xref: /linux/drivers/i2c/busses/i2c-riic.c (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Renesas RIIC driver
4  *
5  * Copyright (C) 2013 Wolfram Sang <wsa@sang-engineering.com>
6  * Copyright (C) 2013 Renesas Solutions Corp.
7  */
8 
9 /*
10  * This i2c core has a lot of interrupts, namely 8. We use their chaining as
11  * some kind of state machine.
12  *
13  * 1) The main xfer routine kicks off a transmission by putting the start bit
14  * (or repeated start) on the bus and enabling the transmit interrupt (TIE)
15  * since we need to send the target address + RW bit in every case.
16  *
17  * 2) TIE sends target address + RW bit and selects how to continue.
18  *
19  * 3a) Write case: We keep utilizing TIE as long as we have data to send. If we
20  * are done, we switch over to the transmission done interrupt (TEIE) and mark
21  * the message as completed (includes sending STOP) there.
22  *
23  * 3b) Read case: We switch over to receive interrupt (RIE). One dummy read is
24  * needed to start clocking, then we keep receiving until we are done. Note
25  * that we use the RDRFS mode all the time, i.e. we ACK/NACK every byte by
26  * writing to the ACKBT bit. I tried using the RDRFS mode only at the end of a
27  * message to create the final NACK as sketched in the datasheet. This caused
28  * some subtle races (when byte n was processed and byte n+1 was already
29  * waiting), though, and I started with the safe approach.
30  *
31  * 4) If we got a NACK somewhere, we flag the error and stop the transmission
32  * via NAKIE.
33  *
34  * Also check the comments in the interrupt routines for some gory details.
35  */
36 
37 #include <linux/clk.h>
38 #include <linux/completion.h>
39 #include <linux/err.h>
40 #include <linux/i2c.h>
41 #include <linux/interrupt.h>
42 #include <linux/io.h>
43 #include <linux/module.h>
44 #include <linux/of.h>
45 #include <linux/platform_device.h>
46 #include <linux/pm_runtime.h>
47 #include <linux/reset.h>
48 
49 #define ICCR1_ICE	0x80
50 #define ICCR1_IICRST	0x40
51 #define ICCR1_SOWP	0x10
52 
53 #define ICCR2_BBSY	0x80
54 #define ICCR2_SP	0x08
55 #define ICCR2_RS	0x04
56 #define ICCR2_ST	0x02
57 
58 #define ICMR1_CKS_MASK	0x70
59 #define ICMR1_BCWP	0x08
60 #define ICMR1_CKS(_x)	((((_x) << 4) & ICMR1_CKS_MASK) | ICMR1_BCWP)
61 
62 #define ICMR3_RDRFS	0x20
63 #define ICMR3_ACKWP	0x10
64 #define ICMR3_ACKBT	0x08
65 
66 #define ICFER_FMPE	0x80
67 
68 #define ICIER_TIE	0x80
69 #define ICIER_TEIE	0x40
70 #define ICIER_RIE	0x20
71 #define ICIER_NAKIE	0x10
72 #define ICIER_SPIE	0x08
73 
74 #define ICSR2_NACKF	0x10
75 
76 #define ICBR_RESERVED	0xe0 /* Should be 1 on writes */
77 
78 #define RIIC_INIT_MSG	-1
79 
80 enum riic_reg_list {
81 	RIIC_ICCR1 = 0,
82 	RIIC_ICCR2,
83 	RIIC_ICMR1,
84 	RIIC_ICMR3,
85 	RIIC_ICFER,
86 	RIIC_ICSER,
87 	RIIC_ICIER,
88 	RIIC_ICSR2,
89 	RIIC_ICBRL,
90 	RIIC_ICBRH,
91 	RIIC_ICDRT,
92 	RIIC_ICDRR,
93 	RIIC_REG_END,
94 };
95 
96 struct riic_of_data {
97 	const u8 *regs;
98 	bool fast_mode_plus;
99 };
100 
101 struct riic_dev {
102 	void __iomem *base;
103 	u8 *buf;
104 	struct i2c_msg *msg;
105 	int bytes_left;
106 	int err;
107 	int is_last;
108 	const struct riic_of_data *info;
109 	struct completion msg_done;
110 	struct i2c_adapter adapter;
111 	struct clk *clk;
