xref: /linux/drivers/i2c/busses/i2c-tegra.c (revision 0ae982df67760cd08affa935c0fe86c8a9311797)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/i2c/busses/i2c-tegra.c
4  *
5  * Copyright (C) 2010 Google, Inc.
6  * Author: Colin Cross <ccross@android.com>
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/i2c.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/iopoll.h>
21 #include <linux/irq.h>
22 #include <linux/kernel.h>
23 #include <linux/ktime.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/pinctrl/consumer.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/reset.h>
30 
31 #define BYTES_PER_FIFO_WORD 4
32 
33 #define I2C_CNFG				0x000
34 #define I2C_CNFG_DEBOUNCE_CNT			GENMASK(14, 12)
35 #define I2C_CNFG_PACKET_MODE_EN			BIT(10)
36 #define I2C_CNFG_NEW_MASTER_FSM			BIT(11)
37 #define I2C_CNFG_MULTI_MASTER_MODE		BIT(17)
38 #define I2C_STATUS				0x01c
39 #define I2C_SL_CNFG				0x020
40 #define I2C_SL_CNFG_NACK			BIT(1)
41 #define I2C_SL_CNFG_NEWSL			BIT(2)
42 #define I2C_SL_ADDR1				0x02c
43 #define I2C_SL_ADDR2				0x030
44 #define I2C_TLOW_SEXT				0x034
45 #define I2C_TX_FIFO				0x050
46 #define I2C_RX_FIFO				0x054
47 #define I2C_PACKET_TRANSFER_STATUS		0x058
48 #define I2C_FIFO_CONTROL			0x05c
49 #define I2C_FIFO_CONTROL_TX_FLUSH		BIT(1)
50 #define I2C_FIFO_CONTROL_RX_FLUSH		BIT(0)
51 #define I2C_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 5)
52 #define I2C_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) << 2)
53 #define I2C_FIFO_STATUS				0x060
54 #define I2C_FIFO_STATUS_TX			GENMASK(7, 4)
55 #define I2C_FIFO_STATUS_RX			GENMASK(3, 0)
56 #define I2C_INT_MASK				0x064
57 #define I2C_INT_STATUS				0x068
58 #define I2C_INT_BUS_CLR_DONE			BIT(11)
59 #define I2C_INT_PACKET_XFER_COMPLETE		BIT(7)
60 #define I2C_INT_NO_ACK				BIT(3)
61 #define I2C_INT_ARBITRATION_LOST		BIT(2)
62 #define I2C_INT_TX_FIFO_DATA_REQ		BIT(1)
63 #define I2C_INT_RX_FIFO_DATA_REQ		BIT(0)
64 #define I2C_CLK_DIVISOR				0x06c
65 #define I2C_CLK_DIVISOR_STD_FAST_MODE		GENMASK(31, 16)
66 #define I2C_CLK_DIVISOR_HSMODE			GENMASK(15, 0)
67 
68 #define DVC_CTRL_REG1				0x000
69 #define DVC_CTRL_REG1_INTR_EN			BIT(10)
70 #define DVC_CTRL_REG3				0x008
71 #define DVC_CTRL_REG3_SW_PROG			BIT(26)
72 #define DVC_CTRL_REG3_I2C_DONE_INTR_EN		BIT(30)
73 #define DVC_STATUS				0x00c
74 #define DVC_STATUS_I2C_DONE_INTR		BIT(30)
75 
76 #define I2C_ERR_NONE				0x00
77 #define I2C_ERR_NO_ACK				BIT(0)
78 #define I2C_ERR_ARBITRATION_LOST		BIT(1)
79 #define I2C_ERR_UNKNOWN_INTERRUPT		BIT(2)
80 #define I2C_ERR_RX_BUFFER_OVERFLOW		BIT(3)
81 
82 #define PACKET_HEADER0_HEADER_SIZE		GENMASK(29, 28)
83 #define PACKET_HEADER0_PACKET_ID		GENMASK(23, 16)
84 #define PACKET_HEADER0_CONT_ID			GENMASK(15, 12)
85 #define PACKET_HEADER0_PROTOCOL			GENMASK(7, 4)
86 #define PACKET_HEADER0_PROTOCOL_I2C		1
87 
88 #define I2C_HEADER_CONT_ON_NAK			BIT(21)
89 #define I2C_HEADER_READ				BIT(19)
90 #define I2C_HEADER_10BIT_ADDR			BIT(18)
91 #define I2C_HEADER_IE_ENABLE			BIT(17)
92 #define I2C_HEADER_REPEAT_START			BIT(16)
93 #define I2C_HEADER_CONTINUE_XFER		BIT(15)
94 #define I2C_HEADER_SLAVE_ADDR_SHIFT		1
95 
96 #define I2C_BUS_CLEAR_CNFG			0x084
97 #define I2C_BC_SCLK_THRESHOLD			GENMASK(23, 16)
98 #define I2C_BC_STOP_COND			BIT(2)
99 #define I2C_BC_TERMINATE			BIT(1)
100 #define I2C_BC_ENABLE				BIT(0)
101 #define I2C_BUS_CLEAR_STATUS			0x088
102 #define I2C_BC_STATUS				BIT(0)
103 
104 #define I2C_CONFIG_LOAD				0x08c
105 #define I2C_MSTR_CONFIG_LOAD			BIT(0)
106 
107 #define I2C_CLKEN_OVERRIDE			0x090
108 #define I2C_MST_CORE_CLKEN_OVR			BIT(0)
109 
110 #define I2C_INTERFACE_TIMING_0			0x094
111 #define  I2C_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
112 #define  I2C_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
113 #define I2C_INTERFACE_TIMING_1			0x098
114 #define  I2C_INTERFACE_TIMING_TBUF		GENMASK(29, 24)
115 #define  I2C_INTERFACE_TIMING_TSU_STO		GENMASK(21, 16)
116 #define  I2C_INTERFACE_TIMING_THD_STA		GENMASK(13, 8)
117 #define  I2C_INTERFACE_TIMING_TSU_STA		GENMASK(5, 0)
118 
119 #define I2C_HS_INTERFACE_TIMING_0		0x09c
120 #define  I2C_HS_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
121 #define  I2C_HS_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
122 #define I2C_HS_INTERFACE_TIMING_1		0x0a0
123 #define  I2C_HS_INTERFACE_TIMING_TSU_STO	GENMASK(21, 16)
124 #define  I2C_HS_INTERFACE_TIMING_THD_STA	GENMASK(13, 8)
125 #define  I2C_HS_INTERFACE_TIMING_TSU_STA	GENMASK(5, 0)
126 
127 #define I2C_MST_FIFO_CONTROL			0x0b4
128 #define I2C_MST_FIFO_CONTROL_RX_FLUSH		BIT(0)
129 #define I2C_MST_FIFO_CONTROL_TX_FLUSH		BIT(1)
130 #define I2C_MST_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) <<  4)
131 #define I2C_MST_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 16)
132 
133 #define I2C_MST_FIFO_STATUS			0x0b8
134 #define I2C_MST_FIFO_STATUS_TX			GENMASK(23, 16)
135 #define I2C_MST_FIFO_STATUS_RX			GENMASK(7, 0)
136 
137 /* configuration load timeout in microseconds */
138 #define I2C_CONFIG_LOAD_TIMEOUT			1000000
139 
140 /* packet header size in bytes */
141 #define I2C_PACKET_HEADER_SIZE			12
142 
143 /*
144  * I2C Controller will use PIO mode for transfers up to 32 bytes in order to
145  * avoid DMA overhead, otherwise external APB DMA controller will be used.
146  * Note that the actual MAX PIO length is 20 bytes because 32 bytes include
147  * I2C_PACKET_HEADER_SIZE.
148  */
149 #define I2C_PIO_MODE_PREFERRED_LEN		32
150 
151 /*
152  * msg_end_type: The bus control which needs to be sent at end of transfer.
153  * @MSG_END_STOP: Send stop pulse.
154  * @MSG_END_REPEAT_START: Send repeat-start.
155  * @MSG_END_CONTINUE: Don't send stop or repeat-start.
156  */
157 enum msg_end_type {
158 	MSG_END_STOP,
159 	MSG_END_REPEAT_START,
160 	MSG_END_CONTINUE,
161 };
162 
163 /**
164  * struct tegra_i2c_hw_feature : per hardware generation features
165  * @has_continue_xfer_support: continue-transfer supported
166  * @has_per_pkt_xfer_complete_irq: Has enable/disable capability for transfer
167  *		completion interrupt on per packet basis.
168  * @has_config_load_reg: Has the config load register to load the new
169  *		configuration.
170  * @clk_divisor_hs_mode: Clock divisor in HS mode.
171  * @clk_divisor_std_mode: Clock divisor in standard mode. It is
172  *		applicable if there is no fast clock source i.e. single clock
173  *		source.
174  * @clk_divisor_fast_mode: Clock divisor in fast mode. It is
175  *		applicable if there is no fast clock source i.e. single clock
176  *		source.
177  * @clk_divisor_fast_plus_mode: Clock divisor in fast mode plus. It is
178  *		applicable if there is no fast clock source (i.e. single
179  *		clock source).
180  * @has_multi_master_mode: The I2C controller supports running in single-master
181  *		or multi-master mode.
182  * @has_slcg_override_reg: The I2C controller supports a register that
183  *		overrides the second level clock gating.
184  * @has_mst_fifo: The I2C controller contains the new MST FIFO interface that
185  *		provides additional features and allows for longer messages to
186  *		be transferred in one go.
187  * @quirks: I2C adapter quirks for limiting write/read transfer size and not
188  *		allowing 0 length transfers.
189  * @supports_bus_clear: Bus Clear support to recover from bus hang during
190  *		SDA stuck low from device for some unknown reasons.
191  * @has_apb_dma: Support of APBDMA on corresponding Tegra chip.
192  * @tlow_std_mode: Low period of the clock in standard mode.
193  * @thigh_std_mode: High period of the clock in standard mode.
194  * @tlow_fast_fastplus_mode: Low period of the clock in fast/fast-plus modes.
195  * @thigh_fast_fastplus_mode: High period of the clock in fast/fast-plus modes.
196  * @setup_hold_time_std_mode: Setup and hold time for start and stop conditions
197  *		in standard mode.
198  * @setup_hold_time_fast_fast_plus_mode: Setup and hold time for start and stop
199  *		conditions in fast/fast-plus modes.
200  * @setup_hold_time_hs_mode: Setup and hold time for start and stop conditions
201  *		in HS mode.
202  * @has_interface_timing_reg: Has interface timing register to program the tuned
203  *		timing settings.
