1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Core driver for the High Speed UART DMA
4 *
5 * Copyright (C) 2015 Intel Corporation
6 * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
7 *
8 * Partially based on the bits found in drivers/tty/serial/mfd.c.
9 */
10
11 /*
12 * DMA channel allocation:
13 * 1. Even number chans are used for DMA Read (UART TX), odd chans for DMA
14 * Write (UART RX).
15 * 2. 0/1 channel are assigned to port 0, 2/3 chan to port 1, 4/5 chan to
16 * port 3, and so on.
17 */
18
19 #include <linux/bits.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/list.h>
27 #include <linux/module.h>
28 #include <linux/percpu-defs.h>
29 #include <linux/scatterlist.h>
30 #include <linux/slab.h>
31 #include <linux/string.h>
32 #include <linux/spinlock.h>
33
34 #include "hsu.h"
35
36 #define HSU_DMA_BUSWIDTHS \
37 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
38 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
39 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
40 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
41 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
42 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) | \
43 BIT(DMA_SLAVE_BUSWIDTH_16_BYTES)
44
hsu_chan_disable(struct hsu_dma_chan * hsuc)45 static inline void hsu_chan_disable(struct hsu_dma_chan *hsuc)
46 {
47 hsu_chan_writel(hsuc, HSU_CH_CR, 0);
48 }
49
hsu_chan_enable(struct hsu_dma_chan * hsuc)50 static inline void hsu_chan_enable(struct hsu_dma_chan *hsuc)
51 {
52 u32 cr = HSU_CH_CR_CHA;
53
54 if (hsuc->direction == DMA_MEM_TO_DEV)
55 cr &= ~HSU_CH_CR_CHD;
56 else if (hsuc->direction == DMA_DEV_TO_MEM)
57 cr |= HSU_CH_CR_CHD;
58
59 hsu_chan_writel(hsuc, HSU_CH_CR, cr);
60 }
61
hsu_dma_chan_start(struct hsu_dma_chan * hsuc)62 static void hsu_dma_chan_start(struct hsu_dma_chan *hsuc)
63 {
64 struct dma_slave_config *config = &hsuc->config;
65 struct hsu_dma_desc *desc = hsuc->desc;
66 u32 bsr = 0, mtsr = 0; /* to shut the compiler up */
67 u32 dcr = HSU_CH_DCR_CHSOE | HSU_CH_DCR_CHEI;
68 unsigned int i, count;
69
70 if (hsuc->direction == DMA_MEM_TO_DEV) {
71 bsr = config->dst_maxburst;
72 mtsr = config->dst_addr_width;
73 } else if (hsuc->direction == DMA_DEV_TO_MEM) {
74 bsr = config->src_maxburst;
75 mtsr = config->src_addr_width;
76 }
77
78 hsu_chan_disable(hsuc);
79
80 hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
81 hsu_chan_writel(hsuc, HSU_CH_BSR, bsr);
82 hsu_chan_writel(hsuc, HSU_CH_MTSR, mtsr);
83
84 /* Set descriptors */
85 count = desc->nents - desc->active;
86 for (i = 0; i < count && i < HSU_DMA_CHAN_NR_DESC; i++) {
87 hsu_chan_writel(hsuc, HSU_CH_DxSAR(i), desc->sg[i].addr);
88 hsu_chan_writel(hsuc, HSU_CH_DxTSR(i), desc->sg[i].len);
89
90 /* Prepare value for DCR */
91 dcr |= HSU_CH_DCR_DESCA(i);
92 dcr |= HSU_CH_DCR_CHTOI(i); /* timeout bit, see HSU Errata 1 */
93
94 desc->active++;
95 }
96 /* Only for the last descriptor in the chain */
97 dcr |= HSU_CH_DCR_CHSOD(count - 1);
98 dcr |= HSU_CH_DCR_CHDI(count - 1);
99
100 hsu_chan_writel(hsuc, HSU_CH_DCR, dcr);
101
102 hsu_chan_enable(hsuc);
103 }
104
