1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /* ******************************************************************
3 * huff0 huffman decoder,
4 * part of Finite State Entropy library
5 * Copyright (c) Meta Platforms, Inc. and affiliates.
6 *
7 * You can contact the author at :
8 * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
9 *
10 * This source code is licensed under both the BSD-style license (found in the
11 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
12 * in the COPYING file in the root directory of this source tree).
13 * You may select, at your option, one of the above-listed licenses.
14 ****************************************************************** */
15
16 /* **************************************************************
17 * Dependencies
18 ****************************************************************/
19 #include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */
20 #include "../common/compiler.h"
21 #include "../common/bitstream.h" /* BIT_* */
22 #include "../common/fse.h" /* to compress headers */
23 #include "../common/huf.h"
24 #include "../common/error_private.h"
25 #include "../common/zstd_internal.h"
26 #include "../common/bits.h" /* ZSTD_highbit32, ZSTD_countTrailingZeros64 */
27
28 /* **************************************************************
29 * Constants
30 ****************************************************************/
31
32 #define HUF_DECODER_FAST_TABLELOG 11
33
34 /* **************************************************************
35 * Macros
36 ****************************************************************/
37
38 #ifdef HUF_DISABLE_FAST_DECODE
39 # define HUF_ENABLE_FAST_DECODE 0
40 #else
41 # define HUF_ENABLE_FAST_DECODE 1
42 #endif
43
44 /* These two optional macros force the use one way or another of the two
45 * Huffman decompression implementations. You can't force in both directions
46 * at the same time.
47 */
48 #if defined(HUF_FORCE_DECOMPRESS_X1) && \
49 defined(HUF_FORCE_DECOMPRESS_X2)
50 #error "Cannot force the use of the X1 and X2 decoders at the same time!"
51 #endif
52
53 /* When DYNAMIC_BMI2 is enabled, fast decoders are only called when bmi2 is
54 * supported at runtime, so we can add the BMI2 target attribute.
55 * When it is disabled, we will still get BMI2 if it is enabled statically.
56 */
57 #if DYNAMIC_BMI2
58 # define HUF_FAST_BMI2_ATTRS BMI2_TARGET_ATTRIBUTE
59 #else
60 # define HUF_FAST_BMI2_ATTRS
61 #endif
62
63 #define HUF_EXTERN_C
64 #define HUF_ASM_DECL HUF_EXTERN_C
65
66 #if DYNAMIC_BMI2
67 # define HUF_NEED_BMI2_FUNCTION 1
68 #else
69 # define HUF_NEED_BMI2_FUNCTION 0
70 #endif
71
72 /* **************************************************************
73 * Error Management
74 ****************************************************************/
75 #define HUF_isError ERR_isError
76
77
78 /* **************************************************************
79 * Byte alignment for workSpace management
80 ****************************************************************/
81 #define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1)
82 #define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))
83
84
85 /* **************************************************************
86 * BMI2 Variant Wrappers
87 ****************************************************************/
88 typedef size_t (*HUF_DecompressUsingDTableFn)(void *dst, size_t dstSize,
89 const void *cSrc,
90 size_t cSrcSize,
91 const HUF_DTable *DTable);
92
93 #if DYNAMIC_BMI2
94
95 #define HUF_DGEN(fn) \
96 \
97 static size_t fn##_default( \
98 void* dst, size_t dstSize, \
99 const void* cSrc, size_t cSrcSize, \
100 const HUF_DTable* DTable) \
101 { \
102 return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
103 } \
104 \
105 static BMI2_TARGET_ATTRIBUTE size_t fn##_bmi2( \
106 void* dst, size_t dstSize, \
107 const void* cSrc, size_t cSrcSize, \
108 const HUF_DTable* DTable) \
109 { \
110 return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
111 } \
112 \
113 static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
114 size_t cSrcSize, HUF_DTable const* DTable, int flags) \
115 { \
116 if (flags & HUF_flags_bmi2) { \
117 return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \
118 } \
119 return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \
120 }
121
122 #else
123
124 #define HUF_DGEN(fn) \
125 static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
126 size_t cSrcSize, HUF_DTable const* DTable, int flags) \
127 { \
128 (void)flags; \
129 return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
130 }
131
132 #endif
133
134
135 /*-***************************/
136 /* generic DTableDesc */
137 /*-***************************/
138 typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
139
HUF_getDTableDesc(const HUF_DTable * table)140 static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
141 {
142 DTableDesc dtd;
143 ZSTD_memcpy(&dtd, table, sizeof(dtd));
144 return dtd;
145 }
146
HUF_initFastDStream(BYTE const * ip)147 static size_t HUF_initFastDStream(BYTE const* ip) {
148 BYTE const lastByte = ip[7];
149 size_t const bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0;
150 size_t const value = MEM_readLEST(ip) | 1;
151 assert(bitsConsumed <= 8);
152 assert(sizeof(size_t) == 8);
153 return value << bitsConsumed;
154 }
155
156
157 /*
158 * The input/output arguments to the Huffman fast decoding loop:
159 *
160 * ip [in/out] - The input pointers, must be updated to reflect what is consumed.
161 * op [in/out] - The output pointers, must be updated to reflect what is written.
162 * bits [in/out] - The bitstream containers, must be updated to reflect the current state.
163 * dt [in] - The decoding table.
164 * ilowest [in] - The beginning of the valid range of the input. Decoders may read
165 * down to this pointer. It may be below iend[0].
166 * oend [in] - The end of the output stream. op[3] must not cross oend.
167 * iend [in] - The end of each input stream. ip[i] may cross iend[i],
168 * as long as it is above ilowest, but that indicates corruption.
169 */
170 typedef struct {
171 BYTE const* ip[4];
172 BYTE* op[4];
173 U64 bits[4];
174 void const* dt;
175 BYTE const* ilowest;
176 BYTE* oend;
177 BYTE const* iend[4];
178 } HUF_DecompressFastArgs;
179
180 typedef void (*HUF_DecompressFastLoopFn)(HUF_DecompressFastArgs*);
181
182 /*
183 * Initializes args for the fast decoding loop.
184 * @returns 1 on success
185 * 0 if the fallback implementation should be used.
186 * Or an error code on failure.
187 */
HUF_DecompressFastArgs_init(HUF_DecompressFastArgs * args,void * dst,size_t dstSize,void const * src,size_t srcSize,const HUF_DTable * DTable)188 static size_t HUF_DecompressFastArgs_init(HUF_DecompressFastArgs* args, void* dst, size_t dstSize, void const* src, size_t srcSize, const HUF_DTable* DTable)
189 {
190 void const* dt = DTable + 1;
191 U32 const dtLog = HUF_getDTableDesc(DTable).tableLog;
192
193 const BYTE* const istart = (const BYTE*)src;
194
195 BYTE* const oend = ZSTD_maybeNullPtrAdd((BYTE*)dst, dstSize);
196
197 /* The fast decoding loop assumes 64-bit little-endian.
198 * This condition is false on x32.
199 */
200 if (!MEM_isLittleEndian() || MEM_32bits())
201 return 0;
202
203 /* Avoid nullptr addition */
204 if (dstSize == 0)
205 return 0;
206 assert(dst != NULL);
207
208 /* strict minimum : jump table + 1 byte per stream */
209 if (srcSize < 10)
210 return ERROR(corruption_detected);
211
212 /* Must have at least 8 bytes per stream because we don't handle initializing smaller bit containers.
213 * If table log is not correct at this point, fallback to the old decoder.
214 * On small inputs we don't have enough data to trigger the fast loop, so use the old decoder.
215 */
216 if (dtLog != HUF_DECODER_FAST_TABLELOG)
217 return 0;
218
219 /* Read the jump table. */
220 {
221 size_t const length1 = MEM_readLE16(istart);
222 size_t const length2 = MEM_readLE16(istart+2);
223 size_t const length3 = MEM_readLE16(istart+4);
224 size_t const length4 = srcSize - (length1 + length2 + length3 + 6);
225 args->iend[0] = istart + 6; /* jumpTable */
226 args->iend[1] = args->iend[0] + length1;
227 args->iend[2] = args->iend[1] + length2;
228 args->iend[3] = args->iend[2] + length3;
229
230 /* HUF_initFastDStream() requires this, and this small of an input
231 * won't benefit from the ASM loop anyways.
232 */
233 if (length1 < 8 || length2 < 8 || length3 < 8 || length4 < 8)
234 return 0;
235 if (length4 > srcSize) return ERROR(corruption_detected); /* overflow */
236 }
237 /* ip[] contains the position that is currently loaded into bits[]. */
238 args->ip[0] = args->iend[1] - sizeof(U64);
239 args->ip[1] = args->iend[2] - sizeof(U64);
240 args->ip[2] = args->iend[3] - sizeof(U64);
241 args->ip[3] = (BYTE const*)src + srcSize - sizeof(U64);
242
243 /* op[] contains the output pointers. */
244 args->op[0] = (BYTE*)dst;
245 args->op[1] = args->op[0] + (dstSize+3)/4;
246 args->op[2] = args->op[1] + (dstSize+3)/4;
247 args->op[3] = args->op[2] + (dstSize+3)/4;
248
249 /* No point to call the ASM loop for tiny outputs. */
250 if (args->op[3] >= oend)
251 return 0;
252
253 /* bits[] is the bit container.
