1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This header defines architecture specific interfaces, x86 version
6 */
7
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/kfifo.h>
28 #include <linux/sched/vhost_task.h>
29 #include <linux/call_once.h>
30 #include <linux/atomic.h>
31
32 #include <asm/apic.h>
33 #include <asm/pvclock-abi.h>
34 #include <asm/debugreg.h>
35 #include <asm/desc.h>
36 #include <asm/mtrr.h>
37 #include <asm/msr-index.h>
38 #include <asm/msr.h>
39 #include <asm/asm.h>
40 #include <asm/irq_remapping.h>
41 #include <asm/kvm_page_track.h>
42 #include <asm/kvm_vcpu_regs.h>
43 #include <asm/reboot.h>
44 #include <hyperv/hvhdk.h>
45
46 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
47
48 /*
49 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
50 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
51 */
52 #ifdef CONFIG_KVM_MAX_NR_VCPUS
53 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
54 #else
55 #define KVM_MAX_VCPUS 1024
56 #endif
57
58 /*
59 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
60 * might be larger than the actual number of VCPUs because the
61 * APIC ID encodes CPU topology information.
62 *
63 * In the worst case, we'll need less than one extra bit for the
64 * Core ID, and less than one extra bit for the Package (Die) ID,
65 * so ratio of 4 should be enough.
66 */
67 #define KVM_VCPU_ID_RATIO 4
68 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
69
70 /* memory slots that are not exposed to userspace */
71 #define KVM_INTERNAL_MEM_SLOTS 3
72
73 #define KVM_HALT_POLL_NS_DEFAULT 200000
74
75 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS
76
77 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
78 KVM_DIRTY_LOG_INITIALLY_SET)
79
80 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \
81 KVM_BUS_LOCK_DETECTION_EXIT)
82
83 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \
84 KVM_X86_NOTIFY_VMEXIT_USER)
85
86 /* x86-specific vcpu->requests bit members */
87 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0)
88 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1)
89 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2)
90 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3)
91 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4)
92 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5)
93 #define KVM_REQ_EVENT KVM_ARCH_REQ(6)
94 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7)
95 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8)
96 #define KVM_REQ_NMI KVM_ARCH_REQ(9)
97 #define KVM_REQ_PMU KVM_ARCH_REQ(10)
98 #define KVM_REQ_PMI KVM_ARCH_REQ(11)
99 #ifdef CONFIG_KVM_SMM
100 #define KVM_REQ_SMI KVM_ARCH_REQ(12)
101 #endif
102 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13)
103 #define KVM_REQ_MCLOCK_INPROGRESS \
104 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
105 #define KVM_REQ_SCAN_IOAPIC \
106 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
107 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16)
108 #define KVM_REQ_APIC_PAGE_RELOAD \
109 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
110 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18)
111 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19)
112 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20)
113 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21)
114 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22)
115 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23)
116 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24)
117 #define KVM_REQ_APICV_UPDATE \
118 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
119 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26)
120 #define KVM_REQ_TLB_FLUSH_GUEST \
121 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
122 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28)
123 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29)
124 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
125 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
126 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
127 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
128 #define KVM_REQ_HV_TLB_FLUSH \
129 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
130 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE \
131 KVM_ARCH_REQ_FLAGS(34, KVM_REQUEST_WAIT)
132
133 #define CR0_RESERVED_BITS \
134 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
135 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
136 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
137
138 #define CR4_RESERVED_BITS \
139 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
140 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
141 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
142 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
143 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
144 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
145 | X86_CR4_LAM_SUP))
146
147 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
148
149
150
151 #define INVALID_PAGE (~(hpa_t)0)
152 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
153
154 /* KVM Hugepage definitions for x86 */
155 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G
156 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
157 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9)
158 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
159 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x))
160 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1))
161 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
162
163 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
164 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
165 #define KVM_MMU_HASH_SHIFT 12
166 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
167 #define KVM_MIN_FREE_MMU_PAGES 5
168 #define KVM_REFILL_PAGES 25
169 #define KVM_MAX_CPUID_ENTRIES 256
170 #define KVM_NR_VAR_MTRR 8
171
172 #define ASYNC_PF_PER_VCPU 64
173
174 enum kvm_reg {
175 VCPU_REGS_RAX = __VCPU_REGS_RAX,
176 VCPU_REGS_RCX = __VCPU_REGS_RCX,
177 VCPU_REGS_RDX = __VCPU_REGS_RDX,
178 VCPU_REGS_RBX = __VCPU_REGS_RBX,
179 VCPU_REGS_RSP = __VCPU_REGS_RSP,
180 VCPU_REGS_RBP = __VCPU_REGS_RBP,
181 VCPU_REGS_RSI = __VCPU_REGS_RSI,
182 VCPU_REGS_RDI = __VCPU_REGS_RDI,
183 #ifdef CONFIG_X86_64
184 VCPU_REGS_R8 = __VCPU_REGS_R8,
185 VCPU_REGS_R9 = __VCPU_REGS_R9,
186 VCPU_REGS_R10 = __VCPU_REGS_R10,
187 VCPU_REGS_R11 = __VCPU_REGS_R11,
188 VCPU_REGS_R12 = __VCPU_REGS_R12,
189 VCPU_REGS_R13 = __VCPU_REGS_R13,
190 VCPU_REGS_R14 = __VCPU_REGS_R14,
191 VCPU_REGS_R15 = __VCPU_REGS_R15,
192 #endif
193 VCPU_REGS_RIP,
194 NR_VCPU_REGS,
195
196 VCPU_EXREG_PDPTR = NR_VCPU_REGS,
197 VCPU_EXREG_CR0,
198 VCPU_EXREG_CR3,
199 VCPU_EXREG_CR4,
200 VCPU_EXREG_RFLAGS,
201 VCPU_EXREG_SEGMENTS,
202 VCPU_EXREG_EXIT_INFO_1,
203 VCPU_EXREG_EXIT_INFO_2,
204 };
205
206 enum {
207 VCPU_SREG_ES,
208 VCPU_SREG_CS,
209 VCPU_SREG_SS,
210 VCPU_SREG_DS,
211 VCPU_SREG_FS,
212 VCPU_SREG_GS,
213 VCPU_SREG_TR,
214 VCPU_SREG_LDTR,
215 };
216
217 enum exit_fastpath_completion {
218 EXIT_FASTPATH_NONE,
219 EXIT_FASTPATH_REENTER_GUEST,
220 EXIT_FASTPATH_EXIT_HANDLED,
221 EXIT_FASTPATH_EXIT_USERSPACE,
222 };
223 typedef enum exit_fastpath_completion fastpath_t;
224
225 struct x86_emulate_ctxt;
226 struct x86_exception;
227 union kvm_smram;
228 enum x86_intercept;
229 enum x86_intercept_stage;
230
231 #define KVM_NR_DB_REGS 4
232
233 #define DR6_BUS_LOCK (1 << 11)
234 #define DR6_BD (1 << 13)
235 #define DR6_BS (1 << 14)
236 #define DR6_BT (1 << 15)
237 #define DR6_RTM (1 << 16)
238 /*
239 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
240 * We can regard all the bits in DR6_FIXED_1 as active_low bits;
241 * they will never be 0 for now, but when they are defined
242 * in the future it will require no code change.
243 *
244 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
245 */
246 #define DR6_ACTIVE_LOW 0xffff0ff0
247 #define DR6_VOLATILE 0x0001e80f
248 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE)
249
250 #define DR7_BP_EN_MASK 0x000000ff
251 #define DR7_GE (1 << 9)
252 #define DR7_GD (1 << 13)
253 #define DR7_VOLATILE 0xffff2bff
254
255 #define KVM_GUESTDBG_VALID_MASK \
256 (KVM_GUESTDBG_ENABLE | \
257 KVM_GUESTDBG_SINGLESTEP | \
258 KVM_GUESTDBG_USE_HW_BP | \
259 KVM_GUESTDBG_USE_SW_BP | \
260 KVM_GUESTDBG_INJECT_BP | \
261 KVM_GUESTDBG_INJECT_DB | \
262 KVM_GUESTDBG_BLOCKIRQ)
263
264 #define PFERR_PRESENT_MASK BIT(0)
265 #define PFERR_WRITE_MASK BIT(1)
266 #define PFERR_USER_MASK BIT(2)
267 #define PFERR_RSVD_MASK BIT(3)
268 #define PFERR_FETCH_MASK BIT(4)
269 #define PFERR_PK_MASK BIT(5)
270 #define PFERR_SGX_MASK BIT(15)
271 #define PFERR_GUEST_RMP_MASK BIT_ULL(31)
272 #define PFERR_GUEST_FINAL_MASK BIT_ULL(32)
273 #define PFERR_GUEST_PAGE_MASK BIT_ULL(33)
274 #define PFERR_GUEST_ENC_MASK BIT_ULL(34)
275 #define PFERR_GUEST_SIZEM_MASK BIT_ULL(35)
276 #define PFERR_GUEST_VMPL_MASK BIT_ULL(36)
277
278 /*
279 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks
280 * when emulating instructions that triggers implicit access.
281 */
282 #define PFERR_IMPLICIT_ACCESS BIT_ULL(48)
283 /*
284 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred
285 * when the guest was accessing private memory.
286 */
287 #define PFERR_PRIVATE_ACCESS BIT_ULL(49)
288 #define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS)
289
290 /* apic attention bits */
291 #define KVM_APIC_CHECK_VAPIC 0
292 /*
293 * The following bit is set with PV-EOI, unset on EOI.
294 * We detect PV-EOI changes by guest by comparing
295 * this bit with PV-EOI in guest memory.
296 * See the implementation in apic_update_pv_eoi.
