1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * PXA168 ethernet driver.
4 * Most of the code is derived from mv643xx ethernet driver.
5 *
6 * Copyright (C) 2010 Marvell International Ltd.
7 * Sachin Sanap <ssanap@marvell.com>
8 * Zhangfei Gao <zgao6@marvell.com>
9 * Philip Rakity <prakity@marvell.com>
10 * Mark Brown <markb@marvell.com>
11 */
12
13 #include <linux/bitops.h>
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/etherdevice.h>
18 #include <linux/ethtool.h>
19 #include <linux/in.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/ip.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_net.h>
27 #include <linux/phy.h>
28 #include <linux/platform_device.h>
29 #include <linux/pxa168_eth.h>
30 #include <linux/tcp.h>
31 #include <linux/types.h>
32 #include <linux/udp.h>
33 #include <linux/workqueue.h>
34 #include <linux/pgtable.h>
35
36 #include <asm/cacheflush.h>
37
38 #define DRIVER_NAME "pxa168-eth"
39 #define DRIVER_VERSION "0.3"
40
41 /*
42 * Registers
43 */
44
45 #define PHY_ADDRESS 0x0000
46 #define SMI 0x0010
47 #define PORT_CONFIG 0x0400
48 #define PORT_CONFIG_EXT 0x0408
49 #define PORT_COMMAND 0x0410
50 #define PORT_STATUS 0x0418
51 #define HTPR 0x0428
52 #define MAC_ADDR_LOW 0x0430
53 #define MAC_ADDR_HIGH 0x0438
54 #define SDMA_CONFIG 0x0440
55 #define SDMA_CMD 0x0448
56 #define INT_CAUSE 0x0450
57 #define INT_W_CLEAR 0x0454
58 #define INT_MASK 0x0458
59 #define ETH_F_RX_DESC_0 0x0480
60 #define ETH_C_RX_DESC_0 0x04A0
61 #define ETH_C_TX_DESC_1 0x04E4
62
63 /* smi register */
64 #define SMI_BUSY (1 << 28) /* 0 - Write, 1 - Read */
65 #define SMI_R_VALID (1 << 27) /* 0 - Write, 1 - Read */
66 #define SMI_OP_W (0 << 26) /* Write operation */
67 #define SMI_OP_R (1 << 26) /* Read operation */
68
69 #define PHY_WAIT_ITERATIONS 10
70
71 #define PXA168_ETH_PHY_ADDR_DEFAULT 0
72 /* RX & TX descriptor command */
73 #define BUF_OWNED_BY_DMA (1 << 31)
74
75 /* RX descriptor status */
76 #define RX_EN_INT (1 << 23)
77 #define RX_FIRST_DESC (1 << 17)
78 #define RX_LAST_DESC (1 << 16)
79 #define RX_ERROR (1 << 15)
80
81 /* TX descriptor command */
82 #define TX_EN_INT (1 << 23)
83 #define TX_GEN_CRC (1 << 22)
84 #define TX_ZERO_PADDING (1 << 18)
85 #define TX_FIRST_DESC (1 << 17)
86 #define TX_LAST_DESC (1 << 16)
87 #define TX_ERROR (1 << 15)
88
89 /* SDMA_CMD */
90 #define SDMA_CMD_AT (1 << 31)
91 #define SDMA_CMD_TXDL (1 << 24)
92 #define SDMA_CMD_TXDH (1 << 23)
93 #define SDMA_CMD_AR (1 << 15)
94 #define SDMA_CMD_ERD (1 << 7)
95
96 /* Bit definitions of the Port Config Reg */
97 #define PCR_DUPLEX_FULL (1 << 15)
98 #define PCR_HS (1 << 12)
99 #define PCR_EN (1 << 7)
100 #define PCR_PM (1 << 0)
101
102 /* Bit definitions of the Port Config Extend Reg */
103 #define PCXR_2BSM (1 << 28)
104 #define PCXR_DSCP_EN (1 << 21)
105 #define PCXR_RMII_EN (1 << 20)
106 #define PCXR_AN_SPEED_DIS (1 << 19)
107 #define PCXR_SPEED_100 (1 << 18)
108 #define PCXR_MFL_1518 (0 << 14)
109 #define PCXR_MFL_1536 (1 << 14)
110 #define PCXR_MFL_2048 (2 << 14)
111 #define PCXR_MFL_64K (3 << 14)
112 #define PCXR_FLOWCTL_DIS (1 << 12)
113 #define PCXR_FLP (1 << 11)
114 #define PCXR_AN_FLOWCTL_DIS (1 << 10)
115 #define PCXR_AN_DUPLEX_DIS (1 << 9)
116 #define PCXR_PRIO_TX_OFF 3
117 #define PCXR_TX_HIGH_PRI (7 << PCXR_PRIO_TX_OFF)
118
119 /* Bit definitions of the SDMA Config Reg */
120 #define SDCR_BSZ_OFF 12
121 #define SDCR_BSZ8 (3 << SDCR_BSZ_OFF)
122 #define SDCR_BSZ4 (2 << SDCR_BSZ_OFF)
123 #define SDCR_BSZ2 (1 << SDCR_BSZ_OFF)
124 #define SDCR_BSZ1 (0 << SDCR_BSZ_OFF)
125 #define SDCR_BLMR (1 << 6)
126 #define SDCR_BLMT (1 << 7)
127 #define SDCR_RIFB (1 << 9)
128 #define SDCR_RC_OFF 2
129 #define SDCR_RC_MAX_RETRANS (0xf << SDCR_RC_OFF)
130
131 /*
132 * Bit definitions of the Interrupt Cause Reg
133 * and Interrupt MASK Reg is the same
134 */
135 #define ICR_RXBUF (1 << 0)
136 #define ICR_TXBUF_H (1 << 2)
137 #define ICR_TXBUF_L (1 << 3)
138 #define ICR_TXEND_H (1 << 6)
139 #define ICR_TXEND_L (1 << 7)
140 #define ICR_RXERR (1 << 8)
141 #define ICR_TXERR_H (1 << 10)
142 #define ICR_TXERR_L (1 << 11)
143 #define ICR_TX_UDR (1 << 13)
144 #define ICR_MII_CH (1 << 28)
145
146 #define ALL_INTS (ICR_TXBUF_H | ICR_TXBUF_L | ICR_TX_UDR |\
147 ICR_TXERR_H | ICR_TXERR_L |\
148 ICR_TXEND_H | ICR_TXEND_L |\
149 ICR_RXBUF | ICR_RXERR | ICR_MII_CH)
150
151 #define ETH_HW_IP_ALIGN 2 /* hw aligns IP header */
152
153 #define NUM_RX_DESCS 64
154 #define NUM_TX_DESCS 64
155
156 #define HASH_ADD 0
157 #define HASH_DELETE 1
158 #define HASH_ADDR_TABLE_SIZE 0x4000 /* 16K (1/2K address - PCR_HS == 1) */
159 #define HOP_NUMBER 12
160
161 /* Bit definitions for Port status */
162 #define PORT_SPEED_100 (1 << 0)
163 #define FULL_DUPLEX (1 << 1)
164 #define FLOW_CONTROL_DISABLED (1 << 2)
165 #define LINK_UP (1 << 3)
166
167 /* Bit definitions for work to be done */
168 #define WORK_TX_DONE (1 << 1)
169
170 /*
171 * Misc definitions.