254 * It is read from the MSB down to the LSB.
255 * It is shifted left as it is read, and zeros are
256 * shifted in. After the lowest valid bit a 1 is
257 * set, so that CountTrailingZeros(bits[]) can be used
258 * to count how many bits we've consumed.
259 */
260 args->bits[0] = HUF_initFastDStream(args->ip[0]);
261 args->bits[1] = HUF_initFastDStream(args->ip[1]);
262 args->bits[2] = HUF_initFastDStream(args->ip[2]);
263 args->bits[3] = HUF_initFastDStream(args->ip[3]);
264
265 /* The decoders must be sure to never read beyond ilowest.
266 * This is lower than iend[0], but allowing decoders to read
267 * down to ilowest can allow an extra iteration or two in the
268 * fast loop.
269 */
270 args->ilowest = istart;
271
272 args->oend = oend;
273 args->dt = dt;
274
275 return 1;
276 }
277
HUF_initRemainingDStream(BIT_DStream_t * bit,HUF_DecompressFastArgs const * args,int stream,BYTE * segmentEnd)278 static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressFastArgs const* args, int stream, BYTE* segmentEnd)
279 {
280 /* Validate that we haven't overwritten. */
281 if (args->op[stream] > segmentEnd)
282 return ERROR(corruption_detected);
283 /* Validate that we haven't read beyond iend[].
284 * Note that ip[] may be < iend[] because the MSB is
285 * the next bit to read, and we may have consumed 100%
286 * of the stream, so down to iend[i] - 8 is valid.
287 */
288 if (args->ip[stream] < args->iend[stream] - 8)
289 return ERROR(corruption_detected);
290
291 /* Construct the BIT_DStream_t. */
292 assert(sizeof(size_t) == 8);
293 bit->bitContainer = MEM_readLEST(args->ip[stream]);
294 bit->bitsConsumed = ZSTD_countTrailingZeros64(args->bits[stream]);
295 bit->start = (const char*)args->ilowest;
296 bit->limitPtr = bit->start + sizeof(size_t);
297 bit->ptr = (const char*)args->ip[stream];
298
299 return 0;
300 }
301
302 /* Calls X(N) for each stream 0, 1, 2, 3. */
303 #define HUF_4X_FOR_EACH_STREAM(X) \
304 do { \
305 X(0); \
306 X(1); \
307 X(2); \
308 X(3); \
309 } while (0)
310
311 /* Calls X(N, var) for each stream 0, 1, 2, 3. */
312 #define HUF_4X_FOR_EACH_STREAM_WITH_VAR(X, var) \
313 do { \
314 X(0, (var)); \
315 X(1, (var)); \
316 X(2, (var)); \
317 X(3, (var)); \
318 } while (0)
319
320
321 #ifndef HUF_FORCE_DECOMPRESS_X2
322
323 /*-***************************/
324 /* single-symbol decoding */
325 /*-***************************/
326 typedef struct { BYTE nbBits; BYTE byte; } HUF_DEltX1; /* single-symbol decoding */
327
328 /*
329 * Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at
330 * a time.
331 */
HUF_DEltX1_set4(BYTE symbol,BYTE nbBits)332 static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) {
333 U64 D4;
334 if (MEM_isLittleEndian()) {
335 D4 = (U64)((symbol << 8) + nbBits);
336 } else {
337 D4 = (U64)(symbol + (nbBits << 8));
338 }
339 assert(D4 < (1U << 16));
340 D4 *= 0x0001000100010001ULL;
341 return D4;
342 }
343
344 /*
345 * Increase the tableLog to targetTableLog and rescales the stats.
346 * If tableLog > targetTableLog this is a no-op.
347 * @returns New tableLog
348 */
HUF_rescaleStats(BYTE * huffWeight,U32 * rankVal,U32 nbSymbols,U32 tableLog,U32 targetTableLog)349 static U32 HUF_rescaleStats(BYTE* huffWeight, U32* rankVal, U32 nbSymbols, U32 tableLog, U32 targetTableLog)
350 {
351 if (tableLog > targetTableLog)
352 return tableLog;
353 if (tableLog < targetTableLog) {
354 U32 const scale = targetTableLog - tableLog;
355 U32 s;
356 /* Increase the weight for all non-zero probability symbols by scale. */
357 for (s = 0; s < nbSymbols; ++s) {
358 huffWeight[s] += (BYTE)((huffWeight[s] == 0) ? 0 : scale);
359 }
360 /* Update rankVal to reflect the new weights.
361 * All weights except 0 get moved to weight + scale.
362 * Weights [1, scale] are empty.
363 */
364 for (s = targetTableLog; s > scale; --s) {
365 rankVal[s] = rankVal[s - scale];
366 }
367 for (s = scale; s > 0; --s) {
368 rankVal[s] = 0;
369 }
370 }
371 return targetTableLog;
372 }
373
374 typedef struct {
375 U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];
376 U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1];
377 U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
378 BYTE symbols[HUF_SYMBOLVALUE_MAX + 1];
379 BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
380 } HUF_ReadDTableX1_Workspace;
381
HUF_readDTableX1_wksp(HUF_DTable * DTable,const void * src,size_t srcSize,void * workSpace,size_t wkspSize,int flags)382 size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags)
383 {
384 U32 tableLog = 0;
385 U32 nbSymbols = 0;
386 size_t iSize;
387 void* const dtPtr = DTable + 1;
388 HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr;
389 HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace;
390
391 DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp));
392 if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge);
393
394 DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
395 /* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */
396
397 iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), flags);
398 if (HUF_isError(iSize)) return iSize;
399
400
401 /* Table header */
402 { DTableDesc dtd = HUF_getDTableDesc(DTable);
403 U32 const maxTableLog = dtd.maxTableLog + 1;
404 U32 const targetTableLog = MIN(maxTableLog, HUF_DECODER_FAST_TABLELOG);
405 tableLog = HUF_rescaleStats(wksp->huffWeight, wksp->rankVal, nbSymbols, tableLog, targetTableLog);
406 if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */
407 dtd.tableType = 0;
408 dtd.tableLog = (BYTE)tableLog;
409 ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
410 }
411
412 /* Compute symbols and rankStart given rankVal:
413 *
414 * rankVal already contains the number of values of each weight.
415 *
416 * symbols contains the symbols ordered by weight. First are the rankVal[0]
417 * weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on.
418 * symbols[0] is filled (but unused) to avoid a branch.
419 *
420 * rankStart contains the offset where each rank belongs in the DTable.
421 * rankStart[0] is not filled because there are no entries in the table for
422 * weight 0.
423 */
424 { int n;
425 U32 nextRankStart = 0;
426 int const unroll = 4;
427 int const nLimit = (int)nbSymbols - unroll + 1;
428 for (n=0; n<(int)tableLog+1; n++) {
429 U32 const curr = nextRankStart;
430 nextRankStart += wksp->rankVal[n];
431 wksp->rankStart[n] = curr;
432 }
433 for (n=0; n < nLimit; n += unroll) {
434 int u;
435 for (u=0; u < unroll; ++u) {
436 size_t const w = wksp->huffWeight[n+u];
437 wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u);
438 }
439 }
440 for (; n < (int)nbSymbols; ++n) {
441 size_t const w = wksp->huffWeight[n];
442 wksp->symbols[wksp->rankStart[w]++] = (BYTE)n;
443 }
444 }
445
446 /* fill DTable
447 * We fill all entries of each weight in order.
448 * That way length is a constant for each iteration of the outer loop.
449 * We can switch based on the length to a different inner loop which is
450 * optimized for that particular case.
