xref: /linux/include/linux/hugetlb.h (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HUGETLB_H
3 #define _LINUX_HUGETLB_H
4 
5 #include <linux/mm.h>
6 #include <linux/mm_types.h>
7 #include <linux/mmdebug.h>
8 #include <linux/fs.h>
9 #include <linux/hugetlb_inline.h>
10 #include <linux/cgroup.h>
11 #include <linux/page_ref.h>
12 #include <linux/list.h>
13 #include <linux/kref.h>
14 #include <linux/pgtable.h>
15 #include <linux/gfp.h>
16 #include <linux/userfaultfd_k.h>
17 
18 struct ctl_table;
19 struct user_struct;
20 struct mmu_gather;
21 struct node;
22 
23 void free_huge_folio(struct folio *folio);
24 
25 #ifdef CONFIG_HUGETLB_PAGE
26 
27 #include <linux/pagemap.h>
28 #include <linux/shm.h>
29 #include <asm/tlbflush.h>
30 
31 /*
32  * For HugeTLB page, there are more metadata to save in the struct page. But
33  * the head struct page cannot meet our needs, so we have to abuse other tail
34  * struct page to store the metadata.
35  */
36 #define __NR_USED_SUBPAGE 3
37 
38 struct hugepage_subpool {
39 	spinlock_t lock;
40 	long count;
41 	long max_hpages;	/* Maximum huge pages or -1 if no maximum. */
42 	long used_hpages;	/* Used count against maximum, includes */
43 				/* both allocated and reserved pages. */
44 	struct hstate *hstate;
45 	long min_hpages;	/* Minimum huge pages or -1 if no minimum. */
46 	long rsv_hpages;	/* Pages reserved against global pool to */
47 				/* satisfy minimum size. */
48 };
49 
50 struct resv_map {
51 	struct kref refs;
52 	spinlock_t lock;
53 	struct list_head regions;
54 	long adds_in_progress;
55 	struct list_head region_cache;
56 	long region_cache_count;
57 	struct rw_semaphore rw_sema;
58 #ifdef CONFIG_CGROUP_HUGETLB
59 	/*
60 	 * On private mappings, the counter to uncharge reservations is stored
61 	 * here. If these fields are 0, then either the mapping is shared, or
62 	 * cgroup accounting is disabled for this resv_map.
63 	 */
64 	struct page_counter *reservation_counter;
65 	unsigned long pages_per_hpage;
66 	struct cgroup_subsys_state *css;
67 #endif
68 };
69 
70 /*
71  * Region tracking -- allows tracking of reservations and instantiated pages
72  *                    across the pages in a mapping.
73  *
74  * The region data structures are embedded into a resv_map and protected
75  * by a resv_map's lock.  The set of regions within the resv_map represent
76  * reservations for huge pages, or huge pages that have already been
77  * instantiated within the map.  The from and to elements are huge page
78  * indices into the associated mapping.  from indicates the starting index
79  * of the region.  to represents the first index past the end of  the region.
80  *
81  * For example, a file region structure with from == 0 and to == 4 represents
82  * four huge pages in a mapping.  It is important to note that the to element
83  * represents the first element past the end of the region. This is used in
84  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
85  *
86  * Interval notation of the form [from, to) will be used to indicate that
87  * the endpoint from is inclusive and to is exclusive.
88  */
89 struct file_region {
90 	struct list_head link;
91 	long from;
92 	long to;
93 #ifdef CONFIG_CGROUP_HUGETLB
94 	/*
95 	 * On shared mappings, each reserved region appears as a struct
96 	 * file_region in resv_map. These fields hold the info needed to
97 	 * uncharge each reservation.
98 	 */
99 	struct page_counter *reservation_counter;
100 	struct cgroup_subsys_state *css;
101 #endif
102 };
103 
104 struct hugetlb_vma_lock {
105 	struct kref refs;
106 	struct rw_semaphore rw_sema;
107 	struct vm_area_struct *vma;
108 };
109 
110 extern struct resv_map *resv_map_alloc(void);
111 void resv_map_release(struct kref *ref);
112 
113 extern spinlock_t hugetlb_lock;
114 extern int hugetlb_max_hstate __read_mostly;
115 #define for_each_hstate(h) \
116 	for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
117 
118 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
119 						long min_hpages);
120 void hugepage_put_subpool(struct hugepage_subpool *spool);
121 
122 void hugetlb_dup_vma_private(struct vm_area_struct *vma);
123 void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
124 int move_hugetlb_page_tables(struct vm_area_struct *vma,
125 			     struct vm_area_struct *new_vma,
126 			     unsigned long old_addr, unsigned long new_addr,
127 			     unsigned long len);
128 int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
129 			    struct vm_area_struct *, struct vm_area_struct *);
130 void unmap_hugepage_range(struct vm_area_struct *,
131 			  unsigned long, unsigned long, struct page *,
132 			  zap_flags_t);
133 void __unmap_hugepage_range(struct mmu_gather *tlb,
134 			  struct vm_area_struct *vma,
135 			  unsigned long start, unsigned long end,
136 			  struct page *ref_page, zap_flags_t zap_flags);
137 void hugetlb_report_meminfo(struct seq_file *);
138 int hugetlb_report_node_meminfo(char *buf, int len, int nid);
139 void hugetlb_show_meminfo_node(int nid);
140 unsigned long hugetlb_total_pages(void);
141 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
142 			unsigned long address, unsigned int flags);
143 #ifdef CONFIG_USERFAULTFD
144 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
145 			     struct vm_area_struct *dst_vma,
146 			     unsigned long dst_addr,
147 			     unsigned long src_addr,
148 			     uffd_flags_t flags,
149 			     struct folio **foliop);
150 #endif /* CONFIG_USERFAULTFD */
151 bool hugetlb_reserve_pages(struct inode *inode, long from, long to,
152 						struct vm_area_struct *vma,
153 						vm_flags_t vm_flags);
154 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
155 						long freed);
156 bool isolate_hugetlb(struct folio *folio, struct list_head *list);
157 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
158 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
159 				bool *migratable_cleared);
160 void folio_putback_active_hugetlb(struct folio *folio);
161 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
162 void hugetlb_fix_reserve_counts(struct inode *inode);
163 extern struct mutex *hugetlb_fault_mutex_table;
164 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
165 
166 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
167 		      unsigned long addr, pud_t *pud);
168 bool hugetlbfs_pagecache_present(struct hstate *h,
169 				 struct vm_area_struct *vma,
170 				 unsigned long address);
171 
172 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio);
173 
174 extern int sysctl_hugetlb_shm_group;
175 extern struct list_head huge_boot_pages[MAX_NUMNODES];
176 
177 /* arch callbacks */
178 
179 #ifndef CONFIG_HIGHPTE
180 /*
181  * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures
182  * which may go down to the lowest PTE level in their huge_pte_offset() and
183  * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap().
