xref: /linux/drivers/net/ethernet/hisilicon/hns3/hns3_enet.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/iommu.h>
15 #include <linux/module.h>
16 #include <linux/pci.h>
17 #include <linux/skbuff.h>
18 #include <linux/sctp.h>
19 #include <net/gre.h>
20 #include <net/gro.h>
21 #include <net/ip6_checksum.h>
22 #include <net/page_pool/helpers.h>
23 #include <net/pkt_cls.h>
24 #include <net/pkt_sched.h>
25 #include <net/tcp.h>
26 #include <net/vxlan.h>
27 #include <net/geneve.h>
28 
29 #include "hnae3.h"
30 #include "hns3_enet.h"
31 /* All hns3 tracepoints are defined by the include below, which
32  * must be included exactly once across the whole kernel with
33  * CREATE_TRACE_POINTS defined
34  */
35 #define CREATE_TRACE_POINTS
36 #include "hns3_trace.h"
37 
38 #define hns3_set_field(origin, shift, val)	((origin) |= (val) << (shift))
39 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
40 
41 #define hns3_rl_err(fmt, ...)						\
42 	do {								\
43 		if (net_ratelimit())					\
44 			netdev_err(fmt, ##__VA_ARGS__);			\
45 	} while (0)
46 
47 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
48 
49 static const char hns3_driver_name[] = "hns3";
50 static const char hns3_driver_string[] =
51 			"Hisilicon Ethernet Network Driver for Hip08 Family";
52 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
53 static struct hnae3_client client;
54 
55 static int debug = -1;
56 module_param(debug, int, 0);
57 MODULE_PARM_DESC(debug, " Network interface message level setting");
58 
59 static unsigned int tx_sgl = 1;
60 module_param(tx_sgl, uint, 0600);
61 MODULE_PARM_DESC(tx_sgl, "Minimum number of frags when using dma_map_sg() to optimize the IOMMU mapping");
62 
63 static bool page_pool_enabled = true;
64 module_param(page_pool_enabled, bool, 0400);
65 
66 #define HNS3_SGL_SIZE(nfrag)	(sizeof(struct scatterlist) * (nfrag) +	\
67 				 sizeof(struct sg_table))
68 #define HNS3_MAX_SGL_SIZE	ALIGN(HNS3_SGL_SIZE(HNS3_MAX_TSO_BD_NUM), \
69 				      dma_get_cache_alignment())
70 
71 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
72 			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
73 
74 #define HNS3_INNER_VLAN_TAG	1
75 #define HNS3_OUTER_VLAN_TAG	2
76 
77 #define HNS3_MIN_TX_LEN		33U
78 #define HNS3_MIN_TUN_PKT_LEN	65U
79 
80 /* hns3_pci_tbl - PCI Device ID Table
81  *
82  * Last entry must be all 0s
83  *
84  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
85  *   Class, Class Mask, private data (not used) }
86  */
87 static const struct pci_device_id hns3_pci_tbl[] = {
88 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
89 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
90 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
