1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Intel PCH/PCU SPI flash driver.
4 *
5 * Copyright (C) 2016 - 2022, Intel Corporation
6 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7 */
8
9 #include <linux/iopoll.h>
10 #include <linux/module.h>
11
12 #include <linux/mtd/partitions.h>
13 #include <linux/mtd/spi-nor.h>
14
15 #include <linux/spi/flash.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spi/spi-mem.h>
18
19 #include "spi-intel.h"
20
21 /* Offsets are from @ispi->base */
22 #define BFPREG 0x00
23
24 #define HSFSTS_CTL 0x04
25 #define HSFSTS_CTL_FSMIE BIT(31)
26 #define HSFSTS_CTL_FDBC_SHIFT 24
27 #define HSFSTS_CTL_FDBC_MASK (0x3f << HSFSTS_CTL_FDBC_SHIFT)
28
29 #define HSFSTS_CTL_FCYCLE_SHIFT 17
30 #define HSFSTS_CTL_FCYCLE_MASK (0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
31 /* HW sequencer opcodes */
32 #define HSFSTS_CTL_FCYCLE_READ (0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
33 #define HSFSTS_CTL_FCYCLE_WRITE (0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
34 #define HSFSTS_CTL_FCYCLE_ERASE (0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
35 #define HSFSTS_CTL_FCYCLE_ERASE_64K (0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
36 #define HSFSTS_CTL_FCYCLE_RDSFDP (0x05 << HSFSTS_CTL_FCYCLE_SHIFT)
37 #define HSFSTS_CTL_FCYCLE_RDID (0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
38 #define HSFSTS_CTL_FCYCLE_WRSR (0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
39 #define HSFSTS_CTL_FCYCLE_RDSR (0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
40
41 #define HSFSTS_CTL_FGO BIT(16)
42 #define HSFSTS_CTL_FLOCKDN BIT(15)
43 #define HSFSTS_CTL_FDV BIT(14)
44 #define HSFSTS_CTL_SCIP BIT(5)
45 #define HSFSTS_CTL_AEL BIT(2)
46 #define HSFSTS_CTL_FCERR BIT(1)
47 #define HSFSTS_CTL_FDONE BIT(0)
48
49 #define FADDR 0x08
50 #define DLOCK 0x0c
51 #define FDATA(n) (0x10 + ((n) * 4))
52
53 #define FRACC 0x50
54
55 #define FREG(n) (0x54 + ((n) * 4))
56 #define FREG_BASE_MASK GENMASK(14, 0)
57 #define FREG_LIMIT_SHIFT 16
58 #define FREG_LIMIT_MASK GENMASK(30, 16)
59
60 /* Offset is from @ispi->pregs */
61 #define PR(n) ((n) * 4)
62 #define PR_WPE BIT(31)
63 #define PR_LIMIT_SHIFT 16
64 #define PR_LIMIT_MASK GENMASK(30, 16)
65 #define PR_RPE BIT(15)
66 #define PR_BASE_MASK GENMASK(14, 0)
67
68 /* Offsets are from @ispi->sregs */
69 #define SSFSTS_CTL 0x00
70 #define SSFSTS_CTL_FSMIE BIT(23)
71 #define SSFSTS_CTL_DS BIT(22)
72 #define SSFSTS_CTL_DBC_SHIFT 16
73 #define SSFSTS_CTL_SPOP BIT(11)
74 #define SSFSTS_CTL_ACS BIT(10)
75 #define SSFSTS_CTL_SCGO BIT(9)
76 #define SSFSTS_CTL_COP_SHIFT 12
77 #define SSFSTS_CTL_FRS BIT(7)
78 #define SSFSTS_CTL_DOFRS BIT(6)
79 #define SSFSTS_CTL_AEL BIT(4)
80 #define SSFSTS_CTL_FCERR BIT(3)
81 #define SSFSTS_CTL_FDONE BIT(2)
82 #define SSFSTS_CTL_SCIP BIT(0)
83
84 #define PREOP_OPTYPE 0x04
85 #define OPMENU0 0x08
86 #define OPMENU1 0x0c
87
88 #define OPTYPE_READ_NO_ADDR 0
89 #define OPTYPE_WRITE_NO_ADDR 1
90 #define OPTYPE_READ_WITH_ADDR 2
91 #define OPTYPE_WRITE_WITH_ADDR 3
92
93 /* CPU specifics */
94 #define BYT_PR 0x74
95 #define BYT_SSFSTS_CTL 0x90
96 #define BYT_FREG_NUM 5
97 #define BYT_PR_NUM 5
98
99 #define LPT_PR 0x74
100 #define LPT_SSFSTS_CTL 0x90
101 #define LPT_FREG_NUM 5
102 #define LPT_PR_NUM 5
103
104 #define BXT_PR 0x84
105 #define BXT_SSFSTS_CTL 0xa0
106 #define BXT_FREG_NUM 12
107 #define BXT_PR_NUM 5
108
109 #define CNL_PR 0x84
110 #define CNL_FREG_NUM 6
111 #define CNL_PR_NUM 5
112
113 #define LVSCC 0xc4
114 #define UVSCC 0xc8
115 #define ERASE_OPCODE_SHIFT 8
116 #define ERASE_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT)
117 #define ERASE_64K_OPCODE_SHIFT 16
118 #define ERASE_64K_OPCODE_MASK (0xff << ERASE_64K_OPCODE_SHIFT)
119
120 /* Flash descriptor fields */
121 #define FLVALSIG_MAGIC 0x0ff0a55a
122 #define FLMAP0_NC_MASK GENMASK(9, 8)
123 #define FLMAP0_NC_SHIFT 8
124 #define FLMAP0_FCBA_MASK GENMASK(7, 0)
125
126 #define FLCOMP_C0DEN_MASK GENMASK(3, 0)
127 #define FLCOMP_C0DEN_512K 0x00
128 #define FLCOMP_C0DEN_1M 0x01
129 #define FLCOMP_C0DEN_2M 0x02
130 #define FLCOMP_C0DEN_4M 0x03
131 #define FLCOMP_C0DEN_8M 0x04
132 #define FLCOMP_C0DEN_16M 0x05
133 #define FLCOMP_C0DEN_32M 0x06
134 #define FLCOMP_C0DEN_64M 0x07
135
136 #define INTEL_SPI_TIMEOUT 5000 /* ms */
137 #define INTEL_SPI_FIFO_SZ 64
138
139 /**
140 * struct intel_spi - Driver private data
141 * @dev: Device pointer
142 * @info: Pointer to board specific info
143 * @base: Beginning of MMIO space
144 * @pregs: Start of protection registers
145 * @sregs: Start of software sequencer registers
146 * @host: Pointer to the SPI controller structure
147 * @nregions: Maximum number of regions
148 * @pr_num: Maximum number of protected range registers
149 * @chip0_size: Size of the first flash chip in bytes
150 * @locked: Is SPI setting locked
151 * @swseq_reg: Use SW sequencer in register reads/writes
152 * @swseq_erase: Use SW sequencer in erase operation
153 * @atomic_preopcode: Holds preopcode when atomic sequence is requested
154 * @opcodes: Opcodes which are supported. This are programmed by BIOS
155 * before it locks down the controller.