297 */
298 #define KVM_APIC_PV_EOI_PENDING 1
299
300 struct kvm_kernel_irq_routing_entry;
301
302 /*
303 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
304 * also includes TDP pages) to determine whether or not a page can be used in
305 * the given MMU context. This is a subset of the overall kvm_cpu_role to
306 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
307 * allocating 2 bytes per gfn instead of 4 bytes per gfn.
308 *
309 * Upper-level shadow pages having gptes are tracked for write-protection via
310 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must
311 * not create more than 2^16-1 upper-level shadow pages at a single gfn,
312 * otherwise gfn_write_track will overflow and explosions will ensue.
313 *
314 * A unique shadow page (SP) for a gfn is created if and only if an existing SP
315 * cannot be reused. The ability to reuse a SP is tracked by its role, which
316 * incorporates various mode bits and properties of the SP. Roughly speaking,
317 * the number of unique SPs that can theoretically be created is 2^n, where n
318 * is the number of bits that are used to compute the role.
319 *
320 * But, even though there are 20 bits in the mask below, not all combinations
321 * of modes and flags are possible:
322 *
323 * - invalid shadow pages are not accounted, mirror pages are not shadowed,
324 * so the bits are effectively 18.
325 *
326 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
327 * execonly and ad_disabled are only used for nested EPT which has
328 * has_4_byte_gpte=0. Therefore, 2 bits are always unused.
329 *
330 * - the 4 bits of level are effectively limited to the values 2/3/4/5,
331 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE
332 * paging has exactly one upper level, making level completely redundant
333 * when has_4_byte_gpte=1.
334 *
335 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
336 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
337 *
338 * Therefore, the maximum number of possible upper-level shadow pages for a
339 * single gfn is a bit less than 2^13.
340 */
341 union kvm_mmu_page_role {
342 u32 word;
343 struct {
344 unsigned level:4;
345 unsigned has_4_byte_gpte:1;
346 unsigned quadrant:2;
347 unsigned direct:1;
348 unsigned access:3;
349 unsigned invalid:1;
350 unsigned efer_nx:1;
351 unsigned cr0_wp:1;
352 unsigned smep_andnot_wp:1;
353 unsigned smap_andnot_wp:1;
354 unsigned ad_disabled:1;
355 unsigned guest_mode:1;
356 unsigned passthrough:1;
357 unsigned is_mirror:1;
358 unsigned :4;
359
360 /*
361 * This is left at the top of the word so that
362 * kvm_memslots_for_spte_role can extract it with a
363 * simple shift. While there is room, give it a whole
364 * byte so it is also faster to load it from memory.
365 */
366 unsigned smm:8;
367 };
368 };
369
370 /*
371 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
372 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER,
373 * including on nested transitions, if nothing in the full role changes then
374 * MMU re-configuration can be skipped. @valid bit is set on first usage so we
375 * don't treat all-zero structure as valid data.
376 *
377 * The properties that are tracked in the extended role but not the page role
378 * are for things that either (a) do not affect the validity of the shadow page
379 * or (b) are indirectly reflected in the shadow page's role. For example,
380 * CR4.PKE only affects permission checks for software walks of the guest page
381 * tables (because KVM doesn't support Protection Keys with shadow paging), and
382 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
383 *
384 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
385 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
386 * SMAP, but the MMU's permission checks for software walks need to be SMEP and
387 * SMAP aware regardless of CR0.WP.
388 */
389 union kvm_mmu_extended_role {
390 u32 word;
391 struct {
392 unsigned int valid:1;
393 unsigned int execonly:1;
394 unsigned int cr4_pse:1;
395 unsigned int cr4_pke:1;
396 unsigned int cr4_smap:1;
397 unsigned int cr4_smep:1;
398 unsigned int cr4_la57:1;
399 unsigned int efer_lma:1;
400 };
401 };
402
403 union kvm_cpu_role {
404 u64 as_u64;
405 struct {
406 union kvm_mmu_page_role base;
407 union kvm_mmu_extended_role ext;
408 };
409 };
410
411 struct kvm_rmap_head {
412 atomic_long_t val;
413 };
414
415 struct kvm_pio_request {
416 unsigned long count;
417 int in;
418 int port;
419 int size;
420 };
421
422 #define PT64_ROOT_MAX_LEVEL 5
423
424 struct rsvd_bits_validate {
425 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
426 u64 bad_mt_xwr;
427 };
428
429 struct kvm_mmu_root_info {
430 gpa_t pgd;
431 hpa_t hpa;
432 };
433
434 #define KVM_MMU_ROOT_INFO_INVALID \
435 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
436
437 #define KVM_MMU_NUM_PREV_ROOTS 3
438
439 #define KVM_MMU_ROOT_CURRENT BIT(0)
440 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i)
441 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
442
443 #define KVM_HAVE_MMU_RWLOCK
444
445 struct kvm_mmu_page;
446 struct kvm_page_fault;
447
448 /*
449 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
450 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the
451 * current mmu mode.
452 */
453 struct kvm_mmu {
454 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
455 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
456 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
457 void (*inject_page_fault)(struct kvm_vcpu *vcpu,
458 struct x86_exception *fault);
459 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
460 gpa_t gva_or_gpa, u64 access,
461 struct x86_exception *exception);
462 int (*sync_spte)(struct kvm_vcpu *vcpu,
463 struct kvm_mmu_page *sp, int i);
464 struct kvm_mmu_root_info root;
465 hpa_t mirror_root_hpa;
466 union kvm_cpu_role cpu_role;
467 union kvm_mmu_page_role root_role;
468
469 /*
470 * The pkru_mask indicates if protection key checks are needed. It
471 * consists of 16 domains indexed by page fault error code bits [4:1],
472 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
473 * Each domain has 2 bits which are ANDed with AD and WD from PKRU.
474 */
475 u32 pkru_mask;
476
477 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
478
479 /*
480 * Bitmap; bit set = permission fault
481 * Byte index: page fault error code [4:1]
482 * Bit index: pte permissions in ACC_* format
483 */
484 u8 permissions[16];
485
486 u64 *pae_root;
487 u64 *pml4_root;
488 u64 *pml5_root;
489
490 /*
491 * check zero bits on shadow page table entries, these
492 * bits include not only hardware reserved bits but also
493 * the bits spte never used.
494 */
495 struct rsvd_bits_validate shadow_zero_check;
496
497 struct rsvd_bits_validate guest_rsvd_check;
498
499 u64 pdptrs[4]; /* pae */
500 };
501
502 enum pmc_type {
503 KVM_PMC_GP = 0,
504 KVM_PMC_FIXED,
505 };
506
507 struct kvm_pmc {
508 enum pmc_type type;
509 u8 idx;
510 bool is_paused;
511 bool intr;
512 /*
513 * Base value of the PMC counter, relative to the *consumed* count in
514 * the associated perf_event. This value includes counter updates from
515 * the perf_event and emulated_count since the last time the counter
516 * was reprogrammed, but it is *not* the current value as seen by the
517 * guest or userspace.
518 *
519 * The count is relative to the associated perf_event so that KVM
520 * doesn't need to reprogram the perf_event every time the guest writes
521 * to the counter.
522 */
523 u64 counter;
524 /*
525 * PMC events triggered by KVM emulation that haven't been fully
526 * processed, i.e. haven't undergone overflow detection.
527 */
528 u64 emulated_counter;
529 u64 eventsel;
530 struct perf_event *perf_event;
531 struct kvm_vcpu *vcpu;
532 /*
533 * only for creating or reusing perf_event,
534 * eventsel value for general purpose counters,
535 * ctrl value for fixed counters.
536 */
537 u64 current_config;
538 };
539
540 /* More counters may conflict with other existing Architectural MSRs */
541 #define KVM_MAX(a, b) ((a) >= (b) ? (a) : (b))
542 #define KVM_MAX_NR_INTEL_GP_COUNTERS 8
543 #define KVM_MAX_NR_AMD_GP_COUNTERS 6
544 #define KVM_MAX_NR_GP_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \
545 KVM_MAX_NR_AMD_GP_COUNTERS)
546
547 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS 3
548 #define KVM_MAX_NR_AMD_FIXED_COUTNERS 0
549 #define KVM_MAX_NR_FIXED_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \
550 KVM_MAX_NR_AMD_FIXED_COUTNERS)
551
552 struct kvm_pmu {
553 u8 version;
554 unsigned nr_arch_gp_counters;
555 unsigned nr_arch_fixed_counters;
556 unsigned available_event_types;
557 u64 fixed_ctr_ctrl;
558 u64 fixed_ctr_ctrl_rsvd;
559 u64 global_ctrl;
560 u64 global_status;
561 u64 counter_bitmask[2];
562 u64 global_ctrl_rsvd;
563 u64 global_status_rsvd;
564 u64 reserved_bits;
565 u64 raw_event_mask;
566 struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS];
567 struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS];
568
569 /*
570 * Overlay the bitmap with a 64-bit atomic so that all bits can be
571 * set in a single access, e.g. to reprogram all counters when the PMU
572 * filter changes.
573 */
574 union {
575 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
576 atomic64_t __reprogram_pmi;
577 };
578 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
579 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
580
581 u64 ds_area;
582 u64 pebs_enable;
583 u64 pebs_enable_rsvd;
584 u64 pebs_data_cfg;
585 u64 pebs_data_cfg_rsvd;
586
587 /*
588 * If a guest counter is cross-mapped to host counter with different
589 * index, its PEBS capability will be temporarily disabled.
590 *
591 * The user should make sure that this mask is updated
592 * after disabling interrupts and before perf_guest_get_msrs();
593 */
594 u64 host_cross_mapped_mask;
595
596 /*
597 * The gate to release perf_events not marked in
598 * pmc_in_use only once in a vcpu time slice.