184  */
pte_offset_huge(pmd_t * pmd,unsigned long address)185 static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address)
186 {
187 	return pte_offset_kernel(pmd, address);
188 }
pte_alloc_huge(struct mm_struct * mm,pmd_t * pmd,unsigned long address)189 static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd,
190 				    unsigned long address)
191 {
192 	return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address);
193 }
194 #endif
195 
196 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
197 			unsigned long addr, unsigned long sz);
198 /*
199  * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
200  * Returns the pte_t* if found, or NULL if the address is not mapped.
201  *
202  * IMPORTANT: we should normally not directly call this function, instead
203  * this is only a common interface to implement arch-specific
204  * walker. Please use hugetlb_walk() instead, because that will attempt to
205  * verify the locking for you.
206  *
207  * Since this function will walk all the pgtable pages (including not only
208  * high-level pgtable page, but also PUD entry that can be unshared
209  * concurrently for VM_SHARED), the caller of this function should be
210  * responsible of its thread safety.  One can follow this rule:
211  *
212  *  (1) For private mappings: pmd unsharing is not possible, so holding the
213  *      mmap_lock for either read or write is sufficient. Most callers
214  *      already hold the mmap_lock, so normally, no special action is
215  *      required.
216  *
217  *  (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
218  *      pgtable page can go away from under us!  It can be done by a pmd
219  *      unshare with a follow up munmap() on the other process), then we
220  *      need either:
221  *
222  *     (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
223  *           won't happen upon the range (it also makes sure the pte_t we
224  *           read is the right and stable one), or,
225  *
226  *     (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
227  *           sure even if unshare happened the racy unmap() will wait until
228  *           i_mmap_rwsem is released.
229  *
230  * Option (2.1) is the safest, which guarantees pte stability from pmd
231  * sharing pov, until the vma lock released.  Option (2.2) doesn't protect
232  * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
233  * access.
234  */
235 pte_t *huge_pte_offset(struct mm_struct *mm,
236 		       unsigned long addr, unsigned long sz);
237 unsigned long hugetlb_mask_last_page(struct hstate *h);
238 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
239 				unsigned long addr, pte_t *ptep);
240 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
241 				unsigned long *start, unsigned long *end);
242 
243 extern void __hugetlb_zap_begin(struct vm_area_struct *vma,
244 				unsigned long *begin, unsigned long *end);
245 extern void __hugetlb_zap_end(struct vm_area_struct *vma,
246 			      struct zap_details *details);
247 
hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)248 static inline void hugetlb_zap_begin(struct vm_area_struct *vma,
249 				     unsigned long *start, unsigned long *end)
250 {
251 	if (is_vm_hugetlb_page(vma))
252 		__hugetlb_zap_begin(vma, start, end);
253 }
254 
hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)255 static inline void hugetlb_zap_end(struct vm_area_struct *vma,
256 				   struct zap_details *details)
257 {
258 	if (is_vm_hugetlb_page(vma))
259 		__hugetlb_zap_end(vma, details);
260 }
261 
262 void hugetlb_vma_lock_read(struct vm_area_struct *vma);
263 void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
264 void hugetlb_vma_lock_write(struct vm_area_struct *vma);
265 void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
266 int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
267 void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
268 void hugetlb_vma_lock_release(struct kref *kref);
269 long hugetlb_change_protection(struct vm_area_struct *vma,
270 		unsigned long address, unsigned long end, pgprot_t newprot,
271 		unsigned long cp_flags);
272 bool is_hugetlb_entry_migration(pte_t pte);
273 bool is_hugetlb_entry_hwpoisoned(pte_t pte);
274 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
275 
276 #else /* !CONFIG_HUGETLB_PAGE */
277 
hugetlb_dup_vma_private(struct vm_area_struct * vma)278 static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
279 {
280 }
281 
clear_vma_resv_huge_pages(struct vm_area_struct * vma)282 static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
283 {
284 }
285 
hugetlb_total_pages(void)286 static inline unsigned long hugetlb_total_pages(void)
287 {
288 	return 0;
289 }
290 
hugetlb_folio_mapping_lock_write(struct folio * folio)291 static inline struct address_space *hugetlb_folio_mapping_lock_write(
292 							struct folio *folio)
293 {
294 	return NULL;
295 }
296 
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)297 static inline int huge_pmd_unshare(struct mm_struct *mm,
298 					struct vm_area_struct *vma,
299 					unsigned long addr, pte_t *ptep)
300 {
301 	return 0;
302 }