156 * @mem_ops: Pointer to SPI MEM ops supported by the controller
157 */
158 struct intel_spi {
159 struct device *dev;
160 const struct intel_spi_boardinfo *info;
161 void __iomem *base;
162 void __iomem *pregs;
163 void __iomem *sregs;
164 struct spi_controller *host;
165 size_t nregions;
166 size_t pr_num;
167 size_t chip0_size;
168 bool locked;
169 bool swseq_reg;
170 bool swseq_erase;
171 u8 atomic_preopcode;
172 u8 opcodes[8];
173 const struct intel_spi_mem_op *mem_ops;
174 };
175
176 struct intel_spi_mem_op {
177 struct spi_mem_op mem_op;
178 u32 replacement_op;
179 int (*exec_op)(struct intel_spi *ispi,
180 const struct spi_mem *mem,
181 const struct intel_spi_mem_op *iop,
182 const struct spi_mem_op *op);
183 };
184
185 static bool writeable;
186 module_param(writeable, bool, 0);
187 MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
188
intel_spi_dump_regs(struct intel_spi * ispi)189 static void intel_spi_dump_regs(struct intel_spi *ispi)
190 {
191 u32 value;
192 int i;
193
194 dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
195
196 value = readl(ispi->base + HSFSTS_CTL);
197 dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
198 if (value & HSFSTS_CTL_FLOCKDN)
199 dev_dbg(ispi->dev, "-> Locked\n");
200
201 dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
202 dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
203
204 for (i = 0; i < 16; i++)
205 dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
206 i, readl(ispi->base + FDATA(i)));
207
208 dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
209
210 for (i = 0; i < ispi->nregions; i++)
211 dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
212 readl(ispi->base + FREG(i)));
213 for (i = 0; i < ispi->pr_num; i++)
214 dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
215 readl(ispi->pregs + PR(i)));
216
217 if (ispi->sregs) {
218 value = readl(ispi->sregs + SSFSTS_CTL);
219 dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
220 dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
221 readl(ispi->sregs + PREOP_OPTYPE));
222 dev_dbg(ispi->dev, "OPMENU0=0x%08x\n",
223 readl(ispi->sregs + OPMENU0));
224 dev_dbg(ispi->dev, "OPMENU1=0x%08x\n",
225 readl(ispi->sregs + OPMENU1));
226 }
227
228 dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
229 dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
230
231 dev_dbg(ispi->dev, "Protected regions:\n");
232 for (i = 0; i < ispi->pr_num; i++) {
233 u32 base, limit;
234
235 value = readl(ispi->pregs + PR(i));
236 if (!(value & (PR_WPE | PR_RPE)))
237 continue;
238
239 limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
240 base = value & PR_BASE_MASK;
241
242 dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
243 i, base << 12, (limit << 12) | 0xfff,
244 value & PR_WPE ? 'W' : '.', value & PR_RPE ? 'R' : '.');
245 }
246
247 dev_dbg(ispi->dev, "Flash regions:\n");
248 for (i = 0; i < ispi->nregions; i++) {
249 u32 region, base, limit;
250
251 region = readl(ispi->base + FREG(i));
252 base = region & FREG_BASE_MASK;
253 limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
254
255 if (base >= limit || (i > 0 && limit == 0))
256 dev_dbg(ispi->dev, " %02d disabled\n", i);
257 else
258 dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
259 i, base << 12, (limit << 12) | 0xfff);
260 }
261
262 dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
263 ispi->swseq_reg ? 'S' : 'H');
264 dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
265 ispi->swseq_erase ? 'S' : 'H');
266 }
267
268 /* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
intel_spi_read_block(struct intel_spi * ispi,void * buf,size_t size)269 static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
270 {
271 size_t bytes;
272 int i = 0;
273
274 if (size > INTEL_SPI_FIFO_SZ)
275 return -EINVAL;
276
277 while (size > 0) {
278 bytes = min_t(size_t, size, 4);
279 memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
280 size -= bytes;
281 buf += bytes;
282 i++;
283 }
284
285 return 0;
286 }
287
288 /* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
intel_spi_write_block(struct intel_spi * ispi,const void * buf,size_t size)289 static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
290 size_t size)
291 {
292 size_t bytes;
293 int i = 0;
294
295 if (size > INTEL_SPI_FIFO_SZ)
296 return -EINVAL;
297
298 while (size > 0) {
299 bytes = min_t(size_t, size, 4);
300 memcpy_toio(ispi->base + FDATA(i), buf, bytes);
301 size -= bytes;
302 buf += bytes;
303 i++;
304 }
305
306 return 0;
307 }
308
intel_spi_wait_hw_busy(struct intel_spi * ispi)309 static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
310 {
311 u32 val;
312
313 return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
314 !(val & HSFSTS_CTL_SCIP), 0,
315 INTEL_SPI_TIMEOUT * 1000);
316 }
317
intel_spi_wait_sw_busy(struct intel_spi * ispi)318 static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
319 {
320 u32 val;
321
322 return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
323 !(val & SSFSTS_CTL_SCIP), 0,
324 INTEL_SPI_TIMEOUT * 1000);
325 }
326
intel_spi_set_writeable(struct intel_spi * ispi)327 static bool intel_spi_set_writeable(struct intel_spi *ispi)
328 {
329 if (!ispi->info->set_writeable)
330 return false;
331
332 return ispi->info->set_writeable(ispi->base, ispi->info->data);
333 }
334
intel_spi_opcode_index(struct intel_spi * ispi,u8 opcode,int optype)335 static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
336 {
337 int i;
338 int preop;
339
340 if (ispi->locked) {
341 for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
342 if (ispi->opcodes[i] == opcode)
343 return i;
344
345 return -EINVAL;
346 }
347
348 /* The lock is off, so just use index 0 */
349 writel(opcode, ispi->sregs + OPMENU0);
350 preop = readw(ispi->sregs + PREOP_OPTYPE);
351 writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
352
353 return 0;
354 }
355
intel_spi_hw_cycle(struct intel_spi * ispi,const struct intel_spi_mem_op * iop,size_t len)356 static int intel_spi_hw_cycle(struct intel_spi *ispi,
357 const struct intel_spi_mem_op *iop, size_t len)
358 {
359 u32 val, status;
360 int ret;
361
362 if (!iop->replacement_op)
363 return -EINVAL;
364
365 val = readl(ispi->base + HSFSTS_CTL);
366 val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
367 val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
368 val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
369 val |= HSFSTS_CTL_FGO;
370 val |= iop->replacement_op;
371 writel(val, ispi->base + HSFSTS_CTL);
372
373 ret = intel_spi_wait_hw_busy(ispi);
374 if (ret)
375 return ret;
376
377 status = readl(ispi->base + HSFSTS_CTL);
378 if (status & HSFSTS_CTL_FCERR)
379 return -EIO;
380 else if (status & HSFSTS_CTL_AEL)
381 return -EACCES;
382
383 return 0;
384 }
385
intel_spi_sw_cycle(struct intel_spi * ispi,u8 opcode,size_t len,int optype)386 static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len,
387 int optype)
388 {
389 u32 val = 0, status;
390 u8 atomic_preopcode;
391 int ret;
392
393 ret = intel_spi_opcode_index(ispi, opcode, optype);
394 if (ret < 0)
395 return ret;
396
397 /*
398 * Always clear it after each SW sequencer operation regardless
399 * of whether it is successful or not.
