xref: /linux/lib/zstd/decompress/huf_decompress.c (revision e61f33273ca755b3e2ebee4520a76097199dc7a8)
1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /* ******************************************************************
3  * huff0 huffman decoder,
4  * part of Finite State Entropy library
5  * Copyright (c) Meta Platforms, Inc. and affiliates.
6  *
7  *  You can contact the author at :
8  *  - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
9  *
10  * This source code is licensed under both the BSD-style license (found in the
11  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
12  * in the COPYING file in the root directory of this source tree).
13  * You may select, at your option, one of the above-listed licenses.
14 ****************************************************************** */
15 
16 /* **************************************************************
17 *  Dependencies
18 ****************************************************************/
19 #include "../common/zstd_deps.h"  /* ZSTD_memcpy, ZSTD_memset */
20 #include "../common/compiler.h"
21 #include "../common/bitstream.h"  /* BIT_* */
22 #include "../common/fse.h"        /* to compress headers */
23 #include "../common/huf.h"
24 #include "../common/error_private.h"
25 #include "../common/zstd_internal.h"
26 #include "../common/bits.h"       /* ZSTD_highbit32, ZSTD_countTrailingZeros64 */
27 
28 /* **************************************************************
29 *  Constants
30 ****************************************************************/
31 
32 #define HUF_DECODER_FAST_TABLELOG 11
33 
34 /* **************************************************************
35 *  Macros
36 ****************************************************************/
37 
38 #ifdef HUF_DISABLE_FAST_DECODE
39 # define HUF_ENABLE_FAST_DECODE 0
40 #else
41 # define HUF_ENABLE_FAST_DECODE 1
42 #endif
43 
44 /* These two optional macros force the use one way or another of the two
45  * Huffman decompression implementations. You can't force in both directions
46  * at the same time.
47  */
48 #if defined(HUF_FORCE_DECOMPRESS_X1) && \
49     defined(HUF_FORCE_DECOMPRESS_X2)
50 #error "Cannot force the use of the X1 and X2 decoders at the same time!"
51 #endif
52 
53 /* When DYNAMIC_BMI2 is enabled, fast decoders are only called when bmi2 is
54  * supported at runtime, so we can add the BMI2 target attribute.
55  * When it is disabled, we will still get BMI2 if it is enabled statically.
56  */
57 #if DYNAMIC_BMI2
58 # define HUF_FAST_BMI2_ATTRS BMI2_TARGET_ATTRIBUTE
59 #else
60 # define HUF_FAST_BMI2_ATTRS
61 #endif
62 
63 #define HUF_EXTERN_C
64 #define HUF_ASM_DECL HUF_EXTERN_C
65 
66 #if DYNAMIC_BMI2
67 # define HUF_NEED_BMI2_FUNCTION 1
68 #else
69 # define HUF_NEED_BMI2_FUNCTION 0
70 #endif
71 
72 /* **************************************************************
73 *  Error Management
74 ****************************************************************/
75 #define HUF_isError ERR_isError
76 
77 
78 /* **************************************************************
79 *  Byte alignment for workSpace management
80 ****************************************************************/
81 #define HUF_ALIGN(x, a)         HUF_ALIGN_MASK((x), (a) - 1)
82 #define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))
83 
84 
85 /* **************************************************************
86 *  BMI2 Variant Wrappers
87 ****************************************************************/
88 typedef size_t (*HUF_DecompressUsingDTableFn)(void *dst, size_t dstSize,
89                                               const void *cSrc,
90                                               size_t cSrcSize,
91                                               const HUF_DTable *DTable);
92 
93 #if DYNAMIC_BMI2
94 
95 #define HUF_DGEN(fn)                                                        \
96                                                                             \
97     static size_t fn##_default(                                             \
98                   void* dst,  size_t dstSize,                               \
99             const void* cSrc, size_t cSrcSize,                              \
100             const HUF_DTable* DTable)                                       \
101     {                                                                       \
102         return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable);             \
103     }                                                                       \
104                                                                             \
105     static BMI2_TARGET_ATTRIBUTE size_t fn##_bmi2(                          \
106                   void* dst,  size_t dstSize,                               \
107             const void* cSrc, size_t cSrcSize,                              \
108             const HUF_DTable* DTable)                                       \
109     {                                                                       \
110         return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable);             \
111     }                                                                       \
112                                                                             \
113     static size_t fn(void* dst, size_t dstSize, void const* cSrc,           \
114                      size_t cSrcSize, HUF_DTable const* DTable, int flags)  \
115     {                                                                       \
116         if (flags & HUF_flags_bmi2) {                                       \
117             return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);         \
118         }                                                                   \
119         return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable);          \
120     }
121 
122 #else
123 
124 #define HUF_DGEN(fn)                                                        \
125     static size_t fn(void* dst, size_t dstSize, void const* cSrc,           \
126                      size_t cSrcSize, HUF_DTable const* DTable, int flags)  \
127     {                                                                       \
128         (void)flags;                                                        \
129         return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable);             \
130     }
131 
132 #endif
133 
134 
135 /*-***************************/
136 /*  generic DTableDesc       */
137 /*-***************************/
138 typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
139 
HUF_getDTableDesc(const HUF_DTable * table)140 static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
141 {
142     DTableDesc dtd;
143     ZSTD_memcpy(&dtd, table, sizeof(dtd));
144     return dtd;
145 }
146 
HUF_initFastDStream(BYTE const * ip)147 static size_t HUF_initFastDStream(BYTE const* ip) {
148     BYTE const lastByte = ip[7];
149     size_t const bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0;
150     size_t const value = MEM_readLEST(ip) | 1;
151     assert(bitsConsumed <= 8);
152     assert(sizeof(size_t) == 8);
153     return value << bitsConsumed;
154 }
155 
156 
157 /*
158  * The input/output arguments to the Huffman fast decoding loop:
159  *
160  * ip [in/out] - The input pointers, must be updated to reflect what is consumed.
161  * op [in/out] - The output pointers, must be updated to reflect what is written.
162  * bits [in/out] - The bitstream containers, must be updated to reflect the current state.
163  * dt [in] - The decoding table.
164  * ilowest [in] - The beginning of the valid range of the input. Decoders may read
165  *                down to this pointer. It may be below iend[0].
166  * oend [in] - The end of the output stream. op[3] must not cross oend.
167  * iend [in] - The end of each input stream. ip[i] may cross iend[i],
168  *             as long as it is above ilowest, but that indicates corruption.
169  */
170 typedef struct {
171     BYTE const* ip[4];
172     BYTE* op[4];
173     U64 bits[4];
174     void const* dt;
175     BYTE const* ilowest;
176     BYTE* oend;
177     BYTE const* iend[4];
178 } HUF_DecompressFastArgs;
179 
180 typedef void (*HUF_DecompressFastLoopFn)(HUF_DecompressFastArgs*);
181 
182 /*
183  * Initializes args for the fast decoding loop.
184  * @returns 1 on success
185  *          0 if the fallback implementation should be used.
186  *          Or an error code on failure.
187  */
HUF_DecompressFastArgs_init(HUF_DecompressFastArgs * args,void * dst,size_t dstSize,void const * src,size_t srcSize,const HUF_DTable * DTable)188 static size_t HUF_DecompressFastArgs_init(HUF_DecompressFastArgs* args, void* dst, size_t dstSize, void const* src, size_t srcSize, const HUF_DTable* DTable)
189 {
190     void const* dt = DTable + 1;
191     U32 const dtLog = HUF_getDTableDesc(DTable).tableLog;
192 
193     const BYTE* const istart = (const BYTE*)src;
194 
195     BYTE* const oend = ZSTD_maybeNullPtrAdd((BYTE*)dst, dstSize);
196 
197     /* The fast decoding loop assumes 64-bit little-endian.
198      * This condition is false on x32.
199      */
200     if (!MEM_isLittleEndian() || MEM_32bits())
201         return 0;
202 
203     /* Avoid nullptr addition */
204     if (dstSize == 0)
205         return 0;
206     assert(dst != NULL);
207 
208     /* strict minimum : jump table + 1 byte per stream */
209     if (srcSize < 10)
210         return ERROR(corruption_detected);
211 
212     /* Must have at least 8 bytes per stream because we don't handle initializing smaller bit containers.
213      * If table log is not correct at this point, fallback to the old decoder.
214      * On small inputs we don't have enough data to trigger the fast loop, so use the old decoder.
215      */
216     if (dtLog != HUF_DECODER_FAST_TABLELOG)
217         return 0;
218 
219     /* Read the jump table. */
220     {
221         size_t const length1 = MEM_readLE16(istart);
222         size_t const length2 = MEM_readLE16(istart+2);
223         size_t const length3 = MEM_readLE16(istart+4);
224         size_t const length4 = srcSize - (length1 + length2 + length3 + 6);
225         args->iend[0] = istart + 6;  /* jumpTable */
226         args->iend[1] = args->iend[0] + length1;
227         args->iend[2] = args->iend[1] + length2;
228         args->iend[3] = args->iend[2] + length3;
229 
230         /* HUF_initFastDStream() requires this, and this small of an input
231          * won't benefit from the ASM loop anyways.
232          */
233         if (length1 < 8 || length2 < 8 || length3 < 8 || length4 < 8)
234             return 0;
235         if (length4 > srcSize) return ERROR(corruption_detected);   /* overflow */
236     }
237     /* ip[] contains the position that is currently loaded into bits[]. */
238     args->ip[0] = args->iend[1] - sizeof(U64);
239     args->ip[1] = args->iend[2] - sizeof(U64);
240     args->ip[2] = args->iend[3] - sizeof(U64);
241     args->ip[3] = (BYTE const*)src + srcSize - sizeof(U64);
242 
243     /* op[] contains the output pointers. */
244     args->op[0] = (BYTE*)dst;
245     args->op[1] = args->op[0] + (dstSize+3)/4;
246     args->op[2] = args->op[1] + (dstSize+3)/4;
247     args->op[3] = args->op[2] + (dstSize+3)/4;
248 
249     /* No point to call the ASM loop for tiny outputs. */
250     if (args->op[3] >= oend)
251         return 0;
252 
253     /* bits[] is the bit container.