599 */
600 bool need_cleanup;
601
602 /*
603 * The total number of programmed perf_events and it helps to avoid
604 * redundant check before cleanup if guest don't use vPMU at all.
605 */
606 u8 event_count;
607 };
608
609 struct kvm_pmu_ops;
610
611 enum {
612 KVM_DEBUGREG_BP_ENABLED = BIT(0),
613 KVM_DEBUGREG_WONT_EXIT = BIT(1),
614 /*
615 * Guest debug registers (DR0-3, DR6 and DR7) are saved/restored by
616 * hardware on exit from or enter to guest. KVM needn't switch them.
617 * DR0-3, DR6 and DR7 are set to their architectural INIT value on VM
618 * exit, host values need to be restored.
619 */
620 KVM_DEBUGREG_AUTO_SWITCH = BIT(2),
621 };
622
623 struct kvm_mtrr {
624 u64 var[KVM_NR_VAR_MTRR * 2];
625 u64 fixed_64k;
626 u64 fixed_16k[2];
627 u64 fixed_4k[8];
628 u64 deftype;
629 };
630
631 /* Hyper-V SynIC timer */
632 struct kvm_vcpu_hv_stimer {
633 struct hrtimer timer;
634 int index;
635 union hv_stimer_config config;
636 u64 count;
637 u64 exp_time;
638 struct hv_message msg;
639 bool msg_pending;
640 };
641
642 /* Hyper-V synthetic interrupt controller (SynIC)*/
643 struct kvm_vcpu_hv_synic {
644 u64 version;
645 u64 control;
646 u64 msg_page;
647 u64 evt_page;
648 atomic64_t sint[HV_SYNIC_SINT_COUNT];
649 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
650 DECLARE_BITMAP(auto_eoi_bitmap, 256);
651 DECLARE_BITMAP(vec_bitmap, 256);
652 bool active;
653 bool dont_zero_synic_pages;
654 };
655
656 /* The maximum number of entries on the TLB flush fifo. */
657 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
658 /*
659 * Note: the following 'magic' entry is made up by KVM to avoid putting
660 * anything besides GVA on the TLB flush fifo. It is theoretically possible
661 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
662 * which will look identical. KVM's action to 'flush everything' instead of
663 * flushing these particular addresses is, however, fully legitimate as
664 * flushing more than requested is always OK.
665 */
666 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1)
667
668 enum hv_tlb_flush_fifos {
669 HV_L1_TLB_FLUSH_FIFO,
670 HV_L2_TLB_FLUSH_FIFO,
671 HV_NR_TLB_FLUSH_FIFOS,
672 };
673
674 struct kvm_vcpu_hv_tlb_flush_fifo {
675 spinlock_t write_lock;
676 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
677 };
678
679 /* Hyper-V per vcpu emulation context */
680 struct kvm_vcpu_hv {
681 struct kvm_vcpu *vcpu;
682 u32 vp_index;
683 u64 hv_vapic;
684 s64 runtime_offset;
685 struct kvm_vcpu_hv_synic synic;
686 struct kvm_hyperv_exit exit;
687 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
688 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
689 bool enforce_cpuid;
690 struct {
691 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
692 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
693 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
694 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
695 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
696 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
697 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
698 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
699 } cpuid_cache;
700
701 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
702
703 /* Preallocated buffer for handling hypercalls passing sparse vCPU set */
704 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
705
706 struct hv_vp_assist_page vp_assist_page;
707
708 struct {
709 u64 pa_page_gpa;
710 u64 vm_id;
711 u32 vp_id;
712 } nested;
713 };
714
715 struct kvm_hypervisor_cpuid {
716 u32 base;
717 u32 limit;
718 };
719
720 #ifdef CONFIG_KVM_XEN
721 /* Xen HVM per vcpu emulation context */
722 struct kvm_vcpu_xen {
723 u64 hypercall_rip;
724 u32 current_runstate;
725 u8 upcall_vector;
726 struct gfn_to_pfn_cache vcpu_info_cache;
727 struct gfn_to_pfn_cache vcpu_time_info_cache;
728 struct gfn_to_pfn_cache runstate_cache;
729 struct gfn_to_pfn_cache runstate2_cache;
730 u64 last_steal;
731 u64 runstate_entry_time;
732 u64 runstate_times[4];
733 unsigned long evtchn_pending_sel;
734 u32 vcpu_id; /* The Xen / ACPI vCPU ID */
735 u32 timer_virq;
736 u64 timer_expires; /* In guest epoch */
737 atomic_t timer_pending;
738 struct hrtimer timer;
739 int poll_evtchn;
740 struct timer_list poll_timer;
741 struct kvm_hypervisor_cpuid cpuid;
742 };
743 #endif
744
745 struct kvm_queued_exception {
746 bool pending;
747 bool injected;
748 bool has_error_code;
749 u8 vector;
750 u32 error_code;
751 unsigned long payload;
752 bool has_payload;
753 };
754
755 /*
756 * Hardware-defined CPUID leafs that are either scattered by the kernel or are
757 * unknown to the kernel, but need to be directly used by KVM. Note, these
758 * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
759 */
760 enum kvm_only_cpuid_leafs {
761 CPUID_12_EAX = NCAPINTS,
762 CPUID_7_1_EDX,
763 CPUID_8000_0007_EDX,
764 CPUID_8000_0022_EAX,
765 CPUID_7_2_EDX,
766 CPUID_24_0_EBX,
767 CPUID_8000_0021_ECX,
768 NR_KVM_CPU_CAPS,
769
770 NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
771 };
772
773 struct kvm_vcpu_arch {
774 /*
775 * rip and regs accesses must go through
776 * kvm_{register,rip}_{read,write} functions.
777 */
778 unsigned long regs[NR_VCPU_REGS];
779 u32 regs_avail;
780 u32 regs_dirty;
781
782 unsigned long cr0;
783 unsigned long cr0_guest_owned_bits;
784 unsigned long cr2;
785 unsigned long cr3;
786 unsigned long cr4;
787 unsigned long cr4_guest_owned_bits;
788 unsigned long cr4_guest_rsvd_bits;
789 unsigned long cr8;
790 u32 host_pkru;
791 u32 pkru;
792 u32 hflags;
793 u64 efer;
794 u64 host_debugctl;
795 u64 apic_base;
796 struct kvm_lapic *apic; /* kernel irqchip context */
797 bool load_eoi_exitmap_pending;
798 DECLARE_BITMAP(ioapic_handled_vectors, 256);
799 unsigned long apic_attention;
800 int32_t apic_arb_prio;
801 int mp_state;
802 u64 ia32_misc_enable_msr;
803 u64 smbase;
804 u64 smi_count;
805 bool at_instruction_boundary;
806 bool tpr_access_reporting;
807 bool xfd_no_write_intercept;
808 u64 ia32_xss;
809 u64 microcode_version;
810 u64 arch_capabilities;
811 u64 perf_capabilities;
812
813 /*
814 * Paging state of the vcpu
815 *
816 * If the vcpu runs in guest mode with two level paging this still saves
817 * the paging mode of the l1 guest. This context is always used to
818 * handle faults.
819 */
820 struct kvm_mmu *mmu;
821
822 /* Non-nested MMU for L1 */
823 struct kvm_mmu root_mmu;
824
825 /* L1 MMU when running nested */
826 struct kvm_mmu guest_mmu;
827
828 /*
829 * Paging state of an L2 guest (used for nested npt)
830 *
831 * This context will save all necessary information to walk page tables
832 * of an L2 guest. This context is only initialized for page table
833 * walking and not for faulting since we never handle l2 page faults on
834 * the host.
835 */
836 struct kvm_mmu nested_mmu;
837
838 /*
839 * Pointer to the mmu context currently used for
840 * gva_to_gpa translations.
841 */
842 struct kvm_mmu *walk_mmu;
843
844 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
845 struct kvm_mmu_memory_cache mmu_shadow_page_cache;
846 struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
847 struct kvm_mmu_memory_cache mmu_page_header_cache;
848 /*
849 * This cache is to allocate external page table. E.g. private EPT used
850 * by the TDX module.
851 */
852 struct kvm_mmu_memory_cache mmu_external_spt_cache;
853
854 /*
855 * QEMU userspace and the guest each have their own FPU state.
856 * In vcpu_run, we switch between the user and guest FPU contexts.
857 * While running a VCPU, the VCPU thread will have the guest FPU
858 * context.
859 *
860 * Note that while the PKRU state lives inside the fpu registers,
861 * it is switched out separately at VMENTER and VMEXIT time. The
862 * "guest_fpstate" state here contains the guest FPU context, with the
863 * host PRKU bits.
864 */
865 struct fpu_guest guest_fpu;
866
867 u64 xcr0;
868 u64 guest_supported_xcr0;
869
870 struct kvm_pio_request pio;
871 void *pio_data;
872 void *sev_pio_data;
873 unsigned sev_pio_count;
874
875 u8 event_exit_inst_len;
876
877 bool exception_from_userspace;
878
879 /* Exceptions to be injected to the guest. */
880 struct kvm_queued_exception exception;
881 /* Exception VM-Exits to be synthesized to L1. */
882 struct kvm_queued_exception exception_vmexit;
883
884 struct kvm_queued_interrupt {
885 bool injected;
886 bool soft;
887 u8 nr;
888 } interrupt;
889
890 int halt_request; /* real mode on Intel only */
891
892 int cpuid_nent;
893 struct kvm_cpuid_entry2 *cpuid_entries;
894 bool cpuid_dynamic_bits_dirty;
895 bool is_amd_compatible;
896
897 /*
898 * cpu_caps holds the effective guest capabilities, i.e. the features
899 * the vCPU is allowed to use. Typically, but not always, features can
900 * be used by the guest if and only if both KVM and userspace want to
901 * expose the feature to the guest.
