX net_dim algorithm
377 * @tx_itr_value: TX interrupt throttling rate
378 * @tx_intr_mode: Dynamic ITR or not
379 * @tx_itr_idx: TX ITR index
380 * @rx_dim: Data for RX net_dim algorithm
381 * @rx_itr_value: RX interrupt throttling rate
382 * @rx_intr_mode: Dynamic ITR or not
383 * @rx_itr_idx: RX ITR index
384 * @v_idx: Vector index
385 */
386 struct idpf_q_vector {
387 __cacheline_group_begin_aligned(read_mostly);
388 struct idpf_vport *vport;
389
390 u16 num_rxq;
391 u16 num_txq;
392 u16 num_bufq;
393 u16 num_complq;
394 struct idpf_rx_queue **rx;
395 struct idpf_tx_queue **tx;
396 struct idpf_buf_queue **bufq;
397 struct idpf_compl_queue **complq;
398
399 struct idpf_intr_reg intr_reg;
400 __cacheline_group_end_aligned(read_mostly);
401
402 __cacheline_group_begin_aligned(read_write);
403 struct napi_struct napi;
404 u16 total_events;
405 bool wb_on_itr;
406
407 struct dim tx_dim;
408 u16 tx_itr_value;
409 bool tx_intr_mode;
410 u32 tx_itr_idx;
411
412 struct dim rx_dim;
413 u16 rx_itr_value;
414 bool rx_intr_mode;
415 u32 rx_itr_idx;
416 __cacheline_group_end_aligned(read_write);
417
418 __cacheline_group_begin_aligned(cold);
419 u16 v_idx;
420
421 __cacheline_group_end_aligned(cold);
422 };
423 libeth_cacheline_set_assert(struct idpf_q_vector, 120,
424 24 + sizeof(struct napi_struct) +
425 2 * sizeof(struct dim),
426 8);
427
428 struct idpf_rx_queue_stats {
429 u64_stats_t packets;
430 u64_stats_t bytes;
431 u64_stats_t rsc_pkts;
432 u64_stats_t hw_csum_err;
433 u64_stats_t hsplit_pkts;
434 u64_stats_t hsplit_buf_ovf;
435 u64_stats_t bad_descs;
436 };
437
438 struct idpf_tx_queue_stats {
439 u64_stats_t packets;
440 u64_stats_t bytes;
441 u64_stats_t lso_pkts;
442 u64_stats_t linearize;
443 u64_stats_t q_busy;
444 u64_stats_t skb_drops;
445 u64_stats_t dma_map_errs;
446 };
447
448 #define IDPF_ITR_DYNAMIC 1
449 #define IDPF_ITR_MAX 0x1FE0
450 #define IDPF_ITR_20K 0x0032
451 #define IDPF_ITR_GRAN_S 1 /* Assume ITR granularity is 2us */
452 #define IDPF_ITR_MASK 0x1FFE /* ITR register value alignment mask */
453 #define ITR_REG_ALIGN(setting) ((setting) & IDPF_ITR_MASK)
454 #define IDPF_ITR_IS_DYNAMIC(itr_mode) (itr_mode)
455 #define IDPF_ITR_TX_DEF IDPF_ITR_20K
456 #define IDPF_ITR_RX_DEF IDPF_ITR_20K
457 /* Index used for 'SW ITR' update in DYN_CTL register */
458 #define IDPF_SW_ITR_UPDATE_IDX 2
459 /* Index used for 'No ITR' update in DYN_CTL register */
460 #define IDPF_NO_ITR_UPDATE_IDX 3
461 #define IDPF_ITR_IDX_SPACING(spacing, dflt) (spacing ? spacing : dflt)
462 #define IDPF_DIM_DEFAULT_PROFILE_IX 1
463
464 /**
465 * struct idpf_txq_stash - Tx buffer stash for Flow-based scheduling mode
466 * @buf_stack: Stack of empty buffers to store buffer info for out of order
467 * buffer completions. See struct idpf_buf_lifo
468 * @sched_buf_hash: Hash table to store buffers
469 */
470 struct idpf_txq_stash {
471 struct idpf_buf_lifo buf_stack;
472 DECLARE_HASHTABLE(sched_buf_hash, 12);
473 } ____cacheline_aligned;
474
475 /**
476 * struct idpf_rx_queue - software structure representing a receive queue
477 * @rx: universal receive descriptor array
478 * @single_buf: buffer descriptor array in singleq
479 * @desc_ring: virtual descriptor ring address
480 * @bufq_sets: Pointer to the array of buffer queues in splitq mode
481 * @napi: NAPI instance corresponding to this queue (splitq)
482 * @rx_buf: See struct &libeth_fqe
483 * @pp: Page pool pointer in singleq mode
484 * @netdev: &net_device corresponding to this queue
485 * @tail: Tail offset. Used for both queue models single and split.