204  */
205 struct tegra_i2c_hw_feature {
206 	bool has_continue_xfer_support;
207 	bool has_per_pkt_xfer_complete_irq;
208 	bool has_config_load_reg;
209 	u32 clk_divisor_hs_mode;
210 	u32 clk_divisor_std_mode;
211 	u32 clk_divisor_fast_mode;
212 	u32 clk_divisor_fast_plus_mode;
213 	bool has_multi_master_mode;
214 	bool has_slcg_override_reg;
215 	bool has_mst_fifo;
216 	const struct i2c_adapter_quirks *quirks;
217 	bool supports_bus_clear;
218 	bool has_apb_dma;
219 	u32 tlow_std_mode;
220 	u32 thigh_std_mode;
221 	u32 tlow_fast_fastplus_mode;
222 	u32 thigh_fast_fastplus_mode;
223 	u32 setup_hold_time_std_mode;
224 	u32 setup_hold_time_fast_fast_plus_mode;
225 	u32 setup_hold_time_hs_mode;
226 	bool has_interface_timing_reg;
227 };
228 
229 /**
230  * struct tegra_i2c_dev - per device I2C context
231  * @dev: device reference for power management
232  * @hw: Tegra I2C HW feature
233  * @adapter: core I2C layer adapter information
234  * @div_clk: clock reference for div clock of I2C controller
235  * @clocks: array of I2C controller clocks
236  * @nclocks: number of clocks in the array
237  * @rst: reset control for the I2C controller
238  * @base: ioremapped registers cookie
239  * @base_phys: physical base address of the I2C controller
240  * @cont_id: I2C controller ID, used for packet header
241  * @irq: IRQ number of transfer complete interrupt
242  * @is_dvc: identifies the DVC I2C controller, has a different register layout
243  * @is_vi: identifies the VI I2C controller, has a different register layout
244  * @msg_complete: transfer completion notifier
245  * @msg_buf_remaining: size of unsent data in the message buffer
246  * @msg_len: length of message in current transfer
247  * @msg_err: error code for completed message
248  * @msg_buf: pointer to current message data
249  * @msg_read: indicates that the transfer is a read access
250  * @timings: i2c timings information like bus frequency
251  * @multimaster_mode: indicates that I2C controller is in multi-master mode
252  * @dma_chan: DMA channel
253  * @dma_phys: handle to DMA resources
254  * @dma_buf: pointer to allocated DMA buffer
255  * @dma_buf_size: DMA buffer size
256  * @dma_dev: DMA device used for transfers
257  * @dma_mode: indicates active DMA transfer
258  * @dma_complete: DMA completion notifier
259  * @atomic_mode: indicates active atomic transfer
260  */
261 struct tegra_i2c_dev {
262 	struct device *dev;
263 	struct i2c_adapter adapter;
264 
265 	const struct tegra_i2c_hw_feature *hw;
266 	struct reset_control *rst;
267 	unsigned int cont_id;
268 	unsigned int irq;
269 
270 	phys_addr_t base_phys;
271 	void __iomem *base;
272 
273 	struct clk_bulk_data clocks[2];
274 	unsigned int nclocks;
275 
276 	struct clk *div_clk;
277 	struct i2c_timings timings;
278 
279 	struct completion msg_complete;
280 	size_t msg_buf_remaining;
281 	unsigned int msg_len;
282 	int msg_err;
283 	u8 *msg_buf;
284 
285 	struct completion dma_complete;
286 	struct dma_chan *dma_chan;
287 	unsigned int dma_buf_size;
288 	struct device *dma_dev;
289 	dma_addr_t dma_phys;
290 	void *dma_buf;
291 
292 	bool multimaster_mode;
293 	bool atomic_mode;
294 	bool dma_mode;
295 	bool msg_read;
296 	bool is_dvc;
297 	bool is_vi;
298 };
299 
300 #define IS_DVC(dev) (IS_ENABLED(CONFIG_ARCH_TEGRA_2x_SOC) && (dev)->is_dvc)
301 #define IS_VI(dev)  (IS_ENABLED(CONFIG_ARCH_TEGRA_210_SOC) && (dev)->is_vi)
302 
dvc_writel(struct tegra_i2c_dev * i2c_dev,u32 val,unsigned int reg)303 static void dvc_writel(struct tegra_i2c_dev *i2c_dev, u32 val,
304 		       unsigned int reg)
305 {
306 	writel_relaxed(val, i2c_dev->base + reg);
307 }
308 
dvc_readl(struct tegra_i2c_dev * i2c_dev,unsigned int reg)309 static u32 dvc_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
310 {
311 	return readl_relaxed(i2c_dev->base + reg);
312 }
313 
314 /*
315  * If necessary, i2c_writel() and i2c_readl() will offset the register
316  * in order to talk to the I2C block inside the DVC block.
317  */
tegra_i2c_reg_addr(struct tegra_i2c_dev * i2c_dev,unsigned int reg)318 static u32 tegra_i2c_reg_addr(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
319 {
320 	if (IS_DVC(i2c_dev))
321 		reg += (reg >= I2C_TX_FIFO) ? 0x10 : 0x40;
322 	else if (IS_VI(i2c_dev))
323 		reg = 0xc00 + (reg << 2);
324 
325 	return reg;
326 }
327 
i2c_writel(struct tegra_i2c_dev * i2c_dev,u32 val,unsigned int reg)328 static void i2c_writel(struct tegra_i2c_dev *i2c_dev, u32 val, unsigned int reg)
329 {
330 	writel_relaxed(val, i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
331 
332 	/* read back register to make sure that register writes completed */
333 	if (reg != I2C_TX_FIFO)
334 		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
335 	else if (IS_VI(i2c_dev))
336 		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, I2C_INT_STATUS));
337 }
338 
i2c_readl(struct tegra_i2c_dev * i2c_dev,unsigned int reg)339 static u32 i2c_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
340 {
341 	return readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
342 }
343 
i2c_writesl(struct tegra_i2c_dev * i2c_dev,void * data,unsigned int reg,unsigned int len)344 static void i2c_writesl(struct tegra_i2c_dev *i2c_dev, void *data,
345 			unsigned int reg, unsigned int len)
346 {
347 	writesl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
348 }
349 
i2c_writesl_vi(struct tegra_i2c_dev * i2c_dev,void * data,unsigned int reg,unsigned int len)350 static void i2c_writesl_vi(struct tegra_i2c_dev *i2c_dev, void *data,
351 			   unsigned int reg, unsigned int len)
352 {
353 	u32 *data32 = data;
354 
355 	/*
356 	 * VI I2C controller has known hardware bug where writes get stuck
357 	 * when immediate multiple writes happen to TX_FIFO register.
358 	 * Recommended software work around is to read I2C register after
359 	 * each write to TX_FIFO register to flush out the data.
360 	 */
361 	while (len--)
362 		i2c_writel(i2c_dev, *data32++, reg);
363 }
364 
i2c_readsl(struct tegra_i2c_dev * i2c_dev,void * data,unsigned int reg,unsigned int len)365 static void i2c_readsl(struct tegra_i2c_dev *i2c_dev, void *data,
366 		       unsigned int reg, unsigned int len)
367 {
368 	readsl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
369 }
370 
tegra_i2c_mask_irq(struct tegra_i2c_dev * i2c_dev,u32 mask)371 static void tegra_i2c_mask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
372 {
373 	u32 int_mask;
374 
375 	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) & ~mask;
376 	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
377 }
378 
tegra_i2c_unmask_irq(struct tegra_i2c_dev * i2c_dev,u32 mask)379 static void tegra_i2c_unmask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
380 {
381 	u32 int_mask;
382 
383 	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) | mask;
384 	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
385 }
386 
tegra_i2c_dma_complete(void * args)387 static void tegra_i2c_dma_complete(void *args)
388 {
389 	struct tegra_i2c_dev *i2c_dev = args;
390 
391 	complete(&i2c_dev->dma_complete);
392 }
393 
tegra_i2c_dma_submit(struct tegra_i2c_dev * i2c_dev,size_t len)394 static int tegra_i2c_dma_submit(struct tegra_i2c_dev *i2c_dev, size_t len)
395 {
396 	struct dma_async_tx_descriptor *dma_desc;
397 	enum dma_transfer_direction dir;
398 
399 	dev_dbg(i2c_dev->dev, "starting DMA for length: %zu\n", len);
400 
401 	reinit_completion(&i2c_dev->dma_complete);
402 
403 	dir = i2c_dev->msg_read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
404 
405 	dma_desc = dmaengine_prep_slave_single(i2c_dev->dma_chan, i2c_dev->dma_phys,
406 					       len, dir, DMA_PREP_INTERRUPT |
407 					       DMA_CTRL_ACK);
408 	if (!dma_desc) {
409 		dev_err(i2c_dev->dev, "failed to get %s DMA descriptor\n",
410 			i2c_dev->msg_read ? "RX" : "TX");
411 		return -EINVAL;
412 	}
413 
414 	dma_desc->callback = tegra_i2c_dma_complete;
415 	dma_desc->callback_param = i2c_dev;
416 
417 	dmaengine_submit(dma_desc);
418 	dma_async_issue_pending(i2c_dev->dma_chan);
419 
420 	return 0;
421 }
422 
tegra_i2c_release_dma(struct tegra_i2c_dev * i2c_dev)423 static void tegra_i2c_release_dma(struct tegra_i2c_dev *i2c_dev)
424 {
425 	if (i2c_dev->dma_buf) {
426 		dma_free_coherent(i2c_dev->dma_dev, i2c_dev->dma_buf_size,
427 				  i2c_dev->dma_buf, i2c_dev->dma_phys);
428 		i2c_dev->dma_buf = NULL;
429 	}
430 
431 	if (i2c_dev->dma_chan) {
432 		dma_release_channel(i2c_dev->dma_chan);
433 		i2c_dev->dma_chan = NULL;
434 	}
435 }
436 
tegra_i2c_init_dma(struct tegra_i2c_dev * i2c_dev)437 static int tegra_i2c_init_dma(struct tegra_i2c_dev *i2c_dev)
438 {
439 	dma_addr_t dma_phys;
440 	u32 *dma_buf;
441 	int err;
442 
443 	if (IS_VI(i2c_dev))
444 		return 0;
445 
446 	if (i2c_dev->hw->has_apb_dma) {
447 		if (!IS_ENABLED(CONFIG_TEGRA20_APB_DMA)) {
448 			dev_dbg(i2c_dev->dev, "APB DMA support not enabled\n");
449 			return 0;
450 		}
451 	} else if (!IS_ENABLED(CONFIG_TEGRA186_GPC_DMA)) {
452 		dev_dbg(i2c_dev->dev, "GPC DMA support not enabled\n");
453 		return 0;
454 	}
455 
456 	/*
457 	 * The same channel will be used for both RX and TX.
458 	 * Keeping the name as "tx" for backward compatibility
459 	 * with existing devicetrees.