303 
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)304 static inline void adjust_range_if_pmd_sharing_possible(
305 				struct vm_area_struct *vma,
306 				unsigned long *start, unsigned long *end)
307 {
308 }
309 
hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)310 static inline void hugetlb_zap_begin(
311 				struct vm_area_struct *vma,
312 				unsigned long *start, unsigned long *end)
313 {
314 }
315 
hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)316 static inline void hugetlb_zap_end(
317 				struct vm_area_struct *vma,
318 				struct zap_details *details)
319 {
320 }
321 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)322 static inline int copy_hugetlb_page_range(struct mm_struct *dst,
323 					  struct mm_struct *src,
324 					  struct vm_area_struct *dst_vma,
325 					  struct vm_area_struct *src_vma)
326 {
327 	BUG();
328 	return 0;
329 }
330 
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)331 static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
332 					   struct vm_area_struct *new_vma,
333 					   unsigned long old_addr,
334 					   unsigned long new_addr,
335 					   unsigned long len)
336 {
337 	BUG();
338 	return 0;
339 }
340 
hugetlb_report_meminfo(struct seq_file * m)341 static inline void hugetlb_report_meminfo(struct seq_file *m)
342 {
343 }
344 
hugetlb_report_node_meminfo(char * buf,int len,int nid)345 static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
346 {
347 	return 0;
348 }
349 
hugetlb_show_meminfo_node(int nid)350 static inline void hugetlb_show_meminfo_node(int nid)
351 {
352 }
353 
prepare_hugepage_range(struct file * file,unsigned long addr,unsigned long len)354 static inline int prepare_hugepage_range(struct file *file,
355 				unsigned long addr, unsigned long len)
356 {
357 	return -EINVAL;
358 }
359 
hugetlb_vma_lock_read(struct vm_area_struct * vma)360 static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
361 {
362 }
363 
hugetlb_vma_unlock_read(struct vm_area_struct * vma)364 static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
365 {
366 }
367 
hugetlb_vma_lock_write(struct vm_area_struct * vma)368 static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
369 {
370 }
371 
hugetlb_vma_unlock_write(struct vm_area_struct * vma)372 static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
373 {
374 }
375 
hugetlb_vma_trylock_write(struct vm_area_struct * vma)376 static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
377 {
378 	return 1;
379 }
380 
hugetlb_vma_assert_locked(struct vm_area_struct * vma)381 static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
382 {
383 }
384 
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)385 static inline int is_hugepage_only_range(struct mm_struct *mm,
386 					unsigned long addr, unsigned long len)
387 {
388 	return 0;
389 }
390 
hugetlb_free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)391 static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb,
392 				unsigned long addr, unsigned long end,
393 				unsigned long floor, unsigned long ceiling)
394 {
395 	BUG();
396 }
397 
398 #ifdef CONFIG_USERFAULTFD
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)399 static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
400 					   struct vm_area_struct *dst_vma,
401 					   unsigned long dst_addr,
402 					   unsigned long src_addr,
403 					   uffd_flags_t flags,
404 					   struct folio **foliop)
405 {
406 	BUG();
407 	return 0;
408 }
409 #endif /* CONFIG_USERFAULTFD */
410 
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)411 static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
412 					unsigned long sz)
413 {
414 	return NULL;
415 }
416 
isolate_hugetlb(struct folio * folio,struct list_head * list)417 static inline bool isolate_hugetlb(struct folio *folio, struct list_head *list)
418 {
419 	return false;
420 }
421 
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)422 static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
423 {
424 	return 0;
425 }
426 
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)427 static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
428 					bool *migratable_cleared)
429 {
430 	return 0;
431 }
432 
folio_putback_active_hugetlb(struct folio * folio)433 static inline void folio_putback_active_hugetlb(struct folio *folio)
434 {
435 }
436 
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)437 static inline void move_hugetlb_state(struct folio *old_folio,
438 					struct folio *new_folio, int reason)
439 {
440 }
441 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)442 static inline long hugetlb_change_protection(
443 			struct vm_area_struct *vma, unsigned long address,
444 			unsigned long end, pgprot_t newprot,
445 			unsigned long cp_flags)
446 {
447 	return 0;
448 }
449 
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)450 static inline void __unmap_hugepage_range(struct mmu_gather *tlb,
451 			struct vm_area_struct *vma, unsigned long start,
452 			unsigned long end, struct page *ref_page,
453 			zap_flags_t zap_flags)
454 {
455 	BUG();
456 }