902 *
903 * A common exception is for virtualization holes, i.e. when KVM can't
904 * prevent the guest from using a feature, in which case the vCPU "has"
905 * the feature regardless of what KVM or userspace desires.
906 *
907 * Note, features that don't require KVM involvement in any way are
908 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the
909 * guest CPUID provided by userspace.
910 */
911 u32 cpu_caps[NR_KVM_CPU_CAPS];
912
913 u64 reserved_gpa_bits;
914 int maxphyaddr;
915
916 /* emulate context */
917
918 struct x86_emulate_ctxt *emulate_ctxt;
919 bool emulate_regs_need_sync_to_vcpu;
920 bool emulate_regs_need_sync_from_vcpu;
921 int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
922 unsigned long cui_linear_rip;
923
924 gpa_t time;
925 s8 pvclock_tsc_shift;
926 u32 pvclock_tsc_mul;
927 unsigned int hw_tsc_khz;
928 struct gfn_to_pfn_cache pv_time;
929 /* set guest stopped flag in pvclock flags field */
930 bool pvclock_set_guest_stopped_request;
931
932 struct {
933 u8 preempted;
934 u64 msr_val;
935 u64 last_steal;
936 struct gfn_to_hva_cache cache;
937 } st;
938
939 u64 l1_tsc_offset;
940 u64 tsc_offset; /* current tsc offset */
941 u64 last_guest_tsc;
942 u64 last_host_tsc;
943 u64 tsc_offset_adjustment;
944 u64 this_tsc_nsec;
945 u64 this_tsc_write;
946 u64 this_tsc_generation;
947 bool tsc_catchup;
948 bool tsc_always_catchup;
949 s8 virtual_tsc_shift;
950 u32 virtual_tsc_mult;
951 u32 virtual_tsc_khz;
952 s64 ia32_tsc_adjust_msr;
953 u64 msr_ia32_power_ctl;
954 u64 l1_tsc_scaling_ratio;
955 u64 tsc_scaling_ratio; /* current scaling ratio */
956
957 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */
958 /* Number of NMIs pending injection, not including hardware vNMIs. */
959 unsigned int nmi_pending;
960 bool nmi_injected; /* Trying to inject an NMI this entry */
961 bool smi_pending; /* SMI queued after currently running handler */
962 u8 handling_intr_from_guest;
963
964 struct kvm_mtrr mtrr_state;
965 u64 pat;
966
967 unsigned switch_db_regs;
968 unsigned long db[KVM_NR_DB_REGS];
969 unsigned long dr6;
970 unsigned long dr7;
971 unsigned long eff_db[KVM_NR_DB_REGS];
972 unsigned long guest_debug_dr7;
973 u64 msr_platform_info;
974 u64 msr_misc_features_enables;
975
976 u64 mcg_cap;
977 u64 mcg_status;
978 u64 mcg_ctl;
979 u64 mcg_ext_ctl;
980 u64 *mce_banks;
981 u64 *mci_ctl2_banks;
982
983 /* Cache MMIO info */
984 u64 mmio_gva;
985 unsigned mmio_access;
986 gfn_t mmio_gfn;
987 u64 mmio_gen;
988
989 struct kvm_pmu pmu;
990
991 /* used for guest single stepping over the given code position */
992 unsigned long singlestep_rip;
993
994 #ifdef CONFIG_KVM_HYPERV
995 bool hyperv_enabled;
996 struct kvm_vcpu_hv *hyperv;
997 #endif
998 #ifdef CONFIG_KVM_XEN
999 struct kvm_vcpu_xen xen;
1000 #endif
1001 cpumask_var_t wbinvd_dirty_mask;
1002
1003 unsigned long last_retry_eip;
1004 unsigned long last_retry_addr;
1005
1006 struct {
1007 bool halted;
1008 gfn_t gfns[ASYNC_PF_PER_VCPU];
1009 struct gfn_to_hva_cache data;
1010 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
1011 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
1012 u16 vec;
1013 u32 id;
1014 u32 host_apf_flags;
1015 bool send_always;
1016 bool delivery_as_pf_vmexit;
1017 bool pageready_pending;
1018 } apf;
1019
1020 /* OSVW MSRs (AMD only) */
1021 struct {
1022 u64 length;
1023 u64 status;
1024 } osvw;
1025
1026 struct {
1027 u64 msr_val;
1028 struct gfn_to_hva_cache data;
1029 } pv_eoi;
1030
1031 u64 msr_kvm_poll_control;
1032
1033 /* pv related host specific info */
1034 struct {
1035 bool pv_unhalted;
1036 } pv;
1037
1038 int pending_ioapic_eoi;
1039 int pending_external_vector;
1040 int highest_stale_pending_ioapic_eoi;
1041
1042 /* be preempted when it's in kernel-mode(cpl=0) */
1043 bool preempted_in_kernel;
1044
1045 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */
1046 bool l1tf_flush_l1d;
1047
1048 /* Host CPU on which VM-entry was most recently attempted */
1049 int last_vmentry_cpu;
1050
1051 /* AMD MSRC001_0015 Hardware Configuration */
1052 u64 msr_hwcr;
1053
1054 /* pv related cpuid info */
1055 struct {
1056 /*
1057 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1058 * leaf.
1059 */
1060 u32 features;
1061
1062 /*
1063 * indicates whether pv emulation should be disabled if features
1064 * are not present in the guest's cpuid
1065 */
1066 bool enforce;
1067 } pv_cpuid;
1068
1069 /* Protected Guests */
1070 bool guest_state_protected;
1071 bool guest_tsc_protected;
1072
1073 /*
1074 * Set when PDPTS were loaded directly by the userspace without
1075 * reading the guest memory
1076 */
1077 bool pdptrs_from_userspace;
1078
1079 #if IS_ENABLED(CONFIG_HYPERV)
1080 hpa_t hv_root_tdp;
1081 #endif
1082 };
1083
1084 struct kvm_lpage_info {
1085 int disallow_lpage;
1086 };
1087
1088 struct kvm_arch_memory_slot {
1089 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1090 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1091 unsigned short *gfn_write_track;
1092 };
1093
1094 /*
1095 * Track the mode of the optimized logical map, as the rules for decoding the
1096 * destination vary per mode. Enabling the optimized logical map requires all
1097 * software-enabled local APIs to be in the same mode, each addressable APIC to
1098 * be mapped to only one MDA, and each MDA to map to at most one APIC.
1099 */
1100 enum kvm_apic_logical_mode {
1101 /* All local APICs are software disabled. */
1102 KVM_APIC_MODE_SW_DISABLED,
1103 /* All software enabled local APICs in xAPIC cluster addressing mode. */
1104 KVM_APIC_MODE_XAPIC_CLUSTER,
1105 /* All software enabled local APICs in xAPIC flat addressing mode. */
1106 KVM_APIC_MODE_XAPIC_FLAT,
1107 /* All software enabled local APICs in x2APIC mode. */
1108 KVM_APIC_MODE_X2APIC,
1109 /*
1110 * Optimized map disabled, e.g. not all local APICs in the same logical
1111 * mode, same logical ID assigned to multiple APICs, etc.
1112 */
1113 KVM_APIC_MODE_MAP_DISABLED,
1114 };
1115
1116 struct kvm_apic_map {
1117 struct rcu_head rcu;
1118 enum kvm_apic_logical_mode logical_mode;
1119 u32 max_apic_id;
1120 union {
1121 struct kvm_lapic *xapic_flat_map[8];
1122 struct kvm_lapic *xapic_cluster_map[16][4];
1123 };
1124 struct kvm_lapic *phys_map[];
1125 };
1126
1127 /* Hyper-V synthetic debugger (SynDbg)*/
1128 struct kvm_hv_syndbg {
1129 struct {
1130 u64 control;
1131 u64 status;
1132 u64 send_page;
1133 u64 recv_page;
1134 u64 pending_page;
1135 } control;
1136 u64 options;
1137 };
1138
1139 /* Current state of Hyper-V TSC page clocksource */
1140 enum hv_tsc_page_status {
1141 /* TSC page was not set up or disabled */
1142 HV_TSC_PAGE_UNSET = 0,
1143 /* TSC page MSR was written by the guest, update pending */
1144 HV_TSC_PAGE_GUEST_CHANGED,
1145 /* TSC page update was triggered from the host side */
1146 HV_TSC_PAGE_HOST_CHANGED,
1147 /* TSC page was properly set up and is currently active */
1148 HV_TSC_PAGE_SET,
1149 /* TSC page was set up with an inaccessible GPA */
1150 HV_TSC_PAGE_BROKEN,
1151 };
1152
1153 #ifdef CONFIG_KVM_HYPERV
1154 /* Hyper-V emulation context */
1155 struct kvm_hv {
1156 struct mutex hv_lock;
1157 u64 hv_guest_os_id;
1158 u64 hv_hypercall;
1159 u64 hv_tsc_page;
1160 enum hv_tsc_page_status hv_tsc_page_status;
1161
1162 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1163 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1164 u64 hv_crash_ctl;
1165
1166 struct ms_hyperv_tsc_page tsc_ref;
1167
1168 struct idr conn_to_evt;
1169
1170 u64 hv_reenlightenment_control;
1171 u64 hv_tsc_emulation_control;
1172 u64 hv_tsc_emulation_status;
1173 u64 hv_invtsc_control;
1174
1175 /* How many vCPUs have VP index != vCPU index */
1176 atomic_t num_mismatched_vp_indexes;
1177
1178 /*
1179 * How many SynICs use 'AutoEOI' feature
1180 * (protected by arch.apicv_update_lock)
1181 */
1182 unsigned int synic_auto_eoi_used;
1183
1184 struct kvm_hv_syndbg hv_syndbg;
1185
1186 bool xsaves_xsavec_checked;
1187 };
1188 #endif
1189
1190 struct msr_bitmap_range {
1191 u32 flags;
1192 u32 nmsrs;
1193 u32 base;
1194 unsigned long *bitmap;
1195 };
1196
1197 #ifdef CONFIG_KVM_XEN
1198 /* Xen emulation context */
1199 struct kvm_xen {
1200 struct mutex xen_lock;
1201 u32 xen_version;
1202 bool long_mode;
1203 bool runstate_update_flag;
1204 u8 upcall_vector;
1205 struct gfn_to_pfn_cache shinfo_cache;
1206 struct idr evtchn_ports;
1207 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1208
1209 struct kvm_xen_hvm_config hvm_config;
1210 };
1211 #endif
1212
1213 enum kvm_irqchip_mode {
1214 KVM_IRQCHIP_NONE,
1215 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */
1216 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */
1217 };
1218
1219 struct kvm_x86_msr_filter {
1220 u8 count;
1221 bool default_allow:1;
1222 struct msr_bitmap_range ranges[16];
1223 };
1224
1225 struct kvm_x86_pmu_event_filter {
1226 __u32 action;
1227 __u32 nevents;
1228 __u32 fixed_counter_bitmap;
1229 __u32 flags;
1230 __u32 nr_includes;
1231 __u32 nr_excludes;
1232 __u64 *includes;
1233 __u64 *excludes;
1234 __u64 events[];
1235 };
1236
1237 enum kvm_apicv_inhibit {
1238
1239 /********************************************************************/
1240 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1241 /********************************************************************/
1242
1243 /*
1244 * APIC acceleration is disabled by a module parameter
1245 * and/or not supported in hardware.