400 */
401 atomic_preopcode = ispi->atomic_preopcode;
402 ispi->atomic_preopcode = 0;
403
404 /* Only mark 'Data Cycle' bit when there is data to be transferred */
405 if (len > 0)
406 val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
407 val |= ret << SSFSTS_CTL_COP_SHIFT;
408 val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
409 val |= SSFSTS_CTL_SCGO;
410 if (atomic_preopcode) {
411 u16 preop;
412
413 switch (optype) {
414 case OPTYPE_WRITE_NO_ADDR:
415 case OPTYPE_WRITE_WITH_ADDR:
416 /* Pick matching preopcode for the atomic sequence */
417 preop = readw(ispi->sregs + PREOP_OPTYPE);
418 if ((preop & 0xff) == atomic_preopcode)
419 ; /* Do nothing */
420 else if ((preop >> 8) == atomic_preopcode)
421 val |= SSFSTS_CTL_SPOP;
422 else
423 return -EINVAL;
424
425 /* Enable atomic sequence */
426 val |= SSFSTS_CTL_ACS;
427 break;
428
429 default:
430 return -EINVAL;
431 }
432 }
433 writel(val, ispi->sregs + SSFSTS_CTL);
434
435 ret = intel_spi_wait_sw_busy(ispi);
436 if (ret)
437 return ret;
438
439 status = readl(ispi->sregs + SSFSTS_CTL);
440 if (status & SSFSTS_CTL_FCERR)
441 return -EIO;
442 else if (status & SSFSTS_CTL_AEL)
443 return -EACCES;
444
445 return 0;
446 }
447
intel_spi_chip_addr(const struct intel_spi * ispi,const struct spi_mem * mem)448 static u32 intel_spi_chip_addr(const struct intel_spi *ispi,
449 const struct spi_mem *mem)
450 {
451 /* Pick up the correct start address */
452 if (!mem)
453 return 0;
454 return (spi_get_chipselect(mem->spi, 0) == 1) ? ispi->chip0_size : 0;
455 }
456
intel_spi_read_reg(struct intel_spi * ispi,const struct spi_mem * mem,const struct intel_spi_mem_op * iop,const struct spi_mem_op * op)457 static int intel_spi_read_reg(struct intel_spi *ispi, const struct spi_mem *mem,
458 const struct intel_spi_mem_op *iop,
459 const struct spi_mem_op *op)
460 {
461 u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
462 size_t nbytes = op->data.nbytes;
463 u8 opcode = op->cmd.opcode;
464 int ret;
465
466 writel(addr, ispi->base + FADDR);
467
468 if (ispi->swseq_reg)
469 ret = intel_spi_sw_cycle(ispi, opcode, nbytes,
470 OPTYPE_READ_NO_ADDR);
471 else
472 ret = intel_spi_hw_cycle(ispi, iop, nbytes);
473
474 if (ret)
475 return ret;
476
477 return intel_spi_read_block(ispi, op->data.buf.in, nbytes);
478 }
479
intel_spi_write_reg(struct intel_spi * ispi,const struct spi_mem * mem,const struct intel_spi_mem_op * iop,const struct spi_mem_op * op)480 static int intel_spi_write_reg(struct intel_spi *ispi, const struct spi_mem *mem,
481 const struct intel_spi_mem_op *iop,
482 const struct spi_mem_op *op)
483 {
484 u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
485 size_t nbytes = op->data.nbytes;
486 u8 opcode = op->cmd.opcode;
487 int ret;
488
489 /*
490 * This is handled with atomic operation and preop code in Intel
491 * controller so we only verify that it is available. If the
492 * controller is not locked, program the opcode to the PREOP
493 * register for later use.
494 *
495 * When hardware sequencer is used there is no need to program
496 * any opcodes (it handles them automatically as part of a command).
497 */
498 if (opcode == SPINOR_OP_WREN) {
499 u16 preop;
500
501 if (!ispi->swseq_reg)
502 return 0;
503
504 preop = readw(ispi->sregs + PREOP_OPTYPE);
505 if ((preop & 0xff) != opcode && (preop >> 8) != opcode) {
506 if (ispi->locked)
507 return -EINVAL;
508 writel(opcode, ispi->sregs + PREOP_OPTYPE);
509 }
510
511 /*
512 * This enables atomic sequence on next SW sycle. Will
513 * be cleared after next operation.
514 */
515 ispi->atomic_preopcode = opcode;
516 return 0;
517 }
518
519 /*
520 * We hope that HW sequencer will do the right thing automatically and
521 * with the SW sequencer we cannot use preopcode anyway, so just ignore
522 * the Write Disable operation and pretend it was completed
523 * successfully.
524 */
525 if (opcode == SPINOR_OP_WRDI)
526 return 0;
527
528 writel(addr, ispi->base + FADDR);
529
530 /* Write the value beforehand */
531 ret = intel_spi_write_block(ispi, op->data.buf.out, nbytes);
532 if (ret)
533 return ret;
534
535 if (ispi->swseq_reg)
536 return intel_spi_sw_cycle(ispi, opcode, nbytes,
537 OPTYPE_WRITE_NO_ADDR);
538 return intel_spi_hw_cycle(ispi, iop, nbytes);
539 }
540
intel_spi_read(struct intel_spi * ispi,const struct spi_mem * mem,const struct intel_spi_mem_op * iop,const struct spi_mem_op * op)541 static int intel_spi_read(struct intel_spi *ispi, const struct spi_mem *mem,
542 const struct intel_spi_mem_op *iop,
543 const struct spi_mem_op *op)
544 {
545 u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
546 size_t block_size, nbytes = op->data.nbytes;
547 void *read_buf = op->data.buf.in;
548 u32 val, status;
549 int ret;
550
551 /*
552 * Atomic sequence is not expected with HW sequencer reads. Make
553 * sure it is cleared regardless.