451 */
452 { U32 w;
453 int symbol = wksp->rankVal[0];
454 int rankStart = 0;
455 for (w=1; w<tableLog+1; ++w) {
456 int const symbolCount = wksp->rankVal[w];
457 int const length = (1 << w) >> 1;
458 int uStart = rankStart;
459 BYTE const nbBits = (BYTE)(tableLog + 1 - w);
460 int s;
461 int u;
462 switch (length) {
463 case 1:
464 for (s=0; s<symbolCount; ++s) {
465 HUF_DEltX1 D;
466 D.byte = wksp->symbols[symbol + s];
467 D.nbBits = nbBits;
468 dt[uStart] = D;
469 uStart += 1;
470 }
471 break;
472 case 2:
473 for (s=0; s<symbolCount; ++s) {
474 HUF_DEltX1 D;
475 D.byte = wksp->symbols[symbol + s];
476 D.nbBits = nbBits;
477 dt[uStart+0] = D;
478 dt[uStart+1] = D;
479 uStart += 2;
480 }
481 break;
482 case 4:
483 for (s=0; s<symbolCount; ++s) {
484 U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
485 MEM_write64(dt + uStart, D4);
486 uStart += 4;
487 }
488 break;
489 case 8:
490 for (s=0; s<symbolCount; ++s) {
491 U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
492 MEM_write64(dt + uStart, D4);
493 MEM_write64(dt + uStart + 4, D4);
494 uStart += 8;
495 }
496 break;
497 default:
498 for (s=0; s<symbolCount; ++s) {
499 U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
500 for (u=0; u < length; u += 16) {
501 MEM_write64(dt + uStart + u + 0, D4);
502 MEM_write64(dt + uStart + u + 4, D4);
503 MEM_write64(dt + uStart + u + 8, D4);
504 MEM_write64(dt + uStart + u + 12, D4);
505 }
506 assert(u == length);
507 uStart += length;
508 }
509 break;
510 }
511 symbol += symbolCount;
512 rankStart += symbolCount * length;
513 }
514 }
515 return iSize;
516 }
517
518 FORCE_INLINE_TEMPLATE BYTE
HUF_decodeSymbolX1(BIT_DStream_t * Dstream,const HUF_DEltX1 * dt,const U32 dtLog)519 HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog)
520 {
521 size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
522 BYTE const c = dt[val].byte;
523 BIT_skipBits(Dstream, dt[val].nbBits);
524 return c;
525 }
526
527 #define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \
528 do { *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog); } while (0)
529
530 #define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \
531 do { \
532 if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
533 HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr); \
534 } while (0)
535
536 #define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \
537 do { \
538 if (MEM_64bits()) \
539 HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr); \
540 } while (0)
541
542 HINT_INLINE size_t
HUF_decodeStreamX1(BYTE * p,BIT_DStream_t * const bitDPtr,BYTE * const pEnd,const HUF_DEltX1 * const dt,const U32 dtLog)543 HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog)
544 {
545 BYTE* const pStart = p;
546
547 /* up to 4 symbols at a time */
548 if ((pEnd - p) > 3) {
549 while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) {
550 HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
551 HUF_DECODE_SYMBOLX1_1(p, bitDPtr);
552 HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
553 HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
554 }
555 } else {
556 BIT_reloadDStream(bitDPtr);
557 }
558
559 /* [0-3] symbols remaining */
560 if (MEM_32bits())
561 while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd))
562 HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
563
564 /* no more data to retrieve from bitstream, no need to reload */
565 while (p < pEnd)
566 HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
567
568 return (size_t)(pEnd-pStart);
569 }
570
571 FORCE_INLINE_TEMPLATE size_t
HUF_decompress1X1_usingDTable_internal_body(void * dst,size_t dstSize,const void * cSrc,size_t cSrcSize,const HUF_DTable * DTable)572 HUF_decompress1X1_usingDTable_internal_body(
573 void* dst, size_t dstSize,
574 const void* cSrc, size_t cSrcSize,
575 const HUF_DTable* DTable)
576 {
577 BYTE* op = (BYTE*)dst;
578 BYTE* const oend = ZSTD_maybeNullPtrAdd(op, dstSize);
579 const void* dtPtr = DTable + 1;
580 const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
581 BIT_DStream_t bitD;
582 DTableDesc const dtd = HUF_getDTableDesc(DTable);
583 U32 const dtLog = dtd.tableLog;
584
585 CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
586
587 HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog);
588
589 if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
590
591 return dstSize;
592 }
593
594 /* HUF_decompress4X1_usingDTable_internal_body():
595 * Conditions :
596 * @dstSize >= 6
597 */
598 FORCE_INLINE_TEMPLATE size_t
HUF_decompress4X1_usingDTable_internal_body(void * dst,size_t dstSize,const void * cSrc,size_t cSrcSize,const HUF_DTable * DTable)599 HUF_decompress4X1_usingDTable_internal_body(
600 void* dst, size_t dstSize,
601 const void* cSrc, size_t cSrcSize,
602 const HUF_DTable* DTable)
603 {
604 /* Check */
605 if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
606 if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */
607
608 { const BYTE* const istart = (const BYTE*) cSrc;
609 BYTE* const ostart = (BYTE*) dst;
610 BYTE* const oend = ostart + dstSize;
611 BYTE* const olimit = oend - 3;
612 const void* const dtPtr = DTable + 1;
613 const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
614
615 /* Init */
616 BIT_DStream_t bitD1;
617 BIT_DStream_t bitD2;
618 BIT_DStream_t bitD3;
619 BIT_DStream_t bitD4;
620 size_t const length1 = MEM_readLE16(istart);
621 size_t const length2 = MEM_readLE16(istart+2);
622 size_t const length3 = MEM_readLE16(istart+4);
623 size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
624 const BYTE* const istart1 = istart + 6; /* jumpTable */
625 const BYTE* const istart2 = istart1 + length1;
626 const BYTE* const istart3 = istart2 + length2;
627 const BYTE* const istart4 = istart3 + length3;
628 const size_t segmentSize = (dstSize+3) / 4;
629 BYTE* const opStart2 = ostart + segmentSize;
630 BYTE* const opStart3 = opStart2 + segmentSize;
631 BYTE* const opStart4 = opStart3 + segmentSize;
632 BYTE* op1 = ostart;
633 BYTE* op2 = opStart2;
634 BYTE* op3 = opStart3;
635 BYTE* op4 = opStart4;
636 DTableDesc const dtd = HUF_getDTableDesc(DTable);
637 U32 const dtLog = dtd.tableLog;
638 U32 endSignal = 1;
639
640 if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
641 if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */
642 assert(dstSize >= 6); /* validated above */
643 CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
644 CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
645 CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
646 CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
647
648 /* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */
649 if ((size_t)(oend - op4) >= sizeof(size_t)) {
650 for ( ; (endSignal) & (op4 < olimit) ; ) {
651 HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
652 HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
653 HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
654 HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
655 HUF_DECODE_SYMBOLX1_1(op1, &bitD1);
656 HUF_DECODE_SYMBOLX1_1(op2, &bitD2);
657 HUF_DECODE_SYMBOLX1_1(op3, &bitD3);
658 HUF_DECODE_SYMBOLX1_1(op4, &bitD4);
659 HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
660 HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
661 HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
662 HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
663 HUF_DECODE_SYMBOLX1_0(op1, &bitD1);
664 HUF_DECODE_SYMBOLX1_0(op2, &bitD2);
665 HUF_DECODE_SYMBOLX1_0(op3, &bitD3);
666 HUF_DECODE_SYMBOLX1_0(op4, &bitD4);
667 endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
668 endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
669 endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
670 endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
671 }
672 }
673
674 /* check corruption */
675 /* note : should not be necessary : op# advance in lock step, and we control op4.
676 * but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */
677 if (op1 > opStart2) return ERROR(corruption_detected);
678 if (op2 > opStart3) return ERROR(corruption_detected);
679 if (op3 > opStart4) return ERROR(corruption_detected);
680 /* note : op4 supposed already verified within main loop */
681
682 /* finish bitStreams one by one */
683 HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog);
684 HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog);
685 HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog);
686 HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog);
687
688 /* check */
689 { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
690 if (!endCheck) return ERROR(corruption_detected); }
691
692 /* decoded size */
693 return dstSize;
694 }
695 }
696
697 #if HUF_NEED_BMI2_FUNCTION
698 static BMI2_TARGET_ATTRIBUTE
HUF_decompress4X1_usingDTable_internal_bmi2(void * dst,size_t dstSize,void const * cSrc,size_t cSrcSize,HUF_DTable const * DTable)699 size_t HUF_decompress4X1_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
700 size_t cSrcSize, HUF_DTable const* DTable) {
701 return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
702 }
703 #endif
704
705 static
HUF_decompress4X1_usingDTable_internal_default(void * dst,size_t dstSize,void const * cSrc,size_t cSrcSize,HUF_DTable const * DTable)706 size_t HUF_decompress4X1_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
707 size_t cSrcSize, HUF_DTable const* DTable) {
708 return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
709 }
710
711 #if ZSTD_ENABLE_ASM_X86_64_BMI2
712
713 HUF_ASM_DECL void HUF_decompress4X1_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN;
714
715 #endif
716
717 static HUF_FAST_BMI2_ATTRS
HUF_decompress4X1_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs * args)718 void HUF_decompress4X1_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args)
719 {
720 U64 bits[4];
721 BYTE const* ip[4];
722 BYTE* op[4];
723 U16 const* const dtable = (U16 const*)args->dt;
724 BYTE* const oend = args->oend;
725 BYTE const* const ilowest = args->ilowest;
726
727 /* Copy the arguments to local variables */
728 ZSTD_memcpy(&bits, &args->bits, sizeof(bits));
729 ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip));
730 ZSTD_memcpy(&op, &args->op, sizeof(op));
731
732 assert(MEM_isLittleEndian());
733 assert(!MEM_32bits());
734
735 for (;;) {
736 BYTE* olimit;
737 int stream;
738
739 /* Assert loop preconditions */
740 #ifndef NDEBUG
741 for (stream = 0; stream < 4; ++stream) {
742 assert(op[stream] <= (stream == 3 ? oend : op[stream + 1]));
743 assert(ip[stream] >= ilowest);
744 }
745 #endif
746 /* Compute olimit */
747 {
748 /* Each iteration produces 5 output symbols per stream */
749 size_t const oiters = (size_t)(oend - op[3]) / 5;
750 /* Each iteration consumes up to 11 bits * 5 = 55 bits < 7 bytes
751 * per stream.
752 */
753 size_t const iiters = (size_t)(ip[0] - ilowest) / 7;
754 /* We can safely run iters iterations before running bounds checks */
755 size_t const iters = MIN(oiters, iiters);
756 size_t const symbols = iters * 5;
757
758 /* We can simply check that op[3] < olimit, instead of checking all
759 * of our bounds, since we can't hit the other bounds until we've run
760 * iters iterations, which only happens when op[3] == olimit.
