xref: /linux/include/rdma/ib_verbs.h (revision 7ce4de1cdaf11c39b507008dfb5a4e59079d4e8a)
1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2 /*
3  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
4  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
5  * Copyright (c) 2004, 2020 Intel Corporation.  All rights reserved.
6  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
7  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
8  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
10  */
11 
12 #ifndef IB_VERBS_H
13 #define IB_VERBS_H
14 
15 #include <linux/ethtool.h>
16 #include <linux/types.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/kref.h>
20 #include <linux/list.h>
21 #include <linux/rwsem.h>
22 #include <linux/workqueue.h>
23 #include <linux/irq_poll.h>
24 #include <uapi/linux/if_ether.h>
25 #include <net/ipv6.h>
26 #include <net/ip.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29 #include <linux/netdevice.h>
30 #include <linux/refcount.h>
31 #include <linux/if_link.h>
32 #include <linux/atomic.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/uaccess.h>
35 #include <linux/cgroup_rdma.h>
36 #include <linux/irqflags.h>
37 #include <linux/preempt.h>
38 #include <linux/dim.h>
39 #include <uapi/rdma/ib_user_verbs.h>
40 #include <rdma/rdma_counter.h>
41 #include <rdma/restrack.h>
42 #include <rdma/signature.h>
43 #include <uapi/rdma/rdma_user_ioctl.h>
44 #include <uapi/rdma/ib_user_ioctl_verbs.h>
45 #include <linux/pci-tph.h>
46 
47 #define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
48 
49 struct ib_umem_odp;
50 struct ib_uqp_object;
51 struct ib_usrq_object;
52 struct ib_uwq_object;
53 struct rdma_cm_id;
54 struct ib_port;
55 struct hw_stats_device_data;
56 
57 extern struct workqueue_struct *ib_wq;
58 extern struct workqueue_struct *ib_comp_wq;
59 extern struct workqueue_struct *ib_comp_unbound_wq;
60 
61 struct ib_ucq_object;
62 
63 __printf(2, 3) __cold
64 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
65 __printf(2, 3) __cold
66 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
67 __printf(2, 3) __cold
68 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
69 __printf(2, 3) __cold
70 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
71 __printf(2, 3) __cold
72 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
73 __printf(2, 3) __cold
74 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
75 __printf(2, 3) __cold
76 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
77 
78 #if defined(CONFIG_DYNAMIC_DEBUG) || \
79 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
80 #define ibdev_dbg(__dev, format, args...)                       \
81 	dynamic_ibdev_dbg(__dev, format, ##args)
82 #else
83 __printf(2, 3) __cold
84 static inline
85 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
86 #endif
87 
88 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
89 do {                                                                    \
90 	static DEFINE_RATELIMIT_STATE(_rs,                              \
91 				      DEFAULT_RATELIMIT_INTERVAL,       \
92 				      DEFAULT_RATELIMIT_BURST);         \
93 	if (__ratelimit(&_rs))                                          \
94 		ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
95 } while (0)
96 
97 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
98 	ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
99 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
100 	ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
101 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
102 	ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
103 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
104 	ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
105 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
106 	ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
107 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
108 	ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
109 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
110 	ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
111 
112 #if defined(CONFIG_DYNAMIC_DEBUG) || \
113 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
114 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
115 #define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
116 do {                                                                    \
117 	static DEFINE_RATELIMIT_STATE(_rs,                              \
118 				      DEFAULT_RATELIMIT_INTERVAL,       \
119 				      DEFAULT_RATELIMIT_BURST);         \
120 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
121 	if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
122 		__dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
123 				    ##__VA_ARGS__);                     \
124 } while (0)
125 #else
126 __printf(2, 3) __cold
127 static inline
128 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
129 #endif
130 
131 union ib_gid {
132 	u8	raw[16];
133 	struct {
134 		__be64	subnet_prefix;
135 		__be64	interface_id;
136 	} global;
137 };
138 
139 extern union ib_gid zgid;
140 
141 enum ib_gid_type {
142 	IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
143 	IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
144 	IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
145 	IB_GID_TYPE_SIZE
146 };
147 
148 #define ROCE_V2_UDP_DPORT      4791
149 struct ib_gid_attr {
150 	struct net_device __rcu	*ndev;
151 	struct ib_device	*device;
152 	union ib_gid		gid;
153 	enum ib_gid_type	gid_type;
154 	u16			index;
155 	u32			port_num;
156 };
157 
158 enum {
159 	/* set the local administered indication */
160 	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
161 };
162 
163 enum rdma_transport_type {
164 	RDMA_TRANSPORT_IB,
165 	RDMA_TRANSPORT_IWARP,
166 	RDMA_TRANSPORT_USNIC,
167 	RDMA_TRANSPORT_USNIC_UDP,
168 	RDMA_TRANSPORT_UNSPECIFIED,
169 };
170 
171 enum rdma_protocol_type {
172 	RDMA_PROTOCOL_IB,
173 	RDMA_PROTOCOL_IBOE,
174 	RDMA_PROTOCOL_IWARP,
175 	RDMA_PROTOCOL_USNIC_UDP
176 };
177 
178 __attribute_const__ enum rdma_transport_type
179 rdma_node_get_transport(unsigned int node_type);
180 
181 enum rdma_network_type {
182 	RDMA_NETWORK_IB,
183 	RDMA_NETWORK_ROCE_V1,
184 	RDMA_NETWORK_IPV4,
185 	RDMA_NETWORK_IPV6
186 };
187 
188 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
189 {
190 	if (network_type == RDMA_NETWORK_IPV4 ||
191 	    network_type == RDMA_NETWORK_IPV6)
192 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
193 	else if (network_type == RDMA_NETWORK_ROCE_V1)
194 		return IB_GID_TYPE_ROCE;
195 	else
196 		return IB_GID_TYPE_IB;
197 }
198 
199 static inline enum rdma_network_type
200 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
201 {
202 	if (attr->gid_type == IB_GID_TYPE_IB)
203 		return RDMA_NETWORK_IB;
204 
205 	if (attr->gid_type == IB_GID_TYPE_ROCE)
206 		return RDMA_NETWORK_ROCE_V1;
207 
208 	if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
209 		return RDMA_NETWORK_IPV4;
210 	else
211 		return RDMA_NETWORK_IPV6;
212 }
213 
214 enum rdma_link_layer {
215 	IB_LINK_LAYER_UNSPECIFIED,
216 	IB_LINK_LAYER_INFINIBAND,
217 	IB_LINK_LAYER_ETHERNET,
218 };
219 
220 enum ib_device_cap_flags {
221 	IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
222 	IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
223 	IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
224 	IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
225 	IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
226 	IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
227 	IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
228 	IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
229 	IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
230 	/* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
231 	IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
232 	IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
233 	IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
234 	IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
235 	IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,
236 
237 	/* Reserved, old SEND_W_INV = 1 << 16,*/
238 	IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
239 	/*
240 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
241 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
242 	 * messages and can verify the validity of checksum for
243 	 * incoming messages.  Setting this flag implies that the
244 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
245 	 */
246 	IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
247 	IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,
248 
249 	/*
250 	 * This device supports the IB "base memory management extension",
251 	 * which includes support for fast registrations (IB_WR_REG_MR,
252 	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
253 	 * also be set by any iWarp device which must support FRs to comply
254 	 * to the iWarp verbs spec.  iWarp devices also support the
255 	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
256 	 * stag.
257 	 */
258 	IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
259 	IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
260 	IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
261 	IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
262 	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
263 	IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
264 	IB_DEVICE_MANAGED_FLOW_STEERING =
265 		IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
266 	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
267 	IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
268 	/* The device supports padding incoming writes to cacheline. */
269 	IB_DEVICE_PCI_WRITE_END_PADDING =
270 		IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
271 	/* Placement type attributes */
272 	IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL,
273 	IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT,
274 	IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE,
275 };
276 
277 enum ib_kernel_cap_flags {
278 	/*
279 	 * This device supports a per-device lkey or stag that can be
280 	 * used without performing a memory registration for the local
281 	 * memory.  Note that ULPs should never check this flag, but
282 	 * instead of use the local_dma_lkey flag in the ib_pd structure,
283 	 * which will always contain a usable lkey.
284 	 */
285 	IBK_LOCAL_DMA_LKEY = 1 << 0,
286 	/* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
287 	IBK_INTEGRITY_HANDOVER = 1 << 1,
288 	/* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
289 	IBK_ON_DEMAND_PAGING = 1 << 2,
290 	/* IB_MR_TYPE_SG_GAPS is supported */
291 	IBK_SG_GAPS_REG = 1 << 3,
292 	/* Driver supports RDMA_NLDEV_CMD_DELLINK */
293 	IBK_ALLOW_USER_UNREG = 1 << 4,
294 
295 	/* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
296 	IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
297 	/* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
298 	IBK_UD_TSO = 1 << 6,
299 	/* iopib will use the device ops:
300 	 *   get_vf_config
301 	 *   get_vf_guid
302 	 *   get_vf_stats
303 	 *   set_vf_guid
304 	 *   set_vf_link_state
305 	 */
306 	IBK_VIRTUAL_FUNCTION = 1 << 7,
307 	/* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
308 	IBK_RDMA_NETDEV_OPA = 1 << 8,
309 };
310 
311 enum ib_atomic_cap {
312 	IB_ATOMIC_NONE,
313 	IB_ATOMIC_HCA,
314 	IB_ATOMIC_GLOB
315 };
316 
317 enum ib_odp_general_cap_bits {
318 	IB_ODP_SUPPORT		= IB_UVERBS_ODP_SUPPORT,
319 	IB_ODP_SUPPORT_IMPLICIT = IB_UVERBS_ODP_SUPPORT_IMPLICIT,
320 };
321 
322 enum ib_odp_transport_cap_bits {
323 	IB_ODP_SUPPORT_SEND	= IB_UVERBS_ODP_SUPPORT_SEND,
324 	IB_ODP_SUPPORT_RECV	= IB_UVERBS_ODP_SUPPORT_RECV,
325 	IB_ODP_SUPPORT_WRITE	= IB_UVERBS_ODP_SUPPORT_WRITE,
326 	IB_ODP_SUPPORT_READ	= IB_UVERBS_ODP_SUPPORT_READ,
327 	IB_ODP_SUPPORT_ATOMIC	= IB_UVERBS_ODP_SUPPORT_ATOMIC,
328 	IB_ODP_SUPPORT_SRQ_RECV	= IB_UVERBS_ODP_SUPPORT_SRQ_RECV,
329 	IB_ODP_SUPPORT_FLUSH	= IB_UVERBS_ODP_SUPPORT_FLUSH,
330 	IB_ODP_SUPPORT_ATOMIC_WRITE	= IB_UVERBS_ODP_SUPPORT_ATOMIC_WRITE,
331 };
332 
333 struct ib_odp_caps {
334 	uint64_t general_caps;
335 	struct {
336 		uint32_t  rc_odp_caps;
337 		uint32_t  uc_odp_caps;
338 		uint32_t  ud_odp_caps;
339 		uint32_t  xrc_odp_caps;
340 	} per_transport_caps;
341 };
342 
343 struct ib_rss_caps {
344 	/* Corresponding bit will be set if qp type from
345 	 * 'enum ib_qp_type' is supported, e.g.
346 	 * supported_qpts |= 1 << IB_QPT_UD
347 	 */
348 	u32 supported_qpts;
349 	u32 max_rwq_indirection_tables;
350 	u32 max_rwq_indirection_table_size;
351 };
352 
353 enum ib_tm_cap_flags {
354 	/*  Support tag matching with rendezvous offload for RC transport */
355 	IB_TM_CAP_RNDV_RC = 1 << 0,
356 };
357 
358 struct ib_tm_caps {
359 	/* Max size of RNDV header */
360 	u32 max_rndv_hdr_size;
361 	/* Max number of entries in tag matching list */
362 	u32 max_num_tags;
363 	/* From enum ib_tm_cap_flags */
364 	u32 flags;
365 	/* Max number of outstanding list operations */
366 	u32 max_ops;
367 	/* Max number of SGE in tag matching entry */
368 	u32 max_sge;
369 };
370 
371 struct ib_cq_init_attr {
372 	unsigned int	cqe;
373 	u32		comp_vector;
374 	u32		flags;
375 };
376 
377 enum ib_cq_attr_mask {
378 	IB_CQ_MODERATE = 1 << 0,
379 };
380 
381 struct ib_cq_caps {
382 	u16     max_cq_moderation_count;
383 	u16     max_cq_moderation_period;
384 };
385 
386 struct ib_dm_mr_attr {
387 	u64		length;
388 	u64		offset;
389 	u32		access_flags;
390 };
391 
392 struct ib_dm_alloc_attr {
393 	u64	length;
394 	u32	alignment;
395 	u32	flags;
396 };
397 
398 struct ib_device_attr {
399 	u64			fw_ver;
400 	__be64			sys_image_guid;
401 	u64			max_mr_size;
402 	u64			page_size_cap;
403 	u32			vendor_id;
404 	u32			vendor_part_id;
405 	u32			hw_ver;
406 	int			max_qp;
407 	int			max_qp_wr;
408 	u64			device_cap_flags;
409 	u64			kernel_cap_flags;
410 	int			max_send_sge;
411 	int			max_recv_sge;
412 	int			max_sge_rd;
413 	int			max_cq;
414 	int			max_cqe;
415 	int			max_mr;
416 	int			max_pd;
417 	int			max_qp_rd_atom;
418 	int			max_ee_rd_atom;
419 	int			max_res_rd_atom;
420 	int			max_qp_init_rd_atom;
421 	int			max_ee_init_rd_atom;
422 	enum ib_atomic_cap	atomic_cap;
423 	enum ib_atomic_cap	masked_atomic_cap;
424 	int			max_ee;
425 	int			max_rdd;
426 	int			max_mw;
427 	int			max_raw_ipv6_qp;
428 	int			max_raw_ethy_qp;
429 	int			max_mcast_grp;
430 	int			max_mcast_qp_attach;
431 	int			max_total_mcast_qp_attach;
432 	int			max_ah;
433 	int			max_srq;
434 	int			max_srq_wr;
435 	int			max_srq_sge;
436 	unsigned int		max_fast_reg_page_list_len;
437 	unsigned int		max_pi_fast_reg_page_list_len;
438 	u16			max_pkeys;
439 	u8			local_ca_ack_delay;
440 	int			sig_prot_cap;
441 	int			sig_guard_cap;
442 	struct ib_odp_caps	odp_caps;
443 	uint64_t		timestamp_mask;
444 	uint64_t		hca_core_clock; /* in KHZ */
445 	struct ib_rss_caps	rss_caps;
446 	u32			max_wq_type_rq;
447 	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
448 	struct ib_tm_caps	tm_caps;
449 	struct ib_cq_caps       cq_caps;
450 	u64			max_dm_size;
451 	/* Max entries for sgl for optimized performance per READ */
452 	u32			max_sgl_rd;
453 };
454 
455 enum ib_mtu {
456 	IB_MTU_256  = 1,
457 	IB_MTU_512  = 2,
458 	IB_MTU_1024 = 3,
459 	IB_MTU_2048 = 4,
460 	IB_MTU_4096 = 5
461 };
462 
463 enum opa_mtu {
464 	OPA_MTU_8192 = 6,
465 	OPA_MTU_10240 = 7
466 };
467 
468 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
469 {
470 	switch (mtu) {
471 	case IB_MTU_256:  return  256;
472 	case IB_MTU_512:  return  512;
473 	case IB_MTU_1024: return 1024;
474 	case IB_MTU_2048: return 2048;
475 	case IB_MTU_4096: return 4096;
476 	default: 	  return -1;
477 	}
478 }
479 
480 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
481 {
482 	if (mtu >= 4096)
483 		return IB_MTU_4096;
484 	else if (mtu >= 2048)
485 		return IB_MTU_2048;
486 	else if (mtu >= 1024)
487 		return IB_MTU_1024;
488 	else if (mtu >= 512)
489 		return IB_MTU_512;
490 	else
491 		return IB_MTU_256;
492 }
493 
494 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
495 {
496 	switch (mtu) {
497 	case OPA_MTU_8192:
498 		return 8192;
499 	case OPA_MTU_10240:
500 		return 10240;
501 	default:
502 		return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
503 	}
504 }
505 
506 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
507 {
508 	if (mtu >= 10240)
509 		return OPA_MTU_10240;
510 	else if (mtu >= 8192)
511 		return OPA_MTU_8192;
512 	else
513 		return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
514 }
515 
516 enum ib_port_state {
517 	IB_PORT_NOP		= 0,
518 	IB_PORT_DOWN		= 1,
519 	IB_PORT_INIT		= 2,
520 	IB_PORT_ARMED		= 3,
521 	IB_PORT_ACTIVE		= 4,
522 	IB_PORT_ACTIVE_DEFER	= 5
523 };
524 
525 static inline const char *__attribute_const__
526 ib_port_state_to_str(enum ib_port_state state)
527 {
528 	const char * const states[] = {
529 		[IB_PORT_NOP] = "NOP",
530 		[IB_PORT_DOWN] = "DOWN",
531 		[IB_PORT_INIT] = "INIT",
532 		[IB_PORT_ARMED] = "ARMED",
533 		[IB_PORT_ACTIVE] = "ACTIVE",
534 		[IB_PORT_ACTIVE_DEFER] = "ACTIVE_DEFER",
535 	};
536 
537 	if (state < ARRAY_SIZE(states))
538 		return states[state];
539 	return "UNKNOWN";
540 }
541 
542 enum ib_port_phys_state {
543 	IB_PORT_PHYS_STATE_SLEEP = 1,
544 	IB_PORT_PHYS_STATE_POLLING = 2,
545 	IB_PORT_PHYS_STATE_DISABLED = 3,
546 	IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
547 	IB_PORT_PHYS_STATE_LINK_UP = 5,
548 	IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
549 	IB_PORT_PHYS_STATE_PHY_TEST = 7,
550 };
551 
552 enum ib_port_width {
553 	IB_WIDTH_1X	= 1,
554 	IB_WIDTH_2X	= 16,
555 	IB_WIDTH_4X	= 2,
556 	IB_WIDTH_8X	= 4,
557 	IB_WIDTH_12X	= 8
558 };
559 
560 static inline int ib_width_enum_to_int(enum ib_port_width width)
561 {
562 	switch (width) {
563 	case IB_WIDTH_1X:  return  1;
564 	case IB_WIDTH_2X:  return  2;
565 	case IB_WIDTH_4X:  return  4;
566 	case IB_WIDTH_8X:  return  8;
567 	case IB_WIDTH_12X: return 12;
568 	default: 	  return -1;
569 	}
570 }
571 
572 enum ib_port_speed {
573 	IB_SPEED_SDR	= 1,
574 	IB_SPEED_DDR	= 2,
575 	IB_SPEED_QDR	= 4,
576 	IB_SPEED_FDR10	= 8,
577 	IB_SPEED_FDR	= 16,
578 	IB_SPEED_EDR	= 32,
579 	IB_SPEED_HDR	= 64,
580 	IB_SPEED_NDR	= 128,
581 	IB_SPEED_XDR	= 256,
582 };
583 
584 enum ib_stat_flag {
585 	IB_STAT_FLAG_OPTIONAL = 1 << 0,
586 };
587 
588 /**
589  * struct rdma_stat_desc
590  * @name - The name of the counter
591  * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
592  * @priv - Driver private information; Core code should not use
593  */
594 struct rdma_stat_desc {
595 	const char *name;
596 	unsigned int flags;
597 	const void *priv;
598 };
599 
600 /**
601  * struct rdma_hw_stats
602  * @lock - Mutex to protect parallel write access to lifespan and values
603  *    of counters, which are 64bits and not guaranteed to be written
604  *    atomicaly on 32bits systems.
605  * @timestamp - Used by the core code to track when the last update was
606  * @lifespan - Used by the core code to determine how old the counters
607  *   should be before being updated again.  Stored in jiffies, defaults
608  *   to 10 milliseconds, drivers can override the default be specifying
609  *   their own value during their allocation routine.
610  * @descs - Array of pointers to static descriptors used for the counters
611  *   in directory.
612  * @is_disabled - A bitmap to indicate each counter is currently disabled
613  *   or not.
614  * @num_counters - How many hardware counters there are.  If name is
615  *   shorter than this number, a kernel oops will result.  Driver authors
616  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
617  *   in their code to prevent this.
618  * @value - Array of u64 counters that are accessed by the sysfs code and
619  *   filled in by the drivers get_stats routine
620  */
621 struct rdma_hw_stats {
622 	struct mutex	lock; /* Protect lifespan and values[] */
623 	unsigned long	timestamp;
624 	unsigned long	lifespan;
625 	const struct rdma_stat_desc *descs;
626 	unsigned long	*is_disabled;
627 	int		num_counters;
628 	u64		value[] __counted_by(num_counters);
629 };
630 
631 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
632 
633 struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
634 	const struct rdma_stat_desc *descs, int num_counters,
635 	unsigned long lifespan);
636 
637 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
638 
639 /* Define bits for the various functionality this port needs to be supported by
640  * the core.