91 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
92 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
93 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
94 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
95 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
96 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
97 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
98 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
99 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
100 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
101 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
102 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
103 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
104 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
105 	/* required last entry */
106 	{0,}
107 };
108 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
109 
110 #define HNS3_RX_PTYPE_ENTRY(ptype, l, s, t, h) \
111 	{	ptype, \
112 		l, \
113 		CHECKSUM_##s, \
114 		HNS3_L3_TYPE_##t, \
115 		1, \
116 		h}
117 
118 #define HNS3_RX_PTYPE_UNUSED_ENTRY(ptype) \
119 		{ ptype, 0, CHECKSUM_NONE, HNS3_L3_TYPE_PARSE_FAIL, 0, \
120 		  PKT_HASH_TYPE_NONE }
121 
122 static const struct hns3_rx_ptype hns3_rx_ptype_tbl[] = {
123 	HNS3_RX_PTYPE_UNUSED_ENTRY(0),
124 	HNS3_RX_PTYPE_ENTRY(1, 0, COMPLETE, ARP, PKT_HASH_TYPE_NONE),
125 	HNS3_RX_PTYPE_ENTRY(2, 0, COMPLETE, RARP, PKT_HASH_TYPE_NONE),
126 	HNS3_RX_PTYPE_ENTRY(3, 0, COMPLETE, LLDP, PKT_HASH_TYPE_NONE),
127 	HNS3_RX_PTYPE_ENTRY(4, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
128 	HNS3_RX_PTYPE_ENTRY(5, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
129 	HNS3_RX_PTYPE_ENTRY(6, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
130 	HNS3_RX_PTYPE_ENTRY(7, 0, COMPLETE, CNM, PKT_HASH_TYPE_NONE),
131 	HNS3_RX_PTYPE_ENTRY(8, 0, NONE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
132 	HNS3_RX_PTYPE_UNUSED_ENTRY(9),
133 	HNS3_RX_PTYPE_UNUSED_ENTRY(10),
134 	HNS3_RX_PTYPE_UNUSED_ENTRY(11),
135 	HNS3_RX_PTYPE_UNUSED_ENTRY(12),
136 	HNS3_RX_PTYPE_UNUSED_ENTRY(13),
137 	HNS3_RX_PTYPE_UNUSED_ENTRY(14),
138 	HNS3_RX_PTYPE_UNUSED_ENTRY(15),
139 	HNS3_RX_PTYPE_ENTRY(16, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
140 	HNS3_RX_PTYPE_ENTRY(17, 0, COMPLETE, IPV4, PKT_HASH_TYPE_NONE),
141 	HNS3_RX_PTYPE_ENTRY(18, 0, COMPLETE, IPV4, PKT_HASH_TYPE_NONE),
142 	HNS3_RX_PTYPE_ENTRY(19, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
143 	HNS3_RX_PTYPE_ENTRY(20, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
144 	HNS3_RX_PTYPE_ENTRY(21, 0, NONE, IPV4, PKT_HASH_TYPE_NONE),