457 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)458 static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
459 			struct vm_area_struct *vma, unsigned long address,
460 			unsigned int flags)
461 {
462 	BUG();
463 	return 0;
464 }
465 
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)466 static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
467 
468 #endif /* !CONFIG_HUGETLB_PAGE */
469 
470 #ifndef pgd_write
pgd_write(pgd_t pgd)471 static inline int pgd_write(pgd_t pgd)
472 {
473 	BUG();
474 	return 0;
475 }
476 #endif
477 
478 #define HUGETLB_ANON_FILE "anon_hugepage"
479 
480 enum {
481 	/*
482 	 * The file will be used as an shm file so shmfs accounting rules
483 	 * apply
484 	 */
485 	HUGETLB_SHMFS_INODE     = 1,
486 	/*
487 	 * The file is being created on the internal vfs mount and shmfs
488 	 * accounting rules do not apply
489 	 */
490 	HUGETLB_ANONHUGE_INODE  = 2,
491 };
492 
493 #ifdef CONFIG_HUGETLBFS
494 struct hugetlbfs_sb_info {
495 	long	max_inodes;   /* inodes allowed */
496 	long	free_inodes;  /* inodes free */
497 	spinlock_t	stat_lock;
498 	struct hstate *hstate;
499 	struct hugepage_subpool *spool;
500 	kuid_t	uid;
501 	kgid_t	gid;
502 	umode_t mode;
503 };
504 
HUGETLBFS_SB(struct super_block * sb)505 static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
506 {
507 	return sb->s_fs_info;
508 }
509 
510 struct hugetlbfs_inode_info {
511 	struct inode vfs_inode;
512 	unsigned int seals;
513 };
514 
HUGETLBFS_I(struct inode * inode)515 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
516 {
517 	return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
518 }
519 
520 extern const struct vm_operations_struct hugetlb_vm_ops;
521 struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
522 				int creat_flags, int page_size_log);
523 
is_file_hugepages(const struct file * file)524 static inline bool is_file_hugepages(const struct file *file)
525 {
526 	return file->f_op->fop_flags & FOP_HUGE_PAGES;
527 }
528 
hstate_inode(struct inode * i)529 static inline struct hstate *hstate_inode(struct inode *i)
530 {
531 	return HUGETLBFS_SB(i->i_sb)->hstate;
532 }
533 #else /* !CONFIG_HUGETLBFS */
534 
535 #define is_file_hugepages(file)			false
536 static inline struct file *
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,int creat_flags,int page_size_log)537 hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
538 		int creat_flags, int page_size_log)
539 {
540 	return ERR_PTR(-ENOSYS);
541 }
542 
hstate_inode(struct inode * i)543 static inline struct hstate *hstate_inode(struct inode *i)
544 {
545 	return NULL;
546 }
547 #endif /* !CONFIG_HUGETLBFS */
548 
549 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
550 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
551 					unsigned long len, unsigned long pgoff,
552 					unsigned long flags);
553 #endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */
554 
555 unsigned long
556 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
557 				  unsigned long len, unsigned long pgoff,
558 				  unsigned long flags);
559 
560 /*
561  * huegtlb page specific state flags.  These flags are located in page.private
562  * of the hugetlb head page.  Functions created via the below macros should be
563  * used to manipulate these flags.
564  *
565  * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
566  *	allocation time.  Cleared when page is fully instantiated.  Free
567  *	routine checks flag to restore a reservation on error paths.
568  *	Synchronization:  Examined or modified by code that knows it has
569  *	the only reference to page.  i.e. After allocation but before use
570  *	or when the page is being freed.
571  * HPG_migratable  - Set after a newly allocated page is added to the page
572  *	cache and/or page tables.  Indicates the page is a candidate for
573  *	migration.
574  *	Synchronization:  Initially set after new page allocation with no
575  *	locking.  When examined and modified during migration processing
576  *	(isolate, migrate, putback) the hugetlb_lock is held.
577  * HPG_temporary - Set on a page that is temporarily allocated from the buddy
578  *	allocator.  Typically used for migration target pages when no pages
579  *	are available in the pool.  The hugetlb free page path will
580  *	immediately free pages with this flag set to the buddy allocator.
581  *	Synchronization: Can be set after huge page allocation from buddy when
582  *	code knows it has only reference.  All other examinations and
583  *	modifications require hugetlb_lock.
584  * HPG_freed - Set when page is on the free lists.
585  *	Synchronization: hugetlb_lock held for examination and modification.
586  * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
587  * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
588  *     that is not tracked by raw_hwp_page list.
589  */
590 enum hugetlb_page_flags {
591 	HPG_restore_reserve = 0,
592 	HPG_migratable,
593 	HPG_temporary,
594 	HPG_freed,
595 	HPG_vmemmap_optimized,
596 	HPG_raw_hwp_unreliable,
597 	__NR_HPAGEFLAGS,
598 };
599 
600 /*
601  * Macros to create test, set and clear function definitions for
602  * hugetlb specific page flags.