254         * It is read from the MSB down to the LSB.
255         * It is shifted left as it is read, and zeros are
256         * shifted in. After the lowest valid bit a 1 is
257         * set, so that CountTrailingZeros(bits[]) can be used
258         * to count how many bits we've consumed.
259         */
260     args->bits[0] = HUF_initFastDStream(args->ip[0]);
261     args->bits[1] = HUF_initFastDStream(args->ip[1]);
262     args->bits[2] = HUF_initFastDStream(args->ip[2]);
263     args->bits[3] = HUF_initFastDStream(args->ip[3]);
264 
265     /* The decoders must be sure to never read beyond ilowest.
266      * This is lower than iend[0], but allowing decoders to read
267      * down to ilowest can allow an extra iteration or two in the
268      * fast loop.
269      */
270     args->ilowest = istart;
271 
272     args->oend = oend;
273     args->dt = dt;
274 
275     return 1;
276 }
277 
HUF_initRemainingDStream(BIT_DStream_t * bit,HUF_DecompressFastArgs const * args,int stream,BYTE * segmentEnd)278 static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressFastArgs const* args, int stream, BYTE* segmentEnd)
279 {
280     /* Validate that we haven't overwritten. */
281     if (args->op[stream] > segmentEnd)
282         return ERROR(corruption_detected);
283     /* Validate that we haven't read beyond iend[].
284         * Note that ip[] may be < iend[] because the MSB is
285         * the next bit to read, and we may have consumed 100%
286         * of the stream, so down to iend[i] - 8 is valid.
287         */
288     if (args->ip[stream] < args->iend[stream] - 8)
289         return ERROR(corruption_detected);
290 
291     /* Construct the BIT_DStream_t. */
292     assert(sizeof(size_t) == 8);
293     bit->bitContainer = MEM_readLEST(args->ip[stream]);
294     bit->bitsConsumed = ZSTD_countTrailingZeros64(args->bits[stream]);
295     bit->start = (const char*)args->ilowest;
296     bit->limitPtr = bit->start + sizeof(size_t);
297     bit->ptr = (const char*)args->ip[stream];
298 
299     return 0;
300 }
301 
302 /* Calls X(N) for each stream 0, 1, 2, 3. */
303 #define HUF_4X_FOR_EACH_STREAM(X) \
304     do {                          \
305         X(0);                     \
306         X(1);                     \
307         X(2);                     \
308         X(3);                     \
309     } while (0)
310 
311 /* Calls X(N, var) for each stream 0, 1, 2, 3. */
312 #define HUF_4X_FOR_EACH_STREAM_WITH_VAR(X, var) \
313     do {                                        \
314         X(0, (var));                            \
315         X(1, (var));                            \
316         X(2, (var));                            \
317         X(3, (var));                            \
318     } while (0)
319 
320 
321 #ifndef HUF_FORCE_DECOMPRESS_X2
322 
323 /*-***************************/
324 /*  single-symbol decoding   */
325 /*-***************************/
326 typedef struct { BYTE nbBits; BYTE byte; } HUF_DEltX1;   /* single-symbol decoding */
327 
328 /*
329  * Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at
330  * a time.
331  */
HUF_DEltX1_set4(BYTE symbol,BYTE nbBits)332 static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) {
333     U64 D4;
334     if (MEM_isLittleEndian()) {
335         D4 = (U64)((symbol << 8) + nbBits);
336     } else {
337         D4 = (U64)(symbol + (nbBits << 8));
338     }
339     assert(D4 < (1U << 16));
340     D4 *= 0x0001000100010001ULL;
341     return D4;
342 }
343 
344 /*
345  * Increase the tableLog to targetTableLog and rescales the stats.
346  * If tableLog > targetTableLog this is a no-op.
347  * @returns New tableLog
348  */
HUF_rescaleStats(BYTE * huffWeight,U32 * rankVal,U32 nbSymbols,U32 tableLog,U32 targetTableLog)349 static U32 HUF_rescaleStats(BYTE* huffWeight, U32* rankVal, U32 nbSymbols, U32 tableLog, U32 targetTableLog)
350 {
351     if (tableLog > targetTableLog)
352         return tableLog;
353     if (tableLog < targetTableLog) {
354         U32 const scale = targetTableLog - tableLog;
355         U32 s;
356         /* Increase the weight for all non-zero probability symbols by scale. */
357         for (s = 0; s < nbSymbols; ++s) {
358             huffWeight[s] += (BYTE)((huffWeight[s] == 0) ? 0 : scale);
359         }
360         /* Update rankVal to reflect the new weights.
361          * All weights except 0 get moved to weight + scale.
362          * Weights [1, scale] are empty.
363          */
364         for (s = targetTableLog; s > scale; --s) {
365             rankVal[s] = rankVal[s - scale];
366         }
367         for (s = scale; s > 0; --s) {
368             rankVal[s] = 0;
369         }
370     }
371     return targetTableLog;
372 }
373 
374 typedef struct {
375         U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];
376         U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1];
377         U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
378         BYTE symbols[HUF_SYMBOLVALUE_MAX + 1];
379         BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
380 } HUF_ReadDTableX1_Workspace;
381 
HUF_readDTableX1_wksp(HUF_DTable * DTable,const void * src,size_t srcSize,void * workSpace,size_t wkspSize,int flags)382 size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags)
383 {
384     U32 tableLog = 0;
385     U32 nbSymbols = 0;
386     size_t iSize;
387     void* const dtPtr = DTable + 1;
388     HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr;
389     HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace;
390 
391     DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp));
392     if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge);
393 
394     DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
395     /* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */   /* is not necessary, even though some analyzer complain ... */
396 
397     iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), flags);
398     if (HUF_isError(iSize)) return iSize;
399 
400 
401     /* Table header */
402     {   DTableDesc dtd = HUF_getDTableDesc(DTable);
403         U32 const maxTableLog = dtd.maxTableLog + 1;
404         U32 const targetTableLog = MIN(maxTableLog, HUF_DECODER_FAST_TABLELOG);
405         tableLog = HUF_rescaleStats(wksp->huffWeight, wksp->rankVal, nbSymbols, tableLog, targetTableLog);
406         if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge);   /* DTable too small, Huffman tree cannot fit in */
407         dtd.tableType = 0;
408         dtd.tableLog = (BYTE)tableLog;
409         ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
410     }
411 
412     /* Compute symbols and rankStart given rankVal:
413      *
414      * rankVal already contains the number of values of each weight.
415      *
416      * symbols contains the symbols ordered by weight. First are the rankVal[0]
417      * weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on.
418      * symbols[0] is filled (but unused) to avoid a branch.
419      *
420      * rankStart contains the offset where each rank belongs in the DTable.
421      * rankStart[0] is not filled because there are no entries in the table for
422      * weight 0.
423      */
424     {   int n;
425         U32 nextRankStart = 0;
426         int const unroll = 4;
427         int const nLimit = (int)nbSymbols - unroll + 1;
428         for (n=0; n<(int)tableLog+1; n++) {
429             U32 const curr = nextRankStart;
430             nextRankStart += wksp->rankVal[n];
431             wksp->rankStart[n] = curr;
432         }
433         for (n=0; n < nLimit; n += unroll) {
434             int u;
435             for (u=0; u < unroll; ++u) {
436                 size_t const w = wksp->huffWeight[n+u];
437                 wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u);
438             }
439         }
440         for (; n < (int)nbSymbols; ++n) {
441             size_t const w = wksp->huffWeight[n];
442             wksp->symbols[wksp->rankStart[w]++] = (BYTE)n;
443         }
444     }
445 
446     /* fill DTable
447      * We fill all entries of each weight in order.
448      * That way length is a constant for each iteration of the outer loop.
449      * We can switch based on the length to a different inner loop which is
450      * optimized for that particular case.