641  */
642 /* Management                           0x00000FFF */
643 #define RDMA_CORE_CAP_IB_MAD            0x00000001
644 #define RDMA_CORE_CAP_IB_SMI            0x00000002
645 #define RDMA_CORE_CAP_IB_CM             0x00000004
646 #define RDMA_CORE_CAP_IW_CM             0x00000008
647 #define RDMA_CORE_CAP_IB_SA             0x00000010
648 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
649 
650 /* Address format                       0x000FF000 */
651 #define RDMA_CORE_CAP_AF_IB             0x00001000
652 #define RDMA_CORE_CAP_ETH_AH            0x00002000
653 #define RDMA_CORE_CAP_OPA_AH            0x00004000
654 #define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
655 
656 /* Protocol                             0xFFF00000 */
657 #define RDMA_CORE_CAP_PROT_IB           0x00100000
658 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
659 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
660 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
661 #define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
662 #define RDMA_CORE_CAP_PROT_USNIC        0x02000000
663 
664 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
665 					| RDMA_CORE_CAP_PROT_ROCE     \
666 					| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
667 
668 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
669 					| RDMA_CORE_CAP_IB_MAD \
670 					| RDMA_CORE_CAP_IB_SMI \
671 					| RDMA_CORE_CAP_IB_CM  \
672 					| RDMA_CORE_CAP_IB_SA  \
673 					| RDMA_CORE_CAP_AF_IB)
674 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
675 					| RDMA_CORE_CAP_IB_MAD  \
676 					| RDMA_CORE_CAP_IB_CM   \
677 					| RDMA_CORE_CAP_AF_IB   \
678 					| RDMA_CORE_CAP_ETH_AH)
679 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
680 					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
681 					| RDMA_CORE_CAP_IB_MAD  \
682 					| RDMA_CORE_CAP_IB_CM   \
683 					| RDMA_CORE_CAP_AF_IB   \
684 					| RDMA_CORE_CAP_ETH_AH)
685 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
686 					| RDMA_CORE_CAP_IW_CM)
687 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
688 					| RDMA_CORE_CAP_OPA_MAD)
689 
690 #define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
691 
692 #define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
693 
694 struct ib_port_attr {
695 	u64			subnet_prefix;
696 	enum ib_port_state	state;
697 	enum ib_mtu		max_mtu;
698 	enum ib_mtu		active_mtu;
699 	u32                     phys_mtu;
700 	int			gid_tbl_len;
701 	unsigned int		ip_gids:1;
702 	/* This is the value from PortInfo CapabilityMask, defined by IBA */
703 	u32			port_cap_flags;
704 	u32			max_msg_sz;
705 	u32			bad_pkey_cntr;
706 	u32			qkey_viol_cntr;
707 	u16			pkey_tbl_len;
708 	u32			sm_lid;
709 	u32			lid;
710 	u8			lmc;
711 	u8			max_vl_num;
712 	u8			sm_sl;
713 	u8			subnet_timeout;
714 	u8			init_type_reply;
715 	u8			active_width;
716 	u16			active_speed;
717 	u8                      phys_state;
718 	u16			port_cap_flags2;
719 };
720 
721 enum ib_device_modify_flags {
722 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
723 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
724 };
725 
726 #define IB_DEVICE_NODE_DESC_MAX 64
727 
728 struct ib_device_modify {
729 	u64	sys_image_guid;
730 	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
731 };
732 
733 enum ib_port_modify_flags {
734 	IB_PORT_SHUTDOWN		= 1,
735 	IB_PORT_INIT_TYPE		= (1<<2),
736 	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
737 	IB_PORT_OPA_MASK_CHG		= (1<<4)
738 };
739 
740 struct ib_port_modify {
741 	u32	set_port_cap_mask;
742 	u32	clr_port_cap_mask;
743 	u8	init_type;
744 };
745 
746 enum ib_event_type {
747 	IB_EVENT_CQ_ERR,
748 	IB_EVENT_QP_FATAL,
749 	IB_EVENT_QP_REQ_ERR,
750 	IB_EVENT_QP_ACCESS_ERR,
751 	IB_EVENT_COMM_EST,
752 	IB_EVENT_SQ_DRAINED,
753 	IB_EVENT_PATH_MIG,
754 	IB_EVENT_PATH_MIG_ERR,
755 	IB_EVENT_DEVICE_FATAL,
756 	IB_EVENT_PORT_ACTIVE,
757 	IB_EVENT_PORT_ERR,
758 	IB_EVENT_LID_CHANGE,
759 	IB_EVENT_PKEY_CHANGE,
760 	IB_EVENT_SM_CHANGE,
761 	IB_EVENT_SRQ_ERR,
762 	IB_EVENT_SRQ_LIMIT_REACHED,
763 	IB_EVENT_QP_LAST_WQE_REACHED,
764 	IB_EVENT_CLIENT_REREGISTER,
765 	IB_EVENT_GID_CHANGE,
766 	IB_EVENT_WQ_FATAL,
767 };
768 
769 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
770 
771 struct ib_event {
772 	struct ib_device	*device;
773 	union {
774 		struct ib_cq	*cq;
775 		struct ib_qp	*qp;
776 		struct ib_srq	*srq;
777 		struct ib_wq	*wq;
778 		u32		port_num;
779 	} element;
780 	enum ib_event_type	event;
781 };
782 
783 struct ib_event_handler {
784 	struct ib_device *device;
785 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
786 	struct list_head  list;
787 };
788 
789 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
790 	do {							\
791 		(_ptr)->device  = _device;			\
792 		(_ptr)->handler = _handler;			\
793 		INIT_LIST_HEAD(&(_ptr)->list);			\
794 	} while (0)
795 
796 struct ib_global_route {
797 	const struct ib_gid_attr *sgid_attr;
798 	union ib_gid	dgid;
799 	u32		flow_label;
800 	u8		sgid_index;
801 	u8		hop_limit;
802 	u8		traffic_class;
803 };
804 
805 struct ib_grh {
806 	__be32		version_tclass_flow;
807 	__be16		paylen;
808 	u8		next_hdr;
809 	u8		hop_limit;
810 	union ib_gid	sgid;
811 	union ib_gid	dgid;
812 };
813 
814 union rdma_network_hdr {
815 	struct ib_grh ibgrh;
816 	struct {
817 		/* The IB spec states that if it's IPv4, the header
818 		 * is located in the last 20 bytes of the header.
819 		 */
820 		u8		reserved[20];
821 		struct iphdr	roce4grh;
822 	};
823 };
824 
825 #define IB_QPN_MASK		0xFFFFFF
826 
827 enum {
828 	IB_MULTICAST_QPN = 0xffffff
829 };
830 
831 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
832 #define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
833 
834 enum ib_ah_flags {
835 	IB_AH_GRH	= 1
836 };
837 
838 enum ib_rate {
839 	IB_RATE_PORT_CURRENT = 0,
840 	IB_RATE_2_5_GBPS = 2,
841 	IB_RATE_5_GBPS   = 5,
842 	IB_RATE_10_GBPS  = 3,
843 	IB_RATE_20_GBPS  = 6,
844 	IB_RATE_30_GBPS  = 4,
845 	IB_RATE_40_GBPS  = 7,
846 	IB_RATE_60_GBPS  = 8,
847 	IB_RATE_80_GBPS  = 9,
848 	IB_RATE_120_GBPS = 10,
849 	IB_RATE_14_GBPS  = 11,
850 	IB_RATE_56_GBPS  = 12,
851 	IB_RATE_112_GBPS = 13,
852 	IB_RATE_168_GBPS = 14,
853 	IB_RATE_25_GBPS  = 15,
854 	IB_RATE_100_GBPS = 16,
855 	IB_RATE_200_GBPS = 17,
856 	IB_RATE_300_GBPS = 18,
857 	IB_RATE_28_GBPS  = 19,
858 	IB_RATE_50_GBPS  = 20,
859 	IB_RATE_400_GBPS = 21,
860 	IB_RATE_600_GBPS = 22,
861 	IB_RATE_800_GBPS = 23,
862 };
863 
864 /**
865  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
866  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
867  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
868  * @rate: rate to convert.
869  */
870 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
871 
872 /**
873  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
874  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
875  * @rate: rate to convert.
876  */
877 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
878 
879 
880 /**
881  * enum ib_mr_type - memory region type
882  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
883  *                            normal registration
884  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
885  *                            register any arbitrary sg lists (without
886  *                            the normal mr constraints - see
887  *                            ib_map_mr_sg)
888  * @IB_MR_TYPE_DM:            memory region that is used for device
889  *                            memory registration
890  * @IB_MR_TYPE_USER:          memory region that is used for the user-space
891  *                            application
892  * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
893  *                            without address translations (VA=PA)
894  * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
895  *                            data integrity operations
896  */
897 enum ib_mr_type {
898 	IB_MR_TYPE_MEM_REG,
899 	IB_MR_TYPE_SG_GAPS,
900 	IB_MR_TYPE_DM,
901 	IB_MR_TYPE_USER,
902 	IB_MR_TYPE_DMA,
903 	IB_MR_TYPE_INTEGRITY,
904 };
905 
906 enum ib_mr_status_check {
907 	IB_MR_CHECK_SIG_STATUS = 1,
908 };
909 
910 /**
911  * struct ib_mr_status - Memory region status container
912  *
913  * @fail_status: Bitmask of MR checks status. For each
914  *     failed check a corresponding status bit is set.
915  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
916  *     failure.
917  */
918 struct ib_mr_status {
919 	u32		    fail_status;
920 	struct ib_sig_err   sig_err;
921 };
922 
923 /**
924  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
925  * enum.
926  * @mult: multiple to convert.
927  */
928 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
929 
930 struct rdma_ah_init_attr {
931 	struct rdma_ah_attr *ah_attr;
932 	u32 flags;
933 	struct net_device *xmit_slave;
934 };
935 
936 enum rdma_ah_attr_type {
937 	RDMA_AH_ATTR_TYPE_UNDEFINED,
938 	RDMA_AH_ATTR_TYPE_IB,
939 	RDMA_AH_ATTR_TYPE_ROCE,
940 	RDMA_AH_ATTR_TYPE_OPA,
941 };
942 
943 struct ib_ah_attr {
944 	u16			dlid;
945 	u8			src_path_bits;
946 };
947 
948 struct roce_ah_attr {
949 	u8			dmac[ETH_ALEN];
950 };
951 
952 struct opa_ah_attr {
953 	u32			dlid;
954 	u8			src_path_bits;
955 	bool			make_grd;
956 };
957 
958 struct rdma_ah_attr {
959 	struct ib_global_route	grh;
960 	u8			sl;
961 	u8			static_rate;
962 	u32			port_num;
963 	u8			ah_flags;
964 	enum rdma_ah_attr_type type;
965 	union {
966 		struct ib_ah_attr ib;
967 		struct roce_ah_attr roce;
968 		struct opa_ah_attr opa;
969 	};
970 };
971 
972 enum ib_wc_status {
973 	IB_WC_SUCCESS,
974 	IB_WC_LOC_LEN_ERR,
975 	IB_WC_LOC_QP_OP_ERR,
976 	IB_WC_LOC_EEC_OP_ERR,
977 	IB_WC_LOC_PROT_ERR,
978 	IB_WC_WR_FLUSH_ERR,
979 	IB_WC_MW_BIND_ERR,
980 	IB_WC_BAD_RESP_ERR,
981 	IB_WC_LOC_ACCESS_ERR,
982 	IB_WC_REM_INV_REQ_ERR,
983 	IB_WC_REM_ACCESS_ERR,
984 	IB_WC_REM_OP_ERR,
985 	IB_WC_RETRY_EXC_ERR,
986 	IB_WC_RNR_RETRY_EXC_ERR,
987 	IB_WC_LOC_RDD_VIOL_ERR,
988 	IB_WC_REM_INV_RD_REQ_ERR,
989 	IB_WC_REM_ABORT_ERR,
990 	IB_WC_INV_EECN_ERR,
991 	IB_WC_INV_EEC_STATE_ERR,
992 	IB_WC_FATAL_ERR,
993 	IB_WC_RESP_TIMEOUT_ERR,
994 	IB_WC_GENERAL_ERR
995 };
996 
997 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
998 
999 enum ib_wc_opcode {
1000 	IB_WC_SEND = IB_UVERBS_WC_SEND,
1001 	IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
1002 	IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
1003 	IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
1004 	IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
1005 	IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
1006 	IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
1007 	IB_WC_LSO = IB_UVERBS_WC_TSO,
1008 	IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE,
1009 	IB_WC_REG_MR,
1010 	IB_WC_MASKED_COMP_SWAP,
1011 	IB_WC_MASKED_FETCH_ADD,
1012 	IB_WC_FLUSH = IB_UVERBS_WC_FLUSH,
1013 /*
1014  * Set value of IB_WC_RECV so consumers can test if a completion is a
1015  * receive by testing (opcode & IB_WC_RECV).
1016  */
1017 	IB_WC_RECV			= 1 << 7,
1018 	IB_WC_RECV_RDMA_WITH_IMM
1019 };
1020 
1021 enum ib_wc_flags {
1022 	IB_WC_GRH		= 1,
1023 	IB_WC_WITH_IMM		= (1<<1),
1024 	IB_WC_WITH_INVALIDATE	= (1<<2),
1025 	IB_WC_IP_CSUM_OK	= (1<<3),
1026 	IB_WC_WITH_SMAC		= (1<<4),
1027 	IB_WC_WITH_VLAN		= (1<<5),
1028 	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
1029 };
1030 
1031 struct ib_wc {
1032 	union {
1033 		u64		wr_id;
1034 		struct ib_cqe	*wr_cqe;
1035 	};
1036 	enum ib_wc_status	status;
1037 	enum ib_wc_opcode	opcode;
1038 	u32			vendor_err;
1039 	u32			byte_len;
1040 	struct ib_qp	       *qp;
1041 	union {
1042 		__be32		imm_data;
1043 		u32		invalidate_rkey;
1044 	} ex;
1045 	u32			src_qp;
1046 	u32			slid;
1047 	int			wc_flags;
1048 	u16			pkey_index;
1049 	u8			sl;
1050 	u8			dlid_path_bits;
1051 	u32 port_num; /* valid only for DR SMPs on switches */
1052 	u8			smac[ETH_ALEN];
1053 	u16			vlan_id;
1054 	u8			network_hdr_type;
1055 };
1056 
1057 enum ib_cq_notify_flags {
1058 	IB_CQ_SOLICITED			= 1 << 0,
1059 	IB_CQ_NEXT_COMP			= 1 << 1,
1060 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1061 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1062 };
1063 
1064 enum ib_srq_type {
1065 	IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1066 	IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1067 	IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1068 };
1069 
1070 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1071 {
1072 	return srq_type == IB_SRQT_XRC ||
1073 	       srq_type == IB_SRQT_TM;
1074 }
1075 
1076 enum ib_srq_attr_mask {
1077 	IB_SRQ_MAX_WR	= 1 << 0,
1078 	IB_SRQ_LIMIT	= 1 << 1,
1079 };
1080 
1081 struct ib_srq_attr {
1082 	u32	max_wr;
1083 	u32	max_sge;
1084 	u32	srq_limit;
1085 };
1086 
1087 struct ib_srq_init_attr {
1088 	void		      (*event_handler)(struct ib_event *, void *);
1089 	void		       *srq_context;
1090 	struct ib_srq_attr	attr;
1091 	enum ib_srq_type	srq_type;
1092 
1093 	struct {
1094 		struct ib_cq   *cq;
1095 		union {
1096 			struct {
1097 				struct ib_xrcd *xrcd;
1098 			} xrc;
1099 
1100 			struct {
1101 				u32		max_num_tags;
1102 			} tag_matching;
1103 		};
1104 	} ext;
1105 };
1106 
1107 struct ib_qp_cap {
1108 	u32	max_send_wr;
1109 	u32	max_recv_wr;
1110 	u32	max_send_sge;
1111 	u32	max_recv_sge;
1112 	u32	max_inline_data;
1113 
1114 	/*
1115 	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1116 	 * ib_create_qp() will calculate the right amount of needed WRs
1117 	 * and MRs based on this.
1118 	 */
1119 	u32	max_rdma_ctxs;
1120 };
1121 
1122 enum ib_sig_type {
1123 	IB_SIGNAL_ALL_WR,
1124 	IB_SIGNAL_REQ_WR
1125 };
1126 
1127 enum ib_qp_type {
1128 	/*
1129 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1130 	 * here (and in that order) since the MAD layer uses them as
1131 	 * indices into a 2-entry table.
1132 	 */
1133 	IB_QPT_SMI,
1134 	IB_QPT_GSI,
1135 
1136 	IB_QPT_RC = IB_UVERBS_QPT_RC,
1137 	IB_QPT_UC = IB_UVERBS_QPT_UC,
1138 	IB_QPT_UD = IB_UVERBS_QPT_UD,
1139 	IB_QPT_RAW_IPV6,
1140 	IB_QPT_RAW_ETHERTYPE,
1141 	IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1142 	IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1143 	IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1144 	IB_QPT_MAX,
1145 	IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1146 	/* Reserve a range for qp types internal to the low level driver.
1147 	 * These qp types will not be visible at the IB core layer, so the
1148 	 * IB_QPT_MAX usages should not be affected in the core layer
1149 	 */
1150 	IB_QPT_RESERVED1 = 0x1000,
1151 	IB_QPT_RESERVED2,
1152 	IB_QPT_RESERVED3,
1153 	IB_QPT_RESERVED4,
1154 	IB_QPT_RESERVED5,
1155 	IB_QPT_RESERVED6,
1156 	IB_QPT_RESERVED7,
1157 	IB_QPT_RESERVED8,
1158 	IB_QPT_RESERVED9,
1159 	IB_QPT_RESERVED10,
1160 };
1161 
1162 enum ib_qp_create_flags {
1163 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1164 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	=
1165 		IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1166 	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1167 	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1168 	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1169 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1170 	IB_QP_CREATE_INTEGRITY_EN		= 1 << 6,
1171 	IB_QP_CREATE_NETDEV_USE			= 1 << 7,
1172 	IB_QP_CREATE_SCATTER_FCS		=
1173 		IB_UVERBS_QP_CREATE_SCATTER_FCS,
1174 	IB_QP_CREATE_CVLAN_STRIPPING		=
1175 		IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1176 	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1177 	IB_QP_CREATE_PCI_WRITE_END_PADDING	=
1178 		IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1179 	/* reserve bits 26-31 for low level drivers' internal use */
1180 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1181 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1182 };
1183 
1184 /*
1185  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1186  * callback to destroy the passed in QP.
1187  */
1188 
1189 struct ib_qp_init_attr {
1190 	/* This callback occurs in workqueue context */
1191 	void                  (*event_handler)(struct ib_event *, void *);
1192 
1193 	void		       *qp_context;
1194 	struct ib_cq	       *send_cq;
1195 	struct ib_cq	       *recv_cq;
1196 	struct ib_srq	       *srq;
1197 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1198 	struct ib_qp_cap	cap;
1199 	enum ib_sig_type	sq_sig_type;
1200 	enum ib_qp_type		qp_type;
1201 	u32			create_flags;
1202 
1203 	/*
1204 	 * Only needed for special QP types, or when using the RW API.