145 	HNS3_RX_PTYPE_ENTRY(22, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
146 	HNS3_RX_PTYPE_ENTRY(23, 0, NONE, IPV4, PKT_HASH_TYPE_L3),
147 	HNS3_RX_PTYPE_ENTRY(24, 0, NONE, IPV4, PKT_HASH_TYPE_L3),
148 	HNS3_RX_PTYPE_ENTRY(25, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
149 	HNS3_RX_PTYPE_UNUSED_ENTRY(26),
150 	HNS3_RX_PTYPE_UNUSED_ENTRY(27),
151 	HNS3_RX_PTYPE_UNUSED_ENTRY(28),
152 	HNS3_RX_PTYPE_ENTRY(29, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
153 	HNS3_RX_PTYPE_ENTRY(30, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
154 	HNS3_RX_PTYPE_ENTRY(31, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
155 	HNS3_RX_PTYPE_ENTRY(32, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
156 	HNS3_RX_PTYPE_ENTRY(33, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
157 	HNS3_RX_PTYPE_ENTRY(34, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
158 	HNS3_RX_PTYPE_ENTRY(35, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
159 	HNS3_RX_PTYPE_ENTRY(36, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
160 	HNS3_RX_PTYPE_ENTRY(37, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
161 	HNS3_RX_PTYPE_UNUSED_ENTRY(38),
162 	HNS3_RX_PTYPE_ENTRY(39, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
163 	HNS3_RX_PTYPE_ENTRY(40, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
164 	HNS3_RX_PTYPE_ENTRY(41, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
165 	HNS3_RX_PTYPE_ENTRY(42, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
166 	HNS3_RX_PTYPE_ENTRY(43, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
167 	HNS3_RX_PTYPE_ENTRY(44, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
168 	HNS3_RX_PTYPE_ENTRY(45, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
169 	HNS3_RX_PTYPE_UNUSED_ENTRY(46),
170 	HNS3_RX_PTYPE_UNUSED_ENTRY(47),
171 	HNS3_RX_PTYPE_UNUSED_ENTRY(48),
172 	HNS3_RX_PTYPE_UNUSED_ENTRY(49),
173 	HNS3_RX_PTYPE_UNUSED_ENTRY(50),
174 	HNS3_RX_PTYPE_UNUSED_ENTRY(51),
175 	HNS3_RX_PTYPE_UNUSED_ENTRY(52),
176 	HNS3_RX_PTYPE_UNUSED_ENTRY(53),
177 	HNS3_RX_PTYPE_UNUSED_ENTRY(54),
178 	HNS3_RX_PTYPE_UNUSED_ENTRY(55),
179 	HNS3_RX_PTYPE_UNUSED_ENTRY(56),
180 	HNS3_RX_PTYPE_UNUSED_ENTRY(57),
181 	HNS3_RX_PTYPE_UNUSED_ENTRY(58),
182 	HNS3_RX_PTYPE_UNUSED_ENTRY(59),
183 	HNS3_RX_PTYPE_UNUSED_ENTRY(60),
184 	HNS3_RX_PTYPE_UNUSED_ENTRY(61),
185 	HNS3_RX_PTYPE_UNUSED_ENTRY(62),
186 	HNS3_RX_PTYPE_UNUSED_ENTRY(63),
187 	HNS3_RX_PTYPE_UNUSED_ENTRY(64),
188 	HNS3_RX_PTYPE_UNUSED_ENTRY(65),
189 	HNS3_RX_PTYPE_UNUSED_ENTRY(66),
190 	HNS3_RX_PTYPE_UNUSED_ENTRY(67),
191 	HNS3_RX_PTYPE_UNUSED_ENTRY(68),
192 	HNS3_RX_PTYPE_UNUSED_ENTRY(69),
193 	HNS3_RX_PTYPE_UNUSED_ENTRY(70),
194 	HNS3_RX_PTYPE_UNUSED_ENTRY(71),