172 */
173 #define SKB_DMA_REALIGN ((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
174
175 struct rx_desc {
176 u32 cmd_sts; /* Descriptor command status */
177 u16 byte_cnt; /* Descriptor buffer byte count */
178 u16 buf_size; /* Buffer size */
179 u32 buf_ptr; /* Descriptor buffer pointer */
180 u32 next_desc_ptr; /* Next descriptor pointer */
181 };
182
183 struct tx_desc {
184 u32 cmd_sts; /* Command/status field */
185 u16 reserved;
186 u16 byte_cnt; /* buffer byte count */
187 u32 buf_ptr; /* pointer to buffer for this descriptor */
188 u32 next_desc_ptr; /* Pointer to next descriptor */
189 };
190
191 struct pxa168_eth_private {
192 struct platform_device *pdev;
193 int port_num; /* User Ethernet port number */
194 int phy_addr;
195 int phy_speed;
196 int phy_duplex;
197 phy_interface_t phy_intf;
198
199 int rx_resource_err; /* Rx ring resource error flag */
200
201 /* Next available and first returning Rx resource */
202 int rx_curr_desc_q, rx_used_desc_q;
203
204 /* Next available and first returning Tx resource */
205 int tx_curr_desc_q, tx_used_desc_q;
206
207 struct rx_desc *p_rx_desc_area;
208 dma_addr_t rx_desc_dma;
209 int rx_desc_area_size;
210 struct sk_buff **rx_skb;
211
212 struct tx_desc *p_tx_desc_area;
213 dma_addr_t tx_desc_dma;
214 int tx_desc_area_size;
215 struct sk_buff **tx_skb;
216
217 struct work_struct tx_timeout_task;
218
219 struct net_device *dev;
220 struct napi_struct napi;
221 u8 work_todo;
222 int skb_size;
223
224 /* Size of Tx Ring per queue */
225 int tx_ring_size;
226 /* Number of tx descriptors in use */
227 int tx_desc_count;
228 /* Size of Rx Ring per queue */
229 int rx_ring_size;
230 /* Number of rx descriptors in use */
231 int rx_desc_count;
232
233 /*
234 * Used in case RX Ring is empty, which can occur when
235 * system does not have resources (skb's)
236 */
237 struct timer_list timeout;
238 struct mii_bus *smi_bus;
239
240 /* clock */
241 struct clk *clk;
242 struct pxa168_eth_platform_data *pd;
243 /*
244 * Ethernet controller base address.
245 */
246 void __iomem *base;
247
248 /* Pointer to the hardware address filter table */
249 void *htpr;
250 dma_addr_t htpr_dma;
251 };
252
253 struct addr_table_entry {
254 __le32 lo;
255 __le32 hi;
256 };
257
258 /* Bit fields of a Hash Table Entry */
259 enum hash_table_entry {
260 HASH_ENTRY_VALID = 1,
261 SKIP = 2,
262 HASH_ENTRY_RECEIVE_DISCARD = 4,
263 HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
264 };
265
266 static int pxa168_init_hw(struct pxa168_eth_private *pep);
267 static int pxa168_init_phy(struct net_device *dev);
268 static void eth_port_reset(struct net_device *dev);
269 static void eth_port_start(struct net_device *dev);
270 static int pxa168_eth_open(struct net_device *dev);
271 static int pxa168_eth_stop(struct net_device *dev);
272
rdl(struct pxa168_eth_private * pep,int offset)273 static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
274 {
275 return readl_relaxed(pep->base + offset);
276 }
277
wrl(struct pxa168_eth_private * pep,int offset,u32 data)278 static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
279 {
280 writel_relaxed(data, pep->base + offset);
281 }
282
abort_dma(struct pxa168_eth_private * pep)283 static void abort_dma(struct pxa168_eth_private *pep)
284 {
285 int delay;
286 int max_retries = 40;
287
288 do {
289 wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
290 udelay(100);
291
292 delay = 10;
293 while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
294 && delay-- > 0) {
295 udelay(10);
296 }
297 } while (max_retries-- > 0 && delay <= 0);
298
299 if (max_retries <= 0)
300 netdev_err(pep->dev, "%s : DMA Stuck\n", __func__);
301 }
302
rxq_refill(struct net_device * dev)303 static void rxq_refill(struct net_device *dev)
304 {
305 struct pxa168_eth_private *pep = netdev_priv(dev);
306 struct sk_buff *skb;
307 struct rx_desc *p_used_rx_desc;
308 int used_rx_desc;
309
310 while (pep->rx_desc_count < pep->rx_ring_size) {
311 int size;
312
313 skb = netdev_alloc_skb(dev, pep->skb_size);
314 if (!skb)
315 break;
316 if (SKB_DMA_REALIGN)
317 skb_reserve(skb, SKB_DMA_REALIGN);
318 pep->rx_desc_count++;
319 /* Get 'used' Rx descriptor */
320 used_rx_desc = pep->rx_used_desc_q;
321 p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
322 size = skb_end_pointer(skb) - skb->data;
323 p_used_rx_desc->buf_ptr = dma_map_single(&pep->pdev->dev,
324 skb->data,
325 size,
326 DMA_FROM_DEVICE);
327 p_used_rx_desc->buf_size = size;
328 pep->rx_skb[used_rx_desc] = skb;
329
330 /* Return the descriptor to DMA ownership */
331 dma_wmb();
332 p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
333 dma_wmb();
334
335 /* Move the used descriptor pointer to the next descriptor */
336 pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
337
338 /* Any Rx return cancels the Rx resource error status */
339 pep->rx_resource_err = 0;
340
341 skb_reserve(skb, ETH_HW_IP_ALIGN);
342 }
343
344 /*
345 * If RX ring is empty of SKB, set a timer to try allocating
346 * again at a later time.
347 */
348 if (pep->rx_desc_count == 0) {
349 pep->timeout.expires = jiffies + (HZ / 10);
350 add_timer(&pep->timeout);
351 }
352 }
353
rxq_refill_timer_wrapper(struct timer_list * t)354 static inline void rxq_refill_timer_wrapper(struct timer_list *t)
355 {
356 struct pxa168_eth_private *pep = from_timer(pep, t, timeout);
357 napi_schedule(&pep->napi);
358 }
359
flip_8_bits(u8 x)360 static inline u8 flip_8_bits(u8 x)
361 {
362 return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
363 | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
364 | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
365 | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
366 }
367
nibble_swap_every_byte(unsigned char * mac_addr)368 static void nibble_swap_every_byte(unsigned char *mac_addr)
369 {
370 int i;
371 for (i = 0; i < ETH_ALEN; i++) {
372 mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
373 ((mac_addr[i] & 0xf0) >> 4);
374 }
375 }
376
inverse_every_nibble(unsigned char * mac_addr)377 static void inverse_every_nibble(unsigned char *mac_addr)
378 {
379 int i;
380 for (i = 0; i < ETH_ALEN; i++)
381 mac_addr[i] = flip_8_bits(mac_addr[i]);
382 }
383
384 /*
385 * ----------------------------------------------------------------------------
386 * This function will calculate the hash function of the address.
387 * Inputs
388 * mac_addr_orig - MAC address.
389 * Outputs
390 * return the calculated entry.