hsu_dma_stop_channel(struct hsu_dma_chan * hsuc)105 static void hsu_dma_stop_channel(struct hsu_dma_chan *hsuc)
106 {
107 hsu_chan_disable(hsuc);
108 hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
109 }
110
hsu_dma_start_channel(struct hsu_dma_chan * hsuc)111 static void hsu_dma_start_channel(struct hsu_dma_chan *hsuc)
112 {
113 hsu_dma_chan_start(hsuc);
114 }
115
hsu_dma_start_transfer(struct hsu_dma_chan * hsuc)116 static void hsu_dma_start_transfer(struct hsu_dma_chan *hsuc)
117 {
118 struct virt_dma_desc *vdesc;
119
120 /* Get the next descriptor */
121 vdesc = vchan_next_desc(&hsuc->vchan);
122 if (!vdesc) {
123 hsuc->desc = NULL;
124 return;
125 }
126
127 list_del(&vdesc->node);
128 hsuc->desc = to_hsu_dma_desc(vdesc);
129
130 /* Start the channel with a new descriptor */
131 hsu_dma_start_channel(hsuc);
132 }
133
134 /*
135 * hsu_dma_get_status() - get DMA channel status
136 * @chip: HSUART DMA chip
137 * @nr: DMA channel number
138 * @status: pointer for DMA Channel Status Register value
139 *
140 * Description:
141 * The function reads and clears the DMA Channel Status Register, checks
142 * if it was a timeout interrupt and returns a corresponding value.
143 *
144 * Caller should provide a valid pointer for the DMA Channel Status
145 * Register value that will be returned in @status.
146 *
147 * Return:
148 * 1 for DMA timeout status, 0 for other DMA status, or error code for
149 * invalid parameters or no interrupt pending.
150 */
hsu_dma_get_status(struct hsu_dma_chip * chip,unsigned short nr,u32 * status)151 int hsu_dma_get_status(struct hsu_dma_chip *chip, unsigned short nr,
152 u32 *status)
153 {
154 struct hsu_dma_chan *hsuc;
155 unsigned long flags;
156 u32 sr;
157
158 /* Sanity check */
159 if (nr >= chip->hsu->nr_channels)
160 return -EINVAL;
161
162 hsuc = &chip->hsu->chan[nr];
163
164 /*
165 * No matter what situation, need read clear the IRQ status
166 * There is a bug, see Errata 5, HSD 2900918
167 */
168 spin_lock_irqsave(&hsuc->vchan.lock, flags);
169 sr = hsu_chan_readl(hsuc, HSU_CH_SR);
170 spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
171
172 /* Check if any interrupt is pending */
173 sr &= ~(HSU_CH_SR_DESCE_ANY | HSU_CH_SR_CDESC_ANY);
174 if (!sr)
175 return -EIO;
176
177 /* Timeout IRQ, need wait some time, see Errata 2 */
178 if (sr & HSU_CH_SR_DESCTO_ANY)
179 udelay(2);
180
181 /*
182 * At this point, at least one of Descriptor Time Out, Channel Error
183 * or Descriptor Done bits must be set. Clear the Descriptor Time Out
184 * bits and if sr is still non-zero, it must be channel error or
185 * descriptor done which are higher priority than timeout and handled
186 * in hsu_dma_do_irq(). Else, it must be a timeout.
187 */
188 sr &= ~HSU_CH_SR_DESCTO_ANY;
189
190 *status = sr;
191
192 return sr ? 0 : 1;
193 }
194 EXPORT_SYMBOL_GPL(hsu_dma_get_status);
195
196 /*
197 * hsu_dma_do_irq() - DMA interrupt handler
198 * @chip: HSUART DMA chip
199 * @nr: DMA channel number
200 * @status: Channel Status Register value
201 *
202 * Description:
203 * This function handles Channel Error and Descriptor Done interrupts.
