1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /* ******************************************************************
3 * Huffman encoder, part of New Generation Entropy library
4 * Copyright (c) Meta Platforms, Inc. and affiliates.
5 *
6 * You can contact the author at :
7 * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
8 * - Public forum : https://groups.google.com/forum/#!forum/lz4c
9 *
10 * This source code is licensed under both the BSD-style license (found in the
11 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
12 * in the COPYING file in the root directory of this source tree).
13 * You may select, at your option, one of the above-listed licenses.
14 ****************************************************************** */
15
16 /* **************************************************************
17 * Compiler specifics
18 ****************************************************************/
19
20
21 /* **************************************************************
22 * Includes
23 ****************************************************************/
24 #include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */
25 #include "../common/compiler.h"
26 #include "../common/bitstream.h"
27 #include "hist.h"
28 #define FSE_STATIC_LINKING_ONLY /* FSE_optimalTableLog_internal */
29 #include "../common/fse.h" /* header compression */
30 #include "../common/huf.h"
31 #include "../common/error_private.h"
32 #include "../common/bits.h" /* ZSTD_highbit32 */
33
34
35 /* **************************************************************
36 * Error Management
37 ****************************************************************/
38 #define HUF_isError ERR_isError
39 #define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */
40
41
42 /* **************************************************************
43 * Required declarations
44 ****************************************************************/
45 typedef struct nodeElt_s {
46 U32 count;
47 U16 parent;
48 BYTE byte;
49 BYTE nbBits;
50 } nodeElt;
51
52
53 /* **************************************************************
54 * Debug Traces
55 ****************************************************************/
56
57 #if DEBUGLEVEL >= 2
58
showU32(const U32 * arr,size_t size)59 static size_t showU32(const U32* arr, size_t size)
60 {
61 size_t u;
62 for (u=0; u<size; u++) {
63 RAWLOG(6, " %u", arr[u]); (void)arr;
64 }
65 RAWLOG(6, " \n");
66 return size;
67 }
68
69 static size_t HUF_getNbBits(HUF_CElt elt);
70
showCTableBits(const HUF_CElt * ctable,size_t size)71 static size_t showCTableBits(const HUF_CElt* ctable, size_t size)
72 {
73 size_t u;
74 for (u=0; u<size; u++) {
75 RAWLOG(6, " %zu", HUF_getNbBits(ctable[u])); (void)ctable;
76 }
77 RAWLOG(6, " \n");
78 return size;
79
80 }
81
showHNodeSymbols(const nodeElt * hnode,size_t size)82 static size_t showHNodeSymbols(const nodeElt* hnode, size_t size)
83 {
84 size_t u;
85 for (u=0; u<size; u++) {
86 RAWLOG(6, " %u", hnode[u].byte); (void)hnode;
87 }
88 RAWLOG(6, " \n");
89 return size;
90 }
91
showHNodeBits(const nodeElt * hnode,size_t size)92 static size_t showHNodeBits(const nodeElt* hnode, size_t size)
93 {
94 size_t u;
95 for (u=0; u<size; u++) {
96 RAWLOG(6, " %u", hnode[u].nbBits); (void)hnode;
97 }
98 RAWLOG(6, " \n");
99 return size;
100 }
101
102 #endif
103
104
105 /* *******************************************************
106 * HUF : Huffman block compression
107 *********************************************************/
108 #define HUF_WORKSPACE_MAX_ALIGNMENT 8
109
HUF_alignUpWorkspace(void * workspace,size_t * workspaceSizePtr,size_t align)110 static void* HUF_alignUpWorkspace(void* workspace, size_t* workspaceSizePtr, size_t align)
111 {
112 size_t const mask = align - 1;
113 size_t const rem = (size_t)workspace & mask;
114 size_t const add = (align - rem) & mask;
115 BYTE* const aligned = (BYTE*)workspace + add;
116 assert((align & (align - 1)) == 0); /* pow 2 */
117 assert(align <= HUF_WORKSPACE_MAX_ALIGNMENT);
118 if (*workspaceSizePtr >= add) {
119 assert(add < align);
120 assert(((size_t)aligned & mask) == 0);
121 *workspaceSizePtr -= add;
122 return aligned;
123 } else {
124 *workspaceSizePtr = 0;
125 return NULL;
126 }
127 }
128
129
130 /* HUF_compressWeights() :
131 * Same as FSE_compress(), but dedicated to huff0's weights compression.
132 * The use case needs much less stack memory.
133 * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
134 */
135 #define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
136
137 typedef struct {
138 FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
139 U32 scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(HUF_TABLELOG_MAX, MAX_FSE_TABLELOG_FOR_HUFF_HEADER)];
140 unsigned count[HUF_TABLELOG_MAX+1];
141 S16 norm[HUF_TABLELOG_MAX+1];
142 } HUF_CompressWeightsWksp;
143
144 static size_t
HUF_compressWeights(void * dst,size_t dstSize,const void * weightTable,size_t wtSize,void * workspace,size_t workspaceSize)145 HUF_compressWeights(void* dst, size_t dstSize,
146 const void* weightTable, size_t wtSize,
147 void* workspace, size_t workspaceSize)
148 {
149 BYTE* const ostart = (BYTE*) dst;
150 BYTE* op = ostart;
151 BYTE* const oend = ostart + dstSize;
152
153 unsigned maxSymbolValue = HUF_TABLELOG_MAX;
154 U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;
155 HUF_CompressWeightsWksp* wksp = (HUF_CompressWeightsWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32));
156
157 if (workspaceSize < sizeof(HUF_CompressWeightsWksp)) return ERROR(GENERIC);
158
159 /* init conditions */
160 if (wtSize <= 1) return 0; /* Not compressible */
161
162 /* Scan input and build symbol stats */
163 { unsigned const maxCount = HIST_count_simple(wksp->count, &maxSymbolValue, weightTable, wtSize); /* never fails */
164 if (maxCount == wtSize) return 1; /* only a single symbol in src : rle */
165 if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */
166 }
167
168 tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
169 CHECK_F( FSE_normalizeCount(wksp->norm, tableLog, wksp->count, wtSize, maxSymbolValue, /* useLowProbCount */ 0) );
170
171 /* Write table description header */
172 { CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), wksp->norm, maxSymbolValue, tableLog) );
173 op += hSize;
174 }
175
176 /* Compress */
177 CHECK_F( FSE_buildCTable_wksp(wksp->CTable, wksp->norm, maxSymbolValue, tableLog, wksp->scratchBuffer, sizeof(wksp->scratchBuffer)) );
178 { CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, wksp->CTable) );
179 if (cSize == 0) return 0; /* not enough space for compressed data */
180 op += cSize;
181 }
182
183 return (size_t)(op-ostart);
184 }
185
HUF_getNbBits(HUF_CElt elt)186 static size_t HUF_getNbBits(HUF_CElt elt)
187 {
188 return elt & 0xFF;
189 }
190
HUF_getNbBitsFast(HUF_CElt elt)191 static size_t HUF_getNbBitsFast(HUF_CElt elt)
192 {
193 return elt;
194 }
195
HUF_getValue(HUF_CElt elt)196 static size_t HUF_getValue(HUF_CElt elt)
197 {
198 return elt & ~(size_t)0xFF;
199 }
200
HUF_getValueFast(HUF_CElt elt)201 static size_t HUF_getValueFast(HUF_CElt elt)
202 {
203 return elt;
204 }
205
HUF_setNbBits(HUF_CElt * elt,size_t nbBits)206 static void HUF_setNbBits(HUF_CElt* elt, size_t nbBits)
207 {
208 assert(nbBits <= HUF_TABLELOG_ABSOLUTEMAX);
209 *elt = nbBits;
210 }
211
HUF_setValue(HUF_CElt * elt,size_t value)212 static void HUF_setValue(HUF_CElt* elt, size_t value)
213 {
214 size_t const nbBits = HUF_getNbBits(*elt);
215 if (nbBits > 0) {