195 	HNS3_RX_PTYPE_UNUSED_ENTRY(72),
196 	HNS3_RX_PTYPE_UNUSED_ENTRY(73),
197 	HNS3_RX_PTYPE_UNUSED_ENTRY(74),
198 	HNS3_RX_PTYPE_UNUSED_ENTRY(75),
199 	HNS3_RX_PTYPE_UNUSED_ENTRY(76),
200 	HNS3_RX_PTYPE_UNUSED_ENTRY(77),
201 	HNS3_RX_PTYPE_UNUSED_ENTRY(78),
202 	HNS3_RX_PTYPE_UNUSED_ENTRY(79),
203 	HNS3_RX_PTYPE_UNUSED_ENTRY(80),
204 	HNS3_RX_PTYPE_UNUSED_ENTRY(81),
205 	HNS3_RX_PTYPE_UNUSED_ENTRY(82),
206 	HNS3_RX_PTYPE_UNUSED_ENTRY(83),
207 	HNS3_RX_PTYPE_UNUSED_ENTRY(84),
208 	HNS3_RX_PTYPE_UNUSED_ENTRY(85),
209 	HNS3_RX_PTYPE_UNUSED_ENTRY(86),
210 	HNS3_RX_PTYPE_UNUSED_ENTRY(87),
211 	HNS3_RX_PTYPE_UNUSED_ENTRY(88),
212 	HNS3_RX_PTYPE_UNUSED_ENTRY(89),
213 	HNS3_RX_PTYPE_UNUSED_ENTRY(90),
214 	HNS3_RX_PTYPE_UNUSED_ENTRY(91),
215 	HNS3_RX_PTYPE_UNUSED_ENTRY(92),
216 	HNS3_RX_PTYPE_UNUSED_ENTRY(93),
217 	HNS3_RX_PTYPE_UNUSED_ENTRY(94),
218 	HNS3_RX_PTYPE_UNUSED_ENTRY(95),
219 	HNS3_RX_PTYPE_UNUSED_ENTRY(96),
220 	HNS3_RX_PTYPE_UNUSED_ENTRY(97),
221 	HNS3_RX_PTYPE_UNUSED_ENTRY(98),
222 	HNS3_RX_PTYPE_UNUSED_ENTRY(99),
223 	HNS3_RX_PTYPE_UNUSED_ENTRY(100),
224 	HNS3_RX_PTYPE_UNUSED_ENTRY(101),
225 	HNS3_RX_PTYPE_UNUSED_ENTRY(102),
226 	HNS3_RX_PTYPE_UNUSED_ENTRY(103),
227 	HNS3_RX_PTYPE_UNUSED_ENTRY(104),
228 	HNS3_RX_PTYPE_UNUSED_ENTRY(105),
229 	HNS3_RX_PTYPE_UNUSED_ENTRY(106),
230 	HNS3_RX_PTYPE_UNUSED_ENTRY(107),
231 	HNS3_RX_PTYPE_UNUSED_ENTRY(108),
232 	HNS3_RX_PTYPE_UNUSED_ENTRY(109),
233 	HNS3_RX_PTYPE_UNUSED_ENTRY(110),
234 	HNS3_RX_PTYPE_ENTRY(111, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
235 	HNS3_RX_PTYPE_ENTRY(112, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
236 	HNS3_RX_PTYPE_ENTRY(113, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
237 	HNS3_RX_PTYPE_ENTRY(114, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
238 	HNS3_RX_PTYPE_ENTRY(115, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
239 	HNS3_RX_PTYPE_ENTRY(116, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
240 	HNS3_RX_PTYPE_ENTRY(117, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
241 	HNS3_RX_PTYPE_ENTRY(118, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
242 	HNS3_RX_PTYPE_ENTRY(119, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
243 	HNS3_RX_PTYPE_UNUSED_ENTRY(120),
244 	HNS3_RX_PTYPE_UNUSED_ENTRY(121),
245 	HNS3_RX_PTYPE_UNUSED_ENTRY(122),
246 	HNS3_RX_PTYPE_ENTRY(123, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
247 	HNS3_RX_PTYPE_ENTRY(124, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
248 	HNS3_RX_PTYPE_ENTRY(125, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
249 	HNS3_RX_PTYPE_ENTRY(126, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
250 	HNS3_RX_PTYPE_ENTRY(127, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