460 	 */
461 	i2c_dev->dma_chan = dma_request_chan(i2c_dev->dev, "tx");
462 	if (IS_ERR(i2c_dev->dma_chan)) {
463 		err = PTR_ERR(i2c_dev->dma_chan);
464 		i2c_dev->dma_chan = NULL;
465 		goto err_out;
466 	}
467 
468 	i2c_dev->dma_dev = i2c_dev->dma_chan->device->dev;
469 	i2c_dev->dma_buf_size = i2c_dev->hw->quirks->max_write_len +
470 				I2C_PACKET_HEADER_SIZE;
471 
472 	dma_buf = dma_alloc_coherent(i2c_dev->dma_dev, i2c_dev->dma_buf_size,
473 				     &dma_phys, GFP_KERNEL | __GFP_NOWARN);
474 	if (!dma_buf) {
475 		dev_err(i2c_dev->dev, "failed to allocate DMA buffer\n");
476 		err = -ENOMEM;
477 		goto err_out;
478 	}
479 
480 	i2c_dev->dma_buf = dma_buf;
481 	i2c_dev->dma_phys = dma_phys;
482 
483 	return 0;
484 
485 err_out:
486 	tegra_i2c_release_dma(i2c_dev);
487 	if (err != -EPROBE_DEFER) {
488 		dev_err(i2c_dev->dev, "cannot use DMA: %d\n", err);
489 		dev_err(i2c_dev->dev, "falling back to PIO\n");
490 		return 0;
491 	}
492 
493 	return err;
494 }
495 
496 /*
497  * One of the Tegra I2C blocks is inside the DVC (Digital Voltage Controller)
498  * block.  This block is identical to the rest of the I2C blocks, except that
499  * it only supports master mode, it has registers moved around, and it needs
500  * some extra init to get it into I2C mode.  The register moves are handled
501  * by i2c_readl() and i2c_writel().
502  */
tegra_dvc_init(struct tegra_i2c_dev * i2c_dev)503 static void tegra_dvc_init(struct tegra_i2c_dev *i2c_dev)
504 {
505 	u32 val;
506 
507 	val = dvc_readl(i2c_dev, DVC_CTRL_REG3);
508 	val |= DVC_CTRL_REG3_SW_PROG;
509 	val |= DVC_CTRL_REG3_I2C_DONE_INTR_EN;
510 	dvc_writel(i2c_dev, val, DVC_CTRL_REG3);
511 
512 	val = dvc_readl(i2c_dev, DVC_CTRL_REG1);
513 	val |= DVC_CTRL_REG1_INTR_EN;
514 	dvc_writel(i2c_dev, val, DVC_CTRL_REG1);
515 }
516 
tegra_i2c_vi_init(struct tegra_i2c_dev * i2c_dev)517 static void tegra_i2c_vi_init(struct tegra_i2c_dev *i2c_dev)
518 {
519 	u32 value;
520 
521 	value = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, 2) |
522 		FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, 4);
523 	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_0);
524 
525 	value = FIELD_PREP(I2C_INTERFACE_TIMING_TBUF, 4) |
526 		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STO, 7) |
527 		FIELD_PREP(I2C_INTERFACE_TIMING_THD_STA, 4) |
528 		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STA, 4);
529 	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_1);
530 
531 	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_THIGH, 3) |
532 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TLOW, 8);
533 	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_0);
534 
535 	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STO, 11) |
536 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_THD_STA, 11) |
537 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STA, 11);
538 	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_1);
539 
540 	value = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND;
541 	i2c_writel(i2c_dev, value, I2C_BUS_CLEAR_CNFG);
542 
543 	i2c_writel(i2c_dev, 0x0, I2C_TLOW_SEXT);
544 }
545 
tegra_i2c_poll_register(struct tegra_i2c_dev * i2c_dev,u32 reg,u32 mask,u32 delay_us,u32 timeout_us)546 static int tegra_i2c_poll_register(struct tegra_i2c_dev *i2c_dev,
547 				   u32 reg, u32 mask, u32 delay_us,
548 				   u32 timeout_us)
549 {
550 	void __iomem *addr = i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg);
551 	u32 val;
552 
553 	if (!i2c_dev->atomic_mode)
554 		return readl_relaxed_poll_timeout(addr, val, !(val & mask),
555 						  delay_us, timeout_us);
556 
557 	return readl_relaxed_poll_timeout_atomic(addr, val, !(val & mask),
558 						 delay_us, timeout_us);
559 }
560 
tegra_i2c_flush_fifos(struct tegra_i2c_dev * i2c_dev)561 static int tegra_i2c_flush_fifos(struct tegra_i2c_dev *i2c_dev)
562 {
563 	u32 mask, val, offset;
564 	int err;
565 
566 	if (i2c_dev->hw->has_mst_fifo) {
567 		mask = I2C_MST_FIFO_CONTROL_TX_FLUSH |
568 		       I2C_MST_FIFO_CONTROL_RX_FLUSH;
569 		offset = I2C_MST_FIFO_CONTROL;
570 	} else {
571 		mask = I2C_FIFO_CONTROL_TX_FLUSH |
572 		       I2C_FIFO_CONTROL_RX_FLUSH;
573 		offset = I2C_FIFO_CONTROL;
574 	}
575 
576 	val = i2c_readl(i2c_dev, offset);
577 	val |= mask;
578 	i2c_writel(i2c_dev, val, offset);
579 
580 	err = tegra_i2c_poll_register(i2c_dev, offset, mask, 1000, 1000000);
581 	if (err) {
582 		dev_err(i2c_dev->dev, "failed to flush FIFO\n");
583 		return err;
584 	}
585 
586 	return 0;
587 }
588 
tegra_i2c_wait_for_config_load(struct tegra_i2c_dev * i2c_dev)589 static int tegra_i2c_wait_for_config_load(struct tegra_i2c_dev *i2c_dev)
590 {
591 	int err;
592 
593 	if (!i2c_dev->hw->has_config_load_reg)
594 		return 0;
595 
596 	i2c_writel(i2c_dev, I2C_MSTR_CONFIG_LOAD, I2C_CONFIG_LOAD);
597 
598 	err = tegra_i2c_poll_register(i2c_dev, I2C_CONFIG_LOAD, 0xffffffff,
599 				      1000, I2C_CONFIG_LOAD_TIMEOUT);
600 	if (err) {
601 		dev_err(i2c_dev->dev, "failed to load config\n");
602 		return err;
603 	}
604 
605 	return 0;
606 }
607 
tegra_i2c_init(struct tegra_i2c_dev * i2c_dev)608 static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev)
609 {
610 	u32 val, clk_divisor, clk_multiplier, tsu_thd, tlow, thigh, non_hs_mode;
611 	struct i2c_timings *t = &i2c_dev->timings;
612 	int err;
613 
614 	/*
615 	 * The reset shouldn't ever fail in practice. The failure will be a
616 	 * sign of a severe problem that needs to be resolved. Still we don't
617 	 * want to fail the initialization completely because this may break
618 	 * kernel boot up since voltage regulators use I2C. Hence, we will
619 	 * emit a noisy warning on error, which won't stay unnoticed and
620 	 * won't hose machine entirely.
621 	 */
622 	err = device_reset(i2c_dev->dev);
623 	WARN_ON_ONCE(err);
624 
625 	if (IS_DVC(i2c_dev))
626 		tegra_dvc_init(i2c_dev);
627 
628 	val = I2C_CNFG_NEW_MASTER_FSM | I2C_CNFG_PACKET_MODE_EN |
629 	      FIELD_PREP(I2C_CNFG_DEBOUNCE_CNT, 2);
630 
631 	if (i2c_dev->hw->has_multi_master_mode)
632 		val |= I2C_CNFG_MULTI_MASTER_MODE;
633 
634 	i2c_writel(i2c_dev, val, I2C_CNFG);
635 	i2c_writel(i2c_dev, 0, I2C_INT_MASK);
636 
637 	if (IS_VI(i2c_dev))
638 		tegra_i2c_vi_init(i2c_dev);
639 
640 	switch (t->bus_freq_hz) {
641 	case I2C_MAX_STANDARD_MODE_FREQ + 1 ... I2C_MAX_FAST_MODE_PLUS_FREQ:
642 	default:
643 		tlow = i2c_dev->hw->tlow_fast_fastplus_mode;
644 		thigh = i2c_dev->hw->thigh_fast_fastplus_mode;
645 		tsu_thd = i2c_dev->hw->setup_hold_time_fast_fast_plus_mode;
646 
647 		if (t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ)
648 			non_hs_mode = i2c_dev->hw->clk_divisor_fast_plus_mode;
649 		else
650 			non_hs_mode = i2c_dev->hw->clk_divisor_fast_mode;
651 		break;
652 
653 	case 0 ... I2C_MAX_STANDARD_MODE_FREQ:
654 		tlow = i2c_dev->hw->tlow_std_mode;
655 		thigh = i2c_dev->hw->thigh_std_mode;
656 		tsu_thd = i2c_dev->hw->setup_hold_time_std_mode;
657 		non_hs_mode = i2c_dev->hw->clk_divisor_std_mode;
658 		break;
659 	}
660 
661 	/* make sure clock divisor programmed correctly */
662 	clk_divisor = FIELD_PREP(I2C_CLK_DIVISOR_HSMODE,
663 				 i2c_dev->hw->clk_divisor_hs_mode) |
664 		      FIELD_PREP(I2C_CLK_DIVISOR_STD_FAST_MODE, non_hs_mode);
665 	i2c_writel(i2c_dev, clk_divisor, I2C_CLK_DIVISOR);
666 
667 	if (i2c_dev->hw->has_interface_timing_reg) {
668 		val = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, thigh) |
669 		      FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, tlow);
670 		i2c_writel(i2c_dev, val, I2C_INTERFACE_TIMING_0);
671 	}
672 
673 	/*
674 	 * Configure setup and hold times only when tsu_thd is non-zero.
675 	 * Otherwise, preserve the chip default values.
676 	 */
677 	if (i2c_dev->hw->has_interface_timing_reg && tsu_thd)
678 		i2c_writel(i2c_dev, tsu_thd, I2C_INTERFACE_TIMING_1);
679 
680 	clk_multiplier = (tlow + thigh + 2) * (non_hs_mode + 1);
681 
682 	err = clk_set_rate(i2c_dev->div_clk,
683 			   t->bus_freq_hz * clk_multiplier);
684 	if (err) {
685 		dev_err(i2c_dev->dev, "failed to set div-clk rate: %d\n", err);
686 		return err;
687 	}
688 
689 	if (!IS_DVC(i2c_dev) && !IS_VI(i2c_dev)) {
690 		u32 sl_cfg = i2c_readl(i2c_dev, I2C_SL_CNFG);
691 
692 		sl_cfg |= I2C_SL_CNFG_NACK | I2C_SL_CNFG_NEWSL;
693 		i2c_writel(i2c_dev, sl_cfg, I2C_SL_CNFG);
694 		i2c_writel(i2c_dev, 0xfc, I2C_SL_ADDR1);
695 		i2c_writel(i2c_dev, 0x00, I2C_SL_ADDR2);
696 	}
697 
698 	err = tegra_i2c_flush_fifos(i2c_dev);
699 	if (err)
700 		return err;
701 
702 	if (i2c_dev->multimaster_mode && i2c_dev->hw->has_slcg_override_reg)
703 		i2c_writel(i2c_dev, I2C_MST_CORE_CLKEN_OVR, I2C_CLKEN_OVERRIDE);
704 
705 	err = tegra_i2c_wait_for_config_load(i2c_dev);
706 	if (err)
707 		return err;
708 
709 	return 0;
710 }
711 
tegra_i2c_disable_packet_mode(struct tegra_i2c_dev * i2c_dev)712 static int tegra_i2c_disable_packet_mode(struct tegra_i2c_dev *i2c_dev)
713 {
714 	u32 cnfg;
715 
716 	/*
717 	 * NACK interrupt is generated before the I2C controller generates
718 	 * the STOP condition on the bus.  So, wait for 2 clock periods
719 	 * before disabling the controller so that the STOP condition has
720 	 * been delivered properly.