216 assert((value >> nbBits) == 0);
217 *elt |= value << (sizeof(HUF_CElt) * 8 - nbBits);
218 }
219 }
220
HUF_readCTableHeader(HUF_CElt const * ctable)221 HUF_CTableHeader HUF_readCTableHeader(HUF_CElt const* ctable)
222 {
223 HUF_CTableHeader header;
224 ZSTD_memcpy(&header, ctable, sizeof(header));
225 return header;
226 }
227
HUF_writeCTableHeader(HUF_CElt * ctable,U32 tableLog,U32 maxSymbolValue)228 static void HUF_writeCTableHeader(HUF_CElt* ctable, U32 tableLog, U32 maxSymbolValue)
229 {
230 HUF_CTableHeader header;
231 HUF_STATIC_ASSERT(sizeof(ctable[0]) == sizeof(header));
232 ZSTD_memset(&header, 0, sizeof(header));
233 assert(tableLog < 256);
234 header.tableLog = (BYTE)tableLog;
235 assert(maxSymbolValue < 256);
236 header.maxSymbolValue = (BYTE)maxSymbolValue;
237 ZSTD_memcpy(ctable, &header, sizeof(header));
238 }
239
240 typedef struct {
241 HUF_CompressWeightsWksp wksp;
242 BYTE bitsToWeight[HUF_TABLELOG_MAX + 1]; /* precomputed conversion table */
243 BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
244 } HUF_WriteCTableWksp;
245
HUF_writeCTable_wksp(void * dst,size_t maxDstSize,const HUF_CElt * CTable,unsigned maxSymbolValue,unsigned huffLog,void * workspace,size_t workspaceSize)246 size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize,
247 const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog,
248 void* workspace, size_t workspaceSize)
249 {
250 HUF_CElt const* const ct = CTable + 1;
251 BYTE* op = (BYTE*)dst;
252 U32 n;
253 HUF_WriteCTableWksp* wksp = (HUF_WriteCTableWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32));
254
255 HUF_STATIC_ASSERT(HUF_CTABLE_WORKSPACE_SIZE >= sizeof(HUF_WriteCTableWksp));
256
257 assert(HUF_readCTableHeader(CTable).maxSymbolValue == maxSymbolValue);
258 assert(HUF_readCTableHeader(CTable).tableLog == huffLog);
259
260 /* check conditions */
261 if (workspaceSize < sizeof(HUF_WriteCTableWksp)) return ERROR(GENERIC);
262 if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
263
264 /* convert to weight */
265 wksp->bitsToWeight[0] = 0;
266 for (n=1; n<huffLog+1; n++)
267 wksp->bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
268 for (n=0; n<maxSymbolValue; n++)
269 wksp->huffWeight[n] = wksp->bitsToWeight[HUF_getNbBits(ct[n])];
270
271 /* attempt weights compression by FSE */
272 if (maxDstSize < 1) return ERROR(dstSize_tooSmall);
273 { CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, wksp->huffWeight, maxSymbolValue, &wksp->wksp, sizeof(wksp->wksp)) );
274 if ((hSize>1) & (hSize < maxSymbolValue/2)) { /* FSE compressed */
275 op[0] = (BYTE)hSize;
276 return hSize+1;
277 } }
278
279 /* write raw values as 4-bits (max : 15) */
280 if (maxSymbolValue > (256-128)) return ERROR(GENERIC); /* should not happen : likely means source cannot be compressed */
281 if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall); /* not enough space within dst buffer */
282 op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
283 wksp->huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause msan issue in final combination */
284 for (n=0; n<maxSymbolValue; n+=2)
285 op[(n/2)+1] = (BYTE)((wksp->huffWeight[n] << 4) + wksp->huffWeight[n+1]);
286 return ((maxSymbolValue+1)/2) + 1;
287 }
288
289
HUF_readCTable(HUF_CElt * CTable,unsigned * maxSymbolValuePtr,const void * src,size_t srcSize,unsigned * hasZeroWeights)290 size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* hasZeroWeights)
291 {
292 BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; /* init not required, even though some static analyzer may complain */
293 U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */
294 U32 tableLog = 0;
295 U32 nbSymbols = 0;
296 HUF_CElt* const ct = CTable + 1;
297
298 /* get symbol weights */
299 CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));
300 *hasZeroWeights = (rankVal[0] > 0);
301
302 /* check result */
303 if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
304 if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall);
305
306 *maxSymbolValuePtr = nbSymbols - 1;
307
308 HUF_writeCTableHeader(CTable, tableLog, *maxSymbolValuePtr);
309
310 /* Prepare base value per rank */
311 { U32 n, nextRankStart = 0;
312 for (n=1; n<=tableLog; n++) {
313 U32 curr = nextRankStart;
314 nextRankStart += (rankVal[n] << (n-1));
315 rankVal[n] = curr;
316 } }
317
318 /* fill nbBits */
319 { U32 n; for (n=0; n<nbSymbols; n++) {
320 const U32 w = huffWeight[n];
321 HUF_setNbBits(ct + n, (BYTE)(tableLog + 1 - w) & -(w != 0));
322 } }
323
324 /* fill val */
325 { U16 nbPerRank[HUF_TABLELOG_MAX+2] = {0}; /* support w=0=>n=tableLog+1 */
326 U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
327 { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[HUF_getNbBits(ct[n])]++; }
328 /* determine stating value per rank */
329 valPerRank[tableLog+1] = 0; /* for w==0 */
330 { U16 min = 0;
331 U32 n; for (n=tableLog; n>0; n--) { /* start at n=tablelog <-> w=1 */
332 valPerRank[n] = min; /* get starting value within each rank */
333 min += nbPerRank[n];
334 min >>= 1;
335 } }
336 /* assign value within rank, symbol order */
337 { U32 n; for (n=0; n<nbSymbols; n++) HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++); }
338 }
339
340 return readSize;
341 }
342
HUF_getNbBitsFromCTable(HUF_CElt const * CTable,U32 symbolValue)343 U32 HUF_getNbBitsFromCTable(HUF_CElt const* CTable, U32 symbolValue)
344 {
345 const HUF_CElt* const ct = CTable + 1;
346 assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
347 if (symbolValue > HUF_readCTableHeader(CTable).maxSymbolValue)
348 return 0;
349 return (U32)HUF_getNbBits(ct[symbolValue]);
350 }
351
352
353 /*
354 * HUF_setMaxHeight():
355 * Try to enforce @targetNbBits on the Huffman tree described in @huffNode.
356 *
357 * It attempts to convert all nodes with nbBits > @targetNbBits
358 * to employ @targetNbBits instead. Then it adjusts the tree
359 * so that it remains a valid canonical Huffman tree.
360 *
361 * @pre The sum of the ranks of each symbol == 2^largestBits,
362 * where largestBits == huffNode[lastNonNull].nbBits.
363 * @post The sum of the ranks of each symbol == 2^largestBits,
364 * where largestBits is the return value (expected <= targetNbBits).
365 *
366 * @param huffNode The Huffman tree modified in place to enforce targetNbBits.
367 * It's presumed sorted, from most frequent to rarest symbol.
368 * @param lastNonNull The symbol with the lowest count in the Huffman tree.
369 * @param targetNbBits The allowed number of bits, which the Huffman tree
370 * may not respect. After this function the Huffman tree will
371 * respect targetNbBits.
372 * @return The maximum number of bits of the Huffman tree after adjustment.
373 */
HUF_setMaxHeight(nodeElt * huffNode,U32 lastNonNull,U32 targetNbBits)374 static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 targetNbBits)
375 {
376 const U32 largestBits = huffNode[lastNonNull].nbBits;
377 /* early exit : no elt > targetNbBits, so the tree is already valid. */
378 if (largestBits <= targetNbBits) return largestBits;
379
380 DEBUGLOG(5, "HUF_setMaxHeight (targetNbBits = %u)", targetNbBits);
381
382 /* there are several too large elements (at least >= 2) */
383 { int totalCost = 0;
384 const U32 baseCost = 1 << (largestBits - targetNbBits);
385 int n = (int)lastNonNull;
386
387 /* Adjust any ranks > targetNbBits to targetNbBits.
388 * Compute totalCost, which is how far the sum of the ranks is
389 * we are over 2^largestBits after adjust the offending ranks.
