1 /* SPDX-License-Identifier: GPL-2.0 */ 2 3 /* 4 * This file contains definitions from Hyper-V Hypervisor Top-Level Functional 5 * Specification (TLFS): 6 * https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs 7 */ 8 9 #ifndef _ASM_GENERIC_HYPERV_TLFS_H 10 #define _ASM_GENERIC_HYPERV_TLFS_H 11 12 #include <linux/types.h> 13 #include <linux/bits.h> 14 #include <linux/time64.h> 15 16 /* 17 * While not explicitly listed in the TLFS, Hyper-V always runs with a page size 18 * of 4096. These definitions are used when communicating with Hyper-V using 19 * guest physical pages and guest physical page addresses, since the guest page 20 * size may not be 4096 on all architectures. 21 */ 22 #define HV_HYP_PAGE_SHIFT 12 23 #define HV_HYP_PAGE_SIZE BIT(HV_HYP_PAGE_SHIFT) 24 #define HV_HYP_PAGE_MASK (~(HV_HYP_PAGE_SIZE - 1)) 25 26 /* 27 * Hyper-V provides two categories of flags relevant to guest VMs. The 28 * "Features" category indicates specific functionality that is available 29 * to guests on this particular instance of Hyper-V. The "Features" 30 * are presented in four groups, each of which is 32 bits. The group A 31 * and B definitions are common across architectures and are listed here. 32 * However, not all flags are relevant on all architectures. 33 * 34 * Groups C and D vary across architectures and are listed in the 35 * architecture specific portion of hyperv-tlfs.h. Some of these flags exist 36 * on multiple architectures, but the bit positions are different so they 37 * cannot appear in the generic portion of hyperv-tlfs.h. 38 * 39 * The "Enlightenments" category provides recommendations on whether to use 40 * specific enlightenments that are available. The Enlighenments are a single 41 * group of 32 bits, but they vary across architectures and are listed in 42 * the architecture specific portion of hyperv-tlfs.h. 43 */ 44 45 /* 46 * Group A Features. 47 */ 48 49 /* VP Runtime register available */ 50 #define HV_MSR_VP_RUNTIME_AVAILABLE BIT(0) 51 /* Partition Reference Counter available*/ 52 #define HV_MSR_TIME_REF_COUNT_AVAILABLE BIT(1) 53 /* Basic SynIC register available */ 54 #define HV_MSR_SYNIC_AVAILABLE BIT(2) 55 /* Synthetic Timer registers available */ 56 #define HV_MSR_SYNTIMER_AVAILABLE BIT(3) 57 /* Virtual APIC assist and VP assist page registers available */ 58 #define HV_MSR_APIC_ACCESS_AVAILABLE BIT(4) 59 /* Hypercall and Guest OS ID registers available*/ 60 #define HV_MSR_HYPERCALL_AVAILABLE BIT(5) 61 /* Access virtual processor index register available*/ 62 #define HV_MSR_VP_INDEX_AVAILABLE BIT(6) 63 /* Virtual system reset register available*/ 64 #define HV_MSR_RESET_AVAILABLE BIT(7) 65 /* Access statistics page registers available */ 66 #define HV_MSR_STAT_PAGES_AVAILABLE BIT(8) 67 /* Partition reference TSC register is available */ 68 #define HV_MSR_REFERENCE_TSC_AVAILABLE BIT(9) 69 /* Partition Guest IDLE register is available */ 70 #define HV_MSR_GUEST_IDLE_AVAILABLE BIT(10) 71 /* Partition local APIC and TSC frequency registers available */ 72 #define HV_ACCESS_FREQUENCY_MSRS BIT(11) 73 /* AccessReenlightenmentControls privilege */ 74 #define HV_ACCESS_REENLIGHTENMENT BIT(13) 75 /* AccessTscInvariantControls privilege */ 76 #define HV_ACCESS_TSC_INVARIANT BIT(15) 77 78 /* 79 * Group B features. 