251 	HNS3_RX_PTYPE_ENTRY(128, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
252 	HNS3_RX_PTYPE_ENTRY(129, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
253 	HNS3_RX_PTYPE_ENTRY(130, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
254 	HNS3_RX_PTYPE_ENTRY(131, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
255 	HNS3_RX_PTYPE_UNUSED_ENTRY(132),
256 	HNS3_RX_PTYPE_ENTRY(133, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
257 	HNS3_RX_PTYPE_ENTRY(134, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
258 	HNS3_RX_PTYPE_ENTRY(135, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
259 	HNS3_RX_PTYPE_ENTRY(136, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
260 	HNS3_RX_PTYPE_ENTRY(137, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
261 	HNS3_RX_PTYPE_ENTRY(138, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
262 	HNS3_RX_PTYPE_ENTRY(139, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
263 	HNS3_RX_PTYPE_UNUSED_ENTRY(140),
264 	HNS3_RX_PTYPE_UNUSED_ENTRY(141),
265 	HNS3_RX_PTYPE_UNUSED_ENTRY(142),
266 	HNS3_RX_PTYPE_UNUSED_ENTRY(143),
267 	HNS3_RX_PTYPE_UNUSED_ENTRY(144),
268 	HNS3_RX_PTYPE_UNUSED_ENTRY(145),
269 	HNS3_RX_PTYPE_UNUSED_ENTRY(146),
270 	HNS3_RX_PTYPE_UNUSED_ENTRY(147),
271 	HNS3_RX_PTYPE_UNUSED_ENTRY(148),
272 	HNS3_RX_PTYPE_UNUSED_ENTRY(149),
273 	HNS3_RX_PTYPE_UNUSED_ENTRY(150),
274 	HNS3_RX_PTYPE_UNUSED_ENTRY(151),
275 	HNS3_RX_PTYPE_UNUSED_ENTRY(152),
276 	HNS3_RX_PTYPE_UNUSED_ENTRY(153),
277 	HNS3_RX_PTYPE_UNUSED_ENTRY(154),
278 	HNS3_RX_PTYPE_UNUSED_ENTRY(155),
279 	HNS3_RX_PTYPE_UNUSED_ENTRY(156),
280 	HNS3_RX_PTYPE_UNUSED_ENTRY(157),
281 	HNS3_RX_PTYPE_UNUSED_ENTRY(158),
282 	HNS3_RX_PTYPE_UNUSED_ENTRY(159),
283 	HNS3_RX_PTYPE_UNUSED_ENTRY(160),
284 	HNS3_RX_PTYPE_UNUSED_ENTRY(161),
285 	HNS3_RX_PTYPE_UNUSED_ENTRY(162),
286 	HNS3_RX_PTYPE_UNUSED_ENTRY(163),
287 	HNS3_RX_PTYPE_UNUSED_ENTRY(164),
288 	HNS3_RX_PTYPE_UNUSED_ENTRY(165),
289 	HNS3_RX_PTYPE_UNUSED_ENTRY(166),
290 	HNS3_RX_PTYPE_UNUSED_ENTRY(167),
291 	HNS3_RX_PTYPE_UNUSED_ENTRY(168),
292 	HNS3_RX_PTYPE_UNUSED_ENTRY(169),
293 	HNS3_RX_PTYPE_UNUSED_ENTRY(170),
294 	HNS3_RX_PTYPE_UNUSED_ENTRY(171),
295 	HNS3_RX_PTYPE_UNUSED_ENTRY(172),
296 	HNS3_RX_PTYPE_UNUSED_ENTRY(173),
297 	HNS3_RX_PTYPE_UNUSED_ENTRY(174),
298 	HNS3_RX_PTYPE_UNUSED_ENTRY(175),
299 	HNS3_RX_PTYPE_UNUSED_ENTRY(176),
300 	HNS3_RX_PTYPE_UNUSED_ENTRY(177),
301 	HNS3_RX_PTYPE_UNUSED_ENTRY(178),
302 	HNS3_RX_PTYPE_UNUSED_ENTRY(179),
303 	HNS3_RX_PTYPE_UNUSED_ENTRY(180),
304 	HNS3_RX_PTYPE_UNUSED_ENTRY(181),
305 	HNS3_RX_PTYPE_UNUSED_ENTRY(182),
306 	HNS3_RX_PTYPE_UNUSED_ENTRY(183),
307 	HNS3_RX_PTYPE_UNUSED_ENTRY(184),