1246 */
1247 APICV_INHIBIT_REASON_DISABLED,
1248
1249 /*
1250 * APIC acceleration is inhibited because AutoEOI feature is
1251 * being used by a HyperV guest.
1252 */
1253 APICV_INHIBIT_REASON_HYPERV,
1254
1255 /*
1256 * APIC acceleration is inhibited because the userspace didn't yet
1257 * enable the kernel/split irqchip.
1258 */
1259 APICV_INHIBIT_REASON_ABSENT,
1260
1261 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1262 * (out of band, debug measure of blocking all interrupts on this vCPU)
1263 * was enabled, to avoid AVIC/APICv bypassing it.
1264 */
1265 APICV_INHIBIT_REASON_BLOCKIRQ,
1266
1267 /*
1268 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1269 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1270 */
1271 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1272
1273 /*
1274 * For simplicity, the APIC acceleration is inhibited
1275 * first time either APIC ID or APIC base are changed by the guest
1276 * from their reset values.
1277 */
1278 APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1279 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1280
1281 /******************************************************/
1282 /* INHIBITs that are relevant only to the AMD's AVIC. */
1283 /******************************************************/
1284
1285 /*
1286 * AVIC is inhibited on a vCPU because it runs a nested guest.
1287 *
1288 * This is needed because unlike APICv, the peers of this vCPU
1289 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1290 * a vCPU runs nested.
1291 */
1292 APICV_INHIBIT_REASON_NESTED,
1293
1294 /*
1295 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1296 * which cannot be injected when the AVIC is enabled, thus AVIC
1297 * is inhibited while KVM waits for IRQ window.
1298 */
1299 APICV_INHIBIT_REASON_IRQWIN,
1300
1301 /*
1302 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1303 * which AVIC doesn't support for edge triggered interrupts.
1304 */
1305 APICV_INHIBIT_REASON_PIT_REINJ,
1306
1307 /*
1308 * AVIC is disabled because SEV doesn't support it.
1309 */
1310 APICV_INHIBIT_REASON_SEV,
1311
1312 /*
1313 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1314 * mapping between logical ID and vCPU.
1315 */
1316 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1317
1318 NR_APICV_INHIBIT_REASONS,
1319 };
1320
1321 #define __APICV_INHIBIT_REASON(reason) \
1322 { BIT(APICV_INHIBIT_REASON_##reason), #reason }
1323
1324 #define APICV_INHIBIT_REASONS \
1325 __APICV_INHIBIT_REASON(DISABLED), \
1326 __APICV_INHIBIT_REASON(HYPERV), \
1327 __APICV_INHIBIT_REASON(ABSENT), \
1328 __APICV_INHIBIT_REASON(BLOCKIRQ), \
1329 __APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED), \
1330 __APICV_INHIBIT_REASON(APIC_ID_MODIFIED), \
1331 __APICV_INHIBIT_REASON(APIC_BASE_MODIFIED), \
1332 __APICV_INHIBIT_REASON(NESTED), \
1333 __APICV_INHIBIT_REASON(IRQWIN), \
1334 __APICV_INHIBIT_REASON(PIT_REINJ), \
1335 __APICV_INHIBIT_REASON(SEV), \
1336 __APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED)
1337
1338 struct kvm_arch {
1339 unsigned long n_used_mmu_pages;
1340 unsigned long n_requested_mmu_pages;
1341 unsigned long n_max_mmu_pages;
1342 unsigned int indirect_shadow_pages;
1343 u8 mmu_valid_gen;
1344 u8 vm_type;
1345 bool has_private_mem;
1346 bool has_protected_state;
1347 bool pre_fault_allowed;
1348 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1349 struct list_head active_mmu_pages;
1350 /*
1351 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1352 * replaced by an NX huge page. A shadow page is on this list if its
1353 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1354 * and there are no other conditions that prevent a huge page, e.g.
1355 * the backing host page is huge, dirtly logging is not enabled for its
1356 * memslot, etc... Note, zapping shadow pages on this list doesn't
1357 * guarantee an NX huge page will be created in its stead, e.g. if the
1358 * guest attempts to execute from the region then KVM obviously can't
1359 * create an NX huge page (without hanging the guest).
1360 */
1361 struct list_head possible_nx_huge_pages;
1362 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1363 struct kvm_page_track_notifier_head track_notifier_head;
1364 #endif
1365 /*
1366 * Protects marking pages unsync during page faults, as TDP MMU page
1367 * faults only take mmu_lock for read. For simplicity, the unsync
1368 * pages lock is always taken when marking pages unsync regardless of
1369 * whether mmu_lock is held for read or write.
1370 */
1371 spinlock_t mmu_unsync_pages_lock;
1372
1373 u64 shadow_mmio_value;
1374
1375 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1376 atomic_t noncoherent_dma_count;
1377 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1378 atomic_t assigned_device_count;
1379 struct kvm_pic *vpic;
1380 struct kvm_ioapic *vioapic;
1381 struct kvm_pit *vpit;
1382 atomic_t vapics_in_nmi_mode;
1383 struct mutex apic_map_lock;
1384 struct kvm_apic_map __rcu *apic_map;
1385 atomic_t apic_map_dirty;
1386
1387 bool apic_access_memslot_enabled;
1388 bool apic_access_memslot_inhibited;
1389
1390 /* Protects apicv_inhibit_reasons */
1391 struct rw_semaphore apicv_update_lock;
1392 unsigned long apicv_inhibit_reasons;
1393
1394 gpa_t wall_clock;
1395
1396 bool mwait_in_guest;
1397 bool hlt_in_guest;
1398 bool pause_in_guest;
1399 bool cstate_in_guest;
1400
1401 unsigned long irq_sources_bitmap;
1402 s64 kvmclock_offset;
1403
1404 /*
1405 * This also protects nr_vcpus_matched_tsc which is read from a
1406 * preemption-disabled region, so it must be a raw spinlock.
1407 */
1408 raw_spinlock_t tsc_write_lock;
1409 u64 last_tsc_nsec;
1410 u64 last_tsc_write;
1411 u32 last_tsc_khz;
1412 u64 last_tsc_offset;
1413 u64 cur_tsc_nsec;
1414 u64 cur_tsc_write;
1415 u64 cur_tsc_offset;
1416 u64 cur_tsc_generation;
1417 int nr_vcpus_matched_tsc;
1418
1419 u32 default_tsc_khz;
1420 bool user_set_tsc;
1421 u64 apic_bus_cycle_ns;
1422
1423 seqcount_raw_spinlock_t pvclock_sc;
1424 bool use_master_clock;
1425 u64 master_kernel_ns;
1426 u64 master_cycle_now;
1427 struct delayed_work kvmclock_update_work;
1428 struct delayed_work kvmclock_sync_work;
1429
1430 /* reads protected by irq_srcu, writes by irq_lock */
1431 struct hlist_head mask_notifier_list;
1432
1433 #ifdef CONFIG_KVM_HYPERV
1434 struct kvm_hv hyperv;
1435 #endif
1436
1437 #ifdef CONFIG_KVM_XEN
1438 struct kvm_xen xen;
1439 #endif
1440
1441 bool backwards_tsc_observed;
1442 bool boot_vcpu_runs_old_kvmclock;
1443 u32 bsp_vcpu_id;
1444
1445 u64 disabled_quirks;
1446
1447 enum kvm_irqchip_mode irqchip_mode;
1448 u8 nr_reserved_ioapic_pins;
1449
1450 bool disabled_lapic_found;
1451
1452 bool x2apic_format;
1453 bool x2apic_broadcast_quirk_disabled;
1454
1455 bool guest_can_read_msr_platform_info;
1456 bool exception_payload_enabled;
1457
1458 bool triple_fault_event;
1459
1460 bool bus_lock_detection_enabled;
1461 bool enable_pmu;
1462
1463 u32 notify_window;
1464 u32 notify_vmexit_flags;
1465 /*
1466 * If exit_on_emulation_error is set, and the in-kernel instruction
1467 * emulator fails to emulate an instruction, allow userspace
1468 * the opportunity to look at it.