112 	struct reset_control *rstc;
113 	struct i2c_timings i2c_t;
114 };
115 
116 struct riic_irq_desc {
117 	int res_num;
118 	irq_handler_t isr;
119 	char *name;
120 };
121 
riic_writeb(struct riic_dev * riic,u8 val,u8 offset)122 static inline void riic_writeb(struct riic_dev *riic, u8 val, u8 offset)
123 {
124 	writeb(val, riic->base + riic->info->regs[offset]);
125 }
126 
riic_readb(struct riic_dev * riic,u8 offset)127 static inline u8 riic_readb(struct riic_dev *riic, u8 offset)
128 {
129 	return readb(riic->base + riic->info->regs[offset]);
130 }
131 
riic_clear_set_bit(struct riic_dev * riic,u8 clear,u8 set,u8 reg)132 static inline void riic_clear_set_bit(struct riic_dev *riic, u8 clear, u8 set, u8 reg)
133 {
134 	riic_writeb(riic, (riic_readb(riic, reg) & ~clear) | set, reg);
135 }
136 
riic_xfer(struct i2c_adapter * adap,struct i2c_msg msgs[],int num)137 static int riic_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
138 {
139 	struct riic_dev *riic = i2c_get_adapdata(adap);
140 	struct device *dev = adap->dev.parent;
141 	unsigned long time_left;
142 	int i, ret;
143 	u8 start_bit;
144 
145 	ret = pm_runtime_resume_and_get(dev);
146 	if (ret)
147 		return ret;
148 
149 	if (riic_readb(riic, RIIC_ICCR2) & ICCR2_BBSY) {
150 		riic->err = -EBUSY;
151 		goto out;
152 	}
153 
154 	reinit_completion(&riic->msg_done);
155 	riic->err = 0;
156 
157 	riic_writeb(riic, 0, RIIC_ICSR2);
158 
159 	for (i = 0, start_bit = ICCR2_ST; i < num; i++) {
160 		riic->bytes_left = RIIC_INIT_MSG;
161 		riic->buf = msgs[i].buf;
162 		riic->msg = &msgs[i];
163 		riic->is_last = (i == num - 1);
164 
165 		riic_writeb(riic, ICIER_NAKIE | ICIER_TIE, RIIC_ICIER);
166 
167 		riic_writeb(riic, start_bit, RIIC_ICCR2);
168 
169 		time_left = wait_for_completion_timeout(&riic->msg_done, riic->adapter.timeout);
170 		if (time_left == 0)
171 			riic->err = -ETIMEDOUT;
172 
173 		if (riic->err)
174 			break;
175 
176 		start_bit = ICCR2_RS;
177 	}
178 
179  out:
180 	pm_runtime_mark_last_busy(dev);
181 	pm_runtime_put_autosuspend(dev);
182 
183 	return riic->err ?: num;
184 }
185 
riic_tdre_isr(int irq,void * data)186 static irqreturn_t riic_tdre_isr(int irq, void *data)
187 {
188 	struct riic_dev *riic = data;
189 	u8 val;
190 
191 	if (!riic->bytes_left)
192 		return IRQ_NONE;
193 
194 	if (riic->bytes_left == RIIC_INIT_MSG) {
195 		if (riic->msg->flags & I2C_M_RD)
196 			/* On read, switch over to receive interrupt */
197 			riic_clear_set_bit(riic, ICIER_TIE, ICIER_RIE, RIIC_ICIER);
198 		else
199 			/* On write, initialize length */
200 			riic->bytes_left = riic->msg->len;
201 
202 		val = i2c_8bit_addr_from_msg(riic->msg);
203 	} else {
204 		val = *riic->buf;
205 		riic->buf++;
206 		riic->bytes_left--;
207 	}
208 
209 	/*
210 	 * Switch to transmission ended interrupt when done. Do check here
211 	 * after bytes_left was initialized to support SMBUS_QUICK (new msg has
212 	 * 0 length then)
213 	 */
214 	if (riic->bytes_left == 0)
215 		riic_clear_set_bit(riic, ICIER_TIE, ICIER_TEIE, RIIC_ICIER);
216 
217 	/*
218 	 * This acks the TIE interrupt. We get another TIE immediately if our
219 	 * value could be moved to the shadow shift register right away. So
220 	 * this must be after updates to ICIER (where we want to disable TIE)!