1205 	 */
1206 	u32			port_num;
1207 	struct ib_rwq_ind_table *rwq_ind_tbl;
1208 	u32			source_qpn;
1209 };
1210 
1211 struct ib_qp_open_attr {
1212 	void                  (*event_handler)(struct ib_event *, void *);
1213 	void		       *qp_context;
1214 	u32			qp_num;
1215 	enum ib_qp_type		qp_type;
1216 };
1217 
1218 enum ib_rnr_timeout {
1219 	IB_RNR_TIMER_655_36 =  0,
1220 	IB_RNR_TIMER_000_01 =  1,
1221 	IB_RNR_TIMER_000_02 =  2,
1222 	IB_RNR_TIMER_000_03 =  3,
1223 	IB_RNR_TIMER_000_04 =  4,
1224 	IB_RNR_TIMER_000_06 =  5,
1225 	IB_RNR_TIMER_000_08 =  6,
1226 	IB_RNR_TIMER_000_12 =  7,
1227 	IB_RNR_TIMER_000_16 =  8,
1228 	IB_RNR_TIMER_000_24 =  9,
1229 	IB_RNR_TIMER_000_32 = 10,
1230 	IB_RNR_TIMER_000_48 = 11,
1231 	IB_RNR_TIMER_000_64 = 12,
1232 	IB_RNR_TIMER_000_96 = 13,
1233 	IB_RNR_TIMER_001_28 = 14,
1234 	IB_RNR_TIMER_001_92 = 15,
1235 	IB_RNR_TIMER_002_56 = 16,
1236 	IB_RNR_TIMER_003_84 = 17,
1237 	IB_RNR_TIMER_005_12 = 18,
1238 	IB_RNR_TIMER_007_68 = 19,
1239 	IB_RNR_TIMER_010_24 = 20,
1240 	IB_RNR_TIMER_015_36 = 21,
1241 	IB_RNR_TIMER_020_48 = 22,
1242 	IB_RNR_TIMER_030_72 = 23,
1243 	IB_RNR_TIMER_040_96 = 24,
1244 	IB_RNR_TIMER_061_44 = 25,
1245 	IB_RNR_TIMER_081_92 = 26,
1246 	IB_RNR_TIMER_122_88 = 27,
1247 	IB_RNR_TIMER_163_84 = 28,
1248 	IB_RNR_TIMER_245_76 = 29,
1249 	IB_RNR_TIMER_327_68 = 30,
1250 	IB_RNR_TIMER_491_52 = 31
1251 };
1252 
1253 enum ib_qp_attr_mask {
1254 	IB_QP_STATE			= 1,
1255 	IB_QP_CUR_STATE			= (1<<1),
1256 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1257 	IB_QP_ACCESS_FLAGS		= (1<<3),
1258 	IB_QP_PKEY_INDEX		= (1<<4),
1259 	IB_QP_PORT			= (1<<5),
1260 	IB_QP_QKEY			= (1<<6),
1261 	IB_QP_AV			= (1<<7),
1262 	IB_QP_PATH_MTU			= (1<<8),
1263 	IB_QP_TIMEOUT			= (1<<9),
1264 	IB_QP_RETRY_CNT			= (1<<10),
1265 	IB_QP_RNR_RETRY			= (1<<11),
1266 	IB_QP_RQ_PSN			= (1<<12),
1267 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1268 	IB_QP_ALT_PATH			= (1<<14),
1269 	IB_QP_MIN_RNR_TIMER		= (1<<15),
1270 	IB_QP_SQ_PSN			= (1<<16),
1271 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1272 	IB_QP_PATH_MIG_STATE		= (1<<18),
1273 	IB_QP_CAP			= (1<<19),
1274 	IB_QP_DEST_QPN			= (1<<20),
1275 	IB_QP_RESERVED1			= (1<<21),
1276 	IB_QP_RESERVED2			= (1<<22),
1277 	IB_QP_RESERVED3			= (1<<23),
1278 	IB_QP_RESERVED4			= (1<<24),
1279 	IB_QP_RATE_LIMIT		= (1<<25),
1280 
1281 	IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1282 };
1283 
1284 enum ib_qp_state {
1285 	IB_QPS_RESET,
1286 	IB_QPS_INIT,
1287 	IB_QPS_RTR,
1288 	IB_QPS_RTS,
1289 	IB_QPS_SQD,
1290 	IB_QPS_SQE,
1291 	IB_QPS_ERR
1292 };
1293 
1294 enum ib_mig_state {
1295 	IB_MIG_MIGRATED,
1296 	IB_MIG_REARM,
1297 	IB_MIG_ARMED
1298 };
1299 
1300 enum ib_mw_type {
1301 	IB_MW_TYPE_1 = 1,
1302 	IB_MW_TYPE_2 = 2
1303 };
1304 
1305 struct ib_qp_attr {
1306 	enum ib_qp_state	qp_state;
1307 	enum ib_qp_state	cur_qp_state;
1308 	enum ib_mtu		path_mtu;
1309 	enum ib_mig_state	path_mig_state;
1310 	u32			qkey;
1311 	u32			rq_psn;
1312 	u32			sq_psn;
1313 	u32			dest_qp_num;
1314 	int			qp_access_flags;
1315 	struct ib_qp_cap	cap;
1316 	struct rdma_ah_attr	ah_attr;
1317 	struct rdma_ah_attr	alt_ah_attr;
1318 	u16			pkey_index;
1319 	u16			alt_pkey_index;
1320 	u8			en_sqd_async_notify;
1321 	u8			sq_draining;
1322 	u8			max_rd_atomic;
1323 	u8			max_dest_rd_atomic;
1324 	u8			min_rnr_timer;
1325 	u32			port_num;
1326 	u8			timeout;
1327 	u8			retry_cnt;
1328 	u8			rnr_retry;
1329 	u32			alt_port_num;
1330 	u8			alt_timeout;
1331 	u32			rate_limit;
1332 	struct net_device	*xmit_slave;
1333 };
1334 
1335 enum ib_wr_opcode {
1336 	/* These are shared with userspace */
1337 	IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1338 	IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1339 	IB_WR_SEND = IB_UVERBS_WR_SEND,
1340 	IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1341 	IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1342 	IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1343 	IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1344 	IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1345 	IB_WR_LSO = IB_UVERBS_WR_TSO,
1346 	IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1347 	IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1348 	IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1349 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1350 		IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1351 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1352 		IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1353 	IB_WR_FLUSH = IB_UVERBS_WR_FLUSH,
1354 	IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE,
1355 
1356 	/* These are kernel only and can not be issued by userspace */
1357 	IB_WR_REG_MR = 0x20,
1358 	IB_WR_REG_MR_INTEGRITY,
1359 
1360 	/* reserve values for low level drivers' internal use.
1361 	 * These values will not be used at all in the ib core layer.
1362 	 */
1363 	IB_WR_RESERVED1 = 0xf0,
1364 	IB_WR_RESERVED2,
1365 	IB_WR_RESERVED3,
1366 	IB_WR_RESERVED4,
1367 	IB_WR_RESERVED5,
1368 	IB_WR_RESERVED6,
1369 	IB_WR_RESERVED7,
1370 	IB_WR_RESERVED8,
1371 	IB_WR_RESERVED9,
1372 	IB_WR_RESERVED10,
1373 };
1374 
1375 enum ib_send_flags {
1376 	IB_SEND_FENCE		= 1,
1377 	IB_SEND_SIGNALED	= (1<<1),
1378 	IB_SEND_SOLICITED	= (1<<2),
1379 	IB_SEND_INLINE		= (1<<3),
1380 	IB_SEND_IP_CSUM		= (1<<4),
1381 
1382 	/* reserve bits 26-31 for low level drivers' internal use */
1383 	IB_SEND_RESERVED_START	= (1 << 26),
1384 	IB_SEND_RESERVED_END	= (1 << 31),
1385 };
1386 
1387 struct ib_sge {
1388 	u64	addr;
1389 	u32	length;
1390 	u32	lkey;
1391 };
1392 
1393 struct ib_cqe {
1394 	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1395 };
1396 
1397 struct ib_send_wr {
1398 	struct ib_send_wr      *next;
1399 	union {
1400 		u64		wr_id;
1401 		struct ib_cqe	*wr_cqe;
1402 	};
1403 	struct ib_sge	       *sg_list;
1404 	int			num_sge;
1405 	enum ib_wr_opcode	opcode;
1406 	int			send_flags;
1407 	union {
1408 		__be32		imm_data;
1409 		u32		invalidate_rkey;
1410 	} ex;
1411 };
1412 
1413 struct ib_rdma_wr {
1414 	struct ib_send_wr	wr;
1415 	u64			remote_addr;
1416 	u32			rkey;
1417 };
1418 
1419 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1420 {
1421 	return container_of(wr, struct ib_rdma_wr, wr);
1422 }
1423 
1424 struct ib_atomic_wr {
1425 	struct ib_send_wr	wr;
1426 	u64			remote_addr;
1427 	u64			compare_add;
1428 	u64			swap;
1429 	u64			compare_add_mask;
1430 	u64			swap_mask;
1431 	u32			rkey;
1432 };
1433 
1434 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1435 {
1436 	return container_of(wr, struct ib_atomic_wr, wr);
1437 }
1438 
1439 struct ib_ud_wr {
1440 	struct ib_send_wr	wr;
1441 	struct ib_ah		*ah;
1442 	void			*header;
1443 	int			hlen;
1444 	int			mss;
1445 	u32			remote_qpn;
1446 	u32			remote_qkey;
1447 	u16			pkey_index; /* valid for GSI only */
1448 	u32			port_num; /* valid for DR SMPs on switch only */
1449 };
1450 
1451 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1452 {
1453 	return container_of(wr, struct ib_ud_wr, wr);
1454 }
1455 
1456 struct ib_reg_wr {
1457 	struct ib_send_wr	wr;
1458 	struct ib_mr		*mr;
1459 	u32			key;
1460 	int			access;
1461 };
1462 
1463 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1464 {
1465 	return container_of(wr, struct ib_reg_wr, wr);
1466 }
1467 
1468 struct ib_recv_wr {
1469 	struct ib_recv_wr      *next;
1470 	union {
1471 		u64		wr_id;
1472 		struct ib_cqe	*wr_cqe;
1473 	};
1474 	struct ib_sge	       *sg_list;
1475 	int			num_sge;
1476 };
1477 
1478 enum ib_access_flags {
1479 	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1480 	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1481 	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1482 	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1483 	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1484 	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1485 	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1486 	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1487 	IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1488 	IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL,
1489 	IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT,
1490 
1491 	IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1492 	IB_ACCESS_SUPPORTED =
1493 		((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL,
1494 };
1495 
1496 /*
1497  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1498  * are hidden here instead of a uapi header!
1499  */
1500 enum ib_mr_rereg_flags {
1501 	IB_MR_REREG_TRANS	= 1,
1502 	IB_MR_REREG_PD		= (1<<1),
1503 	IB_MR_REREG_ACCESS	= (1<<2),
1504 	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1505 };
1506 
1507 struct ib_umem;
1508 
1509 enum rdma_remove_reason {
1510 	/*
1511 	 * Userspace requested uobject deletion or initial try
1512 	 * to remove uobject via cleanup. Call could fail
1513 	 */
1514 	RDMA_REMOVE_DESTROY,
1515 	/* Context deletion. This call should delete the actual object itself */
1516 	RDMA_REMOVE_CLOSE,
1517 	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1518 	RDMA_REMOVE_DRIVER_REMOVE,
1519 	/* uobj is being cleaned-up before being committed */
1520 	RDMA_REMOVE_ABORT,
1521 	/* The driver failed to destroy the uobject and is being disconnected */
1522 	RDMA_REMOVE_DRIVER_FAILURE,
1523 };
1524 
1525 struct ib_rdmacg_object {
1526 #ifdef CONFIG_CGROUP_RDMA
1527 	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1528 #endif
1529 };
1530 
1531 struct ib_ucontext {
1532 	struct ib_device       *device;
1533 	struct ib_uverbs_file  *ufile;
1534 
1535 	struct ib_rdmacg_object	cg_obj;
1536 	u64 enabled_caps;
1537 	/*
1538 	 * Implementation details of the RDMA core, don't use in drivers:
1539 	 */
1540 	struct rdma_restrack_entry res;
1541 	struct xarray mmap_xa;
1542 };
1543 
1544 struct ib_uobject {
1545 	u64			user_handle;	/* handle given to us by userspace */
1546 	/* ufile & ucontext owning this object */
1547 	struct ib_uverbs_file  *ufile;
1548 	/* FIXME, save memory: ufile->context == context */
1549 	struct ib_ucontext     *context;	/* associated user context */
1550 	void		       *object;		/* containing object */
1551 	struct list_head	list;		/* link to context's list */
1552 	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1553 	int			id;		/* index into kernel idr */
1554 	struct kref		ref;
1555 	atomic_t		usecnt;		/* protects exclusive access */
1556 	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1557 
1558 	const struct uverbs_api_object *uapi_object;
1559 };
1560 
1561 struct ib_udata {
1562 	const void __user *inbuf;
1563 	void __user *outbuf;
1564 	size_t       inlen;
1565 	size_t       outlen;
1566 };
1567 
1568 struct ib_pd {
1569 	u32			local_dma_lkey;
1570 	u32			flags;
1571 	struct ib_device       *device;
1572 	struct ib_uobject      *uobject;
1573 	atomic_t          	usecnt; /* count all resources */
1574 
1575 	u32			unsafe_global_rkey;
1576 
1577 	/*
1578 	 * Implementation details of the RDMA core, don't use in drivers:
1579 	 */
1580 	struct ib_mr	       *__internal_mr;
1581 	struct rdma_restrack_entry res;
1582 };
1583 
1584 struct ib_xrcd {
1585 	struct ib_device       *device;
1586 	atomic_t		usecnt; /* count all exposed resources */
1587 	struct inode	       *inode;
1588 	struct rw_semaphore	tgt_qps_rwsem;
1589 	struct xarray		tgt_qps;
1590 };
1591 
1592 struct ib_ah {
1593 	struct ib_device	*device;
1594 	struct ib_pd		*pd;
1595 	struct ib_uobject	*uobject;
1596 	const struct ib_gid_attr *sgid_attr;
1597 	enum rdma_ah_attr_type	type;
1598 };
1599 
1600 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1601 
1602 enum ib_poll_context {
1603 	IB_POLL_SOFTIRQ,	   /* poll from softirq context */
1604 	IB_POLL_WORKQUEUE,	   /* poll from workqueue */
1605 	IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1606 	IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1607 
1608 	IB_POLL_DIRECT,		   /* caller context, no hw completions */
1609 };
1610 
1611 struct ib_cq {
1612 	struct ib_device       *device;
1613 	struct ib_ucq_object   *uobject;
1614 	ib_comp_handler   	comp_handler;
1615 	void                  (*event_handler)(struct ib_event *, void *);
1616 	void                   *cq_context;
1617 	int               	cqe;
1618 	unsigned int		cqe_used;
1619 	atomic_t          	usecnt; /* count number of work queues */
1620 	enum ib_poll_context	poll_ctx;
1621 	struct ib_wc		*wc;
1622 	struct list_head        pool_entry;
1623 	union {
1624 		struct irq_poll		iop;
1625 		struct work_struct	work;
1626 	};
1627 	struct workqueue_struct *comp_wq;
1628 	struct dim *dim;
1629 
1630 	/* updated only by trace points */
1631 	ktime_t timestamp;
1632 	u8 interrupt:1;
1633 	u8 shared:1;
1634 	unsigned int comp_vector;
1635 
1636 	/*
1637 	 * Implementation details of the RDMA core, don't use in drivers:
1638 	 */
1639 	struct rdma_restrack_entry res;
1640 };
1641 
1642 struct ib_srq {
1643 	struct ib_device       *device;
1644 	struct ib_pd	       *pd;
1645 	struct ib_usrq_object  *uobject;
1646 	void		      (*event_handler)(struct ib_event *, void *);
1647 	void		       *srq_context;
1648 	enum ib_srq_type	srq_type;
1649 	atomic_t		usecnt;
1650 
1651 	struct {
1652 		struct ib_cq   *cq;
1653 		union {
1654 			struct {
1655 				struct ib_xrcd *xrcd;
1656 				u32		srq_num;
1657 			} xrc;
1658 		};
1659 	} ext;
1660 
1661 	/*
1662 	 * Implementation details of the RDMA core, don't use in drivers:
1663 	 */
1664 	struct rdma_restrack_entry res;
1665 };
1666 
1667 enum ib_raw_packet_caps {
1668 	/*
1669 	 * Strip cvlan from incoming packet and report it in the matching work
1670 	 * completion is supported.
1671 	 */
1672 	IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
1673 		IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
1674 	/*
1675 	 * Scatter FCS field of an incoming packet to host memory is supported.
1676 	 */
1677 	IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
1678 	/* Checksum offloads are supported (for both send and receive). */
1679 	IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
1680 	/*
1681 	 * When a packet is received for an RQ with no receive WQEs, the
1682 	 * packet processing is delayed.
1683 	 */
1684 	IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
1685 };
1686 
1687 enum ib_wq_type {
1688 	IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1689 };
1690 
1691 enum ib_wq_state {
1692 	IB_WQS_RESET,
1693 	IB_WQS_RDY,
1694 	IB_WQS_ERR
1695 };
1696 
1697 struct ib_wq {
1698 	struct ib_device       *device;
1699 	struct ib_uwq_object   *uobject;
1700 	void		    *wq_context;
1701 	void		    (*event_handler)(struct ib_event *, void *);
1702 	struct ib_pd	       *pd;
1703 	struct ib_cq	       *cq;
1704 	u32		wq_num;
1705 	enum ib_wq_state       state;
1706 	enum ib_wq_type	wq_type;
1707 	atomic_t		usecnt;
1708 };
1709 
1710 enum ib_wq_flags {
1711 	IB_WQ_FLAGS_CVLAN_STRIPPING	= IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1712 	IB_WQ_FLAGS_SCATTER_FCS		= IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1713 	IB_WQ_FLAGS_DELAY_DROP		= IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1714 	IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1715 				IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1716 };
1717 
1718 struct ib_wq_init_attr {
1719 	void		       *wq_context;
1720 	enum ib_wq_type	wq_type;
1721 	u32		max_wr;
1722 	u32		max_sge;
1723 	struct	ib_cq	       *cq;
1724 	void		    (*event_handler)(struct ib_event *, void *);
1725 	u32		create_flags; /* Use enum ib_wq_flags */
1726 };
1727 
1728 enum ib_wq_attr_mask {
1729 	IB_WQ_STATE		= 1 << 0,
1730 	IB_WQ_CUR_STATE		= 1 << 1,
1731 	IB_WQ_FLAGS		= 1 << 2,
1732 };
1733 
1734 struct ib_wq_attr {
1735 	enum	ib_wq_state	wq_state;
1736 	enum	ib_wq_state	curr_wq_state;
1737 	u32			flags; /* Use enum ib_wq_flags */
1738 	u32			flags_mask; /* Use enum ib_wq_flags */
1739 };
1740 
1741 struct ib_rwq_ind_table {
1742 	struct ib_device	*device;
1743 	struct ib_uobject      *uobject;
1744 	atomic_t		usecnt;
1745 	u32		ind_tbl_num;
1746 	u32		log_ind_tbl_size;
1747 	struct ib_wq	**ind_tbl;
1748 };
1749 
1750 struct ib_rwq_ind_table_init_attr {
1751 	u32		log_ind_tbl_size;
1752 	/* Each entry is a pointer to Receive Work Queue */
1753 	struct ib_wq	**ind_tbl;
1754 };
1755 
1756 enum port_pkey_state {
1757 	IB_PORT_PKEY_NOT_VALID = 0,
1758 	IB_PORT_PKEY_VALID = 1,
1759 	IB_PORT_PKEY_LISTED = 2,
1760 };
1761 
1762 struct ib_qp_security;
1763 
1764 struct ib_port_pkey {
1765 	enum port_pkey_state	state;
1766 	u16			pkey_index;
1767 	u32			port_num;
1768 	struct list_head	qp_list;
1769 	struct list_head	to_error_list;
1770 	struct ib_qp_security  *sec;
1771 };
1772 
1773 struct ib_ports_pkeys {
1774 	struct ib_port_pkey	main;
1775 	struct ib_port_pkey	alt;
1776 };
1777 
1778 struct ib_qp_security {
1779 	struct ib_qp	       *qp;
1780 	struct ib_device       *dev;
1781 	/* Hold this mutex when changing port and pkey settings. */
1782 	struct mutex		mutex;
1783 	struct ib_ports_pkeys  *ports_pkeys;
1784 	/* A list of all open shared QP handles.  Required to enforce security
1785 	 * properly for all users of a shared QP.