1469 */
1470 bool exit_on_emulation_error;
1471
1472 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1473 u32 user_space_msr_mask;
1474 struct kvm_x86_msr_filter __rcu *msr_filter;
1475
1476 u32 hypercall_exit_enabled;
1477
1478 /* Guest can access the SGX PROVISIONKEY. */
1479 bool sgx_provisioning_allowed;
1480
1481 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1482 struct vhost_task *nx_huge_page_recovery_thread;
1483 u64 nx_huge_page_last;
1484 struct once nx_once;
1485
1486 #ifdef CONFIG_X86_64
1487 #ifdef CONFIG_KVM_PROVE_MMU
1488 /*
1489 * The number of TDP MMU pages across all roots. Used only to sanity
1490 * check that KVM isn't leaking TDP MMU pages.
1491 */
1492 atomic64_t tdp_mmu_pages;
1493 #endif
1494
1495 /*
1496 * List of struct kvm_mmu_pages being used as roots.
1497 * All struct kvm_mmu_pages in the list should have
1498 * tdp_mmu_page set.
1499 *
1500 * For reads, this list is protected by:
1501 * RCU alone or
1502 * the MMU lock in read mode + RCU or
1503 * the MMU lock in write mode
1504 *
1505 * For writes, this list is protected by tdp_mmu_pages_lock; see
1506 * below for the details.
1507 *
1508 * Roots will remain in the list until their tdp_mmu_root_count
1509 * drops to zero, at which point the thread that decremented the
1510 * count to zero should removed the root from the list and clean
1511 * it up, freeing the root after an RCU grace period.
1512 */
1513 struct list_head tdp_mmu_roots;
1514
1515 /*
1516 * Protects accesses to the following fields when the MMU lock
1517 * is held in read mode:
1518 * - tdp_mmu_roots (above)
1519 * - the link field of kvm_mmu_page structs used by the TDP MMU
1520 * - possible_nx_huge_pages;
1521 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1522 * by the TDP MMU
1523 * Because the lock is only taken within the MMU lock, strictly
1524 * speaking it is redundant to acquire this lock when the thread
1525 * holds the MMU lock in write mode. However it often simplifies
1526 * the code to do so.
1527 */
1528 spinlock_t tdp_mmu_pages_lock;
1529 #endif /* CONFIG_X86_64 */
1530
1531 /*
1532 * If set, at least one shadow root has been allocated. This flag
1533 * is used as one input when determining whether certain memslot
1534 * related allocations are necessary.
1535 */
1536 bool shadow_root_allocated;
1537
1538 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1539 /*
1540 * If set, the VM has (or had) an external write tracking user, and
1541 * thus all write tracking metadata has been allocated, even if KVM
1542 * itself isn't using write tracking.
1543 */
1544 bool external_write_tracking_enabled;
1545 #endif
1546
1547 #if IS_ENABLED(CONFIG_HYPERV)
1548 hpa_t hv_root_tdp;
1549 spinlock_t hv_root_tdp_lock;
1550 struct hv_partition_assist_pg *hv_pa_pg;
1551 #endif
1552 /*
1553 * VM-scope maximum vCPU ID. Used to determine the size of structures
1554 * that increase along with the maximum vCPU ID, in which case, using
1555 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1556 */
1557 u32 max_vcpu_ids;
1558
1559 bool disable_nx_huge_pages;
1560
1561 /*
1562 * Memory caches used to allocate shadow pages when performing eager
1563 * page splitting. No need for a shadowed_info_cache since eager page
1564 * splitting only allocates direct shadow pages.
1565 *
1566 * Protected by kvm->slots_lock.
1567 */
1568 struct kvm_mmu_memory_cache split_shadow_page_cache;
1569 struct kvm_mmu_memory_cache split_page_header_cache;
1570
1571 /*
1572 * Memory cache used to allocate pte_list_desc structs while splitting
1573 * huge pages. In the worst case, to split one huge page, 512
1574 * pte_list_desc structs are needed to add each lower level leaf sptep
1575 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1576 * page table.
1577 *
1578 * Protected by kvm->slots_lock.
1579 */
1580 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1581 struct kvm_mmu_memory_cache split_desc_cache;
1582
1583 gfn_t gfn_direct_bits;
1584
1585 /*
1586 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A Zero
1587 * value indicates CPU dirty logging is unsupported or disabled in
1588 * current VM.
1589 */
1590 int cpu_dirty_log_size;
1591 };
1592
1593 struct kvm_vm_stat {
1594 struct kvm_vm_stat_generic generic;
1595 u64 mmu_shadow_zapped;
1596 u64 mmu_pte_write;
1597 u64 mmu_pde_zapped;
1598 u64 mmu_flooded;
1599 u64 mmu_recycled;
1600 u64 mmu_cache_miss;
1601 u64 mmu_unsync;
1602 union {
1603 struct {
1604 atomic64_t pages_4k;
1605 atomic64_t pages_2m;
1606 atomic64_t pages_1g;
1607 };
1608 atomic64_t pages[KVM_NR_PAGE_SIZES];
1609 };
1610 u64 nx_lpage_splits;
1611 u64 max_mmu_page_hash_collisions;
1612 u64 max_mmu_rmap_size;
1613 };
1614
1615 struct kvm_vcpu_stat {
1616 struct kvm_vcpu_stat_generic generic;
1617 u64 pf_taken;
1618 u64 pf_fixed;
1619 u64 pf_emulate;
1620 u64 pf_spurious;
1621 u64 pf_fast;
1622 u64 pf_mmio_spte_created;
1623 u64 pf_guest;
1624 u64 tlb_flush;
1625 u64 invlpg;
1626
1627 u64 exits;
1628 u64 io_exits;
1629 u64 mmio_exits;
1630 u64 signal_exits;
1631 u64 irq_window_exits;
1632 u64 nmi_window_exits;
1633 u64 l1d_flush;
1634 u64 halt_exits;
1635 u64 request_irq_exits;
1636 u64 irq_exits;
1637 u64 host_state_reload;
1638 u64 fpu_reload;
1639 u64 insn_emulation;
1640 u64 insn_emulation_fail;
1641 u64 hypercalls;
1642 u64 irq_injections;
1643 u64 nmi_injections;
1644 u64 req_event;
1645 u64 nested_run;
1646 u64 directed_yield_attempted;
1647 u64 directed_yield_successful;
1648 u64 preemption_reported;
1649 u64 preemption_other;
1650 u64 guest_mode;
1651 u64 notify_window_exits;
1652 };
1653
1654 struct x86_instruction_info;
1655
1656 struct msr_data {
1657 bool host_initiated;
1658 u32 index;
1659 u64 data;
1660 };
1661
1662 struct kvm_lapic_irq {
1663 u32 vector;
1664 u16 delivery_mode;
1665 u16 dest_mode;
1666 bool level;
1667 u16 trig_mode;
1668 u32 shorthand;
1669 u32 dest_id;
1670 bool msi_redir_hint;
1671 };
1672
kvm_lapic_irq_dest_mode(bool dest_mode_logical)1673 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1674 {
1675 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1676 }
1677
1678 struct kvm_x86_ops {
1679 const char *name;
1680
1681 int (*check_processor_compatibility)(void);
1682
1683 int (*enable_virtualization_cpu)(void);
1684 void (*disable_virtualization_cpu)(void);
1685 cpu_emergency_virt_cb *emergency_disable_virtualization_cpu;
1686
1687 void (*hardware_unsetup)(void);
1688 bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1689 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1690
1691 unsigned int vm_size;
1692 int (*vm_init)(struct kvm *kvm);
1693 void (*vm_destroy)(struct kvm *kvm);
1694 void (*vm_pre_destroy)(struct kvm *kvm);
1695
1696 /* Create, but do not attach this VCPU */
1697 int (*vcpu_precreate)(struct kvm *kvm);
1698 int (*vcpu_create)(struct kvm_vcpu *vcpu);
1699 void (*vcpu_free)(struct kvm_vcpu *vcpu);
1700 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1701
1702 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1703 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1704 void (*vcpu_put)(struct kvm_vcpu *vcpu);
1705
1706 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1707 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1708 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1709 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1710 void (*get_segment)(struct kvm_vcpu *vcpu,
1711 struct kvm_segment *var, int seg);
1712 int (*get_cpl)(struct kvm_vcpu *vcpu);
1713 int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu);
1714 void (*set_segment)(struct kvm_vcpu *vcpu,
1715 struct kvm_segment *var, int seg);
1716 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1717 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1718 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1719 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1720 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1721 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1722 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1723 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1724 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1725 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1726 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1727 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1728 void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value);
1729 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1730 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1731 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1732 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1733 bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1734
1735 void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1736 void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1737 #if IS_ENABLED(CONFIG_HYPERV)
1738 int (*flush_remote_tlbs)(struct kvm *kvm);
1739 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1740 gfn_t nr_pages);
1741 #endif
1742
1743 /*
1744 * Flush any TLB entries associated with the given GVA.
1745 * Does not need to flush GPA->HPA mappings.
1746 * Can potentially get non-canonical addresses through INVLPGs, which
1747 * the implementation may choose to ignore if appropriate.
1748 */
1749 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1750
1751 /*
1752 * Flush any TLB entries created by the guest. Like tlb_flush_gva(),
1753 * does not need to flush GPA->HPA mappings.