80 */ 81 #define HV_CREATE_PARTITIONS BIT(0) 82 #define HV_ACCESS_PARTITION_ID BIT(1) 83 #define HV_ACCESS_MEMORY_POOL BIT(2) 84 #define HV_ADJUST_MESSAGE_BUFFERS BIT(3) 85 #define HV_POST_MESSAGES BIT(4) 86 #define HV_SIGNAL_EVENTS BIT(5) 87 #define HV_CREATE_PORT BIT(6) 88 #define HV_CONNECT_PORT BIT(7) 89 #define HV_ACCESS_STATS BIT(8) 90 #define HV_DEBUGGING BIT(11) 91 #define HV_CPU_MANAGEMENT BIT(12) 92 #define HV_ENABLE_EXTENDED_HYPERCALLS BIT(20) 93 #define HV_ISOLATION BIT(22) 94 95 /* 96 * TSC page layout. 97 */ 98 struct ms_hyperv_tsc_page { 99 volatile u32 tsc_sequence; 100 u32 reserved1; 101 volatile u64 tsc_scale; 102 volatile s64 tsc_offset; 103 } __packed; 104 105 union hv_reference_tsc_msr { 106 u64 as_uint64; 107 struct { 108 u64 enable:1; 109 u64 reserved:11; 110 u64 pfn:52; 111 } __packed; 112 }; 113 114 /* 115 * The guest OS needs to register the guest ID with the hypervisor. 116 * The guest ID is a 64 bit entity and the structure of this ID is 117 * specified in the Hyper-V specification: 118 * 119 * msdn.microsoft.com/en-us/library/windows/hardware/ff542653%28v=vs.85%29.aspx 120 * 121 * While the current guideline does not specify how Linux guest ID(s) 122 * need to be generated, our plan is to publish the guidelines for 123 * Linux and other guest operating systems that currently are hosted 124 * on Hyper-V. The implementation here conforms to this yet 125 * unpublished guidelines. 126 * 127 * 128 * Bit(s) 129 * 63 - Indicates if the OS is Open Source or not; 1 is Open Source 130 * 62:56 - Os Type; Linux is 0x100 131 * 55:48 - Distro specific identification 132 * 47:16 - Linux kernel version number 133 * 15:0 - Distro specific identification 134 * 135 * 136 */ 137 138 #define HV_LINUX_VENDOR_ID 0x8100 139 140 /* 141 * Crash notification flags. 142 */ 143 #define HV_CRASH_CTL_CRASH_NOTIFY_MSG BIT_ULL(62) 144 #define HV_CRASH_CTL_CRASH_NOTIFY BIT_ULL(63) 145 146 /* Declare the various hypercall operations. */ 147 #define HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE 0x0002 148 #define HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST 0x0003 149 #define HVCALL_ENABLE_VP_VTL 0x000f 150 #define HVCALL_NOTIFY_LONG_SPIN_WAIT 0x0008 151 #define HVCALL_SEND_IPI 0x000b 152 #define HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX 0x0013 153 #define HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX 0x0014 154 #define HVCALL_SEND_IPI_EX 0x0015 155 #define HVCALL_GET_PARTITION_ID 0x0046 156 #define HVCALL_DEPOSIT_MEMORY 0x0048 157 #define HVCALL_CREATE_VP 0x004e 158 #define HVCALL_GET_VP_REGISTERS 0x0050 159 #define HVCALL_SET_VP_REGISTERS 0x0051 160 #define HVCALL_POST_MESSAGE 0x005c 161 #define HVCALL_SIGNAL_EVENT 0x005d 162 #define HVCALL_POST_DEBUG_DATA 0x0069 163 #define HVCALL_RETRIEVE_DEBUG_DATA 0x006a 164 #define HVCALL_RESET_DEBUG_SESSION 0x006b 165 #define HVCALL_ADD_LOGICAL_PROCESSOR 0x0076 166 #define HVCALL_MAP_DEVICE_INTERRUPT 0x007c 167 #define HVCALL_UNMAP_DEVICE_INTERRUPT 0x007d 168 #define HVCALL_RETARGET_INTERRUPT 0x007e 169 #define HVCALL_START_VP 0x0099 170 #define HVCALL_GET_VP_ID_FROM_APIC_ID 0x009a 171 #define HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE 0x00af 172 #define HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_LIST 0x00b0 173 #define HVCALL_MODIFY_SPARSE_GPA_PAGE_HOST_VISIBILITY 0x00db 174 #define HVCALL_MMIO_READ 0x0106 175 #define HVCALL_MMIO_WRITE 0x0107 176 177 /* Extended hypercalls */ 178 #define HV_EXT_CALL_QUERY_CAPABILITIES 0x8001 179 #define HV_EXT_CALL_MEMORY_HEAT_HINT 0x8003 180 181 #define HV_FLUSH_ALL_PROCESSORS BIT(0) 182 #define HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES BIT(1) 183 #define HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY BIT(2) 184 #define HV_FLUSH_USE_EXTENDED_RANGE_FORMAT BIT(3) 185 186 /* Extended capability bits */ 187 #define HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT BIT(8) 188 189 enum HV_GENERIC_SET_FORMAT { 190 HV_GENERIC_SET_SPARSE_4K, 191 HV_GENERIC_SET_ALL, 192 }; 193 194 #define HV_PARTITION_ID_SELF ((u64)-1) 195 #define HV_VP_INDEX_SELF ((u32)-2) 196 197 #define HV_HYPERCALL_RESULT_MASK GENMASK_ULL(15, 0) 198 #define HV_HYPERCALL_FAST_BIT BIT(16) 199 #define HV_HYPERCALL_VARHEAD_OFFSET 17 200 #define HV_HYPERCALL_VARHEAD_MASK GENMASK_ULL(26, 17) 201 #define HV_HYPERCALL_RSVD0_MASK GENMASK_ULL(31, 27) 202 #define HV_HYPERCALL_NESTED BIT_ULL(31) 203 #define HV_HYPERCALL_REP_COMP_OFFSET 32 204 #define HV_HYPERCALL_REP_COMP_1 BIT_ULL(32) 205 #define HV_HYPERCALL_REP_COMP_MASK GENMASK_ULL(43, 32) 206 #define HV_HYPERCALL_RSVD1_MASK GENMASK_ULL(47, 44) 207 #define HV_HYPERCALL_REP_START_OFFSET 48 208 #define HV_HYPERCALL_REP_START_MASK GENMASK_ULL(59, 48) 209 #define HV_HYPERCALL_RSVD2_MASK GENMASK_ULL(63, 60) 210 #define HV_HYPERCALL_RSVD_MASK (HV_HYPERCALL_RSVD0_MASK | \ 211 HV_HYPERCALL_RSVD1_MASK | \ 212 HV_HYPERCALL_RSVD2_MASK) 213 214 /* hypercall status code */ 215 #define HV_STATUS_SUCCESS 0 216 #define HV_STATUS_INVALID_HYPERCALL_CODE 2 217 #define HV_STATUS_INVALID_HYPERCALL_INPUT 3 218 #define HV_STATUS_INVALID_ALIGNMENT 4 219 #define HV_STATUS_INVALID_PARAMETER 5 220 #define HV_STATUS_ACCESS_DENIED 6 221 #define HV_STATUS_OPERATION_DENIED 8 222 #define HV_STATUS_INSUFFICIENT_MEMORY 11 223 #define HV_STATUS_INVALID_PORT_ID 17 224 #define HV_STATUS_INVALID_CONNECTION_ID 18 225 #define HV_STATUS_INSUFFICIENT_BUFFERS 19 226 #define HV_STATUS_TIME_OUT 120 227 #define HV_STATUS_VTL_ALREADY_ENABLED 134 228 229 /* 230 * The Hyper-V TimeRefCount register and the TSC 231 * page provide a guest VM clock with 100ns tick rate 232 */ 233 #define HV_CLOCK_HZ (NSEC_PER_SEC/100) 234 235 /* Define the number of synthetic interrupt sources. */ 236 #define HV_SYNIC_SINT_COUNT (16) 237 /* Define the expected SynIC version. */ 238 #define HV_SYNIC_VERSION_1 (0x1) 239 /* Valid SynIC vectors are 16-255. */ 240 #define HV_SYNIC_FIRST_VALID_VECTOR (16) 241 242 #define HV_SYNIC_CONTROL_ENABLE (1ULL << 0) 243 #define HV_SYNIC_SIMP_ENABLE (1ULL << 0) 244 #define HV_SYNIC_SIEFP_ENABLE (1ULL << 0) 245 #define HV_SYNIC_SINT_MASKED (1ULL << 16) 246 #define HV_SYNIC_SINT_AUTO_EOI (1ULL << 17) 247 #define HV_SYNIC_SINT_VECTOR_MASK (0xFF) 248 249 #define HV_SYNIC_STIMER_COUNT (4) 250 251 /* Define synthetic interrupt controller message constants. */ 252 #define HV_MESSAGE_SIZE (256) 253 #define HV_MESSAGE_PAYLOAD_BYTE_COUNT (240) 254 #define HV_MESSAGE_PAYLOAD_QWORD_COUNT (30) 255 256 /* 257 * Define hypervisor message types. Some of the message types 258 * are x86/x64 specific, but there's no good way to separate 259 * them out into the arch-specific version of hyperv-tlfs.h 260 * because C doesn't provide a way to extend enum types. 261 * Keeping them all in the arch neutral hyperv-tlfs.h seems 262 * the least messy compromise. 263 */ 264 enum hv_message_type { 265 HVMSG_NONE = 0x00000000, 266 267 /* Memory access messages. */ 268 HVMSG_UNMAPPED_GPA = 0x80000000, 269 HVMSG_GPA_INTERCEPT = 0x80000001, 270 271 /* Timer notification messages. */ 272 HVMSG_TIMER_EXPIRED = 0x80000010, 273 274 /* Error messages. */ 275 HVMSG_INVALID_VP_REGISTER_VALUE = 0x80000020, 276 HVMSG_UNRECOVERABLE_EXCEPTION = 0x80000021, 277 HVMSG_UNSUPPORTED_FEATURE = 0x80000022, 278 279 /* Trace buffer complete messages. */ 280 HVMSG_EVENTLOG_BUFFERCOMPLETE = 0x80000040, 281 282 /* Platform-specific processor intercept messages. */ 283 HVMSG_X64_IOPORT_INTERCEPT = 0x80010000, 284 HVMSG_X64_MSR_INTERCEPT = 0x80010001, 285 HVMSG_X64_CPUID_INTERCEPT = 0x80010002, 286 HVMSG_X64_EXCEPTION_INTERCEPT = 0x80010003, 287 HVMSG_X64_APIC_EOI = 0x80010004, 288 HVMSG_X64_LEGACY_FP_ERROR = 0x80010005 289 }; 290 291 /* Define synthetic interrupt controller message flags. */ 292 union hv_message_flags { 293 __u8 asu8; 294 struct { 295 __u8 msg_pending:1; 296 __u8 reserved:7; 297 } __packed; 298 }; 299 300 /* Define port identifier type. */ 301 union hv_port_id { 302 __u32 asu32; 303 struct { 304 __u32 id:24; 305 __u32 reserved:8; 306 } __packed u; 307 }; 308 309 /* Define synthetic interrupt controller message header. */ 310 struct hv_message_header { 311 __u32 message_type; 312 __u8 payload_size; 313 union hv_message_flags message_flags; 314 __u8 reserved[2]; 315 union { 316 __u64 sender; 317 union hv_port_id port; 318 }; 319 } __packed; 320 321 /* Define synthetic interrupt controller message format. */ 322 struct hv_message { 323 struct hv_message_header header; 324 union { 325 __u64 payload[HV_MESSAGE_PAYLOAD_QWORD_COUNT]; 326 } u; 327 } __packed; 328 329 /* Define the synthetic interrupt message page layout. */ 330 struct hv_message_page { 331 struct hv_message sint_message[HV_SYNIC_SINT_COUNT]; 332 } __packed; 333 334 /* Define timer message payload structure. */ 335 struct hv_timer_message_payload { 336 __u32 timer_index; 337 __u32 reserved; 338 __u64 expiration_time; /* When the timer expired */ 339 __u64 delivery_time; /* When the message was delivered */ 340 } __packed; 341 342 343 /* Define synthetic interrupt controller flag constants. */ 344 #define HV_EVENT_FLAGS_COUNT (256 * 8) 345 #define HV_EVENT_FLAGS_LONG_COUNT (256 / sizeof(unsigned long)) 346 347 /* 348 * Synthetic timer configuration. 