1786 	 */
1787 	struct list_head        shared_qp_list;
1788 	void                   *security;
1789 	bool			destroying;
1790 	atomic_t		error_list_count;
1791 	struct completion	error_complete;
1792 	int			error_comps_pending;
1793 };
1794 
1795 /*
1796  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1797  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1798  */
1799 struct ib_qp {
1800 	struct ib_device       *device;
1801 	struct ib_pd	       *pd;
1802 	struct ib_cq	       *send_cq;
1803 	struct ib_cq	       *recv_cq;
1804 	spinlock_t		mr_lock;
1805 	int			mrs_used;
1806 	struct list_head	rdma_mrs;
1807 	struct list_head	sig_mrs;
1808 	struct ib_srq	       *srq;
1809 	struct completion	srq_completion;
1810 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1811 	struct list_head	xrcd_list;
1812 
1813 	/* count times opened, mcast attaches, flow attaches */
1814 	atomic_t		usecnt;
1815 	struct list_head	open_list;
1816 	struct ib_qp           *real_qp;
1817 	struct ib_uqp_object   *uobject;
1818 	void                  (*event_handler)(struct ib_event *, void *);
1819 	void                  (*registered_event_handler)(struct ib_event *, void *);
1820 	void		       *qp_context;
1821 	/* sgid_attrs associated with the AV's */
1822 	const struct ib_gid_attr *av_sgid_attr;
1823 	const struct ib_gid_attr *alt_path_sgid_attr;
1824 	u32			qp_num;
1825 	u32			max_write_sge;
1826 	u32			max_read_sge;
1827 	enum ib_qp_type		qp_type;
1828 	struct ib_rwq_ind_table *rwq_ind_tbl;
1829 	struct ib_qp_security  *qp_sec;
1830 	u32			port;
1831 
1832 	bool			integrity_en;
1833 	/*
1834 	 * Implementation details of the RDMA core, don't use in drivers:
1835 	 */
1836 	struct rdma_restrack_entry     res;
1837 
1838 	/* The counter the qp is bind to */
1839 	struct rdma_counter    *counter;
1840 };
1841 
1842 struct ib_dm {
1843 	struct ib_device  *device;
1844 	u32		   length;
1845 	u32		   flags;
1846 	struct ib_uobject *uobject;
1847 	atomic_t	   usecnt;
1848 };
1849 
1850 /* bit values to mark existence of ib_dmah fields */
1851 enum {
1852 	IB_DMAH_CPU_ID_EXISTS,
1853 	IB_DMAH_MEM_TYPE_EXISTS,
1854 	IB_DMAH_PH_EXISTS,
1855 };
1856 
1857 struct ib_dmah {
1858 	struct ib_device *device;
1859 	struct ib_uobject *uobject;
1860 	/*
1861 	 * Implementation details of the RDMA core, don't use in drivers:
1862 	 */
1863 	struct rdma_restrack_entry res;
1864 	u32 cpu_id;
1865 	enum tph_mem_type mem_type;
1866 	atomic_t usecnt;
1867 	u8 ph;
1868 	u8 valid_fields; /* use IB_DMAH_XXX_EXISTS */
1869 };
1870 
1871 struct ib_mr {
1872 	struct ib_device  *device;
1873 	struct ib_pd	  *pd;
1874 	u32		   lkey;
1875 	u32		   rkey;
1876 	u64		   iova;
1877 	u64		   length;
1878 	unsigned int	   page_size;
1879 	enum ib_mr_type	   type;
1880 	bool		   need_inval;
1881 	union {
1882 		struct ib_uobject	*uobject;	/* user */
1883 		struct list_head	qp_entry;	/* FR */
1884 	};
1885 
1886 	struct ib_dm      *dm;
1887 	struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1888 	struct ib_dmah *dmah;
1889 	/*
1890 	 * Implementation details of the RDMA core, don't use in drivers:
1891 	 */
1892 	struct rdma_restrack_entry res;
1893 };
1894 
1895 struct ib_mw {
1896 	struct ib_device	*device;
1897 	struct ib_pd		*pd;
1898 	struct ib_uobject	*uobject;
1899 	u32			rkey;
1900 	enum ib_mw_type         type;
1901 };
1902 
1903 /* Supported steering options */
1904 enum ib_flow_attr_type {
1905 	/* steering according to rule specifications */
1906 	IB_FLOW_ATTR_NORMAL		= 0x0,
1907 	/* default unicast and multicast rule -
1908 	 * receive all Eth traffic which isn't steered to any QP
1909 	 */
1910 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1911 	/* default multicast rule -
1912 	 * receive all Eth multicast traffic which isn't steered to any QP
1913 	 */
1914 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1915 	/* sniffer rule - receive all port traffic */
1916 	IB_FLOW_ATTR_SNIFFER		= 0x3
1917 };
1918 
1919 /* Supported steering header types */
1920 enum ib_flow_spec_type {
1921 	/* L2 headers*/
1922 	IB_FLOW_SPEC_ETH		= 0x20,
1923 	IB_FLOW_SPEC_IB			= 0x22,
1924 	/* L3 header*/
1925 	IB_FLOW_SPEC_IPV4		= 0x30,
1926 	IB_FLOW_SPEC_IPV6		= 0x31,
1927 	IB_FLOW_SPEC_ESP                = 0x34,
1928 	/* L4 headers*/
1929 	IB_FLOW_SPEC_TCP		= 0x40,
1930 	IB_FLOW_SPEC_UDP		= 0x41,
1931 	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1932 	IB_FLOW_SPEC_GRE		= 0x51,
1933 	IB_FLOW_SPEC_MPLS		= 0x60,
1934 	IB_FLOW_SPEC_INNER		= 0x100,
1935 	/* Actions */
1936 	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1937 	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1938 	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1939 	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1940 };
1941 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1942 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1943 
1944 enum ib_flow_flags {
1945 	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1946 	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1947 	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1948 };
1949 
1950 struct ib_flow_eth_filter {
1951 	u8	dst_mac[6];
1952 	u8	src_mac[6];
1953 	__be16	ether_type;
1954 	__be16	vlan_tag;
1955 };
1956 
1957 struct ib_flow_spec_eth {
1958 	u32			  type;
1959 	u16			  size;
1960 	struct ib_flow_eth_filter val;
1961 	struct ib_flow_eth_filter mask;
1962 };
1963 
1964 struct ib_flow_ib_filter {
1965 	__be16 dlid;
1966 	__u8   sl;
1967 };
1968 
1969 struct ib_flow_spec_ib {
1970 	u32			 type;
1971 	u16			 size;
1972 	struct ib_flow_ib_filter val;
1973 	struct ib_flow_ib_filter mask;
1974 };
1975 
1976 /* IPv4 header flags */
1977 enum ib_ipv4_flags {
1978 	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1979 	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1980 				    last have this flag set */
1981 };
1982 
1983 struct ib_flow_ipv4_filter {
1984 	__be32	src_ip;
1985 	__be32	dst_ip;
1986 	u8	proto;
1987 	u8	tos;
1988 	u8	ttl;
1989 	u8	flags;
1990 };
1991 
1992 struct ib_flow_spec_ipv4 {
1993 	u32			   type;
1994 	u16			   size;
1995 	struct ib_flow_ipv4_filter val;
1996 	struct ib_flow_ipv4_filter mask;
1997 };
1998 
1999 struct ib_flow_ipv6_filter {
2000 	u8	src_ip[16];
2001 	u8	dst_ip[16];
2002 	__be32	flow_label;
2003 	u8	next_hdr;
2004 	u8	traffic_class;
2005 	u8	hop_limit;
2006 } __packed;
2007 
2008 struct ib_flow_spec_ipv6 {
2009 	u32			   type;
2010 	u16			   size;
2011 	struct ib_flow_ipv6_filter val;
2012 	struct ib_flow_ipv6_filter mask;
2013 };
2014 
2015 struct ib_flow_tcp_udp_filter {
2016 	__be16	dst_port;
2017 	__be16	src_port;
2018 };
2019 
2020 struct ib_flow_spec_tcp_udp {
2021 	u32			      type;
2022 	u16			      size;
2023 	struct ib_flow_tcp_udp_filter val;
2024 	struct ib_flow_tcp_udp_filter mask;
2025 };
2026 
2027 struct ib_flow_tunnel_filter {
2028 	__be32	tunnel_id;
2029 };
2030 
2031 /* ib_flow_spec_tunnel describes the Vxlan tunnel
2032  * the tunnel_id from val has the vni value
2033  */
2034 struct ib_flow_spec_tunnel {
2035 	u32			      type;
2036 	u16			      size;
2037 	struct ib_flow_tunnel_filter  val;
2038 	struct ib_flow_tunnel_filter  mask;
2039 };
2040 
2041 struct ib_flow_esp_filter {
2042 	__be32	spi;
2043 	__be32  seq;
2044 };
2045 
2046 struct ib_flow_spec_esp {
2047 	u32                           type;
2048 	u16			      size;
2049 	struct ib_flow_esp_filter     val;
2050 	struct ib_flow_esp_filter     mask;
2051 };
2052 
2053 struct ib_flow_gre_filter {
2054 	__be16 c_ks_res0_ver;
2055 	__be16 protocol;
2056 	__be32 key;
2057 };
2058 
2059 struct ib_flow_spec_gre {
2060 	u32                           type;
2061 	u16			      size;
2062 	struct ib_flow_gre_filter     val;
2063 	struct ib_flow_gre_filter     mask;
2064 };
2065 
2066 struct ib_flow_mpls_filter {
2067 	__be32 tag;
2068 };
2069 
2070 struct ib_flow_spec_mpls {
2071 	u32                           type;
2072 	u16			      size;
2073 	struct ib_flow_mpls_filter     val;
2074 	struct ib_flow_mpls_filter     mask;
2075 };
2076 
2077 struct ib_flow_spec_action_tag {
2078 	enum ib_flow_spec_type	      type;
2079 	u16			      size;
2080 	u32                           tag_id;
2081 };
2082 
2083 struct ib_flow_spec_action_drop {
2084 	enum ib_flow_spec_type	      type;
2085 	u16			      size;
2086 };
2087 
2088 struct ib_flow_spec_action_handle {
2089 	enum ib_flow_spec_type	      type;
2090 	u16			      size;
2091 	struct ib_flow_action	     *act;
2092 };
2093 
2094 enum ib_counters_description {
2095 	IB_COUNTER_PACKETS,
2096 	IB_COUNTER_BYTES,
2097 };
2098 
2099 struct ib_flow_spec_action_count {
2100 	enum ib_flow_spec_type type;
2101 	u16 size;
2102 	struct ib_counters *counters;
2103 };
2104 
2105 union ib_flow_spec {
2106 	struct {
2107 		u32			type;
2108 		u16			size;
2109 	};
2110 	struct ib_flow_spec_eth		eth;
2111 	struct ib_flow_spec_ib		ib;
2112 	struct ib_flow_spec_ipv4        ipv4;
2113 	struct ib_flow_spec_tcp_udp	tcp_udp;
2114 	struct ib_flow_spec_ipv6        ipv6;
2115 	struct ib_flow_spec_tunnel      tunnel;
2116 	struct ib_flow_spec_esp		esp;
2117 	struct ib_flow_spec_gre		gre;
2118 	struct ib_flow_spec_mpls	mpls;
2119 	struct ib_flow_spec_action_tag  flow_tag;
2120 	struct ib_flow_spec_action_drop drop;
2121 	struct ib_flow_spec_action_handle action;
2122 	struct ib_flow_spec_action_count flow_count;
2123 };
2124 
2125 struct ib_flow_attr {
2126 	enum ib_flow_attr_type type;
2127 	u16	     size;
2128 	u16	     priority;
2129 	u32	     flags;
2130 	u8	     num_of_specs;
2131 	u32	     port;
2132 	union ib_flow_spec flows[];
2133 };
2134 
2135 struct ib_flow {
2136 	struct ib_qp		*qp;
2137 	struct ib_device	*device;
2138 	struct ib_uobject	*uobject;
2139 };
2140 
2141 enum ib_flow_action_type {
2142 	IB_FLOW_ACTION_UNSPECIFIED,
2143 	IB_FLOW_ACTION_ESP = 1,
2144 };
2145 
2146 struct ib_flow_action_attrs_esp_keymats {
2147 	enum ib_uverbs_flow_action_esp_keymat			protocol;
2148 	union {
2149 		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2150 	} keymat;
2151 };
2152 
2153 struct ib_flow_action_attrs_esp_replays {
2154 	enum ib_uverbs_flow_action_esp_replay			protocol;
2155 	union {
2156 		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2157 	} replay;
2158 };
2159 
2160 enum ib_flow_action_attrs_esp_flags {
2161 	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2162 	 * This is done in order to share the same flags between user-space and
2163 	 * kernel and spare an unnecessary translation.
2164 	 */
2165 
2166 	/* Kernel flags */
2167 	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2168 	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2169 };
2170 
2171 struct ib_flow_spec_list {
2172 	struct ib_flow_spec_list	*next;
2173 	union ib_flow_spec		spec;
2174 };
2175 
2176 struct ib_flow_action_attrs_esp {
2177 	struct ib_flow_action_attrs_esp_keymats		*keymat;
2178 	struct ib_flow_action_attrs_esp_replays		*replay;
2179 	struct ib_flow_spec_list			*encap;
2180 	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2181 	 * Value of 0 is a valid value.
2182 	 */
2183 	u32						esn;
2184 	u32						spi;
2185 	u32						seq;
2186 	u32						tfc_pad;
2187 	/* Use enum ib_flow_action_attrs_esp_flags */
2188 	u64						flags;
2189 	u64						hard_limit_pkts;
2190 };
2191 
2192 struct ib_flow_action {
2193 	struct ib_device		*device;
2194 	struct ib_uobject		*uobject;
2195 	enum ib_flow_action_type	type;
2196 	atomic_t			usecnt;
2197 };
2198 
2199 struct ib_mad;
2200 
2201 enum ib_process_mad_flags {
2202 	IB_MAD_IGNORE_MKEY	= 1,
2203 	IB_MAD_IGNORE_BKEY	= 2,
2204 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2205 };
2206 
2207 enum ib_mad_result {
2208 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2209 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2210 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2211 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2212 };
2213 
2214 struct ib_port_cache {
2215 	u64		      subnet_prefix;
2216 	struct ib_pkey_cache  *pkey;
2217 	struct ib_gid_table   *gid;
2218 	u8                     lmc;
2219 	enum ib_port_state     port_state;
2220 	enum ib_port_state     last_port_state;
2221 };
2222 
2223 struct ib_port_immutable {
2224 	int                           pkey_tbl_len;
2225 	int                           gid_tbl_len;
2226 	u32                           core_cap_flags;
2227 	u32                           max_mad_size;
2228 };
2229 
2230 struct ib_port_data {
2231 	struct ib_device *ib_dev;
2232 
2233 	struct ib_port_immutable immutable;
2234 
2235 	spinlock_t pkey_list_lock;
2236 
2237 	spinlock_t netdev_lock;
2238 
2239 	struct list_head pkey_list;
2240 
2241 	struct ib_port_cache cache;
2242 
2243 	struct net_device __rcu *netdev;
2244 	netdevice_tracker netdev_tracker;
2245 	struct hlist_node ndev_hash_link;
2246 	struct rdma_port_counter port_counter;
2247 	struct ib_port *sysfs;
2248 };
2249 
2250 /* rdma netdev type - specifies protocol type */
2251 enum rdma_netdev_t {
2252 	RDMA_NETDEV_OPA_VNIC,
2253 	RDMA_NETDEV_IPOIB,
2254 };
2255 
2256 /**
2257  * struct rdma_netdev - rdma netdev
2258  * For cases where netstack interfacing is required.
2259  */
2260 struct rdma_netdev {
2261 	void              *clnt_priv;
2262 	struct ib_device  *hca;
2263 	u32		   port_num;
2264 	int                mtu;
2265 
2266 	/*
2267 	 * cleanup function must be specified.
2268 	 * FIXME: This is only used for OPA_VNIC and that usage should be
2269 	 * removed too.
2270 	 */
2271 	void (*free_rdma_netdev)(struct net_device *netdev);
2272 
2273 	/* control functions */
2274 	void (*set_id)(struct net_device *netdev, int id);
2275 	/* send packet */
2276 	int (*send)(struct net_device *dev, struct sk_buff *skb,
2277 		    struct ib_ah *address, u32 dqpn);
2278 	/* multicast */
2279 	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2280 			    union ib_gid *gid, u16 mlid,
2281 			    int set_qkey, u32 qkey);
2282 	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2283 			    union ib_gid *gid, u16 mlid);
2284 	/* timeout */
2285 	void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2286 };
2287 
2288 struct rdma_netdev_alloc_params {
2289 	size_t sizeof_priv;
2290 	unsigned int txqs;
2291 	unsigned int rxqs;
2292 	void *param;
2293 
2294 	int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2295 				      struct net_device *netdev, void *param);
2296 };
2297 
2298 struct ib_odp_counters {
2299 	atomic64_t faults;
2300 	atomic64_t faults_handled;
2301 	atomic64_t invalidations;
2302 	atomic64_t invalidations_handled;
2303 	atomic64_t prefetch;
2304 };
2305 
2306 struct ib_counters {
2307 	struct ib_device	*device;
2308 	struct ib_uobject	*uobject;
2309 	/* num of objects attached */
2310 	atomic_t	usecnt;
2311 };
2312 
2313 struct ib_counters_read_attr {
2314 	u64	*counters_buff;
2315 	u32	ncounters;
2316 	u32	flags; /* use enum ib_read_counters_flags */
2317 };
2318 
2319 struct uverbs_attr_bundle;
2320 struct iw_cm_id;
2321 struct iw_cm_conn_param;
2322 
2323 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2324 	.size_##ib_struct =                                                    \
2325 		(sizeof(struct drv_struct) +                                   \
2326 		 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2327 		 BUILD_BUG_ON_ZERO(                                            \
2328 			 !__same_type(((struct drv_struct *)NULL)->member,     \
2329 				      struct ib_struct)))
2330 
2331 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                          \
2332 	((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2333 					   gfp, false))
2334 
2335 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type)                              \
2336 	((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2337 					   GFP_KERNEL, true))
2338 
2339 #define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2340 	rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2341 
2342 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2343 
2344 struct rdma_user_mmap_entry {
2345 	struct kref ref;
2346 	struct ib_ucontext *ucontext;
2347 	unsigned long start_pgoff;
2348 	size_t npages;
2349 	bool driver_removed;
2350 };
2351 
2352 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2353 static inline u64
2354 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2355 {
2356 	return (u64)entry->start_pgoff << PAGE_SHIFT;
2357 }
2358 
2359 /**
2360  * struct ib_device_ops - InfiniBand device operations
2361  * This structure defines all the InfiniBand device operations, providers will
2362  * need to define the supported operations, otherwise they will be set to null.
2363  */
2364 struct ib_device_ops {
2365 	struct module *owner;
2366 	enum rdma_driver_id driver_id;
2367 	u32 uverbs_abi_ver;
2368 	unsigned int uverbs_no_driver_id_binding:1;
2369 
2370 	/*
2371 	 * NOTE: New drivers should not make use of device_group; instead new
2372 	 * device parameter should be exposed via netlink command. This
2373 	 * mechanism exists only for existing drivers.
2374 	 */
2375 	const struct attribute_group *device_group;
2376 	const struct attribute_group **port_groups;
2377 
2378 	int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2379 			 const struct ib_send_wr **bad_send_wr);
2380 	int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2381 			 const struct ib_recv_wr **bad_recv_wr);
2382 	void (*drain_rq)(struct ib_qp *qp);
2383 	void (*drain_sq)(struct ib_qp *qp);
2384 	int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2385 	int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2386 	int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2387 	int (*post_srq_recv)(struct ib_srq *srq,
2388 			     const struct ib_recv_wr *recv_wr,
2389 			     const struct ib_recv_wr **bad_recv_wr);
2390 	int (*process_mad)(struct ib_device *device, int process_mad_flags,
2391 			   u32 port_num, const struct ib_wc *in_wc,
2392 			   const struct ib_grh *in_grh,
2393 			   const struct ib_mad *in_mad, struct ib_mad *out_mad,
2394 			   size_t *out_mad_size, u16 *out_mad_pkey_index);
2395 	int (*query_device)(struct ib_device *device,
2396 			    struct ib_device_attr *device_attr,
2397 			    struct ib_udata *udata);
2398 	int (*modify_device)(struct ib_device *device, int device_modify_mask,
2399 			     struct ib_device_modify *device_modify);
2400 	void (*get_dev_fw_str)(struct ib_device *device, char *str);
2401 	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2402 						     int comp_vector);
2403 	int (*query_port)(struct ib_device *device, u32 port_num,
2404 			  struct ib_port_attr *port_attr);
2405 	int (*modify_port)(struct ib_device *device, u32 port_num,
2406 			   int port_modify_mask,
2407 			   struct ib_port_modify *port_modify);
2408 	/**
2409 	 * The following mandatory functions are used only at device
2410 	 * registration.  Keep functions such as these at the end of this
2411 	 * structure to avoid cache line misses when accessing struct ib_device
2412 	 * in fast paths.
2413 	 */
2414 	int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2415 				  struct ib_port_immutable *immutable);
2416 	enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2417 					       u32 port_num);
2418 	/**
2419 	 * When calling get_netdev, the HW vendor's driver should return the
2420 	 * net device of device @device at port @port_num or NULL if such
2421 	 * a net device doesn't exist. The vendor driver should call dev_hold
2422 	 * on this net device. The HW vendor's device driver must guarantee
2423 	 * that this function returns NULL before the net device has finished
2424 	 * NETDEV_UNREGISTER state.
2425 	 */
2426 	struct net_device *(*get_netdev)(struct ib_device *device,
2427 					 u32 port_num);
2428 	/**
2429 	 * rdma netdev operation
2430 	 *
2431 	 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2432 	 * must return -EOPNOTSUPP if it doesn't support the specified type.
2433 	 */
2434 	struct net_device *(*alloc_rdma_netdev)(
2435 		struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2436 		const char *name, unsigned char name_assign_type,
2437 		void (*setup)(struct net_device *));
2438 
2439 	int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2440 				      enum rdma_netdev_t type,
2441 				      struct rdma_netdev_alloc_params *params);
2442 	/**
2443 	 * query_gid should be return GID value for @device, when @port_num
2444 	 * link layer is either IB or iWarp. It is no-op if @port_num port
2445 	 * is RoCE link layer.
2446 	 */
2447 	int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2448 			 union ib_gid *gid);
2449 	/**
2450 	 * When calling add_gid, the HW vendor's driver should add the gid
2451 	 * of device of port at gid index available at @attr. Meta-info of
2452 	 * that gid (for example, the network device related to this gid) is
2453 	 * available at @attr. @context allows the HW vendor driver to store
2454 	 * extra information together with a GID entry. The HW vendor driver may
2455 	 * allocate memory to contain this information and store it in @context
2456 	 * when a new GID entry is written to. Params are consistent until the
2457 	 * next call of add_gid or delete_gid. The function should return 0 on
2458 	 * success or error otherwise. The function could be called
2459 	 * concurrently for different ports. This function is only called when
2460 	 * roce_gid_table is used.