486 * @flags: See enum idpf_queue_flags_t
487 * @idx: For RX queue, it is used to index to total RX queue across groups and
488 * used for skb reporting.
489 * @desc_count: Number of descriptors
490 * @rxdids: Supported RX descriptor ids
491 * @rx_ptype_lkup: LUT of Rx ptypes
492 * @next_to_use: Next descriptor to use
493 * @next_to_clean: Next descriptor to clean
494 * @next_to_alloc: RX buffer to allocate at
495 * @skb: Pointer to the skb
496 * @truesize: data buffer truesize in singleq
497 * @stats_sync: See struct u64_stats_sync
498 * @q_stats: See union idpf_rx_queue_stats
499 * @q_id: Queue id
500 * @size: Length of descriptor ring in bytes
501 * @dma: Physical address of ring
502 * @q_vector: Backreference to associated vector
503 * @rx_buffer_low_watermark: RX buffer low watermark
504 * @rx_hbuf_size: Header buffer size
505 * @rx_buf_size: Buffer size
506 * @rx_max_pkt_size: RX max packet size
507 */
508 struct idpf_rx_queue {
509 __cacheline_group_begin_aligned(read_mostly);
510 union {
511 union virtchnl2_rx_desc *rx;
512 struct virtchnl2_singleq_rx_buf_desc *single_buf;
513
514 void *desc_ring;
515 };
516 union {
517 struct {
518 struct idpf_bufq_set *bufq_sets;
519 struct napi_struct *napi;
520 };
521 struct {
522 struct libeth_fqe *rx_buf;
523 struct page_pool *pp;
524 };
525 };
526 struct net_device *netdev;
527 void __iomem *tail;
528
529 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
530 u16 idx;
531 u16 desc_count;
532
533 u32 rxdids;
534 const struct libeth_rx_pt *rx_ptype_lkup;
535 __cacheline_group_end_aligned(read_mostly);
536
537 __cacheline_group_begin_aligned(read_write);
538 u16 next_to_use;
539 u16 next_to_clean;
540 u16 next_to_alloc;
541
542 struct sk_buff *skb;
543 u32 truesize;
544
545 struct u64_stats_sync stats_sync;
546 struct idpf_rx_queue_stats q_stats;
547 __cacheline_group_end_aligned(read_write);
548
549 __cacheline_group_begin_aligned(cold);
550 u32 q_id;
551 u32 size;
552 dma_addr_t dma;
553
554 struct idpf_q_vector *q_vector;
555
556 u16 rx_buffer_low_watermark;
557 u16 rx_hbuf_size;
558 u16 rx_buf_size;
559 u16 rx_max_pkt_size;
560 __cacheline_group_end_aligned(cold);
561 };
562 libeth_cacheline_set_assert(struct idpf_rx_queue, 64,
563 80 + sizeof(struct u64_stats_sync),
564 32);
565
566 /**
567 * struct idpf_tx_queue - software structure representing a transmit queue
568 * @base_tx: base Tx descriptor array
569 * @base_ctx: base Tx context descriptor array
570 * @flex_tx: flex Tx descriptor array
571 * @flex_ctx: flex Tx context descriptor array
572 * @desc_ring: virtual descriptor ring address
573 * @tx_buf: See struct idpf_tx_buf
574 * @txq_grp: See struct idpf_txq_group
575 * @dev: Device back pointer for DMA mapping
576 * @tail: Tail offset. Used for both queue models single and split
577 * @flags: See enum idpf_queue_flags_t
578 * @idx: For TX queue, it is used as index to map between TX queue group and
579 * hot path TX pointers stored in vport. Used in both singleq/splitq.