391 */
hash_function(const unsigned char * mac_addr_orig)392 static u32 hash_function(const unsigned char *mac_addr_orig)
393 {
394 u32 hash_result;
395 u32 addr0;
396 u32 addr1;
397 u32 addr2;
398 u32 addr3;
399 unsigned char mac_addr[ETH_ALEN];
400
401 /* Make a copy of MAC address since we are going to performe bit
402 * operations on it
403 */
404 memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
405
406 nibble_swap_every_byte(mac_addr);
407 inverse_every_nibble(mac_addr);
408
409 addr0 = (mac_addr[5] >> 2) & 0x3f;
410 addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
411 addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
412 addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
413
414 hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
415 hash_result = hash_result & 0x07ff;
416 return hash_result;
417 }
418
419 /*
420 * ----------------------------------------------------------------------------
421 * This function will add/del an entry to the address table.
422 * Inputs
423 * pep - ETHERNET .
424 * mac_addr - MAC address.
425 * skip - if 1, skip this address.Used in case of deleting an entry which is a
426 * part of chain in the hash table.We can't just delete the entry since
427 * that will break the chain.We need to defragment the tables time to
428 * time.
429 * rd - 0 Discard packet upon match.
430 * - 1 Receive packet upon match.
431 * Outputs
432 * address table entry is added/deleted.
433 * 0 if success.
434 * -ENOSPC if table full
435 */
add_del_hash_entry(struct pxa168_eth_private * pep,const unsigned char * mac_addr,u32 rd,u32 skip,int del)436 static int add_del_hash_entry(struct pxa168_eth_private *pep,
437 const unsigned char *mac_addr,
438 u32 rd, u32 skip, int del)
439 {
440 struct addr_table_entry *entry, *start;
441 u32 new_high;
442 u32 new_low;
443 u32 i;
444
445 new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
446 | (((mac_addr[1] >> 0) & 0xf) << 11)
447 | (((mac_addr[0] >> 4) & 0xf) << 7)
448 | (((mac_addr[0] >> 0) & 0xf) << 3)
449 | (((mac_addr[3] >> 4) & 0x1) << 31)
450 | (((mac_addr[3] >> 0) & 0xf) << 27)
451 | (((mac_addr[2] >> 4) & 0xf) << 23)
452 | (((mac_addr[2] >> 0) & 0xf) << 19)
453 | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
454 | HASH_ENTRY_VALID;
455
456 new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
457 | (((mac_addr[5] >> 0) & 0xf) << 11)
458 | (((mac_addr[4] >> 4) & 0xf) << 7)
459 | (((mac_addr[4] >> 0) & 0xf) << 3)
460 | (((mac_addr[3] >> 5) & 0x7) << 0);
461
462 /*
463 * Pick the appropriate table, start scanning for free/reusable
464 * entries at the index obtained by hashing the specified MAC address
465 */
466 start = pep->htpr;
467 entry = start + hash_function(mac_addr);
468 for (i = 0; i < HOP_NUMBER; i++) {
469 if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
470 break;
471 } else {
472 /* if same address put in same position */
473 if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
474 (new_low & 0xfffffff8)) &&
475 (le32_to_cpu(entry->hi) == new_high)) {
476 break;
477 }
478 }
479 if (entry == start + 0x7ff)
480 entry = start;
481 else
482 entry++;
483 }
484
485 if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
486 (le32_to_cpu(entry->hi) != new_high) && del)
487 return 0;
488
489 if (i == HOP_NUMBER) {
490 if (!del) {
491 netdev_info(pep->dev,
492 "%s: table section is full, need to "
493 "move to 16kB implementation?\n",
494 __FILE__);
495 return -ENOSPC;
496 } else
497 return 0;
498 }
499
500 /*
501 * Update the selected entry
502 */
503 if (del) {
504 entry->hi = 0;
505 entry->lo = 0;
506 } else {
507 entry->hi = cpu_to_le32(new_high);
508 entry->lo = cpu_to_le32(new_low);
509 }
510
511 return 0;
512 }
513
514 /*
515 * ----------------------------------------------------------------------------
516 * Create an addressTable entry from MAC address info
517 * found in the specifed net_device struct
518 *
519 * Input : pointer to ethernet interface network device structure
520 * Output : N/A
521 */
update_hash_table_mac_address(struct pxa168_eth_private * pep,unsigned char * oaddr,const unsigned char * addr)522 static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
523 unsigned char *oaddr,
524 const unsigned char *addr)
525 {
526 /* Delete old entry */
527 if (oaddr)
528 add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
529 /* Add new entry */
530 add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
531 }
532
init_hash_table(struct pxa168_eth_private * pep)533 static int init_hash_table(struct pxa168_eth_private *pep)
534 {
535 /*
536 * Hardware expects CPU to build a hash table based on a predefined
537 * hash function and populate it based on hardware address. The
538 * location of the hash table is identified by 32-bit pointer stored
539 * in HTPR internal register. Two possible sizes exists for the hash
540 * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
541 * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
542 * 1/2kB.
543 */
544 /* TODO: Add support for 8kB hash table and alternative hash
545 * function.Driver can dynamically switch to them if the 1/2kB hash
546 * table is full.
547 */
548 if (!pep->htpr) {
549 pep->htpr = dma_alloc_coherent(pep->dev->dev.parent,
550 HASH_ADDR_TABLE_SIZE,
551 &pep->htpr_dma, GFP_KERNEL);
552 if (!pep->htpr)
553 return -ENOMEM;
554 } else {
555 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
556 }
557 wrl(pep, HTPR, pep->htpr_dma);
558 return 0;
559 }
560
pxa168_eth_set_rx_mode(struct net_device * dev)561 static void pxa168_eth_set_rx_mode(struct net_device *dev)
562 {
563 struct pxa168_eth_private *pep = netdev_priv(dev);
564 struct netdev_hw_addr *ha;
565 u32 val;
566
567 val = rdl(pep, PORT_CONFIG);
568 if (dev->flags & IFF_PROMISC)
569 val |= PCR_PM;
570 else
571 val &= ~PCR_PM;
572 wrl(pep, PORT_CONFIG, val);
573
574 /*
575 * Remove the old list of MAC address and add dev->addr
576 * and multicast address.
