1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */ 2 /* 3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved. 6 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 10 */ 11 12 #ifndef IB_VERBS_H 13 #define IB_VERBS_H 14 15 #include <linux/ethtool.h> 16 #include <linux/types.h> 17 #include <linux/device.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/kref.h> 20 #include <linux/list.h> 21 #include <linux/rwsem.h> 22 #include <linux/workqueue.h> 23 #include <linux/irq_poll.h> 24 #include <uapi/linux/if_ether.h> 25 #include <net/ipv6.h> 26 #include <net/ip.h> 27 #include <linux/string.h> 28 #include <linux/slab.h> 29 #include <linux/netdevice.h> 30 #include <linux/refcount.h> 31 #include <linux/if_link.h> 32 #include <linux/atomic.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/uaccess.h> 35 #include <linux/cgroup_rdma.h> 36 #include <linux/irqflags.h> 37 #include <linux/preempt.h> 38 #include <linux/dim.h> 39 #include <uapi/rdma/ib_user_verbs.h> 40 #include <rdma/rdma_counter.h> 41 #include <rdma/restrack.h> 42 #include <rdma/signature.h> 43 #include <uapi/rdma/rdma_user_ioctl.h> 44 #include <uapi/rdma/ib_user_ioctl_verbs.h> 45 #include <linux/pci-tph.h> 46 47 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 48 49 struct ib_umem_odp; 50 struct ib_uqp_object; 51 struct ib_usrq_object; 52 struct ib_uwq_object; 53 struct rdma_cm_id; 54 struct ib_port; 55 struct hw_stats_device_data; 56 57 extern struct workqueue_struct *ib_wq; 58 extern struct workqueue_struct *ib_comp_wq; 59 extern struct workqueue_struct *ib_comp_unbound_wq; 60 61 struct ib_ucq_object; 62 63 __printf(2, 3) __cold 64 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...); 65 __printf(2, 3) __cold 66 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...); 67 __printf(2, 3) __cold 68 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...); 69 __printf(2, 3) __cold 70 void ibdev_err(const struct ib_device *ibdev, const char *format, ...); 71 __printf(2, 3) __cold 72 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...); 73 __printf(2, 3) __cold 74 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...); 75 __printf(2, 3) __cold 76 void ibdev_info(const struct ib_device *ibdev, const char *format, ...); 77 78 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 79 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 80 #define ibdev_dbg(__dev, format, args...) \ 81 dynamic_ibdev_dbg(__dev, format, ##args) 82 #else 83 __printf(2, 3) __cold 84 static inline 85 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {} 86 #endif 87 88 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \ 89 do { \ 90 static DEFINE_RATELIMIT_STATE(_rs, \ 91 DEFAULT_RATELIMIT_INTERVAL, \ 92 DEFAULT_RATELIMIT_BURST); \ 93 if (__ratelimit(&_rs)) \ 94 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \ 95 } while (0) 96 97 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \ 98 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__) 99 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \ 100 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__) 101 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \ 102 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__) 103 #define ibdev_err_ratelimited(ibdev, fmt, ...) \ 104 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__) 105 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \ 106 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__) 107 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \ 108 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__) 109 #define ibdev_info_ratelimited(ibdev, fmt, ...) \ 110 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__) 111 112 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 113 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 114 /* descriptor check is first to prevent flooding with "callbacks suppressed" */ 115 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \ 116 do { \ 117 static DEFINE_RATELIMIT_STATE(_rs, \ 118 DEFAULT_RATELIMIT_INTERVAL, \ 119 DEFAULT_RATELIMIT_BURST); \ 120 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \ 121 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \ 122 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \ 123 ##__VA_ARGS__); \ 124 } while (0) 125 #else 126 __printf(2, 3) __cold 127 static inline 128 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {} 129 #endif 130 131 union ib_gid { 132 u8 raw[16]; 133 struct { 134 __be64 subnet_prefix; 135 __be64 interface_id; 136 } global; 137 }; 138 139 extern union ib_gid zgid; 140 141 enum ib_gid_type { 142 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB, 143 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1, 144 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2, 145 IB_GID_TYPE_SIZE 146 }; 147 148 #define ROCE_V2_UDP_DPORT 4791 149 struct ib_gid_attr { 150 struct net_device __rcu *ndev; 151 struct ib_device *device; 152 union ib_gid gid; 153 enum ib_gid_type gid_type; 154 u16 index; 155 u32 port_num; 156 }; 157 158 enum { 159 /* set the local administered indication */ 160 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 161 }; 162 163 enum rdma_transport_type { 164 RDMA_TRANSPORT_IB, 165 RDMA_TRANSPORT_IWARP, 166 RDMA_TRANSPORT_USNIC, 167 RDMA_TRANSPORT_USNIC_UDP, 168 RDMA_TRANSPORT_UNSPECIFIED, 169 }; 170 171 enum rdma_protocol_type { 172 RDMA_PROTOCOL_IB, 173 RDMA_PROTOCOL_IBOE, 174 RDMA_PROTOCOL_IWARP, 175 RDMA_PROTOCOL_USNIC_UDP 176 }; 177 178 __attribute_const__ enum rdma_transport_type 179 rdma_node_get_transport(unsigned int node_type); 180 181 enum rdma_network_type { 182 RDMA_NETWORK_IB, 183 RDMA_NETWORK_ROCE_V1, 184 RDMA_NETWORK_IPV4, 185 RDMA_NETWORK_IPV6 186 }; 187 188 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 189 { 190 if (network_type == RDMA_NETWORK_IPV4 || 191 network_type == RDMA_NETWORK_IPV6) 192 return IB_GID_TYPE_ROCE_UDP_ENCAP; 193 else if (network_type == RDMA_NETWORK_ROCE_V1) 194 return IB_GID_TYPE_ROCE; 195 else 196 return IB_GID_TYPE_IB; 197 } 198 199 static inline enum rdma_network_type 200 rdma_gid_attr_network_type(const struct ib_gid_attr *attr) 201 { 202 if (attr->gid_type == IB_GID_TYPE_IB) 203 return RDMA_NETWORK_IB; 204 205 if (attr->gid_type == IB_GID_TYPE_ROCE) 206 return RDMA_NETWORK_ROCE_V1; 207 208 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) 209 return RDMA_NETWORK_IPV4; 210 else 211 return RDMA_NETWORK_IPV6; 212 } 213 214 enum rdma_link_layer { 215 IB_LINK_LAYER_UNSPECIFIED, 216 IB_LINK_LAYER_INFINIBAND, 217 IB_LINK_LAYER_ETHERNET, 218 }; 219 220 enum ib_device_cap_flags { 221 IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR, 222 IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR, 223 IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR, 224 IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI, 225 IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG, 226 IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT, 227 IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE, 228 IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD, 229 IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT, 230 /* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */ 231 IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT, 232 IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID, 233 IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN, 234 IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE, 235 IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ, 236 237 /* Reserved, old SEND_W_INV = 1 << 16,*/ 238 IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW, 239 /* 240 * Devices should set IB_DEVICE_UD_IP_SUM if they support 241 * insertion of UDP and TCP checksum on outgoing UD IPoIB 242 * messages and can verify the validity of checksum for 243 * incoming messages. Setting this flag implies that the 244 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 245 */ 246 IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM, 247 IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC, 248 249 /* 250 * This device supports the IB "base memory management extension", 251 * which includes support for fast registrations (IB_WR_REG_MR, 252 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 253 * also be set by any iWarp device which must support FRs to comply 254 * to the iWarp verbs spec. iWarp devices also support the 255 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 256 * stag. 257 */ 258 IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS, 259 IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A, 260 IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B, 261 IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM, 262 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 263 IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM, 264 IB_DEVICE_MANAGED_FLOW_STEERING = 265 IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING, 266 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 267 IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS, 268 /* The device supports padding incoming writes to cacheline. */ 269 IB_DEVICE_PCI_WRITE_END_PADDING = 270 IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING, 271 /* Placement type attributes */ 272 IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL, 273 IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT, 274 IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE, 275 }; 276 277 enum ib_kernel_cap_flags { 278 /* 279 * This device supports a per-device lkey or stag that can be 280 * used without performing a memory registration for the local 281 * memory. Note that ULPs should never check this flag, but 282 * instead of use the local_dma_lkey flag in the ib_pd structure, 283 * which will always contain a usable lkey. 284 */ 285 IBK_LOCAL_DMA_LKEY = 1 << 0, 286 /* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */ 287 IBK_INTEGRITY_HANDOVER = 1 << 1, 288 /* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */ 289 IBK_ON_DEMAND_PAGING = 1 << 2, 290 /* IB_MR_TYPE_SG_GAPS is supported */ 291 IBK_SG_GAPS_REG = 1 << 3, 292 /* Driver supports RDMA_NLDEV_CMD_DELLINK */ 293 IBK_ALLOW_USER_UNREG = 1 << 4, 294 295 /* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */ 296 IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5, 297 /* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */ 298 IBK_UD_TSO = 1 << 6, 299 /* iopib will use the device ops: 300 * get_vf_config 301 * get_vf_guid 302 * get_vf_stats 303 * set_vf_guid 304 * set_vf_link_state 305 */ 306 IBK_VIRTUAL_FUNCTION = 1 << 7, 307 /* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */ 308 IBK_RDMA_NETDEV_OPA = 1 << 8, 309 }; 310 311 enum ib_atomic_cap { 312 IB_ATOMIC_NONE, 313 IB_ATOMIC_HCA, 314 IB_ATOMIC_GLOB 315 }; 316 317 enum ib_odp_general_cap_bits { 318 IB_ODP_SUPPORT = IB_UVERBS_ODP_SUPPORT, 319 IB_ODP_SUPPORT_IMPLICIT = IB_UVERBS_ODP_SUPPORT_IMPLICIT, 320 }; 321 322 enum ib_odp_transport_cap_bits { 323 IB_ODP_SUPPORT_SEND = IB_UVERBS_ODP_SUPPORT_SEND, 324 IB_ODP_SUPPORT_RECV = IB_UVERBS_ODP_SUPPORT_RECV, 325 IB_ODP_SUPPORT_WRITE = IB_UVERBS_ODP_SUPPORT_WRITE, 326 IB_ODP_SUPPORT_READ = IB_UVERBS_ODP_SUPPORT_READ, 327 IB_ODP_SUPPORT_ATOMIC = IB_UVERBS_ODP_SUPPORT_ATOMIC, 328 IB_ODP_SUPPORT_SRQ_RECV = IB_UVERBS_ODP_SUPPORT_SRQ_RECV, 329 IB_ODP_SUPPORT_FLUSH = IB_UVERBS_ODP_SUPPORT_FLUSH, 330 IB_ODP_SUPPORT_ATOMIC_WRITE = IB_UVERBS_ODP_SUPPORT_ATOMIC_WRITE, 331 }; 332 333 struct ib_odp_caps { 334 uint64_t general_caps; 335 struct { 336 uint32_t rc_odp_caps; 337 uint32_t uc_odp_caps; 338 uint32_t ud_odp_caps; 339 uint32_t xrc_odp_caps; 340 } per_transport_caps; 341 }; 342 343 struct ib_rss_caps { 344 /* Corresponding bit will be set if qp type from 345 * 'enum ib_qp_type' is supported, e.g. 346 * supported_qpts |= 1 << IB_QPT_UD 347 */ 348 u32 supported_qpts; 349 u32 max_rwq_indirection_tables; 350 u32 max_rwq_indirection_table_size; 351 }; 352 353 enum ib_tm_cap_flags { 354 /* Support tag matching with rendezvous offload for RC transport */ 355 IB_TM_CAP_RNDV_RC = 1 << 0, 356 }; 357 358 struct ib_tm_caps { 359 /* Max size of RNDV header */ 360 u32 max_rndv_hdr_size; 361 /* Max number of entries in tag matching list */ 362 u32 max_num_tags; 363 /* From enum ib_tm_cap_flags */ 364 u32 flags; 365 /* Max number of outstanding list operations */ 366 u32 max_ops; 367 /* Max number of SGE in tag matching entry */ 368 u32 max_sge; 369 }; 370 371 struct ib_cq_init_attr { 372 unsigned int cqe; 373 u32 comp_vector; 374 u32 flags; 375 }; 376 377 enum ib_cq_attr_mask { 378 IB_CQ_MODERATE = 1 << 0, 379 }; 380 381 struct ib_cq_caps { 382 u16 max_cq_moderation_count; 383 u16 max_cq_moderation_period; 384 }; 385 386 struct ib_dm_mr_attr { 387 u64 length; 388 u64 offset; 389 u32 access_flags; 390 }; 391 392 struct ib_dm_alloc_attr { 393 u64 length; 394 u32 alignment; 395 u32 flags; 396 }; 397 398 struct ib_device_attr { 399 u64 fw_ver; 400 __be64 sys_image_guid; 401 u64 max_mr_size; 402 u64 page_size_cap; 403 u32 vendor_id; 404 u32 vendor_part_id; 405 u32 hw_ver; 406 int max_qp; 407 int max_qp_wr; 408 u64 device_cap_flags; 409 u64 kernel_cap_flags; 410 int max_send_sge; 411 int max_recv_sge; 412 int max_sge_rd; 413 int max_cq; 414 int max_cqe; 415 int max_mr; 416 int max_pd; 417 int max_qp_rd_atom; 418 int max_ee_rd_atom; 419 int max_res_rd_atom; 420 int max_qp_init_rd_atom; 421 int max_ee_init_rd_atom; 422 enum ib_atomic_cap atomic_cap; 423 enum ib_atomic_cap masked_atomic_cap; 424 int max_ee; 425 int max_rdd; 426 int max_mw; 427 int max_raw_ipv6_qp; 428 int max_raw_ethy_qp; 429 int max_mcast_grp; 430 int max_mcast_qp_attach; 431 int max_total_mcast_qp_attach; 432 int max_ah; 433 int max_srq; 434 int max_srq_wr; 435 int max_srq_sge; 436 unsigned int max_fast_reg_page_list_len; 437 unsigned int max_pi_fast_reg_page_list_len; 438 u16 max_pkeys; 439 u8 local_ca_ack_delay; 440 int sig_prot_cap; 441 int sig_guard_cap; 442 struct ib_odp_caps odp_caps; 443 uint64_t timestamp_mask; 444 uint64_t hca_core_clock; /* in KHZ */ 445 struct ib_rss_caps rss_caps; 446 u32 max_wq_type_rq; 447 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 448 struct ib_tm_caps tm_caps; 449 struct ib_cq_caps cq_caps; 450 u64 max_dm_size; 451 /* Max entries for sgl for optimized performance per READ */ 452 u32 max_sgl_rd; 453 }; 454 455 enum ib_mtu { 456 IB_MTU_256 = 1, 457 IB_MTU_512 = 2, 458 IB_MTU_1024 = 3, 459 IB_MTU_2048 = 4, 460 IB_MTU_4096 = 5 461 }; 462 463 enum opa_mtu { 464 OPA_MTU_8192 = 6, 465 OPA_MTU_10240 = 7 466 }; 467 468 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 469 { 470 switch (mtu) { 471 case IB_MTU_256: return 256; 472 case IB_MTU_512: return 512; 473 case IB_MTU_1024: return 1024; 474 case IB_MTU_2048: return 2048; 475 case IB_MTU_4096: return 4096; 476 default: return -1; 477 } 478 } 479 480 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 481 { 482 if (mtu >= 4096) 483 return IB_MTU_4096; 484 else if (mtu >= 2048) 485 return IB_MTU_2048; 486 else if (mtu >= 1024) 487 return IB_MTU_1024; 488 else if (mtu >= 512) 489 return IB_MTU_512; 490 else 491 return IB_MTU_256; 492 } 493 494 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu) 495 { 496 switch (mtu) { 497 case OPA_MTU_8192: 498 return 8192; 499 case OPA_MTU_10240: 500 return 10240; 501 default: 502 return(ib_mtu_enum_to_int((enum ib_mtu)mtu)); 503 } 504 } 505 506 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu) 507 { 508 if (mtu >= 10240) 509 return OPA_MTU_10240; 510 else if (mtu >= 8192) 511 return OPA_MTU_8192; 512 else 513 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu)); 514 } 515 516 enum ib_port_state { 517 IB_PORT_NOP = 0, 518 IB_PORT_DOWN = 1, 519 IB_PORT_INIT = 2, 520 IB_PORT_ARMED = 3, 521 IB_PORT_ACTIVE = 4, 522 IB_PORT_ACTIVE_DEFER = 5 523 }; 524 525 static inline const char *__attribute_const__ 526 ib_port_state_to_str(enum ib_port_state state) 527 { 528 const char * const states[] = { 529 [IB_PORT_NOP] = "NOP", 530 [IB_PORT_DOWN] = "DOWN", 531 [IB_PORT_INIT] = "INIT", 532 [IB_PORT_ARMED] = "ARMED", 533 [IB_PORT_ACTIVE] = "ACTIVE", 534 [IB_PORT_ACTIVE_DEFER] = "ACTIVE_DEFER", 535 }; 536 537 if (state < ARRAY_SIZE(states)) 538 return states[state]; 539 return "UNKNOWN"; 540 } 541 542 enum ib_port_phys_state { 543 IB_PORT_PHYS_STATE_SLEEP = 1, 544 IB_PORT_PHYS_STATE_POLLING = 2, 545 IB_PORT_PHYS_STATE_DISABLED = 3, 546 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4, 547 IB_PORT_PHYS_STATE_LINK_UP = 5, 548 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6, 549 IB_PORT_PHYS_STATE_PHY_TEST = 7, 550 }; 551 552 enum ib_port_width { 553 IB_WIDTH_1X = 1, 554 IB_WIDTH_2X = 16, 555 IB_WIDTH_4X = 2, 556 IB_WIDTH_8X = 4, 557 IB_WIDTH_12X = 8 558 }; 559 560 static inline int ib_width_enum_to_int(enum ib_port_width width) 561 { 562 switch (width) { 563 case IB_WIDTH_1X: return 1; 564 case IB_WIDTH_2X: return 2; 565 case IB_WIDTH_4X: return 4; 566 case IB_WIDTH_8X: return 8; 567 case IB_WIDTH_12X: return 12; 568 default: return -1; 569 } 570 } 571 572 enum ib_port_speed { 573 IB_SPEED_SDR = 1, 574 IB_SPEED_DDR = 2, 575 IB_SPEED_QDR = 4, 576 IB_SPEED_FDR10 = 8, 577 IB_SPEED_FDR = 16, 578 IB_SPEED_EDR = 32, 579 IB_SPEED_HDR = 64, 580 IB_SPEED_NDR = 128, 581 IB_SPEED_XDR = 256, 582 }; 583 584 enum ib_stat_flag { 585 IB_STAT_FLAG_OPTIONAL = 1 << 0, 586 }; 587 588 /** 589 * struct rdma_stat_desc 590 * @name - The name of the counter 591 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL 592 * @priv - Driver private information; Core code should not use 593 */ 594 struct rdma_stat_desc { 595 const char *name; 596 unsigned int flags; 597 const void *priv; 598 }; 599 600 /** 601 * struct rdma_hw_stats 602 * @lock - Mutex to protect parallel write access to lifespan and values 603 * of counters, which are 64bits and not guaranteed to be written 604 * atomicaly on 32bits systems. 605 * @timestamp - Used by the core code to track when the last update was 606 * @lifespan - Used by the core code to determine how old the counters 607 * should be before being updated again. Stored in jiffies, defaults 608 * to 10 milliseconds, drivers can override the default be specifying 609 * their own value during their allocation routine. 610 * @descs - Array of pointers to static descriptors used for the counters 611 * in directory. 