308 	HNS3_RX_PTYPE_UNUSED_ENTRY(185),
309 	HNS3_RX_PTYPE_UNUSED_ENTRY(186),
310 	HNS3_RX_PTYPE_UNUSED_ENTRY(187),
311 	HNS3_RX_PTYPE_UNUSED_ENTRY(188),
312 	HNS3_RX_PTYPE_UNUSED_ENTRY(189),
313 	HNS3_RX_PTYPE_UNUSED_ENTRY(190),
314 	HNS3_RX_PTYPE_UNUSED_ENTRY(191),
315 	HNS3_RX_PTYPE_UNUSED_ENTRY(192),
316 	HNS3_RX_PTYPE_UNUSED_ENTRY(193),
317 	HNS3_RX_PTYPE_UNUSED_ENTRY(194),
318 	HNS3_RX_PTYPE_UNUSED_ENTRY(195),
319 	HNS3_RX_PTYPE_UNUSED_ENTRY(196),
320 	HNS3_RX_PTYPE_UNUSED_ENTRY(197),
321 	HNS3_RX_PTYPE_UNUSED_ENTRY(198),
322 	HNS3_RX_PTYPE_UNUSED_ENTRY(199),
323 	HNS3_RX_PTYPE_UNUSED_ENTRY(200),
324 	HNS3_RX_PTYPE_UNUSED_ENTRY(201),
325 	HNS3_RX_PTYPE_UNUSED_ENTRY(202),
326 	HNS3_RX_PTYPE_UNUSED_ENTRY(203),
327 	HNS3_RX_PTYPE_UNUSED_ENTRY(204),
328 	HNS3_RX_PTYPE_UNUSED_ENTRY(205),
329 	HNS3_RX_PTYPE_UNUSED_ENTRY(206),
330 	HNS3_RX_PTYPE_UNUSED_ENTRY(207),
331 	HNS3_RX_PTYPE_UNUSED_ENTRY(208),
332 	HNS3_RX_PTYPE_UNUSED_ENTRY(209),
333 	HNS3_RX_PTYPE_UNUSED_ENTRY(210),
334 	HNS3_RX_PTYPE_UNUSED_ENTRY(211),
335 	HNS3_RX_PTYPE_UNUSED_ENTRY(212),
336 	HNS3_RX_PTYPE_UNUSED_ENTRY(213),
337 	HNS3_RX_PTYPE_UNUSED_ENTRY(214),
338 	HNS3_RX_PTYPE_UNUSED_ENTRY(215),
339 	HNS3_RX_PTYPE_UNUSED_ENTRY(216),
340 	HNS3_RX_PTYPE_UNUSED_ENTRY(217),
341 	HNS3_RX_PTYPE_UNUSED_ENTRY(218),
342 	HNS3_RX_PTYPE_UNUSED_ENTRY(219),
343 	HNS3_RX_PTYPE_UNUSED_ENTRY(220),
344 	HNS3_RX_PTYPE_UNUSED_ENTRY(221),
345 	HNS3_RX_PTYPE_UNUSED_ENTRY(222),
346 	HNS3_RX_PTYPE_UNUSED_ENTRY(223),
347 	HNS3_RX_PTYPE_UNUSED_ENTRY(224),
348 	HNS3_RX_PTYPE_UNUSED_ENTRY(225),
349 	HNS3_RX_PTYPE_UNUSED_ENTRY(226),
350 	HNS3_RX_PTYPE_UNUSED_ENTRY(227),
351 	HNS3_RX_PTYPE_UNUSED_ENTRY(228),
352 	HNS3_RX_PTYPE_UNUSED_ENTRY(229),
353 	HNS3_RX_PTYPE_UNUSED_ENTRY(230),
354 	HNS3_RX_PTYPE_UNUSED_ENTRY(231),
355 	HNS3_RX_PTYPE_UNUSED_ENTRY(232),
356 	HNS3_RX_PTYPE_UNUSED_ENTRY(233),
357 	HNS3_RX_PTYPE_UNUSED_ENTRY(234),
358 	HNS3_RX_PTYPE_UNUSED_ENTRY(235),
359 	HNS3_RX_PTYPE_UNUSED_ENTRY(236),
360 	HNS3_RX_PTYPE_UNUSED_ENTRY(237),
361 	HNS3_RX_PTYPE_UNUSED_ENTRY(238),
362 	HNS3_RX_PTYPE_UNUSED_ENTRY(239),
363 	HNS3_RX_PTYPE_UNUSED_ENTRY(240),
364 	HNS3_RX_PTYPE_UNUSED_ENTRY(241),
365 	HNS3_RX_PTYPE_UNUSED_ENTRY(242),
366 	HNS3_RX_PTYPE_UNUSED_ENTRY(243),
367 	HNS3_RX_PTYPE_UNUSED_ENTRY(244),
368 	HNS3_RX_PTYPE_UNUSED_ENTRY(245),
369 	HNS3_RX_PTYPE_UNUSED_ENTRY(246),
370 	HNS3_RX_PTYPE_UNUSED_ENTRY(247),
371 	HNS3_RX_PTYPE_UNUSED_ENTRY(248),
372 	HNS3_RX_PTYPE_UNUSED_ENTRY(249),
373 	HNS3_RX_PTYPE_UNUSED_ENTRY(250),
374 	HNS3_RX_PTYPE_UNUSED_ENTRY(251),
375 	HNS3_RX_PTYPE_UNUSED_ENTRY(252),
376 	HNS3_RX_PTYPE_UNUSED_ENTRY(253),
377 	HNS3_RX_PTYPE_UNUSED_ENTRY(254),