204 * This function should be called after determining that the DMA interrupt
205 * is not a normal timeout interrupt, ie. hsu_dma_get_status() returned 0.
206 *
207 * Return:
208 * 0 for invalid channel number, 1 otherwise.
209 */
hsu_dma_do_irq(struct hsu_dma_chip * chip,unsigned short nr,u32 status)210 int hsu_dma_do_irq(struct hsu_dma_chip *chip, unsigned short nr, u32 status)
211 {
212 struct dma_chan_percpu *stat;
213 struct hsu_dma_chan *hsuc;
214 struct hsu_dma_desc *desc;
215 unsigned long flags;
216
217 /* Sanity check */
218 if (nr >= chip->hsu->nr_channels)
219 return 0;
220
221 hsuc = &chip->hsu->chan[nr];
222 stat = this_cpu_ptr(hsuc->vchan.chan.local);
223
224 spin_lock_irqsave(&hsuc->vchan.lock, flags);
225 desc = hsuc->desc;
226 if (desc) {
227 if (status & HSU_CH_SR_CHE) {
228 desc->status = DMA_ERROR;
229 } else if (desc->active < desc->nents) {
230 hsu_dma_start_channel(hsuc);
231 } else {
232 vchan_cookie_complete(&desc->vdesc);
233 desc->status = DMA_COMPLETE;
234 stat->bytes_transferred += desc->length;
235 hsu_dma_start_transfer(hsuc);
236 }
237 }
238 spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
239
240 return 1;
241 }
242 EXPORT_SYMBOL_GPL(hsu_dma_do_irq);
243
hsu_dma_alloc_desc(unsigned int nents)244 static struct hsu_dma_desc *hsu_dma_alloc_desc(unsigned int nents)
245 {
246 struct hsu_dma_desc *desc;
247
248 desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
249 if (!desc)
250 return NULL;
251
252 desc->sg = kcalloc(nents, sizeof(*desc->sg), GFP_NOWAIT);
253 if (!desc->sg) {
254 kfree(desc);
255 return NULL;
256 }
257
258 return desc;
259 }
260
hsu_dma_desc_free(struct virt_dma_desc * vdesc)261 static void hsu_dma_desc_free(struct virt_dma_desc *vdesc)
262 {
263 struct hsu_dma_desc *desc = to_hsu_dma_desc(vdesc);
264
265 kfree(desc->sg);
266 kfree(desc);
267 }
268
hsu_dma_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)269 static struct dma_async_tx_descriptor *hsu_dma_prep_slave_sg(
270 struct dma_chan *chan, struct scatterlist *sgl,
271 unsigned int sg_len, enum dma_transfer_direction direction,
272 unsigned long flags, void *context)
273 {
274 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
275 struct hsu_dma_desc *desc;
276 struct scatterlist *sg;
277 unsigned int i;
278
279 desc = hsu_dma_alloc_desc(sg_len);
280 if (!desc)
281 return NULL;
282
283 for_each_sg(sgl, sg, sg_len, i) {
284 desc->sg[i].addr = sg_dma_address(sg);
285 desc->sg[i].len = sg_dma_len(sg);
286
287 desc->length += sg_dma_len(sg);
288 }
289
290 desc->nents = sg_len;
291 desc->direction = direction;
292 /* desc->active = 0 by kzalloc */
293 desc->status = DMA_IN_PROGRESS;
294
295 return vchan_tx_prep(&hsuc->vchan, &desc->vdesc, flags);
296 }
297
hsu_dma_issue_pending(struct dma_chan * chan)298 static void hsu_dma_issue_pending(struct dma_chan *chan)
299 {
300 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
301 unsigned long flags;
302
303 spin_lock_irqsave(&hsuc->vchan.lock, flags);
304 if (vchan_issue_pending(&hsuc->vchan) && !hsuc->desc)
305 hsu_dma_start_transfer(hsuc);
306 spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
307 }
308