612 * @is_disabled - A bitmap to indicate each counter is currently disabled 613 * or not. 614 * @num_counters - How many hardware counters there are. If name is 615 * shorter than this number, a kernel oops will result. Driver authors 616 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 617 * in their code to prevent this. 618 * @value - Array of u64 counters that are accessed by the sysfs code and 619 * filled in by the drivers get_stats routine 620 */ 621 struct rdma_hw_stats { 622 struct mutex lock; /* Protect lifespan and values[] */ 623 unsigned long timestamp; 624 unsigned long lifespan; 625 const struct rdma_stat_desc *descs; 626 unsigned long *is_disabled; 627 int num_counters; 628 u64 value[] __counted_by(num_counters); 629 }; 630 631 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 632 633 struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 634 const struct rdma_stat_desc *descs, int num_counters, 635 unsigned long lifespan); 636 637 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats); 638 639 /* Define bits for the various functionality this port needs to be supported by 640 * the core. 641 */ 642 /* Management 0x00000FFF */ 643 #define RDMA_CORE_CAP_IB_MAD 0x00000001 644 #define RDMA_CORE_CAP_IB_SMI 0x00000002 645 #define RDMA_CORE_CAP_IB_CM 0x00000004 646 #define RDMA_CORE_CAP_IW_CM 0x00000008 647 #define RDMA_CORE_CAP_IB_SA 0x00000010 648 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 649 650 /* Address format 0x000FF000 */ 651 #define RDMA_CORE_CAP_AF_IB 0x00001000 652 #define RDMA_CORE_CAP_ETH_AH 0x00002000 653 #define RDMA_CORE_CAP_OPA_AH 0x00004000 654 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 655 656 /* Protocol 0xFFF00000 */ 657 #define RDMA_CORE_CAP_PROT_IB 0x00100000 658 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 659 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 660 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 661 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 662 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 663 664 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ 665 | RDMA_CORE_CAP_PROT_ROCE \ 666 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) 667 668 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 669 | RDMA_CORE_CAP_IB_MAD \ 670 | RDMA_CORE_CAP_IB_SMI \ 671 | RDMA_CORE_CAP_IB_CM \ 672 | RDMA_CORE_CAP_IB_SA \ 673 | RDMA_CORE_CAP_AF_IB) 674 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 675 | RDMA_CORE_CAP_IB_MAD \ 676 | RDMA_CORE_CAP_IB_CM \ 677 | RDMA_CORE_CAP_AF_IB \ 678 | RDMA_CORE_CAP_ETH_AH) 679 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 680 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 681 | RDMA_CORE_CAP_IB_MAD \ 682 | RDMA_CORE_CAP_IB_CM \ 683 | RDMA_CORE_CAP_AF_IB \ 684 | RDMA_CORE_CAP_ETH_AH) 685 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 686 | RDMA_CORE_CAP_IW_CM) 687 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 688 | RDMA_CORE_CAP_OPA_MAD) 689 690 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 691 692 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 693 694 struct ib_port_attr { 695 u64 subnet_prefix; 696 enum ib_port_state state; 697 enum ib_mtu max_mtu; 698 enum ib_mtu active_mtu; 699 u32 phys_mtu; 700 int gid_tbl_len; 701 unsigned int ip_gids:1; 702 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 703 u32 port_cap_flags; 704 u32 max_msg_sz; 705 u32 bad_pkey_cntr; 706 u32 qkey_viol_cntr; 707 u16 pkey_tbl_len; 708 u32 sm_lid; 709 u32 lid; 710 u8 lmc; 711 u8 max_vl_num; 712 u8 sm_sl; 713 u8 subnet_timeout; 714 u8 init_type_reply; 715 u8 active_width; 716 u16 active_speed; 717 u8 phys_state; 718 u16 port_cap_flags2; 719 }; 720 721 enum ib_device_modify_flags { 722 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 723 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 724 }; 725 726 #define IB_DEVICE_NODE_DESC_MAX 64 727 728 struct ib_device_modify { 729 u64 sys_image_guid; 730 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 731 }; 732 733 enum ib_port_modify_flags { 734 IB_PORT_SHUTDOWN = 1, 735 IB_PORT_INIT_TYPE = (1<<2), 736 IB_PORT_RESET_QKEY_CNTR = (1<<3), 737 IB_PORT_OPA_MASK_CHG = (1<<4) 738 }; 739 740 struct ib_port_modify { 741 u32 set_port_cap_mask; 742 u32 clr_port_cap_mask; 743 u8 init_type; 744 }; 745 746 enum ib_event_type { 747 IB_EVENT_CQ_ERR, 748 IB_EVENT_QP_FATAL, 749 IB_EVENT_QP_REQ_ERR, 750 IB_EVENT_QP_ACCESS_ERR, 751 IB_EVENT_COMM_EST, 752 IB_EVENT_SQ_DRAINED, 753 IB_EVENT_PATH_MIG, 754 IB_EVENT_PATH_MIG_ERR, 755 IB_EVENT_DEVICE_FATAL, 756 IB_EVENT_PORT_ACTIVE, 757 IB_EVENT_PORT_ERR, 758 IB_EVENT_LID_CHANGE, 759 IB_EVENT_PKEY_CHANGE, 760 IB_EVENT_SM_CHANGE, 761 IB_EVENT_SRQ_ERR, 762 IB_EVENT_SRQ_LIMIT_REACHED, 763 IB_EVENT_QP_LAST_WQE_REACHED, 764 IB_EVENT_CLIENT_REREGISTER, 765 IB_EVENT_GID_CHANGE, 766 IB_EVENT_WQ_FATAL, 767 }; 768 769 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 770 771 struct ib_event { 772 struct ib_device *device; 773 union { 774 struct ib_cq *cq; 775 struct ib_qp *qp; 776 struct ib_srq *srq; 777 struct ib_wq *wq; 778 u32 port_num; 779 } element; 780 enum ib_event_type event; 781 }; 782 783 struct ib_event_handler { 784 struct ib_device *device; 785 void (*handler)(struct ib_event_handler *, struct ib_event *); 786 struct list_head list; 787 }; 788 789 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 790 do { \ 791 (_ptr)->device = _device; \ 792 (_ptr)->handler = _handler; \ 793 INIT_LIST_HEAD(&(_ptr)->list); \ 794 } while (0) 795 796 struct ib_global_route { 797 const struct ib_gid_attr *sgid_attr; 798 union ib_gid dgid; 799 u32 flow_label; 800 u8 sgid_index; 801 u8 hop_limit; 802 u8 traffic_class; 803 }; 804 805 struct ib_grh { 806 __be32 version_tclass_flow; 807 __be16 paylen; 808 u8 next_hdr; 809 u8 hop_limit; 810 union ib_gid sgid; 811 union ib_gid dgid; 812 }; 813 814 union rdma_network_hdr { 815 struct ib_grh ibgrh; 816 struct { 817 /* The IB spec states that if it's IPv4, the header 818 * is located in the last 20 bytes of the header. 819 */ 820 u8 reserved[20]; 821 struct iphdr roce4grh; 822 }; 823 }; 824 825 #define IB_QPN_MASK 0xFFFFFF 826 827 enum { 828 IB_MULTICAST_QPN = 0xffffff 829 }; 830 831 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 832 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 833 834 enum ib_ah_flags { 835 IB_AH_GRH = 1 836 }; 837 838 enum ib_rate { 839 IB_RATE_PORT_CURRENT = 0, 840 IB_RATE_2_5_GBPS = 2, 841 IB_RATE_5_GBPS = 5, 842 IB_RATE_10_GBPS = 3, 843 IB_RATE_20_GBPS = 6, 844 IB_RATE_30_GBPS = 4, 845 IB_RATE_40_GBPS = 7, 846 IB_RATE_60_GBPS = 8, 847 IB_RATE_80_GBPS = 9, 848 IB_RATE_120_GBPS = 10, 849 IB_RATE_14_GBPS = 11, 850 IB_RATE_56_GBPS = 12, 851 IB_RATE_112_GBPS = 13, 852 IB_RATE_168_GBPS = 14, 853 IB_RATE_25_GBPS = 15, 854 IB_RATE_100_GBPS = 16, 855 IB_RATE_200_GBPS = 17, 856 IB_RATE_300_GBPS = 18, 857 IB_RATE_28_GBPS = 19, 858 IB_RATE_50_GBPS = 20, 859 IB_RATE_400_GBPS = 21, 860 IB_RATE_600_GBPS = 22, 861 IB_RATE_800_GBPS = 23, 862 }; 863 864 /** 865 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 866 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 867 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 868 * @rate: rate to convert. 869 */ 870 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 871 872 /** 873 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 874 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 875 * @rate: rate to convert. 876 */ 877 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 878 879 880 /** 881 * enum ib_mr_type - memory region type 882 * @IB_MR_TYPE_MEM_REG: memory region that is used for 883 * normal registration 884 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 885 * register any arbitrary sg lists (without 886 * the normal mr constraints - see 887 * ib_map_mr_sg) 888 * @IB_MR_TYPE_DM: memory region that is used for device 889 * memory registration 890 * @IB_MR_TYPE_USER: memory region that is used for the user-space 891 * application 892 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations 893 * without address translations (VA=PA) 894 * @IB_MR_TYPE_INTEGRITY: memory region that is used for 895 * data integrity operations 896 */ 897 enum ib_mr_type { 898 IB_MR_TYPE_MEM_REG, 899 IB_MR_TYPE_SG_GAPS, 900 IB_MR_TYPE_DM, 901 IB_MR_TYPE_USER, 902 IB_MR_TYPE_DMA, 903 IB_MR_TYPE_INTEGRITY, 904 }; 905 906 enum ib_mr_status_check { 907 IB_MR_CHECK_SIG_STATUS = 1, 908 }; 909 910 /** 911 * struct ib_mr_status - Memory region status container 912 * 913 * @fail_status: Bitmask of MR checks status. For each 914 * failed check a corresponding status bit is set. 915 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 916 * failure. 917 */ 918 struct ib_mr_status { 919 u32 fail_status; 920 struct ib_sig_err sig_err; 921 }; 922 923 /** 924 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 925 * enum. 926 * @mult: multiple to convert. 927 */ 928 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 929 930 struct rdma_ah_init_attr { 931 struct rdma_ah_attr *ah_attr; 932 u32 flags; 933 struct net_device *xmit_slave; 934 }; 935 936 enum rdma_ah_attr_type { 937 RDMA_AH_ATTR_TYPE_UNDEFINED, 938 RDMA_AH_ATTR_TYPE_IB, 939 RDMA_AH_ATTR_TYPE_ROCE, 940 RDMA_AH_ATTR_TYPE_OPA, 941 }; 942 943 struct ib_ah_attr { 944 u16 dlid; 945 u8 src_path_bits; 946 }; 947 948 struct roce_ah_attr { 949 u8 dmac[ETH_ALEN]; 950 }; 951 952 struct opa_ah_attr { 953 u32 dlid; 954 u8 src_path_bits; 955 bool make_grd; 956 }; 957 958 struct rdma_ah_attr { 959 struct ib_global_route grh; 960 u8 sl; 961 u8 static_rate; 962 u32 port_num; 963 u8 ah_flags; 964 enum rdma_ah_attr_type type; 965 union { 966 struct ib_ah_attr ib; 967 struct roce_ah_attr roce; 968 struct opa_ah_attr opa; 969 }; 970 }; 971 972 enum ib_wc_status { 973 IB_WC_SUCCESS, 974 IB_WC_LOC_LEN_ERR, 975 IB_WC_LOC_QP_OP_ERR, 976 IB_WC_LOC_EEC_OP_ERR, 977 IB_WC_LOC_PROT_ERR, 978 IB_WC_WR_FLUSH_ERR, 979 IB_WC_MW_BIND_ERR, 980 IB_WC_BAD_RESP_ERR, 981 IB_WC_LOC_ACCESS_ERR, 982 IB_WC_REM_INV_REQ_ERR, 983 IB_WC_REM_ACCESS_ERR, 984 IB_WC_REM_OP_ERR, 985 IB_WC_RETRY_EXC_ERR, 986 IB_WC_RNR_RETRY_EXC_ERR, 987 IB_WC_LOC_RDD_VIOL_ERR, 988 IB_WC_REM_INV_RD_REQ_ERR, 989 IB_WC_REM_ABORT_ERR, 990 IB_WC_INV_EECN_ERR, 991 IB_WC_INV_EEC_STATE_ERR, 992 IB_WC_FATAL_ERR, 993 IB_WC_RESP_TIMEOUT_ERR, 994 IB_WC_GENERAL_ERR 995 }; 996 997 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 998 999 enum ib_wc_opcode { 1000 IB_WC_SEND = IB_UVERBS_WC_SEND, 1001 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE, 1002 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ, 1003 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP, 1004 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD, 1005 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW, 1006 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV, 1007 IB_WC_LSO = IB_UVERBS_WC_TSO, 1008 IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE, 1009 IB_WC_REG_MR, 1010 IB_WC_MASKED_COMP_SWAP, 1011 IB_WC_MASKED_FETCH_ADD, 1012 IB_WC_FLUSH = IB_UVERBS_WC_FLUSH, 1013 /* 1014 * Set value of IB_WC_RECV so consumers can test if a completion is a 1015 * receive by testing (opcode & IB_WC_RECV). 1016 */ 1017 IB_WC_RECV = 1 << 7, 1018 IB_WC_RECV_RDMA_WITH_IMM 1019 }; 1020 1021 enum ib_wc_flags { 1022 IB_WC_GRH = 1, 1023 IB_WC_WITH_IMM = (1<<1), 1024 IB_WC_WITH_INVALIDATE = (1<<2), 1025 IB_WC_IP_CSUM_OK = (1<<3), 1026 IB_WC_WITH_SMAC = (1<<4), 1027 IB_WC_WITH_VLAN = (1<<5), 1028 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 1029 }; 1030 1031 struct ib_wc { 1032 union { 1033 u64 wr_id; 1034 struct ib_cqe *wr_cqe; 1035 }; 1036 enum ib_wc_status status; 1037 enum ib_wc_opcode opcode; 1038 u32 vendor_err; 1039 u32 byte_len; 1040 struct ib_qp *qp; 1041 union { 1042 __be32 imm_data; 1043 u32 invalidate_rkey; 1044 } ex; 1045 u32 src_qp; 1046 u32 slid; 1047 int wc_flags; 1048 u16 pkey_index; 1049 u8 sl; 1050 u8 dlid_path_bits; 1051 u32 port_num; /* valid only for DR SMPs on switches */ 1052 u8 smac[ETH_ALEN]; 1053 u16 vlan_id; 1054 u8 network_hdr_type; 1055 }; 1056 1057 enum ib_cq_notify_flags { 1058 IB_CQ_SOLICITED = 1 << 0, 1059 IB_CQ_NEXT_COMP = 1 << 1, 1060 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 1061 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 1062 }; 1063 1064 enum ib_srq_type { 1065 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC, 1066 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC, 1067 IB_SRQT_TM = IB_UVERBS_SRQT_TM, 1068 }; 1069 1070 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1071 { 1072 return srq_type == IB_SRQT_XRC || 1073 srq_type == IB_SRQT_TM; 1074 } 1075 1076 enum ib_srq_attr_mask { 1077 IB_SRQ_MAX_WR = 1 << 0, 1078 IB_SRQ_LIMIT = 1 << 1, 1079 }; 1080 1081 struct ib_srq_attr { 1082 u32 max_wr; 1083 u32 max_sge; 1084 u32 srq_limit; 1085 }; 1086 1087 struct ib_srq_init_attr { 1088 void (*event_handler)(struct ib_event *, void *); 1089 void *srq_context; 1090 struct ib_srq_attr attr; 1091 enum ib_srq_type srq_type; 1092 1093 struct { 1094 struct ib_cq *cq; 1095 union { 1096 struct { 1097 struct ib_xrcd *xrcd; 1098 } xrc; 1099 1100 struct { 1101 u32 max_num_tags; 1102 } tag_matching; 1103 }; 1104 } ext; 1105 }; 1106 1107 struct ib_qp_cap { 1108 u32 max_send_wr; 1109 u32 max_recv_wr; 1110 u32 max_send_sge; 1111 u32 max_recv_sge; 1112 u32 max_inline_data; 1113 1114 /* 1115 * Maximum number of rdma_rw_ctx structures in flight at a time. 1116 * ib_create_qp() will calculate the right amount of needed WRs 1117 * and MRs based on this. 1118 */ 1119 u32 max_rdma_ctxs; 1120 }; 1121 1122 enum ib_sig_type { 1123 IB_SIGNAL_ALL_WR, 1124 IB_SIGNAL_REQ_WR 1125 }; 1126 1127 enum ib_qp_type { 1128 /* 1129 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1130 * here (and in that order) since the MAD layer uses them as 1131 * indices into a 2-entry table. 1132 */ 1133 IB_QPT_SMI, 1134 IB_QPT_GSI, 1135 1136 IB_QPT_RC = IB_UVERBS_QPT_RC, 1137 IB_QPT_UC = IB_UVERBS_QPT_UC, 1138 IB_QPT_UD = IB_UVERBS_QPT_UD, 1139 IB_QPT_RAW_IPV6, 1140 IB_QPT_RAW_ETHERTYPE, 1141 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET, 1142 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI, 1143 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT, 1144 IB_QPT_MAX, 1145 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER, 1146 /* Reserve a range for qp types internal to the low level driver. 1147 * These qp types will not be visible at the IB core layer, so the 1148 * IB_QPT_MAX usages should not be affected in the core layer 1149 */ 1150 IB_QPT_RESERVED1 = 0x1000, 1151 IB_QPT_RESERVED2, 1152 IB_QPT_RESERVED3, 1153 IB_QPT_RESERVED4, 1154 IB_QPT_RESERVED5, 1155 IB_QPT_RESERVED6, 1156 IB_QPT_RESERVED7, 1157 IB_QPT_RESERVED8, 1158 IB_QPT_RESERVED9, 1159 IB_QPT_RESERVED10, 1160 }; 1161 1162 enum ib_qp_create_flags { 1163 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1164 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1165 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK, 1166 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1167 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1168 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1169 IB_QP_CREATE_NETIF_QP = 1 << 5, 1170 IB_QP_CREATE_INTEGRITY_EN = 1 << 6, 1171 IB_QP_CREATE_NETDEV_USE = 1 << 7, 1172 IB_QP_CREATE_SCATTER_FCS = 1173 IB_UVERBS_QP_CREATE_SCATTER_FCS, 1174 IB_QP_CREATE_CVLAN_STRIPPING = 1175 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING, 1176 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1177 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1178 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING, 1179 /* reserve bits 26-31 for low level drivers' internal use */ 1180 IB_QP_CREATE_RESERVED_START = 1 << 26, 1181 IB_QP_CREATE_RESERVED_END = 1 << 31, 1182 }; 1183 1184 /* 1185 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1186 * callback to destroy the passed in QP. 1187 */ 1188 1189 struct ib_qp_init_attr { 1190 /* This callback occurs in workqueue context */ 1191 void (*event_handler)(struct ib_event *, void *); 1192 1193 void *qp_context; 1194 struct ib_cq *send_cq; 1195 struct ib_cq *recv_cq; 1196 struct ib_srq *srq; 1197 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1198 struct ib_qp_cap cap; 1199 enum ib_sig_type sq_sig_type; 1200 enum ib_qp_type qp_type; 1201 u32 create_flags; 1202 1203 /* 1204 * Only needed for special QP types, or when using the RW API. 1205 */ 1206 u32 port_num; 1207 struct ib_rwq_ind_table *rwq_ind_tbl; 1208 u32 source_qpn; 1209 }; 1210 1211 struct ib_qp_open_attr { 1212 void (*event_handler)(struct ib_event *, void *); 1213 void *qp_context; 1214 u32 qp_num; 1215 enum ib_qp_type qp_type; 1216 }; 1217 1218 enum ib_rnr_timeout { 1219 IB_RNR_TIMER_655_36 = 0, 1220 IB_RNR_TIMER_000_01 = 1, 1221 IB_RNR_TIMER_000_02 = 2, 1222 IB_RNR_TIMER_000_03 = 3, 1223 IB_RNR_TIMER_000_04 = 4, 1224 IB_RNR_TIMER_000_06 = 5, 1225 IB_RNR_TIMER_000_08 = 6, 1226 IB_RNR_TIMER_000_12 = 7, 1227 IB_RNR_TIMER_000_16 = 8, 1228 IB_RNR_TIMER_000_24 = 9, 1229 IB_RNR_TIMER_000_32 = 10, 1230 IB_RNR_TIMER_000_48 = 11, 1231 IB_RNR_TIMER_000_64 = 12, 1232 IB_RNR_TIMER_000_96 = 13, 1233 IB_RNR_TIMER_001_28 = 14, 1234 IB_RNR_TIMER_001_92 = 15, 1235 IB_RNR_TIMER_002_56 = 16, 1236 IB_RNR_TIMER_003_84 = 17, 1237 IB_RNR_TIMER_005_12 = 18, 1238 IB_RNR_TIMER_007_68 = 19, 1239 IB_RNR_TIMER_010_24 = 20, 1240 IB_RNR_TIMER_015_36 = 21, 1241 IB_RNR_TIMER_020_48 = 22, 1242 IB_RNR_TIMER_030_72 = 23, 1243 IB_RNR_TIMER_040_96 = 24, 1244 IB_RNR_TIMER_061_44 = 25, 1245 IB_RNR_TIMER_081_92 = 26, 1246 IB_RNR_TIMER_122_88 = 27, 1247 IB_RNR_TIMER_163_84 = 28, 1248 IB_RNR_TIMER_245_76 = 29, 1249 IB_RNR_TIMER_327_68 = 30, 1250 IB_RNR_TIMER_491_52 = 31 1251 }; 1252 1253 enum ib_qp_attr_mask { 1254 IB_QP_STATE = 1, 1255 IB_QP_CUR_STATE = (1<<1), 1256 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1257 IB_QP_ACCESS_FLAGS = (1<<3), 1258 IB_QP_PKEY_INDEX = (1<<4), 1259 IB_QP_PORT = (1<<5), 1260 IB_QP_QKEY = (1<<6), 1261 IB_QP_AV = (1<<7), 1262 IB_QP_PATH_MTU = (1<<8), 1263 IB_QP_TIMEOUT = (1<<9), 1264 IB_QP_RETRY_CNT = (1<<10), 1265 IB_QP_RNR_RETRY = (1<<11), 1266 IB_QP_RQ_PSN = (1<<12), 1267 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1268 IB_QP_ALT_PATH = (1<<14), 1269 IB_QP_MIN_RNR_TIMER = (1<<15), 1270 IB_QP_SQ_PSN = (1<<16), 1271 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1272 IB_QP_PATH_MIG_STATE = (1<<18), 1273 IB_QP_CAP = (1<<19), 1274 IB_QP_DEST_QPN = (1<<20), 1275 IB_QP_RESERVED1 = (1<<21), 1276 IB_QP_RESERVED2 = (1<<22), 1277 IB_QP_RESERVED3 = (1<<23), 1278 IB_QP_RESERVED4 = (1<<24), 1279 IB_QP_RATE_LIMIT = (1<<25), 1280 1281 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0), 1282 }; 1283 1284 enum ib_qp_state { 1285 IB_QPS_RESET, 1286 IB_QPS_INIT, 1287 IB_QPS_RTR, 1288 IB_QPS_RTS, 1289 IB_QPS_SQD, 1290 IB_QPS_SQE, 1291 IB_QPS_ERR 1292 }; 1293 1294 enum ib_mig_state { 1295 IB_MIG_MIGRATED, 1296 IB_MIG_REARM, 1297 IB_MIG_ARMED 1298 }; 1299 1300 enum ib_mw_type { 1301 IB_MW_TYPE_1 = 1, 1302 IB_MW_TYPE_2 = 2 1303 }; 1304 1305 struct ib_qp_attr { 1306 enum ib_qp_state qp_state; 1307 enum ib_qp_state cur_qp_state; 1308 enum ib_mtu path_mtu; 1309 enum ib_mig_state path_mig_state; 1310 u32 qkey; 1311 u32 rq_psn; 1312 u32 sq_psn; 1313 u32 dest_qp_num; 1314 int qp_access_flags; 1315 struct ib_qp_cap cap; 1316 struct rdma_ah_attr ah_attr; 1317 struct rdma_ah_attr alt_ah_attr; 1318 u16 pkey_index; 1319 u16 alt_pkey_index; 1320 u8 en_sqd_async_notify; 1321 u8 sq_draining; 1322 u8 max_rd_atomic; 1323 u8 max_dest_rd_atomic; 1324 u8 min_rnr_timer; 1325 u32 port_num; 1326 u8 timeout; 1327 u8 retry_cnt; 1328 u8 rnr_retry; 1329 u32 alt_port_num; 1330 u8 alt_timeout; 1331 u32 rate_limit; 1332 struct net_device *xmit_slave; 1333 }; 1334 1335 enum ib_wr_opcode { 1336 /* These are shared with userspace */ 1337 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE, 1338 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM, 1339 IB_WR_SEND = IB_UVERBS_WR_SEND, 1340 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM, 1341 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ, 1342 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP, 1343 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD, 1344 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW, 1345 IB_WR_LSO = IB_UVERBS_WR_TSO, 1346 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV, 1347 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV, 1348 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV, 1349 IB_WR_MASKED_ATOMIC_CMP_AND_SWP = 1350 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP, 1351 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD = 1352 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1353 IB_WR_FLUSH = IB_UVERBS_WR_FLUSH, 1354 IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE, 1355 1356 /* These are kernel only and can not be issued by userspace */ 1357 IB_WR_REG_MR = 0x20, 1358 IB_WR_REG_MR_INTEGRITY, 1359 1360 /* reserve values for low level drivers' internal use. 1361 * These values will not be used at all in the ib core layer. 