221 	 */
222 	riic_writeb(riic, val, RIIC_ICDRT);
223 
224 	return IRQ_HANDLED;
225 }
226 
riic_tend_isr(int irq,void * data)227 static irqreturn_t riic_tend_isr(int irq, void *data)
228 {
229 	struct riic_dev *riic = data;
230 
231 	if (riic_readb(riic, RIIC_ICSR2) & ICSR2_NACKF) {
232 		/* We got a NACKIE */
233 		riic_readb(riic, RIIC_ICDRR);	/* dummy read */
234 		riic_clear_set_bit(riic, ICSR2_NACKF, 0, RIIC_ICSR2);
235 		riic->err = -ENXIO;
236 	} else if (riic->bytes_left) {
237 		return IRQ_NONE;
238 	}
239 
240 	if (riic->is_last || riic->err) {
241 		riic_clear_set_bit(riic, ICIER_TEIE, ICIER_SPIE, RIIC_ICIER);
242 		riic_writeb(riic, ICCR2_SP, RIIC_ICCR2);
243 	} else {
244 		/* Transfer is complete, but do not send STOP */
245 		riic_clear_set_bit(riic, ICIER_TEIE, 0, RIIC_ICIER);
246 		complete(&riic->msg_done);
247 	}
248 
249 	return IRQ_HANDLED;
250 }
251 
riic_rdrf_isr(int irq,void * data)252 static irqreturn_t riic_rdrf_isr(int irq, void *data)
253 {
254 	struct riic_dev *riic = data;
255 
256 	if (!riic->bytes_left)
257 		return IRQ_NONE;
258 
259 	if (riic->bytes_left == RIIC_INIT_MSG) {
260 		riic->bytes_left = riic->msg->len;
261 		riic_readb(riic, RIIC_ICDRR);	/* dummy read */
262 		return IRQ_HANDLED;
263 	}
264 
265 	if (riic->bytes_left == 1) {
266 		/* STOP must come before we set ACKBT! */
267 		if (riic->is_last) {
268 			riic_clear_set_bit(riic, 0, ICIER_SPIE, RIIC_ICIER);
269 			riic_writeb(riic, ICCR2_SP, RIIC_ICCR2);
270 		}
271 
272 		riic_clear_set_bit(riic, 0, ICMR3_ACKBT, RIIC_ICMR3);
273 
274 	} else {
275 		riic_clear_set_bit(riic, ICMR3_ACKBT, 0, RIIC_ICMR3);
276 	}
277 
278 	/* Reading acks the RIE interrupt */
279 	*riic->buf = riic_readb(riic, RIIC_ICDRR);
280 	riic->buf++;
281 	riic->bytes_left--;
282 
283 	return IRQ_HANDLED;
284 }
285 
riic_stop_isr(int irq,void * data)286 static irqreturn_t riic_stop_isr(int irq, void *data)
287 {
288 	struct riic_dev *riic = data;
289 
290 	/* read back registers to confirm writes have fully propagated */
291 	riic_writeb(riic, 0, RIIC_ICSR2);
292 	riic_readb(riic, RIIC_ICSR2);
293 	riic_writeb(riic, 0, RIIC_ICIER);
294 	riic_readb(riic, RIIC_ICIER);
295 
296 	complete(&riic->msg_done);
297 
298 	return IRQ_HANDLED;
299 }
300 
riic_func(struct i2c_adapter * adap)301 static u32 riic_func(struct i2c_adapter *adap)
302 {
303 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
304 }
305 
306 static const struct i2c_algorithm riic_algo = {
307 	.xfer = riic_xfer,
308 	.functionality = riic_func,
309 };
310 
riic_init_hw(struct riic_dev * riic)311 static int riic_init_hw(struct riic_dev *riic)
312 {
313 	int ret;
314 	unsigned long rate;
315 	int total_ticks, cks, brl, brh;
316 	struct i2c_timings *t = &riic->i2c_t;
317 	struct device *dev = riic->adapter.dev.parent;
318 	bool fast_mode_plus = riic->info->fast_mode_plus;
319 	u32 max_freq = fast_mode_plus ? I2C_MAX_FAST_MODE_PLUS_FREQ
320 				      : I2C_MAX_FAST_MODE_FREQ;
321 
322 	if (t->bus_freq_hz > max_freq)
323 		return dev_err_probe(&riic->adapter.dev, -EINVAL,
324 				     "unsupported bus speed %uHz (%u max)\n",
325 				     t->bus_freq_hz, max_freq);
326 
327 	rate = clk_get_rate(riic->clk);
328 
329 	/*
330 	 * Assume the default register settings:
331 	 *  FER.SCLE = 1 (SCL sync circuit enabled, adds 2 or 3 cycles)
332 	 *  FER.NFE = 1 (noise circuit enabled)
333 	 *  MR3.NF = 0 (1 cycle of noise filtered out)
334 	 *
335 	 * Freq (CKS=000) = (I2CCLK + tr + tf)/ (BRH + 3 + 1) + (BRL + 3 + 1)
336 	 * Freq (CKS!=000) = (I2CCLK + tr + tf)/ (BRH + 2 + 1) + (BRL + 2 + 1)
337 	 */
338 
339 	/*
340 	 * Determine reference clock rate. We must be able to get the desired
341 	 * frequency with only 62 clock ticks max (31 high, 31 low).