761 */
762 olimit = op[3] + symbols;
763
764 /* Exit fast decoding loop once we reach the end. */
765 if (op[3] == olimit)
766 break;
767
768 /* Exit the decoding loop if any input pointer has crossed the
769 * previous one. This indicates corruption, and a precondition
770 * to our loop is that ip[i] >= ip[0].
771 */
772 for (stream = 1; stream < 4; ++stream) {
773 if (ip[stream] < ip[stream - 1])
774 goto _out;
775 }
776 }
777
778 #ifndef NDEBUG
779 for (stream = 1; stream < 4; ++stream) {
780 assert(ip[stream] >= ip[stream - 1]);
781 }
782 #endif
783
784 #define HUF_4X1_DECODE_SYMBOL(_stream, _symbol) \
785 do { \
786 int const index = (int)(bits[(_stream)] >> 53); \
787 int const entry = (int)dtable[index]; \
788 bits[(_stream)] <<= (entry & 0x3F); \
789 op[(_stream)][(_symbol)] = (BYTE)((entry >> 8) & 0xFF); \
790 } while (0)
791
792 #define HUF_4X1_RELOAD_STREAM(_stream) \
793 do { \
794 int const ctz = ZSTD_countTrailingZeros64(bits[(_stream)]); \
795 int const nbBits = ctz & 7; \
796 int const nbBytes = ctz >> 3; \
797 op[(_stream)] += 5; \
798 ip[(_stream)] -= nbBytes; \
799 bits[(_stream)] = MEM_read64(ip[(_stream)]) | 1; \
800 bits[(_stream)] <<= nbBits; \
801 } while (0)
802
803 /* Manually unroll the loop because compilers don't consistently
804 * unroll the inner loops, which destroys performance.
805 */
806 do {
807 /* Decode 5 symbols in each of the 4 streams */
808 HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 0);
809 HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 1);
810 HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 2);
811 HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 3);
812 HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 4);
813
814 /* Reload each of the 4 the bitstreams */
815 HUF_4X_FOR_EACH_STREAM(HUF_4X1_RELOAD_STREAM);
816 } while (op[3] < olimit);
817
818 #undef HUF_4X1_DECODE_SYMBOL
819 #undef HUF_4X1_RELOAD_STREAM
820 }
821
822 _out:
823
824 /* Save the final values of each of the state variables back to args. */
825 ZSTD_memcpy(&args->bits, &bits, sizeof(bits));
826 ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip));
827 ZSTD_memcpy(&args->op, &op, sizeof(op));
828 }
829
830 /*
831 * @returns @p dstSize on success (>= 6)
832 * 0 if the fallback implementation should be used
833 * An error if an error occurred
834 */
835 static HUF_FAST_BMI2_ATTRS
836 size_t
HUF_decompress4X1_usingDTable_internal_fast(void * dst,size_t dstSize,const void * cSrc,size_t cSrcSize,const HUF_DTable * DTable,HUF_DecompressFastLoopFn loopFn)837 HUF_decompress4X1_usingDTable_internal_fast(
838 void* dst, size_t dstSize,
839 const void* cSrc, size_t cSrcSize,
840 const HUF_DTable* DTable,
841 HUF_DecompressFastLoopFn loopFn)
842 {
843 void const* dt = DTable + 1;
844 BYTE const* const ilowest = (BYTE const*)cSrc;
845 BYTE* const oend = ZSTD_maybeNullPtrAdd((BYTE*)dst, dstSize);
846 HUF_DecompressFastArgs args;
847 { size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
848 FORWARD_IF_ERROR(ret, "Failed to init fast loop args");
849 if (ret == 0)
850 return 0;
851 }
852
853 assert(args.ip[0] >= args.ilowest);
854 loopFn(&args);
855
856 /* Our loop guarantees that ip[] >= ilowest and that we haven't
857 * overwritten any op[].
858 */
859 assert(args.ip[0] >= ilowest);
860 assert(args.ip[0] >= ilowest);
861 assert(args.ip[1] >= ilowest);
862 assert(args.ip[2] >= ilowest);
863 assert(args.ip[3] >= ilowest);
864 assert(args.op[3] <= oend);
865
866 assert(ilowest == args.ilowest);
867 assert(ilowest + 6 == args.iend[0]);
868 (void)ilowest;
869
870 /* finish bit streams one by one. */
871 { size_t const segmentSize = (dstSize+3) / 4;
872 BYTE* segmentEnd = (BYTE*)dst;
873 int i;
874 for (i = 0; i < 4; ++i) {
875 BIT_DStream_t bit;
876 if (segmentSize <= (size_t)(oend - segmentEnd))
877 segmentEnd += segmentSize;
878 else
879 segmentEnd = oend;
880 FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
881 /* Decompress and validate that we've produced exactly the expected length. */
882 args.op[i] += HUF_decodeStreamX1(args.op[i], &bit, segmentEnd, (HUF_DEltX1 const*)dt, HUF_DECODER_FAST_TABLELOG);
883 if (args.op[i] != segmentEnd) return ERROR(corruption_detected);
884 }
885 }
886
887 /* decoded size */
888 assert(dstSize != 0);
889 return dstSize;
890 }
891
HUF_DGEN(HUF_decompress1X1_usingDTable_internal)892 HUF_DGEN(HUF_decompress1X1_usingDTable_internal)
893
894 static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
895 size_t cSrcSize, HUF_DTable const* DTable, int flags)
896 {
897 HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X1_usingDTable_internal_default;
898 HUF_DecompressFastLoopFn loopFn = HUF_decompress4X1_usingDTable_internal_fast_c_loop;
899
900 #if DYNAMIC_BMI2
901 if (flags & HUF_flags_bmi2) {
902 fallbackFn = HUF_decompress4X1_usingDTable_internal_bmi2;
903 # if ZSTD_ENABLE_ASM_X86_64_BMI2
904 if (!(flags & HUF_flags_disableAsm)) {
905 loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop;
906 }
907 # endif
908 } else {
909 return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
910 }
911 #endif
912
913 #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
914 if (!(flags & HUF_flags_disableAsm)) {
915 loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop;
916 }
917 #endif
918
919 if (HUF_ENABLE_FAST_DECODE && !(flags & HUF_flags_disableFast)) {
920 size_t const ret = HUF_decompress4X1_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn);
921 if (ret != 0)
922 return ret;
923 }
924 return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
925 }
926
HUF_decompress4X1_DCtx_wksp(HUF_DTable * dctx,void * dst,size_t dstSize,const void * cSrc,size_t cSrcSize,void * workSpace,size_t wkspSize,int flags)927 static size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
928 const void* cSrc, size_t cSrcSize,
929 void* workSpace, size_t wkspSize, int flags)
930 {
931 const BYTE* ip = (const BYTE*) cSrc;
932
933 size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags);
934 if (HUF_isError(hSize)) return hSize;
935 if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
936 ip += hSize; cSrcSize -= hSize;
937
938 return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
939 }
940
941 #endif /* HUF_FORCE_DECOMPRESS_X2 */
942
943
944 #ifndef HUF_FORCE_DECOMPRESS_X1
945
946 /* *************************/
947 /* double-symbols decoding */
948 /* *************************/
949
950 typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */
951 typedef struct { BYTE symbol; } sortedSymbol_t;
952 typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1];
953 typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX];
954
955 /*
956 * Constructs a HUF_DEltX2 in a U32.
957 */
HUF_buildDEltX2U32(U32 symbol,U32 nbBits,U32 baseSeq,int level)958 static U32 HUF_buildDEltX2U32(U32 symbol, U32 nbBits, U32 baseSeq, int level)
959 {
960 U32 seq;
961 DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, sequence) == 0);
962 DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, nbBits) == 2);
963 DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, length) == 3);
964 DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U32));
965 if (MEM_isLittleEndian()) {
966 seq = level == 1 ? symbol : (baseSeq + (symbol << 8));
967 return seq + (nbBits << 16) + ((U32)level << 24);
968 } else {
969 seq = level == 1 ? (symbol << 8) : ((baseSeq << 8) + symbol);
970 return (seq << 16) + (nbBits << 8) + (U32)level;
971 }
972 }
973
974 /*
975 * Constructs a HUF_DEltX2.
976 */
HUF_buildDEltX2(U32 symbol,U32 nbBits,U32 baseSeq,int level)977 static HUF_DEltX2 HUF_buildDEltX2(U32 symbol, U32 nbBits, U32 baseSeq, int level)
978 {
979 HUF_DEltX2 DElt;
980 U32 const val = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
981 DEBUG_STATIC_ASSERT(sizeof(DElt) == sizeof(val));
982 ZSTD_memcpy(&DElt, &val, sizeof(val));
983 return DElt;
984 }
985
986 /*
987 * Constructs 2 HUF_DEltX2s and packs them into a U64.
988 */
HUF_buildDEltX2U64(U32 symbol,U32 nbBits,U16 baseSeq,int level)989 static U64 HUF_buildDEltX2U64(U32 symbol, U32 nbBits, U16 baseSeq, int level)
990 {
991 U32 DElt = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
992 return (U64)DElt + ((U64)DElt << 32);
993 }
994
995 /*
996 * Fills the DTable rank with all the symbols from [begin, end) that are each
997 * nbBits long.