451      */
452     {   U32 w;
453         int symbol = wksp->rankVal[0];
454         int rankStart = 0;
455         for (w=1; w<tableLog+1; ++w) {
456             int const symbolCount = wksp->rankVal[w];
457             int const length = (1 << w) >> 1;
458             int uStart = rankStart;
459             BYTE const nbBits = (BYTE)(tableLog + 1 - w);
460             int s;
461             int u;
462             switch (length) {
463             case 1:
464                 for (s=0; s<symbolCount; ++s) {
465                     HUF_DEltX1 D;
466                     D.byte = wksp->symbols[symbol + s];
467                     D.nbBits = nbBits;
468                     dt[uStart] = D;
469                     uStart += 1;
470                 }
471                 break;
472             case 2:
473                 for (s=0; s<symbolCount; ++s) {
474                     HUF_DEltX1 D;
475                     D.byte = wksp->symbols[symbol + s];
476                     D.nbBits = nbBits;
477                     dt[uStart+0] = D;
478                     dt[uStart+1] = D;
479                     uStart += 2;
480                 }
481                 break;
482             case 4:
483                 for (s=0; s<symbolCount; ++s) {
484                     U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
485                     MEM_write64(dt + uStart, D4);
486                     uStart += 4;
487                 }
488                 break;
489             case 8:
490                 for (s=0; s<symbolCount; ++s) {
491                     U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
492                     MEM_write64(dt + uStart, D4);
493                     MEM_write64(dt + uStart + 4, D4);
494                     uStart += 8;
495                 }
496                 break;
497             default:
498                 for (s=0; s<symbolCount; ++s) {
499                     U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
500                     for (u=0; u < length; u += 16) {
501                         MEM_write64(dt + uStart + u + 0, D4);
502                         MEM_write64(dt + uStart + u + 4, D4);
503                         MEM_write64(dt + uStart + u + 8, D4);
504                         MEM_write64(dt + uStart + u + 12, D4);
505                     }
506                     assert(u == length);
507                     uStart += length;
508                 }
509                 break;
510             }
511             symbol += symbolCount;
512             rankStart += symbolCount * length;
513         }
514     }
515     return iSize;
516 }
517 
518 FORCE_INLINE_TEMPLATE BYTE
HUF_decodeSymbolX1(BIT_DStream_t * Dstream,const HUF_DEltX1 * dt,const U32 dtLog)519 HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog)
520 {
521     size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
522     BYTE const c = dt[val].byte;
523     BIT_skipBits(Dstream, dt[val].nbBits);
524     return c;
525 }
526 
527 #define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \
528     do { *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog); } while (0)
529 
530 #define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr)      \
531     do {                                            \
532         if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
533             HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr); \
534     } while (0)
535 
536 #define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr)      \
537     do {                                            \
538         if (MEM_64bits())                           \
539             HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr); \
540     } while (0)
541 
542 HINT_INLINE size_t
HUF_decodeStreamX1(BYTE * p,BIT_DStream_t * const bitDPtr,BYTE * const pEnd,const HUF_DEltX1 * const dt,const U32 dtLog)543 HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog)
544 {
545     BYTE* const pStart = p;
546 
547     /* up to 4 symbols at a time */
548     if ((pEnd - p) > 3) {
549         while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) {
550             HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
551             HUF_DECODE_SYMBOLX1_1(p, bitDPtr);
552             HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
553             HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
554         }
555     } else {
556         BIT_reloadDStream(bitDPtr);
557     }
558 
559     /* [0-3] symbols remaining */
560     if (MEM_32bits())
561         while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd))
562             HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
563 
564     /* no more data to retrieve from bitstream, no need to reload */
565     while (p < pEnd)
566         HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
567 
568     return (size_t)(pEnd-pStart);
569 }
570 
571 FORCE_INLINE_TEMPLATE size_t
HUF_decompress1X1_usingDTable_internal_body(void * dst,size_t dstSize,const void * cSrc,size_t cSrcSize,const HUF_DTable * DTable)572 HUF_decompress1X1_usingDTable_internal_body(
573           void* dst,  size_t dstSize,
574     const void* cSrc, size_t cSrcSize,
575     const HUF_DTable* DTable)
576 {
577     BYTE* op = (BYTE*)dst;
578     BYTE* const oend = ZSTD_maybeNullPtrAdd(op, dstSize);
579     const void* dtPtr = DTable + 1;
580     const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
581     BIT_DStream_t bitD;
582     DTableDesc const dtd = HUF_getDTableDesc(DTable);
583     U32 const dtLog = dtd.tableLog;
584 
585     CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
586 
587     HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog);
588 
589     if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
590 
591     return dstSize;
592 }
593 
594 /* HUF_decompress4X1_usingDTable_internal_body():
595  * Conditions :
596  * @dstSize >= 6
597  */
598 FORCE_INLINE_TEMPLATE size_t
HUF_decompress4X1_usingDTable_internal_body(void * dst,size_t dstSize,const void * cSrc,size_t cSrcSize,const HUF_DTable * DTable)599 HUF_decompress4X1_usingDTable_internal_body(
600           void* dst,  size_t dstSize,
601     const void* cSrc, size_t cSrcSize,
602     const HUF_DTable* DTable)
603 {
604     /* Check */
605     if (cSrcSize < 10) return ERROR(corruption_detected);  /* strict minimum : jump table + 1 byte per stream */
606     if (dstSize < 6) return ERROR(corruption_detected);         /* stream 4-split doesn't work */
607 
608     {   const BYTE* const istart = (const BYTE*) cSrc;
609         BYTE* const ostart = (BYTE*) dst;
610         BYTE* const oend = ostart + dstSize;
611         BYTE* const olimit = oend - 3;
612         const void* const dtPtr = DTable + 1;
613         const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
614 
615         /* Init */
616         BIT_DStream_t bitD1;
617         BIT_DStream_t bitD2;
618         BIT_DStream_t bitD3;
619         BIT_DStream_t bitD4;
620         size_t const length1 = MEM_readLE16(istart);
621         size_t const length2 = MEM_readLE16(istart+2);
622         size_t const length3 = MEM_readLE16(istart+4);
623         size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
624         const BYTE* const istart1 = istart + 6;  /* jumpTable */
625         const BYTE* const istart2 = istart1 + length1;
626         const BYTE* const istart3 = istart2 + length2;
627         const BYTE* const istart4 = istart3 + length3;
628         const size_t segmentSize = (dstSize+3) / 4;
629         BYTE* const opStart2 = ostart + segmentSize;
630         BYTE* const opStart3 = opStart2 + segmentSize;
631         BYTE* const opStart4 = opStart3 + segmentSize;
632         BYTE* op1 = ostart;
633         BYTE* op2 = opStart2;
634         BYTE* op3 = opStart3;
635         BYTE* op4 = opStart4;
636         DTableDesc const dtd = HUF_getDTableDesc(DTable);
637         U32 const dtLog = dtd.tableLog;
638         U32 endSignal = 1;
639 
640         if (length4 > cSrcSize) return ERROR(corruption_detected);   /* overflow */
641         if (opStart4 > oend) return ERROR(corruption_detected);      /* overflow */
642         assert(dstSize >= 6); /* validated above */
643         CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
644         CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
645         CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
646         CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
647 
648         /* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */
649         if ((size_t)(oend - op4) >= sizeof(size_t)) {
650             for ( ; (endSignal) & (op4 < olimit) ; ) {
651                 HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
652                 HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
653                 HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
654                 HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
655                 HUF_DECODE_SYMBOLX1_1(op1, &bitD1);
656                 HUF_DECODE_SYMBOLX1_1(op2, &bitD2);
657                 HUF_DECODE_SYMBOLX1_1(op3, &bitD3);
658                 HUF_DECODE_SYMBOLX1_1(op4, &bitD4);
659                 HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
660                 HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
661                 HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
662                 HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
663                 HUF_DECODE_SYMBOLX1_0(op1, &bitD1);
664                 HUF_DECODE_SYMBOLX1_0(op2, &bitD2);
665                 HUF_DECODE_SYMBOLX1_0(op3, &bitD3);
666                 HUF_DECODE_SYMBOLX1_0(op4, &bitD4);
667                 endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
668                 endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
669                 endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
670                 endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
671             }
672         }
673 
674         /* check corruption */
675         /* note : should not be necessary : op# advance in lock step, and we control op4.
676          *        but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */
677         if (op1 > opStart2) return ERROR(corruption_detected);
678         if (op2 > opStart3) return ERROR(corruption_detected);
679         if (op3 > opStart4) return ERROR(corruption_detected);
680         /* note : op4 supposed already verified within main loop */
681 
682         /* finish bitStreams one by one */
683         HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog);
684         HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog);
685         HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog);
686         HUF_decodeStreamX1(op4, &bitD4, oend,     dt, dtLog);
687 
688         /* check */
689         { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
690           if (!endCheck) return ERROR(corruption_detected); }
691 
692         /* decoded size */
693         return dstSize;
694     }
695 }
696 
697 #if HUF_NEED_BMI2_FUNCTION
698 static BMI2_TARGET_ATTRIBUTE
HUF_decompress4X1_usingDTable_internal_bmi2(void * dst,size_t dstSize,void const * cSrc,size_t cSrcSize,HUF_DTable const * DTable)699 size_t HUF_decompress4X1_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
700                     size_t cSrcSize, HUF_DTable const* DTable) {
701     return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
702 }
703 #endif
704 
705 static
HUF_decompress4X1_usingDTable_internal_default(void * dst,size_t dstSize,void const * cSrc,size_t cSrcSize,HUF_DTable const * DTable)706 size_t HUF_decompress4X1_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
707                     size_t cSrcSize, HUF_DTable const* DTable) {
708     return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
709 }
710 
711 #if ZSTD_ENABLE_ASM_X86_64_BMI2
712 
713 HUF_ASM_DECL void HUF_decompress4X1_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN;
714 
715 #endif
716 
717 static HUF_FAST_BMI2_ATTRS
HUF_decompress4X1_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs * args)718 void HUF_decompress4X1_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args)
719 {
720     U64 bits[4];
721     BYTE const* ip[4];
722     BYTE* op[4];
723     U16 const* const dtable = (U16 const*)args->dt;
724     BYTE* const oend = args->oend;
725     BYTE const* const ilowest = args->ilowest;
726 
727     /* Copy the arguments to local variables */
728     ZSTD_memcpy(&bits, &args->bits, sizeof(bits));
729     ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip));
730     ZSTD_memcpy(&op, &args->op, sizeof(op));
731 
732     assert(MEM_isLittleEndian());
733     assert(!MEM_32bits());
734 
735     for (;;) {
736         BYTE* olimit;
737         int stream;
738 
739         /* Assert loop preconditions */
740 #ifndef NDEBUG
741         for (stream = 0; stream < 4; ++stream) {
742             assert(op[stream] <= (stream == 3 ? oend : op[stream + 1]));
743             assert(ip[stream] >= ilowest);
744         }
745 #endif
746         /* Compute olimit */
747         {
748             /* Each iteration produces 5 output symbols per stream */
749             size_t const oiters = (size_t)(oend - op[3]) / 5;
750             /* Each iteration consumes up to 11 bits * 5 = 55 bits < 7 bytes
751              * per stream.
752              */
753             size_t const iiters = (size_t)(ip[0] - ilowest) / 7;
754             /* We can safely run iters iterations before running bounds checks */
755             size_t const iters = MIN(oiters, iiters);
756             size_t const symbols = iters * 5;
757 
758             /* We can simply check that op[3] < olimit, instead of checking all
759              * of our bounds, since we can't hit the other bounds until we've run
760              * iters iterations, which only happens when op[3] == olimit.