1362 */ 1363 IB_WR_RESERVED1 = 0xf0, 1364 IB_WR_RESERVED2, 1365 IB_WR_RESERVED3, 1366 IB_WR_RESERVED4, 1367 IB_WR_RESERVED5, 1368 IB_WR_RESERVED6, 1369 IB_WR_RESERVED7, 1370 IB_WR_RESERVED8, 1371 IB_WR_RESERVED9, 1372 IB_WR_RESERVED10, 1373 }; 1374 1375 enum ib_send_flags { 1376 IB_SEND_FENCE = 1, 1377 IB_SEND_SIGNALED = (1<<1), 1378 IB_SEND_SOLICITED = (1<<2), 1379 IB_SEND_INLINE = (1<<3), 1380 IB_SEND_IP_CSUM = (1<<4), 1381 1382 /* reserve bits 26-31 for low level drivers' internal use */ 1383 IB_SEND_RESERVED_START = (1 << 26), 1384 IB_SEND_RESERVED_END = (1 << 31), 1385 }; 1386 1387 struct ib_sge { 1388 u64 addr; 1389 u32 length; 1390 u32 lkey; 1391 }; 1392 1393 struct ib_cqe { 1394 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1395 }; 1396 1397 struct ib_send_wr { 1398 struct ib_send_wr *next; 1399 union { 1400 u64 wr_id; 1401 struct ib_cqe *wr_cqe; 1402 }; 1403 struct ib_sge *sg_list; 1404 int num_sge; 1405 enum ib_wr_opcode opcode; 1406 int send_flags; 1407 union { 1408 __be32 imm_data; 1409 u32 invalidate_rkey; 1410 } ex; 1411 }; 1412 1413 struct ib_rdma_wr { 1414 struct ib_send_wr wr; 1415 u64 remote_addr; 1416 u32 rkey; 1417 }; 1418 1419 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1420 { 1421 return container_of(wr, struct ib_rdma_wr, wr); 1422 } 1423 1424 struct ib_atomic_wr { 1425 struct ib_send_wr wr; 1426 u64 remote_addr; 1427 u64 compare_add; 1428 u64 swap; 1429 u64 compare_add_mask; 1430 u64 swap_mask; 1431 u32 rkey; 1432 }; 1433 1434 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1435 { 1436 return container_of(wr, struct ib_atomic_wr, wr); 1437 } 1438 1439 struct ib_ud_wr { 1440 struct ib_send_wr wr; 1441 struct ib_ah *ah; 1442 void *header; 1443 int hlen; 1444 int mss; 1445 u32 remote_qpn; 1446 u32 remote_qkey; 1447 u16 pkey_index; /* valid for GSI only */ 1448 u32 port_num; /* valid for DR SMPs on switch only */ 1449 }; 1450 1451 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1452 { 1453 return container_of(wr, struct ib_ud_wr, wr); 1454 } 1455 1456 struct ib_reg_wr { 1457 struct ib_send_wr wr; 1458 struct ib_mr *mr; 1459 u32 key; 1460 int access; 1461 }; 1462 1463 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1464 { 1465 return container_of(wr, struct ib_reg_wr, wr); 1466 } 1467 1468 struct ib_recv_wr { 1469 struct ib_recv_wr *next; 1470 union { 1471 u64 wr_id; 1472 struct ib_cqe *wr_cqe; 1473 }; 1474 struct ib_sge *sg_list; 1475 int num_sge; 1476 }; 1477 1478 enum ib_access_flags { 1479 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1480 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1481 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1482 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1483 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1484 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1485 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1486 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1487 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING, 1488 IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL, 1489 IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT, 1490 1491 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE, 1492 IB_ACCESS_SUPPORTED = 1493 ((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL, 1494 }; 1495 1496 /* 1497 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1498 * are hidden here instead of a uapi header! 1499 */ 1500 enum ib_mr_rereg_flags { 1501 IB_MR_REREG_TRANS = 1, 1502 IB_MR_REREG_PD = (1<<1), 1503 IB_MR_REREG_ACCESS = (1<<2), 1504 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1505 }; 1506 1507 struct ib_umem; 1508 1509 enum rdma_remove_reason { 1510 /* 1511 * Userspace requested uobject deletion or initial try 1512 * to remove uobject via cleanup. Call could fail 1513 */ 1514 RDMA_REMOVE_DESTROY, 1515 /* Context deletion. This call should delete the actual object itself */ 1516 RDMA_REMOVE_CLOSE, 1517 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1518 RDMA_REMOVE_DRIVER_REMOVE, 1519 /* uobj is being cleaned-up before being committed */ 1520 RDMA_REMOVE_ABORT, 1521 /* The driver failed to destroy the uobject and is being disconnected */ 1522 RDMA_REMOVE_DRIVER_FAILURE, 1523 }; 1524 1525 struct ib_rdmacg_object { 1526 #ifdef CONFIG_CGROUP_RDMA 1527 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1528 #endif 1529 }; 1530 1531 struct ib_ucontext { 1532 struct ib_device *device; 1533 struct ib_uverbs_file *ufile; 1534 1535 struct ib_rdmacg_object cg_obj; 1536 u64 enabled_caps; 1537 /* 1538 * Implementation details of the RDMA core, don't use in drivers: 1539 */ 1540 struct rdma_restrack_entry res; 1541 struct xarray mmap_xa; 1542 }; 1543 1544 struct ib_uobject { 1545 u64 user_handle; /* handle given to us by userspace */ 1546 /* ufile & ucontext owning this object */ 1547 struct ib_uverbs_file *ufile; 1548 /* FIXME, save memory: ufile->context == context */ 1549 struct ib_ucontext *context; /* associated user context */ 1550 void *object; /* containing object */ 1551 struct list_head list; /* link to context's list */ 1552 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1553 int id; /* index into kernel idr */ 1554 struct kref ref; 1555 atomic_t usecnt; /* protects exclusive access */ 1556 struct rcu_head rcu; /* kfree_rcu() overhead */ 1557 1558 const struct uverbs_api_object *uapi_object; 1559 }; 1560 1561 struct ib_udata { 1562 const void __user *inbuf; 1563 void __user *outbuf; 1564 size_t inlen; 1565 size_t outlen; 1566 }; 1567 1568 struct ib_pd { 1569 u32 local_dma_lkey; 1570 u32 flags; 1571 struct ib_device *device; 1572 struct ib_uobject *uobject; 1573 atomic_t usecnt; /* count all resources */ 1574 1575 u32 unsafe_global_rkey; 1576 1577 /* 1578 * Implementation details of the RDMA core, don't use in drivers: 1579 */ 1580 struct ib_mr *__internal_mr; 1581 struct rdma_restrack_entry res; 1582 }; 1583 1584 struct ib_xrcd { 1585 struct ib_device *device; 1586 atomic_t usecnt; /* count all exposed resources */ 1587 struct inode *inode; 1588 struct rw_semaphore tgt_qps_rwsem; 1589 struct xarray tgt_qps; 1590 }; 1591 1592 struct ib_ah { 1593 struct ib_device *device; 1594 struct ib_pd *pd; 1595 struct ib_uobject *uobject; 1596 const struct ib_gid_attr *sgid_attr; 1597 enum rdma_ah_attr_type type; 1598 }; 1599 1600 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1601 1602 enum ib_poll_context { 1603 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1604 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1605 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */ 1606 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE, 1607 1608 IB_POLL_DIRECT, /* caller context, no hw completions */ 1609 }; 1610 1611 struct ib_cq { 1612 struct ib_device *device; 1613 struct ib_ucq_object *uobject; 1614 ib_comp_handler comp_handler; 1615 void (*event_handler)(struct ib_event *, void *); 1616 void *cq_context; 1617 int cqe; 1618 unsigned int cqe_used; 1619 atomic_t usecnt; /* count number of work queues */ 1620 enum ib_poll_context poll_ctx; 1621 struct ib_wc *wc; 1622 struct list_head pool_entry; 1623 union { 1624 struct irq_poll iop; 1625 struct work_struct work; 1626 }; 1627 struct workqueue_struct *comp_wq; 1628 struct dim *dim; 1629 1630 /* updated only by trace points */ 1631 ktime_t timestamp; 1632 u8 interrupt:1; 1633 u8 shared:1; 1634 unsigned int comp_vector; 1635 1636 /* 1637 * Implementation details of the RDMA core, don't use in drivers: 1638 */ 1639 struct rdma_restrack_entry res; 1640 }; 1641 1642 struct ib_srq { 1643 struct ib_device *device; 1644 struct ib_pd *pd; 1645 struct ib_usrq_object *uobject; 1646 void (*event_handler)(struct ib_event *, void *); 1647 void *srq_context; 1648 enum ib_srq_type srq_type; 1649 atomic_t usecnt; 1650 1651 struct { 1652 struct ib_cq *cq; 1653 union { 1654 struct { 1655 struct ib_xrcd *xrcd; 1656 u32 srq_num; 1657 } xrc; 1658 }; 1659 } ext; 1660 1661 /* 1662 * Implementation details of the RDMA core, don't use in drivers: 1663 */ 1664 struct rdma_restrack_entry res; 1665 }; 1666 1667 enum ib_raw_packet_caps { 1668 /* 1669 * Strip cvlan from incoming packet and report it in the matching work 1670 * completion is supported. 1671 */ 1672 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = 1673 IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING, 1674 /* 1675 * Scatter FCS field of an incoming packet to host memory is supported. 1676 */ 1677 IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS, 1678 /* Checksum offloads are supported (for both send and receive). */ 1679 IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM, 1680 /* 1681 * When a packet is received for an RQ with no receive WQEs, the 1682 * packet processing is delayed. 1683 */ 1684 IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP, 1685 }; 1686 1687 enum ib_wq_type { 1688 IB_WQT_RQ = IB_UVERBS_WQT_RQ, 1689 }; 1690 1691 enum ib_wq_state { 1692 IB_WQS_RESET, 1693 IB_WQS_RDY, 1694 IB_WQS_ERR 1695 }; 1696 1697 struct ib_wq { 1698 struct ib_device *device; 1699 struct ib_uwq_object *uobject; 1700 void *wq_context; 1701 void (*event_handler)(struct ib_event *, void *); 1702 struct ib_pd *pd; 1703 struct ib_cq *cq; 1704 u32 wq_num; 1705 enum ib_wq_state state; 1706 enum ib_wq_type wq_type; 1707 atomic_t usecnt; 1708 }; 1709 1710 enum ib_wq_flags { 1711 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING, 1712 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS, 1713 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP, 1714 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1715 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING, 1716 }; 1717 1718 struct ib_wq_init_attr { 1719 void *wq_context; 1720 enum ib_wq_type wq_type; 1721 u32 max_wr; 1722 u32 max_sge; 1723 struct ib_cq *cq; 1724 void (*event_handler)(struct ib_event *, void *); 1725 u32 create_flags; /* Use enum ib_wq_flags */ 1726 }; 1727 1728 enum ib_wq_attr_mask { 1729 IB_WQ_STATE = 1 << 0, 1730 IB_WQ_CUR_STATE = 1 << 1, 1731 IB_WQ_FLAGS = 1 << 2, 1732 }; 1733 1734 struct ib_wq_attr { 1735 enum ib_wq_state wq_state; 1736 enum ib_wq_state curr_wq_state; 1737 u32 flags; /* Use enum ib_wq_flags */ 1738 u32 flags_mask; /* Use enum ib_wq_flags */ 1739 }; 1740 1741 struct ib_rwq_ind_table { 1742 struct ib_device *device; 1743 struct ib_uobject *uobject; 1744 atomic_t usecnt; 1745 u32 ind_tbl_num; 1746 u32 log_ind_tbl_size; 1747 struct ib_wq **ind_tbl; 1748 }; 1749 1750 struct ib_rwq_ind_table_init_attr { 1751 u32 log_ind_tbl_size; 1752 /* Each entry is a pointer to Receive Work Queue */ 1753 struct ib_wq **ind_tbl; 1754 }; 1755 1756 enum port_pkey_state { 1757 IB_PORT_PKEY_NOT_VALID = 0, 1758 IB_PORT_PKEY_VALID = 1, 1759 IB_PORT_PKEY_LISTED = 2, 1760 }; 1761 1762 struct ib_qp_security; 1763 1764 struct ib_port_pkey { 1765 enum port_pkey_state state; 1766 u16 pkey_index; 1767 u32 port_num; 1768 struct list_head qp_list; 1769 struct list_head to_error_list; 1770 struct ib_qp_security *sec; 1771 }; 1772 1773 struct ib_ports_pkeys { 1774 struct ib_port_pkey main; 1775 struct ib_port_pkey alt; 1776 }; 1777 1778 struct ib_qp_security { 1779 struct ib_qp *qp; 1780 struct ib_device *dev; 1781 /* Hold this mutex when changing port and pkey settings. */ 1782 struct mutex mutex; 1783 struct ib_ports_pkeys *ports_pkeys; 1784 /* A list of all open shared QP handles. Required to enforce security 1785 * properly for all users of a shared QP. 1786 */ 1787 struct list_head shared_qp_list; 1788 void *security; 1789 bool destroying; 1790 atomic_t error_list_count; 1791 struct completion error_complete; 1792 int error_comps_pending; 1793 }; 1794 1795 /* 1796 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1797 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1798 */ 1799 struct ib_qp { 1800 struct ib_device *device; 1801 struct ib_pd *pd; 1802 struct ib_cq *send_cq; 1803 struct ib_cq *recv_cq; 1804 spinlock_t mr_lock; 1805 int mrs_used; 1806 struct list_head rdma_mrs; 1807 struct list_head sig_mrs; 1808 struct ib_srq *srq; 1809 struct completion srq_completion; 1810 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1811 struct list_head xrcd_list; 1812 1813 /* count times opened, mcast attaches, flow attaches */ 1814 atomic_t usecnt; 1815 struct list_head open_list; 1816 struct ib_qp *real_qp; 1817 struct ib_uqp_object *uobject; 1818 void (*event_handler)(struct ib_event *, void *); 1819 void (*registered_event_handler)(struct ib_event *, void *); 1820 void *qp_context; 1821 /* sgid_attrs associated with the AV's */ 1822 const struct ib_gid_attr *av_sgid_attr; 1823 const struct ib_gid_attr *alt_path_sgid_attr; 1824 u32 qp_num; 1825 u32 max_write_sge; 1826 u32 max_read_sge; 1827 enum ib_qp_type qp_type; 1828 struct ib_rwq_ind_table *rwq_ind_tbl; 1829 struct ib_qp_security *qp_sec; 1830 u32 port; 1831 1832 bool integrity_en; 1833 /* 1834 * Implementation details of the RDMA core, don't use in drivers: 1835 */ 1836 struct rdma_restrack_entry res; 1837 1838 /* The counter the qp is bind to */ 1839 struct rdma_counter *counter; 1840 }; 1841 1842 struct ib_dm { 1843 struct ib_device *device; 1844 u32 length; 1845 u32 flags; 1846 struct ib_uobject *uobject; 1847 atomic_t usecnt; 1848 }; 1849 1850 /* bit values to mark existence of ib_dmah fields */ 1851 enum { 1852 IB_DMAH_CPU_ID_EXISTS, 1853 IB_DMAH_MEM_TYPE_EXISTS, 1854 IB_DMAH_PH_EXISTS, 1855 }; 1856 1857 struct ib_dmah { 1858 struct ib_device *device; 1859 struct ib_uobject *uobject; 1860 /* 1861 * Implementation details of the RDMA core, don't use in drivers: 1862 */ 1863 struct rdma_restrack_entry res; 1864 u32 cpu_id; 1865 enum tph_mem_type mem_type; 1866 atomic_t usecnt; 1867 u8 ph; 1868 u8 valid_fields; /* use IB_DMAH_XXX_EXISTS */ 1869 }; 1870 1871 struct ib_mr { 1872 struct ib_device *device; 1873 struct ib_pd *pd; 1874 u32 lkey; 1875 u32 rkey; 1876 u64 iova; 1877 u64 length; 1878 unsigned int page_size; 1879 enum ib_mr_type type; 1880 bool need_inval; 1881 union { 1882 struct ib_uobject *uobject; /* user */ 1883 struct list_head qp_entry; /* FR */ 1884 }; 1885 1886 struct ib_dm *dm; 1887 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */ 1888 struct ib_dmah *dmah; 1889 /* 1890 * Implementation details of the RDMA core, don't use in drivers: 1891 */ 1892 struct rdma_restrack_entry res; 1893 }; 1894 1895 struct ib_mw { 1896 struct ib_device *device; 1897 struct ib_pd *pd; 1898 struct ib_uobject *uobject; 1899 u32 rkey; 1900 enum ib_mw_type type; 1901 }; 1902 1903 /* Supported steering options */ 1904 enum ib_flow_attr_type { 1905 /* steering according to rule specifications */ 1906 IB_FLOW_ATTR_NORMAL = 0x0, 1907 /* default unicast and multicast rule - 1908 * receive all Eth traffic which isn't steered to any QP 1909 */ 1910 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1911 /* default multicast rule - 1912 * receive all Eth multicast traffic which isn't steered to any QP 1913 */ 1914 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1915 /* sniffer rule - receive all port traffic */ 1916 IB_FLOW_ATTR_SNIFFER = 0x3 1917 }; 1918 1919 /* Supported steering header types */ 1920 enum ib_flow_spec_type { 1921 /* L2 headers*/ 1922 IB_FLOW_SPEC_ETH = 0x20, 1923 IB_FLOW_SPEC_IB = 0x22, 1924 /* L3 header*/ 1925 IB_FLOW_SPEC_IPV4 = 0x30, 1926 IB_FLOW_SPEC_IPV6 = 0x31, 1927 IB_FLOW_SPEC_ESP = 0x34, 1928 /* L4 headers*/ 1929 IB_FLOW_SPEC_TCP = 0x40, 1930 IB_FLOW_SPEC_UDP = 0x41, 1931 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1932 IB_FLOW_SPEC_GRE = 0x51, 1933 IB_FLOW_SPEC_MPLS = 0x60, 1934 IB_FLOW_SPEC_INNER = 0x100, 1935 /* Actions */ 1936 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1937 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1938 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1939 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1940 }; 1941 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1942 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1943 1944 enum ib_flow_flags { 1945 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1946 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ 1947 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ 1948 }; 1949 1950 struct ib_flow_eth_filter { 1951 u8 dst_mac[6]; 1952 u8 src_mac[6]; 1953 __be16 ether_type; 1954 __be16 vlan_tag; 1955 }; 1956 1957 struct ib_flow_spec_eth { 1958 u32 type; 1959 u16 size; 1960 struct ib_flow_eth_filter val; 1961 struct ib_flow_eth_filter mask; 1962 }; 1963 1964 struct ib_flow_ib_filter { 1965 __be16 dlid; 1966 __u8 sl; 1967 }; 1968 1969 struct ib_flow_spec_ib { 1970 u32 type; 1971 u16 size; 1972 struct ib_flow_ib_filter val; 1973 struct ib_flow_ib_filter mask; 1974 }; 1975 1976 /* IPv4 header flags */ 1977 enum ib_ipv4_flags { 1978 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1979 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1980 last have this flag set */ 1981 }; 1982 1983 struct ib_flow_ipv4_filter { 1984 __be32 src_ip; 1985 __be32 dst_ip; 1986 u8 proto; 1987 u8 tos; 1988 u8 ttl; 1989 u8 flags; 1990 }; 1991 1992 struct ib_flow_spec_ipv4 { 1993 u32 type; 1994 u16 size; 1995 struct ib_flow_ipv4_filter val; 1996 struct ib_flow_ipv4_filter mask; 1997 }; 1998 1999 struct ib_flow_ipv6_filter { 2000 u8 src_ip[16]; 2001 u8 dst_ip[16]; 2002 __be32 flow_label; 2003 u8 next_hdr; 2004 u8 traffic_class; 2005 u8 hop_limit; 2006 } __packed; 2007 2008 struct ib_flow_spec_ipv6 { 2009 u32 type; 2010 u16 size; 2011 struct ib_flow_ipv6_filter val; 2012 struct ib_flow_ipv6_filter mask; 2013 }; 2014 2015 struct ib_flow_tcp_udp_filter { 2016 __be16 dst_port; 2017 __be16 src_port; 2018 }; 2019 2020 struct ib_flow_spec_tcp_udp { 2021 u32 type; 2022 u16 size; 2023 struct ib_flow_tcp_udp_filter val; 2024 struct ib_flow_tcp_udp_filter mask; 2025 }; 2026 2027 struct ib_flow_tunnel_filter { 2028 __be32 tunnel_id; 2029 }; 2030 2031 /* ib_flow_spec_tunnel describes the Vxlan tunnel 2032 * the tunnel_id from val has the vni value 2033 */ 2034 struct ib_flow_spec_tunnel { 2035 u32 type; 2036 u16 size; 2037 struct ib_flow_tunnel_filter val; 2038 struct ib_flow_tunnel_filter mask; 2039 }; 2040 2041 struct ib_flow_esp_filter { 2042 __be32 spi; 2043 __be32 seq; 2044 }; 2045 2046 struct ib_flow_spec_esp { 2047 u32 type; 2048 u16 size; 2049 struct ib_flow_esp_filter val; 2050 struct ib_flow_esp_filter mask; 2051 }; 2052 2053 struct ib_flow_gre_filter { 2054 __be16 c_ks_res0_ver; 2055 __be16 protocol; 2056 __be32 key; 2057 }; 2058 2059 struct ib_flow_spec_gre { 2060 u32 type; 2061 u16 size; 2062 struct ib_flow_gre_filter val; 2063 struct ib_flow_gre_filter mask; 2064 }; 2065 2066 struct ib_flow_mpls_filter { 2067 __be32 tag; 2068 }; 2069 2070 struct ib_flow_spec_mpls { 2071 u32 type; 2072 u16 size; 2073 struct ib_flow_mpls_filter val; 2074 struct ib_flow_mpls_filter mask; 2075 }; 2076 2077 struct ib_flow_spec_action_tag { 2078 enum ib_flow_spec_type type; 2079 u16 size; 2080 u32 tag_id; 2081 }; 2082 2083 struct ib_flow_spec_action_drop { 2084 enum ib_flow_spec_type type; 2085 u16 size; 2086 }; 2087 2088 struct ib_flow_spec_action_handle { 2089 enum ib_flow_spec_type type; 2090 u16 size; 2091 struct ib_flow_action *act; 2092 }; 2093 2094 enum ib_counters_description { 2095 IB_COUNTER_PACKETS, 2096 IB_COUNTER_BYTES, 2097 }; 2098 2099 struct ib_flow_spec_action_count { 2100 enum ib_flow_spec_type type; 2101 u16 size; 2102 struct ib_counters *counters; 2103 }; 2104 2105 union ib_flow_spec { 2106 struct { 2107 u32 type; 2108 u16 size; 2109 }; 2110 struct ib_flow_spec_eth eth; 2111 struct ib_flow_spec_ib ib; 2112 struct ib_flow_spec_ipv4 ipv4; 2113 struct ib_flow_spec_tcp_udp tcp_udp; 2114 struct ib_flow_spec_ipv6 ipv6; 2115 struct ib_flow_spec_tunnel tunnel; 2116 struct ib_flow_spec_esp esp; 2117 struct ib_flow_spec_gre gre; 2118 struct ib_flow_spec_mpls mpls; 2119 struct ib_flow_spec_action_tag flow_tag; 2120 struct ib_flow_spec_action_drop drop; 2121 struct ib_flow_spec_action_handle action; 2122 struct ib_flow_spec_action_count flow_count; 2123 }; 2124 2125 struct ib_flow_attr { 2126 enum ib_flow_attr_type type; 2127 u16 size; 2128 u16 priority; 2129 u32 flags; 2130 u8 num_of_specs; 2131 u32 port; 2132 union ib_flow_spec flows[]; 2133 }; 2134 2135 struct ib_flow { 2136 struct ib_qp *qp; 2137 struct ib_device *device; 2138 struct ib_uobject *uobject; 2139 }; 2140 2141 enum ib_flow_action_type { 2142 IB_FLOW_ACTION_UNSPECIFIED, 2143 IB_FLOW_ACTION_ESP = 1, 2144 }; 2145 2146 struct ib_flow_action_attrs_esp_keymats { 2147 enum ib_uverbs_flow_action_esp_keymat protocol; 2148 union { 2149 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 2150 } keymat; 2151 }; 2152 2153 struct ib_flow_action_attrs_esp_replays { 2154 enum ib_uverbs_flow_action_esp_replay protocol; 2155 union { 2156 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 2157 } replay; 2158 }; 2159 2160 enum ib_flow_action_attrs_esp_flags { 2161 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 2162 * This is done in order to share the same flags between user-space and 2163 * kernel and spare an unnecessary translation. 