554 */
555 if (WARN_ON_ONCE(ispi->atomic_preopcode))
556 ispi->atomic_preopcode = 0;
557
558 while (nbytes > 0) {
559 block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
560
561 /* Read cannot cross 4K boundary */
562 block_size = min_t(loff_t, addr + block_size,
563 round_up(addr + 1, SZ_4K)) - addr;
564
565 writel(addr, ispi->base + FADDR);
566
567 val = readl(ispi->base + HSFSTS_CTL);
568 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
569 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
570 val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
571 val |= HSFSTS_CTL_FCYCLE_READ;
572 val |= HSFSTS_CTL_FGO;
573 writel(val, ispi->base + HSFSTS_CTL);
574
575 ret = intel_spi_wait_hw_busy(ispi);
576 if (ret)
577 return ret;
578
579 status = readl(ispi->base + HSFSTS_CTL);
580 if (status & HSFSTS_CTL_FCERR)
581 ret = -EIO;
582 else if (status & HSFSTS_CTL_AEL)
583 ret = -EACCES;
584
585 if (ret < 0) {
586 dev_err(ispi->dev, "read error: %x: %#x\n", addr, status);
587 return ret;
588 }
589
590 ret = intel_spi_read_block(ispi, read_buf, block_size);
591 if (ret)
592 return ret;
593
594 nbytes -= block_size;
595 addr += block_size;
596 read_buf += block_size;
597 }
598
599 return 0;
600 }
601
intel_spi_write(struct intel_spi * ispi,const struct spi_mem * mem,const struct intel_spi_mem_op * iop,const struct spi_mem_op * op)602 static int intel_spi_write(struct intel_spi *ispi, const struct spi_mem *mem,
603 const struct intel_spi_mem_op *iop,
604 const struct spi_mem_op *op)
605 {
606 u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
607 size_t block_size, nbytes = op->data.nbytes;
608 const void *write_buf = op->data.buf.out;
609 u32 val, status;
610 int ret;
611
612 /* Not needed with HW sequencer write, make sure it is cleared */
613 ispi->atomic_preopcode = 0;
614
615 while (nbytes > 0) {
616 block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
617
618 /* Write cannot cross 4K boundary */
619 block_size = min_t(loff_t, addr + block_size,
620 round_up(addr + 1, SZ_4K)) - addr;
621
622 writel(addr, ispi->base + FADDR);
623
624 val = readl(ispi->base + HSFSTS_CTL);
625 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
626 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
627 val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
628 val |= HSFSTS_CTL_FCYCLE_WRITE;
629
630 ret = intel_spi_write_block(ispi, write_buf, block_size);
631 if (ret) {
632 dev_err(ispi->dev, "failed to write block\n");
633 return ret;
634 }
635
636 /* Start the write now */
637 val |= HSFSTS_CTL_FGO;
638 writel(val, ispi->base + HSFSTS_CTL);
639
640 ret = intel_spi_wait_hw_busy(ispi);
641 if (ret) {
642 dev_err(ispi->dev, "timeout\n");
643 return ret;
644 }
645
646 status = readl(ispi->base + HSFSTS_CTL);
647 if (status & HSFSTS_CTL_FCERR)
648 ret = -EIO;
649 else if (status & HSFSTS_CTL_AEL)
650 ret = -EACCES;
651
652 if (ret < 0) {
653 dev_err(ispi->dev, "write error: %x: %#x\n", addr, status);
654 return ret;
655 }
656
657 nbytes -= block_size;
658 addr += block_size;
659 write_buf += block_size;
660 }
661
662 return 0;
663 }
664
intel_spi_erase(struct intel_spi * ispi,const struct spi_mem * mem,const struct intel_spi_mem_op * iop,const struct spi_mem_op * op)665 static int intel_spi_erase(struct intel_spi *ispi, const struct spi_mem *mem,
666 const struct intel_spi_mem_op *iop,
667 const struct spi_mem_op *op)
668 {
669 u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
670 u8 opcode = op->cmd.opcode;
671 u32 val, status;
672 int ret;
673
674 writel(addr, ispi->base + FADDR);
675
676 if (ispi->swseq_erase)
677 return intel_spi_sw_cycle(ispi, opcode, 0,
678 OPTYPE_WRITE_WITH_ADDR);
679
680 /* Not needed with HW sequencer erase, make sure it is cleared */
681 ispi->atomic_preopcode = 0;
682
683 val = readl(ispi->base + HSFSTS_CTL);
684 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
685 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
686 val |= HSFSTS_CTL_FGO;
687 val |= iop->replacement_op;
688 writel(val, ispi->base + HSFSTS_CTL);
689
690 ret = intel_spi_wait_hw_busy(ispi);
691 if (ret)
692 return ret;
693
694 status = readl(ispi->base + HSFSTS_CTL);
695 if (status & HSFSTS_CTL_FCERR)
696 return -EIO;
697 if (status & HSFSTS_CTL_AEL)
698 return -EACCES;
699
700 return 0;
701 }
702
intel_spi_adjust_op_size(struct spi_mem * mem,struct spi_mem_op * op)703 static int intel_spi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
704 {
705 op->data.nbytes = clamp_val(op->data.nbytes, 0, INTEL_SPI_FIFO_SZ);
706 return 0;
707 }
708
intel_spi_cmp_mem_op(const struct intel_spi_mem_op * iop,const struct spi_mem_op * op)709 static bool intel_spi_cmp_mem_op(const struct intel_spi_mem_op *iop,
710 const struct spi_mem_op *op)
711 {
712 if (iop->mem_op.cmd.nbytes != op->cmd.nbytes ||
713 iop->mem_op.cmd.buswidth != op->cmd.buswidth ||
714 iop->mem_op.cmd.dtr != op->cmd.dtr)
715 return false;
716
717 if (iop->mem_op.addr.nbytes != op->addr.nbytes ||
718 iop->mem_op.addr.dtr != op->addr.dtr)
719 return false;
720
721 if (iop->mem_op.data.dir != op->data.dir ||
722 iop->mem_op.data.dtr != op->data.dtr)
723 return false;
724
725 if (iop->mem_op.data.dir != SPI_MEM_NO_DATA) {
726 if (iop->mem_op.data.buswidth != op->data.buswidth)
727 return false;
728 }
729
730 return true;
731 }
732
733 static const struct intel_spi_mem_op *
intel_spi_match_mem_op(struct intel_spi * ispi,const struct spi_mem_op * op)734 intel_spi_match_mem_op(struct intel_spi *ispi, const struct spi_mem_op *op)
735 {
736 const struct intel_spi_mem_op *iop;
737
738 for (iop = ispi->mem_ops; iop->mem_op.cmd.opcode; iop++) {
739 if (iop->mem_op.cmd.opcode == op->cmd.opcode &&
740 intel_spi_cmp_mem_op(iop, op))
741 return iop;
742 }
743
744 return NULL;
745 }
746
intel_spi_supports_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)747 static bool intel_spi_supports_mem_op(struct spi_mem *mem,
748 const struct spi_mem_op *op)
749 {
750 struct intel_spi *ispi = spi_controller_get_devdata(mem->spi->controller);
751 const struct intel_spi_mem_op *iop;
752
753 iop = intel_spi_match_mem_op(ispi, op);
754 if (!iop) {
755 dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
756 return false;
757 }
758
759 /*
760 * For software sequencer check that the opcode is actually
761 * present in the opmenu if it is locked.