2461 	 */
2462 	int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2463 	/**
2464 	 * When calling del_gid, the HW vendor's driver should delete the
2465 	 * gid of device @device at gid index gid_index of port port_num
2466 	 * available in @attr.
2467 	 * Upon the deletion of a GID entry, the HW vendor must free any
2468 	 * allocated memory. The caller will clear @context afterwards.
2469 	 * This function is only called when roce_gid_table is used.
2470 	 */
2471 	int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2472 	int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2473 			  u16 *pkey);
2474 	int (*alloc_ucontext)(struct ib_ucontext *context,
2475 			      struct ib_udata *udata);
2476 	void (*dealloc_ucontext)(struct ib_ucontext *context);
2477 	int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2478 	/**
2479 	 * This will be called once refcount of an entry in mmap_xa reaches
2480 	 * zero. The type of the memory that was mapped may differ between
2481 	 * entries and is opaque to the rdma_user_mmap interface.
2482 	 * Therefore needs to be implemented by the driver in mmap_free.
2483 	 */
2484 	void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2485 	void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2486 	int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2487 	int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2488 	int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2489 			 struct ib_udata *udata);
2490 	int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2491 			      struct ib_udata *udata);
2492 	int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2493 	int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2494 	int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2495 	int (*create_srq)(struct ib_srq *srq,
2496 			  struct ib_srq_init_attr *srq_init_attr,
2497 			  struct ib_udata *udata);
2498 	int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2499 			  enum ib_srq_attr_mask srq_attr_mask,
2500 			  struct ib_udata *udata);
2501 	int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2502 	int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2503 	int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2504 			 struct ib_udata *udata);
2505 	int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2506 			 int qp_attr_mask, struct ib_udata *udata);
2507 	int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2508 			int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2509 	int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2510 	int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2511 			 struct uverbs_attr_bundle *attrs);
2512 	int (*create_cq_umem)(struct ib_cq *cq,
2513 			      const struct ib_cq_init_attr *attr,
2514 			      struct ib_umem *umem,
2515 			      struct uverbs_attr_bundle *attrs);
2516 	int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2517 	int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2518 	int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2519 	/**
2520 	 * pre_destroy_cq - Prevent a cq from generating any new work
2521 	 * completions, but not free any kernel resources
2522 	 */
2523 	int (*pre_destroy_cq)(struct ib_cq *cq);
2524 	/**
2525 	 * post_destroy_cq - Free all kernel resources
2526 	 */
2527 	void (*post_destroy_cq)(struct ib_cq *cq);
2528 	struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2529 	struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2530 				     u64 virt_addr, int mr_access_flags,
2531 				     struct ib_dmah *dmah,
2532 				     struct ib_udata *udata);
2533 	struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2534 					    u64 length, u64 virt_addr, int fd,
2535 					    int mr_access_flags,
2536 					    struct ib_dmah *dmah,
2537 					    struct uverbs_attr_bundle *attrs);
2538 	struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2539 				       u64 length, u64 virt_addr,
2540 				       int mr_access_flags, struct ib_pd *pd,
2541 				       struct ib_udata *udata);
2542 	int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2543 	struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2544 				  u32 max_num_sg);
2545 	struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2546 					    u32 max_num_data_sg,
2547 					    u32 max_num_meta_sg);
2548 	int (*advise_mr)(struct ib_pd *pd,
2549 			 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2550 			 struct ib_sge *sg_list, u32 num_sge,
2551 			 struct uverbs_attr_bundle *attrs);
2552 
2553 	/*
2554 	 * Kernel users should universally support relaxed ordering (RO), as
2555 	 * they are designed to read data only after observing the CQE and use
2556 	 * the DMA API correctly.
2557 	 *
2558 	 * Some drivers implicitly enable RO if platform supports it.
2559 	 */
2560 	int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2561 			 unsigned int *sg_offset);
2562 	int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2563 			       struct ib_mr_status *mr_status);
2564 	int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2565 	int (*dealloc_mw)(struct ib_mw *mw);
2566 	int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2567 	int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2568 	int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2569 	int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2570 	struct ib_flow *(*create_flow)(struct ib_qp *qp,
2571 				       struct ib_flow_attr *flow_attr,
2572 				       struct ib_udata *udata);
2573 	int (*destroy_flow)(struct ib_flow *flow_id);
2574 	int (*destroy_flow_action)(struct ib_flow_action *action);
2575 	int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2576 				 int state);
2577 	int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2578 			     struct ifla_vf_info *ivf);
2579 	int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2580 			    struct ifla_vf_stats *stats);
2581 	int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2582 			    struct ifla_vf_guid *node_guid,
2583 			    struct ifla_vf_guid *port_guid);
2584 	int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2585 			   int type);
2586 	struct ib_wq *(*create_wq)(struct ib_pd *pd,
2587 				   struct ib_wq_init_attr *init_attr,
2588 				   struct ib_udata *udata);
2589 	int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2590 	int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2591 			 u32 wq_attr_mask, struct ib_udata *udata);
2592 	int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2593 				    struct ib_rwq_ind_table_init_attr *init_attr,
2594 				    struct ib_udata *udata);
2595 	int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2596 	struct ib_dm *(*alloc_dm)(struct ib_device *device,
2597 				  struct ib_ucontext *context,
2598 				  struct ib_dm_alloc_attr *attr,
2599 				  struct uverbs_attr_bundle *attrs);
2600 	int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2601 	int (*alloc_dmah)(struct ib_dmah *ibdmah,
2602 			  struct uverbs_attr_bundle *attrs);
2603 	int (*dealloc_dmah)(struct ib_dmah *dmah, struct uverbs_attr_bundle *attrs);
2604 	struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2605 				   struct ib_dm_mr_attr *attr,
2606 				   struct uverbs_attr_bundle *attrs);
2607 	int (*create_counters)(struct ib_counters *counters,
2608 			       struct uverbs_attr_bundle *attrs);
2609 	int (*destroy_counters)(struct ib_counters *counters);
2610 	int (*read_counters)(struct ib_counters *counters,
2611 			     struct ib_counters_read_attr *counters_read_attr,
2612 			     struct uverbs_attr_bundle *attrs);
2613 	int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2614 			    int data_sg_nents, unsigned int *data_sg_offset,
2615 			    struct scatterlist *meta_sg, int meta_sg_nents,
2616 			    unsigned int *meta_sg_offset);
2617 
2618 	/**
2619 	 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2620 	 *   fill in the driver initialized data.  The struct is kfree()'ed by
2621 	 *   the sysfs core when the device is removed.  A lifespan of -1 in the
2622 	 *   return struct tells the core to set a default lifespan.
2623 	 */
2624 	struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2625 	struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2626 						     u32 port_num);
2627 	/**
2628 	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2629 	 * @index - The index in the value array we wish to have updated, or
2630 	 *   num_counters if we want all stats updated
2631 	 * Return codes -
2632 	 *   < 0 - Error, no counters updated
2633 	 *   index - Updated the single counter pointed to by index
2634 	 *   num_counters - Updated all counters (will reset the timestamp
2635 	 *     and prevent further calls for lifespan milliseconds)
2636 	 * Drivers are allowed to update all counters in leiu of just the
2637 	 *   one given in index at their option
2638 	 */
2639 	int (*get_hw_stats)(struct ib_device *device,
2640 			    struct rdma_hw_stats *stats, u32 port, int index);
2641 
2642 	/**
2643 	 * modify_hw_stat - Modify the counter configuration
2644 	 * @enable: true/false when enable/disable a counter
2645 	 * Return codes - 0 on success or error code otherwise.
2646 	 */
2647 	int (*modify_hw_stat)(struct ib_device *device, u32 port,
2648 			      unsigned int counter_index, bool enable);
2649 	/**
2650 	 * Allows rdma drivers to add their own restrack attributes.
2651 	 */
2652 	int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2653 	int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2654 	int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2655 	int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2656 	int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2657 	int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2658 	int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2659 	int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq);
2660 	int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq);
2661 
2662 	/* Device lifecycle callbacks */
2663 	/*
2664 	 * Called after the device becomes registered, before clients are
2665 	 * attached
2666 	 */
2667 	int (*enable_driver)(struct ib_device *dev);
2668 	/*
2669 	 * This is called as part of ib_dealloc_device().
2670 	 */
2671 	void (*dealloc_driver)(struct ib_device *dev);
2672 
2673 	/* iWarp CM callbacks */
2674 	void (*iw_add_ref)(struct ib_qp *qp);
2675 	void (*iw_rem_ref)(struct ib_qp *qp);
2676 	struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2677 	int (*iw_connect)(struct iw_cm_id *cm_id,
2678 			  struct iw_cm_conn_param *conn_param);
2679 	int (*iw_accept)(struct iw_cm_id *cm_id,
2680 			 struct iw_cm_conn_param *conn_param);
2681 	int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2682 			 u8 pdata_len);
2683 	int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2684 	int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2685 	/**
2686 	 * counter_bind_qp - Bind a QP to a counter.
2687 	 * @counter - The counter to be bound. If counter->id is zero then
2688 	 *   the driver needs to allocate a new counter and set counter->id
2689 	 */
2690 	int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp,
2691 			       u32 port);
2692 	/**
2693 	 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2694 	 *   counter and bind it onto the default one
2695 	 */
2696 	int (*counter_unbind_qp)(struct ib_qp *qp, u32 port);
2697 	/**
2698 	 * counter_dealloc -De-allocate the hw counter
2699 	 */
2700 	int (*counter_dealloc)(struct rdma_counter *counter);
2701 	/**
2702 	 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2703 	 * the driver initialized data.
2704 	 */
2705 	struct rdma_hw_stats *(*counter_alloc_stats)(
2706 		struct rdma_counter *counter);
2707 	/**
2708 	 * counter_update_stats - Query the stats value of this counter
2709 	 */
2710 	int (*counter_update_stats)(struct rdma_counter *counter);
2711 
2712 	/**
2713 	 * counter_init - Initialize the driver specific rdma counter struct.
2714 	 */
2715 	void (*counter_init)(struct rdma_counter *counter);
2716 
2717 	/**
2718 	 * Allows rdma drivers to add their own restrack attributes
2719 	 * dumped via 'rdma stat' iproute2 command.
2720 	 */
2721 	int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2722 
2723 	/* query driver for its ucontext properties */
2724 	int (*query_ucontext)(struct ib_ucontext *context,
2725 			      struct uverbs_attr_bundle *attrs);
2726 
2727 	/*
2728 	 * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2729 	 * Everyone else relies on Linux memory management model.
2730 	 */
2731 	int (*get_numa_node)(struct ib_device *dev);
2732 
2733 	/**
2734 	 * add_sub_dev - Add a sub IB device
2735 	 */
2736 	struct ib_device *(*add_sub_dev)(struct ib_device *parent,
2737 					 enum rdma_nl_dev_type type,
2738 					 const char *name);
2739 
2740 	/**
2741 	 * del_sub_dev - Delete a sub IB device
2742 	 */
2743 	void (*del_sub_dev)(struct ib_device *sub_dev);
2744 
2745 	/**
2746 	 * ufile_cleanup - Attempt to cleanup ubojects HW resources inside
2747 	 * the ufile.
2748 	 */
2749 	void (*ufile_hw_cleanup)(struct ib_uverbs_file *ufile);
2750 
2751 	/**
2752 	 * report_port_event - Drivers need to implement this if they have
2753 	 * some private stuff to handle when link status changes.
2754 	 */
2755 	void (*report_port_event)(struct ib_device *ibdev,
2756 				  struct net_device *ndev, unsigned long event);
2757 
2758 	DECLARE_RDMA_OBJ_SIZE(ib_ah);
2759 	DECLARE_RDMA_OBJ_SIZE(ib_counters);
2760 	DECLARE_RDMA_OBJ_SIZE(ib_cq);
2761 	DECLARE_RDMA_OBJ_SIZE(ib_dmah);
2762 	DECLARE_RDMA_OBJ_SIZE(ib_mw);
2763 	DECLARE_RDMA_OBJ_SIZE(ib_pd);
2764 	DECLARE_RDMA_OBJ_SIZE(ib_qp);
2765 	DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2766 	DECLARE_RDMA_OBJ_SIZE(ib_srq);
2767 	DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2768 	DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2769 	DECLARE_RDMA_OBJ_SIZE(rdma_counter);
2770 };
2771 
2772 struct ib_core_device {
2773 	/* device must be the first element in structure until,
2774 	 * union of ib_core_device and device exists in ib_device.
2775 	 */
2776 	struct device dev;
2777 	possible_net_t rdma_net;
2778 	struct kobject *ports_kobj;
2779 	struct list_head port_list;
2780 	struct ib_device *owner; /* reach back to owner ib_device */
2781 };
2782 
2783 struct rdma_restrack_root;
2784 struct ib_device {
2785 	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2786 	struct device                *dma_device;
2787 	struct ib_device_ops	     ops;
2788 	char                          name[IB_DEVICE_NAME_MAX];
2789 	struct rcu_head rcu_head;
2790 
2791 	struct list_head              event_handler_list;
2792 	/* Protects event_handler_list */
2793 	struct rw_semaphore event_handler_rwsem;
2794 
2795 	/* Protects QP's event_handler calls and open_qp list */
2796 	spinlock_t qp_open_list_lock;
2797 
2798 	struct rw_semaphore	      client_data_rwsem;
2799 	struct xarray                 client_data;
2800 	struct mutex                  unregistration_lock;
2801 
2802 	/* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2803 	rwlock_t cache_lock;
2804 	/**
2805 	 * port_data is indexed by port number
2806 	 */
2807 	struct ib_port_data *port_data;
2808 
2809 	int			      num_comp_vectors;
2810 
2811 	union {
2812 		struct device		dev;
2813 		struct ib_core_device	coredev;
2814 	};
2815 
2816 	/* First group is for device attributes,
2817 	 * Second group is for driver provided attributes (optional).
2818 	 * Third group is for the hw_stats
2819 	 * It is a NULL terminated array.
2820 	 */
2821 	const struct attribute_group	*groups[4];
2822 	u8				hw_stats_attr_index;
2823 
2824 	u64			     uverbs_cmd_mask;
2825 
2826 	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2827 	__be64			     node_guid;
2828 	u32			     local_dma_lkey;
2829 	u16                          is_switch:1;
2830 	/* Indicates kernel verbs support, should not be used in drivers */
2831 	u16                          kverbs_provider:1;
2832 	/* CQ adaptive moderation (RDMA DIM) */
2833 	u16                          use_cq_dim:1;
2834 	u8                           node_type;
2835 	u32			     phys_port_cnt;
2836 	struct ib_device_attr        attrs;
2837 	struct hw_stats_device_data *hw_stats_data;
2838 
2839 #ifdef CONFIG_CGROUP_RDMA
2840 	struct rdmacg_device         cg_device;
2841 #endif
2842 
2843 	u32                          index;
2844 
2845 	spinlock_t                   cq_pools_lock;
2846 	struct list_head             cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2847 
2848 	struct rdma_restrack_root *res;
2849 
2850 	const struct uapi_definition   *driver_def;
2851 
2852 	/*
2853 	 * Positive refcount indicates that the device is currently
2854 	 * registered and cannot be unregistered.
2855 	 */
2856 	refcount_t refcount;
2857 	struct completion unreg_completion;
2858 	struct work_struct unregistration_work;
2859 
2860 	const struct rdma_link_ops *link_ops;
2861 
2862 	/* Protects compat_devs xarray modifications */
2863 	struct mutex compat_devs_mutex;
2864 	/* Maintains compat devices for each net namespace */
2865 	struct xarray compat_devs;
2866 
2867 	/* Used by iWarp CM */
2868 	char iw_ifname[IFNAMSIZ];
2869 	u32 iw_driver_flags;
2870 	u32 lag_flags;
2871 
2872 	/* A parent device has a list of sub-devices */
2873 	struct mutex subdev_lock;
2874 	struct list_head subdev_list_head;
2875 
2876 	/* A sub device has a type and a parent */
2877 	enum rdma_nl_dev_type type;
2878 	struct ib_device *parent;
2879 	struct list_head subdev_list;
2880 
2881 	enum rdma_nl_name_assign_type name_assign_type;
2882 };
2883 
2884 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2885 				    gfp_t gfp, bool is_numa_aware)
2886 {
2887 	if (is_numa_aware && dev->ops.get_numa_node)
2888 		return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2889 
2890 	return kzalloc(size, gfp);
2891 }
2892 
2893 struct ib_client_nl_info;
2894 struct ib_client {
2895 	const char *name;
2896 	int (*add)(struct ib_device *ibdev);
2897 	void (*remove)(struct ib_device *, void *client_data);
2898 	void (*rename)(struct ib_device *dev, void *client_data);
2899 	int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2900 			   struct ib_client_nl_info *res);
2901 	int (*get_global_nl_info)(struct ib_client_nl_info *res);
2902 
2903 	/* Returns the net_dev belonging to this ib_client and matching the
2904 	 * given parameters.
2905 	 * @dev:	 An RDMA device that the net_dev use for communication.
2906 	 * @port:	 A physical port number on the RDMA device.
2907 	 * @pkey:	 P_Key that the net_dev uses if applicable.
2908 	 * @gid:	 A GID that the net_dev uses to communicate.
2909 	 * @addr:	 An IP address the net_dev is configured with.
2910 	 * @client_data: The device's client data set by ib_set_client_data().
2911 	 *
2912 	 * An ib_client that implements a net_dev on top of RDMA devices
2913 	 * (such as IP over IB) should implement this callback, allowing the
2914 	 * rdma_cm module to find the right net_dev for a given request.
2915 	 *
2916 	 * The caller is responsible for calling dev_put on the returned
2917 	 * netdev. */
2918 	struct net_device *(*get_net_dev_by_params)(
2919 			struct ib_device *dev,
2920 			u32 port,
2921 			u16 pkey,
2922 			const union ib_gid *gid,
2923 			const struct sockaddr *addr,
2924 			void *client_data);
2925 
2926 	refcount_t uses;
2927 	struct completion uses_zero;
2928 	u32 client_id;
2929 
2930 	/* kverbs are not required by the client */
2931 	u8 no_kverbs_req:1;
2932 };
2933 
2934 /*
2935  * IB block DMA iterator
2936  *
2937  * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2938  * to a HW supported page size.
2939  */
2940 struct ib_block_iter {
2941 	/* internal states */
2942 	struct scatterlist *__sg;	/* sg holding the current aligned block */
2943 	dma_addr_t __dma_addr;		/* unaligned DMA address of this block */
2944 	size_t __sg_numblocks;		/* ib_umem_num_dma_blocks() */
2945 	unsigned int __sg_nents;	/* number of SG entries */
2946 	unsigned int __sg_advance;	/* number of bytes to advance in sg in next step */
2947 	unsigned int __pg_bit;		/* alignment of current block */
2948 };
2949 
2950 struct ib_device *_ib_alloc_device(size_t size, struct net *net);
2951 #define ib_alloc_device(drv_struct, member)                                    \
2952 	container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2953 				      BUILD_BUG_ON_ZERO(offsetof(              \
2954 					      struct drv_struct, member)),     \
2955 				      &init_net),			       \
2956 		     struct drv_struct, member)
2957 
2958 #define ib_alloc_device_with_net(drv_struct, member, net)		       \
2959 	container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2960 				      BUILD_BUG_ON_ZERO(offsetof(              \
2961 					struct drv_struct, member)), net),     \
2962 		     struct drv_struct, member)
2963 
2964 void ib_dealloc_device(struct ib_device *device);
2965 
2966 void ib_get_device_fw_str(struct ib_device *device, char *str);
2967 
2968 int ib_register_device(struct ib_device *device, const char *name,
2969 		       struct device *dma_device);
2970 void ib_unregister_device(struct ib_device *device);
2971 void ib_unregister_driver(enum rdma_driver_id driver_id);
2972 void ib_unregister_device_and_put(struct ib_device *device);
2973 void ib_unregister_device_queued(struct ib_device *ib_dev);
2974 
2975 int ib_register_client   (struct ib_client *client);
2976 void ib_unregister_client(struct ib_client *client);
2977 
2978 void __rdma_block_iter_start(struct ib_block_iter *biter,
2979 			     struct scatterlist *sglist,
2980 			     unsigned int nents,
2981 			     unsigned long pgsz);
2982 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2983 
2984 /**
2985  * rdma_block_iter_dma_address - get the aligned dma address of the current
2986  * block held by the block iterator.
2987  * @biter: block iterator holding the memory block
2988  */
2989 static inline dma_addr_t
2990 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2991 {
2992 	return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2993 }
2994 
2995 /**
2996  * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2997  * @sglist: sglist to iterate over
2998  * @biter: block iterator holding the memory block
2999  * @nents: maximum number of sg entries to iterate over
3000  * @pgsz: best HW supported page size to use
3001  *
3002  * Callers may use rdma_block_iter_dma_address() to get each
3003  * blocks aligned DMA address.