2164 */ 2165 2166 /* Kernel flags */ 2167 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 2168 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 2169 }; 2170 2171 struct ib_flow_spec_list { 2172 struct ib_flow_spec_list *next; 2173 union ib_flow_spec spec; 2174 }; 2175 2176 struct ib_flow_action_attrs_esp { 2177 struct ib_flow_action_attrs_esp_keymats *keymat; 2178 struct ib_flow_action_attrs_esp_replays *replay; 2179 struct ib_flow_spec_list *encap; 2180 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 2181 * Value of 0 is a valid value. 2182 */ 2183 u32 esn; 2184 u32 spi; 2185 u32 seq; 2186 u32 tfc_pad; 2187 /* Use enum ib_flow_action_attrs_esp_flags */ 2188 u64 flags; 2189 u64 hard_limit_pkts; 2190 }; 2191 2192 struct ib_flow_action { 2193 struct ib_device *device; 2194 struct ib_uobject *uobject; 2195 enum ib_flow_action_type type; 2196 atomic_t usecnt; 2197 }; 2198 2199 struct ib_mad; 2200 2201 enum ib_process_mad_flags { 2202 IB_MAD_IGNORE_MKEY = 1, 2203 IB_MAD_IGNORE_BKEY = 2, 2204 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 2205 }; 2206 2207 enum ib_mad_result { 2208 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2209 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2210 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2211 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2212 }; 2213 2214 struct ib_port_cache { 2215 u64 subnet_prefix; 2216 struct ib_pkey_cache *pkey; 2217 struct ib_gid_table *gid; 2218 u8 lmc; 2219 enum ib_port_state port_state; 2220 enum ib_port_state last_port_state; 2221 }; 2222 2223 struct ib_port_immutable { 2224 int pkey_tbl_len; 2225 int gid_tbl_len; 2226 u32 core_cap_flags; 2227 u32 max_mad_size; 2228 }; 2229 2230 struct ib_port_data { 2231 struct ib_device *ib_dev; 2232 2233 struct ib_port_immutable immutable; 2234 2235 spinlock_t pkey_list_lock; 2236 2237 spinlock_t netdev_lock; 2238 2239 struct list_head pkey_list; 2240 2241 struct ib_port_cache cache; 2242 2243 struct net_device __rcu *netdev; 2244 netdevice_tracker netdev_tracker; 2245 struct hlist_node ndev_hash_link; 2246 struct rdma_port_counter port_counter; 2247 struct ib_port *sysfs; 2248 }; 2249 2250 /* rdma netdev type - specifies protocol type */ 2251 enum rdma_netdev_t { 2252 RDMA_NETDEV_OPA_VNIC, 2253 RDMA_NETDEV_IPOIB, 2254 }; 2255 2256 /** 2257 * struct rdma_netdev - rdma netdev 2258 * For cases where netstack interfacing is required. 2259 */ 2260 struct rdma_netdev { 2261 void *clnt_priv; 2262 struct ib_device *hca; 2263 u32 port_num; 2264 int mtu; 2265 2266 /* 2267 * cleanup function must be specified. 2268 * FIXME: This is only used for OPA_VNIC and that usage should be 2269 * removed too. 2270 */ 2271 void (*free_rdma_netdev)(struct net_device *netdev); 2272 2273 /* control functions */ 2274 void (*set_id)(struct net_device *netdev, int id); 2275 /* send packet */ 2276 int (*send)(struct net_device *dev, struct sk_buff *skb, 2277 struct ib_ah *address, u32 dqpn); 2278 /* multicast */ 2279 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2280 union ib_gid *gid, u16 mlid, 2281 int set_qkey, u32 qkey); 2282 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2283 union ib_gid *gid, u16 mlid); 2284 /* timeout */ 2285 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue); 2286 }; 2287 2288 struct rdma_netdev_alloc_params { 2289 size_t sizeof_priv; 2290 unsigned int txqs; 2291 unsigned int rxqs; 2292 void *param; 2293 2294 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num, 2295 struct net_device *netdev, void *param); 2296 }; 2297 2298 struct ib_odp_counters { 2299 atomic64_t faults; 2300 atomic64_t faults_handled; 2301 atomic64_t invalidations; 2302 atomic64_t invalidations_handled; 2303 atomic64_t prefetch; 2304 }; 2305 2306 struct ib_counters { 2307 struct ib_device *device; 2308 struct ib_uobject *uobject; 2309 /* num of objects attached */ 2310 atomic_t usecnt; 2311 }; 2312 2313 struct ib_counters_read_attr { 2314 u64 *counters_buff; 2315 u32 ncounters; 2316 u32 flags; /* use enum ib_read_counters_flags */ 2317 }; 2318 2319 struct uverbs_attr_bundle; 2320 struct iw_cm_id; 2321 struct iw_cm_conn_param; 2322 2323 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ 2324 .size_##ib_struct = \ 2325 (sizeof(struct drv_struct) + \ 2326 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ 2327 BUILD_BUG_ON_ZERO( \ 2328 !__same_type(((struct drv_struct *)NULL)->member, \ 2329 struct ib_struct))) 2330 2331 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ 2332 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \ 2333 gfp, false)) 2334 2335 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \ 2336 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \ 2337 GFP_KERNEL, true)) 2338 2339 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \ 2340 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) 2341 2342 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct 2343 2344 struct rdma_user_mmap_entry { 2345 struct kref ref; 2346 struct ib_ucontext *ucontext; 2347 unsigned long start_pgoff; 2348 size_t npages; 2349 bool driver_removed; 2350 }; 2351 2352 /* Return the offset (in bytes) the user should pass to libc's mmap() */ 2353 static inline u64 2354 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry) 2355 { 2356 return (u64)entry->start_pgoff << PAGE_SHIFT; 2357 } 2358 2359 /** 2360 * struct ib_device_ops - InfiniBand device operations 2361 * This structure defines all the InfiniBand device operations, providers will 2362 * need to define the supported operations, otherwise they will be set to null. 2363 */ 2364 struct ib_device_ops { 2365 struct module *owner; 2366 enum rdma_driver_id driver_id; 2367 u32 uverbs_abi_ver; 2368 unsigned int uverbs_no_driver_id_binding:1; 2369 2370 /* 2371 * NOTE: New drivers should not make use of device_group; instead new 2372 * device parameter should be exposed via netlink command. This 2373 * mechanism exists only for existing drivers. 2374 */ 2375 const struct attribute_group *device_group; 2376 const struct attribute_group **port_groups; 2377 2378 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr, 2379 const struct ib_send_wr **bad_send_wr); 2380 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr, 2381 const struct ib_recv_wr **bad_recv_wr); 2382 void (*drain_rq)(struct ib_qp *qp); 2383 void (*drain_sq)(struct ib_qp *qp); 2384 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc); 2385 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2386 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags); 2387 int (*post_srq_recv)(struct ib_srq *srq, 2388 const struct ib_recv_wr *recv_wr, 2389 const struct ib_recv_wr **bad_recv_wr); 2390 int (*process_mad)(struct ib_device *device, int process_mad_flags, 2391 u32 port_num, const struct ib_wc *in_wc, 2392 const struct ib_grh *in_grh, 2393 const struct ib_mad *in_mad, struct ib_mad *out_mad, 2394 size_t *out_mad_size, u16 *out_mad_pkey_index); 2395 int (*query_device)(struct ib_device *device, 2396 struct ib_device_attr *device_attr, 2397 struct ib_udata *udata); 2398 int (*modify_device)(struct ib_device *device, int device_modify_mask, 2399 struct ib_device_modify *device_modify); 2400 void (*get_dev_fw_str)(struct ib_device *device, char *str); 2401 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2402 int comp_vector); 2403 int (*query_port)(struct ib_device *device, u32 port_num, 2404 struct ib_port_attr *port_attr); 2405 int (*modify_port)(struct ib_device *device, u32 port_num, 2406 int port_modify_mask, 2407 struct ib_port_modify *port_modify); 2408 /** 2409 * The following mandatory functions are used only at device 2410 * registration. Keep functions such as these at the end of this 2411 * structure to avoid cache line misses when accessing struct ib_device 2412 * in fast paths. 2413 */ 2414 int (*get_port_immutable)(struct ib_device *device, u32 port_num, 2415 struct ib_port_immutable *immutable); 2416 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2417 u32 port_num); 2418 /** 2419 * When calling get_netdev, the HW vendor's driver should return the 2420 * net device of device @device at port @port_num or NULL if such 2421 * a net device doesn't exist. The vendor driver should call dev_hold 2422 * on this net device. The HW vendor's device driver must guarantee 2423 * that this function returns NULL before the net device has finished 2424 * NETDEV_UNREGISTER state. 2425 */ 2426 struct net_device *(*get_netdev)(struct ib_device *device, 2427 u32 port_num); 2428 /** 2429 * rdma netdev operation 2430 * 2431 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params 2432 * must return -EOPNOTSUPP if it doesn't support the specified type. 2433 */ 2434 struct net_device *(*alloc_rdma_netdev)( 2435 struct ib_device *device, u32 port_num, enum rdma_netdev_t type, 2436 const char *name, unsigned char name_assign_type, 2437 void (*setup)(struct net_device *)); 2438 2439 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num, 2440 enum rdma_netdev_t type, 2441 struct rdma_netdev_alloc_params *params); 2442 /** 2443 * query_gid should be return GID value for @device, when @port_num 2444 * link layer is either IB or iWarp. It is no-op if @port_num port 2445 * is RoCE link layer. 2446 */ 2447 int (*query_gid)(struct ib_device *device, u32 port_num, int index, 2448 union ib_gid *gid); 2449 /** 2450 * When calling add_gid, the HW vendor's driver should add the gid 2451 * of device of port at gid index available at @attr. Meta-info of 2452 * that gid (for example, the network device related to this gid) is 2453 * available at @attr. @context allows the HW vendor driver to store 2454 * extra information together with a GID entry. The HW vendor driver may 2455 * allocate memory to contain this information and store it in @context 2456 * when a new GID entry is written to. Params are consistent until the 2457 * next call of add_gid or delete_gid. The function should return 0 on 2458 * success or error otherwise. The function could be called 2459 * concurrently for different ports. This function is only called when 2460 * roce_gid_table is used. 2461 */ 2462 int (*add_gid)(const struct ib_gid_attr *attr, void **context); 2463 /** 2464 * When calling del_gid, the HW vendor's driver should delete the 2465 * gid of device @device at gid index gid_index of port port_num 2466 * available in @attr. 2467 * Upon the deletion of a GID entry, the HW vendor must free any 2468 * allocated memory. The caller will clear @context afterwards. 2469 * This function is only called when roce_gid_table is used. 2470 */ 2471 int (*del_gid)(const struct ib_gid_attr *attr, void **context); 2472 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index, 2473 u16 *pkey); 2474 int (*alloc_ucontext)(struct ib_ucontext *context, 2475 struct ib_udata *udata); 2476 void (*dealloc_ucontext)(struct ib_ucontext *context); 2477 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma); 2478 /** 2479 * This will be called once refcount of an entry in mmap_xa reaches 2480 * zero. The type of the memory that was mapped may differ between 2481 * entries and is opaque to the rdma_user_mmap interface. 2482 * Therefore needs to be implemented by the driver in mmap_free. 2483 */ 2484 void (*mmap_free)(struct rdma_user_mmap_entry *entry); 2485 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2486 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2487 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2488 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2489 struct ib_udata *udata); 2490 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2491 struct ib_udata *udata); 2492 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2493 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2494 int (*destroy_ah)(struct ib_ah *ah, u32 flags); 2495 int (*create_srq)(struct ib_srq *srq, 2496 struct ib_srq_init_attr *srq_init_attr, 2497 struct ib_udata *udata); 2498 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr, 2499 enum ib_srq_attr_mask srq_attr_mask, 2500 struct ib_udata *udata); 2501 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr); 2502 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); 2503 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr, 2504 struct ib_udata *udata); 2505 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2506 int qp_attr_mask, struct ib_udata *udata); 2507 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2508 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); 2509 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); 2510 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr, 2511 struct uverbs_attr_bundle *attrs); 2512 int (*create_cq_umem)(struct ib_cq *cq, 2513 const struct ib_cq_init_attr *attr, 2514 struct ib_umem *umem, 2515 struct uverbs_attr_bundle *attrs); 2516 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2517 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); 2518 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata); 2519 /** 2520 * pre_destroy_cq - Prevent a cq from generating any new work 2521 * completions, but not free any kernel resources 2522 */ 2523 int (*pre_destroy_cq)(struct ib_cq *cq); 2524 /** 2525 * post_destroy_cq - Free all kernel resources 2526 */ 2527 void (*post_destroy_cq)(struct ib_cq *cq); 2528 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags); 2529 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length, 2530 u64 virt_addr, int mr_access_flags, 2531 struct ib_dmah *dmah, 2532 struct ib_udata *udata); 2533 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset, 2534 u64 length, u64 virt_addr, int fd, 2535 int mr_access_flags, 2536 struct ib_dmah *dmah, 2537 struct uverbs_attr_bundle *attrs); 2538 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, 2539 u64 length, u64 virt_addr, 2540 int mr_access_flags, struct ib_pd *pd, 2541 struct ib_udata *udata); 2542 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); 2543 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, 2544 u32 max_num_sg); 2545 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd, 2546 u32 max_num_data_sg, 2547 u32 max_num_meta_sg); 2548 int (*advise_mr)(struct ib_pd *pd, 2549 enum ib_uverbs_advise_mr_advice advice, u32 flags, 2550 struct ib_sge *sg_list, u32 num_sge, 2551 struct uverbs_attr_bundle *attrs); 2552 2553 /* 2554 * Kernel users should universally support relaxed ordering (RO), as 2555 * they are designed to read data only after observing the CQE and use 2556 * the DMA API correctly. 2557 * 2558 * Some drivers implicitly enable RO if platform supports it. 2559 */ 2560 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2561 unsigned int *sg_offset); 2562 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2563 struct ib_mr_status *mr_status); 2564 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata); 2565 int (*dealloc_mw)(struct ib_mw *mw); 2566 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2567 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2568 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2569 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2570 struct ib_flow *(*create_flow)(struct ib_qp *qp, 2571 struct ib_flow_attr *flow_attr, 2572 struct ib_udata *udata); 2573 int (*destroy_flow)(struct ib_flow *flow_id); 2574 int (*destroy_flow_action)(struct ib_flow_action *action); 2575 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port, 2576 int state); 2577 int (*get_vf_config)(struct ib_device *device, int vf, u32 port, 2578 struct ifla_vf_info *ivf); 2579 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port, 2580 struct ifla_vf_stats *stats); 2581 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port, 2582 struct ifla_vf_guid *node_guid, 2583 struct ifla_vf_guid *port_guid); 2584 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid, 2585 int type); 2586 struct ib_wq *(*create_wq)(struct ib_pd *pd, 2587 struct ib_wq_init_attr *init_attr, 2588 struct ib_udata *udata); 2589 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); 2590 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr, 2591 u32 wq_attr_mask, struct ib_udata *udata); 2592 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table, 2593 struct ib_rwq_ind_table_init_attr *init_attr, 2594 struct ib_udata *udata); 2595 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2596 struct ib_dm *(*alloc_dm)(struct ib_device *device, 2597 struct ib_ucontext *context, 2598 struct ib_dm_alloc_attr *attr, 2599 struct uverbs_attr_bundle *attrs); 2600 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); 2601 int (*alloc_dmah)(struct ib_dmah *ibdmah, 2602 struct uverbs_attr_bundle *attrs); 2603 int (*dealloc_dmah)(struct ib_dmah *dmah, struct uverbs_attr_bundle *attrs); 2604 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2605 struct ib_dm_mr_attr *attr, 2606 struct uverbs_attr_bundle *attrs); 2607 int (*create_counters)(struct ib_counters *counters, 2608 struct uverbs_attr_bundle *attrs); 2609 int (*destroy_counters)(struct ib_counters *counters); 2610 int (*read_counters)(struct ib_counters *counters, 2611 struct ib_counters_read_attr *counters_read_attr, 2612 struct uverbs_attr_bundle *attrs); 2613 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg, 2614 int data_sg_nents, unsigned int *data_sg_offset, 2615 struct scatterlist *meta_sg, int meta_sg_nents, 2616 unsigned int *meta_sg_offset); 2617 2618 /** 2619 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and 2620 * fill in the driver initialized data. The struct is kfree()'ed by 2621 * the sysfs core when the device is removed. A lifespan of -1 in the 2622 * return struct tells the core to set a default lifespan. 2623 */ 2624 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device); 2625 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device, 2626 u32 port_num); 2627 /** 2628 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2629 * @index - The index in the value array we wish to have updated, or 2630 * num_counters if we want all stats updated 2631 * Return codes - 2632 * < 0 - Error, no counters updated 2633 * index - Updated the single counter pointed to by index 2634 * num_counters - Updated all counters (will reset the timestamp 2635 * and prevent further calls for lifespan milliseconds) 2636 * Drivers are allowed to update all counters in leiu of just the 2637 * one given in index at their option 2638 */ 2639 int (*get_hw_stats)(struct ib_device *device, 2640 struct rdma_hw_stats *stats, u32 port, int index); 2641 2642 /** 2643 * modify_hw_stat - Modify the counter configuration 2644 * @enable: true/false when enable/disable a counter 2645 * Return codes - 0 on success or error code otherwise. 2646 */ 2647 int (*modify_hw_stat)(struct ib_device *device, u32 port, 2648 unsigned int counter_index, bool enable); 2649 /** 2650 * Allows rdma drivers to add their own restrack attributes. 2651 */ 2652 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2653 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr); 2654 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq); 2655 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq); 2656 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp); 2657 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp); 2658 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id); 2659 int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq); 2660 int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq); 2661 2662 /* Device lifecycle callbacks */ 2663 /* 2664 * Called after the device becomes registered, before clients are 2665 * attached 2666 */ 2667 int (*enable_driver)(struct ib_device *dev); 2668 /* 2669 * This is called as part of ib_dealloc_device(). 