580 * @desc_count: Number of descriptors
581 * @tx_min_pkt_len: Min supported packet length
582 * @compl_tag_gen_s: Completion tag generation bit
583 * The format of the completion tag will change based on the TXQ
584 * descriptor ring size so that we can maintain roughly the same level
585 * of "uniqueness" across all descriptor sizes. For example, if the
586 * TXQ descriptor ring size is 64 (the minimum size supported), the
587 * completion tag will be formatted as below:
588 * 15 6 5 0
589 * --------------------------------
590 * | GEN=0-1023 |IDX = 0-63|
591 * --------------------------------
592 *
593 * This gives us 64*1024 = 65536 possible unique values. Similarly, if
594 * the TXQ descriptor ring size is 8160 (the maximum size supported),
595 * the completion tag will be formatted as below:
596 * 15 13 12 0
597 * --------------------------------
598 * |GEN | IDX = 0-8159 |
599 * --------------------------------
600 *
601 * This gives us 8*8160 = 65280 possible unique values.
602 * @netdev: &net_device corresponding to this queue
603 * @next_to_use: Next descriptor to use
604 * @next_to_clean: Next descriptor to clean
605 * @cleaned_bytes: Splitq only, TXQ only: When a TX completion is received on
606 * the TX completion queue, it can be for any TXQ associated
607 * with that completion queue. This means we can clean up to
608 * N TXQs during a single call to clean the completion queue.
609 * cleaned_bytes|pkts tracks the clean stats per TXQ during
610 * that single call to clean the completion queue. By doing so,
611 * we can update BQL with aggregate cleaned stats for each TXQ
612 * only once at the end of the cleaning routine.
613 * @clean_budget: singleq only, queue cleaning budget
614 * @cleaned_pkts: Number of packets cleaned for the above said case
615 * @tx_max_bufs: Max buffers that can be transmitted with scatter-gather
616 * @stash: Tx buffer stash for Flow-based scheduling mode
617 * @compl_tag_bufid_m: Completion tag buffer id mask
618 * @compl_tag_cur_gen: Used to keep track of current completion tag generation
619 * @compl_tag_gen_max: To determine when compl_tag_cur_gen should be reset
620 * @stats_sync: See struct u64_stats_sync
621 * @q_stats: See union idpf_tx_queue_stats
622 * @q_id: Queue id
623 * @size: Length of descriptor ring in bytes
624 * @dma: Physical address of ring
625 * @q_vector: Backreference to associated vector
626 */
627 struct idpf_tx_queue {
628 __cacheline_group_begin_aligned(read_mostly);
629 union {
630 struct idpf_base_tx_desc *base_tx;
631 struct idpf_base_tx_ctx_desc *base_ctx;
632 union idpf_tx_flex_desc *flex_tx;
633 struct idpf_flex_tx_ctx_desc *flex_ctx;
634
635 void *desc_ring;
636 };
637 struct libeth_sqe *tx_buf;
638 struct idpf_txq_group *txq_grp;
639 struct device *dev;
640 void __iomem *tail;
641
642 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
643 u16 idx;
644 u16 desc_count;
645
646 u16 tx_min_pkt_len;
647 u16 compl_tag_gen_s;
648
649 struct net_device *netdev;
650 __cacheline_group_end_aligned(read_mostly);
651
652 __cacheline_group_begin_aligned(read_write);
653 u16 next_to_use;
654 u16 next_to_clean;
655
656 union {
657 u32 cleaned_bytes;
658 u32 clean_budget;
659 };
660 u16 cleaned_pkts;
661
662 u16 tx_max_bufs;
663 struct idpf_txq_stash *stash;
664
665 u16 compl_tag_bufid_m;
666 u16 compl_tag_cur_gen;
667 u16 compl_tag_gen_max;
668
669 struct u64_stats_sync stats_sync;
670 struct idpf_tx_queue_stats q_stats;
671 __cacheline_group_end_aligned(read_write);
672
673 __cacheline_group_begin_aligned(cold);
674 u32 q_id;
675 u32 size;
676 dma_addr_t dma;
677
678 struct idpf_q_vector *q_vector;
679 __cacheline_group_end_aligned(cold);
680 };
681 libeth_cacheline_set_assert(struct idpf_tx_queue, 64,
682 88 + sizeof(struct u64_stats_sync),
683 24);
684
685 /**
686 * struct idpf_buf_queue - software structure representing a buffer queue
687 * @split_buf: buffer descriptor array