761              */
762             olimit = op[3] + symbols;
763 
764             /* Exit fast decoding loop once we reach the end. */
765             if (op[3] == olimit)
766                 break;
767 
768             /* Exit the decoding loop if any input pointer has crossed the
769              * previous one. This indicates corruption, and a precondition
770              * to our loop is that ip[i] >= ip[0].
771              */
772             for (stream = 1; stream < 4; ++stream) {
773                 if (ip[stream] < ip[stream - 1])
774                     goto _out;
775             }
776         }
777 
778 #ifndef NDEBUG
779         for (stream = 1; stream < 4; ++stream) {
780             assert(ip[stream] >= ip[stream - 1]);
781         }
782 #endif
783 
784 #define HUF_4X1_DECODE_SYMBOL(_stream, _symbol)                 \
785     do {                                                        \
786         int const index = (int)(bits[(_stream)] >> 53);         \
787         int const entry = (int)dtable[index];                   \
788         bits[(_stream)] <<= (entry & 0x3F);                     \
789         op[(_stream)][(_symbol)] = (BYTE)((entry >> 8) & 0xFF); \
790     } while (0)
791 
792 #define HUF_4X1_RELOAD_STREAM(_stream)                              \
793     do {                                                            \
794         int const ctz = ZSTD_countTrailingZeros64(bits[(_stream)]); \
795         int const nbBits = ctz & 7;                                 \
796         int const nbBytes = ctz >> 3;                               \
797         op[(_stream)] += 5;                                         \
798         ip[(_stream)] -= nbBytes;                                   \
799         bits[(_stream)] = MEM_read64(ip[(_stream)]) | 1;            \
800         bits[(_stream)] <<= nbBits;                                 \
801     } while (0)
802 
803         /* Manually unroll the loop because compilers don't consistently
804          * unroll the inner loops, which destroys performance.
805          */
806         do {
807             /* Decode 5 symbols in each of the 4 streams */
808             HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 0);
809             HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 1);
810             HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 2);
811             HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 3);
812             HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 4);
813 
814             /* Reload each of the 4 the bitstreams */
815             HUF_4X_FOR_EACH_STREAM(HUF_4X1_RELOAD_STREAM);
816         } while (op[3] < olimit);
817 
818 #undef HUF_4X1_DECODE_SYMBOL
819 #undef HUF_4X1_RELOAD_STREAM
820     }
821 
822 _out:
823 
824     /* Save the final values of each of the state variables back to args. */
825     ZSTD_memcpy(&args->bits, &bits, sizeof(bits));
826     ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip));
827     ZSTD_memcpy(&args->op, &op, sizeof(op));
828 }
829 
830 /*
831  * @returns @p dstSize on success (>= 6)
832  *          0 if the fallback implementation should be used
833  *          An error if an error occurred
834  */
835 static HUF_FAST_BMI2_ATTRS
836 size_t
HUF_decompress4X1_usingDTable_internal_fast(void * dst,size_t dstSize,const void * cSrc,size_t cSrcSize,const HUF_DTable * DTable,HUF_DecompressFastLoopFn loopFn)837 HUF_decompress4X1_usingDTable_internal_fast(
838           void* dst,  size_t dstSize,
839     const void* cSrc, size_t cSrcSize,
840     const HUF_DTable* DTable,
841     HUF_DecompressFastLoopFn loopFn)
842 {
843     void const* dt = DTable + 1;
844     BYTE const* const ilowest = (BYTE const*)cSrc;
845     BYTE* const oend = ZSTD_maybeNullPtrAdd((BYTE*)dst, dstSize);
846     HUF_DecompressFastArgs args;
847     {   size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
848         FORWARD_IF_ERROR(ret, "Failed to init fast loop args");
849         if (ret == 0)
850             return 0;
851     }
852 
853     assert(args.ip[0] >= args.ilowest);
854     loopFn(&args);
855 
856     /* Our loop guarantees that ip[] >= ilowest and that we haven't
857     * overwritten any op[].
858     */
859     assert(args.ip[0] >= ilowest);
860     assert(args.ip[0] >= ilowest);
861     assert(args.ip[1] >= ilowest);
862     assert(args.ip[2] >= ilowest);
863     assert(args.ip[3] >= ilowest);
864     assert(args.op[3] <= oend);
865 
866     assert(ilowest == args.ilowest);
867     assert(ilowest + 6 == args.iend[0]);
868     (void)ilowest;
869 
870     /* finish bit streams one by one. */
871     {   size_t const segmentSize = (dstSize+3) / 4;
872         BYTE* segmentEnd = (BYTE*)dst;
873         int i;
874         for (i = 0; i < 4; ++i) {
875             BIT_DStream_t bit;
876             if (segmentSize <= (size_t)(oend - segmentEnd))
877                 segmentEnd += segmentSize;
878             else
879                 segmentEnd = oend;
880             FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
881             /* Decompress and validate that we've produced exactly the expected length. */
882             args.op[i] += HUF_decodeStreamX1(args.op[i], &bit, segmentEnd, (HUF_DEltX1 const*)dt, HUF_DECODER_FAST_TABLELOG);
883             if (args.op[i] != segmentEnd) return ERROR(corruption_detected);
884         }
885     }
886 
887     /* decoded size */
888     assert(dstSize != 0);
889     return dstSize;
890 }
891 
HUF_DGEN(HUF_decompress1X1_usingDTable_internal)892 HUF_DGEN(HUF_decompress1X1_usingDTable_internal)
893 
894 static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
895                     size_t cSrcSize, HUF_DTable const* DTable, int flags)
896 {
897     HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X1_usingDTable_internal_default;
898     HUF_DecompressFastLoopFn loopFn = HUF_decompress4X1_usingDTable_internal_fast_c_loop;
899 
900 #if DYNAMIC_BMI2
901     if (flags & HUF_flags_bmi2) {
902         fallbackFn = HUF_decompress4X1_usingDTable_internal_bmi2;
903 # if ZSTD_ENABLE_ASM_X86_64_BMI2
904         if (!(flags & HUF_flags_disableAsm)) {
905             loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop;
906         }
907 # endif
908     } else {
909         return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
910     }
911 #endif
912 
913 #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
914     if (!(flags & HUF_flags_disableAsm)) {
915         loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop;
916     }
917 #endif
918 
919     if (HUF_ENABLE_FAST_DECODE && !(flags & HUF_flags_disableFast)) {
920         size_t const ret = HUF_decompress4X1_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn);
921         if (ret != 0)
922             return ret;
923     }
924     return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
925 }
926 
HUF_decompress4X1_DCtx_wksp(HUF_DTable * dctx,void * dst,size_t dstSize,const void * cSrc,size_t cSrcSize,void * workSpace,size_t wkspSize,int flags)927 static size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
928                                    const void* cSrc, size_t cSrcSize,
929                                    void* workSpace, size_t wkspSize, int flags)
930 {
931     const BYTE* ip = (const BYTE*) cSrc;
932 
933     size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags);
934     if (HUF_isError(hSize)) return hSize;
935     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
936     ip += hSize; cSrcSize -= hSize;
937 
938     return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
939 }
940 
941 #endif /* HUF_FORCE_DECOMPRESS_X2 */
942 
943 
944 #ifndef HUF_FORCE_DECOMPRESS_X1
945 
946 /* *************************/
947 /* double-symbols decoding */
948 /* *************************/
949 
950 typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2;  /* double-symbols decoding */
951 typedef struct { BYTE symbol; } sortedSymbol_t;
952 typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1];
953 typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX];
954 
955 /*
956  * Constructs a HUF_DEltX2 in a U32.
957  */
HUF_buildDEltX2U32(U32 symbol,U32 nbBits,U32 baseSeq,int level)958 static U32 HUF_buildDEltX2U32(U32 symbol, U32 nbBits, U32 baseSeq, int level)
959 {
960     U32 seq;
961     DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, sequence) == 0);
962     DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, nbBits) == 2);
963     DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, length) == 3);
964     DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U32));
965     if (MEM_isLittleEndian()) {
966         seq = level == 1 ? symbol : (baseSeq + (symbol << 8));
967         return seq + (nbBits << 16) + ((U32)level << 24);
968     } else {
969         seq = level == 1 ? (symbol << 8) : ((baseSeq << 8) + symbol);
970         return (seq << 16) + (nbBits << 8) + (U32)level;
971     }
972 }
973 
974 /*
975  * Constructs a HUF_DEltX2.
976  */
HUF_buildDEltX2(U32 symbol,U32 nbBits,U32 baseSeq,int level)977 static HUF_DEltX2 HUF_buildDEltX2(U32 symbol, U32 nbBits, U32 baseSeq, int level)
978 {
979     HUF_DEltX2 DElt;
980     U32 const val = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
981     DEBUG_STATIC_ASSERT(sizeof(DElt) == sizeof(val));
982     ZSTD_memcpy(&DElt, &val, sizeof(val));
983     return DElt;
984 }
985 
986 /*
987  * Constructs 2 HUF_DEltX2s and packs them into a U64.
988  */
HUF_buildDEltX2U64(U32 symbol,U32 nbBits,U16 baseSeq,int level)989 static U64 HUF_buildDEltX2U64(U32 symbol, U32 nbBits, U16 baseSeq, int level)
990 {
991     U32 DElt = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
992     return (U64)DElt + ((U64)DElt << 32);
993 }
994 
995 /*
996  * Fills the DTable rank with all the symbols from [begin, end) that are each
997  * nbBits long.
998  *
999  * @param DTableRank The start of the rank in the DTable.
1000  * @param begin The first symbol to fill (inclusive).
1001  * @param end The last symbol to fill (exclusive).
1002  * @param nbBits Each symbol is nbBits long.