390 */
391 while (huffNode[n].nbBits > targetNbBits) {
392 totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
393 huffNode[n].nbBits = (BYTE)targetNbBits;
394 n--;
395 }
396 /* n stops at huffNode[n].nbBits <= targetNbBits */
397 assert(huffNode[n].nbBits <= targetNbBits);
398 /* n end at index of smallest symbol using < targetNbBits */
399 while (huffNode[n].nbBits == targetNbBits) --n;
400
401 /* renorm totalCost from 2^largestBits to 2^targetNbBits
402 * note : totalCost is necessarily a multiple of baseCost */
403 assert(((U32)totalCost & (baseCost - 1)) == 0);
404 totalCost >>= (largestBits - targetNbBits);
405 assert(totalCost > 0);
406
407 /* repay normalized cost */
408 { U32 const noSymbol = 0xF0F0F0F0;
409 U32 rankLast[HUF_TABLELOG_MAX+2];
410
411 /* Get pos of last (smallest = lowest cum. count) symbol per rank */
412 ZSTD_memset(rankLast, 0xF0, sizeof(rankLast));
413 { U32 currentNbBits = targetNbBits;
414 int pos;
415 for (pos=n ; pos >= 0; pos--) {
416 if (huffNode[pos].nbBits >= currentNbBits) continue;
417 currentNbBits = huffNode[pos].nbBits; /* < targetNbBits */
418 rankLast[targetNbBits-currentNbBits] = (U32)pos;
419 } }
420
421 while (totalCost > 0) {
422 /* Try to reduce the next power of 2 above totalCost because we
423 * gain back half the rank.
424 */
425 U32 nBitsToDecrease = ZSTD_highbit32((U32)totalCost) + 1;
426 for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
427 U32 const highPos = rankLast[nBitsToDecrease];
428 U32 const lowPos = rankLast[nBitsToDecrease-1];
429 if (highPos == noSymbol) continue;
430 /* Decrease highPos if no symbols of lowPos or if it is
431 * not cheaper to remove 2 lowPos than highPos.
432 */
433 if (lowPos == noSymbol) break;
434 { U32 const highTotal = huffNode[highPos].count;
435 U32 const lowTotal = 2 * huffNode[lowPos].count;
436 if (highTotal <= lowTotal) break;
437 } }
438 /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
439 assert(rankLast[nBitsToDecrease] != noSymbol || nBitsToDecrease == 1);
440 /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
441 while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))
442 nBitsToDecrease++;
443 assert(rankLast[nBitsToDecrease] != noSymbol);
444 /* Increase the number of bits to gain back half the rank cost. */
445 totalCost -= 1 << (nBitsToDecrease-1);
446 huffNode[rankLast[nBitsToDecrease]].nbBits++;
447
448 /* Fix up the new rank.
449 * If the new rank was empty, this symbol is now its smallest.
450 * Otherwise, this symbol will be the largest in the new rank so no adjustment.
451 */
452 if (rankLast[nBitsToDecrease-1] == noSymbol)
453 rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease];
454 /* Fix up the old rank.
455 * If the symbol was at position 0, meaning it was the highest weight symbol in the tree,
456 * it must be the only symbol in its rank, so the old rank now has no symbols.
457 * Otherwise, since the Huffman nodes are sorted by count, the previous position is now
458 * the smallest node in the rank. If the previous position belongs to a different rank,
459 * then the rank is now empty.
460 */
461 if (rankLast[nBitsToDecrease] == 0) /* special case, reached largest symbol */
462 rankLast[nBitsToDecrease] = noSymbol;
463 else {
464 rankLast[nBitsToDecrease]--;
465 if (huffNode[rankLast[nBitsToDecrease]].nbBits != targetNbBits-nBitsToDecrease)
466 rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */
467 }
468 } /* while (totalCost > 0) */
469
470 /* If we've removed too much weight, then we have to add it back.
471 * To avoid overshooting again, we only adjust the smallest rank.
472 * We take the largest nodes from the lowest rank 0 and move them
473 * to rank 1. There's guaranteed to be enough rank 0 symbols because
474 * TODO.
475 */
476 while (totalCost < 0) { /* Sometimes, cost correction overshoot */
477 /* special case : no rank 1 symbol (using targetNbBits-1);
478 * let's create one from largest rank 0 (using targetNbBits).
479 */
480 if (rankLast[1] == noSymbol) {
481 while (huffNode[n].nbBits == targetNbBits) n--;
482 huffNode[n+1].nbBits--;
483 assert(n >= 0);
484 rankLast[1] = (U32)(n+1);
485 totalCost++;
486 continue;
487 }
488 huffNode[ rankLast[1] + 1 ].nbBits--;
489 rankLast[1]++;
490 totalCost ++;
491 }
492 } /* repay normalized cost */
493 } /* there are several too large elements (at least >= 2) */
494
495 return targetNbBits;
496 }
497
498 typedef struct {
499 U16 base;
500 U16 curr;
501 } rankPos;
502
503 typedef nodeElt huffNodeTable[2 * (HUF_SYMBOLVALUE_MAX + 1)];
504
505 /* Number of buckets available for HUF_sort() */
506 #define RANK_POSITION_TABLE_SIZE 192
507
508 typedef struct {
509 huffNodeTable huffNodeTbl;
510 rankPos rankPosition[RANK_POSITION_TABLE_SIZE];
511 } HUF_buildCTable_wksp_tables;
512
513 /* RANK_POSITION_DISTINCT_COUNT_CUTOFF == Cutoff point in HUF_sort() buckets for which we use log2 bucketing.
514 * Strategy is to use as many buckets as possible for representing distinct
515 * counts while using the remainder to represent all "large" counts.
516 *
517 * To satisfy this requirement for 192 buckets, we can do the following:
518 * Let buckets 0-166 represent distinct counts of [0, 166]
519 * Let buckets 166 to 192 represent all remaining counts up to RANK_POSITION_MAX_COUNT_LOG using log2 bucketing.
520 */
521 #define RANK_POSITION_MAX_COUNT_LOG 32
522 #define RANK_POSITION_LOG_BUCKETS_BEGIN ((RANK_POSITION_TABLE_SIZE - 1) - RANK_POSITION_MAX_COUNT_LOG - 1 /* == 158 */)
523 #define RANK_POSITION_DISTINCT_COUNT_CUTOFF (RANK_POSITION_LOG_BUCKETS_BEGIN + ZSTD_highbit32(RANK_POSITION_LOG_BUCKETS_BEGIN) /* == 166 */)
524
525 /* Return the appropriate bucket index for a given count. See definition of
526 * RANK_POSITION_DISTINCT_COUNT_CUTOFF for explanation of bucketing strategy.
527 */
HUF_getIndex(U32 const count)528 static U32 HUF_getIndex(U32 const count) {
529 return (count < RANK_POSITION_DISTINCT_COUNT_CUTOFF)
530 ? count
531 : ZSTD_highbit32(count) + RANK_POSITION_LOG_BUCKETS_BEGIN;
532 }
533
534 /* Helper swap function for HUF_quickSortPartition() */
HUF_swapNodes(nodeElt * a,nodeElt * b)535 static void HUF_swapNodes(nodeElt* a, nodeElt* b) {
536 nodeElt tmp = *a;
537 *a = *b;
538 *b = tmp;
539 }
540
541 /* Returns 0 if the huffNode array is not sorted by descending count */
HUF_isSorted(nodeElt huffNode[],U32 const maxSymbolValue1)542 MEM_STATIC int HUF_isSorted(nodeElt huffNode[], U32 const maxSymbolValue1) {
543 U32 i;
544 for (i = 1; i < maxSymbolValue1; ++i) {
545 if (huffNode[i].count > huffNode[i-1].count) {
546 return 0;
547 }
548 }
549 return 1;
550 }
551
552 /* Insertion sort by descending order */
HUF_insertionSort(nodeElt huffNode[],int const low,int const high)553 HINT_INLINE void HUF_insertionSort(nodeElt huffNode[], int const low, int const high) {
554 int i;
555 int const size = high-low+1;
556 huffNode += low;
557 for (i = 1; i < size; ++i) {
558 nodeElt const key = huffNode[i];
559 int j = i - 1;
560 while (j >= 0 && huffNode[j].count < key.count) {
561 huffNode[j + 1] = huffNode[j];
562 j--;
563 }
564 huffNode[j + 1] = key;
565 }
566 }
567
568 /* Pivot helper function for quicksort. */
HUF_quickSortPartition(nodeElt arr[],int const low,int const high)569 static int HUF_quickSortPartition(nodeElt arr[], int const low, int const high) {
570 /* Simply select rightmost element as pivot. "Better" selectors like
571 * median-of-three don't experimentally appear to have any benefit.