342 	 * Aim for a duty of 60% LOW, 40% HIGH.
343 	 */
344 	total_ticks = DIV_ROUND_UP(rate, t->bus_freq_hz ?: 1);
345 
346 	for (cks = 0; cks < 7; cks++) {
347 		/*
348 		 * 60% low time must be less than BRL + 2 + 1
349 		 * BRL max register value is 0x1F.
350 		 */
351 		brl = ((total_ticks * 6) / 10);
352 		if (brl <= (0x1F + 3))
353 			break;
354 
355 		total_ticks /= 2;
356 		rate /= 2;
357 	}
358 
359 	if (brl > (0x1F + 3)) {
360 		dev_err(&riic->adapter.dev, "invalid speed (%lu). Too slow.\n",
361 			(unsigned long)t->bus_freq_hz);
362 		return -EINVAL;
363 	}
364 
365 	brh = total_ticks - brl;
366 
367 	/* Remove automatic clock ticks for sync circuit and NF */
368 	if (cks == 0) {
369 		brl -= 4;
370 		brh -= 4;
371 	} else {
372 		brl -= 3;
373 		brh -= 3;
374 	}
375 
376 	/*
377 	 * Remove clock ticks for rise and fall times. Convert ns to clock
378 	 * ticks.
379 	 */
380 	brl -= t->scl_fall_ns / (1000000000 / rate);
381 	brh -= t->scl_rise_ns / (1000000000 / rate);
382 
383 	/* Adjust for min register values for when SCLE=1 and NFE=1 */
384 	if (brl < 1)
385 		brl = 1;
386 	if (brh < 1)
387 		brh = 1;
388 
389 	pr_debug("i2c-riic: freq=%lu, duty=%d, fall=%lu, rise=%lu, cks=%d, brl=%d, brh=%d\n",
390 		 rate / total_ticks, ((brl + 3) * 100) / (brl + brh + 6),
391 		 t->scl_fall_ns / (1000000000 / rate),
392 		 t->scl_rise_ns / (1000000000 / rate), cks, brl, brh);
393 
394 	ret = pm_runtime_resume_and_get(dev);
395 	if (ret)
396 		return ret;
397 
398 	/* Changing the order of accessing IICRST and ICE may break things! */
399 	riic_writeb(riic, ICCR1_IICRST | ICCR1_SOWP, RIIC_ICCR1);
400 	riic_clear_set_bit(riic, 0, ICCR1_ICE, RIIC_ICCR1);
401 
402 	riic_writeb(riic, ICMR1_CKS(cks), RIIC_ICMR1);
403 	riic_writeb(riic, brh | ICBR_RESERVED, RIIC_ICBRH);
404 	riic_writeb(riic, brl | ICBR_RESERVED, RIIC_ICBRL);
405 
406 	riic_writeb(riic, 0, RIIC_ICSER);
407 	riic_writeb(riic, ICMR3_ACKWP | ICMR3_RDRFS, RIIC_ICMR3);
408 
409 	if (fast_mode_plus && t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ)
410 		riic_clear_set_bit(riic, 0, ICFER_FMPE, RIIC_ICFER);
411 
412 	riic_clear_set_bit(riic, ICCR1_IICRST, 0, RIIC_ICCR1);
413 
414 	pm_runtime_mark_last_busy(dev);
415 	pm_runtime_put_autosuspend(dev);
416 	return 0;
417 }
418 
419 static struct riic_irq_desc riic_irqs[] = {
420 	{ .res_num = 0, .isr = riic_tend_isr, .name = "riic-tend" },
421 	{ .res_num = 1, .isr = riic_rdrf_isr, .name = "riic-rdrf" },
422 	{ .res_num = 2, .isr = riic_tdre_isr, .name = "riic-tdre" },
423 	{ .res_num = 3, .isr = riic_stop_isr, .name = "riic-stop" },
424 	{ .res_num = 5, .isr = riic_tend_isr, .name = "riic-nack" },
425 };
426 
riic_reset_control_assert(void * data)427 static void riic_reset_control_assert(void *data)
428 {
429 	reset_control_assert(data);
430 }
431 
riic_i2c_probe(struct platform_device * pdev)432 static int riic_i2c_probe(struct platform_device *pdev)
433 {
434 	struct device *dev = &pdev->dev;
435 	struct riic_dev *riic;