3004  */
3005 #define rdma_for_each_block(sglist, biter, nents, pgsz)		\
3006 	for (__rdma_block_iter_start(biter, sglist, nents,	\
3007 				     pgsz);			\
3008 	     __rdma_block_iter_next(biter);)
3009 
3010 /**
3011  * ib_get_client_data - Get IB client context
3012  * @device:Device to get context for
3013  * @client:Client to get context for
3014  *
3015  * ib_get_client_data() returns the client context data set with
3016  * ib_set_client_data(). This can only be called while the client is
3017  * registered to the device, once the ib_client remove() callback returns this
3018  * cannot be called.
3019  */
3020 static inline void *ib_get_client_data(struct ib_device *device,
3021 				       struct ib_client *client)
3022 {
3023 	return xa_load(&device->client_data, client->client_id);
3024 }
3025 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
3026 			 void *data);
3027 void ib_set_device_ops(struct ib_device *device,
3028 		       const struct ib_device_ops *ops);
3029 
3030 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
3031 		      unsigned long pfn, unsigned long size, pgprot_t prot,
3032 		      struct rdma_user_mmap_entry *entry);
3033 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
3034 				struct rdma_user_mmap_entry *entry,
3035 				size_t length);
3036 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
3037 				      struct rdma_user_mmap_entry *entry,
3038 				      size_t length, u32 min_pgoff,
3039 				      u32 max_pgoff);
3040 
3041 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
3042 void rdma_user_mmap_disassociate(struct ib_device *device);
3043 #else
3044 static inline void rdma_user_mmap_disassociate(struct ib_device *device)
3045 {
3046 }
3047 #endif
3048 
3049 static inline int
3050 rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
3051 				  struct rdma_user_mmap_entry *entry,
3052 				  size_t length, u32 pgoff)
3053 {
3054 	return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
3055 						 pgoff);
3056 }
3057 
3058 struct rdma_user_mmap_entry *
3059 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
3060 			       unsigned long pgoff);
3061 struct rdma_user_mmap_entry *
3062 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
3063 			 struct vm_area_struct *vma);
3064 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
3065 
3066 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
3067 
3068 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
3069 {
3070 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
3071 }
3072 
3073 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
3074 {
3075 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
3076 }
3077 
3078 static inline bool ib_is_buffer_cleared(const void __user *p,
3079 					size_t len)
3080 {
3081 	bool ret;
3082 	u8 *buf;
3083 
3084 	if (len > USHRT_MAX)
3085 		return false;
3086 
3087 	buf = memdup_user(p, len);
3088 	if (IS_ERR(buf))
3089 		return false;
3090 
3091 	ret = !memchr_inv(buf, 0, len);
3092 	kfree(buf);
3093 	return ret;
3094 }
3095 
3096 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
3097 				       size_t offset,
3098 				       size_t len)
3099 {
3100 	return ib_is_buffer_cleared(udata->inbuf + offset, len);
3101 }
3102 
3103 /**
3104  * ib_modify_qp_is_ok - Check that the supplied attribute mask
3105  * contains all required attributes and no attributes not allowed for
3106  * the given QP state transition.
3107  * @cur_state: Current QP state
3108  * @next_state: Next QP state
3109  * @type: QP type
3110  * @mask: Mask of supplied QP attributes
3111  *
3112  * This function is a helper function that a low-level driver's
3113  * modify_qp method can use to validate the consumer's input.  It
3114  * checks that cur_state and next_state are valid QP states, that a
3115  * transition from cur_state to next_state is allowed by the IB spec,
3116  * and that the attribute mask supplied is allowed for the transition.
3117  */
3118 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
3119 			enum ib_qp_type type, enum ib_qp_attr_mask mask);
3120 
3121 void ib_register_event_handler(struct ib_event_handler *event_handler);
3122 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
3123 void ib_dispatch_event(const struct ib_event *event);
3124 
3125 int ib_query_port(struct ib_device *device,
3126 		  u32 port_num, struct ib_port_attr *port_attr);
3127 
3128 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3129 					       u32 port_num);
3130 
3131 /**
3132  * rdma_cap_ib_switch - Check if the device is IB switch
3133  * @device: Device to check
3134  *
3135  * Device driver is responsible for setting is_switch bit on
3136  * in ib_device structure at init time.
3137  *
3138  * Return: true if the device is IB switch.
3139  */
3140 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3141 {
3142 	return device->is_switch;
3143 }
3144 
3145 /**
3146  * rdma_start_port - Return the first valid port number for the device
3147  * specified
3148  *
3149  * @device: Device to be checked
3150  *
3151  * Return start port number
3152  */
3153 static inline u32 rdma_start_port(const struct ib_device *device)
3154 {
3155 	return rdma_cap_ib_switch(device) ? 0 : 1;
3156 }
3157 
3158 /**
3159  * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3160  * @device - The struct ib_device * to iterate over
3161  * @iter - The unsigned int to store the port number
3162  */
3163 #define rdma_for_each_port(device, iter)                                       \
3164 	for (iter = rdma_start_port(device +				       \
3165 				    BUILD_BUG_ON_ZERO(!__same_type(u32,	       \
3166 								   iter)));    \
3167 	     iter <= rdma_end_port(device); iter++)
3168 
3169 /**
3170  * rdma_end_port - Return the last valid port number for the device
3171  * specified
3172  *
3173  * @device: Device to be checked
3174  *
3175  * Return last port number
3176  */
3177 static inline u32 rdma_end_port(const struct ib_device *device)
3178 {
3179 	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3180 }
3181 
3182 static inline int rdma_is_port_valid(const struct ib_device *device,
3183 				     unsigned int port)
3184 {
3185 	return (port >= rdma_start_port(device) &&
3186 		port <= rdma_end_port(device));
3187 }
3188 
3189 static inline bool rdma_is_grh_required(const struct ib_device *device,
3190 					u32 port_num)
3191 {
3192 	return device->port_data[port_num].immutable.core_cap_flags &
3193 	       RDMA_CORE_PORT_IB_GRH_REQUIRED;
3194 }
3195 
3196 static inline bool rdma_protocol_ib(const struct ib_device *device,
3197 				    u32 port_num)
3198 {
3199 	return device->port_data[port_num].immutable.core_cap_flags &
3200 	       RDMA_CORE_CAP_PROT_IB;
3201 }
3202 
3203 static inline bool rdma_protocol_roce(const struct ib_device *device,
3204 				      u32 port_num)
3205 {
3206 	return device->port_data[port_num].immutable.core_cap_flags &
3207 	       (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3208 }
3209 
3210 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3211 						u32 port_num)
3212 {
3213 	return device->port_data[port_num].immutable.core_cap_flags &
3214 	       RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3215 }
3216 
3217 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3218 						u32 port_num)
3219 {
3220 	return device->port_data[port_num].immutable.core_cap_flags &
3221 	       RDMA_CORE_CAP_PROT_ROCE;
3222 }
3223 
3224 static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3225 				       u32 port_num)
3226 {
3227 	return device->port_data[port_num].immutable.core_cap_flags &
3228 	       RDMA_CORE_CAP_PROT_IWARP;
3229 }
3230 
3231 static inline bool rdma_ib_or_roce(const struct ib_device *device,
3232 				   u32 port_num)
3233 {
3234 	return rdma_protocol_ib(device, port_num) ||
3235 		rdma_protocol_roce(device, port_num);
3236 }
3237 
3238 static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3239 					    u32 port_num)
3240 {
3241 	return device->port_data[port_num].immutable.core_cap_flags &
3242 	       RDMA_CORE_CAP_PROT_RAW_PACKET;
3243 }
3244 
3245 static inline bool rdma_protocol_usnic(const struct ib_device *device,
3246 				       u32 port_num)
3247 {
3248 	return device->port_data[port_num].immutable.core_cap_flags &
3249 	       RDMA_CORE_CAP_PROT_USNIC;
3250 }
3251 
3252 /**
3253  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3254  * Management Datagrams.
3255  * @device: Device to check
3256  * @port_num: Port number to check
3257  *
3258  * Management Datagrams (MAD) are a required part of the InfiniBand
3259  * specification and are supported on all InfiniBand devices.  A slightly
3260  * extended version are also supported on OPA interfaces.
3261  *
3262  * Return: true if the port supports sending/receiving of MAD packets.
3263  */
3264 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3265 {
3266 	return device->port_data[port_num].immutable.core_cap_flags &
3267 	       RDMA_CORE_CAP_IB_MAD;
3268 }
3269 
3270 /**
3271  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3272  * Management Datagrams.
3273  * @device: Device to check
3274  * @port_num: Port number to check
3275  *
3276  * Intel OmniPath devices extend and/or replace the InfiniBand Management
3277  * datagrams with their own versions.  These OPA MADs share many but not all of
3278  * the characteristics of InfiniBand MADs.
3279  *
3280  * OPA MADs differ in the following ways:
3281  *
3282  *    1) MADs are variable size up to 2K
3283  *       IBTA defined MADs remain fixed at 256 bytes
3284  *    2) OPA SMPs must carry valid PKeys
3285  *    3) OPA SMP packets are a different format
3286  *
3287  * Return: true if the port supports OPA MAD packet formats.
3288  */
3289 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3290 {
3291 	return device->port_data[port_num].immutable.core_cap_flags &
3292 		RDMA_CORE_CAP_OPA_MAD;
3293 }
3294 
3295 /**
3296  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3297  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3298  * @device: Device to check
3299  * @port_num: Port number to check
3300  *
3301  * Each InfiniBand node is required to provide a Subnet Management Agent
3302  * that the subnet manager can access.  Prior to the fabric being fully
3303  * configured by the subnet manager, the SMA is accessed via a well known
3304  * interface called the Subnet Management Interface (SMI).  This interface
3305  * uses directed route packets to communicate with the SM to get around the
3306  * chicken and egg problem of the SM needing to know what's on the fabric
3307  * in order to configure the fabric, and needing to configure the fabric in
3308  * order to send packets to the devices on the fabric.  These directed
3309  * route packets do not need the fabric fully configured in order to reach
3310  * their destination.  The SMI is the only method allowed to send
3311  * directed route packets on an InfiniBand fabric.
3312  *
3313  * Return: true if the port provides an SMI.
3314  */
3315 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3316 {
3317 	return device->port_data[port_num].immutable.core_cap_flags &
3318 	       RDMA_CORE_CAP_IB_SMI;
3319 }
3320 
3321 /**
3322  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3323  * Communication Manager.
3324  * @device: Device to check
3325  * @port_num: Port number to check
3326  *
3327  * The InfiniBand Communication Manager is one of many pre-defined General
3328  * Service Agents (GSA) that are accessed via the General Service
3329  * Interface (GSI).  It's role is to facilitate establishment of connections
3330  * between nodes as well as other management related tasks for established
3331  * connections.
3332  *
3333  * Return: true if the port supports an IB CM (this does not guarantee that
3334  * a CM is actually running however).
3335  */
3336 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3337 {
3338 	return device->port_data[port_num].immutable.core_cap_flags &
3339 	       RDMA_CORE_CAP_IB_CM;
3340 }
3341 
3342 /**
3343  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3344  * Communication Manager.
3345  * @device: Device to check
3346  * @port_num: Port number to check
3347  *
3348  * Similar to above, but specific to iWARP connections which have a different
3349  * managment protocol than InfiniBand.
3350  *
3351  * Return: true if the port supports an iWARP CM (this does not guarantee that
3352  * a CM is actually running however).
3353  */
3354 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3355 {
3356 	return device->port_data[port_num].immutable.core_cap_flags &
3357 	       RDMA_CORE_CAP_IW_CM;
3358 }
3359 
3360 /**
3361  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3362  * Subnet Administration.
3363  * @device: Device to check
3364  * @port_num: Port number to check
3365  *
3366  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3367  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3368  * fabrics, devices should resolve routes to other hosts by contacting the
3369  * SA to query the proper route.
3370  *
3371  * Return: true if the port should act as a client to the fabric Subnet
3372  * Administration interface.  This does not imply that the SA service is
3373  * running locally.
3374  */
3375 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3376 {
3377 	return device->port_data[port_num].immutable.core_cap_flags &
3378 	       RDMA_CORE_CAP_IB_SA;
3379 }
3380 
3381 /**
3382  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3383  * Multicast.
3384  * @device: Device to check
3385  * @port_num: Port number to check
3386  *
3387  * InfiniBand multicast registration is more complex than normal IPv4 or
3388  * IPv6 multicast registration.  Each Host Channel Adapter must register
3389  * with the Subnet Manager when it wishes to join a multicast group.  It
3390  * should do so only once regardless of how many queue pairs it subscribes
3391  * to this group.  And it should leave the group only after all queue pairs
3392  * attached to the group have been detached.
3393  *
3394  * Return: true if the port must undertake the additional adminstrative
3395  * overhead of registering/unregistering with the SM and tracking of the
3396  * total number of queue pairs attached to the multicast group.
3397  */
3398 static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3399 				     u32 port_num)
3400 {
3401 	return rdma_cap_ib_sa(device, port_num);
3402 }
3403 
3404 /**
3405  * rdma_cap_af_ib - Check if the port of device has the capability
3406  * Native Infiniband Address.
3407  * @device: Device to check
3408  * @port_num: Port number to check
3409  *
3410  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3411  * GID.  RoCE uses a different mechanism, but still generates a GID via
3412  * a prescribed mechanism and port specific data.
3413  *
3414  * Return: true if the port uses a GID address to identify devices on the
3415  * network.
3416  */
3417 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3418 {
3419 	return device->port_data[port_num].immutable.core_cap_flags &
3420 	       RDMA_CORE_CAP_AF_IB;
3421 }
3422 
3423 /**
3424  * rdma_cap_eth_ah - Check if the port of device has the capability
3425  * Ethernet Address Handle.
3426  * @device: Device to check
3427  * @port_num: Port number to check
3428  *
3429  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3430  * to fabricate GIDs over Ethernet/IP specific addresses native to the
3431  * port.  Normally, packet headers are generated by the sending host
3432  * adapter, but when sending connectionless datagrams, we must manually
3433  * inject the proper headers for the fabric we are communicating over.
3434  *
3435  * Return: true if we are running as a RoCE port and must force the
3436  * addition of a Global Route Header built from our Ethernet Address
3437  * Handle into our header list for connectionless packets.
3438  */
3439 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3440 {
3441 	return device->port_data[port_num].immutable.core_cap_flags &
3442 	       RDMA_CORE_CAP_ETH_AH;
3443 }
3444 
3445 /**
3446  * rdma_cap_opa_ah - Check if the port of device supports
3447  * OPA Address handles
3448  * @device: Device to check
3449  * @port_num: Port number to check
3450  *
3451  * Return: true if we are running on an OPA device which supports
3452  * the extended OPA addressing.
3453  */
3454 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3455 {
3456 	return (device->port_data[port_num].immutable.core_cap_flags &
3457 		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3458 }
3459 
3460 /**
3461  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3462  *
3463  * @device: Device
3464  * @port_num: Port number
3465  *
3466  * This MAD size includes the MAD headers and MAD payload.  No other headers
3467  * are included.
3468  *
3469  * Return the max MAD size required by the Port.  Will return 0 if the port
3470  * does not support MADs
3471  */
3472 static inline size_t rdma_max_mad_size(const struct ib_device *device,
3473 				       u32 port_num)
3474 {
3475 	return device->port_data[port_num].immutable.max_mad_size;
3476 }
3477 
3478 /**
3479  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3480  * @device: Device to check
3481  * @port_num: Port number to check
3482  *
3483  * RoCE GID table mechanism manages the various GIDs for a device.
3484  *
3485  * NOTE: if allocating the port's GID table has failed, this call will still
3486  * return true, but any RoCE GID table API will fail.
3487  *
3488  * Return: true if the port uses RoCE GID table mechanism in order to manage
3489  * its GIDs.
3490  */
3491 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3492 					   u32 port_num)
3493 {
3494 	return rdma_protocol_roce(device, port_num) &&
3495 		device->ops.add_gid && device->ops.del_gid;
3496 }
3497 
3498 /*
3499  * Check if the device supports READ W/ INVALIDATE.
3500  */
3501 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3502 {
3503 	/*
3504 	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3505 	 * has support for it yet.
3506 	 */
3507 	return rdma_protocol_iwarp(dev, port_num);
3508 }
3509 
3510 /**
3511  * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3512  * @device: Device
3513  * @port_num: 1 based Port number
3514  *
3515  * Return true if port is an Intel OPA port , false if not
3516  */
3517 static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3518 					  u32 port_num)
3519 {
3520 	return (device->port_data[port_num].immutable.core_cap_flags &
3521 		RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3522 }
3523 
3524 /**
3525  * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3526  * @device: Device
3527  * @port_num: Port number
3528  * @mtu: enum value of MTU
3529  *
3530  * Return the MTU size supported by the port as an integer value. Will return
3531  * -1 if enum value of mtu is not supported.
3532  */
3533 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3534 				       int mtu)
3535 {
3536 	if (rdma_core_cap_opa_port(device, port))
3537 		return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3538 	else
3539 		return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3540 }
3541 
3542 /**
3543  * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3544  * @device: Device
3545  * @port_num: Port number
3546  * @attr: port attribute
3547  *
3548  * Return the MTU size supported by the port as an integer value.
3549  */
3550 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3551 				     struct ib_port_attr *attr)
3552 {
3553 	if (rdma_core_cap_opa_port(device, port))
3554 		return attr->phys_mtu;
3555 	else
3556 		return ib_mtu_enum_to_int(attr->max_mtu);
3557 }
3558 
3559 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3560 			 int state);
3561 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3562 		     struct ifla_vf_info *info);
3563 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3564 		    struct ifla_vf_stats *stats);
3565 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3566 		    struct ifla_vf_guid *node_guid,
3567 		    struct ifla_vf_guid *port_guid);
3568 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3569 		   int type);
3570 
3571 int ib_query_pkey(struct ib_device *device,
3572 		  u32 port_num, u16 index, u16 *pkey);
3573 
3574 int ib_modify_device(struct ib_device *device,
3575 		     int device_modify_mask,
3576 		     struct ib_device_modify *device_modify);
3577 
3578 int ib_modify_port(struct ib_device *device,
3579 		   u32 port_num, int port_modify_mask,
3580 		   struct ib_port_modify *port_modify);
3581 
3582 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3583 		u32 *port_num, u16 *index);
3584 
3585 int ib_find_pkey(struct ib_device *device,
3586 		 u32 port_num, u16 pkey, u16 *index);
3587 
3588 enum ib_pd_flags {
3589 	/*
3590 	 * Create a memory registration for all memory in the system and place
3591 	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3592 	 * ULPs to avoid the overhead of dynamic MRs.
3593 	 *
3594 	 * This flag is generally considered unsafe and must only be used in
3595 	 * extremly trusted environments.  Every use of it will log a warning
3596 	 * in the kernel log.
3597 	 */
3598 	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3599 };
3600 
3601 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3602 		const char *caller);
3603 
3604 /**
3605  * ib_alloc_pd - Allocates an unused protection domain.
3606  * @device: The device on which to allocate the protection domain.
3607  * @flags: protection domain flags
3608  *
3609  * A protection domain object provides an association between QPs, shared
3610  * receive queues, address handles, memory regions, and memory windows.
3611  *
3612  * Every PD has a local_dma_lkey which can be used as the lkey value for local
3613  * memory operations.
3614  */
3615 #define ib_alloc_pd(device, flags) \
3616 	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3617 
3618 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3619 
3620 /**
3621  * ib_dealloc_pd - Deallocate kernel PD
3622  * @pd: The protection domain
3623  *
3624  * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3625  */
3626 static inline void ib_dealloc_pd(struct ib_pd *pd)
3627 {
3628 	int ret = ib_dealloc_pd_user(pd, NULL);
3629 
3630 	WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3631 }
3632 
3633 enum rdma_create_ah_flags {
3634 	/* In a sleepable context */
3635 	RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3636 };
3637 
3638 /**
3639  * rdma_create_ah - Creates an address handle for the given address vector.
3640  * @pd: The protection domain associated with the address handle.
3641  * @ah_attr: The attributes of the address vector.
3642  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3643  *
3644  * The address handle is used to reference a local or global destination
3645  * in all UD QP post sends.
3646  */
3647 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3648 			     u32 flags);
3649 
3650 /**
3651  * rdma_create_user_ah - Creates an address handle for the given address vector.
3652  * It resolves destination mac address for ah attribute of RoCE type.
3653  * @pd: The protection domain associated with the address handle.
3654  * @ah_attr: The attributes of the address vector.
3655  * @udata: pointer to user's input output buffer information need by
3656  *         provider driver.
3657  *
3658  * It returns 0 on success and returns appropriate error code on error.
3659  * The address handle is used to reference a local or global destination
3660  * in all UD QP post sends.
3661  */
3662 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3663 				  struct rdma_ah_attr *ah_attr,
3664 				  struct ib_udata *udata);
3665 /**
3666  * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3667  *   work completion.
3668  * @hdr: the L3 header to parse
3669  * @net_type: type of header to parse
3670  * @sgid: place to store source gid
3671  * @dgid: place to store destination gid
3672  */
3673 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3674 			      enum rdma_network_type net_type,
3675 			      union ib_gid *sgid, union ib_gid *dgid);
3676 
3677 /**
3678  * ib_get_rdma_header_version - Get the header version
3679  * @hdr: the L3 header to parse
3680  */
3681 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3682 
3683 /**
3684  * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3685  *   work completion.