998 *
999 * @param DTableRank The start of the rank in the DTable.
1000 * @param begin The first symbol to fill (inclusive).
1001 * @param end The last symbol to fill (exclusive).
1002 * @param nbBits Each symbol is nbBits long.
1003 * @param tableLog The table log.
1004 * @param baseSeq If level == 1 { 0 } else { the first level symbol }
1005 * @param level The level in the table. Must be 1 or 2.
1006 */
HUF_fillDTableX2ForWeight(HUF_DEltX2 * DTableRank,sortedSymbol_t const * begin,sortedSymbol_t const * end,U32 nbBits,U32 tableLog,U16 baseSeq,int const level)1007 static void HUF_fillDTableX2ForWeight(
1008 HUF_DEltX2* DTableRank,
1009 sortedSymbol_t const* begin, sortedSymbol_t const* end,
1010 U32 nbBits, U32 tableLog,
1011 U16 baseSeq, int const level)
1012 {
1013 U32 const length = 1U << ((tableLog - nbBits) & 0x1F /* quiet static-analyzer */);
1014 const sortedSymbol_t* ptr;
1015 assert(level >= 1 && level <= 2);
1016 switch (length) {
1017 case 1:
1018 for (ptr = begin; ptr != end; ++ptr) {
1019 HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
1020 *DTableRank++ = DElt;
1021 }
1022 break;
1023 case 2:
1024 for (ptr = begin; ptr != end; ++ptr) {
1025 HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
1026 DTableRank[0] = DElt;
1027 DTableRank[1] = DElt;
1028 DTableRank += 2;
1029 }
1030 break;
1031 case 4:
1032 for (ptr = begin; ptr != end; ++ptr) {
1033 U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
1034 ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
1035 ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
1036 DTableRank += 4;
1037 }
1038 break;
1039 case 8:
1040 for (ptr = begin; ptr != end; ++ptr) {
1041 U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
1042 ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
1043 ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
1044 ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
1045 ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
1046 DTableRank += 8;
1047 }
1048 break;
1049 default:
1050 for (ptr = begin; ptr != end; ++ptr) {
1051 U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
1052 HUF_DEltX2* const DTableRankEnd = DTableRank + length;
1053 for (; DTableRank != DTableRankEnd; DTableRank += 8) {
1054 ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
1055 ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
1056 ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
1057 ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
1058 }
1059 }
1060 break;
1061 }
1062 }
1063
1064 /* HUF_fillDTableX2Level2() :
1065 * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */
HUF_fillDTableX2Level2(HUF_DEltX2 * DTable,U32 targetLog,const U32 consumedBits,const U32 * rankVal,const int minWeight,const int maxWeight1,const sortedSymbol_t * sortedSymbols,U32 const * rankStart,U32 nbBitsBaseline,U16 baseSeq)1066 static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 targetLog, const U32 consumedBits,
1067 const U32* rankVal, const int minWeight, const int maxWeight1,
1068 const sortedSymbol_t* sortedSymbols, U32 const* rankStart,
1069 U32 nbBitsBaseline, U16 baseSeq)
1070 {
1071 /* Fill skipped values (all positions up to rankVal[minWeight]).
1072 * These are positions only get a single symbol because the combined weight
1073 * is too large.
1074 */
1075 if (minWeight>1) {
1076 U32 const length = 1U << ((targetLog - consumedBits) & 0x1F /* quiet static-analyzer */);
1077 U64 const DEltX2 = HUF_buildDEltX2U64(baseSeq, consumedBits, /* baseSeq */ 0, /* level */ 1);
1078 int const skipSize = rankVal[minWeight];
1079 assert(length > 1);
1080 assert((U32)skipSize < length);
1081 switch (length) {
1082 case 2:
1083 assert(skipSize == 1);
1084 ZSTD_memcpy(DTable, &DEltX2, sizeof(DEltX2));
1085 break;
1086 case 4:
1087 assert(skipSize <= 4);
1088 ZSTD_memcpy(DTable + 0, &DEltX2, sizeof(DEltX2));
1089 ZSTD_memcpy(DTable + 2, &DEltX2, sizeof(DEltX2));
1090 break;
1091 default:
1092 {
1093 int i;
1094 for (i = 0; i < skipSize; i += 8) {
1095 ZSTD_memcpy(DTable + i + 0, &DEltX2, sizeof(DEltX2));
1096 ZSTD_memcpy(DTable + i + 2, &DEltX2, sizeof(DEltX2));
1097 ZSTD_memcpy(DTable + i + 4, &DEltX2, sizeof(DEltX2));
1098 ZSTD_memcpy(DTable + i + 6, &DEltX2, sizeof(DEltX2));
1099 }
1100 }
1101 }
1102 }
1103
1104 /* Fill each of the second level symbols by weight. */
1105 {
1106 int w;
1107 for (w = minWeight; w < maxWeight1; ++w) {
1108 int const begin = rankStart[w];
1109 int const end = rankStart[w+1];
1110 U32 const nbBits = nbBitsBaseline - w;
1111 U32 const totalBits = nbBits + consumedBits;
1112 HUF_fillDTableX2ForWeight(
1113 DTable + rankVal[w],
1114 sortedSymbols + begin, sortedSymbols + end,
1115 totalBits, targetLog,
1116 baseSeq, /* level */ 2);
1117 }
1118 }
1119 }
1120
HUF_fillDTableX2(HUF_DEltX2 * DTable,const U32 targetLog,const sortedSymbol_t * sortedList,const U32 * rankStart,rankValCol_t * rankValOrigin,const U32 maxWeight,const U32 nbBitsBaseline)1121 static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog,
1122 const sortedSymbol_t* sortedList,
1123 const U32* rankStart, rankValCol_t* rankValOrigin, const U32 maxWeight,
1124 const U32 nbBitsBaseline)
1125 {
1126 U32* const rankVal = rankValOrigin[0];
1127 const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
1128 const U32 minBits = nbBitsBaseline - maxWeight;
1129 int w;
1130 int const wEnd = (int)maxWeight + 1;
1131
1132 /* Fill DTable in order of weight. */
1133 for (w = 1; w < wEnd; ++w) {
1134 int const begin = (int)rankStart[w];
1135 int const end = (int)rankStart[w+1];
1136 U32 const nbBits = nbBitsBaseline - w;
1137
1138 if (targetLog-nbBits >= minBits) {
1139 /* Enough room for a second symbol. */
1140 int start = rankVal[w];
1141 U32 const length = 1U << ((targetLog - nbBits) & 0x1F /* quiet static-analyzer */);
1142 int minWeight = nbBits + scaleLog;
1143 int s;
1144 if (minWeight < 1) minWeight = 1;
1145 /* Fill the DTable for every symbol of weight w.
1146 * These symbols get at least 1 second symbol.