603  */
604 #ifdef CONFIG_HUGETLB_PAGE
605 #define TESTHPAGEFLAG(uname, flname)				\
606 static __always_inline						\
607 bool folio_test_hugetlb_##flname(struct folio *folio)		\
608 	{	void *private = &folio->private;		\
609 		return test_bit(HPG_##flname, private);		\
610 	}
611 
612 #define SETHPAGEFLAG(uname, flname)				\
613 static __always_inline						\
614 void folio_set_hugetlb_##flname(struct folio *folio)		\
615 	{	void *private = &folio->private;		\
616 		set_bit(HPG_##flname, private);			\
617 	}
618 
619 #define CLEARHPAGEFLAG(uname, flname)				\
620 static __always_inline						\
621 void folio_clear_hugetlb_##flname(struct folio *folio)		\
622 	{	void *private = &folio->private;		\
623 		clear_bit(HPG_##flname, private);		\
624 	}
625 #else
626 #define TESTHPAGEFLAG(uname, flname)				\
627 static inline bool						\
628 folio_test_hugetlb_##flname(struct folio *folio)		\
629 	{ return 0; }
630 
631 #define SETHPAGEFLAG(uname, flname)				\
632 static inline void						\
633 folio_set_hugetlb_##flname(struct folio *folio) 		\
634 	{ }
635 
636 #define CLEARHPAGEFLAG(uname, flname)				\
637 static inline void						\
638 folio_clear_hugetlb_##flname(struct folio *folio)		\
639 	{ }
640 #endif
641 
642 #define HPAGEFLAG(uname, flname)				\
643 	TESTHPAGEFLAG(uname, flname)				\
644 	SETHPAGEFLAG(uname, flname)				\
645 	CLEARHPAGEFLAG(uname, flname)				\
646 
647 /*
648  * Create functions associated with hugetlb page flags
649  */
650 HPAGEFLAG(RestoreReserve, restore_reserve)
651 HPAGEFLAG(Migratable, migratable)
652 HPAGEFLAG(Temporary, temporary)
653 HPAGEFLAG(Freed, freed)
654 HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
655 HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
656 
657 #ifdef CONFIG_HUGETLB_PAGE
658 
659 #define HSTATE_NAME_LEN 32
660 /* Defines one hugetlb page size */
661 struct hstate {
662 	struct mutex resize_lock;
663 	struct lock_class_key resize_key;
664 	int next_nid_to_alloc;
665 	int next_nid_to_free;
666 	unsigned int order;
667 	unsigned int demote_order;
668 	unsigned long mask;
669 	unsigned long max_huge_pages;
670 	unsigned long nr_huge_pages;
671 	unsigned long free_huge_pages;
672 	unsigned long resv_huge_pages;
673 	unsigned long surplus_huge_pages;
674 	unsigned long nr_overcommit_huge_pages;
675 	struct list_head hugepage_activelist;
676 	struct list_head hugepage_freelists[MAX_NUMNODES];
677 	unsigned int max_huge_pages_node[MAX_NUMNODES];
678 	unsigned int nr_huge_pages_node[MAX_NUMNODES];
679 	unsigned int free_huge_pages_node[MAX_NUMNODES];
680 	unsigned int surplus_huge_pages_node[MAX_NUMNODES];
681 	char name[HSTATE_NAME_LEN];
682 };
683 
684 struct huge_bootmem_page {
685 	struct list_head list;
686 	struct hstate *hstate;
687 };
688 
689 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list);
690 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
691 				unsigned long addr, int avoid_reserve);
692 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
693 				nodemask_t *nmask, gfp_t gfp_mask,
694 				bool allow_alloc_fallback);
695 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
696 					  nodemask_t *nmask, gfp_t gfp_mask);
697 
698 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
699 			pgoff_t idx);
700 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
701 				unsigned long address, struct folio *folio);
702 
703 /* arch callback */
704 int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
705 int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
706 bool __init hugetlb_node_alloc_supported(void);
707 
708 void __init hugetlb_add_hstate(unsigned order);
709 bool __init arch_hugetlb_valid_size(unsigned long size);
710 struct hstate *size_to_hstate(unsigned long size);
711 
712 #ifndef HUGE_MAX_HSTATE
713 #define HUGE_MAX_HSTATE 1
714 #endif
715 
716 extern struct hstate hstates[HUGE_MAX_HSTATE];
717 extern unsigned int default_hstate_idx;
718 
719 #define default_hstate (hstates[default_hstate_idx])
720 
hugetlb_folio_subpool(struct folio * folio)721 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
722 {
723 	return folio->_hugetlb_subpool;
724 }
725 
hugetlb_set_folio_subpool(struct folio * folio,struct hugepage_subpool * subpool)726 static inline void hugetlb_set_folio_subpool(struct folio *folio,
727 					struct hugepage_subpool *subpool)
728 {
729 	folio->_hugetlb_subpool = subpool;
730 }
731 
hstate_file(struct file * f)732 static inline struct hstate *hstate_file(struct file *f)
733 {
734 	return hstate_inode(file_inode(f));
735 }
736 
hstate_sizelog(int page_size_log)737 static inline struct hstate *hstate_sizelog(int page_size_log)
738 {
739 	if (!page_size_log)
740 		return &default_hstate;
741 
742 	if (page_size_log < BITS_PER_LONG)
743 		return size_to_hstate(1UL << page_size_log);
744 
745 	return NULL;
746 }
747 
hstate_vma(struct vm_area_struct * vma)748 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
749 {
750 	return hstate_file(vma->vm_file);
751 }
752 
huge_page_size(const struct hstate * h)753 static inline unsigned long huge_page_size(const struct hstate *h)
754 {
755 	return (unsigned long)PAGE_SIZE << h->order;
756 }
757 
758 extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
759 
760 extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
761 
huge_page_mask(struct hstate * h)762 static inline unsigned long huge_page_mask(struct hstate *h)
763 {
764 	return h->mask;
765 }
766 
huge_page_order(struct hstate * h)767 static inline unsigned int huge_page_order(struct hstate *h)
768 {
769 	return h->order;
770 }
771 
huge_page_shift(struct hstate * h)772 static inline unsigned huge_page_shift(struct hstate *h)
773 {
774 	return h->order + PAGE_SHIFT;
775 }
776 
hstate_is_gigantic(struct hstate * h)777 static inline bool hstate_is_gigantic(struct hstate *h)
778 {
779 	return huge_page_order(h) > MAX_PAGE_ORDER;
780 }
781 
pages_per_huge_page(const struct hstate * h)782 static inline unsigned int pages_per_huge_page(const struct hstate *h)
783 {
784 	return 1 << h->order;