721 	 */
722 	udelay(DIV_ROUND_UP(2 * 1000000, i2c_dev->timings.bus_freq_hz));
723 
724 	cnfg = i2c_readl(i2c_dev, I2C_CNFG);
725 	if (cnfg & I2C_CNFG_PACKET_MODE_EN)
726 		i2c_writel(i2c_dev, cnfg & ~I2C_CNFG_PACKET_MODE_EN, I2C_CNFG);
727 
728 	return tegra_i2c_wait_for_config_load(i2c_dev);
729 }
730 
tegra_i2c_empty_rx_fifo(struct tegra_i2c_dev * i2c_dev)731 static int tegra_i2c_empty_rx_fifo(struct tegra_i2c_dev *i2c_dev)
732 {
733 	size_t buf_remaining = i2c_dev->msg_buf_remaining;
734 	unsigned int words_to_transfer, rx_fifo_avail;
735 	u8 *buf = i2c_dev->msg_buf;
736 	u32 val;
737 
738 	/*
739 	 * Catch overflow due to message fully sent before the check for
740 	 * RX FIFO availability.
741 	 */
742 	if (WARN_ON_ONCE(!(i2c_dev->msg_buf_remaining)))
743 		return -EINVAL;
744 
745 	if (i2c_dev->hw->has_mst_fifo) {
746 		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
747 		rx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_RX, val);
748 	} else {
749 		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
750 		rx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_RX, val);
751 	}
752 
753 	/* round down to exclude partial word at the end of buffer */
754 	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
755 	if (words_to_transfer > rx_fifo_avail)
756 		words_to_transfer = rx_fifo_avail;
757 
758 	i2c_readsl(i2c_dev, buf, I2C_RX_FIFO, words_to_transfer);
759 
760 	buf += words_to_transfer * BYTES_PER_FIFO_WORD;
761 	buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
762 	rx_fifo_avail -= words_to_transfer;
763 
764 	/*
765 	 * If there is a partial word at the end of buffer, handle it
766 	 * manually to prevent overwriting past the end of buffer.
767 	 */
768 	if (rx_fifo_avail > 0 && buf_remaining > 0) {
769 		/*
770 		 * buf_remaining > 3 check not needed as rx_fifo_avail == 0
771 		 * when (words_to_transfer was > rx_fifo_avail) earlier
772 		 * in this function.
773 		 */
774 		val = i2c_readl(i2c_dev, I2C_RX_FIFO);
775 		val = cpu_to_le32(val);
776 		memcpy(buf, &val, buf_remaining);
777 		buf_remaining = 0;
778 		rx_fifo_avail--;
779 	}
780 
781 	/* RX FIFO must be drained, otherwise it's an Overflow case. */
782 	if (WARN_ON_ONCE(rx_fifo_avail))
783 		return -EINVAL;
784 
785 	i2c_dev->msg_buf_remaining = buf_remaining;
786 	i2c_dev->msg_buf = buf;
787 
788 	return 0;
789 }
790 
tegra_i2c_fill_tx_fifo(struct tegra_i2c_dev * i2c_dev)791 static int tegra_i2c_fill_tx_fifo(struct tegra_i2c_dev *i2c_dev)
792 {
793 	size_t buf_remaining = i2c_dev->msg_buf_remaining;
794 	unsigned int words_to_transfer, tx_fifo_avail;
795 	u8 *buf = i2c_dev->msg_buf;
796 	u32 val;
797 
798 	if (i2c_dev->hw->has_mst_fifo) {
799 		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
800 		tx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_TX, val);
801 	} else {
802 		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
803 		tx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_TX, val);
804 	}
805 
806 	/* round down to exclude partial word at the end of buffer */
807 	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
808 
809 	/*
810 	 * This hunk pushes 4 bytes at a time into the TX FIFO.
811 	 *
812 	 * It's very common to have < 4 bytes, hence there is no word
813 	 * to push if we have less than 4 bytes to transfer.
814 	 */
815 	if (words_to_transfer) {
816 		if (words_to_transfer > tx_fifo_avail)
817 			words_to_transfer = tx_fifo_avail;
818 
819 		/*
820 		 * Update state before writing to FIFO.  Note that this may
821 		 * cause us to finish writing all bytes (AKA buf_remaining
822 		 * goes to 0), hence we have a potential for an interrupt
823 		 * (PACKET_XFER_COMPLETE is not maskable), but GIC interrupt
824 		 * is disabled at this point.
825 		 */
826 		buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
827 		tx_fifo_avail -= words_to_transfer;
828 
829 		i2c_dev->msg_buf_remaining = buf_remaining;
830 		i2c_dev->msg_buf = buf + words_to_transfer * BYTES_PER_FIFO_WORD;
831 
832 		if (IS_VI(i2c_dev))
833 			i2c_writesl_vi(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
834 		else
835 			i2c_writesl(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
836 
837 		buf += words_to_transfer * BYTES_PER_FIFO_WORD;
838 	}
839 
840 	/*
841 	 * If there is a partial word at the end of buffer, handle it manually
842 	 * to prevent reading past the end of buffer, which could cross a page
843 	 * boundary and fault.
844 	 */
845 	if (tx_fifo_avail > 0 && buf_remaining > 0) {
846 		/*
847 		 * buf_remaining > 3 check not needed as tx_fifo_avail == 0
848 		 * when (words_to_transfer was > tx_fifo_avail) earlier
849 		 * in this function for non-zero words_to_transfer.
850 		 */
851 		memcpy(&val, buf, buf_remaining);
852 		val = le32_to_cpu(val);
853 
854 		i2c_dev->msg_buf_remaining = 0;
855 		i2c_dev->msg_buf = NULL;
856 
857 		i2c_writel(i2c_dev, val, I2C_TX_FIFO);
858 	}
859 
860 	return 0;
861 }
862 
tegra_i2c_isr(int irq,void * dev_id)863 static irqreturn_t tegra_i2c_isr(int irq, void *dev_id)
864 {
865 	const u32 status_err = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
866 	struct tegra_i2c_dev *i2c_dev = dev_id;
867 	u32 status;
868 
869 	status = i2c_readl(i2c_dev, I2C_INT_STATUS);
870 
871 	if (status == 0) {
872 		dev_warn(i2c_dev->dev, "IRQ status 0 %08x %08x %08x\n",
873 			 i2c_readl(i2c_dev, I2C_PACKET_TRANSFER_STATUS),
874 			 i2c_readl(i2c_dev, I2C_STATUS),
875 			 i2c_readl(i2c_dev, I2C_CNFG));
876 		i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
877 		goto err;
878 	}
879 
880 	if (status & status_err) {
881 		tegra_i2c_disable_packet_mode(i2c_dev);
882 		if (status & I2C_INT_NO_ACK)
883 			i2c_dev->msg_err |= I2C_ERR_NO_ACK;
884 		if (status & I2C_INT_ARBITRATION_LOST)
885 			i2c_dev->msg_err |= I2C_ERR_ARBITRATION_LOST;
886 		goto err;
887 	}
888 
889 	/*
890 	 * I2C transfer is terminated during the bus clear, so skip
891 	 * processing the other interrupts.
892 	 */
893 	if (i2c_dev->hw->supports_bus_clear && (status & I2C_INT_BUS_CLR_DONE))
894 		goto err;
895 
896 	if (!i2c_dev->dma_mode) {
897 		if (i2c_dev->msg_read && (status & I2C_INT_RX_FIFO_DATA_REQ)) {
898 			if (tegra_i2c_empty_rx_fifo(i2c_dev)) {
899 				/*
900 				 * Overflow error condition: message fully sent,
901 				 * with no XFER_COMPLETE interrupt but hardware
902 				 * asks to transfer more.
903 				 */
904 				i2c_dev->msg_err |= I2C_ERR_RX_BUFFER_OVERFLOW;
905 				goto err;
906 			}
907 		}
908 
909 		if (!i2c_dev->msg_read && (status & I2C_INT_TX_FIFO_DATA_REQ)) {
910 			if (i2c_dev->msg_buf_remaining)
911 				tegra_i2c_fill_tx_fifo(i2c_dev);
912 			else
913 				tegra_i2c_mask_irq(i2c_dev,
914 						   I2C_INT_TX_FIFO_DATA_REQ);
915 		}
916 	}
917 
918 	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
919 	if (IS_DVC(i2c_dev))
920 		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
921 
922 	/*
923 	 * During message read XFER_COMPLETE interrupt is triggered prior to
924 	 * DMA completion and during message write XFER_COMPLETE interrupt is
925 	 * triggered after DMA completion.
926 	 *
927 	 * PACKETS_XFER_COMPLETE indicates completion of all bytes of transfer,
928 	 * so forcing msg_buf_remaining to 0 in DMA mode.
929 	 */
930 	if (status & I2C_INT_PACKET_XFER_COMPLETE) {
931 		if (i2c_dev->dma_mode)
932 			i2c_dev->msg_buf_remaining = 0;
933 		/*
934 		 * Underflow error condition: XFER_COMPLETE before message
935 		 * fully sent.