762 */
763 if (ispi->swseq_reg && ispi->locked) {
764 int i;
765
766 /* Check if it is in the locked opcodes list */
767 for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) {
768 if (ispi->opcodes[i] == op->cmd.opcode)
769 return true;
770 }
771
772 dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
773 return false;
774 }
775
776 return true;
777 }
778
intel_spi_exec_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)779 static int intel_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
780 {
781 struct intel_spi *ispi = spi_controller_get_devdata(mem->spi->controller);
782 const struct intel_spi_mem_op *iop;
783
784 iop = intel_spi_match_mem_op(ispi, op);
785 if (!iop)
786 return -EOPNOTSUPP;
787
788 return iop->exec_op(ispi, mem, iop, op);
789 }
790
intel_spi_get_name(struct spi_mem * mem)791 static const char *intel_spi_get_name(struct spi_mem *mem)
792 {
793 const struct intel_spi *ispi = spi_controller_get_devdata(mem->spi->controller);
794
795 /*
796 * Return name of the flash controller device to be compatible
797 * with the MTD version.
798 */
799 return dev_name(ispi->dev);
800 }
801
intel_spi_dirmap_create(struct spi_mem_dirmap_desc * desc)802 static int intel_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
803 {
804 struct intel_spi *ispi = spi_controller_get_devdata(desc->mem->spi->controller);
805 const struct intel_spi_mem_op *iop;
806
807 iop = intel_spi_match_mem_op(ispi, &desc->info.op_tmpl);
808 if (!iop)
809 return -EOPNOTSUPP;
810
811 desc->priv = (void *)iop;
812 return 0;
813 }
814
intel_spi_dirmap_read(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,void * buf)815 static ssize_t intel_spi_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs,
816 size_t len, void *buf)
817 {
818 struct intel_spi *ispi = spi_controller_get_devdata(desc->mem->spi->controller);
819 const struct intel_spi_mem_op *iop = desc->priv;
820 struct spi_mem_op op = desc->info.op_tmpl;
821 int ret;
822
823 /* Fill in the gaps */
824 op.addr.val = offs;
825 op.data.nbytes = len;
826 op.data.buf.in = buf;
827
828 ret = iop->exec_op(ispi, desc->mem, iop, &op);
829 return ret ? ret : len;
830 }
831
intel_spi_dirmap_write(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,const void * buf)832 static ssize_t intel_spi_dirmap_write(struct spi_mem_dirmap_desc *desc, u64 offs,
833 size_t len, const void *buf)
834 {
835 struct intel_spi *ispi = spi_controller_get_devdata(desc->mem->spi->controller);
836 const struct intel_spi_mem_op *iop = desc->priv;
837 struct spi_mem_op op = desc->info.op_tmpl;
838 int ret;
839
840 op.addr.val = offs;
841 op.data.nbytes = len;
842 op.data.buf.out = buf;
843
844 ret = iop->exec_op(ispi, desc->mem, iop, &op);
845 return ret ? ret : len;
846 }
847
848 static const struct spi_controller_mem_ops intel_spi_mem_ops = {
849 .adjust_op_size = intel_spi_adjust_op_size,
850 .supports_op = intel_spi_supports_mem_op,
851 .exec_op = intel_spi_exec_mem_op,
852 .get_name = intel_spi_get_name,
853 .dirmap_create = intel_spi_dirmap_create,
854 .dirmap_read = intel_spi_dirmap_read,
855 .dirmap_write = intel_spi_dirmap_write,
856 };
857
858 #define INTEL_SPI_OP_ADDR(__nbytes) \
859 { \
860 .nbytes = __nbytes, \
861 }
862
863 #define INTEL_SPI_OP_NO_DATA \
864 { \
865 .dir = SPI_MEM_NO_DATA, \
866 }
867
868 #define INTEL_SPI_OP_DATA_IN(__buswidth) \
869 { \
870 .dir = SPI_MEM_DATA_IN, \
871 .buswidth = __buswidth, \
872 }
873
874 #define INTEL_SPI_OP_DATA_OUT(__buswidth) \
875 { \
876 .dir = SPI_MEM_DATA_OUT, \
877 .buswidth = __buswidth, \
878 }
879
880 #define INTEL_SPI_MEM_OP(__cmd, __addr, __data, __exec_op) \
881 { \
882 .mem_op = { \
883 .cmd = __cmd, \
884 .addr = __addr, \
885 .data = __data, \
886 }, \
887 .exec_op = __exec_op, \
888 }
889
890 #define INTEL_SPI_MEM_OP_REPL(__cmd, __addr, __data, __exec_op, __repl) \
891 { \
892 .mem_op = { \
893 .cmd = __cmd, \
894 .addr = __addr, \
895 .data = __data, \
896 }, \
897 .exec_op = __exec_op, \
898 .replacement_op = __repl, \
899 }
900
901 /*
902 * The controller handles pretty much everything internally based on the
903 * SFDP data but we want to make sure we only support the operations
904 * actually possible. Only check buswidth and transfer direction, the
905 * core validates data.