577 */
578 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
579 update_hash_table_mac_address(pep, NULL, dev->dev_addr);
580
581 netdev_for_each_mc_addr(ha, dev)
582 update_hash_table_mac_address(pep, NULL, ha->addr);
583 }
584
pxa168_eth_get_mac_address(struct net_device * dev,unsigned char * addr)585 static void pxa168_eth_get_mac_address(struct net_device *dev,
586 unsigned char *addr)
587 {
588 struct pxa168_eth_private *pep = netdev_priv(dev);
589 unsigned int mac_h = rdl(pep, MAC_ADDR_HIGH);
590 unsigned int mac_l = rdl(pep, MAC_ADDR_LOW);
591
592 addr[0] = (mac_h >> 24) & 0xff;
593 addr[1] = (mac_h >> 16) & 0xff;
594 addr[2] = (mac_h >> 8) & 0xff;
595 addr[3] = mac_h & 0xff;
596 addr[4] = (mac_l >> 8) & 0xff;
597 addr[5] = mac_l & 0xff;
598 }
599
pxa168_eth_set_mac_address(struct net_device * dev,void * addr)600 static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
601 {
602 struct sockaddr *sa = addr;
603 struct pxa168_eth_private *pep = netdev_priv(dev);
604 unsigned char oldMac[ETH_ALEN];
605 u32 mac_h, mac_l;
606
607 if (!is_valid_ether_addr(sa->sa_data))
608 return -EADDRNOTAVAIL;
609 memcpy(oldMac, dev->dev_addr, ETH_ALEN);
610 eth_hw_addr_set(dev, sa->sa_data);
611
612 mac_h = dev->dev_addr[0] << 24;
613 mac_h |= dev->dev_addr[1] << 16;
614 mac_h |= dev->dev_addr[2] << 8;
615 mac_h |= dev->dev_addr[3];
616 mac_l = dev->dev_addr[4] << 8;
617 mac_l |= dev->dev_addr[5];
618 wrl(pep, MAC_ADDR_HIGH, mac_h);
619 wrl(pep, MAC_ADDR_LOW, mac_l);
620
621 netif_addr_lock_bh(dev);
622 update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
623 netif_addr_unlock_bh(dev);
624 return 0;
625 }
626
eth_port_start(struct net_device * dev)627 static void eth_port_start(struct net_device *dev)
628 {
629 unsigned int val = 0;
630 struct pxa168_eth_private *pep = netdev_priv(dev);
631 int tx_curr_desc, rx_curr_desc;
632
633 phy_start(dev->phydev);
634
635 /* Assignment of Tx CTRP of given queue */
636 tx_curr_desc = pep->tx_curr_desc_q;
637 wrl(pep, ETH_C_TX_DESC_1,
638 (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
639
640 /* Assignment of Rx CRDP of given queue */
641 rx_curr_desc = pep->rx_curr_desc_q;
642 wrl(pep, ETH_C_RX_DESC_0,
643 (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
644
645 wrl(pep, ETH_F_RX_DESC_0,
646 (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
647
648 /* Clear all interrupts */
649 wrl(pep, INT_CAUSE, 0);
650
651 /* Enable all interrupts for receive, transmit and error. */
652 wrl(pep, INT_MASK, ALL_INTS);
653
654 val = rdl(pep, PORT_CONFIG);
655 val |= PCR_EN;
656 wrl(pep, PORT_CONFIG, val);
657
658 /* Start RX DMA engine */
659 val = rdl(pep, SDMA_CMD);
660 val |= SDMA_CMD_ERD;
661 wrl(pep, SDMA_CMD, val);
662 }
663
eth_port_reset(struct net_device * dev)664 static void eth_port_reset(struct net_device *dev)
665 {
666 struct pxa168_eth_private *pep = netdev_priv(dev);
667 unsigned int val = 0;
668
669 /* Stop all interrupts for receive, transmit and error. */
670 wrl(pep, INT_MASK, 0);
671
672 /* Clear all interrupts */
673 wrl(pep, INT_CAUSE, 0);
674
675 /* Stop RX DMA */
676 val = rdl(pep, SDMA_CMD);
677 val &= ~SDMA_CMD_ERD; /* abort dma command */
678
679 /* Abort any transmit and receive operations and put DMA
680 * in idle state.
681 */
682 abort_dma(pep);
683
684 /* Disable port */
685 val = rdl(pep, PORT_CONFIG);
686 val &= ~PCR_EN;
687 wrl(pep, PORT_CONFIG, val);
688
689 phy_stop(dev->phydev);
690 }
691
692 /*
693 * txq_reclaim - Free the tx desc data for completed descriptors
694 * If force is non-zero, frees uncompleted descriptors as well
695 */
txq_reclaim(struct net_device * dev,int force)696 static int txq_reclaim(struct net_device *dev, int force)
697 {
698 struct pxa168_eth_private *pep = netdev_priv(dev);
699 struct tx_desc *desc;
700 u32 cmd_sts;
701 struct sk_buff *skb;
702 int tx_index;
703 dma_addr_t addr;
704 int count;
705 int released = 0;
706
707 netif_tx_lock(dev);
708
709 pep->work_todo &= ~WORK_TX_DONE;
710 while (pep->tx_desc_count > 0) {
711 tx_index = pep->tx_used_desc_q;
712 desc = &pep->p_tx_desc_area[tx_index];
713 cmd_sts = desc->cmd_sts;
714 if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
715 if (released > 0) {
716 goto txq_reclaim_end;
717 } else {
718 released = -1;
719 goto txq_reclaim_end;
720 }
721 }
722 pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
723 pep->tx_desc_count--;
724 addr = desc->buf_ptr;
725 count = desc->byte_cnt;
726 skb = pep->tx_skb[tx_index];
727 if (skb)
728 pep->tx_skb[tx_index] = NULL;
729
730 if (cmd_sts & TX_ERROR) {
731 if (net_ratelimit())
732 netdev_err(dev, "Error in TX\n");
733 dev->stats.tx_errors++;
734 }
735 dma_unmap_single(&pep->pdev->dev, addr, count, DMA_TO_DEVICE);
736 if (skb)
737 dev_kfree_skb_irq(skb);
738 released++;
739 }
740 txq_reclaim_end:
741 netif_tx_unlock(dev);
742 return released;
743 }
744
pxa168_eth_tx_timeout(struct net_device * dev,unsigned int txqueue)745 static void pxa168_eth_tx_timeout(struct net_device *dev, unsigned int txqueue)
746 {
747 struct pxa168_eth_private *pep = netdev_priv(dev);
748
749 netdev_info(dev, "TX timeout desc_count %d\n", pep->tx_desc_count);
750
751 schedule_work(&pep->tx_timeout_task);
752 }
753
pxa168_eth_tx_timeout_task(struct work_struct * work)754 static void pxa168_eth_tx_timeout_task(struct work_struct *work)
755 {
756 struct pxa168_eth_private *pep = container_of(work,
757 struct pxa168_eth_private,
758 tx_timeout_task);
759 struct net_device *dev = pep->dev;
760 pxa168_eth_stop(dev);
761 pxa168_eth_open(dev);
762 }
763
rxq_process(struct net_device * dev,int budget)764 static int rxq_process(struct net_device *dev, int budget)
765 {
766 struct pxa168_eth_private *pep = netdev_priv(dev);
767 struct net_device_stats *stats = &dev->stats;
768 unsigned int received_packets = 0;
769 struct sk_buff *skb;
770
771 while (budget-- > 0) {
772 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
773 struct rx_desc *rx_desc;
774 unsigned int cmd_sts;
775
776 /* Do not process Rx ring in case of Rx ring resource error */
777 if (pep->rx_resource_err)
778 break;
779 rx_curr_desc = pep->rx_curr_desc_q;
780 rx_used_desc = pep->rx_used_desc_q;
781 rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
782 cmd_sts = rx_desc->cmd_sts;
783 dma_rmb();
784 if (cmd_sts & (BUF_OWNED_BY_DMA))
785 break;
786 skb = pep->rx_skb[rx_curr_desc];
787 pep->rx_skb[rx_curr_desc] = NULL;
788
789 rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
790 pep->rx_curr_desc_q = rx_next_curr_desc;
791
792 /* Rx descriptors exhausted. */
793 /* Set the Rx ring resource error flag */
794 if (rx_next_curr_desc == rx_used_desc)
795 pep->rx_resource_err = 1;
796 pep->rx_desc_count--;
797 dma_unmap_single(&pep->pdev->dev, rx_desc->buf_ptr,
798 rx_desc->buf_size,
799 DMA_FROM_DEVICE);
800 received_packets++;
801 /*
802 * Update statistics.
803 * Note byte count includes 4 byte CRC count
804 */
805 stats->rx_packets++;
806 stats->rx_bytes += rx_desc->byte_cnt;
807 /*
808 * In case received a packet without first / last bits on OR
809 * the error summary bit is on, the packets needs to be droped.