1003  * @param tableLog The table log.
1004  * @param baseSeq If level == 1 { 0 } else { the first level symbol }
1005  * @param level The level in the table. Must be 1 or 2.
1006  */
HUF_fillDTableX2ForWeight(HUF_DEltX2 * DTableRank,sortedSymbol_t const * begin,sortedSymbol_t const * end,U32 nbBits,U32 tableLog,U16 baseSeq,int const level)1007 static void HUF_fillDTableX2ForWeight(
1008     HUF_DEltX2* DTableRank,
1009     sortedSymbol_t const* begin, sortedSymbol_t const* end,
1010     U32 nbBits, U32 tableLog,
1011     U16 baseSeq, int const level)
1012 {
1013     U32 const length = 1U << ((tableLog - nbBits) & 0x1F /* quiet static-analyzer */);
1014     const sortedSymbol_t* ptr;
1015     assert(level >= 1 && level <= 2);
1016     switch (length) {
1017     case 1:
1018         for (ptr = begin; ptr != end; ++ptr) {
1019             HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
1020             *DTableRank++ = DElt;
1021         }
1022         break;
1023     case 2:
1024         for (ptr = begin; ptr != end; ++ptr) {
1025             HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
1026             DTableRank[0] = DElt;
1027             DTableRank[1] = DElt;
1028             DTableRank += 2;
1029         }
1030         break;
1031     case 4:
1032         for (ptr = begin; ptr != end; ++ptr) {
1033             U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
1034             ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
1035             ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
1036             DTableRank += 4;
1037         }
1038         break;
1039     case 8:
1040         for (ptr = begin; ptr != end; ++ptr) {
1041             U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
1042             ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
1043             ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
1044             ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
1045             ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
1046             DTableRank += 8;
1047         }
1048         break;
1049     default:
1050         for (ptr = begin; ptr != end; ++ptr) {
1051             U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
1052             HUF_DEltX2* const DTableRankEnd = DTableRank + length;
1053             for (; DTableRank != DTableRankEnd; DTableRank += 8) {
1054                 ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
1055                 ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
1056                 ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
1057                 ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
1058             }
1059         }
1060         break;
1061     }
1062 }
1063 
1064 /* HUF_fillDTableX2Level2() :
1065  * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */
HUF_fillDTableX2Level2(HUF_DEltX2 * DTable,U32 targetLog,const U32 consumedBits,const U32 * rankVal,const int minWeight,const int maxWeight1,const sortedSymbol_t * sortedSymbols,U32 const * rankStart,U32 nbBitsBaseline,U16 baseSeq)1066 static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 targetLog, const U32 consumedBits,
1067                            const U32* rankVal, const int minWeight, const int maxWeight1,
1068                            const sortedSymbol_t* sortedSymbols, U32 const* rankStart,
1069                            U32 nbBitsBaseline, U16 baseSeq)
1070 {
1071     /* Fill skipped values (all positions up to rankVal[minWeight]).
1072      * These are positions only get a single symbol because the combined weight
1073      * is too large.
1074      */
1075     if (minWeight>1) {
1076         U32 const length = 1U << ((targetLog - consumedBits) & 0x1F /* quiet static-analyzer */);
1077         U64 const DEltX2 = HUF_buildDEltX2U64(baseSeq, consumedBits, /* baseSeq */ 0, /* level */ 1);
1078         int const skipSize = rankVal[minWeight];
1079         assert(length > 1);
1080         assert((U32)skipSize < length);
1081         switch (length) {
1082         case 2:
1083             assert(skipSize == 1);
1084             ZSTD_memcpy(DTable, &DEltX2, sizeof(DEltX2));
1085             break;
1086         case 4:
1087             assert(skipSize <= 4);
1088             ZSTD_memcpy(DTable + 0, &DEltX2, sizeof(DEltX2));
1089             ZSTD_memcpy(DTable + 2, &DEltX2, sizeof(DEltX2));
1090             break;
1091         default:
1092             {
1093                 int i;
1094                 for (i = 0; i < skipSize; i += 8) {
1095                     ZSTD_memcpy(DTable + i + 0, &DEltX2, sizeof(DEltX2));
1096                     ZSTD_memcpy(DTable + i + 2, &DEltX2, sizeof(DEltX2));
1097                     ZSTD_memcpy(DTable + i + 4, &DEltX2, sizeof(DEltX2));
1098                     ZSTD_memcpy(DTable + i + 6, &DEltX2, sizeof(DEltX2));
1099                 }
1100             }
1101         }
1102     }
1103 
1104     /* Fill each of the second level symbols by weight. */
1105     {
1106         int w;
1107         for (w = minWeight; w < maxWeight1; ++w) {
1108             int const begin = rankStart[w];
1109             int const end = rankStart[w+1];
1110             U32 const nbBits = nbBitsBaseline - w;
1111             U32 const totalBits = nbBits + consumedBits;
1112             HUF_fillDTableX2ForWeight(
1113                 DTable + rankVal[w],
1114                 sortedSymbols + begin, sortedSymbols + end,
1115                 totalBits, targetLog,
1116                 baseSeq, /* level */ 2);
1117         }
1118     }
1119 }
1120 
HUF_fillDTableX2(HUF_DEltX2 * DTable,const U32 targetLog,const sortedSymbol_t * sortedList,const U32 * rankStart,rankValCol_t * rankValOrigin,const U32 maxWeight,const U32 nbBitsBaseline)1121 static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog,
1122                            const sortedSymbol_t* sortedList,
1123                            const U32* rankStart, rankValCol_t* rankValOrigin, const U32 maxWeight,
1124                            const U32 nbBitsBaseline)
1125 {
1126     U32* const rankVal = rankValOrigin[0];
1127     const int scaleLog = nbBitsBaseline - targetLog;   /* note : targetLog >= srcLog, hence scaleLog <= 1 */
1128     const U32 minBits  = nbBitsBaseline - maxWeight;
1129     int w;
1130     int const wEnd = (int)maxWeight + 1;
1131 
1132     /* Fill DTable in order of weight. */
1133     for (w = 1; w < wEnd; ++w) {
1134         int const begin = (int)rankStart[w];
1135         int const end = (int)rankStart[w+1];
1136         U32 const nbBits = nbBitsBaseline - w;
1137 
1138         if (targetLog-nbBits >= minBits) {
1139             /* Enough room for a second symbol. */
1140             int start = rankVal[w];
1141             U32 const length = 1U << ((targetLog - nbBits) & 0x1F /* quiet static-analyzer */);
1142             int minWeight = nbBits + scaleLog;
1143             int s;
1144             if (minWeight < 1) minWeight = 1;
1145             /* Fill the DTable for every symbol of weight w.
1146              * These symbols get at least 1 second symbol.
1147              */
1148             for (s = begin; s != end; ++s) {
1149                 HUF_fillDTableX2Level2(
1150                     DTable + start, targetLog, nbBits,
1151                     rankValOrigin[nbBits], minWeight, wEnd,
1152                     sortedList, rankStart,
1153                     nbBitsBaseline, sortedList[s].symbol);
1154                 start += length;
1155             }
1156         } else {
1157             /* Only a single symbol. */
1158             HUF_fillDTableX2ForWeight(
1159                 DTable + rankVal[w],
1160                 sortedList + begin, sortedList + end,
1161                 nbBits, targetLog,
1162                 /* baseSeq */ 0, /* level */ 1);
1163         }
1164     }
1165 }
1166 
1167 typedef struct {
1168     rankValCol_t rankVal[HUF_TABLELOG_MAX];
1169     U32 rankStats[HUF_TABLELOG_MAX + 1];
1170     U32 rankStart0[HUF_TABLELOG_MAX + 3];
1171     sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1];
1172     BYTE weightList[HUF_SYMBOLVALUE_MAX + 1];
1173     U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
1174 } HUF_ReadDTableX2_Workspace;
1175 
HUF_readDTableX2_wksp(HUF_DTable * DTable,const void * src,size_t srcSize,void * workSpace,size_t wkspSize,int flags)1176 size_t HUF_readDTableX2_wksp(HUF_DTable* DTable,
1177                        const void* src, size_t srcSize,
1178                              void* workSpace, size_t wkspSize, int flags)
1179 {
1180     U32 tableLog, maxW, nbSymbols;
1181     DTableDesc dtd = HUF_getDTableDesc(DTable);
1182     U32 maxTableLog = dtd.maxTableLog;
1183     size_t iSize;
1184     void* dtPtr = DTable+1;   /* force compiler to avoid strict-aliasing */
1185     HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
1186     U32 *rankStart;
1187 
1188     HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace;
1189 
1190     if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC);
1191 
1192     rankStart = wksp->rankStart0 + 1;
1193     ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats));
1194     ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0));
1195 
1196     DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable));   /* if compiler fails here, assertion is wrong */
1197     if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
1198     /* ZSTD_memset(weightList, 0, sizeof(weightList)); */  /* is not necessary, even though some analyzer complain ... */
1199 
1200     iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), flags);
1201     if (HUF_isError(iSize)) return iSize;
1202 
1203     /* check result */
1204     if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge);   /* DTable can't fit code depth */
1205     if (tableLog <= HUF_DECODER_FAST_TABLELOG && maxTableLog > HUF_DECODER_FAST_TABLELOG) maxTableLog = HUF_DECODER_FAST_TABLELOG;
1206 
1207     /* find maxWeight */
1208     for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {}  /* necessarily finds a solution before 0 */
1209 
1210     /* Get start index of each weight */
1211     {   U32 w, nextRankStart = 0;
1212         for (w=1; w<maxW+1; w++) {
1213             U32 curr = nextRankStart;
1214             nextRankStart += wksp->rankStats[w];
1215             rankStart[w] = curr;
1216         }
1217         rankStart[0] = nextRankStart;   /* put all 0w symbols at the end of sorted list*/
1218         rankStart[maxW+1] = nextRankStart;
1219     }
1220 
1221     /* sort symbols by weight */
1222     {   U32 s;
1223         for (s=0; s<nbSymbols; s++) {
1224             U32 const w = wksp->weightList[s];
1225             U32 const r = rankStart[w]++;
1226             wksp->sortedSymbol[r].symbol = (BYTE)s;
1227         }
1228         rankStart[0] = 0;   /* forget 0w symbols; this is beginning of weight(1) */
1229     }
1230 
1231     /* Build rankVal */
1232     {   U32* const rankVal0 = wksp->rankVal[0];
1233         {   int const rescale = (maxTableLog-tableLog) - 1;   /* tableLog <= maxTableLog */
1234             U32 nextRankVal = 0;
1235             U32 w;
1236             for (w=1; w<maxW+1; w++) {