688 * @hdr_buf: &libeth_fqe for header buffers
689 * @hdr_pp: &page_pool for header buffers
690 * @buf: &libeth_fqe for data buffers
691 * @pp: &page_pool for data buffers
692 * @tail: Tail offset
693 * @flags: See enum idpf_queue_flags_t
694 * @desc_count: Number of descriptors
695 * @next_to_use: Next descriptor to use
696 * @next_to_clean: Next descriptor to clean
697 * @next_to_alloc: RX buffer to allocate at
698 * @hdr_truesize: truesize for buffer headers
699 * @truesize: truesize for data buffers
700 * @q_id: Queue id
701 * @size: Length of descriptor ring in bytes
702 * @dma: Physical address of ring
703 * @q_vector: Backreference to associated vector
704 * @rx_buffer_low_watermark: RX buffer low watermark
705 * @rx_hbuf_size: Header buffer size
706 * @rx_buf_size: Buffer size
707 */
708 struct idpf_buf_queue {
709 __cacheline_group_begin_aligned(read_mostly);
710 struct virtchnl2_splitq_rx_buf_desc *split_buf;
711 struct libeth_fqe *hdr_buf;
712 struct page_pool *hdr_pp;
713 struct libeth_fqe *buf;
714 struct page_pool *pp;
715 void __iomem *tail;
716
717 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
718 u32 desc_count;
719 __cacheline_group_end_aligned(read_mostly);
720
721 __cacheline_group_begin_aligned(read_write);
722 u32 next_to_use;
723 u32 next_to_clean;
724 u32 next_to_alloc;
725
726 u32 hdr_truesize;
727 u32 truesize;
728 __cacheline_group_end_aligned(read_write);
729
730 __cacheline_group_begin_aligned(cold);
731 u32 q_id;
732 u32 size;
733 dma_addr_t dma;
734
735 struct idpf_q_vector *q_vector;
736
737 u16 rx_buffer_low_watermark;
738 u16 rx_hbuf_size;
739 u16 rx_buf_size;
740 __cacheline_group_end_aligned(cold);
741 };
742 libeth_cacheline_set_assert(struct idpf_buf_queue, 64, 24, 32);
743
744 /**
745 * struct idpf_compl_queue - software structure representing a completion queue
746 * @comp: completion descriptor array
747 * @txq_grp: See struct idpf_txq_group
748 * @flags: See enum idpf_queue_flags_t
749 * @desc_count: Number of descriptors
750 * @clean_budget: queue cleaning budget
751 * @netdev: &net_device corresponding to this queue
752 * @next_to_use: Next descriptor to use. Relevant in both split & single txq
753 * and bufq.
754 * @next_to_clean: Next descriptor to clean
755 * @num_completions: Only relevant for TX completion queue. It tracks the
756 * number of completions received to compare against the
757 * number of completions pending, as accumulated by the
758 * TX queues.
759 * @q_id: Queue id
760 * @size: Length of descriptor ring in bytes
761 * @dma: Physical address of ring
762 * @q_vector: Backreference to associated vector
763 */
764 struct idpf_compl_queue {
765 __cacheline_group_begin_aligned(read_mostly);
766 struct idpf_splitq_tx_compl_desc *comp;
767 struct idpf_txq_group *txq_grp;
768
769 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
770 u32 desc_count;
771
772 u32 clean_budget;
773 struct net_device *netdev;
774 __cacheline_group_end_aligned(read_mostly);
775
776 __cacheline_group_begin_aligned(read_write);
777 u32 next_to_use;
778 u32 next_to_clean;
779
780 aligned_u64 num_completions;
781 __cacheline_group_end_aligned(read_write);
782
783 __cacheline_group_begin_aligned(cold);
784 u32 q_id;
785 u32 size;
786 dma_addr_t dma;
787
788 struct idpf_q_vector *q_vector;
789 __cacheline_group_end_aligned(cold);
790 };
791 libeth_cacheline_set_assert(struct idpf_compl_queue, 40, 16, 24);
792
793 /**
794 * struct idpf_sw_queue
795 * @ring: Pointer to the ring
796 * @flags: See enum idpf_queue_flags_t
797 * @desc_count: Descriptor count
798 * @next_to_use: Buffer to allocate at
799 * @next_to_clean: Next descriptor to clean
800 *
801 * Software queues are used in splitq mode to manage buffers between rxq
802 * producer and the bufq consumer. These are required in order to maintain a
803 * lockless buffer management system and are strictly software only constructs.