349 */ 350 union hv_stimer_config { 351 u64 as_uint64; 352 struct { 353 u64 enable:1; 354 u64 periodic:1; 355 u64 lazy:1; 356 u64 auto_enable:1; 357 u64 apic_vector:8; 358 u64 direct_mode:1; 359 u64 reserved_z0:3; 360 u64 sintx:4; 361 u64 reserved_z1:44; 362 } __packed; 363 }; 364 365 366 /* Define the synthetic interrupt controller event flags format. */ 367 union hv_synic_event_flags { 368 unsigned long flags[HV_EVENT_FLAGS_LONG_COUNT]; 369 }; 370 371 /* Define SynIC control register. */ 372 union hv_synic_scontrol { 373 u64 as_uint64; 374 struct { 375 u64 enable:1; 376 u64 reserved:63; 377 } __packed; 378 }; 379 380 /* Define synthetic interrupt source. */ 381 union hv_synic_sint { 382 u64 as_uint64; 383 struct { 384 u64 vector:8; 385 u64 reserved1:8; 386 u64 masked:1; 387 u64 auto_eoi:1; 388 u64 polling:1; 389 u64 reserved2:45; 390 } __packed; 391 }; 392 393 /* Define the format of the SIMP register */ 394 union hv_synic_simp { 395 u64 as_uint64; 396 struct { 397 u64 simp_enabled:1; 398 u64 preserved:11; 399 u64 base_simp_gpa:52; 400 } __packed; 401 }; 402 403 /* Define the format of the SIEFP register */ 404 union hv_synic_siefp { 405 u64 as_uint64; 406 struct { 407 u64 siefp_enabled:1; 408 u64 preserved:11; 409 u64 base_siefp_gpa:52; 410 } __packed; 411 }; 412 413 struct hv_vpset { 414 u64 format; 415 u64 valid_bank_mask; 416 u64 bank_contents[]; 417 } __packed; 418 419 /* The maximum number of sparse vCPU banks which can be encoded by 'struct hv_vpset' */ 420 #define HV_MAX_SPARSE_VCPU_BANKS (64) 421 /* The number of vCPUs in one sparse bank */ 422 #define HV_VCPUS_PER_SPARSE_BANK (64) 423 424 /* HvCallSendSyntheticClusterIpi hypercall */ 425 struct hv_send_ipi { 426 u32 vector; 427 u32 reserved; 428 u64 cpu_mask; 429 } __packed; 430 431 /* HvCallSendSyntheticClusterIpiEx hypercall */ 432 struct hv_send_ipi_ex { 433 u32 vector; 434 u32 reserved; 435 struct hv_vpset vp_set; 436 } __packed; 437 438 /* HvFlushGuestPhysicalAddressSpace hypercalls */ 439 struct hv_guest_mapping_flush { 440 u64 address_space; 441 u64 flags; 442 } __packed; 443 444 /* 445 * HV_MAX_FLUSH_PAGES = "additional_pages" + 1. It's limited 446 * by the bitwidth of "additional_pages" in union hv_gpa_page_range. 447 */ 448 #define HV_MAX_FLUSH_PAGES (2048) 449 #define HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB 0 450 #define HV_GPA_PAGE_RANGE_PAGE_SIZE_1GB 1 451 452 /* HvFlushGuestPhysicalAddressList, HvExtCallMemoryHeatHint hypercall */ 453 union hv_gpa_page_range { 454 u64 address_space; 455 struct { 456 u64 additional_pages:11; 457 u64 largepage:1; 458 u64 basepfn:52; 459 } page; 460 struct { 461 u64 reserved:12; 462 u64 page_size:1; 463 u64 reserved1:8; 464 u64 base_large_pfn:43; 465 }; 466 }; 467 468 /* 469 * All input flush parameters should be in single page. The max flush 470 * count is equal with how many entries of union hv_gpa_page_range can 471 * be populated into the input parameter page. 472 */ 473 #define HV_MAX_FLUSH_REP_COUNT ((HV_HYP_PAGE_SIZE - 2 * sizeof(u64)) / \ 474 sizeof(union hv_gpa_page_range)) 475 476 struct hv_guest_mapping_flush_list { 477 u64 address_space; 478 u64 flags; 479 union hv_gpa_page_range gpa_list[HV_MAX_FLUSH_REP_COUNT]; 480 }; 481 482 /* HvFlushVirtualAddressSpace, HvFlushVirtualAddressList hypercalls */ 483 struct hv_tlb_flush { 484 u64 address_space; 485 u64 flags; 486 u64 processor_mask; 487 u64 gva_list[]; 488 } __packed; 489 490 /* HvFlushVirtualAddressSpaceEx, HvFlushVirtualAddressListEx hypercalls */ 491 struct hv_tlb_flush_ex { 492 u64 address_space; 493 u64 flags; 494 struct hv_vpset hv_vp_set; 495 u64 gva_list[]; 496 } __packed; 497 498 /* HvGetPartitionId hypercall (output only) */ 499 struct hv_get_partition_id { 500 u64 partition_id; 501 } __packed; 502 503 /* HvDepositMemory hypercall */ 504 struct hv_deposit_memory { 505 u64 partition_id; 506 u64 gpa_page_list[]; 507 } __packed; 508 509 struct hv_proximity_domain_flags { 510 u32 proximity_preferred : 1; 511 u32 reserved : 30; 512 u32 proximity_info_valid : 1; 513 } __packed; 514 515 struct hv_proximity_domain_info { 516 u32 domain_id; 517 struct hv_proximity_domain_flags flags; 518 } __packed; 519 520 struct hv_lp_startup_status { 521 u64 hv_status; 522 u64 substatus1; 523 u64 substatus2; 524 u64 substatus3; 525 u64 substatus4; 526 u64 substatus5; 527 u64 substatus6; 528 } __packed; 529 530 /* HvAddLogicalProcessor hypercall */ 531 struct hv_input_add_logical_processor { 532 u32 lp_index; 533 u32 apic_id; 534 struct hv_proximity_domain_info proximity_domain_info; 535 } __packed; 536 537 struct hv_output_add_logical_processor { 538 struct hv_lp_startup_status startup_status; 539 } __packed; 540 541 enum HV_SUBNODE_TYPE 542 { 543 HvSubnodeAny = 0, 544 HvSubnodeSocket = 1, 545 HvSubnodeAmdNode = 2, 546 HvSubnodeL3 = 3, 547 HvSubnodeCount = 4, 548 HvSubnodeInvalid = -1 549 }; 550 551 /* HvCreateVp hypercall */ 552 struct hv_create_vp { 553 u64 partition_id; 554 u32 vp_index; 555 u8 padding[3]; 556 u8 subnode_type; 557 u64 subnode_id; 558 struct hv_proximity_domain_info proximity_domain_info; 559 u64 flags; 560 } __packed; 561 562 enum hv_interrupt_source { 563 HV_INTERRUPT_SOURCE_MSI = 1, /* MSI and MSI-X */ 564 HV_INTERRUPT_SOURCE_IOAPIC, 565 }; 566 567 union hv_ioapic_rte { 568 u64 as_uint64; 569 570 struct { 571 u32 vector:8; 572 u32 delivery_mode:3; 573 u32 destination_mode:1; 574 u32 delivery_status:1; 575 u32 interrupt_polarity:1; 576 u32 remote_irr:1; 577 u32 trigger_mode:1; 578 u32 interrupt_mask:1; 579 u32 reserved1:15; 580 581 u32 reserved2:24; 582 u32 destination_id:8; 583 }; 584 585 struct { 586 u32 low_uint32; 587 u32 high_uint32; 588 }; 589 } __packed; 590 591 struct hv_interrupt_entry { 592 u32 source; 593 u32 reserved1; 594 union { 595 union hv_msi_entry msi_entry; 596 union hv_ioapic_rte ioapic_rte; 597 }; 598 } __packed; 599 600 /* 601 * flags for hv_device_interrupt_target.flags 602 */ 603 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST 1 604 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET 2 605 606 struct hv_device_interrupt_target { 607 u32 vector; 608 u32 flags; 609 union { 610 u64 vp_mask; 611 struct hv_vpset vp_set; 612 }; 613 } __packed; 614 615 struct hv_retarget_device_interrupt { 616 u64 partition_id; /* use "self" */ 617 u64 device_id; 618 struct hv_interrupt_entry int_entry; 619 u64 reserved2; 620 struct hv_device_interrupt_target int_target; 621 } __packed __aligned(8); 622 623 /* 624 * These Hyper-V registers provide information equivalent to the CPUID 625 * instruction on x86/x64. 