936 		 */
937 		if (WARN_ON_ONCE(i2c_dev->msg_buf_remaining)) {
938 			i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
939 			goto err;
940 		}
941 		complete(&i2c_dev->msg_complete);
942 	}
943 	goto done;
944 err:
945 	/* mask all interrupts on error */
946 	tegra_i2c_mask_irq(i2c_dev,
947 			   I2C_INT_NO_ACK |
948 			   I2C_INT_ARBITRATION_LOST |
949 			   I2C_INT_PACKET_XFER_COMPLETE |
950 			   I2C_INT_TX_FIFO_DATA_REQ |
951 			   I2C_INT_RX_FIFO_DATA_REQ);
952 
953 	if (i2c_dev->hw->supports_bus_clear)
954 		tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
955 
956 	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
957 
958 	if (IS_DVC(i2c_dev))
959 		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
960 
961 	if (i2c_dev->dma_mode) {
962 		dmaengine_terminate_async(i2c_dev->dma_chan);
963 		complete(&i2c_dev->dma_complete);
964 	}
965 
966 	complete(&i2c_dev->msg_complete);
967 done:
968 	return IRQ_HANDLED;
969 }
970 
tegra_i2c_config_fifo_trig(struct tegra_i2c_dev * i2c_dev,size_t len)971 static void tegra_i2c_config_fifo_trig(struct tegra_i2c_dev *i2c_dev,
972 				       size_t len)
973 {
974 	struct dma_slave_config slv_config = {0};
975 	u32 val, reg, dma_burst, reg_offset;
976 	int err;
977 
978 	if (i2c_dev->hw->has_mst_fifo)
979 		reg = I2C_MST_FIFO_CONTROL;
980 	else
981 		reg = I2C_FIFO_CONTROL;
982 
983 	if (i2c_dev->dma_mode) {
984 		if (len & 0xF)
985 			dma_burst = 1;
986 		else if (len & 0x10)
987 			dma_burst = 4;
988 		else
989 			dma_burst = 8;
990 
991 		if (i2c_dev->msg_read) {
992 			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_RX_FIFO);
993 
994 			slv_config.src_addr = i2c_dev->base_phys + reg_offset;
995 			slv_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
996 			slv_config.src_maxburst = dma_burst;
997 
998 			if (i2c_dev->hw->has_mst_fifo)
999 				val = I2C_MST_FIFO_CONTROL_RX_TRIG(dma_burst);
1000 			else
1001 				val = I2C_FIFO_CONTROL_RX_TRIG(dma_burst);
1002 		} else {
1003 			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_TX_FIFO);
1004 
1005 			slv_config.dst_addr = i2c_dev->base_phys + reg_offset;
1006 			slv_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1007 			slv_config.dst_maxburst = dma_burst;
1008 
1009 			if (i2c_dev->hw->has_mst_fifo)
1010 				val = I2C_MST_FIFO_CONTROL_TX_TRIG(dma_burst);
1011 			else
1012 				val = I2C_FIFO_CONTROL_TX_TRIG(dma_burst);
1013 		}
1014 
1015 		slv_config.device_fc = true;
1016 		err = dmaengine_slave_config(i2c_dev->dma_chan, &slv_config);
1017 		if (err) {
1018 			dev_err(i2c_dev->dev, "DMA config failed: %d\n", err);
1019 			dev_err(i2c_dev->dev, "falling back to PIO\n");
1020 
1021 			tegra_i2c_release_dma(i2c_dev);
1022 			i2c_dev->dma_mode = false;
1023 		} else {
1024 			goto out;
1025 		}
1026 	}
1027 
1028 	if (i2c_dev->hw->has_mst_fifo)
1029 		val = I2C_MST_FIFO_CONTROL_TX_TRIG(8) |
1030 		      I2C_MST_FIFO_CONTROL_RX_TRIG(1);
1031 	else
1032 		val = I2C_FIFO_CONTROL_TX_TRIG(8) |
1033 		      I2C_FIFO_CONTROL_RX_TRIG(1);
1034 out:
1035 	i2c_writel(i2c_dev, val, reg);
1036 }
1037 
tegra_i2c_poll_completion(struct tegra_i2c_dev * i2c_dev,struct completion * complete,unsigned int timeout_ms)1038 static unsigned long tegra_i2c_poll_completion(struct tegra_i2c_dev *i2c_dev,
1039 					       struct completion *complete,
1040 					       unsigned int timeout_ms)
1041 {
1042 	ktime_t ktime = ktime_get();
1043 	ktime_t ktimeout = ktime_add_ms(ktime, timeout_ms);
1044 
1045 	do {
1046 		u32 status = i2c_readl(i2c_dev, I2C_INT_STATUS);
1047 
1048 		if (status)
1049 			tegra_i2c_isr(i2c_dev->irq, i2c_dev);
1050 
1051 		if (completion_done(complete)) {
1052 			s64 delta = ktime_ms_delta(ktimeout, ktime);
1053 
1054 			return msecs_to_jiffies(delta) ?: 1;
1055 		}
1056 
1057 		ktime = ktime_get();
1058 
1059 	} while (ktime_before(ktime, ktimeout));
1060 
1061 	return 0;
1062 }
1063 
tegra_i2c_wait_completion(struct tegra_i2c_dev * i2c_dev,struct completion * complete,unsigned int timeout_ms)1064 static unsigned long tegra_i2c_wait_completion(struct tegra_i2c_dev *i2c_dev,
1065 					       struct completion *complete,
1066 					       unsigned int timeout_ms)
1067 {
1068 	unsigned long ret;
1069 
1070 	if (i2c_dev->atomic_mode) {
1071 		ret = tegra_i2c_poll_completion(i2c_dev, complete, timeout_ms);
1072 	} else {
1073 		enable_irq(i2c_dev->irq);
1074 		ret = wait_for_completion_timeout(complete,
1075 						  msecs_to_jiffies(timeout_ms));
1076 		disable_irq(i2c_dev->irq);
1077 
1078 		/*
1079 		 * Under some rare circumstances (like running KASAN +
1080 		 * NFS root) CPU, which handles interrupt, may stuck in
1081 		 * uninterruptible state for a significant time.  In this
1082 		 * case we will get timeout if I2C transfer is running on
1083 		 * a sibling CPU, despite of IRQ being raised.
1084 		 *
1085 		 * In order to handle this rare condition, the IRQ status
1086 		 * needs to be checked after timeout.
1087 		 */
1088 		if (ret == 0)
1089 			ret = tegra_i2c_poll_completion(i2c_dev, complete, 0);
1090 	}
1091 
1092 	return ret;
1093 }
1094 
tegra_i2c_issue_bus_clear(struct i2c_adapter * adap)1095 static int tegra_i2c_issue_bus_clear(struct i2c_adapter *adap)
1096 {
1097 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1098 	u32 val, time_left;
1099 	int err;
1100 
1101 	reinit_completion(&i2c_dev->msg_complete);
1102 
1103 	val = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND |
1104 	      I2C_BC_TERMINATE;
1105 	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1106 
1107 	err = tegra_i2c_wait_for_config_load(i2c_dev);
1108 	if (err)
1109 		return err;
1110 
1111 	val |= I2C_BC_ENABLE;
1112 	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1113 	tegra_i2c_unmask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1114 
1115 	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete, 50);
1116 	tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1117 
1118 	if (time_left == 0) {
1119 		dev_err(i2c_dev->dev, "failed to clear bus\n");
1120 		return -ETIMEDOUT;
1121 	}
1122 
1123 	val = i2c_readl(i2c_dev, I2C_BUS_CLEAR_STATUS);
1124 	if (!(val & I2C_BC_STATUS)) {
1125 		dev_err(i2c_dev->dev, "un-recovered arbitration lost\n");
1126 		return -EIO;
1127 	}
1128 
1129 	return -EAGAIN;
1130 }
1131 
tegra_i2c_push_packet_header(struct tegra_i2c_dev * i2c_dev,struct i2c_msg * msg,enum msg_end_type end_state)1132 static void tegra_i2c_push_packet_header(struct tegra_i2c_dev *i2c_dev,
1133 					 struct i2c_msg *msg,
1134 					 enum msg_end_type end_state)
1135 {
1136 	u32 *dma_buf = i2c_dev->dma_buf;
1137 	u32 packet_header;
1138 
1139 	packet_header = FIELD_PREP(PACKET_HEADER0_HEADER_SIZE, 0) |
1140 			FIELD_PREP(PACKET_HEADER0_PROTOCOL,
1141 				   PACKET_HEADER0_PROTOCOL_I2C) |
1142 			FIELD_PREP(PACKET_HEADER0_CONT_ID, i2c_dev->cont_id) |
1143 			FIELD_PREP(PACKET_HEADER0_PACKET_ID, 1);
1144 
1145 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1146 		*dma_buf++ = packet_header;
1147 	else
1148 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1149 
1150 	packet_header = i2c_dev->msg_len - 1;
1151 
1152 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1153 		*dma_buf++ = packet_header;
1154 	else
1155 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1156 
1157 	packet_header = I2C_HEADER_IE_ENABLE;
1158 
1159 	if (end_state == MSG_END_CONTINUE)
1160 		packet_header |= I2C_HEADER_CONTINUE_XFER;
1161 	else if (end_state == MSG_END_REPEAT_START)
1162 		packet_header |= I2C_HEADER_REPEAT_START;
1163 
1164 	if (msg->flags & I2C_M_TEN) {
1165 		packet_header |= msg->addr;
1166 		packet_header |= I2C_HEADER_10BIT_ADDR;
1167 	} else {
1168 		packet_header |= msg->addr << I2C_HEADER_SLAVE_ADDR_SHIFT;
1169 	}
1170 
1171 	if (msg->flags & I2C_M_IGNORE_NAK)
1172 		packet_header |= I2C_HEADER_CONT_ON_NAK;
1173 
1174 	if (msg->flags & I2C_M_RD)
1175 		packet_header |= I2C_HEADER_READ;
1176 
1177 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1178 		*dma_buf++ = packet_header;
1179 	else
1180 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1181 }
1182 
tegra_i2c_error_recover(struct tegra_i2c_dev * i2c_dev,struct i2c_msg * msg)1183 static int tegra_i2c_error_recover(struct tegra_i2c_dev *i2c_dev,
1184 				   struct i2c_msg *msg)
1185 {
1186 	if (i2c_dev->msg_err == I2C_ERR_NONE)
1187 		return 0;
1188 
1189 	tegra_i2c_init(i2c_dev);
1190 
1191 	/* start recovery upon arbitration loss in single master mode */
1192 	if (i2c_dev->msg_err == I2C_ERR_ARBITRATION_LOST) {
1193 		if (!i2c_dev->multimaster_mode)
1194 			return i2c_recover_bus(&i2c_dev->adapter);
1195 
1196 		return -EAGAIN;
1197 	}
1198 
1199 	if (i2c_dev->msg_err == I2C_ERR_NO_ACK) {
1200 		if (msg->flags & I2C_M_IGNORE_NAK)
1201 			return 0;
1202 
1203 		return -EREMOTEIO;
1204 	}
1205 
1206 	return -EIO;
1207 }
1208 
tegra_i2c_xfer_msg(struct tegra_i2c_dev * i2c_dev,struct i2c_msg * msg,enum msg_end_type end_state)1209 static int tegra_i2c_xfer_msg(struct tegra_i2c_dev *i2c_dev,
1210 			      struct i2c_msg *msg,
1211 			      enum msg_end_type end_state)
1212 {
1213 	unsigned long time_left, xfer_time = 100;
1214 	size_t xfer_size;
1215 	u32 int_mask;
1216 	int err;
1217 
1218 	err = tegra_i2c_flush_fifos(i2c_dev);
1219 	if (err)
1220 		return err;
1221 
1222 	i2c_dev->msg_buf = msg->buf;
1223 	i2c_dev->msg_len = msg->len;
1224 
1225 	i2c_dev->msg_err = I2C_ERR_NONE;
1226 	i2c_dev->msg_read = !!(msg->flags & I2C_M_RD);
1227 	reinit_completion(&i2c_dev->msg_complete);
1228 
1229 	/*
1230 	 * For SMBUS block read command, read only 1 byte in the first transfer.