2670 */ 2671 void (*dealloc_driver)(struct ib_device *dev); 2672 2673 /* iWarp CM callbacks */ 2674 void (*iw_add_ref)(struct ib_qp *qp); 2675 void (*iw_rem_ref)(struct ib_qp *qp); 2676 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn); 2677 int (*iw_connect)(struct iw_cm_id *cm_id, 2678 struct iw_cm_conn_param *conn_param); 2679 int (*iw_accept)(struct iw_cm_id *cm_id, 2680 struct iw_cm_conn_param *conn_param); 2681 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata, 2682 u8 pdata_len); 2683 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog); 2684 int (*iw_destroy_listen)(struct iw_cm_id *cm_id); 2685 /** 2686 * counter_bind_qp - Bind a QP to a counter. 2687 * @counter - The counter to be bound. If counter->id is zero then 2688 * the driver needs to allocate a new counter and set counter->id 2689 */ 2690 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp, 2691 u32 port); 2692 /** 2693 * counter_unbind_qp - Unbind the qp from the dynamically-allocated 2694 * counter and bind it onto the default one 2695 */ 2696 int (*counter_unbind_qp)(struct ib_qp *qp, u32 port); 2697 /** 2698 * counter_dealloc -De-allocate the hw counter 2699 */ 2700 int (*counter_dealloc)(struct rdma_counter *counter); 2701 /** 2702 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in 2703 * the driver initialized data. 2704 */ 2705 struct rdma_hw_stats *(*counter_alloc_stats)( 2706 struct rdma_counter *counter); 2707 /** 2708 * counter_update_stats - Query the stats value of this counter 2709 */ 2710 int (*counter_update_stats)(struct rdma_counter *counter); 2711 2712 /** 2713 * counter_init - Initialize the driver specific rdma counter struct. 2714 */ 2715 void (*counter_init)(struct rdma_counter *counter); 2716 2717 /** 2718 * Allows rdma drivers to add their own restrack attributes 2719 * dumped via 'rdma stat' iproute2 command. 2720 */ 2721 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2722 2723 /* query driver for its ucontext properties */ 2724 int (*query_ucontext)(struct ib_ucontext *context, 2725 struct uverbs_attr_bundle *attrs); 2726 2727 /* 2728 * Provide NUMA node. This API exists for rdmavt/hfi1 only. 2729 * Everyone else relies on Linux memory management model. 2730 */ 2731 int (*get_numa_node)(struct ib_device *dev); 2732 2733 /** 2734 * add_sub_dev - Add a sub IB device 2735 */ 2736 struct ib_device *(*add_sub_dev)(struct ib_device *parent, 2737 enum rdma_nl_dev_type type, 2738 const char *name); 2739 2740 /** 2741 * del_sub_dev - Delete a sub IB device 2742 */ 2743 void (*del_sub_dev)(struct ib_device *sub_dev); 2744 2745 /** 2746 * ufile_cleanup - Attempt to cleanup ubojects HW resources inside 2747 * the ufile. 2748 */ 2749 void (*ufile_hw_cleanup)(struct ib_uverbs_file *ufile); 2750 2751 /** 2752 * report_port_event - Drivers need to implement this if they have 2753 * some private stuff to handle when link status changes. 2754 */ 2755 void (*report_port_event)(struct ib_device *ibdev, 2756 struct net_device *ndev, unsigned long event); 2757 2758 DECLARE_RDMA_OBJ_SIZE(ib_ah); 2759 DECLARE_RDMA_OBJ_SIZE(ib_counters); 2760 DECLARE_RDMA_OBJ_SIZE(ib_cq); 2761 DECLARE_RDMA_OBJ_SIZE(ib_dmah); 2762 DECLARE_RDMA_OBJ_SIZE(ib_mw); 2763 DECLARE_RDMA_OBJ_SIZE(ib_pd); 2764 DECLARE_RDMA_OBJ_SIZE(ib_qp); 2765 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table); 2766 DECLARE_RDMA_OBJ_SIZE(ib_srq); 2767 DECLARE_RDMA_OBJ_SIZE(ib_ucontext); 2768 DECLARE_RDMA_OBJ_SIZE(ib_xrcd); 2769 DECLARE_RDMA_OBJ_SIZE(rdma_counter); 2770 }; 2771 2772 struct ib_core_device { 2773 /* device must be the first element in structure until, 2774 * union of ib_core_device and device exists in ib_device. 2775 */ 2776 struct device dev; 2777 possible_net_t rdma_net; 2778 struct kobject *ports_kobj; 2779 struct list_head port_list; 2780 struct ib_device *owner; /* reach back to owner ib_device */ 2781 }; 2782 2783 struct rdma_restrack_root; 2784 struct ib_device { 2785 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2786 struct device *dma_device; 2787 struct ib_device_ops ops; 2788 char name[IB_DEVICE_NAME_MAX]; 2789 struct rcu_head rcu_head; 2790 2791 struct list_head event_handler_list; 2792 /* Protects event_handler_list */ 2793 struct rw_semaphore event_handler_rwsem; 2794 2795 /* Protects QP's event_handler calls and open_qp list */ 2796 spinlock_t qp_open_list_lock; 2797 2798 struct rw_semaphore client_data_rwsem; 2799 struct xarray client_data; 2800 struct mutex unregistration_lock; 2801 2802 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */ 2803 rwlock_t cache_lock; 2804 /** 2805 * port_data is indexed by port number 2806 */ 2807 struct ib_port_data *port_data; 2808 2809 int num_comp_vectors; 2810 2811 union { 2812 struct device dev; 2813 struct ib_core_device coredev; 2814 }; 2815 2816 /* First group is for device attributes, 2817 * Second group is for driver provided attributes (optional). 2818 * Third group is for the hw_stats 2819 * It is a NULL terminated array. 2820 */ 2821 const struct attribute_group *groups[4]; 2822 u8 hw_stats_attr_index; 2823 2824 u64 uverbs_cmd_mask; 2825 2826 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2827 __be64 node_guid; 2828 u32 local_dma_lkey; 2829 u16 is_switch:1; 2830 /* Indicates kernel verbs support, should not be used in drivers */ 2831 u16 kverbs_provider:1; 2832 /* CQ adaptive moderation (RDMA DIM) */ 2833 u16 use_cq_dim:1; 2834 u8 node_type; 2835 u32 phys_port_cnt; 2836 struct ib_device_attr attrs; 2837 struct hw_stats_device_data *hw_stats_data; 2838 2839 #ifdef CONFIG_CGROUP_RDMA 2840 struct rdmacg_device cg_device; 2841 #endif 2842 2843 u32 index; 2844 2845 spinlock_t cq_pools_lock; 2846 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1]; 2847 2848 struct rdma_restrack_root *res; 2849 2850 const struct uapi_definition *driver_def; 2851 2852 /* 2853 * Positive refcount indicates that the device is currently 2854 * registered and cannot be unregistered. 2855 */ 2856 refcount_t refcount; 2857 struct completion unreg_completion; 2858 struct work_struct unregistration_work; 2859 2860 const struct rdma_link_ops *link_ops; 2861 2862 /* Protects compat_devs xarray modifications */ 2863 struct mutex compat_devs_mutex; 2864 /* Maintains compat devices for each net namespace */ 2865 struct xarray compat_devs; 2866 2867 /* Used by iWarp CM */ 2868 char iw_ifname[IFNAMSIZ]; 2869 u32 iw_driver_flags; 2870 u32 lag_flags; 2871 2872 /* A parent device has a list of sub-devices */ 2873 struct mutex subdev_lock; 2874 struct list_head subdev_list_head; 2875 2876 /* A sub device has a type and a parent */ 2877 enum rdma_nl_dev_type type; 2878 struct ib_device *parent; 2879 struct list_head subdev_list; 2880 2881 enum rdma_nl_name_assign_type name_assign_type; 2882 }; 2883 2884 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size, 2885 gfp_t gfp, bool is_numa_aware) 2886 { 2887 if (is_numa_aware && dev->ops.get_numa_node) 2888 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev)); 2889 2890 return kzalloc(size, gfp); 2891 } 2892 2893 struct ib_client_nl_info; 2894 struct ib_client { 2895 const char *name; 2896 int (*add)(struct ib_device *ibdev); 2897 void (*remove)(struct ib_device *, void *client_data); 2898 void (*rename)(struct ib_device *dev, void *client_data); 2899 int (*get_nl_info)(struct ib_device *ibdev, void *client_data, 2900 struct ib_client_nl_info *res); 2901 int (*get_global_nl_info)(struct ib_client_nl_info *res); 2902 2903 /* Returns the net_dev belonging to this ib_client and matching the 2904 * given parameters. 2905 * @dev: An RDMA device that the net_dev use for communication. 2906 * @port: A physical port number on the RDMA device. 2907 * @pkey: P_Key that the net_dev uses if applicable. 2908 * @gid: A GID that the net_dev uses to communicate. 2909 * @addr: An IP address the net_dev is configured with. 2910 * @client_data: The device's client data set by ib_set_client_data(). 2911 * 2912 * An ib_client that implements a net_dev on top of RDMA devices 2913 * (such as IP over IB) should implement this callback, allowing the 2914 * rdma_cm module to find the right net_dev for a given request. 2915 * 2916 * The caller is responsible for calling dev_put on the returned 2917 * netdev. */ 2918 struct net_device *(*get_net_dev_by_params)( 2919 struct ib_device *dev, 2920 u32 port, 2921 u16 pkey, 2922 const union ib_gid *gid, 2923 const struct sockaddr *addr, 2924 void *client_data); 2925 2926 refcount_t uses; 2927 struct completion uses_zero; 2928 u32 client_id; 2929 2930 /* kverbs are not required by the client */ 2931 u8 no_kverbs_req:1; 2932 }; 2933 2934 /* 2935 * IB block DMA iterator 2936 * 2937 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned 2938 * to a HW supported page size. 2939 */ 2940 struct ib_block_iter { 2941 /* internal states */ 2942 struct scatterlist *__sg; /* sg holding the current aligned block */ 2943 dma_addr_t __dma_addr; /* unaligned DMA address of this block */ 2944 size_t __sg_numblocks; /* ib_umem_num_dma_blocks() */ 2945 unsigned int __sg_nents; /* number of SG entries */ 2946 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */ 2947 unsigned int __pg_bit; /* alignment of current block */ 2948 }; 2949 2950 struct ib_device *_ib_alloc_device(size_t size, struct net *net); 2951 #define ib_alloc_device(drv_struct, member) \ 2952 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ 2953 BUILD_BUG_ON_ZERO(offsetof( \ 2954 struct drv_struct, member)), \ 2955 &init_net), \ 2956 struct drv_struct, member) 2957 2958 #define ib_alloc_device_with_net(drv_struct, member, net) \ 2959 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ 2960 BUILD_BUG_ON_ZERO(offsetof( \ 2961 struct drv_struct, member)), net), \ 2962 struct drv_struct, member) 2963 2964 void ib_dealloc_device(struct ib_device *device); 2965 2966 void ib_get_device_fw_str(struct ib_device *device, char *str); 2967 2968 int ib_register_device(struct ib_device *device, const char *name, 2969 struct device *dma_device); 2970 void ib_unregister_device(struct ib_device *device); 2971 void ib_unregister_driver(enum rdma_driver_id driver_id); 2972 void ib_unregister_device_and_put(struct ib_device *device); 2973 void ib_unregister_device_queued(struct ib_device *ib_dev); 2974 2975 int ib_register_client (struct ib_client *client); 2976 void ib_unregister_client(struct ib_client *client); 2977 2978 void __rdma_block_iter_start(struct ib_block_iter *biter, 2979 struct scatterlist *sglist, 2980 unsigned int nents, 2981 unsigned long pgsz); 2982 bool __rdma_block_iter_next(struct ib_block_iter *biter); 2983 2984 /** 2985 * rdma_block_iter_dma_address - get the aligned dma address of the current 2986 * block held by the block iterator. 2987 * @biter: block iterator holding the memory block 2988 */ 2989 static inline dma_addr_t 2990 rdma_block_iter_dma_address(struct ib_block_iter *biter) 2991 { 2992 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1); 2993 } 2994 2995 /** 2996 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list 2997 * @sglist: sglist to iterate over 2998 * @biter: block iterator holding the memory block 2999 * @nents: maximum number of sg entries to iterate over 3000 * @pgsz: best HW supported page size to use 3001 * 3002 * Callers may use rdma_block_iter_dma_address() to get each 3003 * blocks aligned DMA address. 3004 */ 3005 #define rdma_for_each_block(sglist, biter, nents, pgsz) \ 3006 for (__rdma_block_iter_start(biter, sglist, nents, \ 3007 pgsz); \ 3008 __rdma_block_iter_next(biter);) 3009 3010 /** 3011 * ib_get_client_data - Get IB client context 3012 * @device:Device to get context for 3013 * @client:Client to get context for 3014 * 3015 * ib_get_client_data() returns the client context data set with 3016 * ib_set_client_data(). This can only be called while the client is 3017 * registered to the device, once the ib_client remove() callback returns this 3018 * cannot be called. 3019 */ 3020 static inline void *ib_get_client_data(struct ib_device *device, 3021 struct ib_client *client) 3022 { 3023 return xa_load(&device->client_data, client->client_id); 3024 } 3025 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 3026 void *data); 3027 void ib_set_device_ops(struct ib_device *device, 3028 const struct ib_device_ops *ops); 3029 3030 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 3031 unsigned long pfn, unsigned long size, pgprot_t prot, 3032 struct rdma_user_mmap_entry *entry); 3033 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext, 3034 struct rdma_user_mmap_entry *entry, 3035 size_t length); 3036 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext, 3037 struct rdma_user_mmap_entry *entry, 3038 size_t length, u32 min_pgoff, 3039 u32 max_pgoff); 3040 3041 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS) 3042 void rdma_user_mmap_disassociate(struct ib_device *device); 3043 #else 3044 static inline void rdma_user_mmap_disassociate(struct ib_device *device) 3045 { 3046 } 3047 #endif 3048 3049 static inline int 3050 rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext, 3051 struct rdma_user_mmap_entry *entry, 3052 size_t length, u32 pgoff) 3053 { 3054 return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff, 3055 pgoff); 3056 } 3057 3058 struct rdma_user_mmap_entry * 3059 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext, 3060 unsigned long pgoff); 3061 struct rdma_user_mmap_entry * 3062 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext, 3063 struct vm_area_struct *vma); 3064 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry); 3065 3066 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry); 3067 3068 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 3069 { 3070 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 3071 } 3072 3073 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 3074 { 3075 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 3076 } 3077 3078 static inline bool ib_is_buffer_cleared(const void __user *p, 3079 size_t len) 3080 { 3081 bool ret; 3082 u8 *buf; 3083 3084 if (len > USHRT_MAX) 3085 return false; 3086 3087 buf = memdup_user(p, len); 3088 if (IS_ERR(buf)) 3089 return false; 3090 3091 ret = !memchr_inv(buf, 0, len); 3092 kfree(buf); 3093 return ret; 3094 } 3095 3096 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 3097 size_t offset, 3098 size_t len) 3099 { 3100 return ib_is_buffer_cleared(udata->inbuf + offset, len); 3101 } 3102 3103 /** 3104 * ib_modify_qp_is_ok - Check that the supplied attribute mask 3105 * contains all required attributes and no attributes not allowed for 3106 * the given QP state transition. 3107 * @cur_state: Current QP state 3108 * @next_state: Next QP state 3109 * @type: QP type 3110 * @mask: Mask of supplied QP attributes 3111 * 3112 * This function is a helper function that a low-level driver's 3113 * modify_qp method can use to validate the consumer's input. It 3114 * checks that cur_state and next_state are valid QP states, that a 3115 * transition from cur_state to next_state is allowed by the IB spec, 3116 * and that the attribute mask supplied is allowed for the transition. 3117 */ 3118 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 3119 enum ib_qp_type type, enum ib_qp_attr_mask mask); 3120 3121 void ib_register_event_handler(struct ib_event_handler *event_handler); 3122 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 3123 void ib_dispatch_event(const struct ib_event *event); 3124 3125 int ib_query_port(struct ib_device *device, 3126 u32 port_num, struct ib_port_attr *port_attr); 3127 3128 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 3129 u32 port_num); 3130 3131 /** 3132 * rdma_cap_ib_switch - Check if the device is IB switch 3133 * @device: Device to check 3134 * 3135 * Device driver is responsible for setting is_switch bit on 3136 * in ib_device structure at init time. 3137 * 3138 * Return: true if the device is IB switch. 3139 */ 3140 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 3141 { 3142 return device->is_switch; 3143 } 3144 3145 /** 3146 * rdma_start_port - Return the first valid port number for the device 3147 * specified 3148 * 3149 * @device: Device to be checked 3150 * 3151 * Return start port number 3152 */ 3153 static inline u32 rdma_start_port(const struct ib_device *device) 3154 { 3155 return rdma_cap_ib_switch(device) ? 0 : 1; 3156 } 3157 3158 /** 3159 * rdma_for_each_port - Iterate over all valid port numbers of the IB device 3160 * @device - The struct ib_device * to iterate over 3161 * @iter - The unsigned int to store the port number 3162 */ 3163 #define rdma_for_each_port(device, iter) \ 3164 for (iter = rdma_start_port(device + \ 3165 BUILD_BUG_ON_ZERO(!__same_type(u32, \ 3166 iter))); \ 3167 iter <= rdma_end_port(device); iter++) 3168 3169 /** 3170 * rdma_end_port - Return the last valid port number for the device 3171 * specified 3172 * 3173 * @device: Device to be checked 3174 * 3175 * Return last port number 3176 */ 3177 static inline u32 rdma_end_port(const struct ib_device *device) 3178 { 3179 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 3180 } 3181 3182 static inline int rdma_is_port_valid(const struct ib_device *device, 3183 unsigned int port) 3184 { 3185 return (port >= rdma_start_port(device) && 3186 port <= rdma_end_port(device)); 3187 } 3188 3189 static inline bool rdma_is_grh_required(const struct ib_device *device, 3190 u32 port_num) 3191 { 3192 return device->port_data[port_num].immutable.core_cap_flags & 3193 RDMA_CORE_PORT_IB_GRH_REQUIRED; 3194 } 3195 3196 static inline bool rdma_protocol_ib(const struct ib_device *device, 3197 u32 port_num) 3198 { 3199 return device->port_data[port_num].immutable.core_cap_flags & 3200 RDMA_CORE_CAP_PROT_IB; 3201 } 3202 3203 static inline bool rdma_protocol_roce(const struct ib_device *device, 3204 u32 port_num) 3205 { 3206 return device->port_data[port_num].immutable.core_cap_flags & 3207 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 3208 } 3209 3210 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, 3211 u32 port_num) 3212 { 3213 return device->port_data[port_num].immutable.core_cap_flags & 3214 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 3215 } 3216 3217 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, 3218 u32 port_num) 3219 { 3220 return device->port_data[port_num].immutable.core_cap_flags & 3221 RDMA_CORE_CAP_PROT_ROCE; 3222 } 3223 3224 static inline bool rdma_protocol_iwarp(const struct ib_device *device, 3225 u32 port_num) 3226 { 3227 return device->port_data[port_num].immutable.core_cap_flags & 3228 RDMA_CORE_CAP_PROT_IWARP; 3229 } 3230 3231 static inline bool rdma_ib_or_roce(const struct ib_device *device, 3232 u32 port_num) 3233 { 3234 return rdma_protocol_ib(device, port_num) || 3235 rdma_protocol_roce(device, port_num); 3236 } 3237 3238 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, 3239 u32 port_num) 3240 { 3241 return device->port_data[port_num].immutable.core_cap_flags & 3242 RDMA_CORE_CAP_PROT_RAW_PACKET; 3243 } 3244 3245 static inline bool rdma_protocol_usnic(const struct ib_device *device, 3246 u32 port_num) 3247 { 3248 return device->port_data[port_num].immutable.core_cap_flags & 3249 RDMA_CORE_CAP_PROT_USNIC; 3250 } 3251 3252 /** 3253 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 3254 * Management Datagrams. 3255 * @device: Device to check 3256 * @port_num: Port number to check 3257 * 3258 * Management Datagrams (MAD) are a required part of the InfiniBand 3259 * specification and are supported on all InfiniBand devices. A slightly 3260 * extended version are also supported on OPA interfaces. 3261 * 3262 * Return: true if the port supports sending/receiving of MAD packets. 3263 */ 3264 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num) 3265 { 3266 return device->port_data[port_num].immutable.core_cap_flags & 3267 RDMA_CORE_CAP_IB_MAD; 3268 } 3269 3270 /** 3271 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 3272 * Management Datagrams. 