804 */
805 struct idpf_sw_queue {
806 __cacheline_group_begin_aligned(read_mostly);
807 u32 *ring;
808
809 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
810 u32 desc_count;
811 __cacheline_group_end_aligned(read_mostly);
812
813 __cacheline_group_begin_aligned(read_write);
814 u32 next_to_use;
815 u32 next_to_clean;
816 __cacheline_group_end_aligned(read_write);
817 };
818 libeth_cacheline_group_assert(struct idpf_sw_queue, read_mostly, 24);
819 libeth_cacheline_group_assert(struct idpf_sw_queue, read_write, 8);
820 libeth_cacheline_struct_assert(struct idpf_sw_queue, 24, 8);
821
822 /**
823 * struct idpf_rxq_set
824 * @rxq: RX queue
825 * @refillq: pointers to refill queues
826 *
827 * Splitq only. idpf_rxq_set associates an rxq with at an array of refillqs.
828 * Each rxq needs a refillq to return used buffers back to the respective bufq.
829 * Bufqs then clean these refillqs for buffers to give to hardware.
830 */
831 struct idpf_rxq_set {
832 struct idpf_rx_queue rxq;
833 struct idpf_sw_queue *refillq[IDPF_MAX_BUFQS_PER_RXQ_GRP];
834 };
835
836 /**
837 * struct idpf_bufq_set
838 * @bufq: Buffer queue
839 * @num_refillqs: Number of refill queues. This is always equal to num_rxq_sets
840 * in idpf_rxq_group.
841 * @refillqs: Pointer to refill queues array.
842 *
843 * Splitq only. idpf_bufq_set associates a bufq to an array of refillqs.
844 * In this bufq_set, there will be one refillq for each rxq in this rxq_group.
845 * Used buffers received by rxqs will be put on refillqs which bufqs will
846 * clean to return new buffers back to hardware.
847 *
848 * Buffers needed by some number of rxqs associated in this rxq_group are
849 * managed by at most two bufqs (depending on performance configuration).
850 */
851 struct idpf_bufq_set {
852 struct idpf_buf_queue bufq;
853 int num_refillqs;
854 struct idpf_sw_queue *refillqs;
855 };
856
857 /**
858 * struct idpf_rxq_group
859 * @vport: Vport back pointer
860 * @singleq: Struct with single queue related members
861 * @singleq.num_rxq: Number of RX queues associated
862 * @singleq.rxqs: Array of RX queue pointers
863 * @splitq: Struct with split queue related members
864 * @splitq.num_rxq_sets: Number of RX queue sets
865 * @splitq.rxq_sets: Array of RX queue sets
866 * @splitq.bufq_sets: Buffer queue set pointer
867 *
868 * In singleq mode, an rxq_group is simply an array of rxqs. In splitq, a
869 * rxq_group contains all the rxqs, bufqs and refillqs needed to
870 * manage buffers in splitq mode.
871 */
872 struct idpf_rxq_group {
873 struct idpf_vport *vport;
874
875 union {
876 struct {
877 u16 num_rxq;
878 struct idpf_rx_queue *rxqs[IDPF_LARGE_MAX_Q];
879 } singleq;
880 struct {
881 u16 num_rxq_sets;
882 struct idpf_rxq_set *rxq_sets[IDPF_LARGE_MAX_Q];
883 struct idpf_bufq_set *bufq_sets;
884 } splitq;
885 };
886 };
887
888 /**
889 * struct idpf_txq_group
890 * @vport: Vport back pointer
891 * @num_txq: Number of TX queues associated
892 * @txqs: Array of TX queue pointers
893 * @stashes: array of OOO stashes for the queues
894 * @complq: Associated completion queue pointer, split queue only
895 * @num_completions_pending: Total number of completions pending for the
896 * completion queue, acculumated for all TX queues
897 * associated with that completion queue.