1231 	 * Adjust that 1 byte for the next transfer in the msg buffer and msg
1232 	 * length.
1233 	 */
1234 	if (msg->flags & I2C_M_RECV_LEN) {
1235 		if (end_state == MSG_END_CONTINUE) {
1236 			i2c_dev->msg_len = 1;
1237 		} else {
1238 			i2c_dev->msg_buf += 1;
1239 			i2c_dev->msg_len -= 1;
1240 		}
1241 	}
1242 
1243 	i2c_dev->msg_buf_remaining = i2c_dev->msg_len;
1244 
1245 	if (i2c_dev->msg_read)
1246 		xfer_size = i2c_dev->msg_len;
1247 	else
1248 		xfer_size = i2c_dev->msg_len + I2C_PACKET_HEADER_SIZE;
1249 
1250 	xfer_size = ALIGN(xfer_size, BYTES_PER_FIFO_WORD);
1251 
1252 	i2c_dev->dma_mode = xfer_size > I2C_PIO_MODE_PREFERRED_LEN &&
1253 			    i2c_dev->dma_buf && !i2c_dev->atomic_mode;
1254 
1255 	tegra_i2c_config_fifo_trig(i2c_dev, xfer_size);
1256 
1257 	/*
1258 	 * Transfer time in mSec = Total bits / transfer rate
1259 	 * Total bits = 9 bits per byte (including ACK bit) + Start & stop bits
1260 	 */
1261 	xfer_time += DIV_ROUND_CLOSEST(((xfer_size * 9) + 2) * MSEC_PER_SEC,
1262 				       i2c_dev->timings.bus_freq_hz);
1263 
1264 	int_mask = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
1265 	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1266 
1267 	if (i2c_dev->dma_mode) {
1268 		if (i2c_dev->msg_read) {
1269 			dma_sync_single_for_device(i2c_dev->dma_dev,
1270 						   i2c_dev->dma_phys,
1271 						   xfer_size, DMA_FROM_DEVICE);
1272 
1273 			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1274 			if (err)
1275 				return err;
1276 		} else {
1277 			dma_sync_single_for_cpu(i2c_dev->dma_dev,
1278 						i2c_dev->dma_phys,
1279 						xfer_size, DMA_TO_DEVICE);
1280 		}
1281 	}
1282 
1283 	tegra_i2c_push_packet_header(i2c_dev, msg, end_state);
1284 
1285 	if (!i2c_dev->msg_read) {
1286 		if (i2c_dev->dma_mode) {
1287 			memcpy(i2c_dev->dma_buf + I2C_PACKET_HEADER_SIZE,
1288 			       msg->buf, i2c_dev->msg_len);
1289 
1290 			dma_sync_single_for_device(i2c_dev->dma_dev,
1291 						   i2c_dev->dma_phys,
1292 						   xfer_size, DMA_TO_DEVICE);
1293 
1294 			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1295 			if (err)
1296 				return err;
1297 		} else {
1298 			tegra_i2c_fill_tx_fifo(i2c_dev);
1299 		}
1300 	}
1301 
1302 	if (i2c_dev->hw->has_per_pkt_xfer_complete_irq)
1303 		int_mask |= I2C_INT_PACKET_XFER_COMPLETE;
1304 
1305 	if (!i2c_dev->dma_mode) {
1306 		if (msg->flags & I2C_M_RD)
1307 			int_mask |= I2C_INT_RX_FIFO_DATA_REQ;
1308 		else if (i2c_dev->msg_buf_remaining)
1309 			int_mask |= I2C_INT_TX_FIFO_DATA_REQ;
1310 	}
1311 
1312 	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1313 	dev_dbg(i2c_dev->dev, "unmasked IRQ: %02x\n",
1314 		i2c_readl(i2c_dev, I2C_INT_MASK));
1315 
1316 	if (i2c_dev->dma_mode) {
1317 		time_left = tegra_i2c_wait_completion(i2c_dev,
1318 						      &i2c_dev->dma_complete,
1319 						      xfer_time);
1320 
1321 		/*
1322 		 * Synchronize DMA first, since dmaengine_terminate_sync()
1323 		 * performs synchronization after the transfer's termination
1324 		 * and we want to get a completion if transfer succeeded.
1325 		 */
1326 		dmaengine_synchronize(i2c_dev->dma_chan);
1327 		dmaengine_terminate_sync(i2c_dev->dma_chan);
1328 
1329 		if (!time_left && !completion_done(&i2c_dev->dma_complete)) {
1330 			tegra_i2c_init(i2c_dev);
1331 			return -ETIMEDOUT;
1332 		}
1333 
1334 		if (i2c_dev->msg_read && i2c_dev->msg_err == I2C_ERR_NONE) {
1335 			dma_sync_single_for_cpu(i2c_dev->dma_dev,
1336 						i2c_dev->dma_phys,
1337 						xfer_size, DMA_FROM_DEVICE);
1338 
1339 			memcpy(i2c_dev->msg_buf, i2c_dev->dma_buf, i2c_dev->msg_len);
1340 		}
1341 	}
1342 
1343 	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete,
1344 					      xfer_time);
1345 
1346 	tegra_i2c_mask_irq(i2c_dev, int_mask);
1347 
1348 	if (time_left == 0) {
1349 		tegra_i2c_init(i2c_dev);
1350 		return -ETIMEDOUT;
1351 	}
1352 
1353 	dev_dbg(i2c_dev->dev, "transfer complete: %lu %d %d\n",
1354 		time_left, completion_done(&i2c_dev->msg_complete),
1355 		i2c_dev->msg_err);
1356 
1357 	i2c_dev->dma_mode = false;
1358 
1359 	err = tegra_i2c_error_recover(i2c_dev, msg);
1360 	if (err)
1361 		return err;
1362 
1363 	return 0;
1364 }
1365 
tegra_i2c_xfer(struct i2c_adapter * adap,struct i2c_msg msgs[],int num)1366 static int tegra_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
1367 			  int num)
1368 {
1369 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1370 	int i, ret;
1371 
1372 	ret = pm_runtime_get_sync(i2c_dev->dev);
1373 	if (ret < 0) {
1374 		dev_err(i2c_dev->dev, "runtime resume failed %d\n", ret);
1375 		pm_runtime_put_noidle(i2c_dev->dev);
1376 		return ret;
1377 	}
1378 
1379 	for (i = 0; i < num; i++) {
1380 		enum msg_end_type end_type = MSG_END_STOP;
1381 
1382 		if (i < (num - 1)) {
1383 			/* check whether follow up message is coming */
1384 			if (msgs[i + 1].flags & I2C_M_NOSTART)
1385 				end_type = MSG_END_CONTINUE;
1386 			else
1387 				end_type = MSG_END_REPEAT_START;
1388 		}
1389 		/* If M_RECV_LEN use ContinueXfer to read the first byte */
1390 		if (msgs[i].flags & I2C_M_RECV_LEN) {
1391 			ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], MSG_END_CONTINUE);
1392 			if (ret)
1393 				break;
1394 
1395 			/* Validate message length before proceeding */
1396 			if (msgs[i].buf[0] == 0 || msgs[i].buf[0] > I2C_SMBUS_BLOCK_MAX)
1397 				break;
1398 
1399 			/* Set the msg length from first byte */
1400 			msgs[i].len += msgs[i].buf[0];
1401 			dev_dbg(i2c_dev->dev, "reading %d bytes\n", msgs[i].len);
1402 		}
1403 		ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], end_type);
1404 		if (ret)
1405 			break;
1406 	}
1407 
1408 	pm_runtime_put(i2c_dev->dev);
1409 
1410 	return ret ?: i;
1411 }
1412 
tegra_i2c_xfer_atomic(struct i2c_adapter * adap,struct i2c_msg msgs[],int num)1413 static int tegra_i2c_xfer_atomic(struct i2c_adapter *adap,
1414 				 struct i2c_msg msgs[], int num)
1415 {
1416 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1417 	int ret;
1418 
1419 	i2c_dev->atomic_mode = true;
1420 	ret = tegra_i2c_xfer(adap, msgs, num);
1421 	i2c_dev->atomic_mode = false;
1422 
1423 	return ret;
1424 }
1425 
tegra_i2c_func(struct i2c_adapter * adap)1426 static u32 tegra_i2c_func(struct i2c_adapter *adap)
1427 {
1428 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1429 	u32 ret = I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK) |
1430 		  I2C_FUNC_10BIT_ADDR | I2C_FUNC_PROTOCOL_MANGLING;
1431 
1432 	if (i2c_dev->hw->has_continue_xfer_support)
1433 		ret |= I2C_FUNC_NOSTART | I2C_FUNC_SMBUS_READ_BLOCK_DATA;
1434 
1435 	return ret;
1436 }
1437 
1438 static const struct i2c_algorithm tegra_i2c_algo = {
1439 	.xfer = tegra_i2c_xfer,
1440 	.xfer_atomic = tegra_i2c_xfer_atomic,
1441 	.functionality = tegra_i2c_func,
1442 };
1443 
1444 /* payload size is only 12 bit */
1445 static const struct i2c_adapter_quirks tegra_i2c_quirks = {
1446 	.flags = I2C_AQ_NO_ZERO_LEN,
1447 	.max_read_len = SZ_4K,
1448 	.max_write_len = SZ_4K - I2C_PACKET_HEADER_SIZE,
1449 };
1450 
1451 static const struct i2c_adapter_quirks tegra194_i2c_quirks = {
1452 	.flags = I2C_AQ_NO_ZERO_LEN,
1453 	.max_write_len = SZ_64K - I2C_PACKET_HEADER_SIZE,
1454 };
1455 
1456 static struct i2c_bus_recovery_info tegra_i2c_recovery_info = {
1457 	.recover_bus = tegra_i2c_issue_bus_clear,
1458 };
1459 
1460 static const struct tegra_i2c_hw_feature tegra20_i2c_hw = {
1461 	.has_continue_xfer_support = false,
1462 	.has_per_pkt_xfer_complete_irq = false,
1463 	.clk_divisor_hs_mode = 3,
1464 	.clk_divisor_std_mode = 0,
1465 	.clk_divisor_fast_mode = 0,
1466 	.clk_divisor_fast_plus_mode = 0,
1467 	.has_config_load_reg = false,
1468 	.has_multi_master_mode = false,
1469 	.has_slcg_override_reg = false,
1470 	.has_mst_fifo = false,
1471 	.quirks = &tegra_i2c_quirks,
1472 	.supports_bus_clear = false,
1473 	.has_apb_dma = true,
1474 	.tlow_std_mode = 0x4,
1475 	.thigh_std_mode = 0x2,
1476 	.tlow_fast_fastplus_mode = 0x4,
1477 	.thigh_fast_fastplus_mode = 0x2,
1478 	.setup_hold_time_std_mode = 0x0,