1754 */
1755 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1756
1757 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1758 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
1759 bool force_immediate_exit);
1760 int (*handle_exit)(struct kvm_vcpu *vcpu,
1761 enum exit_fastpath_completion exit_fastpath);
1762 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1763 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1764 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1765 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1766 void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1767 unsigned char *hypercall_addr);
1768 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1769 void (*inject_nmi)(struct kvm_vcpu *vcpu);
1770 void (*inject_exception)(struct kvm_vcpu *vcpu);
1771 void (*cancel_injection)(struct kvm_vcpu *vcpu);
1772 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1773 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1774 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1775 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1776 /* Whether or not a virtual NMI is pending in hardware. */
1777 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1778 /*
1779 * Attempt to pend a virtual NMI in hardware. Returns %true on success
1780 * to allow using static_call_ret0 as the fallback.
1781 */
1782 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1783 void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1784 void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1785 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1786
1787 const bool x2apic_icr_is_split;
1788 const unsigned long required_apicv_inhibits;
1789 bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1790 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1791 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1792 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1793 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1794 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1795 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1796 int trig_mode, int vector);
1797 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1798 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1799 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1800 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1801
1802 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1803 int root_level);
1804
1805 /* Update external mapping with page table link. */
1806 int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1807 void *external_spt);
1808 /* Update the external page table from spte getting set. */
1809 int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1810 kvm_pfn_t pfn_for_gfn);
1811
1812 /* Update external page tables for page table about to be freed. */
1813 int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1814 void *external_spt);
1815
1816 /* Update external page table from spte getting removed, and flush TLB. */
1817 int (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1818 kvm_pfn_t pfn_for_gfn);
1819
1820 bool (*has_wbinvd_exit)(void);
1821
1822 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1823 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1824 void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1825 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1826
1827 /*
1828 * Retrieve somewhat arbitrary exit/entry information. Intended to
1829 * be used only from within tracepoints or error paths.
1830 */
1831 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1832 u64 *info1, u64 *info2,
1833 u32 *intr_info, u32 *error_code);
1834
1835 void (*get_entry_info)(struct kvm_vcpu *vcpu,
1836 u32 *intr_info, u32 *error_code);
1837
1838 int (*check_intercept)(struct kvm_vcpu *vcpu,
1839 struct x86_instruction_info *info,
1840 enum x86_intercept_stage stage,
1841 struct x86_exception *exception);
1842 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1843
1844 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1845
1846 const struct kvm_x86_nested_ops *nested_ops;
1847
1848 void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1849 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1850
1851 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1852 uint32_t guest_irq, bool set);
1853 void (*pi_start_assignment)(struct kvm *kvm);
1854 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1855 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1856 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1857 bool (*protected_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1858
1859 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1860 bool *expired);
1861 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1862
1863 void (*setup_mce)(struct kvm_vcpu *vcpu);
1864
1865 #ifdef CONFIG_KVM_SMM
1866 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1867 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1868 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1869 void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1870 #endif
1871
1872 int (*dev_get_attr)(u32 group, u64 attr, u64 *val);
1873 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1874 int (*vcpu_mem_enc_ioctl)(struct kvm_vcpu *vcpu, void __user *argp);
1875 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1876 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1877 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1878 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1879 void (*guest_memory_reclaimed)(struct kvm *kvm);
1880
1881 int (*get_feature_msr)(u32 msr, u64 *data);
1882
1883 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1884 void *insn, int insn_len);
1885
1886 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1887 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1888
1889 void (*migrate_timers)(struct kvm_vcpu *vcpu);
1890 void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1891 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1892
1893 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1894
1895 /*
1896 * Returns vCPU specific APICv inhibit reasons
1897 */
1898 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1899
1900 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1901 void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
1902 int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
1903 void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end);
1904 int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn);
1905 };
1906
1907 struct kvm_x86_nested_ops {
1908 void (*leave_nested)(struct kvm_vcpu *vcpu);
1909 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1910 u32 error_code);
1911 int (*check_events)(struct kvm_vcpu *vcpu);
1912 bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection);
1913 void (*triple_fault)(struct kvm_vcpu *vcpu);
1914 int (*get_state)(struct kvm_vcpu *vcpu,
1915 struct kvm_nested_state __user *user_kvm_nested_state,
1916 unsigned user_data_size);
1917 int (*set_state)(struct kvm_vcpu *vcpu,
1918 struct kvm_nested_state __user *user_kvm_nested_state,
1919 struct kvm_nested_state *kvm_state);
1920 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1921 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1922
1923 int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1924 uint16_t *vmcs_version);
1925 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1926 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1927 };
1928
1929 struct kvm_x86_init_ops {
1930 int (*hardware_setup)(void);
1931 unsigned int (*handle_intel_pt_intr)(void);
1932
1933 struct kvm_x86_ops *runtime_ops;
1934 struct kvm_pmu_ops *pmu_ops;
1935 };
1936
1937 struct kvm_arch_async_pf {
1938 u32 token;
1939 gfn_t gfn;
1940 unsigned long cr3;
1941 bool direct_map;
1942 u64 error_code;
1943 };
1944
1945 extern u32 __read_mostly kvm_nr_uret_msrs;
1946 extern bool __read_mostly allow_smaller_maxphyaddr;
1947 extern bool __read_mostly enable_apicv;
1948 extern bool __read_mostly enable_device_posted_irqs;
1949 extern struct kvm_x86_ops kvm_x86_ops;
1950
1951 #define kvm_x86_call(func) static_call(kvm_x86_##func)
1952 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func)
1953
1954 #define KVM_X86_OP(func) \
1955 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1956 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1957 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1958 #include <asm/kvm-x86-ops.h>
1959
1960 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1961 void kvm_x86_vendor_exit(void);
1962
1963 #define __KVM_HAVE_ARCH_VM_ALLOC
kvm_arch_alloc_vm(void)1964 static inline struct kvm *kvm_arch_alloc_vm(void)
1965 {
1966 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1967 }
1968
1969 #define __KVM_HAVE_ARCH_VM_FREE
1970 void kvm_arch_free_vm(struct kvm *kvm);
1971
1972 #if IS_ENABLED(CONFIG_HYPERV)
1973 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1974 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1975 {
1976 if (kvm_x86_ops.flush_remote_tlbs &&
1977 !kvm_x86_call(flush_remote_tlbs)(kvm))
1978 return 0;
1979 else
1980 return -ENOTSUPP;
1981 }
1982
1983 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1984 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
1985 u64 nr_pages)
1986 {
1987 if (!kvm_x86_ops.flush_remote_tlbs_range)
1988 return -EOPNOTSUPP;
1989
1990 return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages);
1991 }
1992 #endif /* CONFIG_HYPERV */
1993
1994 enum kvm_intr_type {
1995 /* Values are arbitrary, but must be non-zero. */
1996 KVM_HANDLING_IRQ = 1,
1997 KVM_HANDLING_NMI,
1998 };
1999
2000 /* Enable perf NMI and timer modes to work, and minimise false positives. */
2001 #define kvm_arch_pmi_in_guest(vcpu) \
2002 ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
2003 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
2004
2005 void __init kvm_mmu_x86_module_init(void);
2006 int kvm_mmu_vendor_module_init(void);
2007 void kvm_mmu_vendor_module_exit(void);
2008
2009 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
2010 int kvm_mmu_create(struct kvm_vcpu *vcpu);
2011 void kvm_mmu_init_vm(struct kvm *kvm);
2012 void kvm_mmu_uninit_vm(struct kvm *kvm);
2013
2014 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
2015 struct kvm_memory_slot *slot);
2016
2017 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
2018 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
2019 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
2020 const struct kvm_memory_slot *memslot,
2021 int start_level);
2022 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
2023 const struct kvm_memory_slot *memslot,
2024 int target_level);
2025 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
2026 const struct kvm_memory_slot *memslot,
2027 u64 start, u64 end,
2028 int target_level);
2029 void kvm_mmu_recover_huge_pages(struct kvm *kvm,
2030 const struct kvm_memory_slot *memslot);
2031 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
2032 const struct kvm_memory_slot *memslot);
2033 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
2034 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
2035 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
2036
2037 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
2038
2039 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2040 const void *val, int bytes);
2041
2042 struct kvm_irq_mask_notifier {
2043 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
2044 int irq;
2045 struct hlist_node link;
2046 };
2047
2048 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
2049 struct kvm_irq_mask_notifier *kimn);
2050 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
2051 struct kvm_irq_mask_notifier *kimn);
2052 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
2053 bool mask);
2054
2055 extern bool tdp_enabled;
2056
2057 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
2058
2059 /*
2060 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
2061 * userspace I/O) to indicate that the emulation context
2062 * should be reused as is, i.e. skip initialization of
2063 * emulation context, instruction fetch and decode.
2064 *
2065 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
2066 * Indicates that only select instructions (tagged with
2067 * EmulateOnUD) should be emulated (to minimize the emulator
2068 * attack surface). See also EMULTYPE_TRAP_UD_FORCED.
2069 *
2070 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
2071 * decode the instruction length. For use *only* by
2072 * kvm_x86_ops.skip_emulated_instruction() implementations if
2073 * EMULTYPE_COMPLETE_USER_EXIT is not set.
2074 *
2075 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
2076 * retry native execution under certain conditions,
2077 * Can only be set in conjunction with EMULTYPE_PF.
2078 *
2079 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
2080 * triggered by KVM's magic "force emulation" prefix,
2081 * which is opt in via module param (off by default).
2082 * Bypasses EmulateOnUD restriction despite emulating
2083 * due to an intercepted #UD (see EMULTYPE_TRAP_UD).
2084 * Used to test the full emulator from userspace.
2085 *
2086 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
2087 * backdoor emulation, which is opt in via module param.
2088 * VMware backdoor emulation handles select instructions
2089 * and reinjects the #GP for all other cases.
2090 *
2091 * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case
2092 * the CR2/GPA value pass on the stack is valid.
2093 *
2094 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
2095 * state and inject single-step #DBs after skipping
2096 * an instruction (after completing userspace I/O).