436 	struct i2c_adapter *adap;
437 	int i, ret;
438 
439 	riic = devm_kzalloc(dev, sizeof(*riic), GFP_KERNEL);
440 	if (!riic)
441 		return -ENOMEM;
442 
443 	riic->base = devm_platform_ioremap_resource(pdev, 0);
444 	if (IS_ERR(riic->base))
445 		return PTR_ERR(riic->base);
446 
447 	riic->clk = devm_clk_get(dev, NULL);
448 	if (IS_ERR(riic->clk)) {
449 		dev_err(dev, "missing controller clock");
450 		return PTR_ERR(riic->clk);
451 	}
452 
453 	riic->rstc = devm_reset_control_get_optional_exclusive(dev, NULL);
454 	if (IS_ERR(riic->rstc))
455 		return dev_err_probe(dev, PTR_ERR(riic->rstc),
456 				     "Error: missing reset ctrl\n");
457 
458 	ret = reset_control_deassert(riic->rstc);
459 	if (ret)
460 		return ret;
461 
462 	ret = devm_add_action_or_reset(dev, riic_reset_control_assert, riic->rstc);
463 	if (ret)
464 		return ret;
465 
466 	for (i = 0; i < ARRAY_SIZE(riic_irqs); i++) {
467 		ret = platform_get_irq(pdev, riic_irqs[i].res_num);
468 		if (ret < 0)
469 			return ret;
470 
471 		ret = devm_request_irq(dev, ret, riic_irqs[i].isr,
472 				       0, riic_irqs[i].name, riic);
473 		if (ret) {
474 			dev_err(dev, "failed to request irq %s\n", riic_irqs[i].name);
475 			return ret;
476 		}
477 	}
478 
479 	riic->info = of_device_get_match_data(dev);
480 
481 	adap = &riic->adapter;
482 	i2c_set_adapdata(adap, riic);
483 	strscpy(adap->name, "Renesas RIIC adapter", sizeof(adap->name));
484 	adap->owner = THIS_MODULE;
485 	adap->algo = &riic_algo;
486 	adap->dev.parent = dev;
487 	adap->dev.of_node = dev->of_node;
488 
489 	init_completion(&riic->msg_done);
490 
491 	i2c_parse_fw_timings(dev, &riic->i2c_t, true);
492 
493 	/* Default 0 to save power. Can be overridden via sysfs for lower latency. */
494 	pm_runtime_set_autosuspend_delay(dev, 0);
495 	pm_runtime_use_autosuspend(dev);
496 	pm_runtime_enable(dev);
497 
498 	ret = riic_init_hw(riic);
499 	if (ret)
500 		goto out;
501 
502 	ret = i2c_add_adapter(adap);
503 	if (ret)
504 		goto out;
505 
506 	platform_set_drvdata(pdev, riic);
507 
508 	dev_info(dev, "registered with %dHz bus speed\n", riic->i2c_t.bus_freq_hz);
509 	return 0;
510 
511 out:
512 	pm_runtime_disable(dev);
513 	pm_runtime_dont_use_autosuspend(dev);
514 	return ret;
515 }
516 
riic_i2c_remove(struct platform_device * pdev)517 static void riic_i2c_remove(struct platform_device *pdev)
518 {
519 	struct riic_dev *riic = platform_get_drvdata(pdev);
520 	struct device *dev = &pdev->dev;
521 	int ret;
522 
523 	ret = pm_runtime_resume_and_get(dev);
524 	if (!ret) {
525 		riic_writeb(riic, 0, RIIC_ICIER);
526 		pm_runtime_put(dev);
527 	}
528 	i2c_del_adapter(&riic->adapter);
529 	pm_runtime_disable(dev);
530 	pm_runtime_dont_use_autosuspend(dev);
531 }
532 
533 static const u8 riic_rz_a_regs[RIIC_REG_END] = {
534 	[RIIC_ICCR1] = 0x00,
535 	[RIIC_ICCR2] = 0x04,
536 	[RIIC_ICMR1] = 0x08,
537 	[RIIC_ICMR3] = 0x10,
538 	[RIIC_ICFER] = 0x14,
539 	[RIIC_ICSER] = 0x18,
540 	[RIIC_ICIER] = 0x1c,
541 	[RIIC_ICSR2] = 0x24,