906 */
907 #define INTEL_SPI_GENERIC_OPS \
908 /* Status register operations */ \
909 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1), \
910 SPI_MEM_OP_NO_ADDR, \
911 INTEL_SPI_OP_DATA_IN(1), \
912 intel_spi_read_reg, \
913 HSFSTS_CTL_FCYCLE_RDID), \
914 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1), \
915 SPI_MEM_OP_NO_ADDR, \
916 INTEL_SPI_OP_DATA_IN(1), \
917 intel_spi_read_reg, \
918 HSFSTS_CTL_FCYCLE_RDSR), \
919 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1), \
920 SPI_MEM_OP_NO_ADDR, \
921 INTEL_SPI_OP_DATA_OUT(1), \
922 intel_spi_write_reg, \
923 HSFSTS_CTL_FCYCLE_WRSR), \
924 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDSFDP, 1), \
925 INTEL_SPI_OP_ADDR(3), \
926 INTEL_SPI_OP_DATA_IN(1), \
927 intel_spi_read_reg, \
928 HSFSTS_CTL_FCYCLE_RDSFDP), \
929 /* Normal read */ \
930 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
931 INTEL_SPI_OP_ADDR(3), \
932 INTEL_SPI_OP_DATA_IN(1), \
933 intel_spi_read), \
934 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
935 INTEL_SPI_OP_ADDR(3), \
936 INTEL_SPI_OP_DATA_IN(2), \
937 intel_spi_read), \
938 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
939 INTEL_SPI_OP_ADDR(3), \
940 INTEL_SPI_OP_DATA_IN(4), \
941 intel_spi_read), \
942 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
943 INTEL_SPI_OP_ADDR(4), \
944 INTEL_SPI_OP_DATA_IN(1), \
945 intel_spi_read), \
946 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
947 INTEL_SPI_OP_ADDR(4), \
948 INTEL_SPI_OP_DATA_IN(2), \
949 intel_spi_read), \
950 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
951 INTEL_SPI_OP_ADDR(4), \
952 INTEL_SPI_OP_DATA_IN(4), \
953 intel_spi_read), \
954 /* Fast read */ \
955 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
956 INTEL_SPI_OP_ADDR(3), \
957 INTEL_SPI_OP_DATA_IN(1), \
958 intel_spi_read), \
959 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
960 INTEL_SPI_OP_ADDR(3), \
961 INTEL_SPI_OP_DATA_IN(2), \
962 intel_spi_read), \
963 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
964 INTEL_SPI_OP_ADDR(3), \
965 INTEL_SPI_OP_DATA_IN(4), \
966 intel_spi_read), \
967 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
968 INTEL_SPI_OP_ADDR(4), \
969 INTEL_SPI_OP_DATA_IN(1), \
970 intel_spi_read), \
971 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
972 INTEL_SPI_OP_ADDR(4), \
973 INTEL_SPI_OP_DATA_IN(2), \
974 intel_spi_read), \
975 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
976 INTEL_SPI_OP_ADDR(4), \
977 INTEL_SPI_OP_DATA_IN(4), \
978 intel_spi_read), \
979 /* Read with 4-byte address opcode */ \
980 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \
981 INTEL_SPI_OP_ADDR(4), \
982 INTEL_SPI_OP_DATA_IN(1), \
983 intel_spi_read), \
984 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \
985 INTEL_SPI_OP_ADDR(4), \
986 INTEL_SPI_OP_DATA_IN(2), \
987 intel_spi_read), \
988 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \
989 INTEL_SPI_OP_ADDR(4), \
990 INTEL_SPI_OP_DATA_IN(4), \
991 intel_spi_read), \
992 /* Fast read with 4-byte address opcode */ \
993 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \
994 INTEL_SPI_OP_ADDR(4), \
995 INTEL_SPI_OP_DATA_IN(1), \
996 intel_spi_read), \
997 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \
998 INTEL_SPI_OP_ADDR(4), \
999 INTEL_SPI_OP_DATA_IN(2), \
1000 intel_spi_read), \
1001 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \
1002 INTEL_SPI_OP_ADDR(4), \
1003 INTEL_SPI_OP_DATA_IN(4), \
1004 intel_spi_read), \
1005 /* Write operations */ \
1006 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1), \
1007 INTEL_SPI_OP_ADDR(3), \
1008 INTEL_SPI_OP_DATA_OUT(1), \
1009 intel_spi_write), \
1010 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1), \
1011 INTEL_SPI_OP_ADDR(4), \
1012 INTEL_SPI_OP_DATA_OUT(1), \
1013 intel_spi_write), \
1014 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP_4B, 1), \
1015 INTEL_SPI_OP_ADDR(4), \
1016 INTEL_SPI_OP_DATA_OUT(1), \
1017 intel_spi_write), \
1018 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1), \
1019 SPI_MEM_OP_NO_ADDR, \
1020 SPI_MEM_OP_NO_DATA, \
1021 intel_spi_write_reg), \
1022 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1), \
1023 SPI_MEM_OP_NO_ADDR, \
1024 SPI_MEM_OP_NO_DATA, \
1025 intel_spi_write_reg), \
1026 /* Erase operations */ \
1027 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1), \
1028 INTEL_SPI_OP_ADDR(3), \
1029 SPI_MEM_OP_NO_DATA, \
1030 intel_spi_erase, \
1031 HSFSTS_CTL_FCYCLE_ERASE), \
1032 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1), \
1033 INTEL_SPI_OP_ADDR(4), \
1034 SPI_MEM_OP_NO_DATA, \
1035 intel_spi_erase, \
1036 HSFSTS_CTL_FCYCLE_ERASE), \
1037 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K_4B, 1), \
1038 INTEL_SPI_OP_ADDR(4), \
1039 SPI_MEM_OP_NO_DATA, \
1040 intel_spi_erase, \
1041 HSFSTS_CTL_FCYCLE_ERASE) \
1042
1043 static const struct intel_spi_mem_op generic_mem_ops[] = {
1044 INTEL_SPI_GENERIC_OPS,
1045 { },
1046 };
1047
1048 static const struct intel_spi_mem_op erase_64k_mem_ops[] = {
1049 INTEL_SPI_GENERIC_OPS,
1050 /* 64k sector erase operations */
1051 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
1052 INTEL_SPI_OP_ADDR(3),
1053 SPI_MEM_OP_NO_DATA,
1054 intel_spi_erase,
1055 HSFSTS_CTL_FCYCLE_ERASE_64K),
1056 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
1057 INTEL_SPI_OP_ADDR(4),
1058 SPI_MEM_OP_NO_DATA,
1059 intel_spi_erase,
1060 HSFSTS_CTL_FCYCLE_ERASE_64K),
1061 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE_4B, 1),
1062 INTEL_SPI_OP_ADDR(4),
1063 SPI_MEM_OP_NO_DATA,
1064 intel_spi_erase,
1065 HSFSTS_CTL_FCYCLE_ERASE_64K),
1066 { },
1067 };
1068
intel_spi_init(struct intel_spi * ispi)1069 static int intel_spi_init(struct intel_spi *ispi)
1070 {
1071 u32 opmenu0, opmenu1, lvscc, uvscc, val;
1072 bool erase_64k = false;
1073 int i;
1074
1075 switch (ispi->info->type) {
1076 case INTEL_SPI_BYT:
1077 ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
1078 ispi->pregs = ispi->base + BYT_PR;
1079 ispi->nregions = BYT_FREG_NUM;
1080 ispi->pr_num = BYT_PR_NUM;
1081 ispi->swseq_reg = true;
1082 break;
1083
1084 case INTEL_SPI_LPT:
1085 ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
1086 ispi->pregs = ispi->base + LPT_PR;
1087 ispi->nregions = LPT_FREG_NUM;
1088 ispi->pr_num = LPT_PR_NUM;
1089 ispi->swseq_reg = true;
1090 break;
1091
1092 case INTEL_SPI_BXT:
1093 ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
1094 ispi->pregs = ispi->base + BXT_PR;
1095 ispi->nregions = BXT_FREG_NUM;
1096 ispi->pr_num = BXT_PR_NUM;
1097 erase_64k = true;
1098 break;
1099
1100 case INTEL_SPI_CNL:
1101 ispi->sregs = NULL;
1102 ispi->pregs = ispi->base + CNL_PR;
1103 ispi->nregions = CNL_FREG_NUM;
1104 ispi->pr_num = CNL_PR_NUM;
1105 erase_64k = true;
1106 break;
1107
1108 default:
1109 return -EINVAL;
1110 }
1111
1112 /* Try to disable write protection if user asked to do so */
1113 if (writeable && !intel_spi_set_writeable(ispi)) {
1114 dev_warn(ispi->dev, "can't disable chip write protection\n");
1115 writeable = false;
1116 }
1117
1118 /* Disable #SMI generation from HW sequencer */
1119 val = readl(ispi->base + HSFSTS_CTL);
1120 val &= ~HSFSTS_CTL_FSMIE;
1121 writel(val, ispi->base + HSFSTS_CTL);
1122
1123 /*
1124 * Determine whether erase operation should use HW or SW sequencer.