572 */
573 U32 const pivot = arr[high].count;
574 int i = low - 1;
575 int j = low;
576 for ( ; j < high; j++) {
577 if (arr[j].count > pivot) {
578 i++;
579 HUF_swapNodes(&arr[i], &arr[j]);
580 }
581 }
582 HUF_swapNodes(&arr[i + 1], &arr[high]);
583 return i + 1;
584 }
585
586 /* Classic quicksort by descending with partially iterative calls
587 * to reduce worst case callstack size.
588 */
HUF_simpleQuickSort(nodeElt arr[],int low,int high)589 static void HUF_simpleQuickSort(nodeElt arr[], int low, int high) {
590 int const kInsertionSortThreshold = 8;
591 if (high - low < kInsertionSortThreshold) {
592 HUF_insertionSort(arr, low, high);
593 return;
594 }
595 while (low < high) {
596 int const idx = HUF_quickSortPartition(arr, low, high);
597 if (idx - low < high - idx) {
598 HUF_simpleQuickSort(arr, low, idx - 1);
599 low = idx + 1;
600 } else {
601 HUF_simpleQuickSort(arr, idx + 1, high);
602 high = idx - 1;
603 }
604 }
605 }
606
607 /*
608 * HUF_sort():
609 * Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order.
610 * This is a typical bucket sorting strategy that uses either quicksort or insertion sort to sort each bucket.
611 *
612 * @param[out] huffNode Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled.
613 * Must have (maxSymbolValue + 1) entries.
614 * @param[in] count Histogram of the symbols.
615 * @param[in] maxSymbolValue Maximum symbol value.
616 * @param rankPosition This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries.
617 */
HUF_sort(nodeElt huffNode[],const unsigned count[],U32 const maxSymbolValue,rankPos rankPosition[])618 static void HUF_sort(nodeElt huffNode[], const unsigned count[], U32 const maxSymbolValue, rankPos rankPosition[]) {
619 U32 n;
620 U32 const maxSymbolValue1 = maxSymbolValue+1;
621
622 /* Compute base and set curr to base.
623 * For symbol s let lowerRank = HUF_getIndex(count[n]) and rank = lowerRank + 1.
624 * See HUF_getIndex to see bucketing strategy.
625 * We attribute each symbol to lowerRank's base value, because we want to know where
626 * each rank begins in the output, so for rank R we want to count ranks R+1 and above.
627 */
628 ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE);
629 for (n = 0; n < maxSymbolValue1; ++n) {
630 U32 lowerRank = HUF_getIndex(count[n]);
631 assert(lowerRank < RANK_POSITION_TABLE_SIZE - 1);
632 rankPosition[lowerRank].base++;
633 }
634
635 assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0);
636 /* Set up the rankPosition table */
637 for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) {
638 rankPosition[n-1].base += rankPosition[n].base;
639 rankPosition[n-1].curr = rankPosition[n-1].base;
640 }
641
642 /* Insert each symbol into their appropriate bucket, setting up rankPosition table. */
643 for (n = 0; n < maxSymbolValue1; ++n) {
644 U32 const c = count[n];
645 U32 const r = HUF_getIndex(c) + 1;
646 U32 const pos = rankPosition[r].curr++;
647 assert(pos < maxSymbolValue1);
648 huffNode[pos].count = c;
649 huffNode[pos].byte = (BYTE)n;
650 }
651
652 /* Sort each bucket. */
653 for (n = RANK_POSITION_DISTINCT_COUNT_CUTOFF; n < RANK_POSITION_TABLE_SIZE - 1; ++n) {
654 int const bucketSize = rankPosition[n].curr - rankPosition[n].base;
655 U32 const bucketStartIdx = rankPosition[n].base;
656 if (bucketSize > 1) {
657 assert(bucketStartIdx < maxSymbolValue1);
658 HUF_simpleQuickSort(huffNode + bucketStartIdx, 0, bucketSize-1);
659 }
660 }
661
662 assert(HUF_isSorted(huffNode, maxSymbolValue1));
663 }
664
665
666 /* HUF_buildCTable_wksp() :
667 * Same as HUF_buildCTable(), but using externally allocated scratch buffer.
668 * `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables).
669 */
670 #define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
671
672 /* HUF_buildTree():
673 * Takes the huffNode array sorted by HUF_sort() and builds an unlimited-depth Huffman tree.
674 *
675 * @param huffNode The array sorted by HUF_sort(). Builds the Huffman tree in this array.
676 * @param maxSymbolValue The maximum symbol value.
677 * @return The smallest node in the Huffman tree (by count).
678 */
HUF_buildTree(nodeElt * huffNode,U32 maxSymbolValue)679 static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue)
680 {
681 nodeElt* const huffNode0 = huffNode - 1;
682 int nonNullRank;
683 int lowS, lowN;
684 int nodeNb = STARTNODE;
685 int n, nodeRoot;
686 DEBUGLOG(5, "HUF_buildTree (alphabet size = %u)", maxSymbolValue + 1);
687 /* init for parents */
688 nonNullRank = (int)maxSymbolValue;
689 while(huffNode[nonNullRank].count == 0) nonNullRank--;
690 lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
691 huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
692 huffNode[lowS].parent = huffNode[lowS-1].parent = (U16)nodeNb;
693 nodeNb++; lowS-=2;
694 for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
695 huffNode0[0].count = (U32)(1U<<31); /* fake entry, strong barrier */
696
697 /* create parents */
698 while (nodeNb <= nodeRoot) {
699 int const n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
700 int const n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
701 huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
702 huffNode[n1].parent = huffNode[n2].parent = (U16)nodeNb;
703 nodeNb++;
704 }
705
706 /* distribute weights (unlimited tree height) */
707 huffNode[nodeRoot].nbBits = 0;
708 for (n=nodeRoot-1; n>=STARTNODE; n--)
709 huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
710 for (n=0; n<=nonNullRank; n++)
711 huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
712
713 DEBUGLOG(6, "Initial distribution of bits completed (%zu sorted symbols)", showHNodeBits(huffNode, maxSymbolValue+1));
714
715 return nonNullRank;
716 }
717
718 /*
719 * HUF_buildCTableFromTree():
720 * Build the CTable given the Huffman tree in huffNode.
721 *
722 * @param[out] CTable The output Huffman CTable.
723 * @param huffNode The Huffman tree.
724 * @param nonNullRank The last and smallest node in the Huffman tree.
725 * @param maxSymbolValue The maximum symbol value.
726 * @param maxNbBits The exact maximum number of bits used in the Huffman tree.