3273 * @device: Device to check 3274 * @port_num: Port number to check 3275 * 3276 * Intel OmniPath devices extend and/or replace the InfiniBand Management 3277 * datagrams with their own versions. These OPA MADs share many but not all of 3278 * the characteristics of InfiniBand MADs. 3279 * 3280 * OPA MADs differ in the following ways: 3281 * 3282 * 1) MADs are variable size up to 2K 3283 * IBTA defined MADs remain fixed at 256 bytes 3284 * 2) OPA SMPs must carry valid PKeys 3285 * 3) OPA SMP packets are a different format 3286 * 3287 * Return: true if the port supports OPA MAD packet formats. 3288 */ 3289 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num) 3290 { 3291 return device->port_data[port_num].immutable.core_cap_flags & 3292 RDMA_CORE_CAP_OPA_MAD; 3293 } 3294 3295 /** 3296 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 3297 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 3298 * @device: Device to check 3299 * @port_num: Port number to check 3300 * 3301 * Each InfiniBand node is required to provide a Subnet Management Agent 3302 * that the subnet manager can access. Prior to the fabric being fully 3303 * configured by the subnet manager, the SMA is accessed via a well known 3304 * interface called the Subnet Management Interface (SMI). This interface 3305 * uses directed route packets to communicate with the SM to get around the 3306 * chicken and egg problem of the SM needing to know what's on the fabric 3307 * in order to configure the fabric, and needing to configure the fabric in 3308 * order to send packets to the devices on the fabric. These directed 3309 * route packets do not need the fabric fully configured in order to reach 3310 * their destination. The SMI is the only method allowed to send 3311 * directed route packets on an InfiniBand fabric. 3312 * 3313 * Return: true if the port provides an SMI. 3314 */ 3315 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num) 3316 { 3317 return device->port_data[port_num].immutable.core_cap_flags & 3318 RDMA_CORE_CAP_IB_SMI; 3319 } 3320 3321 /** 3322 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 3323 * Communication Manager. 3324 * @device: Device to check 3325 * @port_num: Port number to check 3326 * 3327 * The InfiniBand Communication Manager is one of many pre-defined General 3328 * Service Agents (GSA) that are accessed via the General Service 3329 * Interface (GSI). It's role is to facilitate establishment of connections 3330 * between nodes as well as other management related tasks for established 3331 * connections. 3332 * 3333 * Return: true if the port supports an IB CM (this does not guarantee that 3334 * a CM is actually running however). 3335 */ 3336 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num) 3337 { 3338 return device->port_data[port_num].immutable.core_cap_flags & 3339 RDMA_CORE_CAP_IB_CM; 3340 } 3341 3342 /** 3343 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 3344 * Communication Manager. 3345 * @device: Device to check 3346 * @port_num: Port number to check 3347 * 3348 * Similar to above, but specific to iWARP connections which have a different 3349 * managment protocol than InfiniBand. 3350 * 3351 * Return: true if the port supports an iWARP CM (this does not guarantee that 3352 * a CM is actually running however). 3353 */ 3354 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num) 3355 { 3356 return device->port_data[port_num].immutable.core_cap_flags & 3357 RDMA_CORE_CAP_IW_CM; 3358 } 3359 3360 /** 3361 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 3362 * Subnet Administration. 3363 * @device: Device to check 3364 * @port_num: Port number to check 3365 * 3366 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 3367 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 3368 * fabrics, devices should resolve routes to other hosts by contacting the 3369 * SA to query the proper route. 3370 * 3371 * Return: true if the port should act as a client to the fabric Subnet 3372 * Administration interface. This does not imply that the SA service is 3373 * running locally. 3374 */ 3375 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num) 3376 { 3377 return device->port_data[port_num].immutable.core_cap_flags & 3378 RDMA_CORE_CAP_IB_SA; 3379 } 3380 3381 /** 3382 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 3383 * Multicast. 3384 * @device: Device to check 3385 * @port_num: Port number to check 3386 * 3387 * InfiniBand multicast registration is more complex than normal IPv4 or 3388 * IPv6 multicast registration. Each Host Channel Adapter must register 3389 * with the Subnet Manager when it wishes to join a multicast group. It 3390 * should do so only once regardless of how many queue pairs it subscribes 3391 * to this group. And it should leave the group only after all queue pairs 3392 * attached to the group have been detached. 3393 * 3394 * Return: true if the port must undertake the additional adminstrative 3395 * overhead of registering/unregistering with the SM and tracking of the 3396 * total number of queue pairs attached to the multicast group. 3397 */ 3398 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, 3399 u32 port_num) 3400 { 3401 return rdma_cap_ib_sa(device, port_num); 3402 } 3403 3404 /** 3405 * rdma_cap_af_ib - Check if the port of device has the capability 3406 * Native Infiniband Address. 3407 * @device: Device to check 3408 * @port_num: Port number to check 3409 * 3410 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 3411 * GID. RoCE uses a different mechanism, but still generates a GID via 3412 * a prescribed mechanism and port specific data. 3413 * 3414 * Return: true if the port uses a GID address to identify devices on the 3415 * network. 3416 */ 3417 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num) 3418 { 3419 return device->port_data[port_num].immutable.core_cap_flags & 3420 RDMA_CORE_CAP_AF_IB; 3421 } 3422 3423 /** 3424 * rdma_cap_eth_ah - Check if the port of device has the capability 3425 * Ethernet Address Handle. 3426 * @device: Device to check 3427 * @port_num: Port number to check 3428 * 3429 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 3430 * to fabricate GIDs over Ethernet/IP specific addresses native to the 3431 * port. Normally, packet headers are generated by the sending host 3432 * adapter, but when sending connectionless datagrams, we must manually 3433 * inject the proper headers for the fabric we are communicating over. 3434 * 3435 * Return: true if we are running as a RoCE port and must force the 3436 * addition of a Global Route Header built from our Ethernet Address 3437 * Handle into our header list for connectionless packets. 3438 */ 3439 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num) 3440 { 3441 return device->port_data[port_num].immutable.core_cap_flags & 3442 RDMA_CORE_CAP_ETH_AH; 3443 } 3444 3445 /** 3446 * rdma_cap_opa_ah - Check if the port of device supports 3447 * OPA Address handles 3448 * @device: Device to check 3449 * @port_num: Port number to check 3450 * 3451 * Return: true if we are running on an OPA device which supports 3452 * the extended OPA addressing. 3453 */ 3454 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num) 3455 { 3456 return (device->port_data[port_num].immutable.core_cap_flags & 3457 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 3458 } 3459 3460 /** 3461 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 3462 * 3463 * @device: Device 3464 * @port_num: Port number 3465 * 3466 * This MAD size includes the MAD headers and MAD payload. No other headers 3467 * are included. 3468 * 3469 * Return the max MAD size required by the Port. Will return 0 if the port 3470 * does not support MADs 3471 */ 3472 static inline size_t rdma_max_mad_size(const struct ib_device *device, 3473 u32 port_num) 3474 { 3475 return device->port_data[port_num].immutable.max_mad_size; 3476 } 3477 3478 /** 3479 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 3480 * @device: Device to check 3481 * @port_num: Port number to check 3482 * 3483 * RoCE GID table mechanism manages the various GIDs for a device. 3484 * 3485 * NOTE: if allocating the port's GID table has failed, this call will still 3486 * return true, but any RoCE GID table API will fail. 3487 * 3488 * Return: true if the port uses RoCE GID table mechanism in order to manage 3489 * its GIDs. 3490 */ 3491 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 3492 u32 port_num) 3493 { 3494 return rdma_protocol_roce(device, port_num) && 3495 device->ops.add_gid && device->ops.del_gid; 3496 } 3497 3498 /* 3499 * Check if the device supports READ W/ INVALIDATE. 3500 */ 3501 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 3502 { 3503 /* 3504 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 3505 * has support for it yet. 3506 */ 3507 return rdma_protocol_iwarp(dev, port_num); 3508 } 3509 3510 /** 3511 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not. 3512 * @device: Device 3513 * @port_num: 1 based Port number 3514 * 3515 * Return true if port is an Intel OPA port , false if not 3516 */ 3517 static inline bool rdma_core_cap_opa_port(struct ib_device *device, 3518 u32 port_num) 3519 { 3520 return (device->port_data[port_num].immutable.core_cap_flags & 3521 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA; 3522 } 3523 3524 /** 3525 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value. 3526 * @device: Device 3527 * @port_num: Port number 3528 * @mtu: enum value of MTU 3529 * 3530 * Return the MTU size supported by the port as an integer value. Will return 3531 * -1 if enum value of mtu is not supported. 3532 */ 3533 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port, 3534 int mtu) 3535 { 3536 if (rdma_core_cap_opa_port(device, port)) 3537 return opa_mtu_enum_to_int((enum opa_mtu)mtu); 3538 else 3539 return ib_mtu_enum_to_int((enum ib_mtu)mtu); 3540 } 3541 3542 /** 3543 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute. 3544 * @device: Device 3545 * @port_num: Port number 3546 * @attr: port attribute 3547 * 3548 * Return the MTU size supported by the port as an integer value. 3549 */ 3550 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port, 3551 struct ib_port_attr *attr) 3552 { 3553 if (rdma_core_cap_opa_port(device, port)) 3554 return attr->phys_mtu; 3555 else 3556 return ib_mtu_enum_to_int(attr->max_mtu); 3557 } 3558 3559 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port, 3560 int state); 3561 int ib_get_vf_config(struct ib_device *device, int vf, u32 port, 3562 struct ifla_vf_info *info); 3563 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port, 3564 struct ifla_vf_stats *stats); 3565 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port, 3566 struct ifla_vf_guid *node_guid, 3567 struct ifla_vf_guid *port_guid); 3568 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid, 3569 int type); 3570 3571 int ib_query_pkey(struct ib_device *device, 3572 u32 port_num, u16 index, u16 *pkey); 3573 3574 int ib_modify_device(struct ib_device *device, 3575 int device_modify_mask, 3576 struct ib_device_modify *device_modify); 3577 3578 int ib_modify_port(struct ib_device *device, 3579 u32 port_num, int port_modify_mask, 3580 struct ib_port_modify *port_modify); 3581 3582 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 3583 u32 *port_num, u16 *index); 3584 3585 int ib_find_pkey(struct ib_device *device, 3586 u32 port_num, u16 pkey, u16 *index); 3587 3588 enum ib_pd_flags { 3589 /* 3590 * Create a memory registration for all memory in the system and place 3591 * the rkey for it into pd->unsafe_global_rkey. This can be used by 3592 * ULPs to avoid the overhead of dynamic MRs. 3593 * 3594 * This flag is generally considered unsafe and must only be used in 3595 * extremly trusted environments. Every use of it will log a warning 3596 * in the kernel log. 3597 */ 3598 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 3599 }; 3600 3601 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 3602 const char *caller); 3603 3604 /** 3605 * ib_alloc_pd - Allocates an unused protection domain. 3606 * @device: The device on which to allocate the protection domain. 3607 * @flags: protection domain flags 3608 * 3609 * A protection domain object provides an association between QPs, shared 3610 * receive queues, address handles, memory regions, and memory windows. 3611 * 3612 * Every PD has a local_dma_lkey which can be used as the lkey value for local 3613 * memory operations. 3614 */ 3615 #define ib_alloc_pd(device, flags) \ 3616 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 3617 3618 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); 3619 3620 /** 3621 * ib_dealloc_pd - Deallocate kernel PD 3622 * @pd: The protection domain 3623 * 3624 * NOTE: for user PD use ib_dealloc_pd_user with valid udata! 3625 */ 3626 static inline void ib_dealloc_pd(struct ib_pd *pd) 3627 { 3628 int ret = ib_dealloc_pd_user(pd, NULL); 3629 3630 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail"); 3631 } 3632 3633 enum rdma_create_ah_flags { 3634 /* In a sleepable context */ 3635 RDMA_CREATE_AH_SLEEPABLE = BIT(0), 3636 }; 3637 3638 /** 3639 * rdma_create_ah - Creates an address handle for the given address vector. 3640 * @pd: The protection domain associated with the address handle. 3641 * @ah_attr: The attributes of the address vector. 3642 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 3643 * 3644 * The address handle is used to reference a local or global destination 3645 * in all UD QP post sends. 3646 */ 3647 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 3648 u32 flags); 3649 3650 /** 3651 * rdma_create_user_ah - Creates an address handle for the given address vector. 3652 * It resolves destination mac address for ah attribute of RoCE type. 3653 * @pd: The protection domain associated with the address handle. 3654 * @ah_attr: The attributes of the address vector. 3655 * @udata: pointer to user's input output buffer information need by 3656 * provider driver. 3657 * 3658 * It returns 0 on success and returns appropriate error code on error. 3659 * The address handle is used to reference a local or global destination 3660 * in all UD QP post sends. 3661 */ 3662 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 3663 struct rdma_ah_attr *ah_attr, 3664 struct ib_udata *udata); 3665 /** 3666 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 3667 * work completion. 3668 * @hdr: the L3 header to parse 3669 * @net_type: type of header to parse 3670 * @sgid: place to store source gid 3671 * @dgid: place to store destination gid 3672 */ 3673 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 3674 enum rdma_network_type net_type, 3675 union ib_gid *sgid, union ib_gid *dgid); 3676 3677 /** 3678 * ib_get_rdma_header_version - Get the header version 3679 * @hdr: the L3 header to parse 3680 */ 3681 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 3682 3683 /** 3684 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 3685 * work completion. 3686 * @device: Device on which the received message arrived. 3687 * @port_num: Port on which the received message arrived. 3688 * @wc: Work completion associated with the received message. 3689 * @grh: References the received global route header. This parameter is 3690 * ignored unless the work completion indicates that the GRH is valid. 3691 * @ah_attr: Returned attributes that can be used when creating an address 3692 * handle for replying to the message. 3693 * When ib_init_ah_attr_from_wc() returns success, 3694 * (a) for IB link layer it optionally contains a reference to SGID attribute 3695 * when GRH is present for IB link layer. 3696 * (b) for RoCE link layer it contains a reference to SGID attribute. 3697 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID 3698 * attributes which are initialized using ib_init_ah_attr_from_wc(). 3699 * 3700 */ 3701 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num, 3702 const struct ib_wc *wc, const struct ib_grh *grh, 3703 struct rdma_ah_attr *ah_attr); 3704 3705 /** 3706 * ib_create_ah_from_wc - Creates an address handle associated with the 3707 * sender of the specified work completion. 3708 * @pd: The protection domain associated with the address handle. 3709 * @wc: Work completion information associated with a received message. 3710 * @grh: References the received global route header. This parameter is 3711 * ignored unless the work completion indicates that the GRH is valid. 3712 * @port_num: The outbound port number to associate with the address. 3713 * 3714 * The address handle is used to reference a local or global destination 3715 * in all UD QP post sends. 3716 */ 3717 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3718 const struct ib_grh *grh, u32 port_num); 3719 3720 /** 3721 * rdma_modify_ah - Modifies the address vector associated with an address 3722 * handle. 3723 * @ah: The address handle to modify. 3724 * @ah_attr: The new address vector attributes to associate with the 3725 * address handle. 3726 */ 3727 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3728 3729 /** 3730 * rdma_query_ah - Queries the address vector associated with an address 3731 * handle. 3732 * @ah: The address handle to query. 3733 * @ah_attr: The address vector attributes associated with the address 3734 * handle. 3735 */ 3736 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3737 3738 enum rdma_destroy_ah_flags { 3739 /* In a sleepable context */ 3740 RDMA_DESTROY_AH_SLEEPABLE = BIT(0), 3741 }; 3742 3743 /** 3744 * rdma_destroy_ah_user - Destroys an address handle. 3745 * @ah: The address handle to destroy. 3746 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3747 * @udata: Valid user data or NULL for kernel objects 3748 */ 3749 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); 3750 3751 /** 3752 * rdma_destroy_ah - Destroys an kernel address handle. 3753 * @ah: The address handle to destroy. 3754 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3755 * 3756 * NOTE: for user ah use rdma_destroy_ah_user with valid udata! 3757 */ 3758 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags) 3759 { 3760 int ret = rdma_destroy_ah_user(ah, flags, NULL); 3761 3762 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail"); 3763 } 3764 3765 struct ib_srq *ib_create_srq_user(struct ib_pd *pd, 3766 struct ib_srq_init_attr *srq_init_attr, 3767 struct ib_usrq_object *uobject, 3768 struct ib_udata *udata); 3769 static inline struct ib_srq * 3770 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr) 3771 { 3772 if (!pd->device->ops.create_srq) 3773 return ERR_PTR(-EOPNOTSUPP); 3774 3775 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL); 3776 } 3777 3778 /** 3779 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3780 * @srq: The SRQ to modify. 3781 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3782 * the current values of selected SRQ attributes are returned. 3783 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3784 * are being modified. 3785 * 3786 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3787 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3788 * the number of receives queued drops below the limit. 3789 */ 3790 int ib_modify_srq(struct ib_srq *srq, 3791 struct ib_srq_attr *srq_attr, 3792 enum ib_srq_attr_mask srq_attr_mask); 3793 3794 /** 3795 * ib_query_srq - Returns the attribute list and current values for the 3796 * specified SRQ. 3797 * @srq: The SRQ to query. 3798 * @srq_attr: The attributes of the specified SRQ. 3799 */ 3800 int ib_query_srq(struct ib_srq *srq, 3801 struct ib_srq_attr *srq_attr); 3802 3803 /** 3804 * ib_destroy_srq_user - Destroys the specified SRQ. 3805 * @srq: The SRQ to destroy. 3806 * @udata: Valid user data or NULL for kernel objects 3807 */ 3808 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); 3809 3810 /** 3811 * ib_destroy_srq - Destroys the specified kernel SRQ. 3812 * @srq: The SRQ to destroy. 3813 * 3814 * NOTE: for user srq use ib_destroy_srq_user with valid udata! 