785 }
786 
blocks_per_huge_page(struct hstate * h)787 static inline unsigned int blocks_per_huge_page(struct hstate *h)
788 {
789 	return huge_page_size(h) / 512;
790 }
791 
filemap_lock_hugetlb_folio(struct hstate * h,struct address_space * mapping,pgoff_t idx)792 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
793 				struct address_space *mapping, pgoff_t idx)
794 {
795 	return filemap_lock_folio(mapping, idx << huge_page_order(h));
796 }
797 
798 #include <asm/hugetlb.h>
799 
800 #ifndef is_hugepage_only_range
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)801 static inline int is_hugepage_only_range(struct mm_struct *mm,
802 					unsigned long addr, unsigned long len)
803 {
804 	return 0;
805 }
806 #define is_hugepage_only_range is_hugepage_only_range
807 #endif
808 
809 #ifndef arch_clear_hugetlb_flags
arch_clear_hugetlb_flags(struct folio * folio)810 static inline void arch_clear_hugetlb_flags(struct folio *folio) { }
811 #define arch_clear_hugetlb_flags arch_clear_hugetlb_flags
812 #endif
813 
814 #ifndef arch_make_huge_pte
arch_make_huge_pte(pte_t entry,unsigned int shift,vm_flags_t flags)815 static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
816 				       vm_flags_t flags)
817 {
818 	return pte_mkhuge(entry);
819 }
820 #endif
821 
folio_hstate(struct folio * folio)822 static inline struct hstate *folio_hstate(struct folio *folio)
823 {
824 	VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
825 	return size_to_hstate(folio_size(folio));
826 }
827 
hstate_index_to_shift(unsigned index)828 static inline unsigned hstate_index_to_shift(unsigned index)
829 {
830 	return hstates[index].order + PAGE_SHIFT;
831 }
832 
hstate_index(struct hstate * h)833 static inline int hstate_index(struct hstate *h)
834 {
835 	return h - hstates;
836 }
837 
838 int dissolve_free_hugetlb_folio(struct folio *folio);
839 int dissolve_free_hugetlb_folios(unsigned long start_pfn,
840 				    unsigned long end_pfn);
841 
842 #ifdef CONFIG_MEMORY_FAILURE
843 extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
844 #else
folio_clear_hugetlb_hwpoison(struct folio * folio)845 static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
846 {
847 }
848 #endif
849 
850 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
851 #ifndef arch_hugetlb_migration_supported
arch_hugetlb_migration_supported(struct hstate * h)852 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
853 {
854 	if ((huge_page_shift(h) == PMD_SHIFT) ||
855 		(huge_page_shift(h) == PUD_SHIFT) ||
856 			(huge_page_shift(h) == PGDIR_SHIFT))
857 		return true;
858 	else
859 		return false;
860 }
861 #endif
862 #else
arch_hugetlb_migration_supported(struct hstate * h)863 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
864 {
865 	return false;
866 }
867 #endif
868 
hugepage_migration_supported(struct hstate * h)869 static inline bool hugepage_migration_supported(struct hstate *h)
870 {
871 	return arch_hugetlb_migration_supported(h);
872 }
873 
874 /*
875  * Movability check is different as compared to migration check.
876  * It determines whether or not a huge page should be placed on
877  * movable zone or not. Movability of any huge page should be
878  * required only if huge page size is supported for migration.
879  * There won't be any reason for the huge page to be movable if
880  * it is not migratable to start with. Also the size of the huge
881  * page should be large enough to be placed under a movable zone
882  * and still feasible enough to be migratable. Just the presence
883  * in movable zone does not make the migration feasible.
884  *
885  * So even though large huge page sizes like the gigantic ones
886  * are migratable they should not be movable because its not
887  * feasible to migrate them from movable zone.
888  */
hugepage_movable_supported(struct hstate * h)889 static inline bool hugepage_movable_supported(struct hstate *h)
890 {
891 	if (!hugepage_migration_supported(h))
892 		return false;
893 
894 	if (hstate_is_gigantic(h))
895 		return false;
896 	return true;
897 }
898 
899 /* Movability of hugepages depends on migration support. */
htlb_alloc_mask(struct hstate * h)900 static inline gfp_t htlb_alloc_mask(struct hstate *h)
901 {
902 	gfp_t gfp = __GFP_COMP | __GFP_NOWARN;
903 
904 	gfp |= hugepage_movable_supported(h) ? GFP_HIGHUSER_MOVABLE : GFP_HIGHUSER;
905 
906 	return gfp;
907 }
908 
htlb_modify_alloc_mask(struct hstate * h,gfp_t gfp_mask)909 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
910 {
911 	gfp_t modified_mask = htlb_alloc_mask(h);
912 
913 	/* Some callers might want to enforce node */
914 	modified_mask |= (gfp_mask & __GFP_THISNODE);
915 
916 	modified_mask |= (gfp_mask & __GFP_NOWARN);
917 
918 	return modified_mask;
919 }
920 
htlb_allow_alloc_fallback(int reason)921 static inline bool htlb_allow_alloc_fallback(int reason)
922 {
923 	bool allowed_fallback = false;
924 
925 	/*
926 	 * Note: the memory offline, memory failure and migration syscalls will
927 	 * be allowed to fallback to other nodes due to lack of a better chioce,
928 	 * that might break the per-node hugetlb pool. While other cases will
929 	 * set the __GFP_THISNODE to avoid breaking the per-node hugetlb pool.
930 	 */
931 	switch (reason) {
932 	case MR_MEMORY_HOTPLUG:
933 	case MR_MEMORY_FAILURE:
934 	case MR_SYSCALL:
935 	case MR_MEMPOLICY_MBIND:
936 		allowed_fallback = true;
937 		break;
938 	default:
939 		break;
940 	}
941 
942 	return allowed_fallback;
943 }
944 
huge_pte_lockptr(struct hstate * h,struct mm_struct * mm,pte_t * pte)945 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
946 					   struct mm_struct *mm, pte_t *pte)
947 {
948 	const unsigned long size = huge_page_size(h);
949 
950 	VM_WARN_ON(size == PAGE_SIZE);
951 
952 	/*
953 	 * hugetlb must use the exact same PT locks as core-mm page table
954 	 * walkers would. When modifying a PTE table, hugetlb must take the
955 	 * PTE PT lock, when modifying a PMD table, hugetlb must take the PMD
956 	 * PT lock etc.