542 	[RIIC_ICBRL] = 0x34,
543 	[RIIC_ICBRH] = 0x38,
544 	[RIIC_ICDRT] = 0x3c,
545 	[RIIC_ICDRR] = 0x40,
546 };
547 
548 static const struct riic_of_data riic_rz_a_info = {
549 	.regs = riic_rz_a_regs,
550 	.fast_mode_plus = true,
551 };
552 
553 static const struct riic_of_data riic_rz_a1h_info = {
554 	.regs = riic_rz_a_regs,
555 };
556 
557 static const u8 riic_rz_v2h_regs[RIIC_REG_END] = {
558 	[RIIC_ICCR1] = 0x00,
559 	[RIIC_ICCR2] = 0x01,
560 	[RIIC_ICMR1] = 0x02,
561 	[RIIC_ICMR3] = 0x04,
562 	[RIIC_ICFER] = 0x05,
563 	[RIIC_ICSER] = 0x06,
564 	[RIIC_ICIER] = 0x07,
565 	[RIIC_ICSR2] = 0x09,
566 	[RIIC_ICBRL] = 0x10,
567 	[RIIC_ICBRH] = 0x11,
568 	[RIIC_ICDRT] = 0x12,
569 	[RIIC_ICDRR] = 0x13,
570 };
571 
572 static const struct riic_of_data riic_rz_v2h_info = {
573 	.regs = riic_rz_v2h_regs,
574 	.fast_mode_plus = true,
575 };
576 
riic_i2c_suspend(struct device * dev)577 static int riic_i2c_suspend(struct device *dev)
578 {
579 	struct riic_dev *riic = dev_get_drvdata(dev);
580 	int ret;
581 
582 	ret = pm_runtime_resume_and_get(dev);
583 	if (ret)
584 		return ret;
585 
586 	i2c_mark_adapter_suspended(&riic->adapter);
587 
588 	/* Disable output on SDA, SCL pins. */
589 	riic_clear_set_bit(riic, ICCR1_ICE, 0, RIIC_ICCR1);
590 
591 	pm_runtime_mark_last_busy(dev);
592 	pm_runtime_put_sync(dev);
593 
594 	return reset_control_assert(riic->rstc);
595 }
596 
riic_i2c_resume(struct device * dev)597 static int riic_i2c_resume(struct device *dev)
598 {
599 	struct riic_dev *riic = dev_get_drvdata(dev);
600 	int ret;
601 
602 	ret = reset_control_deassert(riic->rstc);
603 	if (ret)
604 		return ret;
605 
606 	ret = riic_init_hw(riic);
607 	if (ret) {
608 		/*
609 		 * In case this happens there is no way to recover from this
610 		 * state. The driver will remain loaded. We want to avoid
611 		 * keeping the reset line de-asserted for no reason.
612 		 */
613 		reset_control_assert(riic->rstc);
614 		return ret;
615 	}
616 
617 	i2c_mark_adapter_resumed(&riic->adapter);
618 
619 	return 0;
620 }
621 
622 static const struct dev_pm_ops riic_i2c_pm_ops = {
623 	SYSTEM_SLEEP_PM_OPS(riic_i2c_suspend, riic_i2c_resume)
624 };
625 
626 static const struct of_device_id riic_i2c_dt_ids[] = {
627 	{ .compatible = "renesas,riic-rz", .data = &riic_rz_a_info },
628 	{ .compatible = "renesas,riic-r7s72100", .data =  &riic_rz_a1h_info, },
629 	{ .compatible = "renesas,riic-r9a09g057", .data = &riic_rz_v2h_info },
630 	{ /* Sentinel */ },
631 };
632 
633 static struct platform_driver riic_i2c_driver = {
634 	.probe		= riic_i2c_probe,
635 	.remove_new	= riic_i2c_remove,
636 	.driver		= {
637 		.name	= "i2c-riic",
638 		.of_match_table = riic_i2c_dt_ids,
639 		.pm	= pm_ptr(&riic_i2c_pm_ops),
640 	},
641 };
642 
643 module_platform_driver(riic_i2c_driver);
644 
645 MODULE_DESCRIPTION("Renesas RIIC adapter");
646 MODULE_AUTHOR("Wolfram Sang <wsa@sang-engineering.com>");
647 MODULE_LICENSE("GPL v2");
648 MODULE_DEVICE_TABLE(of, riic_i2c_dt_ids);
649