1237                 U32 curr = nextRankVal;
1238                 nextRankVal += wksp->rankStats[w] << (w+rescale);
1239                 rankVal0[w] = curr;
1240         }   }
1241         {   U32 const minBits = tableLog+1 - maxW;
1242             U32 consumed;
1243             for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
1244                 U32* const rankValPtr = wksp->rankVal[consumed];
1245                 U32 w;
1246                 for (w = 1; w < maxW+1; w++) {
1247                     rankValPtr[w] = rankVal0[w] >> consumed;
1248     }   }   }   }
1249 
1250     HUF_fillDTableX2(dt, maxTableLog,
1251                    wksp->sortedSymbol,
1252                    wksp->rankStart0, wksp->rankVal, maxW,
1253                    tableLog+1);
1254 
1255     dtd.tableLog = (BYTE)maxTableLog;
1256     dtd.tableType = 1;
1257     ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
1258     return iSize;
1259 }
1260 
1261 
1262 FORCE_INLINE_TEMPLATE U32
HUF_decodeSymbolX2(void * op,BIT_DStream_t * DStream,const HUF_DEltX2 * dt,const U32 dtLog)1263 HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
1264 {
1265     size_t const val = BIT_lookBitsFast(DStream, dtLog);   /* note : dtLog >= 1 */
1266     ZSTD_memcpy(op, &dt[val].sequence, 2);
1267     BIT_skipBits(DStream, dt[val].nbBits);
1268     return dt[val].length;
1269 }
1270 
1271 FORCE_INLINE_TEMPLATE U32
HUF_decodeLastSymbolX2(void * op,BIT_DStream_t * DStream,const HUF_DEltX2 * dt,const U32 dtLog)1272 HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
1273 {
1274     size_t const val = BIT_lookBitsFast(DStream, dtLog);   /* note : dtLog >= 1 */
1275     ZSTD_memcpy(op, &dt[val].sequence, 1);
1276     if (dt[val].length==1) {
1277         BIT_skipBits(DStream, dt[val].nbBits);
1278     } else {
1279         if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
1280             BIT_skipBits(DStream, dt[val].nbBits);
1281             if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
1282                 /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
1283                 DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);
1284         }
1285     }
1286     return 1;
1287 }
1288 
1289 #define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
1290     do { ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); } while (0)
1291 
1292 #define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr)                     \
1293     do {                                                           \
1294         if (MEM_64bits() || (HUF_TABLELOG_MAX<=12))                \
1295             ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); \
1296     } while (0)
1297 
1298 #define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr)                     \
1299     do {                                                           \
1300         if (MEM_64bits())                                          \
1301             ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); \
1302     } while (0)
1303 
1304 HINT_INLINE size_t
HUF_decodeStreamX2(BYTE * p,BIT_DStream_t * bitDPtr,BYTE * const pEnd,const HUF_DEltX2 * const dt,const U32 dtLog)1305 HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd,
1306                 const HUF_DEltX2* const dt, const U32 dtLog)
1307 {
1308     BYTE* const pStart = p;
1309 
1310     /* up to 8 symbols at a time */
1311     if ((size_t)(pEnd - p) >= sizeof(bitDPtr->bitContainer)) {
1312         if (dtLog <= 11 && MEM_64bits()) {
1313             /* up to 10 symbols at a time */
1314             while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-9)) {
1315                 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1316                 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1317                 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1318                 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1319                 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1320             }
1321         } else {
1322             /* up to 8 symbols at a time */
1323             while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
1324                 HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
1325                 HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
1326                 HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
1327                 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1328             }
1329         }
1330     } else {
1331         BIT_reloadDStream(bitDPtr);
1332     }
1333 
1334     /* closer to end : up to 2 symbols at a time */
1335     if ((size_t)(pEnd - p) >= 2) {
1336         while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
1337             HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1338 
1339         while (p <= pEnd-2)
1340             HUF_DECODE_SYMBOLX2_0(p, bitDPtr);   /* no need to reload : reached the end of DStream */
1341     }
1342 
1343     if (p < pEnd)
1344         p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog);
1345 
1346     return p-pStart;
1347 }
1348 
1349 FORCE_INLINE_TEMPLATE size_t
HUF_decompress1X2_usingDTable_internal_body(void * dst,size_t dstSize,const void * cSrc,size_t cSrcSize,const HUF_DTable * DTable)1350 HUF_decompress1X2_usingDTable_internal_body(
1351           void* dst,  size_t dstSize,
1352     const void* cSrc, size_t cSrcSize,
1353     const HUF_DTable* DTable)
1354 {
1355     BIT_DStream_t bitD;
1356 
1357     /* Init */
1358     CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
1359 
1360     /* decode */
1361     {   BYTE* const ostart = (BYTE*) dst;
1362         BYTE* const oend = ZSTD_maybeNullPtrAdd(ostart, dstSize);
1363         const void* const dtPtr = DTable+1;   /* force compiler to not use strict-aliasing */
1364         const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
1365         DTableDesc const dtd = HUF_getDTableDesc(DTable);
1366         HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog);
1367     }
1368 
1369     /* check */
1370     if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
1371 
1372     /* decoded size */
1373     return dstSize;
1374 }
1375 
1376 /* HUF_decompress4X2_usingDTable_internal_body():
1377  * Conditions:
1378  * @dstSize >= 6
1379  */
1380 FORCE_INLINE_TEMPLATE size_t
HUF_decompress4X2_usingDTable_internal_body(void * dst,size_t dstSize,const void * cSrc,size_t cSrcSize,const HUF_DTable * DTable)1381 HUF_decompress4X2_usingDTable_internal_body(
1382           void* dst,  size_t dstSize,
1383     const void* cSrc, size_t cSrcSize,
1384     const HUF_DTable* DTable)
1385 {
1386     if (cSrcSize < 10) return ERROR(corruption_detected);   /* strict minimum : jump table + 1 byte per stream */
1387     if (dstSize < 6) return ERROR(corruption_detected);         /* stream 4-split doesn't work */
1388 
1389     {   const BYTE* const istart = (const BYTE*) cSrc;
1390         BYTE* const ostart = (BYTE*) dst;
1391         BYTE* const oend = ostart + dstSize;
1392         BYTE* const olimit = oend - (sizeof(size_t)-1);
1393         const void* const dtPtr = DTable+1;
1394         const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
1395 
1396         /* Init */
1397         BIT_DStream_t bitD1;
1398         BIT_DStream_t bitD2;
1399         BIT_DStream_t bitD3;
1400         BIT_DStream_t bitD4;
1401         size_t const length1 = MEM_readLE16(istart);
1402         size_t const length2 = MEM_readLE16(istart+2);
1403         size_t const length3 = MEM_readLE16(istart+4);
1404         size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
1405         const BYTE* const istart1 = istart + 6;  /* jumpTable */
1406         const BYTE* const istart2 = istart1 + length1;
1407         const BYTE* const istart3 = istart2 + length2;
1408         const BYTE* const istart4 = istart3 + length3;
1409         size_t const segmentSize = (dstSize+3) / 4;
1410         BYTE* const opStart2 = ostart + segmentSize;
1411         BYTE* const opStart3 = opStart2 + segmentSize;
1412         BYTE* const opStart4 = opStart3 + segmentSize;
1413         BYTE* op1 = ostart;
1414         BYTE* op2 = opStart2;
1415         BYTE* op3 = opStart3;
1416         BYTE* op4 = opStart4;
1417         U32 endSignal = 1;
1418         DTableDesc const dtd = HUF_getDTableDesc(DTable);
1419         U32 const dtLog = dtd.tableLog;
1420 
1421         if (length4 > cSrcSize) return ERROR(corruption_detected);  /* overflow */
1422         if (opStart4 > oend) return ERROR(corruption_detected);     /* overflow */
1423         assert(dstSize >= 6 /* validated above */);
1424         CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
1425         CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
1426         CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
1427         CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
1428 
1429         /* 16-32 symbols per loop (4-8 symbols per stream) */
1430         if ((size_t)(oend - op4) >= sizeof(size_t)) {
1431             for ( ; (endSignal) & (op4 < olimit); ) {
1432 #if defined(__clang__) && (defined(__x86_64__) || defined(__i386__))
1433                 HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1434                 HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
1435                 HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1436                 HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
1437                 HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1438                 HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
1439                 HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1440                 HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
1441                 endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
1442                 endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
1443                 HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1444                 HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
1445                 HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1446                 HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
1447                 HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1448                 HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
1449                 HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1450                 HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
1451                 endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
1452                 endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
1453 #else
1454                 HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1455                 HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1456                 HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1457                 HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1458                 HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
1459                 HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