3686  * @device: Device on which the received message arrived.
3687  * @port_num: Port on which the received message arrived.
3688  * @wc: Work completion associated with the received message.
3689  * @grh: References the received global route header.  This parameter is
3690  *   ignored unless the work completion indicates that the GRH is valid.
3691  * @ah_attr: Returned attributes that can be used when creating an address
3692  *   handle for replying to the message.
3693  * When ib_init_ah_attr_from_wc() returns success,
3694  * (a) for IB link layer it optionally contains a reference to SGID attribute
3695  * when GRH is present for IB link layer.
3696  * (b) for RoCE link layer it contains a reference to SGID attribute.
3697  * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3698  * attributes which are initialized using ib_init_ah_attr_from_wc().
3699  *
3700  */
3701 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3702 			    const struct ib_wc *wc, const struct ib_grh *grh,
3703 			    struct rdma_ah_attr *ah_attr);
3704 
3705 /**
3706  * ib_create_ah_from_wc - Creates an address handle associated with the
3707  *   sender of the specified work completion.
3708  * @pd: The protection domain associated with the address handle.
3709  * @wc: Work completion information associated with a received message.
3710  * @grh: References the received global route header.  This parameter is
3711  *   ignored unless the work completion indicates that the GRH is valid.
3712  * @port_num: The outbound port number to associate with the address.
3713  *
3714  * The address handle is used to reference a local or global destination
3715  * in all UD QP post sends.
3716  */
3717 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3718 				   const struct ib_grh *grh, u32 port_num);
3719 
3720 /**
3721  * rdma_modify_ah - Modifies the address vector associated with an address
3722  *   handle.
3723  * @ah: The address handle to modify.
3724  * @ah_attr: The new address vector attributes to associate with the
3725  *   address handle.
3726  */
3727 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3728 
3729 /**
3730  * rdma_query_ah - Queries the address vector associated with an address
3731  *   handle.
3732  * @ah: The address handle to query.
3733  * @ah_attr: The address vector attributes associated with the address
3734  *   handle.
3735  */
3736 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3737 
3738 enum rdma_destroy_ah_flags {
3739 	/* In a sleepable context */
3740 	RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3741 };
3742 
3743 /**
3744  * rdma_destroy_ah_user - Destroys an address handle.
3745  * @ah: The address handle to destroy.
3746  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3747  * @udata: Valid user data or NULL for kernel objects
3748  */
3749 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3750 
3751 /**
3752  * rdma_destroy_ah - Destroys an kernel address handle.
3753  * @ah: The address handle to destroy.
3754  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3755  *
3756  * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3757  */
3758 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3759 {
3760 	int ret = rdma_destroy_ah_user(ah, flags, NULL);
3761 
3762 	WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3763 }
3764 
3765 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3766 				  struct ib_srq_init_attr *srq_init_attr,
3767 				  struct ib_usrq_object *uobject,
3768 				  struct ib_udata *udata);
3769 static inline struct ib_srq *
3770 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3771 {
3772 	if (!pd->device->ops.create_srq)
3773 		return ERR_PTR(-EOPNOTSUPP);
3774 
3775 	return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3776 }
3777 
3778 /**
3779  * ib_modify_srq - Modifies the attributes for the specified SRQ.
3780  * @srq: The SRQ to modify.
3781  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3782  *   the current values of selected SRQ attributes are returned.
3783  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3784  *   are being modified.
3785  *
3786  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3787  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3788  * the number of receives queued drops below the limit.
3789  */
3790 int ib_modify_srq(struct ib_srq *srq,
3791 		  struct ib_srq_attr *srq_attr,
3792 		  enum ib_srq_attr_mask srq_attr_mask);
3793 
3794 /**
3795  * ib_query_srq - Returns the attribute list and current values for the
3796  *   specified SRQ.
3797  * @srq: The SRQ to query.
3798  * @srq_attr: The attributes of the specified SRQ.
3799  */
3800 int ib_query_srq(struct ib_srq *srq,
3801 		 struct ib_srq_attr *srq_attr);
3802 
3803 /**
3804  * ib_destroy_srq_user - Destroys the specified SRQ.
3805  * @srq: The SRQ to destroy.
3806  * @udata: Valid user data or NULL for kernel objects
3807  */
3808 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3809 
3810 /**
3811  * ib_destroy_srq - Destroys the specified kernel SRQ.
3812  * @srq: The SRQ to destroy.
3813  *
3814  * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3815  */
3816 static inline void ib_destroy_srq(struct ib_srq *srq)
3817 {
3818 	int ret = ib_destroy_srq_user(srq, NULL);
3819 
3820 	WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3821 }
3822 
3823 /**
3824  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3825  * @srq: The SRQ to post the work request on.
3826  * @recv_wr: A list of work requests to post on the receive queue.
3827  * @bad_recv_wr: On an immediate failure, this parameter will reference
3828  *   the work request that failed to be posted on the QP.
3829  */
3830 static inline int ib_post_srq_recv(struct ib_srq *srq,
3831 				   const struct ib_recv_wr *recv_wr,
3832 				   const struct ib_recv_wr **bad_recv_wr)
3833 {
3834 	const struct ib_recv_wr *dummy;
3835 
3836 	return srq->device->ops.post_srq_recv(srq, recv_wr,
3837 					      bad_recv_wr ? : &dummy);
3838 }
3839 
3840 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3841 				  struct ib_qp_init_attr *qp_init_attr,
3842 				  const char *caller);
3843 /**
3844  * ib_create_qp - Creates a kernel QP associated with the specific protection
3845  * domain.
3846  * @pd: The protection domain associated with the QP.
3847  * @init_attr: A list of initial attributes required to create the
3848  *   QP.  If QP creation succeeds, then the attributes are updated to
3849  *   the actual capabilities of the created QP.
3850  */
3851 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3852 					 struct ib_qp_init_attr *init_attr)
3853 {
3854 	return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3855 }
3856 
3857 /**
3858  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3859  * @qp: The QP to modify.
3860  * @attr: On input, specifies the QP attributes to modify.  On output,
3861  *   the current values of selected QP attributes are returned.
3862  * @attr_mask: A bit-mask used to specify which attributes of the QP
3863  *   are being modified.
3864  * @udata: pointer to user's input output buffer information
3865  *   are being modified.
3866  * It returns 0 on success and returns appropriate error code on error.
3867  */
3868 int ib_modify_qp_with_udata(struct ib_qp *qp,
3869 			    struct ib_qp_attr *attr,
3870 			    int attr_mask,
3871 			    struct ib_udata *udata);
3872 
3873 /**
3874  * ib_modify_qp - Modifies the attributes for the specified QP and then
3875  *   transitions the QP to the given state.
3876  * @qp: The QP to modify.
3877  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3878  *   the current values of selected QP attributes are returned.
3879  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3880  *   are being modified.
3881  */
3882 int ib_modify_qp(struct ib_qp *qp,
3883 		 struct ib_qp_attr *qp_attr,
3884 		 int qp_attr_mask);
3885 
3886 /**
3887  * ib_query_qp - Returns the attribute list and current values for the
3888  *   specified QP.
3889  * @qp: The QP to query.
3890  * @qp_attr: The attributes of the specified QP.
3891  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3892  * @qp_init_attr: Additional attributes of the selected QP.
3893  *
3894  * The qp_attr_mask may be used to limit the query to gathering only the
3895  * selected attributes.
3896  */
3897 int ib_query_qp(struct ib_qp *qp,
3898 		struct ib_qp_attr *qp_attr,
3899 		int qp_attr_mask,
3900 		struct ib_qp_init_attr *qp_init_attr);
3901 
3902 /**
3903  * ib_destroy_qp - Destroys the specified QP.
3904  * @qp: The QP to destroy.
3905  * @udata: Valid udata or NULL for kernel objects
3906  */
3907 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3908 
3909 /**
3910  * ib_destroy_qp - Destroys the specified kernel QP.
3911  * @qp: The QP to destroy.
3912  *
3913  * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3914  */
3915 static inline int ib_destroy_qp(struct ib_qp *qp)
3916 {
3917 	return ib_destroy_qp_user(qp, NULL);
3918 }
3919 
3920 /**
3921  * ib_open_qp - Obtain a reference to an existing sharable QP.
3922  * @xrcd - XRC domain
3923  * @qp_open_attr: Attributes identifying the QP to open.
3924  *
3925  * Returns a reference to a sharable QP.
3926  */
3927 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3928 			 struct ib_qp_open_attr *qp_open_attr);
3929 
3930 /**
3931  * ib_close_qp - Release an external reference to a QP.
3932  * @qp: The QP handle to release
3933  *
3934  * The opened QP handle is released by the caller.  The underlying
3935  * shared QP is not destroyed until all internal references are released.
3936  */
3937 int ib_close_qp(struct ib_qp *qp);
3938 
3939 /**
3940  * ib_post_send - Posts a list of work requests to the send queue of
3941  *   the specified QP.
3942  * @qp: The QP to post the work request on.
3943  * @send_wr: A list of work requests to post on the send queue.
3944  * @bad_send_wr: On an immediate failure, this parameter will reference
3945  *   the work request that failed to be posted on the QP.
3946  *
3947  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3948  * error is returned, the QP state shall not be affected,
3949  * ib_post_send() will return an immediate error after queueing any
3950  * earlier work requests in the list.
3951  */
3952 static inline int ib_post_send(struct ib_qp *qp,
3953 			       const struct ib_send_wr *send_wr,
3954 			       const struct ib_send_wr **bad_send_wr)
3955 {
3956 	const struct ib_send_wr *dummy;
3957 
3958 	return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3959 }
3960 
3961 /**
3962  * ib_post_recv - Posts a list of work requests to the receive queue of
3963  *   the specified QP.
3964  * @qp: The QP to post the work request on.
3965  * @recv_wr: A list of work requests to post on the receive queue.
3966  * @bad_recv_wr: On an immediate failure, this parameter will reference
3967  *   the work request that failed to be posted on the QP.
3968  */
3969 static inline int ib_post_recv(struct ib_qp *qp,
3970 			       const struct ib_recv_wr *recv_wr,
3971 			       const struct ib_recv_wr **bad_recv_wr)
3972 {
3973 	const struct ib_recv_wr *dummy;
3974 
3975 	return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3976 }
3977 
3978 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3979 			    int comp_vector, enum ib_poll_context poll_ctx,
3980 			    const char *caller);
3981 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3982 					int nr_cqe, int comp_vector,
3983 					enum ib_poll_context poll_ctx)
3984 {
3985 	return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3986 			     KBUILD_MODNAME);
3987 }
3988 
3989 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3990 				int nr_cqe, enum ib_poll_context poll_ctx,
3991 				const char *caller);
3992 
3993 /**
3994  * ib_alloc_cq_any: Allocate kernel CQ
3995  * @dev: The IB device
3996  * @private: Private data attached to the CQE
3997  * @nr_cqe: Number of CQEs in the CQ
3998  * @poll_ctx: Context used for polling the CQ
3999  */
4000 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
4001 					    void *private, int nr_cqe,
4002 					    enum ib_poll_context poll_ctx)
4003 {
4004 	return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
4005 				 KBUILD_MODNAME);
4006 }
4007 
4008 void ib_free_cq(struct ib_cq *cq);
4009 int ib_process_cq_direct(struct ib_cq *cq, int budget);
4010 
4011 /**
4012  * ib_create_cq - Creates a CQ on the specified device.
4013  * @device: The device on which to create the CQ.
4014  * @comp_handler: A user-specified callback that is invoked when a
4015  *   completion event occurs on the CQ.
4016  * @event_handler: A user-specified callback that is invoked when an
4017  *   asynchronous event not associated with a completion occurs on the CQ.
4018  * @cq_context: Context associated with the CQ returned to the user via
4019  *   the associated completion and event handlers.
4020  * @cq_attr: The attributes the CQ should be created upon.
4021  *
4022  * Users can examine the cq structure to determine the actual CQ size.
4023  */
4024 struct ib_cq *__ib_create_cq(struct ib_device *device,
4025 			     ib_comp_handler comp_handler,
4026 			     void (*event_handler)(struct ib_event *, void *),
4027 			     void *cq_context,
4028 			     const struct ib_cq_init_attr *cq_attr,
4029 			     const char *caller);
4030 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
4031 	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
4032 
4033 /**
4034  * ib_resize_cq - Modifies the capacity of the CQ.
4035  * @cq: The CQ to resize.
4036  * @cqe: The minimum size of the CQ.
4037  *
4038  * Users can examine the cq structure to determine the actual CQ size.
4039  */
4040 int ib_resize_cq(struct ib_cq *cq, int cqe);
4041 
4042 /**
4043  * rdma_set_cq_moderation - Modifies moderation params of the CQ
4044  * @cq: The CQ to modify.
4045  * @cq_count: number of CQEs that will trigger an event
4046  * @cq_period: max period of time in usec before triggering an event
4047  *
4048  */
4049 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
4050 
4051 /**
4052  * ib_destroy_cq_user - Destroys the specified CQ.
4053  * @cq: The CQ to destroy.
4054  * @udata: Valid user data or NULL for kernel objects
4055  */
4056 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
4057 
4058 /**
4059  * ib_destroy_cq - Destroys the specified kernel CQ.
4060  * @cq: The CQ to destroy.
4061  *
4062  * NOTE: for user cq use ib_destroy_cq_user with valid udata!
4063  */
4064 static inline void ib_destroy_cq(struct ib_cq *cq)
4065 {
4066 	int ret = ib_destroy_cq_user(cq, NULL);
4067 
4068 	WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
4069 }
4070 
4071 /**
4072  * ib_poll_cq - poll a CQ for completion(s)
4073  * @cq:the CQ being polled
4074  * @num_entries:maximum number of completions to return
4075  * @wc:array of at least @num_entries &struct ib_wc where completions
4076  *   will be returned
4077  *
4078  * Poll a CQ for (possibly multiple) completions.  If the return value
4079  * is < 0, an error occurred.  If the return value is >= 0, it is the
4080  * number of completions returned.  If the return value is
4081  * non-negative and < num_entries, then the CQ was emptied.
4082  */
4083 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
4084 			     struct ib_wc *wc)
4085 {
4086 	return cq->device->ops.poll_cq(cq, num_entries, wc);
4087 }
4088 
4089 /**
4090  * ib_req_notify_cq - Request completion notification on a CQ.
4091  * @cq: The CQ to generate an event for.
4092  * @flags:
4093  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
4094  *   to request an event on the next solicited event or next work
4095  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
4096  *   may also be |ed in to request a hint about missed events, as
4097  *   described below.
4098  *
4099  * Return Value:
4100  *    < 0 means an error occurred while requesting notification
4101  *   == 0 means notification was requested successfully, and if
4102  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
4103  *        were missed and it is safe to wait for another event.  In
4104  *        this case is it guaranteed that any work completions added
4105  *        to the CQ since the last CQ poll will trigger a completion
4106  *        notification event.
4107  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
4108  *        in.  It means that the consumer must poll the CQ again to
4109  *        make sure it is empty to avoid missing an event because of a
4110  *        race between requesting notification and an entry being
4111  *        added to the CQ.  This return value means it is possible
4112  *        (but not guaranteed) that a work completion has been added
4113  *        to the CQ since the last poll without triggering a
4114  *        completion notification event.
4115  */
4116 static inline int ib_req_notify_cq(struct ib_cq *cq,
4117 				   enum ib_cq_notify_flags flags)
4118 {
4119 	return cq->device->ops.req_notify_cq(cq, flags);
4120 }
4121 
4122 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4123 			     int comp_vector_hint,
4124 			     enum ib_poll_context poll_ctx);
4125 
4126 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4127 
4128 /*
4129  * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
4130  * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
4131  * address into the dma address.
4132  */
4133 static inline bool ib_uses_virt_dma(struct ib_device *dev)
4134 {
4135 	return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
4136 }
4137 
4138 /*
4139  * Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
4140  */
4141 static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
4142 {
4143 	if (ib_uses_virt_dma(dev))
4144 		return false;
4145 
4146 	return dma_pci_p2pdma_supported(dev->dma_device);
4147 }
4148 
4149 /**
4150  * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer
4151  * @dma_addr: The DMA address
4152  *
4153  * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after
4154  * going through the dma_addr marshalling.
4155  */
4156 static inline void *ib_virt_dma_to_ptr(u64 dma_addr)
4157 {
4158 	/* virt_dma mode maps the kvs's directly into the dma addr */
4159 	return (void *)(uintptr_t)dma_addr;
4160 }
4161 
4162 /**
4163  * ib_virt_dma_to_page - Convert a dma_addr to a struct page
4164  * @dma_addr: The DMA address
4165  *
4166  * Used by ib_uses_virt_dma() device to get back to the struct page after going
4167  * through the dma_addr marshalling.
4168  */
4169 static inline struct page *ib_virt_dma_to_page(u64 dma_addr)
4170 {
4171 	return virt_to_page(ib_virt_dma_to_ptr(dma_addr));
4172 }
4173 
4174 /**
4175  * ib_dma_mapping_error - check a DMA addr for error
4176  * @dev: The device for which the dma_addr was created
4177  * @dma_addr: The DMA address to check
4178  */
4179 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4180 {
4181 	if (ib_uses_virt_dma(dev))
4182 		return 0;
4183 	return dma_mapping_error(dev->dma_device, dma_addr);
4184 }
4185 
4186 /**
4187  * ib_dma_map_single - Map a kernel virtual address to DMA address
4188  * @dev: The device for which the dma_addr is to be created
4189  * @cpu_addr: The kernel virtual address
4190  * @size: The size of the region in bytes
4191  * @direction: The direction of the DMA
4192  */
4193 static inline u64 ib_dma_map_single(struct ib_device *dev,
4194 				    void *cpu_addr, size_t size,
4195 				    enum dma_data_direction direction)
4196 {
4197 	if (ib_uses_virt_dma(dev))
4198 		return (uintptr_t)cpu_addr;
4199 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4200 }
4201 
4202 /**
4203  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4204  * @dev: The device for which the DMA address was created
4205  * @addr: The DMA address
4206  * @size: The size of the region in bytes
4207  * @direction: The direction of the DMA
4208  */
4209 static inline void ib_dma_unmap_single(struct ib_device *dev,
4210 				       u64 addr, size_t size,
4211 				       enum dma_data_direction direction)
4212 {
4213 	if (!ib_uses_virt_dma(dev))
4214 		dma_unmap_single(dev->dma_device, addr, size, direction);
4215 }
4216 
4217 /**
4218  * ib_dma_map_page - Map a physical page to DMA address
4219  * @dev: The device for which the dma_addr is to be created
4220  * @page: The page to be mapped
4221  * @offset: The offset within the page
4222  * @size: The size of the region in bytes
4223  * @direction: The direction of the DMA
4224  */
4225 static inline u64 ib_dma_map_page(struct ib_device *dev,
4226 				  struct page *page,
4227 				  unsigned long offset,
4228 				  size_t size,
4229 					 enum dma_data_direction direction)
4230 {
4231 	if (ib_uses_virt_dma(dev))
4232 		return (uintptr_t)(page_address(page) + offset);
4233 	return dma_map_page(dev->dma_device, page, offset, size, direction);
4234 }
4235 
4236 /**
4237  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4238  * @dev: The device for which the DMA address was created
4239  * @addr: The DMA address
4240  * @size: The size of the region in bytes
4241  * @direction: The direction of the DMA
4242  */
4243 static inline void ib_dma_unmap_page(struct ib_device *dev,
4244 				     u64 addr, size_t size,
4245 				     enum dma_data_direction direction)
4246 {
4247 	if (!ib_uses_virt_dma(dev))
4248 		dma_unmap_page(dev->dma_device, addr, size, direction);
4249 }
4250 
4251 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
4252 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4253 				      struct scatterlist *sg, int nents,
4254 				      enum dma_data_direction direction,
4255 				      unsigned long dma_attrs)
4256 {
4257 	if (ib_uses_virt_dma(dev))
4258 		return ib_dma_virt_map_sg(dev, sg, nents);
4259 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4260 				dma_attrs);
4261 }
4262 
4263 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4264 					 struct scatterlist *sg, int nents,
4265 					 enum dma_data_direction direction,
4266 					 unsigned long dma_attrs)
4267 {
4268 	if (!ib_uses_virt_dma(dev))
4269 		dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4270 				   dma_attrs);
4271 }
4272 
4273 /**
4274  * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4275  * @dev: The device for which the DMA addresses are to be created
4276  * @sg: The sg_table object describing the buffer
4277  * @direction: The direction of the DMA
4278  * @attrs: Optional DMA attributes for the map operation
4279  */
4280 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4281 					   struct sg_table *sgt,
4282 					   enum dma_data_direction direction,
4283 					   unsigned long dma_attrs)
4284 {
4285 	int nents;
4286 
4287 	if (ib_uses_virt_dma(dev)) {
4288 		nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4289 		if (!nents)
4290 			return -EIO;
4291 		sgt->nents = nents;
4292 		return 0;
4293 	}
4294 	return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4295 }
4296 
4297 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4298 					      struct sg_table *sgt,
4299 					      enum dma_data_direction direction,
4300 					      unsigned long dma_attrs)
4301 {
4302 	if (!ib_uses_virt_dma(dev))
4303 		dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4304 }
4305 
4306 /**
4307  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4308  * @dev: The device for which the DMA addresses are to be created
4309  * @sg: The array of scatter/gather entries
4310  * @nents: The number of scatter/gather entries
4311  * @direction: The direction of the DMA
4312  */
4313 static inline int ib_dma_map_sg(struct ib_device *dev,
4314 				struct scatterlist *sg, int nents,
4315 				enum dma_data_direction direction)
4316 {
4317 	return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4318 }
4319 
4320 /**
4321  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4322  * @dev: The device for which the DMA addresses were created
4323  * @sg: The array of scatter/gather entries
4324  * @nents: The number of scatter/gather entries
4325  * @direction: The direction of the DMA
4326  */
4327 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4328 				   struct scatterlist *sg, int nents,
4329 				   enum dma_data_direction direction)
4330 {
4331 	ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4332 }
4333 
4334 /**
4335  * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4336  * @dev: The device to query
4337  *
4338  * The returned value represents a size in bytes.