810 */
811 if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
812 (RX_FIRST_DESC | RX_LAST_DESC))
813 || (cmd_sts & RX_ERROR)) {
814
815 stats->rx_dropped++;
816 if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
817 (RX_FIRST_DESC | RX_LAST_DESC)) {
818 if (net_ratelimit())
819 netdev_err(dev,
820 "Rx pkt on multiple desc\n");
821 }
822 if (cmd_sts & RX_ERROR)
823 stats->rx_errors++;
824 dev_kfree_skb_irq(skb);
825 } else {
826 /*
827 * The -4 is for the CRC in the trailer of the
828 * received packet
829 */
830 skb_put(skb, rx_desc->byte_cnt - 4);
831 skb->protocol = eth_type_trans(skb, dev);
832 netif_receive_skb(skb);
833 }
834 }
835 /* Fill RX ring with skb's */
836 rxq_refill(dev);
837 return received_packets;
838 }
839
pxa168_eth_collect_events(struct pxa168_eth_private * pep,struct net_device * dev)840 static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
841 struct net_device *dev)
842 {
843 u32 icr;
844 int ret = 0;
845
846 icr = rdl(pep, INT_CAUSE);
847 if (icr == 0)
848 return IRQ_NONE;
849
850 wrl(pep, INT_CAUSE, ~icr);
851 if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
852 pep->work_todo |= WORK_TX_DONE;
853 ret = 1;
854 }
855 if (icr & ICR_RXBUF)
856 ret = 1;
857 return ret;
858 }
859
pxa168_eth_int_handler(int irq,void * dev_id)860 static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
861 {
862 struct net_device *dev = (struct net_device *)dev_id;
863 struct pxa168_eth_private *pep = netdev_priv(dev);
864
865 if (unlikely(!pxa168_eth_collect_events(pep, dev)))
866 return IRQ_NONE;
867 /* Disable interrupts */
868 wrl(pep, INT_MASK, 0);
869 napi_schedule(&pep->napi);
870 return IRQ_HANDLED;
871 }
872
pxa168_eth_recalc_skb_size(struct pxa168_eth_private * pep)873 static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
874 {
875 int skb_size;
876
877 /*
878 * Reserve 2+14 bytes for an ethernet header (the hardware
879 * automatically prepends 2 bytes of dummy data to each
880 * received packet), 16 bytes for up to four VLAN tags, and
881 * 4 bytes for the trailing FCS -- 36 bytes total.
882 */
883 skb_size = pep->dev->mtu + 36;
884
885 /*
886 * Make sure that the skb size is a multiple of 8 bytes, as
887 * the lower three bits of the receive descriptor's buffer
888 * size field are ignored by the hardware.
889 */
890 pep->skb_size = (skb_size + 7) & ~7;
891
892 /*
893 * If NET_SKB_PAD is smaller than a cache line,
894 * netdev_alloc_skb() will cause skb->data to be misaligned
895 * to a cache line boundary. If this is the case, include
896 * some extra space to allow re-aligning the data area.
897 */
898 pep->skb_size += SKB_DMA_REALIGN;
899
900 }
901
set_port_config_ext(struct pxa168_eth_private * pep)902 static int set_port_config_ext(struct pxa168_eth_private *pep)
903 {
904 int skb_size;
905
906 pxa168_eth_recalc_skb_size(pep);
907 if (pep->skb_size <= 1518)
908 skb_size = PCXR_MFL_1518;
909 else if (pep->skb_size <= 1536)
910 skb_size = PCXR_MFL_1536;
911 else if (pep->skb_size <= 2048)
912 skb_size = PCXR_MFL_2048;
913 else
914 skb_size = PCXR_MFL_64K;
915
916 /* Extended Port Configuration */
917 wrl(pep, PORT_CONFIG_EXT,
918 PCXR_AN_SPEED_DIS | /* Disable HW AN */
919 PCXR_AN_DUPLEX_DIS |
920 PCXR_AN_FLOWCTL_DIS |
921 PCXR_2BSM | /* Two byte prefix aligns IP hdr */
922 PCXR_DSCP_EN | /* Enable DSCP in IP */
923 skb_size | PCXR_FLP | /* do not force link pass */
924 PCXR_TX_HIGH_PRI); /* Transmit - high priority queue */
925
926 return 0;
927 }
928
pxa168_eth_adjust_link(struct net_device * dev)929 static void pxa168_eth_adjust_link(struct net_device *dev)
930 {
931 struct pxa168_eth_private *pep = netdev_priv(dev);
932 struct phy_device *phy = dev->phydev;
933 u32 cfg, cfg_o = rdl(pep, PORT_CONFIG);
934 u32 cfgext, cfgext_o = rdl(pep, PORT_CONFIG_EXT);
935
936 cfg = cfg_o & ~PCR_DUPLEX_FULL;
937 cfgext = cfgext_o & ~(PCXR_SPEED_100 | PCXR_FLOWCTL_DIS | PCXR_RMII_EN);
938
939 if (phy->interface == PHY_INTERFACE_MODE_RMII)
940 cfgext |= PCXR_RMII_EN;
941 if (phy->speed == SPEED_100)
942 cfgext |= PCXR_SPEED_100;
943 if (phy->duplex)
944 cfg |= PCR_DUPLEX_FULL;
945 if (!phy->pause)
946 cfgext |= PCXR_FLOWCTL_DIS;
947
948 /* Bail out if there has nothing changed */
949 if (cfg == cfg_o && cfgext == cfgext_o)
950 return;
951
952 wrl(pep, PORT_CONFIG, cfg);
953 wrl(pep, PORT_CONFIG_EXT, cfgext);
954
955 phy_print_status(phy);
956 }
957
pxa168_init_phy(struct net_device * dev)958 static int pxa168_init_phy(struct net_device *dev)
959 {
960 struct pxa168_eth_private *pep = netdev_priv(dev);
961 struct ethtool_link_ksettings cmd;
962 struct phy_device *phy = NULL;
963 int err;
964
965 if (dev->phydev)
966 return 0;
967
968 phy = mdiobus_scan_c22(pep->smi_bus, pep->phy_addr);
969 if (IS_ERR(phy))
970 return PTR_ERR(phy);
971
972 err = phy_connect_direct(dev, phy, pxa168_eth_adjust_link,
973 pep->phy_intf);
974 if (err)
975 return err;
976
977 cmd.base.phy_address = pep->phy_addr;
978 cmd.base.speed = pep->phy_speed;
979 cmd.base.duplex = pep->phy_duplex;
980 linkmode_copy(cmd.link_modes.advertising, PHY_BASIC_FEATURES);
981 cmd.base.autoneg = AUTONEG_ENABLE;
982
983 if (cmd.base.speed != 0)
984 cmd.base.autoneg = AUTONEG_DISABLE;
985
986 return phy_ethtool_set_link_ksettings(dev, &cmd);
987 }
988
pxa168_init_hw(struct pxa168_eth_private * pep)989 static int pxa168_init_hw(struct pxa168_eth_private *pep)
990 {
991 int err = 0;
992
993 /* Disable interrupts */
994 wrl(pep, INT_MASK, 0);
995 wrl(pep, INT_CAUSE, 0);
996 /* Write to ICR to clear interrupts. */
997 wrl(pep, INT_W_CLEAR, 0);
998 /* Abort any transmit and receive operations and put DMA
999 * in idle state.