727 */
HUF_buildCTableFromTree(HUF_CElt * CTable,nodeElt const * huffNode,int nonNullRank,U32 maxSymbolValue,U32 maxNbBits)728 static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits)
729 {
730 HUF_CElt* const ct = CTable + 1;
731 /* fill result into ctable (val, nbBits) */
732 int n;
733 U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
734 U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
735 int const alphabetSize = (int)(maxSymbolValue + 1);
736 for (n=0; n<=nonNullRank; n++)
737 nbPerRank[huffNode[n].nbBits]++;
738 /* determine starting value per rank */
739 { U16 min = 0;
740 for (n=(int)maxNbBits; n>0; n--) {
741 valPerRank[n] = min; /* get starting value within each rank */
742 min += nbPerRank[n];
743 min >>= 1;
744 } }
745 for (n=0; n<alphabetSize; n++)
746 HUF_setNbBits(ct + huffNode[n].byte, huffNode[n].nbBits); /* push nbBits per symbol, symbol order */
747 for (n=0; n<alphabetSize; n++)
748 HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++); /* assign value within rank, symbol order */
749
750 HUF_writeCTableHeader(CTable, maxNbBits, maxSymbolValue);
751 }
752
753 size_t
HUF_buildCTable_wksp(HUF_CElt * CTable,const unsigned * count,U32 maxSymbolValue,U32 maxNbBits,void * workSpace,size_t wkspSize)754 HUF_buildCTable_wksp(HUF_CElt* CTable, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits,
755 void* workSpace, size_t wkspSize)
756 {
757 HUF_buildCTable_wksp_tables* const wksp_tables =
758 (HUF_buildCTable_wksp_tables*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(U32));
759 nodeElt* const huffNode0 = wksp_tables->huffNodeTbl;
760 nodeElt* const huffNode = huffNode0+1;
761 int nonNullRank;
762
763 HUF_STATIC_ASSERT(HUF_CTABLE_WORKSPACE_SIZE == sizeof(HUF_buildCTable_wksp_tables));
764
765 DEBUGLOG(5, "HUF_buildCTable_wksp (alphabet size = %u)", maxSymbolValue+1);
766
767 /* safety checks */
768 if (wkspSize < sizeof(HUF_buildCTable_wksp_tables))
769 return ERROR(workSpace_tooSmall);
770 if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
771 if (maxSymbolValue > HUF_SYMBOLVALUE_MAX)
772 return ERROR(maxSymbolValue_tooLarge);
773 ZSTD_memset(huffNode0, 0, sizeof(huffNodeTable));
774
775 /* sort, decreasing order */
776 HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition);
777 DEBUGLOG(6, "sorted symbols completed (%zu symbols)", showHNodeSymbols(huffNode, maxSymbolValue+1));
778
779 /* build tree */
780 nonNullRank = HUF_buildTree(huffNode, maxSymbolValue);
781
782 /* determine and enforce maxTableLog */
783 maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits);
784 if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC); /* check fit into table */
785
786 HUF_buildCTableFromTree(CTable, huffNode, nonNullRank, maxSymbolValue, maxNbBits);
787
788 return maxNbBits;
789 }
790
HUF_estimateCompressedSize(const HUF_CElt * CTable,const unsigned * count,unsigned maxSymbolValue)791 size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
792 {
793 HUF_CElt const* ct = CTable + 1;
794 size_t nbBits = 0;
795 int s;
796 for (s = 0; s <= (int)maxSymbolValue; ++s) {
797 nbBits += HUF_getNbBits(ct[s]) * count[s];
798 }
799 return nbBits >> 3;
800 }
801
HUF_validateCTable(const HUF_CElt * CTable,const unsigned * count,unsigned maxSymbolValue)802 int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
803 HUF_CTableHeader header = HUF_readCTableHeader(CTable);
804 HUF_CElt const* ct = CTable + 1;
805 int bad = 0;
806 int s;
807
808 assert(header.tableLog <= HUF_TABLELOG_ABSOLUTEMAX);
809
810 if (header.maxSymbolValue < maxSymbolValue)
811 return 0;
812
813 for (s = 0; s <= (int)maxSymbolValue; ++s) {
814 bad |= (count[s] != 0) & (HUF_getNbBits(ct[s]) == 0);
815 }
816 return !bad;
817 }
818
HUF_compressBound(size_t size)819 size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
820
821 /* HUF_CStream_t:
822 * Huffman uses its own BIT_CStream_t implementation.
823 * There are three major differences from BIT_CStream_t:
824 * 1. HUF_addBits() takes a HUF_CElt (size_t) which is
825 * the pair (nbBits, value) in the format:
826 * format:
827 * - Bits [0, 4) = nbBits
828 * - Bits [4, 64 - nbBits) = 0
829 * - Bits [64 - nbBits, 64) = value
830 * 2. The bitContainer is built from the upper bits and
831 * right shifted. E.g. to add a new value of N bits
832 * you right shift the bitContainer by N, then or in
833 * the new value into the N upper bits.
834 * 3. The bitstream has two bit containers. You can add
835 * bits to the second container and merge them into
836 * the first container.
837 */
838
839 #define HUF_BITS_IN_CONTAINER (sizeof(size_t) * 8)
840
841 typedef struct {
842 size_t bitContainer[2];
843 size_t bitPos[2];
844
845 BYTE* startPtr;
846 BYTE* ptr;
847 BYTE* endPtr;
848 } HUF_CStream_t;
849
850 /*! HUF_initCStream():
851 * Initializes the bitstream.
852 * @returns 0 or an error code.
853 */
HUF_initCStream(HUF_CStream_t * bitC,void * startPtr,size_t dstCapacity)854 static size_t HUF_initCStream(HUF_CStream_t* bitC,
855 void* startPtr, size_t dstCapacity)
856 {
857 ZSTD_memset(bitC, 0, sizeof(*bitC));
858 bitC->startPtr = (BYTE*)startPtr;
859 bitC->ptr = bitC->startPtr;
860 bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer[0]);
861 if (dstCapacity <= sizeof(bitC->bitContainer[0])) return ERROR(dstSize_tooSmall);
862 return 0;
863 }
864
865 /*! HUF_addBits():
866 * Adds the symbol stored in HUF_CElt elt to the bitstream.
867 *
868 * @param elt The element we're adding. This is a (nbBits, value) pair.
869 * See the HUF_CStream_t docs for the format.
870 * @param idx Insert into the bitstream at this idx.
871 * @param kFast This is a template parameter. If the bitstream is guaranteed
872 * to have at least 4 unused bits after this call it may be 1,
873 * otherwise it must be 0. HUF_addBits() is faster when fast is set.
874 */
HUF_addBits(HUF_CStream_t * bitC,HUF_CElt elt,int idx,int kFast)875 FORCE_INLINE_TEMPLATE void HUF_addBits(HUF_CStream_t* bitC, HUF_CElt elt, int idx, int kFast)
876 {
877 assert(idx <= 1);
878 assert(HUF_getNbBits(elt) <= HUF_TABLELOG_ABSOLUTEMAX);
879 /* This is efficient on x86-64 with BMI2 because shrx
880 * only reads the low 6 bits of the register. The compiler
881 * knows this and elides the mask. When fast is set,
882 * every operation can use the same value loaded from elt.
883 */
884 bitC->bitContainer[idx] >>= HUF_getNbBits(elt);
885 bitC->bitContainer[idx] |= kFast ? HUF_getValueFast(elt) : HUF_getValue(elt);
886 /* We only read the low 8 bits of bitC->bitPos[idx] so it
887 * doesn't matter that the high bits have noise from the value.
888 */
889 bitC->bitPos[idx] += HUF_getNbBitsFast(elt);
890 assert((bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER);
891 /* The last 4-bits of elt are dirty if fast is set,
892 * so we must not be overwriting bits that have already been
893 * inserted into the bit container.
894 */
895 #if DEBUGLEVEL >= 1
896 {
897 size_t const nbBits = HUF_getNbBits(elt);
898 size_t const dirtyBits = nbBits == 0 ? 0 : ZSTD_highbit32((U32)nbBits) + 1;
899 (void)dirtyBits;
900 /* Middle bits are 0. */
901 assert(((elt >> dirtyBits) << (dirtyBits + nbBits)) == 0);
902 /* We didn't overwrite any bits in the bit container. */
903 assert(!kFast || (bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER);
904 (void)dirtyBits;
905 }
906 #endif
907 }
908
HUF_zeroIndex1(HUF_CStream_t * bitC)909 FORCE_INLINE_TEMPLATE void HUF_zeroIndex1(HUF_CStream_t* bitC)
910 {
911 bitC->bitContainer[1] = 0;
912 bitC->bitPos[1] = 0;
913 }
914
915 /*! HUF_mergeIndex1() :
916 * Merges the bit container @ index 1 into the bit container @ index 0
917 * and zeros the bit container @ index 1.
918 */
HUF_mergeIndex1(HUF_CStream_t * bitC)919 FORCE_INLINE_TEMPLATE void HUF_mergeIndex1(HUF_CStream_t* bitC)
920 {
921 assert((bitC->bitPos[1] & 0xFF) < HUF_BITS_IN_CONTAINER);
922 bitC->bitContainer[0] >>= (bitC->bitPos[1] & 0xFF);
923 bitC->bitContainer[0] |= bitC->bitContainer[1];
924 bitC->bitPos[0] += bitC->bitPos[1];
925 assert((bitC->bitPos[0] & 0xFF) <= HUF_BITS_IN_CONTAINER);
926 }
927
928 /*! HUF_flushBits() :
929 * Flushes the bits in the bit container @ index 0.
930 *
931 * @post bitPos will be < 8.
932 * @param kFast If kFast is set then we must know a-priori that
933 * the bit container will not overflow.