626 */ 627 #define HV_REGISTER_HYPERVISOR_VERSION 0x00000100 /*CPUID 0x40000002 */ 628 #define HV_REGISTER_FEATURES 0x00000200 /*CPUID 0x40000003 */ 629 #define HV_REGISTER_ENLIGHTENMENTS 0x00000201 /*CPUID 0x40000004 */ 630 631 /* 632 * Synthetic register definitions equivalent to MSRs on x86/x64 633 */ 634 #define HV_REGISTER_GUEST_CRASH_P0 0x00000210 635 #define HV_REGISTER_GUEST_CRASH_P1 0x00000211 636 #define HV_REGISTER_GUEST_CRASH_P2 0x00000212 637 #define HV_REGISTER_GUEST_CRASH_P3 0x00000213 638 #define HV_REGISTER_GUEST_CRASH_P4 0x00000214 639 #define HV_REGISTER_GUEST_CRASH_CTL 0x00000215 640 641 #define HV_REGISTER_GUEST_OS_ID 0x00090002 642 #define HV_REGISTER_VP_INDEX 0x00090003 643 #define HV_REGISTER_TIME_REF_COUNT 0x00090004 644 #define HV_REGISTER_REFERENCE_TSC 0x00090017 645 646 #define HV_REGISTER_SINT0 0x000A0000 647 #define HV_REGISTER_SCONTROL 0x000A0010 648 #define HV_REGISTER_SIEFP 0x000A0012 649 #define HV_REGISTER_SIMP 0x000A0013 650 #define HV_REGISTER_EOM 0x000A0014 651 652 #define HV_REGISTER_STIMER0_CONFIG 0x000B0000 653 #define HV_REGISTER_STIMER0_COUNT 0x000B0001 654 655 /* HvGetVpRegisters hypercall input with variable size reg name list*/ 656 struct hv_get_vp_registers_input { 657 struct { 658 u64 partitionid; 659 u32 vpindex; 660 u8 inputvtl; 661 u8 padding[3]; 662 } header; 663 struct input { 664 u32 name0; 665 u32 name1; 666 } element[]; 667 } __packed; 668 669 /* HvGetVpRegisters returns an array of these output elements */ 670 struct hv_get_vp_registers_output { 671 union { 672 struct { 673 u32 a; 674 u32 b; 675 u32 c; 676 u32 d; 677 } as32 __packed; 678 struct { 679 u64 low; 680 u64 high; 681 } as64 __packed; 682 }; 683 }; 684 685 /* HvSetVpRegisters hypercall with variable size reg name/value list*/ 686 struct hv_set_vp_registers_input { 687 struct { 688 u64 partitionid; 689 u32 vpindex; 690 u8 inputvtl; 691 u8 padding[3]; 692 } header; 693 struct { 694 u32 name; 695 u32 padding1; 696 u64 padding2; 697 u64 valuelow; 698 u64 valuehigh; 699 } element[]; 700 } __packed; 701 702 enum hv_device_type { 703 HV_DEVICE_TYPE_LOGICAL = 0, 704 HV_DEVICE_TYPE_PCI = 1, 705 HV_DEVICE_TYPE_IOAPIC = 2, 706 HV_DEVICE_TYPE_ACPI = 3, 707 }; 708 709 typedef u16 hv_pci_rid; 710 typedef u16 hv_pci_segment; 711 typedef u64 hv_logical_device_id; 712 union hv_pci_bdf { 713 u16 as_uint16; 714 715 struct { 716 u8 function:3; 717 u8 device:5; 718 u8 bus; 719 }; 720 } __packed; 721 722 union hv_pci_bus_range { 723 u16 as_uint16; 724 725 struct { 726 u8 subordinate_bus; 727 u8 secondary_bus; 728 }; 729 } __packed; 730 731 union hv_device_id { 732 u64 as_uint64; 733 734 struct { 735 