1000 */
1001 abort_dma(pep);
1002 /* Initialize address hash table */
1003 err = init_hash_table(pep);
1004 if (err)
1005 return err;
1006 /* SDMA configuration */
1007 wrl(pep, SDMA_CONFIG, SDCR_BSZ8 | /* Burst size = 32 bytes */
1008 SDCR_RIFB | /* Rx interrupt on frame */
1009 SDCR_BLMT | /* Little endian transmit */
1010 SDCR_BLMR | /* Little endian receive */
1011 SDCR_RC_MAX_RETRANS); /* Max retransmit count */
1012 /* Port Configuration */
1013 wrl(pep, PORT_CONFIG, PCR_HS); /* Hash size is 1/2kb */
1014 set_port_config_ext(pep);
1015
1016 return err;
1017 }
1018
rxq_init(struct net_device * dev)1019 static int rxq_init(struct net_device *dev)
1020 {
1021 struct pxa168_eth_private *pep = netdev_priv(dev);
1022 struct rx_desc *p_rx_desc;
1023 int size = 0, i = 0;
1024 int rx_desc_num = pep->rx_ring_size;
1025
1026 /* Allocate RX skb rings */
1027 pep->rx_skb = kcalloc(rx_desc_num, sizeof(*pep->rx_skb), GFP_KERNEL);
1028 if (!pep->rx_skb)
1029 return -ENOMEM;
1030
1031 /* Allocate RX ring */
1032 pep->rx_desc_count = 0;
1033 size = pep->rx_ring_size * sizeof(struct rx_desc);
1034 pep->rx_desc_area_size = size;
1035 pep->p_rx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
1036 &pep->rx_desc_dma,
1037 GFP_KERNEL);
1038 if (!pep->p_rx_desc_area)
1039 goto out;
1040
1041 /* initialize the next_desc_ptr links in the Rx descriptors ring */
1042 p_rx_desc = pep->p_rx_desc_area;
1043 for (i = 0; i < rx_desc_num; i++) {
1044 p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
1045 ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
1046 }
1047 /* Save Rx desc pointer to driver struct. */
1048 pep->rx_curr_desc_q = 0;
1049 pep->rx_used_desc_q = 0;
1050 pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
1051 return 0;
1052 out:
1053 kfree(pep->rx_skb);
1054 return -ENOMEM;
1055 }
1056
rxq_deinit(struct net_device * dev)1057 static void rxq_deinit(struct net_device *dev)
1058 {
1059 struct pxa168_eth_private *pep = netdev_priv(dev);
1060 int curr;
1061
1062 /* Free preallocated skb's on RX rings */
1063 for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
1064 if (pep->rx_skb[curr]) {
1065 dev_kfree_skb(pep->rx_skb[curr]);
1066 pep->rx_desc_count--;
1067 }
1068 }
1069 if (pep->rx_desc_count)
1070 netdev_err(dev, "Error in freeing Rx Ring. %d skb's still\n",
1071 pep->rx_desc_count);
1072 /* Free RX ring */
1073 if (pep->p_rx_desc_area)
1074 dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
1075 pep->p_rx_desc_area, pep->rx_desc_dma);
1076 kfree(pep->rx_skb);
1077 }
1078
txq_init(struct net_device * dev)1079 static int txq_init(struct net_device *dev)
1080 {
1081 struct pxa168_eth_private *pep = netdev_priv(dev);
1082 struct tx_desc *p_tx_desc;
1083 int size = 0, i = 0;
1084 int tx_desc_num = pep->tx_ring_size;
1085
1086 pep->tx_skb = kcalloc(tx_desc_num, sizeof(*pep->tx_skb), GFP_KERNEL);
1087 if (!pep->tx_skb)
1088 return -ENOMEM;
1089
1090 /* Allocate TX ring */
1091 pep->tx_desc_count = 0;
1092 size = pep->tx_ring_size * sizeof(struct tx_desc);
1093 pep->tx_desc_area_size = size;
1094 pep->p_tx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
1095 &pep->tx_desc_dma,
1096 GFP_KERNEL);
1097 if (!pep->p_tx_desc_area)
1098 goto out;
1099 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
1100 p_tx_desc = pep->p_tx_desc_area;
1101 for (i = 0; i < tx_desc_num; i++) {
1102 p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
1103 ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
1104 }
1105 pep->tx_curr_desc_q = 0;
1106 pep->tx_used_desc_q = 0;
1107 pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
1108 return 0;
1109 out:
1110 kfree(pep->tx_skb);
1111 return -ENOMEM;
1112 }
1113
txq_deinit(struct net_device * dev)1114 static void txq_deinit(struct net_device *dev)
1115 {
1116 struct pxa168_eth_private *pep = netdev_priv(dev);
1117
1118 /* Free outstanding skb's on TX ring */
1119 txq_reclaim(dev, 1);
1120 BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
1121 /* Free TX ring */
1122 if (pep->p_tx_desc_area)
1123 dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
1124 pep->p_tx_desc_area, pep->tx_desc_dma);
1125 kfree(pep->tx_skb);
1126 }
1127
pxa168_eth_open(struct net_device * dev)1128 static int pxa168_eth_open(struct net_device *dev)
1129 {
1130 struct pxa168_eth_private *pep = netdev_priv(dev);
1131 int err;
1132
1133 err = pxa168_init_phy(dev);
1134 if (err)
1135 return err;
1136
1137 err = request_irq(dev->irq, pxa168_eth_int_handler, 0, dev->name, dev);
1138 if (err) {
1139 dev_err(&dev->dev, "can't assign irq\n");
1140 return -EAGAIN;
1141 }
1142 pep->rx_resource_err = 0;
1143 err = rxq_init(dev);
1144 if (err != 0)
1145 goto out_free_irq;
1146 err = txq_init(dev);
1147 if (err != 0)
1148 goto out_free_rx_skb;
1149 pep->rx_used_desc_q = 0;
1150 pep->rx_curr_desc_q = 0;
1151
1152 /* Fill RX ring with skb's */
1153 rxq_refill(dev);
1154 pep->rx_used_desc_q = 0;
1155 pep->rx_curr_desc_q = 0;
1156 netif_carrier_off(dev);
1157 napi_enable(&pep->napi);
1158 eth_port_start(dev);
1159 return 0;
1160 out_free_rx_skb:
1161 rxq_deinit(dev);
1162 out_free_irq:
1163 free_irq(dev->irq, dev);
1164 return err;
1165 }
1166
pxa168_eth_stop(struct net_device * dev)1167 static int pxa168_eth_stop(struct net_device *dev)
1168 {
1169 struct pxa168_eth_private *pep = netdev_priv(dev);
1170 eth_port_reset(dev);
1171
1172 /* Disable interrupts */
1173 wrl(pep, INT_MASK, 0);
1174 wrl(pep, INT_CAUSE, 0);
1175 /* Write to ICR to clear interrupts. */
1176 wrl(pep, INT_W_CLEAR, 0);
1177 napi_disable(&pep->napi);
1178 del_timer_sync(&pep->timeout);
1179 netif_carrier_off(dev);
1180 free_irq(dev->irq, dev);
1181 rxq_deinit(dev);
1182 txq_deinit(dev);
1183
1184 return 0;
1185 }
1186
pxa168_eth_change_mtu(struct net_device * dev,int mtu)1187 static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
1188 {
1189 struct pxa168_eth_private *pep = netdev_priv(dev);
1190
1191 WRITE_ONCE(dev->mtu, mtu);
1192 set_port_config_ext(pep);
1193
1194 if (!netif_running(dev))
1195 return 0;
1196
1197 /*
1198 * Stop and then re-open the interface. This will allocate RX
1199 * skbs of the new MTU.