898 *
899 * Between singleq and splitq, a txq_group is largely the same except for the
900 * complq. In splitq a single complq is responsible for handling completions
901 * for some number of txqs associated in this txq_group.
902 */
903 struct idpf_txq_group {
904 struct idpf_vport *vport;
905
906 u16 num_txq;
907 struct idpf_tx_queue *txqs[IDPF_LARGE_MAX_Q];
908 struct idpf_txq_stash *stashes;
909
910 struct idpf_compl_queue *complq;
911
912 aligned_u64 num_completions_pending;
913 };
914
idpf_q_vector_to_mem(const struct idpf_q_vector * q_vector)915 static inline int idpf_q_vector_to_mem(const struct idpf_q_vector *q_vector)
916 {
917 u32 cpu;
918
919 if (!q_vector)
920 return NUMA_NO_NODE;
921
922 cpu = cpumask_first(&q_vector->napi.config->affinity_mask);
923
924 return cpu < nr_cpu_ids ? cpu_to_mem(cpu) : NUMA_NO_NODE;
925 }
926
927 /**
928 * idpf_size_to_txd_count - Get number of descriptors needed for large Tx frag
929 * @size: transmit request size in bytes
930 *
931 * In the case where a large frag (>= 16K) needs to be split across multiple
932 * descriptors, we need to assume that we can have no more than 12K of data
933 * per descriptor due to hardware alignment restrictions (4K alignment).
934 */
idpf_size_to_txd_count(unsigned int size)935 static inline u32 idpf_size_to_txd_count(unsigned int size)
936 {
937 return DIV_ROUND_UP(size, IDPF_TX_MAX_DESC_DATA_ALIGNED);
938 }
939
940 /**
941 * idpf_tx_singleq_build_ctob - populate command tag offset and size
942 * @td_cmd: Command to be filled in desc
943 * @td_offset: Offset to be filled in desc
944 * @size: Size of the buffer
945 * @td_tag: td tag to be filled
946 *
947 * Returns the 64 bit value populated with the input parameters
948 */
idpf_tx_singleq_build_ctob(u64 td_cmd,u64 td_offset,unsigned int size,u64 td_tag)949 static inline __le64 idpf_tx_singleq_build_ctob(u64 td_cmd, u64 td_offset,
950 unsigned int size, u64 td_tag)
951 {
952 return cpu_to_le64(IDPF_TX_DESC_DTYPE_DATA |
953 (td_cmd << IDPF_TXD_QW1_CMD_S) |
954 (td_offset << IDPF_TXD_QW1_OFFSET_S) |
955 ((u64)size << IDPF_TXD_QW1_TX_BUF_SZ_S) |
956 (td_tag << IDPF_TXD_QW1_L2TAG1_S));
957 }
958
959 void idpf_tx_splitq_build_ctb(union idpf_tx_flex_desc *desc,
960 struct idpf_tx_splitq_params *params,
961 u16 td_cmd, u16 size);
962 void idpf_tx_splitq_build_flow_desc(union idpf_tx_flex_desc *desc,
963 struct idpf_tx_splitq_params *params,
964 u16 td_cmd, u16 size);
965 /**
966 * idpf_tx_splitq_build_desc - determine which type of data descriptor to build
967 * @desc: descriptor to populate
968 * @params: pointer to tx params struct
969 * @td_cmd: command to be filled in desc
970 * @size: size of buffer
971 */
idpf_tx_splitq_build_desc(union idpf_tx_flex_desc * desc,struct idpf_tx_splitq_params * params,u16 td_cmd,u16 size)972 static inline void idpf_tx_splitq_build_desc(union idpf_tx_flex_desc *desc,
973 struct idpf_tx_splitq_params *params,
974 u16 td_cmd, u16 size)
975 {
976 if (params->dtype == IDPF_TX_DESC_DTYPE_FLEX_L2TAG1_L2TAG2)
977 idpf_tx_splitq_build_ctb(desc, params, td_cmd, size);
978 else
979 idpf_tx_splitq_build_flow_desc(desc, params, td_cmd, size);
980 }
981
982 /**