934 */
HUF_flushBits(HUF_CStream_t * bitC,int kFast)935 FORCE_INLINE_TEMPLATE void HUF_flushBits(HUF_CStream_t* bitC, int kFast)
936 {
937 /* The upper bits of bitPos are noisy, so we must mask by 0xFF. */
938 size_t const nbBits = bitC->bitPos[0] & 0xFF;
939 size_t const nbBytes = nbBits >> 3;
940 /* The top nbBits bits of bitContainer are the ones we need. */
941 size_t const bitContainer = bitC->bitContainer[0] >> (HUF_BITS_IN_CONTAINER - nbBits);
942 /* Mask bitPos to account for the bytes we consumed. */
943 bitC->bitPos[0] &= 7;
944 assert(nbBits > 0);
945 assert(nbBits <= sizeof(bitC->bitContainer[0]) * 8);
946 assert(bitC->ptr <= bitC->endPtr);
947 MEM_writeLEST(bitC->ptr, bitContainer);
948 bitC->ptr += nbBytes;
949 assert(!kFast || bitC->ptr <= bitC->endPtr);
950 if (!kFast && bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;
951 /* bitContainer doesn't need to be modified because the leftover
952 * bits are already the top bitPos bits. And we don't care about
953 * noise in the lower values.
954 */
955 }
956
957 /*! HUF_endMark()
958 * @returns The Huffman stream end mark: A 1-bit value = 1.
959 */
HUF_endMark(void)960 static HUF_CElt HUF_endMark(void)
961 {
962 HUF_CElt endMark;
963 HUF_setNbBits(&endMark, 1);
964 HUF_setValue(&endMark, 1);
965 return endMark;
966 }
967
968 /*! HUF_closeCStream() :
969 * @return Size of CStream, in bytes,
970 * or 0 if it could not fit into dstBuffer */
HUF_closeCStream(HUF_CStream_t * bitC)971 static size_t HUF_closeCStream(HUF_CStream_t* bitC)
972 {
973 HUF_addBits(bitC, HUF_endMark(), /* idx */ 0, /* kFast */ 0);
974 HUF_flushBits(bitC, /* kFast */ 0);
975 {
976 size_t const nbBits = bitC->bitPos[0] & 0xFF;
977 if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */
978 return (size_t)(bitC->ptr - bitC->startPtr) + (nbBits > 0);
979 }
980 }
981
982 FORCE_INLINE_TEMPLATE void
HUF_encodeSymbol(HUF_CStream_t * bitCPtr,U32 symbol,const HUF_CElt * CTable,int idx,int fast)983 HUF_encodeSymbol(HUF_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable, int idx, int fast)
984 {
985 HUF_addBits(bitCPtr, CTable[symbol], idx, fast);
986 }
987
988 FORCE_INLINE_TEMPLATE void
HUF_compress1X_usingCTable_internal_body_loop(HUF_CStream_t * bitC,const BYTE * ip,size_t srcSize,const HUF_CElt * ct,int kUnroll,int kFastFlush,int kLastFast)989 HUF_compress1X_usingCTable_internal_body_loop(HUF_CStream_t* bitC,
990 const BYTE* ip, size_t srcSize,
991 const HUF_CElt* ct,
992 int kUnroll, int kFastFlush, int kLastFast)
993 {
994 /* Join to kUnroll */
995 int n = (int)srcSize;
996 int rem = n % kUnroll;
997 if (rem > 0) {
998 for (; rem > 0; --rem) {
999 HUF_encodeSymbol(bitC, ip[--n], ct, 0, /* fast */ 0);
1000 }
1001 HUF_flushBits(bitC, kFastFlush);
1002 }
1003 assert(n % kUnroll == 0);
1004
1005 /* Join to 2 * kUnroll */
1006 if (n % (2 * kUnroll)) {
1007 int u;
1008 for (u = 1; u < kUnroll; ++u) {
1009 HUF_encodeSymbol(bitC, ip[n - u], ct, 0, 1);
1010 }
1011 HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, 0, kLastFast);
1012 HUF_flushBits(bitC, kFastFlush);
1013 n -= kUnroll;
1014 }
1015 assert(n % (2 * kUnroll) == 0);
1016
1017 for (; n>0; n-= 2 * kUnroll) {
1018 /* Encode kUnroll symbols into the bitstream @ index 0. */
1019 int u;
1020 for (u = 1; u < kUnroll; ++u) {
1021 HUF_encodeSymbol(bitC, ip[n - u], ct, /* idx */ 0, /* fast */ 1);
1022 }
1023 HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, /* idx */ 0, /* fast */ kLastFast);
1024 HUF_flushBits(bitC, kFastFlush);
1025 /* Encode kUnroll symbols into the bitstream @ index 1.
1026 * This allows us to start filling the bit container
1027 * without any data dependencies.
1028 */
1029 HUF_zeroIndex1(bitC);
1030 for (u = 1; u < kUnroll; ++u) {
1031 HUF_encodeSymbol(bitC, ip[n - kUnroll - u], ct, /* idx */ 1, /* fast */ 1);
1032 }
1033 HUF_encodeSymbol(bitC, ip[n - kUnroll - kUnroll], ct, /* idx */ 1, /* fast */ kLastFast);
1034 /* Merge bitstream @ index 1 into the bitstream @ index 0 */
1035 HUF_mergeIndex1(bitC);
1036 HUF_flushBits(bitC, kFastFlush);
1037 }
1038 assert(n == 0);
1039
1040 }
1041
1042 /*
1043 * Returns a tight upper bound on the output space needed by Huffman
1044 * with 8 bytes buffer to handle over-writes. If the output is at least
1045 * this large we don't need to do bounds checks during Huffman encoding.
1046 */
HUF_tightCompressBound(size_t srcSize,size_t tableLog)1047 static size_t HUF_tightCompressBound(size_t srcSize, size_t tableLog)
1048 {
1049 return ((srcSize * tableLog) >> 3) + 8;
1050 }
1051
1052
1053 FORCE_INLINE_TEMPLATE size_t
HUF_compress1X_usingCTable_internal_body(void * dst,size_t dstSize,const void * src,size_t srcSize,const HUF_CElt * CTable)1054 HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
1055 const void* src, size_t srcSize,
1056 const HUF_CElt* CTable)
1057 {
1058 U32 const tableLog = HUF_readCTableHeader(CTable).tableLog;
1059 HUF_CElt const* ct = CTable + 1;
1060 const BYTE* ip = (const BYTE*) src;
1061 BYTE* const ostart = (BYTE*)dst;
1062 BYTE* const oend = ostart + dstSize;
1063 HUF_CStream_t bitC;
1064
1065 /* init */
1066 if (dstSize < 8) return 0; /* not enough space to compress */
1067 { BYTE* op = ostart;
1068 size_t const initErr = HUF_initCStream(&bitC, op, (size_t)(oend-op));
1069 if (HUF_isError(initErr)) return 0; }
1070
1071 if (dstSize < HUF_tightCompressBound(srcSize, (size_t)tableLog) || tableLog > 11)
1072 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ MEM_32bits() ? 2 : 4, /* kFast */ 0, /* kLastFast */ 0);
1073 else {
1074 if (MEM_32bits()) {
1075 switch (tableLog) {
1076 case 11:
1077 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 0);
1078 break;
1079 case 10: ZSTD_FALLTHROUGH;
1080 case 9: ZSTD_FALLTHROUGH;
1081 case 8:
1082 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 1);
1083 break;
1084 case 7: ZSTD_FALLTHROUGH;
1085 default:
1086 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 3, /* kFastFlush */ 1, /* kLastFast */ 1);
1087 break;
1088 }
1089 } else {
1090 switch (tableLog) {
1091 case 11:
1092 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 0);
1093 break;
1094 case 10:
1095 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 1);
1096 break;
1097 case 9:
1098 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 6, /* kFastFlush */ 1, /* kLastFast */ 0);
1099 break;
1100 case 8:
1101 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 7, /* kFastFlush */ 1, /* kLastFast */ 0);
1102 break;
1103 case 7:
1104 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 8, /* kFastFlush */ 1, /* kLastFast */ 0);
1105 break;
1106 case 6: ZSTD_FALLTHROUGH;
1107 default:
1108 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 9, /* kFastFlush */ 1, /* kLastFast */ 1);
1109 break;
1110 }
1111 }
1112 }
1113 assert(bitC.ptr <= bitC.endPtr);
1114
1115 return HUF_closeCStream(&bitC);
1116 }
1117
1118 #if DYNAMIC_BMI2
1119
1120 static BMI2_TARGET_ATTRIBUTE size_t
HUF_compress1X_usingCTable_internal_bmi2(void * dst,size_t dstSize,const void * src,size_t srcSize,const HUF_CElt * CTable)1121 HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize,
1122 const void* src, size_t srcSize,
1123 const HUF_CElt* CTable)
1124 {
1125 return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
1126 }
1127
1128 static size_t