2097 *
2098 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
2099 * is attempting to write a gfn that contains one or
2100 * more of the PTEs used to translate the write itself,
2101 * and the owning page table is being shadowed by KVM.
2102 * If emulation of the faulting instruction fails and
2103 * this flag is set, KVM will exit to userspace instead
2104 * of retrying emulation as KVM cannot make forward
2105 * progress.
2106 *
2107 * If emulation fails for a write to guest page tables,
2108 * KVM unprotects (zaps) the shadow page for the target
2109 * gfn and resumes the guest to retry the non-emulatable
2110 * instruction (on hardware). Unprotecting the gfn
2111 * doesn't allow forward progress for a self-changing
2112 * access because doing so also zaps the translation for
2113 * the gfn, i.e. retrying the instruction will hit a
2114 * !PRESENT fault, which results in a new shadow page
2115 * and sends KVM back to square one.
2116 */
2117 #define EMULTYPE_NO_DECODE (1 << 0)
2118 #define EMULTYPE_TRAP_UD (1 << 1)
2119 #define EMULTYPE_SKIP (1 << 2)
2120 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3)
2121 #define EMULTYPE_TRAP_UD_FORCED (1 << 4)
2122 #define EMULTYPE_VMWARE_GP (1 << 5)
2123 #define EMULTYPE_PF (1 << 6)
2124 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2125 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8)
2126
kvm_can_emulate_event_vectoring(int emul_type)2127 static inline bool kvm_can_emulate_event_vectoring(int emul_type)
2128 {
2129 return !(emul_type & EMULTYPE_PF);
2130 }
2131
2132 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2133 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2134 void *insn, int insn_len);
2135 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2136 u64 *data, u8 ndata);
2137 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2138
2139 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa);
2140
2141 void kvm_enable_efer_bits(u64);
2142 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2143 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2144 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data);
2145 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
2146 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2147 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
2148 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2149 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2150 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2151 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2152 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2153 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2154 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2155
2156 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2157 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2158 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2159 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2160 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2161 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2162
2163 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2164 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2165 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2166 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2167
2168 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2169 int reason, bool has_error_code, u32 error_code);
2170
2171 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2172 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2173 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2174 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2175 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2176 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2177 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2178 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
2179 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2180 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2181 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2182
2183 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2184 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2185
2186 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2187 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2188 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2189
2190 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2191 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2192 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2193 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
2194 bool has_error_code, u32 error_code);
2195 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2196 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2197 struct x86_exception *fault);
2198 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2199 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2200
__kvm_irq_line_state(unsigned long * irq_state,int irq_source_id,int level)2201 static inline int __kvm_irq_line_state(unsigned long *irq_state,
2202 int irq_source_id, int level)
2203 {
2204 /* Logical OR for level trig interrupt */
2205 if (level)
2206 __set_bit(irq_source_id, irq_state);
2207 else
2208 __clear_bit(irq_source_id, irq_state);
2209
2210 return !!(*irq_state);
2211 }
2212
2213 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
2214 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
2215
2216 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2217 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2218
2219 void kvm_update_dr7(struct kvm_vcpu *vcpu);
2220
2221 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2222 bool always_retry);
2223
kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa)2224 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu,
2225 gpa_t cr2_or_gpa)
2226 {
2227 return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false);
2228 }
2229
2230 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2231 ulong roots_to_free);
2232 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2233 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2234 struct x86_exception *exception);
2235 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2236 struct x86_exception *exception);
2237 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2238 struct x86_exception *exception);
2239
2240 bool kvm_apicv_activated(struct kvm *kvm);
2241 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2242 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2243 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2244 enum kvm_apicv_inhibit reason, bool set);
2245 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2246 enum kvm_apicv_inhibit reason, bool set);
2247
kvm_set_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2248 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2249 enum kvm_apicv_inhibit reason)
2250 {
2251 kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2252 }
2253
kvm_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2254 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2255 enum kvm_apicv_inhibit reason)
2256 {
2257 kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2258 }
2259
2260 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2261 void *insn, int insn_len);
2262 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg);
2263 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2264 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2265 u64 addr, unsigned long roots);
2266 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2267 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2268
2269 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2270 int tdp_max_root_level, int tdp_huge_page_level);
2271
2272
2273 #ifdef CONFIG_KVM_PRIVATE_MEM
2274 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem)
2275 #else
2276 #define kvm_arch_has_private_mem(kvm) false
2277 #endif
2278
2279 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state)
2280
kvm_read_ldt(void)2281 static inline u16 kvm_read_ldt(void)
2282 {
2283 u16 ldt;
2284 asm("sldt %0" : "=g"(ldt));
2285 return ldt;
2286 }
2287
kvm_load_ldt(u16 sel)2288 static inline void kvm_load_ldt(u16 sel)
2289 {
2290 asm("lldt %0" : : "rm"(sel));
2291 }
2292
2293 #ifdef CONFIG_X86_64
read_msr(unsigned long msr)2294 static inline unsigned long read_msr(unsigned long msr)
2295 {
2296 u64 value;
2297
2298 rdmsrq(msr, value);
2299 return value;
2300 }
2301 #endif
2302
kvm_inject_gp(struct kvm_vcpu * vcpu,u32 error_code)2303 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2304 {
2305 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2306 }
2307
2308 #define TSS_IOPB_BASE_OFFSET 0x66
2309 #define TSS_BASE_SIZE 0x68
2310 #define TSS_IOPB_SIZE (65536 / 8)
2311 #define TSS_REDIRECTION_SIZE (256 / 8)
2312 #define RMODE_TSS_SIZE \
2313 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2314
2315 enum {
2316 TASK_SWITCH_CALL = 0,
2317 TASK_SWITCH_IRET = 1,
2318 TASK_SWITCH_JMP = 2,
2319 TASK_SWITCH_GATE = 3,
2320 };
2321
2322 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */
2323
2324 #ifdef CONFIG_KVM_SMM
2325 #define HF_SMM_MASK (1 << 1)
2326 #define HF_SMM_INSIDE_NMI_MASK (1 << 2)
2327
2328 # define KVM_MAX_NR_ADDRESS_SPACES 2
2329 /* SMM is currently unsupported for guests with private memory. */
2330 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2331 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2332 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2333 #else
2334 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2335 #endif
2336
2337 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2338 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2339 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2340 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2341 int kvm_cpu_get_extint(struct kvm_vcpu *v);
2342 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2343 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2344
2345 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2346 unsigned long ipi_bitmap_high, u32 min,
2347 unsigned long icr, int op_64_bit);
2348
2349 int kvm_add_user_return_msr(u32 msr);
2350 int kvm_find_user_return_msr(u32 msr);
2351 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2352 void kvm_user_return_msr_update_cache(unsigned int index, u64 val);
2353
kvm_is_supported_user_return_msr(u32 msr)2354 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2355 {
2356 return kvm_find_user_return_msr(msr) >= 0;
2357 }
2358
2359 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2360 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2361 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2362 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2363
2364 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2365 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2366
2367 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2368 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2369 unsigned long *vcpu_bitmap);
2370
2371 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2372 struct kvm_async_pf *work);
2373 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2374 struct kvm_async_pf *work);
2375 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2376 struct kvm_async_pf *work);
2377 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2378 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2379 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2380
2381 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2382 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2383
2384 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2385 u32 size);
2386 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2387 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2388
2389 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2390 struct kvm_vcpu **dest_vcpu);
2391
2392 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2393 struct kvm_lapic_irq *irq);
2394
kvm_irq_is_postable(struct kvm_lapic_irq * irq)2395 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2396 {
2397 /* We can only post Fixed and LowPrio IRQs */
2398 return (irq->delivery_mode == APIC_DM_FIXED ||
2399 irq->delivery_mode == APIC_DM_LOWEST);
2400 }
2401
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)2402 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2403 {
2404 kvm_x86_call(vcpu_blocking)(vcpu);
2405 }
2406
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)2407 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2408 {
2409 kvm_x86_call(vcpu_unblocking)(vcpu);
2410 }
2411
kvm_cpu_get_apicid(int mps_cpu)2412 static inline int kvm_cpu_get_apicid(int mps_cpu)
2413 {
2414 #ifdef CONFIG_X86_LOCAL_APIC
2415 return default_cpu_present_to_apicid(mps_cpu);
2416 #else
2417 WARN_ON_ONCE(1);
2418 return BAD_APICID;
2419 #endif
2420 }
2421
2422 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2423
2424 #define KVM_CLOCK_VALID_FLAGS \
2425 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2426
2427 #define KVM_X86_VALID_QUIRKS \
2428 (KVM_X86_QUIRK_LINT0_REENABLED | \
2429 KVM_X86_QUIRK_CD_NW_CLEARED | \
2430 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \
2431 KVM_X86_QUIRK_OUT_7E_INC_RIP | \
2432 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \
2433 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \
2434 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS | \
2435 KVM_X86_QUIRK_SLOT_ZAP_ALL | \
2436 KVM_X86_QUIRK_STUFF_FEATURE_MSRS | \
2437 KVM_X86_QUIRK_IGNORE_GUEST_PAT)
2438
2439 #define KVM_X86_CONDITIONAL_QUIRKS \
2440 (KVM_X86_QUIRK_CD_NW_CLEARED | \
2441 KVM_X86_QUIRK_IGNORE_GUEST_PAT)
2442
2443 /*
2444 * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2445 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2446 * remaining 31 lower bits must be 0 to preserve ABI.
2447 */
2448 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1)
2449
kvm_arch_has_irq_bypass(void)2450 static inline bool kvm_arch_has_irq_bypass(void)
2451 {
2452 return enable_device_posted_irqs;
2453 }
2454
2455 #endif /* _ASM_X86_KVM_HOST_H */
2456