1460                 HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
1461                 HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
1462                 HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1463                 HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1464                 HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1465                 HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1466                 HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
1467                 HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
1468                 HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
1469                 HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
1470                 endSignal = (U32)LIKELY((U32)
1471                             (BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished)
1472                         & (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished)
1473                         & (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished)
1474                         & (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished));
1475 #endif
1476             }
1477         }
1478 
1479         /* check corruption */
1480         if (op1 > opStart2) return ERROR(corruption_detected);
1481         if (op2 > opStart3) return ERROR(corruption_detected);
1482         if (op3 > opStart4) return ERROR(corruption_detected);
1483         /* note : op4 already verified within main loop */
1484 
1485         /* finish bitStreams one by one */
1486         HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
1487         HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
1488         HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
1489         HUF_decodeStreamX2(op4, &bitD4, oend,     dt, dtLog);
1490 
1491         /* check */
1492         { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
1493           if (!endCheck) return ERROR(corruption_detected); }
1494 
1495         /* decoded size */
1496         return dstSize;
1497     }
1498 }
1499 
1500 #if HUF_NEED_BMI2_FUNCTION
1501 static BMI2_TARGET_ATTRIBUTE
HUF_decompress4X2_usingDTable_internal_bmi2(void * dst,size_t dstSize,void const * cSrc,size_t cSrcSize,HUF_DTable const * DTable)1502 size_t HUF_decompress4X2_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
1503                     size_t cSrcSize, HUF_DTable const* DTable) {
1504     return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
1505 }
1506 #endif
1507 
1508 static
HUF_decompress4X2_usingDTable_internal_default(void * dst,size_t dstSize,void const * cSrc,size_t cSrcSize,HUF_DTable const * DTable)1509 size_t HUF_decompress4X2_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
1510                     size_t cSrcSize, HUF_DTable const* DTable) {
1511     return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
1512 }
1513 
1514 #if ZSTD_ENABLE_ASM_X86_64_BMI2
1515 
1516 HUF_ASM_DECL void HUF_decompress4X2_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN;
1517 
1518 #endif
1519 
1520 static HUF_FAST_BMI2_ATTRS
HUF_decompress4X2_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs * args)1521 void HUF_decompress4X2_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args)
1522 {
1523     U64 bits[4];
1524     BYTE const* ip[4];
1525     BYTE* op[4];
1526     BYTE* oend[4];
1527     HUF_DEltX2 const* const dtable = (HUF_DEltX2 const*)args->dt;
1528     BYTE const* const ilowest = args->ilowest;
1529 
1530     /* Copy the arguments to local registers. */
1531     ZSTD_memcpy(&bits, &args->bits, sizeof(bits));
1532     ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip));
1533     ZSTD_memcpy(&op, &args->op, sizeof(op));
1534 
1535     oend[0] = op[1];
1536     oend[1] = op[2];
1537     oend[2] = op[3];
1538     oend[3] = args->oend;
1539 
1540     assert(MEM_isLittleEndian());
1541     assert(!MEM_32bits());
1542 
1543     for (;;) {
1544         BYTE* olimit;
1545         int stream;
1546 
1547         /* Assert loop preconditions */
1548 #ifndef NDEBUG
1549         for (stream = 0; stream < 4; ++stream) {
1550             assert(op[stream] <= oend[stream]);
1551             assert(ip[stream] >= ilowest);
1552         }
1553 #endif
1554         /* Compute olimit */
1555         {
1556             /* Each loop does 5 table lookups for each of the 4 streams.
1557              * Each table lookup consumes up to 11 bits of input, and produces
1558              * up to 2 bytes of output.
1559              */
1560             /* We can consume up to 7 bytes of input per iteration per stream.
1561              * We also know that each input pointer is >= ip[0]. So we can run
1562              * iters loops before running out of input.
1563              */
1564             size_t iters = (size_t)(ip[0] - ilowest) / 7;
1565             /* Each iteration can produce up to 10 bytes of output per stream.
1566              * Each output stream my advance at different rates. So take the
1567              * minimum number of safe iterations among all the output streams.
1568              */
1569             for (stream = 0; stream < 4; ++stream) {
1570                 size_t const oiters = (size_t)(oend[stream] - op[stream]) / 10;
1571                 iters = MIN(iters, oiters);
1572             }
1573 
1574             /* Each iteration produces at least 5 output symbols. So until
1575              * op[3] crosses olimit, we know we haven't executed iters
1576              * iterations yet. This saves us maintaining an iters counter,
1577              * at the expense of computing the remaining # of iterations
1578              * more frequently.
1579              */
1580             olimit = op[3] + (iters * 5);
1581 
1582             /* Exit the fast decoding loop once we reach the end. */
1583             if (op[3] == olimit)
1584                 break;
1585 
1586             /* Exit the decoding loop if any input pointer has crossed the
1587              * previous one. This indicates corruption, and a precondition
1588              * to our loop is that ip[i] >= ip[0].
1589              */
1590             for (stream = 1; stream < 4; ++stream) {
1591                 if (ip[stream] < ip[stream - 1])
1592                     goto _out;
1593             }
1594         }
1595 
1596 #ifndef NDEBUG
1597         for (stream = 1; stream < 4; ++stream) {
1598             assert(ip[stream] >= ip[stream - 1]);
1599         }
1600 #endif
1601 
1602 #define HUF_4X2_DECODE_SYMBOL(_stream, _decode3)                      \
1603     do {                                                              \
1604         if ((_decode3) || (_stream) != 3) {                           \
1605             int const index = (int)(bits[(_stream)] >> 53);           \
1606             HUF_DEltX2 const entry = dtable[index];                   \
1607             MEM_write16(op[(_stream)], entry.sequence); \
1608             bits[(_stream)] <<= (entry.nbBits) & 0x3F;                \
1609             op[(_stream)] += (entry.length);                          \
1610         }                                                             \
1611     } while (0)
1612 
1613 #define HUF_4X2_RELOAD_STREAM(_stream)                                  \
1614     do {                                                                \
1615         HUF_4X2_DECODE_SYMBOL(3, 1);                                    \
1616         {                                                               \
1617             int const ctz = ZSTD_countTrailingZeros64(bits[(_stream)]); \
1618             int const nbBits = ctz & 7;                                 \
1619             int const nbBytes = ctz >> 3;                               \
1620             ip[(_stream)] -= nbBytes;                                   \
1621             bits[(_stream)] = MEM_read64(ip[(_stream)]) | 1;            \
1622             bits[(_stream)] <<= nbBits;                                 \
1623         }                                                               \
1624     } while (0)
1625 
1626         /* Manually unroll the loop because compilers don't consistently
1627          * unroll the inner loops, which destroys performance.
1628          */
1629         do {
1630             /* Decode 5 symbols from each of the first 3 streams.
1631              * The final stream will be decoded during the reload phase
1632              * to reduce register pressure.
1633              */
1634             HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
1635             HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
1636             HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
1637             HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
1638             HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
1639 
1640             /* Decode one symbol from the final stream */
1641             HUF_4X2_DECODE_SYMBOL(3, 1);
1642 
1643             /* Decode 4 symbols from the final stream & reload bitstreams.
1644              * The final stream is reloaded last, meaning that all 5 symbols
1645              * are decoded from the final stream before it is reloaded.
1646              */
1647             HUF_4X_FOR_EACH_STREAM(HUF_4X2_RELOAD_STREAM);
1648         } while (op[3] < olimit);
1649     }
1650 
1651 #undef HUF_4X2_DECODE_SYMBOL
1652 #undef HUF_4X2_RELOAD_STREAM
1653 
1654 _out:
1655 
1656     /* Save the final values of each of the state variables back to args. */
1657     ZSTD_memcpy(&args->bits, &bits, sizeof(bits));
1658     ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip));
1659     ZSTD_memcpy(&args->op, &op, sizeof(op));
1660 }
1661 
1662 
1663 static HUF_FAST_BMI2_ATTRS size_t
HUF_decompress4X2_usingDTable_internal_fast(void * dst,size_t dstSize,const void * cSrc,size_t cSrcSize,const HUF_DTable * DTable,HUF_DecompressFastLoopFn loopFn)1664 HUF_decompress4X2_usingDTable_internal_fast(
1665           void* dst,  size_t dstSize,
1666     const void* cSrc, size_t cSrcSize,
1667     const HUF_DTable* DTable,
1668     HUF_DecompressFastLoopFn loopFn) {
1669     void const* dt = DTable + 1;
1670     const BYTE* const ilowest = (const BYTE*)cSrc;
1671     BYTE* const oend = ZSTD_maybeNullPtrAdd((BYTE*)dst, dstSize);
1672     HUF_DecompressFastArgs args;
1673     {
1674         size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
1675         FORWARD_IF_ERROR(ret, "Failed to init asm args");
1676         if (ret == 0)
1677             return 0;
1678     }
1679 
1680     assert(args.ip[0] >= args.ilowest);
1681     loopFn(&args);
1682 
1683     /* note : op4 already verified within main loop */
1684     assert(args.ip[0] >= ilowest);
1685     assert(args.ip[1] >= ilowest);
1686     assert(args.ip[2] >= ilowest);
1687     assert(args.ip[3] >= ilowest);
1688     assert(args.op[3] <= oend);
1689 
1690     assert(ilowest == args.ilowest);
1691     assert(ilowest + 6 == args.iend[0]);
1692     (void)ilowest;
1693 
1694     /* finish bitStreams one by one */
1695     {
1696         size_t const segmentSize = (dstSize+3) / 4;
1697         BYTE* segmentEnd = (BYTE*)dst;
1698         int i;
1699         for (i = 0; i < 4; ++i) {