957 	 *
958 	 * The expectation is that any hugetlb folio smaller than a PMD is
959 	 * always mapped into a single PTE table and that any hugetlb folio
960 	 * smaller than a PUD (but at least as big as a PMD) is always mapped
961 	 * into a single PMD table.
962 	 *
963 	 * If that does not hold for an architecture, then that architecture
964 	 * must disable split PT locks such that all *_lockptr() functions
965 	 * will give us the same result: the per-MM PT lock.
966 	 *
967 	 * Note that with e.g., CONFIG_PGTABLE_LEVELS=2 where
968 	 * PGDIR_SIZE==P4D_SIZE==PUD_SIZE==PMD_SIZE, we'd use pud_lockptr()
969 	 * and core-mm would use pmd_lockptr(). However, in such configurations
970 	 * split PMD locks are disabled -- they don't make sense on a single
971 	 * PGDIR page table -- and the end result is the same.
972 	 */
973 	if (size >= PUD_SIZE)
974 		return pud_lockptr(mm, (pud_t *) pte);
975 	else if (size >= PMD_SIZE || IS_ENABLED(CONFIG_HIGHPTE))
976 		return pmd_lockptr(mm, (pmd_t *) pte);
977 	/* pte_alloc_huge() only applies with !CONFIG_HIGHPTE */
978 	return ptep_lockptr(mm, pte);
979 }
980 
981 #ifndef hugepages_supported
982 /*
983  * Some platform decide whether they support huge pages at boot
984  * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
985  * when there is no such support
986  */
987 #define hugepages_supported() (HPAGE_SHIFT != 0)
988 #endif
989 
990 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
991 
hugetlb_count_init(struct mm_struct * mm)992 static inline void hugetlb_count_init(struct mm_struct *mm)
993 {
994 	atomic_long_set(&mm->hugetlb_usage, 0);
995 }
996 
hugetlb_count_add(long l,struct mm_struct * mm)997 static inline void hugetlb_count_add(long l, struct mm_struct *mm)
998 {
999 	atomic_long_add(l, &mm->hugetlb_usage);
1000 }
1001 
hugetlb_count_sub(long l,struct mm_struct * mm)1002 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1003 {
1004 	atomic_long_sub(l, &mm->hugetlb_usage);
1005 }
1006 
1007 #ifndef huge_ptep_modify_prot_start
1008 #define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
huge_ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1009 static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
1010 						unsigned long addr, pte_t *ptep)
1011 {
1012 	return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep);
1013 }
1014 #endif
1015 
1016 #ifndef huge_ptep_modify_prot_commit
1017 #define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
huge_ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)1018 static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
1019 						unsigned long addr, pte_t *ptep,
1020 						pte_t old_pte, pte_t pte)
1021 {
1022 	unsigned long psize = huge_page_size(hstate_vma(vma));
1023 
1024 	set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize);
1025 }
1026 #endif
1027 
1028 #ifdef CONFIG_NUMA
1029 void hugetlb_register_node(struct node *node);
1030 void hugetlb_unregister_node(struct node *node);
1031 #endif
1032 
1033 /*
1034  * Check if a given raw @page in a hugepage is HWPOISON.
1035  */
1036 bool is_raw_hwpoison_page_in_hugepage(struct page *page);
1037 
1038 #else	/* CONFIG_HUGETLB_PAGE */
1039 struct hstate {};
1040 
1041 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1042 {
1043 	return NULL;
1044 }
1045 
1046 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
1047 				struct address_space *mapping, pgoff_t idx)
1048 {
1049 	return NULL;
1050 }
1051 
1052 static inline int isolate_or_dissolve_huge_page(struct page *page,
1053 						struct list_head *list)
1054 {
1055 	return -ENOMEM;
1056 }
1057 
1058 static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
1059 					   unsigned long addr,
1060 					   int avoid_reserve)
1061 {
1062 	return NULL;
1063 }
1064 
1065 static inline struct folio *
1066 alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
1067 			    nodemask_t *nmask, gfp_t gfp_mask)
1068 {
1069 	return NULL;
1070 }
1071 
1072 static inline struct folio *
1073 alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
1074 			nodemask_t *nmask, gfp_t gfp_mask,
1075 			bool allow_alloc_fallback)
1076 {
1077 	return NULL;
1078 }
1079 
1080 static inline int __alloc_bootmem_huge_page(struct hstate *h)
1081 {
1082 	return 0;
1083 }
1084 
1085 static inline struct hstate *hstate_file(struct file *f)
1086 {
1087 	return NULL;
1088 }
1089 
1090 static inline struct hstate *hstate_sizelog(int page_size_log)
1091 {
1092 	return NULL;
1093 }
1094 
1095 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1096 {
1097 	return NULL;
1098 }
1099 
1100 static inline struct hstate *folio_hstate(struct folio *folio)
1101 {
1102 	return NULL;
1103 }
1104 
1105 static inline struct hstate *size_to_hstate(unsigned long size)
1106 {
1107 	return NULL;
1108 }
1109 
1110 static inline unsigned long huge_page_size(struct hstate *h)
1111 {
1112 	return PAGE_SIZE;
1113 }
1114 
1115 static inline unsigned long huge_page_mask(struct hstate *h)
1116 {
1117 	return PAGE_MASK;
1118 }
1119 
1120 static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1121 {
1122 	return PAGE_SIZE;
1123 }
1124 