1200 * There is a possible danger that the open will not succeed,
1201 * due to memory being full.
1202 */
1203 pxa168_eth_stop(dev);
1204 if (pxa168_eth_open(dev)) {
1205 dev_err(&dev->dev,
1206 "fatal error on re-opening device after MTU change\n");
1207 }
1208
1209 return 0;
1210 }
1211
eth_alloc_tx_desc_index(struct pxa168_eth_private * pep)1212 static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
1213 {
1214 int tx_desc_curr;
1215
1216 tx_desc_curr = pep->tx_curr_desc_q;
1217 pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
1218 BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
1219 pep->tx_desc_count++;
1220
1221 return tx_desc_curr;
1222 }
1223
pxa168_rx_poll(struct napi_struct * napi,int budget)1224 static int pxa168_rx_poll(struct napi_struct *napi, int budget)
1225 {
1226 struct pxa168_eth_private *pep =
1227 container_of(napi, struct pxa168_eth_private, napi);
1228 struct net_device *dev = pep->dev;
1229 int work_done = 0;
1230
1231 /*
1232 * We call txq_reclaim every time since in NAPI interupts are disabled
1233 * and due to this we miss the TX_DONE interrupt,which is not updated in
1234 * interrupt status register.
1235 */
1236 txq_reclaim(dev, 0);
1237 if (netif_queue_stopped(dev)
1238 && pep->tx_ring_size - pep->tx_desc_count > 1) {
1239 netif_wake_queue(dev);
1240 }
1241 work_done = rxq_process(dev, budget);
1242 if (work_done < budget) {
1243 napi_complete_done(napi, work_done);
1244 wrl(pep, INT_MASK, ALL_INTS);
1245 }
1246
1247 return work_done;
1248 }
1249
1250 static netdev_tx_t
pxa168_eth_start_xmit(struct sk_buff * skb,struct net_device * dev)1251 pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1252 {
1253 struct pxa168_eth_private *pep = netdev_priv(dev);
1254 struct net_device_stats *stats = &dev->stats;
1255 struct tx_desc *desc;
1256 int tx_index;
1257 int length;
1258
1259 tx_index = eth_alloc_tx_desc_index(pep);
1260 desc = &pep->p_tx_desc_area[tx_index];
1261 length = skb->len;
1262 pep->tx_skb[tx_index] = skb;
1263 desc->byte_cnt = length;
1264 desc->buf_ptr = dma_map_single(&pep->pdev->dev, skb->data, length,
1265 DMA_TO_DEVICE);
1266
1267 skb_tx_timestamp(skb);
1268
1269 dma_wmb();
1270 desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
1271 TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
1272 wmb();
1273 wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
1274
1275 stats->tx_bytes += length;
1276 stats->tx_packets++;
1277 netif_trans_update(dev);
1278 if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
1279 /* We handled the current skb, but now we are out of space.*/
1280 netif_stop_queue(dev);
1281 }
1282
1283 return NETDEV_TX_OK;
1284 }
1285
smi_wait_ready(struct pxa168_eth_private * pep)1286 static int smi_wait_ready(struct pxa168_eth_private *pep)
1287 {
1288 int i = 0;
1289
1290 /* wait for the SMI register to become available */
1291 for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
1292 if (i == PHY_WAIT_ITERATIONS)
1293 return -ETIMEDOUT;
1294 msleep(10);
1295 }
1296
1297 return 0;
1298 }
1299
pxa168_smi_read(struct mii_bus * bus,int phy_addr,int regnum)1300 static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
1301 {
1302 struct pxa168_eth_private *pep = bus->priv;
1303 int i = 0;
1304 int val;
1305
1306 if (smi_wait_ready(pep)) {
1307 netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1308 return -ETIMEDOUT;
1309 }
1310 wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
1311 /* now wait for the data to be valid */
1312 for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
1313 if (i == PHY_WAIT_ITERATIONS) {
1314 netdev_warn(pep->dev,
1315 "pxa168_eth: SMI bus read not valid\n");
1316 return -ENODEV;
1317 }
1318 msleep(10);
1319 }
1320
1321 return val & 0xffff;
1322 }
1323
pxa168_smi_write(struct mii_bus * bus,int phy_addr,int regnum,u16 value)1324 static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
1325 u16 value)
1326 {
1327 struct pxa168_eth_private *pep = bus->priv;
1328
1329 if (smi_wait_ready(pep)) {
1330 netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1331 return -ETIMEDOUT;
1332 }
1333
1334 wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
1335 SMI_OP_W | (value & 0xffff));
1336
1337 if (smi_wait_ready(pep)) {
1338 netdev_err(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1339 return -ETIMEDOUT;
1340 }
1341
1342 return 0;
1343 }
1344
1345 #ifdef CONFIG_NET_POLL_CONTROLLER
pxa168_eth_netpoll(struct net_device * dev)1346 static void pxa168_eth_netpoll(struct net_device *dev)
1347 {
1348 disable_irq(dev->irq);
1349 pxa168_eth_int_handler(dev->irq, dev);
1350 enable_irq(dev->irq);
1351 }
1352 #endif
1353
pxa168_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1354 static void pxa168_get_drvinfo(struct net_device *dev,
1355 struct ethtool_drvinfo *info)
1356 {
1357 strscpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1358 strscpy(info->version, DRIVER_VERSION, sizeof(info->version));
1359 strscpy(info->fw_version, "N/A", sizeof(info->fw_version));
1360 strscpy(info->bus_info, "N/A", sizeof(info->bus_info));
1361 }
1362
1363 static const struct ethtool_ops pxa168_ethtool_ops = {
1364 .get_drvinfo = pxa168_get_drvinfo,
1365 .nway_reset = phy_ethtool_nway_reset,
1366 .get_link = ethtool_op_get_link,
1367 .get_ts_info = ethtool_op_get_ts_info,
1368 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1369 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1370 };
1371
1372 static const struct net_device_ops pxa168_eth_netdev_ops = {
1373 .ndo_open = pxa168_eth_open,
1374 .ndo_stop = pxa168_eth_stop,
1375 .ndo_start_xmit = pxa168_eth_start_xmit,
1376 .ndo_set_rx_mode = pxa168_eth_set_rx_mode,
1377 .ndo_set_mac_address = pxa168_eth_set_mac_address,
1378 .ndo_validate_addr = eth_validate_addr,
1379 .ndo_eth_ioctl = phy_do_ioctl,
1380 .ndo_change_mtu = pxa168_eth_change_mtu,
1381 .ndo_tx_timeout = pxa168_eth_tx_timeout,
1382 #ifdef CONFIG_NET_POLL_CONTROLLER
1383 .ndo_poll_controller = pxa168_eth_netpoll,
1384 #endif
1385 };
1386