1479 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1480 	.setup_hold_time_hs_mode = 0x0,
1481 	.has_interface_timing_reg = false,
1482 };
1483 
1484 static const struct tegra_i2c_hw_feature tegra30_i2c_hw = {
1485 	.has_continue_xfer_support = true,
1486 	.has_per_pkt_xfer_complete_irq = false,
1487 	.clk_divisor_hs_mode = 3,
1488 	.clk_divisor_std_mode = 0,
1489 	.clk_divisor_fast_mode = 0,
1490 	.clk_divisor_fast_plus_mode = 0,
1491 	.has_config_load_reg = false,
1492 	.has_multi_master_mode = false,
1493 	.has_slcg_override_reg = false,
1494 	.has_mst_fifo = false,
1495 	.quirks = &tegra_i2c_quirks,
1496 	.supports_bus_clear = false,
1497 	.has_apb_dma = true,
1498 	.tlow_std_mode = 0x4,
1499 	.thigh_std_mode = 0x2,
1500 	.tlow_fast_fastplus_mode = 0x4,
1501 	.thigh_fast_fastplus_mode = 0x2,
1502 	.setup_hold_time_std_mode = 0x0,
1503 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1504 	.setup_hold_time_hs_mode = 0x0,
1505 	.has_interface_timing_reg = false,
1506 };
1507 
1508 static const struct tegra_i2c_hw_feature tegra114_i2c_hw = {
1509 	.has_continue_xfer_support = true,
1510 	.has_per_pkt_xfer_complete_irq = true,
1511 	.clk_divisor_hs_mode = 1,
1512 	.clk_divisor_std_mode = 0x19,
1513 	.clk_divisor_fast_mode = 0x19,
1514 	.clk_divisor_fast_plus_mode = 0x10,
1515 	.has_config_load_reg = false,
1516 	.has_multi_master_mode = false,
1517 	.has_slcg_override_reg = false,
1518 	.has_mst_fifo = false,
1519 	.quirks = &tegra_i2c_quirks,
1520 	.supports_bus_clear = true,
1521 	.has_apb_dma = true,
1522 	.tlow_std_mode = 0x4,
1523 	.thigh_std_mode = 0x2,
1524 	.tlow_fast_fastplus_mode = 0x4,
1525 	.thigh_fast_fastplus_mode = 0x2,
1526 	.setup_hold_time_std_mode = 0x0,
1527 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1528 	.setup_hold_time_hs_mode = 0x0,
1529 	.has_interface_timing_reg = false,
1530 };
1531 
1532 static const struct tegra_i2c_hw_feature tegra124_i2c_hw = {
1533 	.has_continue_xfer_support = true,
1534 	.has_per_pkt_xfer_complete_irq = true,
1535 	.clk_divisor_hs_mode = 1,
1536 	.clk_divisor_std_mode = 0x19,
1537 	.clk_divisor_fast_mode = 0x19,
1538 	.clk_divisor_fast_plus_mode = 0x10,
1539 	.has_config_load_reg = true,
1540 	.has_multi_master_mode = false,
1541 	.has_slcg_override_reg = true,
1542 	.has_mst_fifo = false,
1543 	.quirks = &tegra_i2c_quirks,
1544 	.supports_bus_clear = true,
1545 	.has_apb_dma = true,
1546 	.tlow_std_mode = 0x4,
1547 	.thigh_std_mode = 0x2,
1548 	.tlow_fast_fastplus_mode = 0x4,
1549 	.thigh_fast_fastplus_mode = 0x2,
1550 	.setup_hold_time_std_mode = 0x0,
1551 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1552 	.setup_hold_time_hs_mode = 0x0,
1553 	.has_interface_timing_reg = true,
1554 };
1555 
1556 static const struct tegra_i2c_hw_feature tegra210_i2c_hw = {
1557 	.has_continue_xfer_support = true,
1558 	.has_per_pkt_xfer_complete_irq = true,
1559 	.clk_divisor_hs_mode = 1,
1560 	.clk_divisor_std_mode = 0x19,
1561 	.clk_divisor_fast_mode = 0x19,
1562 	.clk_divisor_fast_plus_mode = 0x10,
1563 	.has_config_load_reg = true,
1564 	.has_multi_master_mode = false,
1565 	.has_slcg_override_reg = true,
1566 	.has_mst_fifo = false,
1567 	.quirks = &tegra_i2c_quirks,
1568 	.supports_bus_clear = true,
1569 	.has_apb_dma = true,
1570 	.tlow_std_mode = 0x4,
1571 	.thigh_std_mode = 0x2,
1572 	.tlow_fast_fastplus_mode = 0x4,
1573 	.thigh_fast_fastplus_mode = 0x2,
1574 	.setup_hold_time_std_mode = 0,
1575 	.setup_hold_time_fast_fast_plus_mode = 0,
1576 	.setup_hold_time_hs_mode = 0,
1577 	.has_interface_timing_reg = true,
1578 };
1579 
1580 static const struct tegra_i2c_hw_feature tegra186_i2c_hw = {
1581 	.has_continue_xfer_support = true,
1582 	.has_per_pkt_xfer_complete_irq = true,
1583 	.clk_divisor_hs_mode = 1,
1584 	.clk_divisor_std_mode = 0x16,
1585 	.clk_divisor_fast_mode = 0x19,
1586 	.clk_divisor_fast_plus_mode = 0x10,
1587 	.has_config_load_reg = true,
1588 	.has_multi_master_mode = false,
1589 	.has_slcg_override_reg = true,
1590 	.has_mst_fifo = false,
1591 	.quirks = &tegra_i2c_quirks,
1592 	.supports_bus_clear = true,
1593 	.has_apb_dma = false,
1594 	.tlow_std_mode = 0x4,
1595 	.thigh_std_mode = 0x3,
1596 	.tlow_fast_fastplus_mode = 0x4,
1597 	.thigh_fast_fastplus_mode = 0x2,
1598 	.setup_hold_time_std_mode = 0,
1599 	.setup_hold_time_fast_fast_plus_mode = 0,
1600 	.setup_hold_time_hs_mode = 0,
1601 	.has_interface_timing_reg = true,
1602 };
1603 
1604 static const struct tegra_i2c_hw_feature tegra194_i2c_hw = {
1605 	.has_continue_xfer_support = true,
1606 	.has_per_pkt_xfer_complete_irq = true,
1607 	.clk_divisor_hs_mode = 1,
1608 	.clk_divisor_std_mode = 0x4f,
1609 	.clk_divisor_fast_mode = 0x3c,
1610 	.clk_divisor_fast_plus_mode = 0x16,
1611 	.has_config_load_reg = true,
1612 	.has_multi_master_mode = true,
1613 	.has_slcg_override_reg = true,
1614 	.has_mst_fifo = true,
1615 	.quirks = &tegra194_i2c_quirks,
1616 	.supports_bus_clear = true,
1617 	.has_apb_dma = false,
1618 	.tlow_std_mode = 0x8,
1619 	.thigh_std_mode = 0x7,
1620 	.tlow_fast_fastplus_mode = 0x2,
1621 	.thigh_fast_fastplus_mode = 0x2,
1622 	.setup_hold_time_std_mode = 0x08080808,
1623 	.setup_hold_time_fast_fast_plus_mode = 0x02020202,
1624 	.setup_hold_time_hs_mode = 0x090909,
1625 	.has_interface_timing_reg = true,
1626 };
1627 
1628 static const struct of_device_id tegra_i2c_of_match[] = {
1629 	{ .compatible = "nvidia,tegra194-i2c", .data = &tegra194_i2c_hw, },
1630 	{ .compatible = "nvidia,tegra186-i2c", .data = &tegra186_i2c_hw, },
1631 #if IS_ENABLED(CONFIG_ARCH_TEGRA_210_SOC)
1632 	{ .compatible = "nvidia,tegra210-i2c-vi", .data = &tegra210_i2c_hw, },
1633 #endif
1634 	{ .compatible = "nvidia,tegra210-i2c", .data = &tegra210_i2c_hw, },
1635 	{ .compatible = "nvidia,tegra124-i2c", .data = &tegra124_i2c_hw, },
1636 	{ .compatible = "nvidia,tegra114-i2c", .data = &tegra114_i2c_hw, },
1637 	{ .compatible = "nvidia,tegra30-i2c", .data = &tegra30_i2c_hw, },
1638 	{ .compatible = "nvidia,tegra20-i2c", .data = &tegra20_i2c_hw, },
1639 #if IS_ENABLED(CONFIG_ARCH_TEGRA_2x_SOC)
1640 	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = &tegra20_i2c_hw, },
1641 #endif
1642 	{},
1643 };
1644 MODULE_DEVICE_TABLE(of, tegra_i2c_of_match);
1645 
tegra_i2c_parse_dt(struct tegra_i2c_dev * i2c_dev)1646 static void tegra_i2c_parse_dt(struct tegra_i2c_dev *i2c_dev)
1647 {
1648 	struct device_node *np = i2c_dev->dev->of_node;
1649 	bool multi_mode;
1650 
1651 	i2c_parse_fw_timings(i2c_dev->dev, &i2c_dev->timings, true);
1652 
1653 	multi_mode = device_property_read_bool(i2c_dev->dev, "multi-master");
1654 	i2c_dev->multimaster_mode = multi_mode;
1655 
1656 	if (IS_ENABLED(CONFIG_ARCH_TEGRA_2x_SOC) &&
1657 	    of_device_is_compatible(np, "nvidia,tegra20-i2c-dvc"))
1658 		i2c_dev->is_dvc = true;
1659 
1660 	if (IS_ENABLED(CONFIG_ARCH_TEGRA_210_SOC) &&
1661 	    of_device_is_compatible(np, "nvidia,tegra210-i2c-vi"))
1662 		i2c_dev->is_vi = true;
1663 }
1664 
tegra_i2c_init_clocks(struct tegra_i2c_dev * i2c_dev)1665 static int tegra_i2c_init_clocks(struct tegra_i2c_dev *i2c_dev)
1666 {
1667 	int err;
1668 
1669 	if (ACPI_HANDLE(i2c_dev->dev))
1670 		return 0;
1671 
1672 	i2c_dev->clocks[i2c_dev->nclocks++].id = "div-clk";
1673 
1674 	if (i2c_dev->hw == &tegra20_i2c_hw || i2c_dev->hw == &tegra30_i2c_hw)
1675 		i2c_dev->clocks[i2c_dev->nclocks++].id = "fast-clk";
1676 
1677 	if (IS_VI(i2c_dev))
1678 		i2c_dev->clocks[i2c_dev->nclocks++].id = "slow";
1679 
1680 	err = devm_clk_bulk_get(i2c_dev->dev, i2c_dev->nclocks,
1681 				i2c_dev->clocks);
1682 	if (err)
1683 		return err;
1684 
1685 	err = clk_bulk_prepare(i2c_dev->nclocks, i2c_dev->clocks);
1686 	if (err)
1687 		return err;
1688 
1689 	i2c_dev->div_clk = i2c_dev->clocks[0].clk;
1690 
1691 	if (!i2c_dev->multimaster_mode)
1692 		return 0;
1693 
1694 	err = clk_enable(i2c_dev->div_clk);
1695 	if (err) {
1696 		dev_err(i2c_dev->dev, "failed to enable div-clk: %d\n", err);
1697 		goto unprepare_clocks;
1698 	}
1699 
1700 	return 0;
1701 
1702 unprepare_clocks:
1703 	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1704 