HUF_compress1X_usingCTable_internal_default(void * dst,size_t dstSize,const void * src,size_t srcSize,const HUF_CElt * CTable)1129 HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize,
1130 const void* src, size_t srcSize,
1131 const HUF_CElt* CTable)
1132 {
1133 return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
1134 }
1135
1136 static size_t
HUF_compress1X_usingCTable_internal(void * dst,size_t dstSize,const void * src,size_t srcSize,const HUF_CElt * CTable,const int flags)1137 HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
1138 const void* src, size_t srcSize,
1139 const HUF_CElt* CTable, const int flags)
1140 {
1141 if (flags & HUF_flags_bmi2) {
1142 return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable);
1143 }
1144 return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable);
1145 }
1146
1147 #else
1148
1149 static size_t
HUF_compress1X_usingCTable_internal(void * dst,size_t dstSize,const void * src,size_t srcSize,const HUF_CElt * CTable,const int flags)1150 HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
1151 const void* src, size_t srcSize,
1152 const HUF_CElt* CTable, const int flags)
1153 {
1154 (void)flags;
1155 return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
1156 }
1157
1158 #endif
1159
HUF_compress1X_usingCTable(void * dst,size_t dstSize,const void * src,size_t srcSize,const HUF_CElt * CTable,int flags)1160 size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int flags)
1161 {
1162 return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, flags);
1163 }
1164
1165 static size_t
HUF_compress4X_usingCTable_internal(void * dst,size_t dstSize,const void * src,size_t srcSize,const HUF_CElt * CTable,int flags)1166 HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
1167 const void* src, size_t srcSize,
1168 const HUF_CElt* CTable, int flags)
1169 {
1170 size_t const segmentSize = (srcSize+3)/4; /* first 3 segments */
1171 const BYTE* ip = (const BYTE*) src;
1172 const BYTE* const iend = ip + srcSize;
1173 BYTE* const ostart = (BYTE*) dst;
1174 BYTE* const oend = ostart + dstSize;
1175 BYTE* op = ostart;
1176
1177 if (dstSize < 6 + 1 + 1 + 1 + 8) return 0; /* minimum space to compress successfully */
1178 if (srcSize < 12) return 0; /* no saving possible : too small input */
1179 op += 6; /* jumpTable */
1180
1181 assert(op <= oend);
1182 { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, flags) );
1183 if (cSize == 0 || cSize > 65535) return 0;
1184 MEM_writeLE16(ostart, (U16)cSize);
1185 op += cSize;
1186 }
1187
1188 ip += segmentSize;
1189 assert(op <= oend);
1190 { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, flags) );
1191 if (cSize == 0 || cSize > 65535) return 0;
1192 MEM_writeLE16(ostart+2, (U16)cSize);
1193 op += cSize;
1194 }
1195
1196 ip += segmentSize;
1197 assert(op <= oend);
1198 { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, flags) );
1199 if (cSize == 0 || cSize > 65535) return 0;
1200 MEM_writeLE16(ostart+4, (U16)cSize);
1201 op += cSize;
1202 }
1203
1204 ip += segmentSize;
1205 assert(op <= oend);
1206 assert(ip <= iend);
1207 { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, flags) );
1208 if (cSize == 0 || cSize > 65535) return 0;
1209 op += cSize;
1210 }
1211
1212 return (size_t)(op-ostart);
1213 }
1214
HUF_compress4X_usingCTable(void * dst,size_t dstSize,const void * src,size_t srcSize,const HUF_CElt * CTable,int flags)1215 size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int flags)
1216 {
1217 return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, flags);
1218 }
1219
1220 typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e;
1221
HUF_compressCTable_internal(BYTE * const ostart,BYTE * op,BYTE * const oend,const void * src,size_t srcSize,HUF_nbStreams_e nbStreams,const HUF_CElt * CTable,const int flags)1222 static size_t HUF_compressCTable_internal(
1223 BYTE* const ostart, BYTE* op, BYTE* const oend,
1224 const void* src, size_t srcSize,
1225 HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int flags)
1226 {
1227 size_t const cSize = (nbStreams==HUF_singleStream) ?
1228 HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, flags) :
1229 HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, flags);
1230 if (HUF_isError(cSize)) { return cSize; }
1231 if (cSize==0) { return 0; } /* uncompressible */
1232 op += cSize;
1233 /* check compressibility */
1234 assert(op >= ostart);
1235 if ((size_t)(op-ostart) >= srcSize-1) { return 0; }
1236 return (size_t)(op-ostart);
1237 }
1238
1239 typedef struct {
1240 unsigned count[HUF_SYMBOLVALUE_MAX + 1];
1241 HUF_CElt CTable[HUF_CTABLE_SIZE_ST(HUF_SYMBOLVALUE_MAX)];
1242 union {
1243 HUF_buildCTable_wksp_tables buildCTable_wksp;
1244 HUF_WriteCTableWksp writeCTable_wksp;
1245 U32 hist_wksp[HIST_WKSP_SIZE_U32];
1246 } wksps;
1247 } HUF_compress_tables_t;
1248
1249 #define SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE 4096
1250 #define SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO 10 /* Must be >= 2 */
1251
HUF_cardinality(const unsigned * count,unsigned maxSymbolValue)1252 unsigned HUF_cardinality(const unsigned* count, unsigned maxSymbolValue)
1253 {
1254 unsigned cardinality = 0;
1255 unsigned i;
1256
1257 for (i = 0; i < maxSymbolValue + 1; i++) {
1258 if (count[i] != 0) cardinality += 1;
1259 }
1260
1261 return cardinality;
1262 }
1263
HUF_minTableLog(unsigned symbolCardinality)1264 unsigned HUF_minTableLog(unsigned symbolCardinality)
1265 {
1266 U32 minBitsSymbols = ZSTD_highbit32(symbolCardinality) + 1;
1267 return minBitsSymbols;
1268 }
1269
HUF_optimalTableLog(unsigned maxTableLog,size_t srcSize,unsigned maxSymbolValue,void * workSpace,size_t wkspSize,HUF_CElt * table,const unsigned * count,int flags)1270 unsigned HUF_optimalTableLog(
1271 unsigned maxTableLog,
1272 size_t srcSize,
1273 unsigned maxSymbolValue,
1274 void* workSpace, size_t wkspSize,
1275 HUF_CElt* table,
1276 const unsigned* count,
1277 int flags)
1278 {
1279 assert(srcSize > 1); /* Not supported, RLE should be used instead */
1280 assert(wkspSize >= sizeof(HUF_buildCTable_wksp_tables));
1281
1282 if (!(flags & HUF_flags_optimalDepth)) {
1283 /* cheap evaluation, based on FSE */
1284 return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
1285 }
1286
1287 { BYTE* dst = (BYTE*)workSpace + sizeof(HUF_WriteCTableWksp);
1288 size_t dstSize = wkspSize - sizeof(HUF_WriteCTableWksp);
1289 size_t hSize, newSize;
1290 const unsigned symbolCardinality = HUF_cardinality(count, maxSymbolValue);
1291 const unsigned minTableLog = HUF_minTableLog(symbolCardinality);
1292 size_t optSize = ((size_t) ~0) - 1;
1293 unsigned optLog = maxTableLog, optLogGuess;
1294
1295 DEBUGLOG(6, "HUF_optimalTableLog: probing huf depth (srcSize=%zu)", srcSize);
1296
1297 /* Search until size increases */
1298 for (optLogGuess = minTableLog; optLogGuess <= maxTableLog; optLogGuess++) {
1299 DEBUGLOG(7, "checking for huffLog=%u", optLogGuess);
1300
1301 { size_t maxBits = HUF_buildCTable_wksp(table, count, maxSymbolValue, optLogGuess, workSpace, wkspSize);
1302 if (ERR_isError(maxBits)) continue;
1303
1304 if (maxBits < optLogGuess && optLogGuess > minTableLog) break;
1305
1306 hSize = HUF_writeCTable_wksp(dst, dstSize, table, maxSymbolValue, (U32)maxBits, workSpace, wkspSize);
1307 }
1308
1309 if (ERR_isError(hSize)) continue;
1310
1311 newSize = HUF_estimateCompressedSize(table, count, maxSymbolValue) + hSize;
1312
1313 if (newSize > optSize + 1) {
1314 break;