1125 *
1126 * The HW sequencer has a predefined list of opcodes, with only the
1127 * erase opcode being programmable in LVSCC and UVSCC registers.
1128 * If these registers don't contain a valid erase opcode, erase
1129 * cannot be done using HW sequencer.
1130 */
1131 lvscc = readl(ispi->base + LVSCC);
1132 uvscc = readl(ispi->base + UVSCC);
1133 if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
1134 ispi->swseq_erase = true;
1135 /* SPI controller on Intel BXT supports 64K erase opcode */
1136 if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
1137 if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
1138 !(uvscc & ERASE_64K_OPCODE_MASK))
1139 erase_64k = false;
1140
1141 if (!ispi->sregs && (ispi->swseq_reg || ispi->swseq_erase)) {
1142 dev_err(ispi->dev, "software sequencer not supported, but required\n");
1143 return -EINVAL;
1144 }
1145
1146 /*
1147 * Some controllers can only do basic operations using hardware
1148 * sequencer. All other operations are supposed to be carried out
1149 * using software sequencer.
1150 */
1151 if (ispi->swseq_reg) {
1152 /* Disable #SMI generation from SW sequencer */
1153 val = readl(ispi->sregs + SSFSTS_CTL);
1154 val &= ~SSFSTS_CTL_FSMIE;
1155 writel(val, ispi->sregs + SSFSTS_CTL);
1156 }
1157
1158 /* Check controller's lock status */
1159 val = readl(ispi->base + HSFSTS_CTL);
1160 ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
1161
1162 if (ispi->locked && ispi->sregs) {
1163 /*
1164 * BIOS programs allowed opcodes and then locks down the
1165 * register. So read back what opcodes it decided to support.
1166 * That's the set we are going to support as well.
1167 */
1168 opmenu0 = readl(ispi->sregs + OPMENU0);
1169 opmenu1 = readl(ispi->sregs + OPMENU1);
1170
1171 if (opmenu0 && opmenu1) {
1172 for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
1173 ispi->opcodes[i] = opmenu0 >> i * 8;
1174 ispi->opcodes[i + 4] = opmenu1 >> i * 8;
1175 }
1176 }
1177 }
1178
1179 if (erase_64k) {
1180 dev_dbg(ispi->dev, "Using erase_64k memory operations");
1181 ispi->mem_ops = erase_64k_mem_ops;
1182 } else {
1183 dev_dbg(ispi->dev, "Using generic memory operations");
1184 ispi->mem_ops = generic_mem_ops;
1185 }
1186
1187 intel_spi_dump_regs(ispi);
1188 return 0;
1189 }
1190
intel_spi_is_protected(const struct intel_spi * ispi,unsigned int base,unsigned int limit)1191 static bool intel_spi_is_protected(const struct intel_spi *ispi,
1192 unsigned int base, unsigned int limit)
1193 {
1194 int i;
1195
1196 for (i = 0; i < ispi->pr_num; i++) {
1197 u32 pr_base, pr_limit, pr_value;
1198
1199 pr_value = readl(ispi->pregs + PR(i));
1200 if (!(pr_value & (PR_WPE | PR_RPE)))
1201 continue;
1202
1203 pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
1204 pr_base = pr_value & PR_BASE_MASK;
1205
1206 if (pr_base >= base && pr_limit <= limit)
1207 return true;
1208 }
1209
1210 return false;
1211 }
1212
1213 /*
1214 * There will be a single partition holding all enabled flash regions. We
1215 * call this "BIOS".
1216 */
intel_spi_fill_partition(struct intel_spi * ispi,struct mtd_partition * part)1217 static void intel_spi_fill_partition(struct intel_spi *ispi,
1218 struct mtd_partition *part)
1219 {
1220 u64 end;
1221 int i;
1222
1223 memset(part, 0, sizeof(*part));
1224
1225 /* Start from the mandatory descriptor region */
1226 part->size = 4096;
1227 part->name = "BIOS";
1228
1229 /*
1230 * Now try to find where this partition ends based on the flash
1231 * region registers.
1232 */
1233 for (i = 1; i < ispi->nregions; i++) {
1234 u32 region, base, limit;
1235
1236 region = readl(ispi->base + FREG(i));
1237 base = region & FREG_BASE_MASK;
1238 limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
1239
1240 if (base >= limit || limit == 0)
1241 continue;
1242
1243 /*
1244 * If any of the regions have protection bits set, make the
1245 * whole partition read-only to be on the safe side.
1246 *
1247 * Also if the user did not ask the chip to be writeable
1248 * mask the bit too.
1249 */
1250 if (!writeable || intel_spi_is_protected(ispi, base, limit))
1251 part->mask_flags |= MTD_WRITEABLE;
1252
1253 end = (limit << 12) + 4096;
1254 if (end > part->size)
1255 part->size = end;
1256 }
1257
1258 /*
1259 * Regions can refer to the second chip too so in this case we
1260 * just make the BIOS partition to occupy the whole chip.