1147 */
1148 for (s = begin; s != end; ++s) {
1149 HUF_fillDTableX2Level2(
1150 DTable + start, targetLog, nbBits,
1151 rankValOrigin[nbBits], minWeight, wEnd,
1152 sortedList, rankStart,
1153 nbBitsBaseline, sortedList[s].symbol);
1154 start += length;
1155 }
1156 } else {
1157 /* Only a single symbol. */
1158 HUF_fillDTableX2ForWeight(
1159 DTable + rankVal[w],
1160 sortedList + begin, sortedList + end,
1161 nbBits, targetLog,
1162 /* baseSeq */ 0, /* level */ 1);
1163 }
1164 }
1165 }
1166
1167 typedef struct {
1168 rankValCol_t rankVal[HUF_TABLELOG_MAX];
1169 U32 rankStats[HUF_TABLELOG_MAX + 1];
1170 U32 rankStart0[HUF_TABLELOG_MAX + 3];
1171 sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1];
1172 BYTE weightList[HUF_SYMBOLVALUE_MAX + 1];
1173 U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
1174 } HUF_ReadDTableX2_Workspace;
1175
HUF_readDTableX2_wksp(HUF_DTable * DTable,const void * src,size_t srcSize,void * workSpace,size_t wkspSize,int flags)1176 size_t HUF_readDTableX2_wksp(HUF_DTable* DTable,
1177 const void* src, size_t srcSize,
1178 void* workSpace, size_t wkspSize, int flags)
1179 {
1180 U32 tableLog, maxW, nbSymbols;
1181 DTableDesc dtd = HUF_getDTableDesc(DTable);
1182 U32 maxTableLog = dtd.maxTableLog;
1183 size_t iSize;
1184 void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */
1185 HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
1186 U32 *rankStart;
1187
1188 HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace;
1189
1190 if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC);
1191
1192 rankStart = wksp->rankStart0 + 1;
1193 ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats));
1194 ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0));
1195
1196 DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */
1197 if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
1198 /* ZSTD_memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */
1199
1200 iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), flags);
1201 if (HUF_isError(iSize)) return iSize;
1202
1203 /* check result */
1204 if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
1205 if (tableLog <= HUF_DECODER_FAST_TABLELOG && maxTableLog > HUF_DECODER_FAST_TABLELOG) maxTableLog = HUF_DECODER_FAST_TABLELOG;
1206
1207 /* find maxWeight */
1208 for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
1209
1210 /* Get start index of each weight */
1211 { U32 w, nextRankStart = 0;
1212 for (w=1; w<maxW+1; w++) {
1213 U32 curr = nextRankStart;
1214 nextRankStart += wksp->rankStats[w];
1215 rankStart[w] = curr;
1216 }
1217 rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
1218 rankStart[maxW+1] = nextRankStart;
1219 }
1220
1221 /* sort symbols by weight */
1222 { U32 s;
1223 for (s=0; s<nbSymbols; s++) {
1224 U32 const w = wksp->weightList[s];
1225 U32 const r = rankStart[w]++;
1226 wksp->sortedSymbol[r].symbol = (BYTE)s;
1227 }
1228 rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
1229 }
1230
1231 /* Build rankVal */
1232 { U32* const rankVal0 = wksp->rankVal[0];
1233 { int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */
1234 U32 nextRankVal = 0;
1235 U32 w;
1236 for (w=1; w<maxW+1; w++) {
1237 U32 curr = nextRankVal;
1238 nextRankVal += wksp->rankStats[w] << (w+rescale);
1239 rankVal0[w] = curr;
1240 } }
1241 { U32 const minBits = tableLog+1 - maxW;
1242 U32 consumed;
1243 for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
1244 U32* const rankValPtr = wksp->rankVal[consumed];
1245 U32 w;
1246 for (w = 1; w < maxW+1; w++) {
1247 rankValPtr[w] = rankVal0[w] >> consumed;
1248 } } } }
1249
1250 HUF_fillDTableX2(dt, maxTableLog,
1251 wksp->sortedSymbol,
1252 wksp->rankStart0, wksp->rankVal, maxW,
1253 tableLog+1);
1254
1255 dtd.tableLog = (BYTE)maxTableLog;
1256 dtd.tableType = 1;
1257 ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
1258 return iSize;
1259 }
1260
1261
1262 FORCE_INLINE_TEMPLATE U32
HUF_decodeSymbolX2(void * op,BIT_DStream_t * DStream,const HUF_DEltX2 * dt,const U32 dtLog)1263 HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
1264 {
1265 size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
1266 ZSTD_memcpy(op, &dt[val].sequence, 2);
1267 BIT_skipBits(DStream, dt[val].nbBits);
1268 return dt[val].length;
1269 }
1270
1271 FORCE_INLINE_TEMPLATE U32
HUF_decodeLastSymbolX2(void * op,BIT_DStream_t * DStream,const HUF_DEltX2 * dt,const U32 dtLog)1272 HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
1273 {
1274 size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
1275 ZSTD_memcpy(op, &dt[val].sequence, 1);
1276 if (dt[val].length==1) {
1277 BIT_skipBits(DStream, dt[val].nbBits);
1278 } else {
1279 if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
1280 BIT_skipBits(DStream, dt[val].nbBits);
1281 if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
1282 /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
1283 DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);
1284 }
1285 }
1286 return 1;
1287 }
1288
1289 #define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
1290 do { ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); } while (0)
1291
1292 #define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
1293 do { \
1294 if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
1295 ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); \
1296 } while (0)
1297
1298 #define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
1299 do { \
1300 if (MEM_64bits()) \
1301 ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); \
1302 } while (0)
1303
1304 HINT_INLINE size_t
HUF_decodeStreamX2(BYTE * p,BIT_DStream_t * bitDPtr,BYTE * const pEnd,const HUF_DEltX2 * const dt,const U32 dtLog)1305 HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd,
1306 const HUF_DEltX2* const dt, const U32 dtLog)
1307 {
1308 BYTE* const pStart = p;
1309
1310 /* up to 8 symbols at a time */
1311 if ((size_t)(pEnd - p) >= sizeof(bitDPtr->bitContainer)) {
1312 if (dtLog <= 11 && MEM_64bits()) {
1313 /* up to 10 symbols at a time */
1314 while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-9)) {
1315 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1316 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1317 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1318 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1319 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1320 }
1321 } else {
1322 /* up to 8 symbols at a time */
1323 while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
1324 HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
1325 HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
1326 HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
1327 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1328 }
1329 }
1330 } else {
1331 BIT_reloadDStream(bitDPtr);
1332 }
1333
1334 /* closer to end : up to 2 symbols at a time */
1335 if ((size_t)(pEnd - p) >= 2) {
1336 while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
1337 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1338
1339 while (p <= pEnd-2)
1340 HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
1341 }
1342
1343 if (p < pEnd)
1344 p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog);
1345
1346 return p-pStart;
1347 }
1348
1349 FORCE_INLINE_TEMPLATE size_t
HUF_decompress1X2_usingDTable_internal_body(void * dst,size_t dstSize,const void * cSrc,size_t cSrcSize,const HUF_DTable * DTable)1350 HUF_decompress1X2_usingDTable_internal_body(
1351 void* dst, size_t dstSize,
1352 const void* cSrc, size_t cSrcSize,
1353 const HUF_DTable* DTable)
1354 {
1355 BIT_DStream_t bitD;
1356
1357 /* Init */
1358 CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
1359
1360 /* decode */
1361 { BYTE* const ostart = (BYTE*) dst;
1362 BYTE* const oend = ZSTD_maybeNullPtrAdd(ostart, dstSize);
1363 const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */
1364 const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
1365 DTableDesc const dtd = HUF_getDTableDesc(DTable);
1366 HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog);
1367 }
1368
1369 /* check */
1370 if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
1371
1372 /* decoded size */
1373 return dstSize;
1374 }
1375
1376 /* HUF_decompress4X2_usingDTable_internal_body():
1377 * Conditions:
1378 * @dstSize >= 6
1379 */
1380 FORCE_INLINE_TEMPLATE size_t
HUF_decompress4X2_usingDTable_internal_body(void * dst,size_t dstSize,const void * cSrc,size_t cSrcSize,const HUF_DTable * DTable)1381 HUF_decompress4X2_usingDTable_internal_body(
1382 void* dst, size_t dstSize,
1383 const void* cSrc, size_t cSrcSize,
1384 const HUF_DTable* DTable)
1385 {
1386 if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
1387 if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */
1388
1389 { const BYTE* const istart = (const BYTE*) cSrc;
1390 BYTE* const ostart = (BYTE*) dst;
1391 BYTE* const oend = ostart + dstSize;
1392 BYTE* const olimit = oend - (sizeof(size_t)-1);
1393 const void* const dtPtr = DTable+1;
1394 const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
1395
1396 /* Init */
1397 BIT_DStream_t bitD1;
1398 BIT_DStream_t bitD2;
1399 BIT_DStream_t bitD3;
1400 BIT_DStream_t bitD4;
1401 size_t const length1 = MEM_readLE16(istart);
1402 size_t const length2 = MEM_readLE16(istart+2);
1403 size_t const length3 = MEM_readLE16(istart+4);
1404 size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
1405 const BYTE* const istart1 = istart + 6; /* jumpTable */
1406 const BYTE* const istart2 = istart1 + length1;
1407 const BYTE* const istart3 = istart2 + length2;
1408 const BYTE* const istart4 = istart3 + length3;
1409 size_t const segmentSize = (dstSize+3) / 4;
1410 BYTE* const opStart2 = ostart + segmentSize;
1411 BYTE* const opStart3 = opStart2 + segmentSize;
1412 BYTE* const opStart4 = opStart3 + segmentSize;
1413 BYTE* op1 = ostart;
1414 BYTE* op2 = opStart2;
1415 BYTE* op3 = opStart3;
1416 BYTE* op4 = opStart4;
1417 U32 endSignal = 1;
1418 DTableDesc const dtd = HUF_getDTableDesc(DTable);
1419 U32 const dtLog = dtd.tableLog;
1420
1421 if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
1422 if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */
1423 assert(dstSize >= 6 /* validated above */);
1424 CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
1425 CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
1426 CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
1427 CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
1428
1429 /* 16-32 symbols per loop (4-8 symbols per stream) */
1430 if ((size_t)(oend - op4) >= sizeof(size_t)) {
1431 for ( ; (endSignal) & (op4 < olimit); ) {
1432 #if defined(__clang__) && (defined(__x86_64__) || defined(__i386__))
1433 HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1434 HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
1435 HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1436 HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
1437 HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1438 HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
1439 HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1440 HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
1441 endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
1442 endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
1443 HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1444 HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
1445 HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1446 HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
1447 HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1448 HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
1449 HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1450 HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
1451 endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
1452 endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
1453 #else
1454 HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1455 HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1456 HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1457 HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1458 HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
1459 HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
1460 HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
1461 HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
1462 HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1463 HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1464 HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1465 HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1466 HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
1467 HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
1468 HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
1469 HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
1470 endSignal = (U32)LIKELY((U32)
1471 (BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished)
1472 & (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished)
1473 & (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished)
1474 & (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished));
1475 #endif
1476 }
1477 }
1478
1479 /* check corruption */
1480 if (op1 > opStart2) return ERROR(corruption_detected);
1481 if (op2 > opStart3) return ERROR(corruption_detected);
1482 if (op3 > opStart4) return ERROR(corruption_detected);
1483 /* note : op4 already verified within main loop */
1484
1485 /* finish bitStreams one by one */
1486 HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
1487 HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
1488 HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
1489 HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
1490
1491 /* check */
1492 { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
1493 if (!endCheck) return ERROR(corruption_detected); }
1494
1495 /* decoded size */
1496 return dstSize;
1497 }
1498 }
1499
1500 #if HUF_NEED_BMI2_FUNCTION
1501 static BMI2_TARGET_ATTRIBUTE
HUF_decompress4X2_usingDTable_internal_bmi2(void * dst,size_t dstSize,void const * cSrc,size_t cSrcSize,HUF_DTable const * DTable)1502 size_t HUF_decompress4X2_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
1503 size_t cSrcSize, HUF_DTable const* DTable) {
1504 return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
1505 }
1506 #endif
1507
1508 static
HUF_decompress4X2_usingDTable_internal_default(void * dst,size_t dstSize,void const * cSrc,size_t cSrcSize,HUF_DTable const * DTable)1509 size_t HUF_decompress4X2_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
1510 size_t cSrcSize, HUF_DTable const* DTable) {
1511 return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
1512 }
1513
1514 #if ZSTD_ENABLE_ASM_X86_64_BMI2
1515
1516 HUF_ASM_DECL void HUF_decompress4X2_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN;
1517
1518 #endif
1519
1520 static HUF_FAST_BMI2_ATTRS
HUF_decompress4X2_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs * args)1521 void HUF_decompress4X2_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args)
1522 {
1523 U64 bits[4];
1524 BYTE const* ip[4];
1525 BYTE* op[4];
1526 BYTE* oend[4];
1527 HUF_DEltX2 const* const dtable = (HUF_DEltX2 const*)args->dt;
1528 BYTE const* const ilowest = args->ilowest;
1529
1530 /* Copy the arguments to local registers. */
1531 ZSTD_memcpy(&bits, &args->bits, sizeof(bits));
1532 ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip));
1533 ZSTD_memcpy(&op, &args->op, sizeof(op));
1534
1535 oend[0] = op[1];
1536 oend[1] = op[2];
1537 oend[2] = op[3];
1538 oend[3] = args->oend;
1539
1540 assert(MEM_isLittleEndian());
1541 assert(!MEM_32bits());
1542
1543 for (;;) {
1544 BYTE* olimit;
1545 int stream;
1546
1547 /* Assert loop preconditions */
1548 #ifndef NDEBUG
1549 for (stream = 0; stream < 4; ++stream) {
1550 assert(op[stream] <= oend[stream]);
1551 assert(ip[stream] >= ilowest);
1552 }
1553 #endif
1554 /* Compute olimit */
1555 {
1556 /* Each loop does 5 table lookups for each of the 4 streams.