1705 	return err;
1706 }
1707 
tegra_i2c_release_clocks(struct tegra_i2c_dev * i2c_dev)1708 static void tegra_i2c_release_clocks(struct tegra_i2c_dev *i2c_dev)
1709 {
1710 	if (i2c_dev->multimaster_mode)
1711 		clk_disable(i2c_dev->div_clk);
1712 
1713 	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1714 }
1715 
tegra_i2c_init_hardware(struct tegra_i2c_dev * i2c_dev)1716 static int tegra_i2c_init_hardware(struct tegra_i2c_dev *i2c_dev)
1717 {
1718 	int ret;
1719 
1720 	ret = pm_runtime_get_sync(i2c_dev->dev);
1721 	if (ret < 0)
1722 		dev_err(i2c_dev->dev, "runtime resume failed: %d\n", ret);
1723 	else
1724 		ret = tegra_i2c_init(i2c_dev);
1725 
1726 	pm_runtime_put_sync(i2c_dev->dev);
1727 
1728 	return ret;
1729 }
1730 
tegra_i2c_probe(struct platform_device * pdev)1731 static int tegra_i2c_probe(struct platform_device *pdev)
1732 {
1733 	struct tegra_i2c_dev *i2c_dev;
1734 	struct resource *res;
1735 	int err;
1736 
1737 	i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
1738 	if (!i2c_dev)
1739 		return -ENOMEM;
1740 
1741 	platform_set_drvdata(pdev, i2c_dev);
1742 
1743 	init_completion(&i2c_dev->msg_complete);
1744 	init_completion(&i2c_dev->dma_complete);
1745 
1746 	i2c_dev->hw = device_get_match_data(&pdev->dev);
1747 	i2c_dev->cont_id = pdev->id;
1748 	i2c_dev->dev = &pdev->dev;
1749 
1750 	i2c_dev->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1751 	if (IS_ERR(i2c_dev->base))
1752 		return PTR_ERR(i2c_dev->base);
1753 
1754 	i2c_dev->base_phys = res->start;
1755 
1756 	err = platform_get_irq(pdev, 0);
1757 	if (err < 0)
1758 		return err;
1759 
1760 	i2c_dev->irq = err;
1761 
1762 	/* interrupt will be enabled during of transfer time */
1763 	irq_set_status_flags(i2c_dev->irq, IRQ_NOAUTOEN);
1764 
1765 	err = devm_request_threaded_irq(i2c_dev->dev, i2c_dev->irq,
1766 					NULL, tegra_i2c_isr,
1767 					IRQF_NO_SUSPEND | IRQF_ONESHOT,
1768 					dev_name(i2c_dev->dev), i2c_dev);
1769 	if (err)
1770 		return err;
1771 
1772 	tegra_i2c_parse_dt(i2c_dev);
1773 
1774 	err = tegra_i2c_init_clocks(i2c_dev);
1775 	if (err)
1776 		return err;
1777 
1778 	err = tegra_i2c_init_dma(i2c_dev);
1779 	if (err)
1780 		goto release_clocks;
1781 
1782 	/*
1783 	 * VI I2C is in VE power domain which is not always ON and not
1784 	 * IRQ-safe.  Thus, IRQ-safe device shouldn't be attached to a
1785 	 * non IRQ-safe domain because this prevents powering off the power
1786 	 * domain.
1787 	 *
1788 	 * VI I2C device shouldn't be marked as IRQ-safe because VI I2C won't
1789 	 * be used for atomic transfers. ACPI device is not IRQ safe also.
1790 	 */
1791 	if (!IS_VI(i2c_dev) && !has_acpi_companion(i2c_dev->dev))
1792 		pm_runtime_irq_safe(i2c_dev->dev);
1793 
1794 	pm_runtime_enable(i2c_dev->dev);
1795 
1796 	err = tegra_i2c_init_hardware(i2c_dev);
1797 	if (err)
1798 		goto release_rpm;
1799 
1800 	i2c_set_adapdata(&i2c_dev->adapter, i2c_dev);
1801 	i2c_dev->adapter.dev.of_node = i2c_dev->dev->of_node;
1802 	i2c_dev->adapter.dev.parent = i2c_dev->dev;
1803 	i2c_dev->adapter.retries = 1;
1804 	i2c_dev->adapter.timeout = 6 * HZ;
1805 	i2c_dev->adapter.quirks = i2c_dev->hw->quirks;
1806 	i2c_dev->adapter.owner = THIS_MODULE;
1807 	i2c_dev->adapter.class = I2C_CLASS_DEPRECATED;
1808 	i2c_dev->adapter.algo = &tegra_i2c_algo;
1809 	i2c_dev->adapter.nr = pdev->id;
1810 	ACPI_COMPANION_SET(&i2c_dev->adapter.dev, ACPI_COMPANION(&pdev->dev));
1811 
1812 	if (i2c_dev->hw->supports_bus_clear)
1813 		i2c_dev->adapter.bus_recovery_info = &tegra_i2c_recovery_info;
1814 
1815 	strscpy(i2c_dev->adapter.name, dev_name(i2c_dev->dev),
1816 		sizeof(i2c_dev->adapter.name));
1817 
1818 	err = i2c_add_numbered_adapter(&i2c_dev->adapter);
1819 	if (err)
1820 		goto release_rpm;
1821 
1822 	return 0;
1823 
1824 release_rpm:
1825 	pm_runtime_disable(i2c_dev->dev);
1826 
1827 	tegra_i2c_release_dma(i2c_dev);
1828 release_clocks:
1829 	tegra_i2c_release_clocks(i2c_dev);
1830 
1831 	return err;
1832 }
1833 
tegra_i2c_remove(struct platform_device * pdev)1834 static void tegra_i2c_remove(struct platform_device *pdev)
1835 {
1836 	struct tegra_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
1837 
1838 	i2c_del_adapter(&i2c_dev->adapter);
1839 	pm_runtime_force_suspend(i2c_dev->dev);
1840 
1841 	tegra_i2c_release_dma(i2c_dev);
1842 	tegra_i2c_release_clocks(i2c_dev);
1843 }
1844 
tegra_i2c_runtime_resume(struct device * dev)1845 static int __maybe_unused tegra_i2c_runtime_resume(struct device *dev)
1846 {
1847 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1848 	int err;
1849 
1850 	err = pinctrl_pm_select_default_state(dev);
1851 	if (err)
1852 		return err;
1853 
1854 	err = clk_bulk_enable(i2c_dev->nclocks, i2c_dev->clocks);
1855 	if (err)
1856 		return err;
1857 
1858 	/*
1859 	 * VI I2C device is attached to VE power domain which goes through
1860 	 * power ON/OFF during runtime PM resume/suspend, meaning that
1861 	 * controller needs to be re-initialized after power ON.
1862 	 */
1863 	if (IS_VI(i2c_dev)) {
1864 		err = tegra_i2c_init(i2c_dev);
1865 		if (err)
1866 			goto disable_clocks;
1867 	}
1868 
1869 	return 0;
1870 
1871 disable_clocks:
1872 	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1873 
1874 	return err;
1875 }
1876 
tegra_i2c_runtime_suspend(struct device * dev)1877 static int __maybe_unused tegra_i2c_runtime_suspend(struct device *dev)
1878 {
1879 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1880 
1881 	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1882 
1883 	return pinctrl_pm_select_idle_state(dev);
1884 }
1885 
tegra_i2c_suspend(struct device * dev)1886 static int __maybe_unused tegra_i2c_suspend(struct device *dev)
1887 {
1888 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1889 	int err;
1890 
1891 	i2c_mark_adapter_suspended(&i2c_dev->adapter);
1892 
1893 	if (!pm_runtime_status_suspended(dev)) {
1894 		err = tegra_i2c_runtime_suspend(dev);
1895 		if (err)
1896 			return err;
1897 	}
1898 
1899 	return 0;
1900 }
1901 
tegra_i2c_resume(struct device * dev)1902 static int __maybe_unused tegra_i2c_resume(struct device *dev)
1903 {
1904 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1905 	int err;
1906 
1907 	/*
1908 	 * We need to ensure that clocks are enabled so that registers can be
1909 	 * restored in tegra_i2c_init().
1910 	 */
1911 	err = tegra_i2c_runtime_resume(dev);
1912 	if (err)
1913 		return err;
1914 
1915 	err = tegra_i2c_init(i2c_dev);
1916 	if (err)
1917 		return err;
1918 
1919 	/*
1920 	 * In case we are runtime suspended, disable clocks again so that we
1921 	 * don't unbalance the clock reference counts during the next runtime
1922 	 * resume transition.
1923 	 */
1924 	if (pm_runtime_status_suspended(dev)) {
1925 		err = tegra_i2c_runtime_suspend(dev);
1926 		if (err)
1927 			return err;
1928 	}
1929 
1930 	i2c_mark_adapter_resumed(&i2c_dev->adapter);
1931 
1932 	return 0;
1933 }
1934 
1935 static const struct dev_pm_ops tegra_i2c_pm = {
1936 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_i2c_suspend, tegra_i2c_resume)
1937 	SET_RUNTIME_PM_OPS(tegra_i2c_runtime_suspend, tegra_i2c_runtime_resume,
1938 			   NULL)
1939 };
1940 
1941 static const struct acpi_device_id tegra_i2c_acpi_match[] = {
1942 	{.id = "NVDA0101", .driver_data = (kernel_ulong_t)&tegra210_i2c_hw},
1943 	{.id = "NVDA0201", .driver_data = (kernel_ulong_t)&tegra186_i2c_hw},
1944 	{.id = "NVDA0301", .driver_data = (kernel_ulong_t)&tegra194_i2c_hw},
1945 	{ }
1946 };
1947 MODULE_DEVICE_TABLE(acpi, tegra_i2c_acpi_match);
1948 
1949 static struct platform_driver tegra_i2c_driver = {
1950 	.probe = tegra_i2c_probe,
1951 	.remove = tegra_i2c_remove,
1952 	.driver = {
1953 		.name = "tegra-i2c",
1954 		.of_match_table = tegra_i2c_of_match,
1955 		.acpi_match_table = tegra_i2c_acpi_match,
1956 		.pm = &tegra_i2c_pm,
1957 	},
1958 };
1959 module_platform_driver(tegra_i2c_driver);
1960 
1961 MODULE_DESCRIPTION("NVIDIA Tegra I2C Bus Controller driver");
1962 MODULE_AUTHOR("Colin Cross");
1963 MODULE_LICENSE("GPL v2");
1964