3815 */ 3816 static inline void ib_destroy_srq(struct ib_srq *srq) 3817 { 3818 int ret = ib_destroy_srq_user(srq, NULL); 3819 3820 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail"); 3821 } 3822 3823 /** 3824 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3825 * @srq: The SRQ to post the work request on. 3826 * @recv_wr: A list of work requests to post on the receive queue. 3827 * @bad_recv_wr: On an immediate failure, this parameter will reference 3828 * the work request that failed to be posted on the QP. 3829 */ 3830 static inline int ib_post_srq_recv(struct ib_srq *srq, 3831 const struct ib_recv_wr *recv_wr, 3832 const struct ib_recv_wr **bad_recv_wr) 3833 { 3834 const struct ib_recv_wr *dummy; 3835 3836 return srq->device->ops.post_srq_recv(srq, recv_wr, 3837 bad_recv_wr ? : &dummy); 3838 } 3839 3840 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd, 3841 struct ib_qp_init_attr *qp_init_attr, 3842 const char *caller); 3843 /** 3844 * ib_create_qp - Creates a kernel QP associated with the specific protection 3845 * domain. 3846 * @pd: The protection domain associated with the QP. 3847 * @init_attr: A list of initial attributes required to create the 3848 * QP. If QP creation succeeds, then the attributes are updated to 3849 * the actual capabilities of the created QP. 3850 */ 3851 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd, 3852 struct ib_qp_init_attr *init_attr) 3853 { 3854 return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME); 3855 } 3856 3857 /** 3858 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3859 * @qp: The QP to modify. 3860 * @attr: On input, specifies the QP attributes to modify. On output, 3861 * the current values of selected QP attributes are returned. 3862 * @attr_mask: A bit-mask used to specify which attributes of the QP 3863 * are being modified. 3864 * @udata: pointer to user's input output buffer information 3865 * are being modified. 3866 * It returns 0 on success and returns appropriate error code on error. 3867 */ 3868 int ib_modify_qp_with_udata(struct ib_qp *qp, 3869 struct ib_qp_attr *attr, 3870 int attr_mask, 3871 struct ib_udata *udata); 3872 3873 /** 3874 * ib_modify_qp - Modifies the attributes for the specified QP and then 3875 * transitions the QP to the given state. 3876 * @qp: The QP to modify. 3877 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3878 * the current values of selected QP attributes are returned. 3879 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3880 * are being modified. 3881 */ 3882 int ib_modify_qp(struct ib_qp *qp, 3883 struct ib_qp_attr *qp_attr, 3884 int qp_attr_mask); 3885 3886 /** 3887 * ib_query_qp - Returns the attribute list and current values for the 3888 * specified QP. 3889 * @qp: The QP to query. 3890 * @qp_attr: The attributes of the specified QP. 3891 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3892 * @qp_init_attr: Additional attributes of the selected QP. 3893 * 3894 * The qp_attr_mask may be used to limit the query to gathering only the 3895 * selected attributes. 3896 */ 3897 int ib_query_qp(struct ib_qp *qp, 3898 struct ib_qp_attr *qp_attr, 3899 int qp_attr_mask, 3900 struct ib_qp_init_attr *qp_init_attr); 3901 3902 /** 3903 * ib_destroy_qp - Destroys the specified QP. 3904 * @qp: The QP to destroy. 3905 * @udata: Valid udata or NULL for kernel objects 3906 */ 3907 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); 3908 3909 /** 3910 * ib_destroy_qp - Destroys the specified kernel QP. 3911 * @qp: The QP to destroy. 3912 * 3913 * NOTE: for user qp use ib_destroy_qp_user with valid udata! 3914 */ 3915 static inline int ib_destroy_qp(struct ib_qp *qp) 3916 { 3917 return ib_destroy_qp_user(qp, NULL); 3918 } 3919 3920 /** 3921 * ib_open_qp - Obtain a reference to an existing sharable QP. 3922 * @xrcd - XRC domain 3923 * @qp_open_attr: Attributes identifying the QP to open. 3924 * 3925 * Returns a reference to a sharable QP. 3926 */ 3927 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3928 struct ib_qp_open_attr *qp_open_attr); 3929 3930 /** 3931 * ib_close_qp - Release an external reference to a QP. 3932 * @qp: The QP handle to release 3933 * 3934 * The opened QP handle is released by the caller. The underlying 3935 * shared QP is not destroyed until all internal references are released. 3936 */ 3937 int ib_close_qp(struct ib_qp *qp); 3938 3939 /** 3940 * ib_post_send - Posts a list of work requests to the send queue of 3941 * the specified QP. 3942 * @qp: The QP to post the work request on. 3943 * @send_wr: A list of work requests to post on the send queue. 3944 * @bad_send_wr: On an immediate failure, this parameter will reference 3945 * the work request that failed to be posted on the QP. 3946 * 3947 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3948 * error is returned, the QP state shall not be affected, 3949 * ib_post_send() will return an immediate error after queueing any 3950 * earlier work requests in the list. 3951 */ 3952 static inline int ib_post_send(struct ib_qp *qp, 3953 const struct ib_send_wr *send_wr, 3954 const struct ib_send_wr **bad_send_wr) 3955 { 3956 const struct ib_send_wr *dummy; 3957 3958 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy); 3959 } 3960 3961 /** 3962 * ib_post_recv - Posts a list of work requests to the receive queue of 3963 * the specified QP. 3964 * @qp: The QP to post the work request on. 3965 * @recv_wr: A list of work requests to post on the receive queue. 3966 * @bad_recv_wr: On an immediate failure, this parameter will reference 3967 * the work request that failed to be posted on the QP. 3968 */ 3969 static inline int ib_post_recv(struct ib_qp *qp, 3970 const struct ib_recv_wr *recv_wr, 3971 const struct ib_recv_wr **bad_recv_wr) 3972 { 3973 const struct ib_recv_wr *dummy; 3974 3975 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); 3976 } 3977 3978 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe, 3979 int comp_vector, enum ib_poll_context poll_ctx, 3980 const char *caller); 3981 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3982 int nr_cqe, int comp_vector, 3983 enum ib_poll_context poll_ctx) 3984 { 3985 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx, 3986 KBUILD_MODNAME); 3987 } 3988 3989 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private, 3990 int nr_cqe, enum ib_poll_context poll_ctx, 3991 const char *caller); 3992 3993 /** 3994 * ib_alloc_cq_any: Allocate kernel CQ 3995 * @dev: The IB device 3996 * @private: Private data attached to the CQE 3997 * @nr_cqe: Number of CQEs in the CQ 3998 * @poll_ctx: Context used for polling the CQ 3999 */ 4000 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev, 4001 void *private, int nr_cqe, 4002 enum ib_poll_context poll_ctx) 4003 { 4004 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx, 4005 KBUILD_MODNAME); 4006 } 4007 4008 void ib_free_cq(struct ib_cq *cq); 4009 int ib_process_cq_direct(struct ib_cq *cq, int budget); 4010 4011 /** 4012 * ib_create_cq - Creates a CQ on the specified device. 4013 * @device: The device on which to create the CQ. 4014 * @comp_handler: A user-specified callback that is invoked when a 4015 * completion event occurs on the CQ. 4016 * @event_handler: A user-specified callback that is invoked when an 4017 * asynchronous event not associated with a completion occurs on the CQ. 4018 * @cq_context: Context associated with the CQ returned to the user via 4019 * the associated completion and event handlers. 4020 * @cq_attr: The attributes the CQ should be created upon. 4021 * 4022 * Users can examine the cq structure to determine the actual CQ size. 4023 */ 4024 struct ib_cq *__ib_create_cq(struct ib_device *device, 4025 ib_comp_handler comp_handler, 4026 void (*event_handler)(struct ib_event *, void *), 4027 void *cq_context, 4028 const struct ib_cq_init_attr *cq_attr, 4029 const char *caller); 4030 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 4031 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) 4032 4033 /** 4034 * ib_resize_cq - Modifies the capacity of the CQ. 4035 * @cq: The CQ to resize. 4036 * @cqe: The minimum size of the CQ. 4037 * 4038 * Users can examine the cq structure to determine the actual CQ size. 4039 */ 4040 int ib_resize_cq(struct ib_cq *cq, int cqe); 4041 4042 /** 4043 * rdma_set_cq_moderation - Modifies moderation params of the CQ 4044 * @cq: The CQ to modify. 4045 * @cq_count: number of CQEs that will trigger an event 4046 * @cq_period: max period of time in usec before triggering an event 4047 * 4048 */ 4049 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 4050 4051 /** 4052 * ib_destroy_cq_user - Destroys the specified CQ. 4053 * @cq: The CQ to destroy. 4054 * @udata: Valid user data or NULL for kernel objects 4055 */ 4056 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); 4057 4058 /** 4059 * ib_destroy_cq - Destroys the specified kernel CQ. 4060 * @cq: The CQ to destroy. 4061 * 4062 * NOTE: for user cq use ib_destroy_cq_user with valid udata! 4063 */ 4064 static inline void ib_destroy_cq(struct ib_cq *cq) 4065 { 4066 int ret = ib_destroy_cq_user(cq, NULL); 4067 4068 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail"); 4069 } 4070 4071 /** 4072 * ib_poll_cq - poll a CQ for completion(s) 4073 * @cq:the CQ being polled 4074 * @num_entries:maximum number of completions to return 4075 * @wc:array of at least @num_entries &struct ib_wc where completions 4076 * will be returned 4077 * 4078 * Poll a CQ for (possibly multiple) completions. If the return value 4079 * is < 0, an error occurred. If the return value is >= 0, it is the 4080 * number of completions returned. If the return value is 4081 * non-negative and < num_entries, then the CQ was emptied. 4082 */ 4083 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 4084 struct ib_wc *wc) 4085 { 4086 return cq->device->ops.poll_cq(cq, num_entries, wc); 4087 } 4088 4089 /** 4090 * ib_req_notify_cq - Request completion notification on a CQ. 4091 * @cq: The CQ to generate an event for. 4092 * @flags: 4093 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 4094 * to request an event on the next solicited event or next work 4095 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 4096 * may also be |ed in to request a hint about missed events, as 4097 * described below. 4098 * 4099 * Return Value: 4100 * < 0 means an error occurred while requesting notification 4101 * == 0 means notification was requested successfully, and if 4102 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 4103 * were missed and it is safe to wait for another event. In 4104 * this case is it guaranteed that any work completions added 4105 * to the CQ since the last CQ poll will trigger a completion 4106 * notification event. 4107 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 4108 * in. It means that the consumer must poll the CQ again to 4109 * make sure it is empty to avoid missing an event because of a 4110 * race between requesting notification and an entry being 4111 * added to the CQ. This return value means it is possible 4112 * (but not guaranteed) that a work completion has been added 4113 * to the CQ since the last poll without triggering a 4114 * completion notification event. 4115 */ 4116 static inline int ib_req_notify_cq(struct ib_cq *cq, 4117 enum ib_cq_notify_flags flags) 4118 { 4119 return cq->device->ops.req_notify_cq(cq, flags); 4120 } 4121 4122 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe, 4123 int comp_vector_hint, 4124 enum ib_poll_context poll_ctx); 4125 4126 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe); 4127 4128 /* 4129 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to 4130 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual 4131 * address into the dma address. 4132 */ 4133 static inline bool ib_uses_virt_dma(struct ib_device *dev) 4134 { 4135 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device; 4136 } 4137 4138 /* 4139 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers. 4140 */ 4141 static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev) 4142 { 4143 if (ib_uses_virt_dma(dev)) 4144 return false; 4145 4146 return dma_pci_p2pdma_supported(dev->dma_device); 4147 } 4148 4149 /** 4150 * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer 4151 * @dma_addr: The DMA address 4152 * 4153 * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after 4154 * going through the dma_addr marshalling. 4155 */ 4156 static inline void *ib_virt_dma_to_ptr(u64 dma_addr) 4157 { 4158 /* virt_dma mode maps the kvs's directly into the dma addr */ 4159 return (void *)(uintptr_t)dma_addr; 4160 } 4161 4162 /** 4163 * ib_virt_dma_to_page - Convert a dma_addr to a struct page 4164 * @dma_addr: The DMA address 4165 * 4166 * Used by ib_uses_virt_dma() device to get back to the struct page after going 4167 * through the dma_addr marshalling. 4168 */ 4169 static inline struct page *ib_virt_dma_to_page(u64 dma_addr) 4170 { 4171 return virt_to_page(ib_virt_dma_to_ptr(dma_addr)); 4172 } 4173 4174 /** 4175 * ib_dma_mapping_error - check a DMA addr for error 4176 * @dev: The device for which the dma_addr was created 4177 * @dma_addr: The DMA address to check 4178 */ 4179 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 4180 { 4181 if (ib_uses_virt_dma(dev)) 4182 return 0; 4183 return dma_mapping_error(dev->dma_device, dma_addr); 4184 } 4185 4186 /** 4187 * ib_dma_map_single - Map a kernel virtual address to DMA address 4188 * @dev: The device for which the dma_addr is to be created 4189 * @cpu_addr: The kernel virtual address 4190 * @size: The size of the region in bytes 4191 * @direction: The direction of the DMA 4192 */ 4193 static inline u64 ib_dma_map_single(struct ib_device *dev, 4194 void *cpu_addr, size_t size, 4195 enum dma_data_direction direction) 4196 { 4197 if (ib_uses_virt_dma(dev)) 4198 return (uintptr_t)cpu_addr; 4199 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 4200 } 4201 4202 /** 4203 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 4204 * @dev: The device for which the DMA address was created 4205 * @addr: The DMA address 4206 * @size: The size of the region in bytes 4207 * @direction: The direction of the DMA 4208 */ 4209 static inline void ib_dma_unmap_single(struct ib_device *dev, 4210 u64 addr, size_t size, 4211 enum dma_data_direction direction) 4212 { 4213 if (!ib_uses_virt_dma(dev)) 4214 dma_unmap_single(dev->dma_device, addr, size, direction); 4215 } 4216 4217 /** 4218 * ib_dma_map_page - Map a physical page to DMA address 4219 * @dev: The device for which the dma_addr is to be created 4220 * @page: The page to be mapped 4221 * @offset: The offset within the page 4222 * @size: The size of the region in bytes 4223 * @direction: The direction of the DMA 4224 */ 4225 static inline u64 ib_dma_map_page(struct ib_device *dev, 4226 struct page *page, 4227 unsigned long offset, 4228 size_t size, 4229 enum dma_data_direction direction) 4230 { 4231 if (ib_uses_virt_dma(dev)) 4232 return (uintptr_t)(page_address(page) + offset); 4233 return dma_map_page(dev->dma_device, page, offset, size, direction); 4234 } 4235 4236 /** 4237 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 4238 * @dev: The device for which the DMA address was created 4239 * @addr: The DMA address 4240 * @size: The size of the region in bytes 4241 * @direction: The direction of the DMA 4242 */ 4243 static inline void ib_dma_unmap_page(struct ib_device *dev, 4244 u64 addr, size_t size, 4245 enum dma_data_direction direction) 4246 { 4247 if (!ib_uses_virt_dma(dev)) 4248 dma_unmap_page(dev->dma_device, addr, size, direction); 4249 } 4250 4251 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents); 4252 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 4253 struct scatterlist *sg, int nents, 4254 enum dma_data_direction direction, 4255 unsigned long dma_attrs) 4256 { 4257 if (ib_uses_virt_dma(dev)) 4258 return ib_dma_virt_map_sg(dev, sg, nents); 4259 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 4260 dma_attrs); 4261 } 4262 4263 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 4264 struct scatterlist *sg, int nents, 4265 enum dma_data_direction direction, 4266 unsigned long dma_attrs) 4267 { 4268 if (!ib_uses_virt_dma(dev)) 4269 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, 4270 dma_attrs); 4271 } 4272 4273 /** 4274 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses 4275 * @dev: The device for which the DMA addresses are to be created 4276 * @sg: The sg_table object describing the buffer 4277 * @direction: The direction of the DMA 4278 * @attrs: Optional DMA attributes for the map operation 4279 */ 4280 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev, 4281 struct sg_table *sgt, 4282 enum dma_data_direction direction, 4283 unsigned long dma_attrs) 4284 { 4285 int nents; 4286 4287 if (ib_uses_virt_dma(dev)) { 4288 nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents); 4289 if (!nents) 4290 return -EIO; 4291 sgt->nents = nents; 4292 return 0; 4293 } 4294 return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs); 4295 } 4296 4297 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev, 4298 struct sg_table *sgt, 4299 enum dma_data_direction direction, 4300 unsigned long dma_attrs) 4301 { 4302 if (!ib_uses_virt_dma(dev)) 4303 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs); 4304 } 4305 4306 /** 4307 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 4308 * @dev: The device for which the DMA addresses are to be created 4309 * @sg: The array of scatter/gather entries 4310 * @nents: The number of scatter/gather entries 4311 * @direction: The direction of the DMA 4312 */ 4313 static inline int ib_dma_map_sg(struct ib_device *dev, 4314 struct scatterlist *sg, int nents, 4315 enum dma_data_direction direction) 4316 { 4317 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0); 4318 } 4319 4320 /** 4321 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 4322 * @dev: The device for which the DMA addresses were created 4323 * @sg: The array of scatter/gather entries 4324 * @nents: The number of scatter/gather entries 4325 * @direction: The direction of the DMA 4326 */ 4327 static inline void ib_dma_unmap_sg(struct ib_device *dev, 4328 struct scatterlist *sg, int nents, 4329 enum dma_data_direction direction) 4330 { 4331 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0); 4332 } 4333 4334 /** 4335 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer 4336 * @dev: The device to query 4337 * 4338 * The returned value represents a size in bytes. 4339 */ 4340 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev) 4341 { 4342 if (ib_uses_virt_dma(dev)) 4343 return UINT_MAX; 4344 return dma_get_max_seg_size(dev->dma_device); 4345 } 4346 4347 /** 4348 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 4349 * @dev: The device for which the DMA address was created 4350 * @addr: The DMA address 4351 * @size: The size of the region in bytes 4352 * @dir: The direction of the DMA 4353 */ 4354 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 4355 u64 addr, 4356 size_t size, 4357 enum dma_data_direction dir) 4358 { 4359 if (!ib_uses_virt_dma(dev)) 4360 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 4361 } 4362 4363 /** 4364 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 4365 * @dev: The device for which the DMA address was created 4366 * @addr: The DMA address 4367 * @size: The size of the region in bytes 4368 * @dir: The direction of the DMA 4369 */ 4370 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 4371 u64 addr, 4372 size_t size, 4373 enum dma_data_direction dir) 4374 { 4375 if (!ib_uses_virt_dma(dev)) 4376 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 4377 } 4378 4379 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel 4380 * space. This function should be called when 'current' is the owning MM. 4381 */ 4382 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 4383 u64 virt_addr, int mr_access_flags); 4384 4385 /* ib_advise_mr - give an advice about an address range in a memory region */ 4386 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 4387 u32 flags, struct ib_sge *sg_list, u32 num_sge); 4388 /** 4389 * ib_dereg_mr_user - Deregisters a memory region and removes it from the 4390 * HCA translation table. 