1125 static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1126 {
1127 	return PAGE_SIZE;
1128 }
1129 
1130 static inline unsigned int huge_page_order(struct hstate *h)
1131 {
1132 	return 0;
1133 }
1134 
1135 static inline unsigned int huge_page_shift(struct hstate *h)
1136 {
1137 	return PAGE_SHIFT;
1138 }
1139 
1140 static inline bool hstate_is_gigantic(struct hstate *h)
1141 {
1142 	return false;
1143 }
1144 
1145 static inline unsigned int pages_per_huge_page(struct hstate *h)
1146 {
1147 	return 1;
1148 }
1149 
1150 static inline unsigned hstate_index_to_shift(unsigned index)
1151 {
1152 	return 0;
1153 }
1154 
1155 static inline int hstate_index(struct hstate *h)
1156 {
1157 	return 0;
1158 }
1159 
1160 static inline int dissolve_free_hugetlb_folio(struct folio *folio)
1161 {
1162 	return 0;
1163 }
1164 
1165 static inline int dissolve_free_hugetlb_folios(unsigned long start_pfn,
1166 					   unsigned long end_pfn)
1167 {
1168 	return 0;
1169 }
1170 
1171 static inline bool hugepage_migration_supported(struct hstate *h)
1172 {
1173 	return false;
1174 }
1175 
1176 static inline bool hugepage_movable_supported(struct hstate *h)
1177 {
1178 	return false;
1179 }
1180 
1181 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1182 {
1183 	return 0;
1184 }
1185 
1186 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1187 {
1188 	return 0;
1189 }
1190 
1191 static inline bool htlb_allow_alloc_fallback(int reason)
1192 {
1193 	return false;
1194 }
1195 
1196 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1197 					   struct mm_struct *mm, pte_t *pte)
1198 {
1199 	return &mm->page_table_lock;
1200 }
1201 
1202 static inline void hugetlb_count_init(struct mm_struct *mm)
1203 {
1204 }
1205 
1206 static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1207 {
1208 }
1209 
1210 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1211 {
1212 }
1213 
1214 static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1215 					  unsigned long addr, pte_t *ptep)
1216 {
1217 #ifdef CONFIG_MMU
1218 	return ptep_get(ptep);
1219 #else
1220 	return *ptep;
1221 #endif
1222 }
1223 
1224 static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
1225 				   pte_t *ptep, pte_t pte, unsigned long sz)
1226 {
1227 }
1228 
1229 static inline void hugetlb_register_node(struct node *node)
1230 {
1231 }
1232 
1233 static inline void hugetlb_unregister_node(struct node *node)
1234 {
1235 }
1236 
1237 static inline bool hugetlbfs_pagecache_present(
1238     struct hstate *h, struct vm_area_struct *vma, unsigned long address)
1239 {
1240 	return false;
1241 }
1242 #endif	/* CONFIG_HUGETLB_PAGE */
1243 
huge_pte_lock(struct hstate * h,struct mm_struct * mm,pte_t * pte)1244 static inline spinlock_t *huge_pte_lock(struct hstate *h,
1245 					struct mm_struct *mm, pte_t *pte)
1246 {
1247 	spinlock_t *ptl;
1248 
1249 	ptl = huge_pte_lockptr(h, mm, pte);
1250 	spin_lock(ptl);
1251 	return ptl;
1252 }
1253 
1254 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1255 extern void __init hugetlb_cma_reserve(int order);
1256 #else
hugetlb_cma_reserve(int order)1257 static inline __init void hugetlb_cma_reserve(int order)
1258 {
1259 }
1260 #endif
1261 
1262 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
hugetlb_pmd_shared(pte_t * pte)1263 static inline bool hugetlb_pmd_shared(pte_t *pte)
1264 {
1265 	return page_count(virt_to_page(pte)) > 1;
1266 }
1267 #else
hugetlb_pmd_shared(pte_t * pte)1268 static inline bool hugetlb_pmd_shared(pte_t *pte)
1269 {
1270 	return false;
1271 }
1272 #endif
1273 
1274 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1275 
1276 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1277 /*
1278  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1279  * implement this.
1280  */
1281 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1282 #endif
1283 
__vma_shareable_lock(struct vm_area_struct * vma)1284 static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1285 {
1286 	return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1287 }
1288 
1289 bool __vma_private_lock(struct vm_area_struct *vma);
1290 
1291 /*
1292  * Safe version of huge_pte_offset() to check the locks.  See comments
1293  * above huge_pte_offset().
1294  */
1295 static inline pte_t *
hugetlb_walk(struct vm_area_struct * vma,unsigned long addr,unsigned long sz)1296 hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1297 {
1298 #if defined(CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING) && defined(CONFIG_LOCKDEP)
1299 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1300 
1301 	/*
1302 	 * If pmd sharing possible, locking needed to safely walk the
1303 	 * hugetlb pgtables.  More information can be found at the comment
1304 	 * above huge_pte_offset() in the same file.
1305 	 *
1306 	 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1307 	 */
1308 	if (__vma_shareable_lock(vma))
1309 		WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1310 			     !lockdep_is_held(
1311 				 &vma->vm_file->f_mapping->i_mmap_rwsem));
1312 #endif
1313 	return huge_pte_offset(vma->vm_mm, addr, sz);
1314 }
1315 
1316 #endif /* _LINUX_HUGETLB_H */
1317