hsu_dma_active_desc_size(struct hsu_dma_chan * hsuc)309 static size_t hsu_dma_active_desc_size(struct hsu_dma_chan *hsuc)
310 {
311 struct hsu_dma_desc *desc = hsuc->desc;
312 size_t bytes = 0;
313 int i;
314
315 for (i = desc->active; i < desc->nents; i++)
316 bytes += desc->sg[i].len;
317
318 i = HSU_DMA_CHAN_NR_DESC - 1;
319 do {
320 bytes += hsu_chan_readl(hsuc, HSU_CH_DxTSR(i));
321 } while (--i >= 0);
322
323 return bytes;
324 }
325
hsu_dma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * state)326 static enum dma_status hsu_dma_tx_status(struct dma_chan *chan,
327 dma_cookie_t cookie, struct dma_tx_state *state)
328 {
329 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
330 struct virt_dma_desc *vdesc;
331 enum dma_status status;
332 size_t bytes;
333 unsigned long flags;
334
335 status = dma_cookie_status(chan, cookie, state);
336 if (status == DMA_COMPLETE)
337 return status;
338
339 spin_lock_irqsave(&hsuc->vchan.lock, flags);
340 vdesc = vchan_find_desc(&hsuc->vchan, cookie);
341 if (hsuc->desc && cookie == hsuc->desc->vdesc.tx.cookie) {
342 bytes = hsu_dma_active_desc_size(hsuc);
343 dma_set_residue(state, bytes);
344 status = hsuc->desc->status;
345 } else if (vdesc) {
346 bytes = to_hsu_dma_desc(vdesc)->length;
347 dma_set_residue(state, bytes);
348 }
349 spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
350
351 return status;
352 }
353
hsu_dma_slave_config(struct dma_chan * chan,struct dma_slave_config * config)354 static int hsu_dma_slave_config(struct dma_chan *chan,
355 struct dma_slave_config *config)
356 {
357 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
358
359 memcpy(&hsuc->config, config, sizeof(hsuc->config));
360
361 return 0;
362 }
363
hsu_dma_pause(struct dma_chan * chan)364 static int hsu_dma_pause(struct dma_chan *chan)
365 {
366 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
367 unsigned long flags;
368
369 spin_lock_irqsave(&hsuc->vchan.lock, flags);
370 if (hsuc->desc && hsuc->desc->status == DMA_IN_PROGRESS) {
371 hsu_chan_disable(hsuc);
372 hsuc->desc->status = DMA_PAUSED;
373 }
374 spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
375
376 return 0;
377 }
378
hsu_dma_resume(struct dma_chan * chan)379 static int hsu_dma_resume(struct dma_chan *chan)
380 {
381 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
382 unsigned long flags;
383
384 spin_lock_irqsave(&hsuc->vchan.lock, flags);
385 if (hsuc->desc && hsuc->desc->status == DMA_PAUSED) {
386 hsuc->desc->status = DMA_IN_PROGRESS;
387 hsu_chan_enable(hsuc);
388 }
389 spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
390
391 return 0;
392 }
393
hsu_dma_terminate_all(struct dma_chan * chan)394 static int hsu_dma_terminate_all(struct dma_chan *chan)
395 {
396 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
397 unsigned long flags;
398 LIST_HEAD(head);
399
400 spin_lock_irqsave(&hsuc->vchan.lock, flags);
401
402 hsu_dma_stop_channel(hsuc);
403 if (hsuc->desc) {
404 hsu_dma_desc_free(&hsuc->desc->vdesc);
405 hsuc->desc = NULL;
406 }
407
408 vchan_get_all_descriptors(&hsuc->vchan, &head);
409 spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
410 vchan_dma_desc_free_list(&hsuc->vchan, &head);