983 * idpf_vport_intr_set_wb_on_itr - enable descriptor writeback on disabled interrupts
984 * @q_vector: pointer to queue vector struct
985 */
idpf_vport_intr_set_wb_on_itr(struct idpf_q_vector * q_vector)986 static inline void idpf_vport_intr_set_wb_on_itr(struct idpf_q_vector *q_vector)
987 {
988 struct idpf_intr_reg *reg;
989
990 if (q_vector->wb_on_itr)
991 return;
992
993 q_vector->wb_on_itr = true;
994 reg = &q_vector->intr_reg;
995
996 writel(reg->dyn_ctl_wb_on_itr_m | reg->dyn_ctl_intena_msk_m |
997 (IDPF_NO_ITR_UPDATE_IDX << reg->dyn_ctl_itridx_s),
998 reg->dyn_ctl);
999 }
1000
1001 int idpf_vport_singleq_napi_poll(struct napi_struct *napi, int budget);
1002 void idpf_vport_init_num_qs(struct idpf_vport *vport,
1003 struct virtchnl2_create_vport *vport_msg);
1004 void idpf_vport_calc_num_q_desc(struct idpf_vport *vport);
1005 int idpf_vport_calc_total_qs(struct idpf_adapter *adapter, u16 vport_index,
1006 struct virtchnl2_create_vport *vport_msg,
1007 struct idpf_vport_max_q *max_q);
1008 void idpf_vport_calc_num_q_groups(struct idpf_vport *vport);
1009 int idpf_vport_queues_alloc(struct idpf_vport *vport);
1010 void idpf_vport_queues_rel(struct idpf_vport *vport);
1011 void idpf_vport_intr_rel(struct idpf_vport *vport);
1012 int idpf_vport_intr_alloc(struct idpf_vport *vport);
1013 void idpf_vport_intr_update_itr_ena_irq(struct idpf_q_vector *q_vector);
1014 void idpf_vport_intr_deinit(struct idpf_vport *vport);
1015 int idpf_vport_intr_init(struct idpf_vport *vport);
1016 void idpf_vport_intr_ena(struct idpf_vport *vport);
1017 int idpf_config_rss(struct idpf_vport *vport);
1018 int idpf_init_rss(struct idpf_vport *vport);
1019 void idpf_deinit_rss(struct idpf_vport *vport);
1020 int idpf_rx_bufs_init_all(struct idpf_vport *vport);
1021 void idpf_rx_add_frag(struct idpf_rx_buf *rx_buf, struct sk_buff *skb,
1022 unsigned int size);
1023 struct sk_buff *idpf_rx_build_skb(const struct libeth_fqe *buf, u32 size);
1024 void idpf_tx_buf_hw_update(struct idpf_tx_queue *tx_q, u32 val,
1025 bool xmit_more);
1026 unsigned int idpf_size_to_txd_count(unsigned int size);
1027 netdev_tx_t idpf_tx_drop_skb(struct idpf_tx_queue *tx_q, struct sk_buff *skb);
1028 void idpf_tx_dma_map_error(struct idpf_tx_queue *txq, struct sk_buff *skb,
1029 struct idpf_tx_buf *first, u16 ring_idx);
1030 unsigned int idpf_tx_desc_count_required(struct idpf_tx_queue *txq,
1031 struct sk_buff *skb);
1032 void idpf_tx_timeout(struct net_device *netdev, unsigned int txqueue);
1033 netdev_tx_t idpf_tx_singleq_frame(struct sk_buff *skb,
1034 struct idpf_tx_queue *tx_q);
1035 netdev_tx_t idpf_tx_start(struct sk_buff *skb, struct net_device *netdev);
1036 bool idpf_rx_singleq_buf_hw_alloc_all(struct idpf_rx_queue *rxq,
1037 u16 cleaned_count);
1038 int idpf_tso(struct sk_buff *skb, struct idpf_tx_offload_params *off);
1039
idpf_tx_maybe_stop_common(struct idpf_tx_queue * tx_q,u32 needed)1040 static inline bool idpf_tx_maybe_stop_common(struct idpf_tx_queue *tx_q,
1041 u32 needed)
1042 {
1043 return !netif_subqueue_maybe_stop(tx_q->netdev, tx_q->idx,
1044 IDPF_DESC_UNUSED(tx_q),
1045 needed, needed);
1046 }
1047
1048 #endif /* !_IDPF_TXRX_H_ */
1049