1700             BIT_DStream_t bit;
1701             if (segmentSize <= (size_t)(oend - segmentEnd))
1702                 segmentEnd += segmentSize;
1703             else
1704                 segmentEnd = oend;
1705             FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
1706             args.op[i] += HUF_decodeStreamX2(args.op[i], &bit, segmentEnd, (HUF_DEltX2 const*)dt, HUF_DECODER_FAST_TABLELOG);
1707             if (args.op[i] != segmentEnd)
1708                 return ERROR(corruption_detected);
1709         }
1710     }
1711 
1712     /* decoded size */
1713     return dstSize;
1714 }
1715 
HUF_decompress4X2_usingDTable_internal(void * dst,size_t dstSize,void const * cSrc,size_t cSrcSize,HUF_DTable const * DTable,int flags)1716 static size_t HUF_decompress4X2_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
1717                     size_t cSrcSize, HUF_DTable const* DTable, int flags)
1718 {
1719     HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X2_usingDTable_internal_default;
1720     HUF_DecompressFastLoopFn loopFn = HUF_decompress4X2_usingDTable_internal_fast_c_loop;
1721 
1722 #if DYNAMIC_BMI2
1723     if (flags & HUF_flags_bmi2) {
1724         fallbackFn = HUF_decompress4X2_usingDTable_internal_bmi2;
1725 # if ZSTD_ENABLE_ASM_X86_64_BMI2
1726         if (!(flags & HUF_flags_disableAsm)) {
1727             loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop;
1728         }
1729 # endif
1730     } else {
1731         return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
1732     }
1733 #endif
1734 
1735 #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
1736     if (!(flags & HUF_flags_disableAsm)) {
1737         loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop;
1738     }
1739 #endif
1740 
1741     if (HUF_ENABLE_FAST_DECODE && !(flags & HUF_flags_disableFast)) {
1742         size_t const ret = HUF_decompress4X2_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn);
1743         if (ret != 0)
1744             return ret;
1745     }
1746     return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
1747 }
1748 
HUF_DGEN(HUF_decompress1X2_usingDTable_internal)1749 HUF_DGEN(HUF_decompress1X2_usingDTable_internal)
1750 
1751 size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
1752                                    const void* cSrc, size_t cSrcSize,
1753                                    void* workSpace, size_t wkspSize, int flags)
1754 {
1755     const BYTE* ip = (const BYTE*) cSrc;
1756 
1757     size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize,
1758                                                workSpace, wkspSize, flags);
1759     if (HUF_isError(hSize)) return hSize;
1760     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
1761     ip += hSize; cSrcSize -= hSize;
1762 
1763     return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, flags);
1764 }
1765 
HUF_decompress4X2_DCtx_wksp(HUF_DTable * dctx,void * dst,size_t dstSize,const void * cSrc,size_t cSrcSize,void * workSpace,size_t wkspSize,int flags)1766 static size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
1767                                    const void* cSrc, size_t cSrcSize,
1768                                    void* workSpace, size_t wkspSize, int flags)
1769 {
1770     const BYTE* ip = (const BYTE*) cSrc;
1771 
1772     size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize,
1773                                          workSpace, wkspSize, flags);
1774     if (HUF_isError(hSize)) return hSize;
1775     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
1776     ip += hSize; cSrcSize -= hSize;
1777 
1778     return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
1779 }
1780 
1781 #endif /* HUF_FORCE_DECOMPRESS_X1 */
1782 
1783 
1784 /* ***********************************/
1785 /* Universal decompression selectors */
1786 /* ***********************************/
1787 
1788 
1789 #if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2)
1790 typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
1791 static const algo_time_t algoTime[16 /* Quantization */][2 /* single, double */] =
1792 {
1793     /* single, double, quad */
1794     {{0,0}, {1,1}},  /* Q==0 : impossible */
1795     {{0,0}, {1,1}},  /* Q==1 : impossible */
1796     {{ 150,216}, { 381,119}},   /* Q == 2 : 12-18% */
1797     {{ 170,205}, { 514,112}},   /* Q == 3 : 18-25% */
1798     {{ 177,199}, { 539,110}},   /* Q == 4 : 25-32% */
1799     {{ 197,194}, { 644,107}},   /* Q == 5 : 32-38% */
1800     {{ 221,192}, { 735,107}},   /* Q == 6 : 38-44% */
1801     {{ 256,189}, { 881,106}},   /* Q == 7 : 44-50% */
1802     {{ 359,188}, {1167,109}},   /* Q == 8 : 50-56% */
1803     {{ 582,187}, {1570,114}},   /* Q == 9 : 56-62% */
1804     {{ 688,187}, {1712,122}},   /* Q ==10 : 62-69% */
1805     {{ 825,186}, {1965,136}},   /* Q ==11 : 69-75% */
1806     {{ 976,185}, {2131,150}},   /* Q ==12 : 75-81% */
1807     {{1180,186}, {2070,175}},   /* Q ==13 : 81-87% */
1808     {{1377,185}, {1731,202}},   /* Q ==14 : 87-93% */
1809     {{1412,185}, {1695,202}},   /* Q ==15 : 93-99% */
1810 };
1811 #endif
1812 
1813 /* HUF_selectDecoder() :
1814  *  Tells which decoder is likely to decode faster,
1815  *  based on a set of pre-computed metrics.
1816  * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
1817  *  Assumption : 0 < dstSize <= 128 KB */
HUF_selectDecoder(size_t dstSize,size_t cSrcSize)1818 U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize)
1819 {
1820     assert(dstSize > 0);
1821     assert(dstSize <= 128*1024);
1822 #if defined(HUF_FORCE_DECOMPRESS_X1)
1823     (void)dstSize;
1824     (void)cSrcSize;
1825     return 0;
1826 #elif defined(HUF_FORCE_DECOMPRESS_X2)
1827     (void)dstSize;
1828     (void)cSrcSize;
1829     return 1;
1830 #else
1831     /* decoder timing evaluation */
1832     {   U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize);   /* Q < 16 */
1833         U32 const D256 = (U32)(dstSize >> 8);
1834         U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
1835         U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
1836         DTime1 += DTime1 >> 5;  /* small advantage to algorithm using less memory, to reduce cache eviction */
1837         return DTime1 < DTime0;
1838     }
1839 #endif
1840 }
1841 
HUF_decompress1X_DCtx_wksp(HUF_DTable * dctx,void * dst,size_t dstSize,const void * cSrc,size_t cSrcSize,void * workSpace,size_t wkspSize,int flags)1842 size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
1843                                   const void* cSrc, size_t cSrcSize,
1844                                   void* workSpace, size_t wkspSize, int flags)
1845 {
1846     /* validation checks */
1847     if (dstSize == 0) return ERROR(dstSize_tooSmall);
1848     if (cSrcSize > dstSize) return ERROR(corruption_detected);   /* invalid */
1849     if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; }   /* not compressed */
1850     if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; }   /* RLE */
1851 
1852     {   U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
1853 #if defined(HUF_FORCE_DECOMPRESS_X1)
1854         (void)algoNb;
1855         assert(algoNb == 0);
1856         return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
1857                                 cSrcSize, workSpace, wkspSize, flags);
1858 #elif defined(HUF_FORCE_DECOMPRESS_X2)
1859         (void)algoNb;
1860         assert(algoNb == 1);
1861         return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
1862                                 cSrcSize, workSpace, wkspSize, flags);
1863 #else
1864         return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
1865                                 cSrcSize, workSpace, wkspSize, flags):
1866                         HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
1867                                 cSrcSize, workSpace, wkspSize, flags);
1868 #endif
1869     }
1870 }
1871 
1872 
HUF_decompress1X_usingDTable(void * dst,size_t maxDstSize,const void * cSrc,size_t cSrcSize,const HUF_DTable * DTable,int flags)1873 size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags)
1874 {
1875     DTableDesc const dtd = HUF_getDTableDesc(DTable);
1876 #if defined(HUF_FORCE_DECOMPRESS_X1)
1877     (void)dtd;
1878     assert(dtd.tableType == 0);
1879     return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1880 #elif defined(HUF_FORCE_DECOMPRESS_X2)
1881     (void)dtd;
1882     assert(dtd.tableType == 1);
1883     return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1884 #else
1885     return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) :
1886                            HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1887 #endif
1888 }
1889 
1890 #ifndef HUF_FORCE_DECOMPRESS_X2
HUF_decompress1X1_DCtx_wksp(HUF_DTable * dctx,void * dst,size_t dstSize,const void * cSrc,size_t cSrcSize,void * workSpace,size_t wkspSize,int flags)1891 size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags)
1892 {
1893     const BYTE* ip = (const BYTE*) cSrc;
1894 
1895     size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags);
1896     if (HUF_isError(hSize)) return hSize;
1897     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
1898     ip += hSize; cSrcSize -= hSize;
1899 
1900     return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
1901 }
1902 #endif
1903 
HUF_decompress4X_usingDTable(void * dst,size_t maxDstSize,const void * cSrc,size_t cSrcSize,const HUF_DTable * DTable,int flags)1904 size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags)
1905 {
1906     DTableDesc const dtd = HUF_getDTableDesc(DTable);
1907 #if defined(HUF_FORCE_DECOMPRESS_X1)
1908     (void)dtd;
1909     assert(dtd.tableType == 0);
1910     return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1911 #elif defined(HUF_FORCE_DECOMPRESS_X2)
1912     (void)dtd;
1913     assert(dtd.tableType == 1);
1914     return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1915 #else
1916     return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) :
1917                            HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1918 #endif
1919 }
1920 
HUF_decompress4X_hufOnly_wksp(HUF_DTable * dctx,void * dst,size_t dstSize,const void * cSrc,size_t cSrcSize,void * workSpace,size_t wkspSize,int flags)1921 size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags)
1922 {
1923     /* validation checks */
1924     if (dstSize == 0) return ERROR(dstSize_tooSmall);
1925     if (cSrcSize == 0) return ERROR(corruption_detected);
1926 
1927     {   U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
1928 #if defined(HUF_FORCE_DECOMPRESS_X1)
1929         (void)algoNb;
1930         assert(algoNb == 0);
1931         return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
1932 #elif defined(HUF_FORCE_DECOMPRESS_X2)
1933         (void)algoNb;
1934         assert(algoNb == 1);
1935         return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
1936 #else
1937         return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags) :
1938                         HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
1939 #endif
1940     }
1941 }
1942