411
412 return 0;
413 }
414
hsu_dma_free_chan_resources(struct dma_chan * chan)415 static void hsu_dma_free_chan_resources(struct dma_chan *chan)
416 {
417 vchan_free_chan_resources(to_virt_chan(chan));
418 }
419
hsu_dma_synchronize(struct dma_chan * chan)420 static void hsu_dma_synchronize(struct dma_chan *chan)
421 {
422 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
423
424 vchan_synchronize(&hsuc->vchan);
425 }
426
hsu_dma_probe(struct hsu_dma_chip * chip)427 int hsu_dma_probe(struct hsu_dma_chip *chip)
428 {
429 struct hsu_dma *hsu;
430 void __iomem *addr = chip->regs + chip->offset;
431 unsigned short i;
432 int ret;
433
434 hsu = devm_kzalloc(chip->dev, sizeof(*hsu), GFP_KERNEL);
435 if (!hsu)
436 return -ENOMEM;
437
438 chip->hsu = hsu;
439
440 /* Calculate nr_channels from the IO space length */
441 hsu->nr_channels = (chip->length - chip->offset) / HSU_DMA_CHAN_LENGTH;
442
443 hsu->chan = devm_kcalloc(chip->dev, hsu->nr_channels,
444 sizeof(*hsu->chan), GFP_KERNEL);
445 if (!hsu->chan)
446 return -ENOMEM;
447
448 INIT_LIST_HEAD(&hsu->dma.channels);
449 for (i = 0; i < hsu->nr_channels; i++) {
450 struct hsu_dma_chan *hsuc = &hsu->chan[i];
451
452 hsuc->vchan.desc_free = hsu_dma_desc_free;
453 vchan_init(&hsuc->vchan, &hsu->dma);
454
455 hsuc->direction = (i & 0x1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
456 hsuc->reg = addr + i * HSU_DMA_CHAN_LENGTH;
457 }
458
459 dma_cap_set(DMA_SLAVE, hsu->dma.cap_mask);
460 dma_cap_set(DMA_PRIVATE, hsu->dma.cap_mask);
461
462 hsu->dma.device_free_chan_resources = hsu_dma_free_chan_resources;
463
464 hsu->dma.device_prep_slave_sg = hsu_dma_prep_slave_sg;
465
466 hsu->dma.device_issue_pending = hsu_dma_issue_pending;
467 hsu->dma.device_tx_status = hsu_dma_tx_status;
468
469 hsu->dma.device_config = hsu_dma_slave_config;
470 hsu->dma.device_pause = hsu_dma_pause;
471 hsu->dma.device_resume = hsu_dma_resume;
472 hsu->dma.device_terminate_all = hsu_dma_terminate_all;
473 hsu->dma.device_synchronize = hsu_dma_synchronize;
474
475 hsu->dma.src_addr_widths = HSU_DMA_BUSWIDTHS;
476 hsu->dma.dst_addr_widths = HSU_DMA_BUSWIDTHS;
477 hsu->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
478 hsu->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
479
480 hsu->dma.dev = chip->dev;
481
482 dma_set_max_seg_size(hsu->dma.dev, HSU_CH_DxTSR_MASK);
483
484 ret = dma_async_device_register(&hsu->dma);
485 if (ret)
486 return ret;
487
488 dev_info(chip->dev, "Found HSU DMA, %d channels\n", hsu->nr_channels);
489 return 0;
490 }
491 EXPORT_SYMBOL_GPL(hsu_dma_probe);
492
hsu_dma_remove(struct hsu_dma_chip * chip)493 int hsu_dma_remove(struct hsu_dma_chip *chip)
494 {
495 struct hsu_dma *hsu = chip->hsu;
496 unsigned short i;
497
498 dma_async_device_unregister(&hsu->dma);
499
500 for (i = 0; i < hsu->nr_channels; i++) {
501 struct hsu_dma_chan *hsuc = &hsu->chan[i];
502
503 tasklet_kill(&hsuc->vchan.task);
504 }
505
506 return 0;
507 }
508 EXPORT_SYMBOL_GPL(hsu_dma_remove);
509
510 MODULE_LICENSE("GPL v2");
511 MODULE_DESCRIPTION("High Speed UART DMA core driver");
512 MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>");
513