1557 * Each table lookup consumes up to 11 bits of input, and produces
1558 * up to 2 bytes of output.
1559 */
1560 /* We can consume up to 7 bytes of input per iteration per stream.
1561 * We also know that each input pointer is >= ip[0]. So we can run
1562 * iters loops before running out of input.
1563 */
1564 size_t iters = (size_t)(ip[0] - ilowest) / 7;
1565 /* Each iteration can produce up to 10 bytes of output per stream.
1566 * Each output stream my advance at different rates. So take the
1567 * minimum number of safe iterations among all the output streams.
1568 */
1569 for (stream = 0; stream < 4; ++stream) {
1570 size_t const oiters = (size_t)(oend[stream] - op[stream]) / 10;
1571 iters = MIN(iters, oiters);
1572 }
1573
1574 /* Each iteration produces at least 5 output symbols. So until
1575 * op[3] crosses olimit, we know we haven't executed iters
1576 * iterations yet. This saves us maintaining an iters counter,
1577 * at the expense of computing the remaining # of iterations
1578 * more frequently.
1579 */
1580 olimit = op[3] + (iters * 5);
1581
1582 /* Exit the fast decoding loop once we reach the end. */
1583 if (op[3] == olimit)
1584 break;
1585
1586 /* Exit the decoding loop if any input pointer has crossed the
1587 * previous one. This indicates corruption, and a precondition
1588 * to our loop is that ip[i] >= ip[0].
1589 */
1590 for (stream = 1; stream < 4; ++stream) {
1591 if (ip[stream] < ip[stream - 1])
1592 goto _out;
1593 }
1594 }
1595
1596 #ifndef NDEBUG
1597 for (stream = 1; stream < 4; ++stream) {
1598 assert(ip[stream] >= ip[stream - 1]);
1599 }
1600 #endif
1601
1602 #define HUF_4X2_DECODE_SYMBOL(_stream, _decode3) \
1603 do { \
1604 if ((_decode3) || (_stream) != 3) { \
1605 int const index = (int)(bits[(_stream)] >> 53); \
1606 HUF_DEltX2 const entry = dtable[index]; \
1607 MEM_write16(op[(_stream)], entry.sequence); \
1608 bits[(_stream)] <<= (entry.nbBits) & 0x3F; \
1609 op[(_stream)] += (entry.length); \
1610 } \
1611 } while (0)
1612
1613 #define HUF_4X2_RELOAD_STREAM(_stream) \
1614 do { \
1615 HUF_4X2_DECODE_SYMBOL(3, 1); \
1616 { \
1617 int const ctz = ZSTD_countTrailingZeros64(bits[(_stream)]); \
1618 int const nbBits = ctz & 7; \
1619 int const nbBytes = ctz >> 3; \
1620 ip[(_stream)] -= nbBytes; \
1621 bits[(_stream)] = MEM_read64(ip[(_stream)]) | 1; \
1622 bits[(_stream)] <<= nbBits; \
1623 } \
1624 } while (0)
1625
1626 /* Manually unroll the loop because compilers don't consistently
1627 * unroll the inner loops, which destroys performance.
1628 */
1629 do {
1630 /* Decode 5 symbols from each of the first 3 streams.
1631 * The final stream will be decoded during the reload phase
1632 * to reduce register pressure.
1633 */
1634 HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
1635 HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
1636 HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
1637 HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
1638 HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
1639
1640 /* Decode one symbol from the final stream */
1641 HUF_4X2_DECODE_SYMBOL(3, 1);
1642
1643 /* Decode 4 symbols from the final stream & reload bitstreams.
1644 * The final stream is reloaded last, meaning that all 5 symbols
1645 * are decoded from the final stream before it is reloaded.
1646 */
1647 HUF_4X_FOR_EACH_STREAM(HUF_4X2_RELOAD_STREAM);
1648 } while (op[3] < olimit);
1649 }
1650
1651 #undef HUF_4X2_DECODE_SYMBOL
1652 #undef HUF_4X2_RELOAD_STREAM
1653
1654 _out:
1655
1656 /* Save the final values of each of the state variables back to args. */
1657 ZSTD_memcpy(&args->bits, &bits, sizeof(bits));
1658 ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip));
1659 ZSTD_memcpy(&args->op, &op, sizeof(op));
1660 }
1661
1662
1663 static HUF_FAST_BMI2_ATTRS size_t
HUF_decompress4X2_usingDTable_internal_fast(void * dst,size_t dstSize,const void * cSrc,size_t cSrcSize,const HUF_DTable * DTable,HUF_DecompressFastLoopFn loopFn)1664 HUF_decompress4X2_usingDTable_internal_fast(
1665 void* dst, size_t dstSize,
1666 const void* cSrc, size_t cSrcSize,
1667 const HUF_DTable* DTable,
1668 HUF_DecompressFastLoopFn loopFn) {
1669 void const* dt = DTable + 1;
1670 const BYTE* const ilowest = (const BYTE*)cSrc;
1671 BYTE* const oend = ZSTD_maybeNullPtrAdd((BYTE*)dst, dstSize);
1672 HUF_DecompressFastArgs args;
1673 {
1674 size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
1675 FORWARD_IF_ERROR(ret, "Failed to init asm args");
1676 if (ret == 0)
1677 return 0;
1678 }
1679
1680 assert(args.ip[0] >= args.ilowest);
1681 loopFn(&args);
1682
1683 /* note : op4 already verified within main loop */
1684 assert(args.ip[0] >= ilowest);
1685 assert(args.ip[1] >= ilowest);
1686 assert(args.ip[2] >= ilowest);
1687 assert(args.ip[3] >= ilowest);
1688 assert(args.op[3] <= oend);
1689
1690 assert(ilowest == args.ilowest);
1691 assert(ilowest + 6 == args.iend[0]);
1692 (void)ilowest;
1693
1694 /* finish bitStreams one by one */
1695 {
1696 size_t const segmentSize = (dstSize+3) / 4;
1697 BYTE* segmentEnd = (BYTE*)dst;
1698 int i;
1699 for (i = 0; i < 4; ++i) {
1700 BIT_DStream_t bit;
1701 if (segmentSize <= (size_t)(oend - segmentEnd))
1702 segmentEnd += segmentSize;
1703 else
1704 segmentEnd = oend;
1705 FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
1706 args.op[i] += HUF_decodeStreamX2(args.op[i], &bit, segmentEnd, (HUF_DEltX2 const*)dt, HUF_DECODER_FAST_TABLELOG);
1707 if (args.op[i] != segmentEnd)
1708 return ERROR(corruption_detected);
1709 }
1710 }
1711
1712 /* decoded size */
1713 return dstSize;
1714 }
1715
HUF_decompress4X2_usingDTable_internal(void * dst,size_t dstSize,void const * cSrc,size_t cSrcSize,HUF_DTable const * DTable,int flags)1716 static size_t HUF_decompress4X2_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
1717 size_t cSrcSize, HUF_DTable const* DTable, int flags)
1718 {
1719 HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X2_usingDTable_internal_default;
1720 HUF_DecompressFastLoopFn loopFn = HUF_decompress4X2_usingDTable_internal_fast_c_loop;
1721
1722 #if DYNAMIC_BMI2
1723 if (flags & HUF_flags_bmi2) {
1724 fallbackFn = HUF_decompress4X2_usingDTable_internal_bmi2;
1725 # if ZSTD_ENABLE_ASM_X86_64_BMI2
1726 if (!(flags & HUF_flags_disableAsm)) {
1727 loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop;
1728 }
1729 # endif
1730 } else {
1731 return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
1732 }
1733 #endif
1734
1735 #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
1736 if (!(flags & HUF_flags_disableAsm)) {
1737 loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop;
1738 }
1739 #endif
1740
1741 if (HUF_ENABLE_FAST_DECODE && !(flags & HUF_flags_disableFast)) {
1742 size_t const ret = HUF_decompress4X2_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn);
1743 if (ret != 0)
1744 return ret;
1745 }
1746 return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
1747 }
1748
HUF_DGEN(HUF_decompress1X2_usingDTable_internal)1749 HUF_DGEN(HUF_decompress1X2_usingDTable_internal)
1750
1751 size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
1752 const void* cSrc, size_t cSrcSize,
1753 void* workSpace, size_t wkspSize, int flags)
1754 {
1755 const BYTE* ip = (const BYTE*) cSrc;
1756
1757 size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize,
1758 workSpace, wkspSize, flags);
1759 if (HUF_isError(hSize)) return hSize;
1760 if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