1261 */
1262 if (ispi->chip0_size && part->size > ispi->chip0_size)
1263 part->size = MTDPART_SIZ_FULL;
1264 }
1265
intel_spi_read_desc(struct intel_spi * ispi)1266 static int intel_spi_read_desc(struct intel_spi *ispi)
1267 {
1268 struct spi_mem_op op =
1269 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 0),
1270 SPI_MEM_OP_ADDR(3, 0, 0),
1271 SPI_MEM_OP_NO_DUMMY,
1272 SPI_MEM_OP_DATA_IN(0, NULL, 0));
1273 u32 buf[2], nc, fcba, flcomp;
1274 ssize_t ret;
1275
1276 op.addr.val = 0x10;
1277 op.data.buf.in = buf;
1278 op.data.nbytes = sizeof(buf);
1279
1280 ret = intel_spi_read(ispi, NULL, NULL, &op);
1281 if (ret) {
1282 dev_warn(ispi->dev, "failed to read descriptor\n");
1283 return ret;
1284 }
1285
1286 dev_dbg(ispi->dev, "FLVALSIG=0x%08x\n", buf[0]);
1287 dev_dbg(ispi->dev, "FLMAP0=0x%08x\n", buf[1]);
1288
1289 if (buf[0] != FLVALSIG_MAGIC) {
1290 dev_warn(ispi->dev, "descriptor signature not valid\n");
1291 return -ENODEV;
1292 }
1293
1294 fcba = (buf[1] & FLMAP0_FCBA_MASK) << 4;
1295 dev_dbg(ispi->dev, "FCBA=%#x\n", fcba);
1296
1297 op.addr.val = fcba;
1298 op.data.buf.in = &flcomp;
1299 op.data.nbytes = sizeof(flcomp);
1300
1301 ret = intel_spi_read(ispi, NULL, NULL, &op);
1302 if (ret) {
1303 dev_warn(ispi->dev, "failed to read FLCOMP\n");
1304 return -ENODEV;
1305 }
1306
1307 dev_dbg(ispi->dev, "FLCOMP=0x%08x\n", flcomp);
1308
1309 switch (flcomp & FLCOMP_C0DEN_MASK) {
1310 case FLCOMP_C0DEN_512K:
1311 ispi->chip0_size = SZ_512K;
1312 break;
1313 case FLCOMP_C0DEN_1M:
1314 ispi->chip0_size = SZ_1M;
1315 break;
1316 case FLCOMP_C0DEN_2M:
1317 ispi->chip0_size = SZ_2M;
1318 break;
1319 case FLCOMP_C0DEN_4M:
1320 ispi->chip0_size = SZ_4M;
1321 break;
1322 case FLCOMP_C0DEN_8M:
1323 ispi->chip0_size = SZ_8M;
1324 break;
1325 case FLCOMP_C0DEN_16M:
1326 ispi->chip0_size = SZ_16M;
1327 break;
1328 case FLCOMP_C0DEN_32M:
1329 ispi->chip0_size = SZ_32M;
1330 break;
1331 case FLCOMP_C0DEN_64M:
1332 ispi->chip0_size = SZ_64M;
1333 break;
1334 default:
1335 return -EINVAL;
1336 }
1337
1338 dev_dbg(ispi->dev, "chip0 size %zd KB\n", ispi->chip0_size / SZ_1K);
1339
1340 nc = (buf[1] & FLMAP0_NC_MASK) >> FLMAP0_NC_SHIFT;
1341 if (!nc)
1342 ispi->host->num_chipselect = 1;
1343 else if (nc == 1)
1344 ispi->host->num_chipselect = 2;
1345 else
1346 return -EINVAL;
1347
1348 dev_dbg(ispi->dev, "%u flash components found\n",
1349 ispi->host->num_chipselect);
1350 return 0;
1351 }
1352
intel_spi_populate_chip(struct intel_spi * ispi)1353 static int intel_spi_populate_chip(struct intel_spi *ispi)
1354 {
1355 struct flash_platform_data *pdata;
1356 struct mtd_partition *parts;
1357 struct spi_board_info chip;
1358 int ret;
1359
1360 ret = intel_spi_read_desc(ispi);
1361 if (ret)
1362 return ret;
1363
1364 pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL);
1365 if (!pdata)
1366 return -ENOMEM;
1367
1368 pdata->nr_parts = 1;
1369 pdata->parts = devm_kcalloc(ispi->dev, pdata->nr_parts,
1370 sizeof(*pdata->parts), GFP_KERNEL);
1371 if (!pdata->parts)
1372 return -ENOMEM;
1373
1374 intel_spi_fill_partition(ispi, pdata->parts);
1375
1376 memset(&chip, 0, sizeof(chip));
1377 snprintf(chip.modalias, 8, "spi-nor");
1378 chip.platform_data = pdata;
1379
1380 if (!spi_new_device(ispi->host, &chip))
1381 return -ENODEV;
1382
1383 /* Add the second chip if present */
1384 if (ispi->host->num_chipselect < 2)
1385 return 0;
1386
1387 pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL);
1388 if (!pdata)
1389 return -ENOMEM;
1390
1391 pdata->name = devm_kasprintf(ispi->dev, GFP_KERNEL, "%s-chip1",
1392 dev_name(ispi->dev));
1393 if (!pdata->name)
1394 return -ENOMEM;
1395
1396 pdata->nr_parts = 1;
1397 parts = devm_kcalloc(ispi->dev, pdata->nr_parts, sizeof(*parts),
1398 GFP_KERNEL);
1399 if (!parts)
1400 return -ENOMEM;
1401
1402 parts[0].size = MTDPART_SIZ_FULL;
1403 parts[0].name = "BIOS1";
1404 pdata->parts = parts;
1405
1406 chip.platform_data = pdata;
1407 chip.chip_select = 1;
1408
1409 if (!spi_new_device(ispi->host, &chip))
1410 return -ENODEV;
1411 return 0;
1412 }
1413
1414 /**
1415 * intel_spi_probe() - Probe the Intel SPI flash controller
1416 * @dev: Pointer to the parent device
1417 * @mem: MMIO resource
1418 * @info: Platform specific information
1419 *
1420 * Probes Intel SPI flash controller and creates the flash chip device.
1421 * Returns %0 on success and negative errno in case of failure.
1422 */
intel_spi_probe(struct device * dev,struct resource * mem,const struct intel_spi_boardinfo * info)1423 int intel_spi_probe(struct device *dev, struct resource *mem,
1424 const struct intel_spi_boardinfo *info)
1425 {
1426 struct spi_controller *host;
1427 struct intel_spi *ispi;
1428 int ret;
1429
1430 host = devm_spi_alloc_host(dev, sizeof(*ispi));
1431 if (!host)
1432 return -ENOMEM;
1433
1434 host->mem_ops = &intel_spi_mem_ops;
1435
1436 ispi = spi_controller_get_devdata(host);
1437
1438 ispi->base = devm_ioremap_resource(dev, mem);
1439 if (IS_ERR(ispi->base))
1440 return PTR_ERR(ispi->base);
1441
1442 ispi->dev = dev;
1443 ispi->host = host;
1444 ispi->info = info;
1445
1446 ret = intel_spi_init(ispi);
1447 if (ret)
1448 return ret;
1449
1450 ret = devm_spi_register_controller(dev, host);
1451 if (ret)
1452 return ret;
1453
1454 return intel_spi_populate_chip(ispi);
1455 }
1456 EXPORT_SYMBOL_GPL(intel_spi_probe);
1457
1458 MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
1459 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
1460 MODULE_LICENSE("GPL v2");
1461