pxa168_eth_probe(struct platform_device * pdev)1387 static int pxa168_eth_probe(struct platform_device *pdev)
1388 {
1389 struct pxa168_eth_private *pep = NULL;
1390 struct net_device *dev = NULL;
1391 struct clk *clk;
1392 struct device_node *np;
1393 int err;
1394
1395 printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
1396
1397 clk = devm_clk_get_enabled(&pdev->dev, NULL);
1398 if (IS_ERR(clk)) {
1399 dev_err(&pdev->dev, "Fast Ethernet failed to get and enable clock\n");
1400 return -ENODEV;
1401 }
1402
1403 dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
1404 if (!dev)
1405 return -ENOMEM;
1406
1407 platform_set_drvdata(pdev, dev);
1408 pep = netdev_priv(dev);
1409 pep->dev = dev;
1410 pep->clk = clk;
1411
1412 pep->base = devm_platform_ioremap_resource(pdev, 0);
1413 if (IS_ERR(pep->base)) {
1414 err = PTR_ERR(pep->base);
1415 goto err_netdev;
1416 }
1417
1418 err = platform_get_irq(pdev, 0);
1419 if (err == -EPROBE_DEFER)
1420 goto err_netdev;
1421 BUG_ON(dev->irq < 0);
1422 dev->irq = err;
1423 dev->netdev_ops = &pxa168_eth_netdev_ops;
1424 dev->watchdog_timeo = 2 * HZ;
1425 dev->base_addr = 0;
1426 dev->ethtool_ops = &pxa168_ethtool_ops;
1427
1428 /* MTU range: 68 - 9500 */
1429 dev->min_mtu = ETH_MIN_MTU;
1430 dev->max_mtu = 9500;
1431
1432 INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
1433
1434 err = of_get_ethdev_address(pdev->dev.of_node, dev);
1435 if (err) {
1436 u8 addr[ETH_ALEN];
1437
1438 /* try reading the mac address, if set by the bootloader */
1439 pxa168_eth_get_mac_address(dev, addr);
1440 if (is_valid_ether_addr(addr)) {
1441 eth_hw_addr_set(dev, addr);
1442 } else {
1443 dev_info(&pdev->dev, "Using random mac address\n");
1444 eth_hw_addr_random(dev);
1445 }
1446 }
1447
1448 pep->rx_ring_size = NUM_RX_DESCS;
1449 pep->tx_ring_size = NUM_TX_DESCS;
1450
1451 pep->pd = dev_get_platdata(&pdev->dev);
1452 if (pep->pd) {
1453 if (pep->pd->rx_queue_size)
1454 pep->rx_ring_size = pep->pd->rx_queue_size;
1455
1456 if (pep->pd->tx_queue_size)
1457 pep->tx_ring_size = pep->pd->tx_queue_size;
1458
1459 pep->port_num = pep->pd->port_number;
1460 pep->phy_addr = pep->pd->phy_addr;
1461 pep->phy_speed = pep->pd->speed;
1462 pep->phy_duplex = pep->pd->duplex;
1463 pep->phy_intf = pep->pd->intf;
1464
1465 if (pep->pd->init)
1466 pep->pd->init();
1467 } else if (pdev->dev.of_node) {
1468 of_property_read_u32(pdev->dev.of_node, "port-id",
1469 &pep->port_num);
1470
1471 np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1472 if (!np) {
1473 dev_err(&pdev->dev, "missing phy-handle\n");
1474 err = -EINVAL;
1475 goto err_netdev;
1476 }
1477 of_property_read_u32(np, "reg", &pep->phy_addr);
1478 of_node_put(np);
1479 err = of_get_phy_mode(pdev->dev.of_node, &pep->phy_intf);
1480 if (err && err != -ENODEV)
1481 goto err_netdev;
1482 }
1483
1484 /* Hardware supports only 3 ports */
1485 BUG_ON(pep->port_num > 2);
1486 netif_napi_add_weight(dev, &pep->napi, pxa168_rx_poll,
1487 pep->rx_ring_size);
1488
1489 memset(&pep->timeout, 0, sizeof(struct timer_list));
1490 timer_setup(&pep->timeout, rxq_refill_timer_wrapper, 0);
1491
1492 pep->smi_bus = mdiobus_alloc();
1493 if (!pep->smi_bus) {
1494 err = -ENOMEM;
1495 goto err_netdev;
1496 }
1497 pep->smi_bus->priv = pep;
1498 pep->smi_bus->name = "pxa168_eth smi";
1499 pep->smi_bus->read = pxa168_smi_read;
1500 pep->smi_bus->write = pxa168_smi_write;
1501 snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1502 pdev->name, pdev->id);
1503 pep->smi_bus->parent = &pdev->dev;
1504 pep->smi_bus->phy_mask = 0xffffffff;
1505 err = mdiobus_register(pep->smi_bus);
1506 if (err)
1507 goto err_free_mdio;
1508
1509 pep->pdev = pdev;
1510 SET_NETDEV_DEV(dev, &pdev->dev);
1511 pxa168_init_hw(pep);
1512 err = register_netdev(dev);
1513 if (err)
1514 goto err_mdiobus;
1515 return 0;
1516
1517 err_mdiobus:
1518 mdiobus_unregister(pep->smi_bus);
1519 err_free_mdio:
1520 mdiobus_free(pep->smi_bus);
1521 err_netdev:
1522 free_netdev(dev);
1523 return err;
1524 }
1525
pxa168_eth_remove(struct platform_device * pdev)1526 static void pxa168_eth_remove(struct platform_device *pdev)
1527 {
1528 struct net_device *dev = platform_get_drvdata(pdev);
1529 struct pxa168_eth_private *pep = netdev_priv(dev);
1530
1531 cancel_work_sync(&pep->tx_timeout_task);
1532 if (pep->htpr) {
1533 dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
1534 pep->htpr, pep->htpr_dma);
1535 pep->htpr = NULL;
1536 }
1537 if (dev->phydev)
1538 phy_disconnect(dev->phydev);
1539
1540 mdiobus_unregister(pep->smi_bus);
1541 mdiobus_free(pep->smi_bus);
1542 unregister_netdev(dev);
1543 free_netdev(dev);
1544 }
1545
pxa168_eth_shutdown(struct platform_device * pdev)1546 static void pxa168_eth_shutdown(struct platform_device *pdev)
1547 {
1548 struct net_device *dev = platform_get_drvdata(pdev);
1549 eth_port_reset(dev);
1550 }
1551
1552 #ifdef CONFIG_PM
pxa168_eth_resume(struct platform_device * pdev)1553 static int pxa168_eth_resume(struct platform_device *pdev)
1554 {
1555 return -ENOSYS;
1556 }
1557
pxa168_eth_suspend(struct platform_device * pdev,pm_message_t state)1558 static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
1559 {
1560 return -ENOSYS;
1561 }
1562
1563 #else
1564 #define pxa168_eth_resume NULL
1565 #define pxa168_eth_suspend NULL
1566 #endif
1567
1568 static const struct of_device_id pxa168_eth_of_match[] = {
1569 { .compatible = "marvell,pxa168-eth" },
1570 { },
1571 };
1572 MODULE_DEVICE_TABLE(of, pxa168_eth_of_match);
1573
1574 static struct platform_driver pxa168_eth_driver = {
1575 .probe = pxa168_eth_probe,
1576 .remove = pxa168_eth_remove,
1577 .shutdown = pxa168_eth_shutdown,
1578 .resume = pxa168_eth_resume,
1579 .suspend = pxa168_eth_suspend,
1580 .driver = {
1581 .name = DRIVER_NAME,
1582 .of_match_table = pxa168_eth_of_match,
1583 },
1584 };
1585
1586 module_platform_driver(pxa168_eth_driver);
1587
1588 MODULE_LICENSE("GPL");
1589 MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
1590 MODULE_ALIAS("platform:pxa168_eth");
1591