4339  */
4340 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4341 {
4342 	if (ib_uses_virt_dma(dev))
4343 		return UINT_MAX;
4344 	return dma_get_max_seg_size(dev->dma_device);
4345 }
4346 
4347 /**
4348  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4349  * @dev: The device for which the DMA address was created
4350  * @addr: The DMA address
4351  * @size: The size of the region in bytes
4352  * @dir: The direction of the DMA
4353  */
4354 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4355 					      u64 addr,
4356 					      size_t size,
4357 					      enum dma_data_direction dir)
4358 {
4359 	if (!ib_uses_virt_dma(dev))
4360 		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4361 }
4362 
4363 /**
4364  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4365  * @dev: The device for which the DMA address was created
4366  * @addr: The DMA address
4367  * @size: The size of the region in bytes
4368  * @dir: The direction of the DMA
4369  */
4370 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4371 						 u64 addr,
4372 						 size_t size,
4373 						 enum dma_data_direction dir)
4374 {
4375 	if (!ib_uses_virt_dma(dev))
4376 		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4377 }
4378 
4379 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4380  * space. This function should be called when 'current' is the owning MM.
4381  */
4382 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4383 			     u64 virt_addr, int mr_access_flags);
4384 
4385 /* ib_advise_mr -  give an advice about an address range in a memory region */
4386 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4387 		 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4388 /**
4389  * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4390  *   HCA translation table.
4391  * @mr: The memory region to deregister.
4392  * @udata: Valid user data or NULL for kernel object
4393  *
4394  * This function can fail, if the memory region has memory windows bound to it.
4395  */
4396 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4397 
4398 /**
4399  * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4400  *   HCA translation table.
4401  * @mr: The memory region to deregister.
4402  *
4403  * This function can fail, if the memory region has memory windows bound to it.
4404  *
4405  * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4406  */
4407 static inline int ib_dereg_mr(struct ib_mr *mr)
4408 {
4409 	return ib_dereg_mr_user(mr, NULL);
4410 }
4411 
4412 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4413 			  u32 max_num_sg);
4414 
4415 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4416 				    u32 max_num_data_sg,
4417 				    u32 max_num_meta_sg);
4418 
4419 /**
4420  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4421  *   R_Key and L_Key.
4422  * @mr - struct ib_mr pointer to be updated.
4423  * @newkey - new key to be used.
4424  */
4425 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4426 {
4427 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4428 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4429 }
4430 
4431 /**
4432  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4433  * for calculating a new rkey for type 2 memory windows.
4434  * @rkey - the rkey to increment.
4435  */
4436 static inline u32 ib_inc_rkey(u32 rkey)
4437 {
4438 	const u32 mask = 0x000000ff;
4439 	return ((rkey + 1) & mask) | (rkey & ~mask);
4440 }
4441 
4442 /**
4443  * ib_attach_mcast - Attaches the specified QP to a multicast group.
4444  * @qp: QP to attach to the multicast group.  The QP must be type
4445  *   IB_QPT_UD.
4446  * @gid: Multicast group GID.
4447  * @lid: Multicast group LID in host byte order.
4448  *
4449  * In order to send and receive multicast packets, subnet
4450  * administration must have created the multicast group and configured
4451  * the fabric appropriately.  The port associated with the specified
4452  * QP must also be a member of the multicast group.
4453  */
4454 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4455 
4456 /**
4457  * ib_detach_mcast - Detaches the specified QP from a multicast group.
4458  * @qp: QP to detach from the multicast group.
4459  * @gid: Multicast group GID.
4460  * @lid: Multicast group LID in host byte order.
4461  */
4462 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4463 
4464 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4465 				   struct inode *inode, struct ib_udata *udata);
4466 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4467 
4468 static inline int ib_check_mr_access(struct ib_device *ib_dev,
4469 				     unsigned int flags)
4470 {
4471 	u64 device_cap = ib_dev->attrs.device_cap_flags;
4472 
4473 	/*
4474 	 * Local write permission is required if remote write or
4475 	 * remote atomic permission is also requested.
4476 	 */
4477 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4478 	    !(flags & IB_ACCESS_LOCAL_WRITE))
4479 		return -EINVAL;
4480 
4481 	if (flags & ~IB_ACCESS_SUPPORTED)
4482 		return -EINVAL;
4483 
4484 	if (flags & IB_ACCESS_ON_DEMAND &&
4485 	    !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
4486 		return -EOPNOTSUPP;
4487 
4488 	if ((flags & IB_ACCESS_FLUSH_GLOBAL &&
4489 	    !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) ||
4490 	    (flags & IB_ACCESS_FLUSH_PERSISTENT &&
4491 	    !(device_cap & IB_DEVICE_FLUSH_PERSISTENT)))
4492 		return -EOPNOTSUPP;
4493 
4494 	return 0;
4495 }
4496 
4497 static inline bool ib_access_writable(int access_flags)
4498 {
4499 	/*
4500 	 * We have writable memory backing the MR if any of the following
4501 	 * access flags are set.  "Local write" and "remote write" obviously
4502 	 * require write access.  "Remote atomic" can do things like fetch and
4503 	 * add, which will modify memory, and "MW bind" can change permissions
4504 	 * by binding a window.
4505 	 */
4506 	return access_flags &
4507 		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4508 		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4509 }
4510 
4511 /**
4512  * ib_check_mr_status: lightweight check of MR status.
4513  *     This routine may provide status checks on a selected
4514  *     ib_mr. first use is for signature status check.
4515  *
4516  * @mr: A memory region.
4517  * @check_mask: Bitmask of which checks to perform from
4518  *     ib_mr_status_check enumeration.
4519  * @mr_status: The container of relevant status checks.
4520  *     failed checks will be indicated in the status bitmask
4521  *     and the relevant info shall be in the error item.
4522  */
4523 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4524 		       struct ib_mr_status *mr_status);
4525 
4526 /**
4527  * ib_device_try_get: Hold a registration lock
4528  * device: The device to lock
4529  *
4530  * A device under an active registration lock cannot become unregistered. It
4531  * is only possible to obtain a registration lock on a device that is fully
4532  * registered, otherwise this function returns false.
4533  *
4534  * The registration lock is only necessary for actions which require the
4535  * device to still be registered. Uses that only require the device pointer to
4536  * be valid should use get_device(&ibdev->dev) to hold the memory.
4537  *
4538  */
4539 static inline bool ib_device_try_get(struct ib_device *dev)
4540 {
4541 	return refcount_inc_not_zero(&dev->refcount);
4542 }
4543 
4544 void ib_device_put(struct ib_device *device);
4545 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4546 					  enum rdma_driver_id driver_id);
4547 struct ib_device *ib_device_get_by_name(const char *name,
4548 					enum rdma_driver_id driver_id);
4549 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4550 					    u16 pkey, const union ib_gid *gid,
4551 					    const struct sockaddr *addr);
4552 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4553 			 unsigned int port);
4554 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
4555 					u32 port);
4556 int ib_query_netdev_port(struct ib_device *ibdev, struct net_device *ndev,
4557 			 u32 *port);
4558 
4559 static inline enum ib_port_state ib_get_curr_port_state(struct net_device *net_dev)
4560 {
4561 	return (netif_running(net_dev) && netif_carrier_ok(net_dev)) ?
4562 		IB_PORT_ACTIVE : IB_PORT_DOWN;
4563 }
4564 
4565 void ib_dispatch_port_state_event(struct ib_device *ibdev,
4566 				  struct net_device *ndev);
4567 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4568 			   struct ib_wq_init_attr *init_attr);
4569 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4570 
4571 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4572 		 unsigned int *sg_offset, unsigned int page_size);
4573 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4574 		    int data_sg_nents, unsigned int *data_sg_offset,
4575 		    struct scatterlist *meta_sg, int meta_sg_nents,
4576 		    unsigned int *meta_sg_offset, unsigned int page_size);
4577 
4578 static inline int
4579 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4580 		  unsigned int *sg_offset, unsigned int page_size)
4581 {
4582 	int n;
4583 
4584 	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4585 	mr->iova = 0;
4586 
4587 	return n;
4588 }
4589 
4590 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4591 		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4592 
4593 void ib_drain_rq(struct ib_qp *qp);
4594 void ib_drain_sq(struct ib_qp *qp);
4595 void ib_drain_qp(struct ib_qp *qp);
4596 
4597 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4598 		     u8 *width);
4599 
4600 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4601 {
4602 	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4603 		return attr->roce.dmac;
4604 	return NULL;
4605 }
4606 
4607 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4608 {
4609 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4610 		attr->ib.dlid = (u16)dlid;
4611 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4612 		attr->opa.dlid = dlid;
4613 }
4614 
4615 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4616 {
4617 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4618 		return attr->ib.dlid;
4619 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4620 		return attr->opa.dlid;
4621 	return 0;
4622 }
4623 
4624 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4625 {
4626 	attr->sl = sl;
4627 }
4628 
4629 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4630 {
4631 	return attr->sl;
4632 }
4633 
4634 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4635 					 u8 src_path_bits)
4636 {
4637 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4638 		attr->ib.src_path_bits = src_path_bits;
4639 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4640 		attr->opa.src_path_bits = src_path_bits;
4641 }
4642 
4643 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4644 {
4645 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4646 		return attr->ib.src_path_bits;
4647 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4648 		return attr->opa.src_path_bits;
4649 	return 0;
4650 }
4651 
4652 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4653 					bool make_grd)
4654 {
4655 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4656 		attr->opa.make_grd = make_grd;
4657 }
4658 
4659 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4660 {
4661 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4662 		return attr->opa.make_grd;
4663 	return false;
4664 }
4665 
4666 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4667 {
4668 	attr->port_num = port_num;
4669 }
4670 
4671 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4672 {
4673 	return attr->port_num;
4674 }
4675 
4676 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4677 					   u8 static_rate)
4678 {
4679 	attr->static_rate = static_rate;
4680 }
4681 
4682 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4683 {
4684 	return attr->static_rate;
4685 }
4686 
4687 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4688 					enum ib_ah_flags flag)
4689 {
4690 	attr->ah_flags = flag;
4691 }
4692 
4693 static inline enum ib_ah_flags
4694 		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4695 {
4696 	return attr->ah_flags;
4697 }
4698 
4699 static inline const struct ib_global_route
4700 		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4701 {
4702 	return &attr->grh;
4703 }
4704 
4705 /*To retrieve and modify the grh */
4706 static inline struct ib_global_route
4707 		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4708 {
4709 	return &attr->grh;
4710 }
4711 
4712 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4713 {
4714 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4715 
4716 	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4717 }
4718 
4719 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4720 					     __be64 prefix)
4721 {
4722 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4723 
4724 	grh->dgid.global.subnet_prefix = prefix;
4725 }
4726 
4727 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4728 					    __be64 if_id)
4729 {
4730 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4731 
4732 	grh->dgid.global.interface_id = if_id;
4733 }
4734 
4735 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4736 				   union ib_gid *dgid, u32 flow_label,
4737 				   u8 sgid_index, u8 hop_limit,
4738 				   u8 traffic_class)
4739 {
4740 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4741 
4742 	attr->ah_flags = IB_AH_GRH;
4743 	if (dgid)
4744 		grh->dgid = *dgid;
4745 	grh->flow_label = flow_label;
4746 	grh->sgid_index = sgid_index;
4747 	grh->hop_limit = hop_limit;
4748 	grh->traffic_class = traffic_class;
4749 	grh->sgid_attr = NULL;
4750 }
4751 
4752 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4753 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4754 			     u32 flow_label, u8 hop_limit, u8 traffic_class,
4755 			     const struct ib_gid_attr *sgid_attr);
4756 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4757 		       const struct rdma_ah_attr *src);
4758 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4759 			  const struct rdma_ah_attr *new);
4760 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4761 
4762 /**
4763  * rdma_ah_find_type - Return address handle type.
4764  *
4765  * @dev: Device to be checked
4766  * @port_num: Port number
4767  */
4768 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4769 						       u32 port_num)
4770 {
4771 	if (rdma_protocol_roce(dev, port_num))
4772 		return RDMA_AH_ATTR_TYPE_ROCE;
4773 	if (rdma_protocol_ib(dev, port_num)) {
4774 		if (rdma_cap_opa_ah(dev, port_num))
4775 			return RDMA_AH_ATTR_TYPE_OPA;
4776 		return RDMA_AH_ATTR_TYPE_IB;
4777 	}
4778 	if (dev->type == RDMA_DEVICE_TYPE_SMI)
4779 		return RDMA_AH_ATTR_TYPE_IB;
4780 
4781 	return RDMA_AH_ATTR_TYPE_UNDEFINED;
4782 }
4783 
4784 /**
4785  * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4786  *     In the current implementation the only way to
4787  *     get the 32bit lid is from other sources for OPA.
4788  *     For IB, lids will always be 16bits so cast the
4789  *     value accordingly.
4790  *
4791  * @lid: A 32bit LID
4792  */
4793 static inline u16 ib_lid_cpu16(u32 lid)
4794 {
4795 	WARN_ON_ONCE(lid & 0xFFFF0000);
4796 	return (u16)lid;
4797 }
4798 
4799 /**
4800  * ib_lid_be16 - Return lid in 16bit BE encoding.
4801  *
4802  * @lid: A 32bit LID
4803  */
4804 static inline __be16 ib_lid_be16(u32 lid)
4805 {
4806 	WARN_ON_ONCE(lid & 0xFFFF0000);
4807 	return cpu_to_be16((u16)lid);
4808 }
4809 
4810 /**
4811  * ib_get_vector_affinity - Get the affinity mappings of a given completion
4812  *   vector
4813  * @device:         the rdma device
4814  * @comp_vector:    index of completion vector
4815  *
4816  * Returns NULL on failure, otherwise a corresponding cpu map of the
4817  * completion vector (returns all-cpus map if the device driver doesn't
4818  * implement get_vector_affinity).
4819  */
4820 static inline const struct cpumask *
4821 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4822 {
4823 	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4824 	    !device->ops.get_vector_affinity)
4825 		return NULL;
4826 
4827 	return device->ops.get_vector_affinity(device, comp_vector);
4828 
4829 }
4830 
4831 /**
4832  * rdma_roce_rescan_device - Rescan all of the network devices in the system
4833  * and add their gids, as needed, to the relevant RoCE devices.
4834  *
4835  * @device:         the rdma device
4836  */
4837 void rdma_roce_rescan_device(struct ib_device *ibdev);
4838 void rdma_roce_rescan_port(struct ib_device *ib_dev, u32 port);
4839 void roce_del_all_netdev_gids(struct ib_device *ib_dev,
4840 			      u32 port, struct net_device *ndev);
4841 
4842 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4843 
4844 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
4845 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4846 bool rdma_uattrs_has_raw_cap(const struct uverbs_attr_bundle *attrs);
4847 #else
4848 static inline int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs)
4849 {
4850 	return 0;
4851 }
4852 static inline bool
4853 rdma_uattrs_has_raw_cap(const struct uverbs_attr_bundle *attrs)
4854 {
4855 	return false;
4856 }
4857 #endif
4858 
4859 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4860 				     enum rdma_netdev_t type, const char *name,
4861 				     unsigned char name_assign_type,
4862 				     void (*setup)(struct net_device *));
4863 
4864 int rdma_init_netdev(struct ib_device *device, u32 port_num,
4865 		     enum rdma_netdev_t type, const char *name,
4866 		     unsigned char name_assign_type,
4867 		     void (*setup)(struct net_device *),
4868 		     struct net_device *netdev);
4869 
4870 /**
4871  * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4872  *
4873  * @device:	device pointer for which ib_device pointer to retrieve
4874  *
4875  * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4876  *
4877  */
4878 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4879 {
4880 	struct ib_core_device *coredev =
4881 		container_of(device, struct ib_core_device, dev);
4882 
4883 	return coredev->owner;
4884 }
4885 
4886 /**
4887  * ibdev_to_node - return the NUMA node for a given ib_device
4888  * @dev:	device to get the NUMA node for.
4889  */
4890 static inline int ibdev_to_node(struct ib_device *ibdev)
4891 {
4892 	struct device *parent = ibdev->dev.parent;
4893 
4894 	if (!parent)
4895 		return NUMA_NO_NODE;
4896 	return dev_to_node(parent);
4897 }
4898 
4899 /**
4900  * rdma_device_to_drv_device - Helper macro to reach back to driver's
4901  *			       ib_device holder structure from device pointer.
4902  *
4903  * NOTE: New drivers should not make use of this API; This API is only for
4904  * existing drivers who have exposed sysfs entries using
4905  * ops->device_group.
4906  */
4907 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4908 	container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4909 
4910 bool rdma_dev_access_netns(const struct ib_device *device,
4911 			   const struct net *net);
4912 
4913 bool rdma_dev_has_raw_cap(const struct ib_device *dev);
4914 static inline struct net *rdma_dev_net(struct ib_device *device)
4915 {
4916 	return read_pnet(&device->coredev.rdma_net);
4917 }
4918 
4919 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4920 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4921 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4922 
4923 /**
4924  * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4925  *                               on the flow_label
4926  *
4927  * This function will convert the 20 bit flow_label input to a valid RoCE v2
4928  * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4929  * convention.
4930  */
4931 static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4932 {
4933 	u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4934 
4935 	fl_low ^= fl_high >> 14;
4936 	return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4937 }
4938 
4939 /**
4940  * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4941  *                        local and remote qpn values
4942  *
4943  * This function folded the multiplication results of two qpns, 24 bit each,
4944  * fields, and converts it to a 20 bit results.
4945  *
4946  * This function will create symmetric flow_label value based on the local
4947  * and remote qpn values. this will allow both the requester and responder
4948  * to calculate the same flow_label for a given connection.
4949  *
4950  * This helper function should be used by driver in case the upper layer
4951  * provide a zero flow_label value. This is to improve entropy of RDMA
4952  * traffic in the network.
4953  */
4954 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4955 {
4956 	u64 v = (u64)lqpn * rqpn;
4957 
4958 	v ^= v >> 20;
4959 	v ^= v >> 40;
4960 
4961 	return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4962 }
4963 
4964 /**
4965  * rdma_get_udp_sport - Calculate and set UDP source port based on the flow
4966  *                      label. If flow label is not defined in GRH then
4967  *                      calculate it based on lqpn/rqpn.
4968  *
4969  * @fl:                 flow label from GRH
4970  * @lqpn:               local qp number
4971  * @rqpn:               remote qp number
4972  */
4973 static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
4974 {
4975 	if (!fl)
4976 		fl = rdma_calc_flow_label(lqpn, rqpn);
4977 
4978 	return rdma_flow_label_to_udp_sport(fl);
4979 }
4980 
4981 const struct ib_port_immutable*
4982 ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4983 
4984 /** ib_add_sub_device - Add a sub IB device on an existing one
4985  *
4986  * @parent: The IB device that needs to add a sub device
4987  * @type: The type of the new sub device
4988  * @name: The name of the new sub device
4989  *
4990  *
4991  * Return 0 on success, an error code otherwise
4992  */
4993 int ib_add_sub_device(struct ib_device *parent,
4994 		      enum rdma_nl_dev_type type,
4995 		      const char *name);
4996 
4997 
4998 /** ib_del_sub_device_and_put - Delect an IB sub device while holding a 'get'
4999  *
5000  * @sub: The sub device that is going to be deleted
5001  *
5002  * Return 0 on success, an error code otherwise
5003  */
5004 int ib_del_sub_device_and_put(struct ib_device *sub);
5005 
5006 static inline void ib_mark_name_assigned_by_user(struct ib_device *ibdev)
5007 {
5008 	ibdev->name_assign_type = RDMA_NAME_ASSIGN_TYPE_USER;
5009 }
5010 
5011 #endif /* IB_VERBS_H */
5012