1315 }
1316
1317 if (newSize < optSize) {
1318 optSize = newSize;
1319 optLog = optLogGuess;
1320 }
1321 }
1322 assert(optLog <= HUF_TABLELOG_MAX);
1323 return optLog;
1324 }
1325 }
1326
1327 /* HUF_compress_internal() :
1328 * `workSpace_align4` must be aligned on 4-bytes boundaries,
1329 * and occupies the same space as a table of HUF_WORKSPACE_SIZE_U64 unsigned */
1330 static size_t
HUF_compress_internal(void * dst,size_t dstSize,const void * src,size_t srcSize,unsigned maxSymbolValue,unsigned huffLog,HUF_nbStreams_e nbStreams,void * workSpace,size_t wkspSize,HUF_CElt * oldHufTable,HUF_repeat * repeat,int flags)1331 HUF_compress_internal (void* dst, size_t dstSize,
1332 const void* src, size_t srcSize,
1333 unsigned maxSymbolValue, unsigned huffLog,
1334 HUF_nbStreams_e nbStreams,
1335 void* workSpace, size_t wkspSize,
1336 HUF_CElt* oldHufTable, HUF_repeat* repeat, int flags)
1337 {
1338 HUF_compress_tables_t* const table = (HUF_compress_tables_t*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(size_t));
1339 BYTE* const ostart = (BYTE*)dst;
1340 BYTE* const oend = ostart + dstSize;
1341 BYTE* op = ostart;
1342
1343 DEBUGLOG(5, "HUF_compress_internal (srcSize=%zu)", srcSize);
1344 HUF_STATIC_ASSERT(sizeof(*table) + HUF_WORKSPACE_MAX_ALIGNMENT <= HUF_WORKSPACE_SIZE);
1345
1346 /* checks & inits */
1347 if (wkspSize < sizeof(*table)) return ERROR(workSpace_tooSmall);
1348 if (!srcSize) return 0; /* Uncompressed */
1349 if (!dstSize) return 0; /* cannot fit anything within dst budget */
1350 if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* current block size limit */
1351 if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
1352 if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
1353 if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
1354 if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
1355
1356 /* Heuristic : If old table is valid, use it for small inputs */
1357 if ((flags & HUF_flags_preferRepeat) && repeat && *repeat == HUF_repeat_valid) {
1358 return HUF_compressCTable_internal(ostart, op, oend,
1359 src, srcSize,
1360 nbStreams, oldHufTable, flags);
1361 }
1362
1363 /* If uncompressible data is suspected, do a smaller sampling first */
1364 DEBUG_STATIC_ASSERT(SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO >= 2);
1365 if ((flags & HUF_flags_suspectUncompressible) && srcSize >= (SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE * SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO)) {
1366 size_t largestTotal = 0;
1367 DEBUGLOG(5, "input suspected incompressible : sampling to check");
1368 { unsigned maxSymbolValueBegin = maxSymbolValue;
1369 CHECK_V_F(largestBegin, HIST_count_simple (table->count, &maxSymbolValueBegin, (const BYTE*)src, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) );
1370 largestTotal += largestBegin;
1371 }
1372 { unsigned maxSymbolValueEnd = maxSymbolValue;
1373 CHECK_V_F(largestEnd, HIST_count_simple (table->count, &maxSymbolValueEnd, (const BYTE*)src + srcSize - SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) );
1374 largestTotal += largestEnd;
1375 }
1376 if (largestTotal <= ((2 * SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) >> 7)+4) return 0; /* heuristic : probably not compressible enough */
1377 }
1378
1379 /* Scan input and build symbol stats */
1380 { CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, table->wksps.hist_wksp, sizeof(table->wksps.hist_wksp)) );
1381 if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; } /* single symbol, rle */
1382 if (largest <= (srcSize >> 7)+4) return 0; /* heuristic : probably not compressible enough */
1383 }
1384 DEBUGLOG(6, "histogram detail completed (%zu symbols)", showU32(table->count, maxSymbolValue+1));
1385
1386 /* Check validity of previous table */
1387 if ( repeat
1388 && *repeat == HUF_repeat_check
1389 && !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) {
1390 *repeat = HUF_repeat_none;
1391 }
1392 /* Heuristic : use existing table for small inputs */
1393 if ((flags & HUF_flags_preferRepeat) && repeat && *repeat != HUF_repeat_none) {
1394 return HUF_compressCTable_internal(ostart, op, oend,
1395 src, srcSize,
1396 nbStreams, oldHufTable, flags);
1397 }
1398
1399 /* Build Huffman Tree */
1400 huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue, &table->wksps, sizeof(table->wksps), table->CTable, table->count, flags);
1401 { size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count,
1402 maxSymbolValue, huffLog,
1403 &table->wksps.buildCTable_wksp, sizeof(table->wksps.buildCTable_wksp));
1404 CHECK_F(maxBits);
1405 huffLog = (U32)maxBits;
1406 DEBUGLOG(6, "bit distribution completed (%zu symbols)", showCTableBits(table->CTable + 1, maxSymbolValue+1));
1407 }
1408
1409 /* Write table description header */
1410 { CHECK_V_F(hSize, HUF_writeCTable_wksp(op, dstSize, table->CTable, maxSymbolValue, huffLog,
1411 &table->wksps.writeCTable_wksp, sizeof(table->wksps.writeCTable_wksp)) );
1412 /* Check if using previous huffman table is beneficial */
1413 if (repeat && *repeat != HUF_repeat_none) {
1414 size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue);
1415 size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue);
1416 if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
1417 return HUF_compressCTable_internal(ostart, op, oend,
1418 src, srcSize,
1419 nbStreams, oldHufTable, flags);
1420 } }
1421
1422 /* Use the new huffman table */
1423 if (hSize + 12ul >= srcSize) { return 0; }
1424 op += hSize;
1425 if (repeat) { *repeat = HUF_repeat_none; }
1426 if (oldHufTable)
1427 ZSTD_memcpy(oldHufTable, table->CTable, sizeof(table->CTable)); /* Save new table */
1428 }
1429 return HUF_compressCTable_internal(ostart, op, oend,
1430 src, srcSize,
1431 nbStreams, table->CTable, flags);
1432 }
1433
HUF_compress1X_repeat(void * dst,size_t dstSize,const void * src,size_t srcSize,unsigned maxSymbolValue,unsigned huffLog,void * workSpace,size_t wkspSize,HUF_CElt * hufTable,HUF_repeat * repeat,int flags)1434 size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
1435 const void* src, size_t srcSize,
1436 unsigned maxSymbolValue, unsigned huffLog,
1437 void* workSpace, size_t wkspSize,
1438 HUF_CElt* hufTable, HUF_repeat* repeat, int flags)
1439 {
1440 DEBUGLOG(5, "HUF_compress1X_repeat (srcSize = %zu)", srcSize);
1441 return HUF_compress_internal(dst, dstSize, src, srcSize,
1442 maxSymbolValue, huffLog, HUF_singleStream,
1443 workSpace, wkspSize, hufTable,
1444 repeat, flags);
1445 }
1446
1447 /* HUF_compress4X_repeat():
1448 * compress input using 4 streams.
1449 * consider skipping quickly
1450 * reuse an existing huffman compression table */
HUF_compress4X_repeat(void * dst,size_t dstSize,const void * src,size_t srcSize,unsigned maxSymbolValue,unsigned huffLog,void * workSpace,size_t wkspSize,HUF_CElt * hufTable,HUF_repeat * repeat,int flags)1451 size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
1452 const void* src, size_t srcSize,
1453 unsigned maxSymbolValue, unsigned huffLog,
1454 void* workSpace, size_t wkspSize,
1455 HUF_CElt* hufTable, HUF_repeat* repeat, int flags)
1456 {
1457 DEBUGLOG(5, "HUF_compress4X_repeat (srcSize = %zu)", srcSize);
1458 return HUF_compress_internal(dst, dstSize, src, srcSize,
1459 maxSymbolValue, huffLog, HUF_fourStreams,
1460 workSpace, wkspSize,
1461 hufTable, repeat, flags);
1462 }
1463