1761 ip += hSize; cSrcSize -= hSize;
1762
1763 return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, flags);
1764 }
1765
HUF_decompress4X2_DCtx_wksp(HUF_DTable * dctx,void * dst,size_t dstSize,const void * cSrc,size_t cSrcSize,void * workSpace,size_t wkspSize,int flags)1766 static size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
1767 const void* cSrc, size_t cSrcSize,
1768 void* workSpace, size_t wkspSize, int flags)
1769 {
1770 const BYTE* ip = (const BYTE*) cSrc;
1771
1772 size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize,
1773 workSpace, wkspSize, flags);
1774 if (HUF_isError(hSize)) return hSize;
1775 if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
1776 ip += hSize; cSrcSize -= hSize;
1777
1778 return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
1779 }
1780
1781 #endif /* HUF_FORCE_DECOMPRESS_X1 */
1782
1783
1784 /* ***********************************/
1785 /* Universal decompression selectors */
1786 /* ***********************************/
1787
1788
1789 #if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2)
1790 typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
1791 static const algo_time_t algoTime[16 /* Quantization */][2 /* single, double */] =
1792 {
1793 /* single, double, quad */
1794 {{0,0}, {1,1}}, /* Q==0 : impossible */
1795 {{0,0}, {1,1}}, /* Q==1 : impossible */
1796 {{ 150,216}, { 381,119}}, /* Q == 2 : 12-18% */
1797 {{ 170,205}, { 514,112}}, /* Q == 3 : 18-25% */
1798 {{ 177,199}, { 539,110}}, /* Q == 4 : 25-32% */
1799 {{ 197,194}, { 644,107}}, /* Q == 5 : 32-38% */
1800 {{ 221,192}, { 735,107}}, /* Q == 6 : 38-44% */
1801 {{ 256,189}, { 881,106}}, /* Q == 7 : 44-50% */
1802 {{ 359,188}, {1167,109}}, /* Q == 8 : 50-56% */
1803 {{ 582,187}, {1570,114}}, /* Q == 9 : 56-62% */
1804 {{ 688,187}, {1712,122}}, /* Q ==10 : 62-69% */
1805 {{ 825,186}, {1965,136}}, /* Q ==11 : 69-75% */
1806 {{ 976,185}, {2131,150}}, /* Q ==12 : 75-81% */
1807 {{1180,186}, {2070,175}}, /* Q ==13 : 81-87% */
1808 {{1377,185}, {1731,202}}, /* Q ==14 : 87-93% */
1809 {{1412,185}, {1695,202}}, /* Q ==15 : 93-99% */
1810 };
1811 #endif
1812
1813 /* HUF_selectDecoder() :
1814 * Tells which decoder is likely to decode faster,
1815 * based on a set of pre-computed metrics.
1816 * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
1817 * Assumption : 0 < dstSize <= 128 KB */
HUF_selectDecoder(size_t dstSize,size_t cSrcSize)1818 U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize)
1819 {
1820 assert(dstSize > 0);
1821 assert(dstSize <= 128*1024);
1822 #if defined(HUF_FORCE_DECOMPRESS_X1)
1823 (void)dstSize;
1824 (void)cSrcSize;
1825 return 0;
1826 #elif defined(HUF_FORCE_DECOMPRESS_X2)
1827 (void)dstSize;
1828 (void)cSrcSize;
1829 return 1;
1830 #else
1831 /* decoder timing evaluation */
1832 { U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */
1833 U32 const D256 = (U32)(dstSize >> 8);
1834 U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
1835 U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
1836 DTime1 += DTime1 >> 5; /* small advantage to algorithm using less memory, to reduce cache eviction */
1837 return DTime1 < DTime0;
1838 }
1839 #endif
1840 }
1841
HUF_decompress1X_DCtx_wksp(HUF_DTable * dctx,void * dst,size_t dstSize,const void * cSrc,size_t cSrcSize,void * workSpace,size_t wkspSize,int flags)1842 size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
1843 const void* cSrc, size_t cSrcSize,
1844 void* workSpace, size_t wkspSize, int flags)
1845 {
1846 /* validation checks */
1847 if (dstSize == 0) return ERROR(dstSize_tooSmall);
1848 if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
1849 if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
1850 if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
1851
1852 { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
1853 #if defined(HUF_FORCE_DECOMPRESS_X1)
1854 (void)algoNb;
1855 assert(algoNb == 0);
1856 return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
1857 cSrcSize, workSpace, wkspSize, flags);
1858 #elif defined(HUF_FORCE_DECOMPRESS_X2)
1859 (void)algoNb;
1860 assert(algoNb == 1);
1861 return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
1862 cSrcSize, workSpace, wkspSize, flags);
1863 #else
1864 return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
1865 cSrcSize, workSpace, wkspSize, flags):
1866 HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
1867 cSrcSize, workSpace, wkspSize, flags);
1868 #endif
1869 }
1870 }
1871
1872
HUF_decompress1X_usingDTable(void * dst,size_t maxDstSize,const void * cSrc,size_t cSrcSize,const HUF_DTable * DTable,int flags)1873 size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags)
1874 {
1875 DTableDesc const dtd = HUF_getDTableDesc(DTable);
1876 #if defined(HUF_FORCE_DECOMPRESS_X1)
1877 (void)dtd;
1878 assert(dtd.tableType == 0);
1879 return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1880 #elif defined(HUF_FORCE_DECOMPRESS_X2)
1881 (void)dtd;
1882 assert(dtd.tableType == 1);
1883 return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1884 #else
1885 return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) :
1886 HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1887 #endif
1888 }
1889
1890 #ifndef HUF_FORCE_DECOMPRESS_X2
HUF_decompress1X1_DCtx_wksp(HUF_DTable * dctx,void * dst,size_t dstSize,const void * cSrc,size_t cSrcSize,void * workSpace,size_t wkspSize,int flags)1891 size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags)
1892 {
1893 const BYTE* ip = (const BYTE*) cSrc;
1894
1895 size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags);
1896 if (HUF_isError(hSize)) return hSize;
1897 if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
1898 ip += hSize; cSrcSize -= hSize;
1899
1900 return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
1901 }
1902 #endif
1903
HUF_decompress4X_usingDTable(void * dst,size_t maxDstSize,const void * cSrc,size_t cSrcSize,const HUF_DTable * DTable,int flags)1904 size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags)
1905 {
1906 DTableDesc const dtd = HUF_getDTableDesc(DTable);
1907 #if defined(HUF_FORCE_DECOMPRESS_X1)
1908 (void)dtd;
1909 assert(dtd.tableType == 0);
1910 return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1911 #elif defined(HUF_FORCE_DECOMPRESS_X2)
1912 (void)dtd;
1913 assert(dtd.tableType == 1);
1914 return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1915 #else
1916 return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) :
1917 HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1918 #endif
1919 }
1920
HUF_decompress4X_hufOnly_wksp(HUF_DTable * dctx,void * dst,size_t dstSize,const void * cSrc,size_t cSrcSize,void * workSpace,size_t wkspSize,int flags)1921 size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags)
1922 {
1923 /* validation checks */
1924 if (dstSize == 0) return ERROR(dstSize_tooSmall);
1925 if (cSrcSize == 0) return ERROR(corruption_detected);
1926
1927 { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
1928 #if defined(HUF_FORCE_DECOMPRESS_X1)
1929 (void)algoNb;
1930 assert(algoNb == 0);
1931 return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
1932 #elif defined(HUF_FORCE_DECOMPRESS_X2)
1933 (void)algoNb;
1934 assert(algoNb == 1);
1935 return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
1936 #else
1937 return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags) :
1938 HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
1939 #endif
1940 }
1941 }
1942