4391 * @mr: The memory region to deregister. 4392 * @udata: Valid user data or NULL for kernel object 4393 * 4394 * This function can fail, if the memory region has memory windows bound to it. 4395 */ 4396 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); 4397 4398 /** 4399 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the 4400 * HCA translation table. 4401 * @mr: The memory region to deregister. 4402 * 4403 * This function can fail, if the memory region has memory windows bound to it. 4404 * 4405 * NOTE: for user mr use ib_dereg_mr_user with valid udata! 4406 */ 4407 static inline int ib_dereg_mr(struct ib_mr *mr) 4408 { 4409 return ib_dereg_mr_user(mr, NULL); 4410 } 4411 4412 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 4413 u32 max_num_sg); 4414 4415 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 4416 u32 max_num_data_sg, 4417 u32 max_num_meta_sg); 4418 4419 /** 4420 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 4421 * R_Key and L_Key. 4422 * @mr - struct ib_mr pointer to be updated. 4423 * @newkey - new key to be used. 4424 */ 4425 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 4426 { 4427 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 4428 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 4429 } 4430 4431 /** 4432 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 4433 * for calculating a new rkey for type 2 memory windows. 4434 * @rkey - the rkey to increment. 4435 */ 4436 static inline u32 ib_inc_rkey(u32 rkey) 4437 { 4438 const u32 mask = 0x000000ff; 4439 return ((rkey + 1) & mask) | (rkey & ~mask); 4440 } 4441 4442 /** 4443 * ib_attach_mcast - Attaches the specified QP to a multicast group. 4444 * @qp: QP to attach to the multicast group. The QP must be type 4445 * IB_QPT_UD. 4446 * @gid: Multicast group GID. 4447 * @lid: Multicast group LID in host byte order. 4448 * 4449 * In order to send and receive multicast packets, subnet 4450 * administration must have created the multicast group and configured 4451 * the fabric appropriately. The port associated with the specified 4452 * QP must also be a member of the multicast group. 4453 */ 4454 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4455 4456 /** 4457 * ib_detach_mcast - Detaches the specified QP from a multicast group. 4458 * @qp: QP to detach from the multicast group. 4459 * @gid: Multicast group GID. 4460 * @lid: Multicast group LID in host byte order. 4461 */ 4462 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4463 4464 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device, 4465 struct inode *inode, struct ib_udata *udata); 4466 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata); 4467 4468 static inline int ib_check_mr_access(struct ib_device *ib_dev, 4469 unsigned int flags) 4470 { 4471 u64 device_cap = ib_dev->attrs.device_cap_flags; 4472 4473 /* 4474 * Local write permission is required if remote write or 4475 * remote atomic permission is also requested. 4476 */ 4477 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 4478 !(flags & IB_ACCESS_LOCAL_WRITE)) 4479 return -EINVAL; 4480 4481 if (flags & ~IB_ACCESS_SUPPORTED) 4482 return -EINVAL; 4483 4484 if (flags & IB_ACCESS_ON_DEMAND && 4485 !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING)) 4486 return -EOPNOTSUPP; 4487 4488 if ((flags & IB_ACCESS_FLUSH_GLOBAL && 4489 !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) || 4490 (flags & IB_ACCESS_FLUSH_PERSISTENT && 4491 !(device_cap & IB_DEVICE_FLUSH_PERSISTENT))) 4492 return -EOPNOTSUPP; 4493 4494 return 0; 4495 } 4496 4497 static inline bool ib_access_writable(int access_flags) 4498 { 4499 /* 4500 * We have writable memory backing the MR if any of the following 4501 * access flags are set. "Local write" and "remote write" obviously 4502 * require write access. "Remote atomic" can do things like fetch and 4503 * add, which will modify memory, and "MW bind" can change permissions 4504 * by binding a window. 4505 */ 4506 return access_flags & 4507 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 4508 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 4509 } 4510 4511 /** 4512 * ib_check_mr_status: lightweight check of MR status. 4513 * This routine may provide status checks on a selected 4514 * ib_mr. first use is for signature status check. 4515 * 4516 * @mr: A memory region. 4517 * @check_mask: Bitmask of which checks to perform from 4518 * ib_mr_status_check enumeration. 4519 * @mr_status: The container of relevant status checks. 4520 * failed checks will be indicated in the status bitmask 4521 * and the relevant info shall be in the error item. 4522 */ 4523 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 4524 struct ib_mr_status *mr_status); 4525 4526 /** 4527 * ib_device_try_get: Hold a registration lock 4528 * device: The device to lock 4529 * 4530 * A device under an active registration lock cannot become unregistered. It 4531 * is only possible to obtain a registration lock on a device that is fully 4532 * registered, otherwise this function returns false. 4533 * 4534 * The registration lock is only necessary for actions which require the 4535 * device to still be registered. Uses that only require the device pointer to 4536 * be valid should use get_device(&ibdev->dev) to hold the memory. 4537 * 4538 */ 4539 static inline bool ib_device_try_get(struct ib_device *dev) 4540 { 4541 return refcount_inc_not_zero(&dev->refcount); 4542 } 4543 4544 void ib_device_put(struct ib_device *device); 4545 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 4546 enum rdma_driver_id driver_id); 4547 struct ib_device *ib_device_get_by_name(const char *name, 4548 enum rdma_driver_id driver_id); 4549 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port, 4550 u16 pkey, const union ib_gid *gid, 4551 const struct sockaddr *addr); 4552 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 4553 unsigned int port); 4554 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev, 4555 u32 port); 4556 int ib_query_netdev_port(struct ib_device *ibdev, struct net_device *ndev, 4557 u32 *port); 4558 4559 static inline enum ib_port_state ib_get_curr_port_state(struct net_device *net_dev) 4560 { 4561 return (netif_running(net_dev) && netif_carrier_ok(net_dev)) ? 4562 IB_PORT_ACTIVE : IB_PORT_DOWN; 4563 } 4564 4565 void ib_dispatch_port_state_event(struct ib_device *ibdev, 4566 struct net_device *ndev); 4567 struct ib_wq *ib_create_wq(struct ib_pd *pd, 4568 struct ib_wq_init_attr *init_attr); 4569 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata); 4570 4571 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4572 unsigned int *sg_offset, unsigned int page_size); 4573 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 4574 int data_sg_nents, unsigned int *data_sg_offset, 4575 struct scatterlist *meta_sg, int meta_sg_nents, 4576 unsigned int *meta_sg_offset, unsigned int page_size); 4577 4578 static inline int 4579 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4580 unsigned int *sg_offset, unsigned int page_size) 4581 { 4582 int n; 4583 4584 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 4585 mr->iova = 0; 4586 4587 return n; 4588 } 4589 4590 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 4591 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 4592 4593 void ib_drain_rq(struct ib_qp *qp); 4594 void ib_drain_sq(struct ib_qp *qp); 4595 void ib_drain_qp(struct ib_qp *qp); 4596 4597 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, 4598 u8 *width); 4599 4600 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 4601 { 4602 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 4603 return attr->roce.dmac; 4604 return NULL; 4605 } 4606 4607 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 4608 { 4609 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4610 attr->ib.dlid = (u16)dlid; 4611 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4612 attr->opa.dlid = dlid; 4613 } 4614 4615 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 4616 { 4617 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4618 return attr->ib.dlid; 4619 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4620 return attr->opa.dlid; 4621 return 0; 4622 } 4623 4624 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 4625 { 4626 attr->sl = sl; 4627 } 4628 4629 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 4630 { 4631 return attr->sl; 4632 } 4633 4634 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 4635 u8 src_path_bits) 4636 { 4637 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4638 attr->ib.src_path_bits = src_path_bits; 4639 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4640 attr->opa.src_path_bits = src_path_bits; 4641 } 4642 4643 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 4644 { 4645 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4646 return attr->ib.src_path_bits; 4647 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4648 return attr->opa.src_path_bits; 4649 return 0; 4650 } 4651 4652 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 4653 bool make_grd) 4654 { 4655 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4656 attr->opa.make_grd = make_grd; 4657 } 4658 4659 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 4660 { 4661 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4662 return attr->opa.make_grd; 4663 return false; 4664 } 4665 4666 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num) 4667 { 4668 attr->port_num = port_num; 4669 } 4670 4671 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 4672 { 4673 return attr->port_num; 4674 } 4675 4676 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 4677 u8 static_rate) 4678 { 4679 attr->static_rate = static_rate; 4680 } 4681 4682 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 4683 { 4684 return attr->static_rate; 4685 } 4686 4687 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 4688 enum ib_ah_flags flag) 4689 { 4690 attr->ah_flags = flag; 4691 } 4692 4693 static inline enum ib_ah_flags 4694 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 4695 { 4696 return attr->ah_flags; 4697 } 4698 4699 static inline const struct ib_global_route 4700 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 4701 { 4702 return &attr->grh; 4703 } 4704 4705 /*To retrieve and modify the grh */ 4706 static inline struct ib_global_route 4707 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 4708 { 4709 return &attr->grh; 4710 } 4711 4712 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 4713 { 4714 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4715 4716 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 4717 } 4718 4719 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 4720 __be64 prefix) 4721 { 4722 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4723 4724 grh->dgid.global.subnet_prefix = prefix; 4725 } 4726 4727 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 4728 __be64 if_id) 4729 { 4730 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4731 4732 grh->dgid.global.interface_id = if_id; 4733 } 4734 4735 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 4736 union ib_gid *dgid, u32 flow_label, 4737 u8 sgid_index, u8 hop_limit, 4738 u8 traffic_class) 4739 { 4740 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4741 4742 attr->ah_flags = IB_AH_GRH; 4743 if (dgid) 4744 grh->dgid = *dgid; 4745 grh->flow_label = flow_label; 4746 grh->sgid_index = sgid_index; 4747 grh->hop_limit = hop_limit; 4748 grh->traffic_class = traffic_class; 4749 grh->sgid_attr = NULL; 4750 } 4751 4752 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); 4753 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 4754 u32 flow_label, u8 hop_limit, u8 traffic_class, 4755 const struct ib_gid_attr *sgid_attr); 4756 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 4757 const struct rdma_ah_attr *src); 4758 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 4759 const struct rdma_ah_attr *new); 4760 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); 4761 4762 /** 4763 * rdma_ah_find_type - Return address handle type. 4764 * 4765 * @dev: Device to be checked 4766 * @port_num: Port number 4767 */ 4768 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 4769 u32 port_num) 4770 { 4771 if (rdma_protocol_roce(dev, port_num)) 4772 return RDMA_AH_ATTR_TYPE_ROCE; 4773 if (rdma_protocol_ib(dev, port_num)) { 4774 if (rdma_cap_opa_ah(dev, port_num)) 4775 return RDMA_AH_ATTR_TYPE_OPA; 4776 return RDMA_AH_ATTR_TYPE_IB; 4777 } 4778 if (dev->type == RDMA_DEVICE_TYPE_SMI) 4779 return RDMA_AH_ATTR_TYPE_IB; 4780 4781 return RDMA_AH_ATTR_TYPE_UNDEFINED; 4782 } 4783 4784 /** 4785 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 4786 * In the current implementation the only way to 4787 * get the 32bit lid is from other sources for OPA. 4788 * For IB, lids will always be 16bits so cast the 4789 * value accordingly. 4790 * 4791 * @lid: A 32bit LID 4792 */ 4793 static inline u16 ib_lid_cpu16(u32 lid) 4794 { 4795 WARN_ON_ONCE(lid & 0xFFFF0000); 4796 return (u16)lid; 4797 } 4798 4799 /** 4800 * ib_lid_be16 - Return lid in 16bit BE encoding. 4801 * 4802 * @lid: A 32bit LID 4803 */ 4804 static inline __be16 ib_lid_be16(u32 lid) 4805 { 4806 WARN_ON_ONCE(lid & 0xFFFF0000); 4807 return cpu_to_be16((u16)lid); 4808 } 4809 4810 /** 4811 * ib_get_vector_affinity - Get the affinity mappings of a given completion 4812 * vector 4813 * @device: the rdma device 4814 * @comp_vector: index of completion vector 4815 * 4816 * Returns NULL on failure, otherwise a corresponding cpu map of the 4817 * completion vector (returns all-cpus map if the device driver doesn't 4818 * implement get_vector_affinity). 4819 */ 4820 static inline const struct cpumask * 4821 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 4822 { 4823 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 4824 !device->ops.get_vector_affinity) 4825 return NULL; 4826 4827 return device->ops.get_vector_affinity(device, comp_vector); 4828 4829 } 4830 4831 /** 4832 * rdma_roce_rescan_device - Rescan all of the network devices in the system 4833 * and add their gids, as needed, to the relevant RoCE devices. 4834 * 4835 * @device: the rdma device 4836 */ 4837 void rdma_roce_rescan_device(struct ib_device *ibdev); 4838 void rdma_roce_rescan_port(struct ib_device *ib_dev, u32 port); 4839 void roce_del_all_netdev_gids(struct ib_device *ib_dev, 4840 u32 port, struct net_device *ndev); 4841 4842 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 4843 4844 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS) 4845 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 4846 bool rdma_uattrs_has_raw_cap(const struct uverbs_attr_bundle *attrs); 4847 #else 4848 static inline int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs) 4849 { 4850 return 0; 4851 } 4852 static inline bool 4853 rdma_uattrs_has_raw_cap(const struct uverbs_attr_bundle *attrs) 4854 { 4855 return false; 4856 } 4857 #endif 4858 4859 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num, 4860 enum rdma_netdev_t type, const char *name, 4861 unsigned char name_assign_type, 4862 void (*setup)(struct net_device *)); 4863 4864 int rdma_init_netdev(struct ib_device *device, u32 port_num, 4865 enum rdma_netdev_t type, const char *name, 4866 unsigned char name_assign_type, 4867 void (*setup)(struct net_device *), 4868 struct net_device *netdev); 4869 4870 /** 4871 * rdma_device_to_ibdev - Get ib_device pointer from device pointer 4872 * 4873 * @device: device pointer for which ib_device pointer to retrieve 4874 * 4875 * rdma_device_to_ibdev() retrieves ib_device pointer from device. 4876 * 4877 */ 4878 static inline struct ib_device *rdma_device_to_ibdev(struct device *device) 4879 { 4880 struct ib_core_device *coredev = 4881 container_of(device, struct ib_core_device, dev); 4882 4883 return coredev->owner; 4884 } 4885 4886 /** 4887 * ibdev_to_node - return the NUMA node for a given ib_device 4888 * @dev: device to get the NUMA node for. 4889 */ 4890 static inline int ibdev_to_node(struct ib_device *ibdev) 4891 { 4892 struct device *parent = ibdev->dev.parent; 4893 4894 if (!parent) 4895 return NUMA_NO_NODE; 4896 return dev_to_node(parent); 4897 } 4898 4899 /** 4900 * rdma_device_to_drv_device - Helper macro to reach back to driver's 4901 * ib_device holder structure from device pointer. 4902 * 4903 * NOTE: New drivers should not make use of this API; This API is only for 4904 * existing drivers who have exposed sysfs entries using 4905 * ops->device_group. 4906 */ 4907 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \ 4908 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member) 4909 4910 bool rdma_dev_access_netns(const struct ib_device *device, 4911 const struct net *net); 4912 4913 bool rdma_dev_has_raw_cap(const struct ib_device *dev); 4914 static inline struct net *rdma_dev_net(struct ib_device *device) 4915 { 4916 return read_pnet(&device->coredev.rdma_net); 4917 } 4918 4919 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000) 4920 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF) 4921 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF) 4922 4923 /** 4924 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based 4925 * on the flow_label 4926 * 4927 * This function will convert the 20 bit flow_label input to a valid RoCE v2 4928 * UDP src port 14 bit value. All RoCE V2 drivers should use this same 4929 * convention. 4930 */ 4931 static inline u16 rdma_flow_label_to_udp_sport(u32 fl) 4932 { 4933 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000; 4934 4935 fl_low ^= fl_high >> 14; 4936 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN); 4937 } 4938 4939 /** 4940 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on 4941 * local and remote qpn values 4942 * 4943 * This function folded the multiplication results of two qpns, 24 bit each, 4944 * fields, and converts it to a 20 bit results. 4945 * 4946 * This function will create symmetric flow_label value based on the local 4947 * and remote qpn values. this will allow both the requester and responder 4948 * to calculate the same flow_label for a given connection. 4949 * 4950 * This helper function should be used by driver in case the upper layer 4951 * provide a zero flow_label value. This is to improve entropy of RDMA 4952 * traffic in the network. 4953 */ 4954 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn) 4955 { 4956 u64 v = (u64)lqpn * rqpn; 4957 4958 v ^= v >> 20; 4959 v ^= v >> 40; 4960 4961 return (u32)(v & IB_GRH_FLOWLABEL_MASK); 4962 } 4963 4964 /** 4965 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow 4966 * label. If flow label is not defined in GRH then 4967 * calculate it based on lqpn/rqpn. 4968 * 4969 * @fl: flow label from GRH 4970 * @lqpn: local qp number 4971 * @rqpn: remote qp number 4972 */ 4973 static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn) 4974 { 4975 if (!fl) 4976 fl = rdma_calc_flow_label(lqpn, rqpn); 4977 4978 return rdma_flow_label_to_udp_sport(fl); 4979 } 4980 4981 const struct ib_port_immutable* 4982 ib_port_immutable_read(struct ib_device *dev, unsigned int port); 4983 4984 /** ib_add_sub_device - Add a sub IB device on an existing one 4985 * 4986 * @parent: The IB device that needs to add a sub device 4987 * @type: The type of the new sub device 4988 * @name: The name of the new sub device 4989 * 4990 * 4991 * Return 0 on success, an error code otherwise 4992 */ 4993 int ib_add_sub_device(struct ib_device *parent, 4994 enum rdma_nl_dev_type type, 4995 const char *name); 4996 4997 4998 /** ib_del_sub_device_and_put - Delect an IB sub device while holding a 'get' 4999 * 5000 * @sub: The sub device that is going to be deleted 5001 * 5002 * Return 0 on success, an error code otherwise 5003 */ 5004 int ib_del_sub_device_and_put(struct ib_device *sub); 5005 5006 static inline void ib_mark_name_assigned_by_user(struct ib_device *ibdev) 5007 { 5008 ibdev->name_assign_type = RDMA_NAME_ASSIGN_TYPE_USER; 5009 } 5010 5011 #endif /* IB_VERBS_H */ 5012