u64 reserved0:62; 736 u64 device_type:2; 737 }; 738 739 /* HV_DEVICE_TYPE_LOGICAL */ 740 struct { 741 u64 id:62; 742 u64 device_type:2; 743 } logical; 744 745 /* HV_DEVICE_TYPE_PCI */ 746 struct { 747 union { 748 hv_pci_rid rid; 749 union hv_pci_bdf bdf; 750 }; 751 752 hv_pci_segment segment; 753 union hv_pci_bus_range shadow_bus_range; 754 755 u16 phantom_function_bits:2; 756 u16 source_shadow:1; 757 758 u16 rsvdz0:11; 759 u16 device_type:2; 760 } pci; 761 762 /* HV_DEVICE_TYPE_IOAPIC */ 763 struct { 764 u8 ioapic_id; 765 u8 rsvdz0; 766 u16 rsvdz1; 767 u16 rsvdz2; 768 769 u16 rsvdz3:14; 770 u16 device_type:2; 771 } ioapic; 772 773 /* HV_DEVICE_TYPE_ACPI */ 774 struct { 775 u32 input_mapping_base; 776 u32 input_mapping_count:30; 777 u32 device_type:2; 778 } acpi; 779 } __packed; 780 781 enum hv_interrupt_trigger_mode { 782 HV_INTERRUPT_TRIGGER_MODE_EDGE = 0, 783 HV_INTERRUPT_TRIGGER_MODE_LEVEL = 1, 784 }; 785 786 struct hv_device_interrupt_descriptor { 787 u32 interrupt_type; 788 u32 trigger_mode; 789 u32 vector_count; 790 u32 reserved; 791 struct hv_device_interrupt_target target; 792 } __packed; 793 794 struct hv_input_map_device_interrupt { 795 u64 partition_id; 796 u64 device_id; 797 u64 flags; 798 struct hv_interrupt_entry logical_interrupt_entry; 799 struct hv_device_interrupt_descriptor interrupt_descriptor; 800 } __packed; 801 802 struct hv_output_map_device_interrupt { 803 struct hv_interrupt_entry interrupt_entry; 804 } __packed; 805 806 struct hv_input_unmap_device_interrupt { 807 u64 partition_id; 808 u64 device_id; 809 struct hv_interrupt_entry interrupt_entry; 810 } __packed; 811 812 #define HV_SOURCE_SHADOW_NONE 0x0 813 #define HV_SOURCE_SHADOW_BRIDGE_BUS_RANGE 0x1 814 815 /* 816 * Version info reported by hypervisor 817 */ 818 union hv_hypervisor_version_info { 819 struct { 820 u32 build_number; 821 822 u32 minor_version : 16; 823 u32 major_version : 16; 824 825 u32 service_pack; 826 827 u32 service_number : 24; 828 u32 service_branch : 8; 829 }; 830 struct { 831 u32 eax; 832 u32 ebx; 833 u32 ecx; 834 u32 edx; 835 }; 836 }; 837 838 /* 839 * The whole argument should fit in a page to be able to pass to the hypervisor 840 * in one hypercall. 841 */ 842 #define HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES \ 843 ((HV_HYP_PAGE_SIZE - sizeof(struct hv_memory_hint)) / \ 844 sizeof(union hv_gpa_page_range)) 845 846 /* HvExtCallMemoryHeatHint hypercall */ 847 #define HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD 2 848 struct hv_memory_hint { 849 u64 type:2; 850 u64 reserved:62; 851 union hv_gpa_page_range ranges[]; 852 } __packed; 853 854 /* Data structures for HVCALL_MMIO_READ and HVCALL_MMIO_WRITE */ 855 #define HV_HYPERCALL_MMIO_MAX_DATA_LENGTH 64 856 857 struct hv_mmio_read_input { 858 u64 gpa; 859 u32 size; 860 u32 reserved; 861 } __packed; 862 863 struct hv_mmio_read_output { 864 u8 data[HV_HYPERCALL_MMIO_MAX_DATA_LENGTH]; 865 } __packed; 866 867 struct hv_mmio_write_input { 868 u64 gpa; 869 u32 size; 870 u32 reserved; 871 u8 data[HV_HYPERCALL_MMIO_MAX_DATA_LENGTH]; 872 } __packed; 873 874 #endif 875