378 	HNS3_RX_PTYPE_UNUSED_ENTRY(255),
379 };
380 
381 #define HNS3_INVALID_PTYPE \
382 		ARRAY_SIZE(hns3_rx_ptype_tbl)
383 
hns3_irq_handle(int irq,void * vector)384 static irqreturn_t hns3_irq_handle(int irq, void *vector)
385 {
386 	struct hns3_enet_tqp_vector *tqp_vector = vector;
387 
388 	napi_schedule_irqoff(&tqp_vector->napi);
389 	tqp_vector->event_cnt++;
390 
391 	return IRQ_HANDLED;
392 }
393 
hns3_nic_uninit_irq(struct hns3_nic_priv * priv)394 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
395 {
396 	struct hns3_enet_tqp_vector *tqp_vectors;
397 	unsigned int i;
398 
399 	for (i = 0; i < priv->vector_num; i++) {
400 		tqp_vectors = &priv->tqp_vector[i];
401 
402 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
403 			continue;
404 
405 		/* clear the affinity mask */
406 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
407 
408 		/* release the irq resource */
409 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
410 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
411 	}
412 }
413 
hns3_nic_init_irq(struct hns3_nic_priv * priv)414 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
415 {
416 	struct hns3_enet_tqp_vector *tqp_vectors;
417 	int txrx_int_idx = 0;
418 	int rx_int_idx = 0;
419 	int tx_int_idx = 0;
420 	unsigned int i;
421 	int ret;
422 
423 	for (i = 0; i < priv->vector_num; i++) {
424 		tqp_vectors = &priv->tqp_vector[i];
425 
426 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
427 			continue;
428 
429 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
430 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
431 				 "%s-%s-%s-%d", hns3_driver_name,
432 				 pci_name(priv->ae_handle->pdev),
433 				 "TxRx", txrx_int_idx++);
434 			txrx_int_idx++;
435 		} else if (tqp_vectors->rx_group.ring) {
436 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
437 				 "%s-%s-%s-%d", hns3_driver_name,
438 				 pci_name(priv->ae_handle->pdev),
439 				 "Rx", rx_int_idx++);
440 		} else if (tqp_vectors->tx_group.ring) {
441 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
442 				 "%s-%s-%s-%d", hns3_driver_name,
443 				 pci_name(priv->ae_handle->pdev),
444 				 "Tx", tx_int_idx++);
445 		} else {
446 			/* Skip this unused q_vector */
447 			continue;
448 		}
449 
450 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
451 
452 		irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
453 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
454 				  tqp_vectors->name, tqp_vectors);
455 		if (ret) {
456 			netdev_err(priv->netdev, "request irq(%d) fail\n",
457 				   tqp_vectors->vector_irq);
458 			hns3_nic_uninit_irq(priv);
459 			return ret;
460 		}
461 
462 		irq_set_affinity_hint(tqp_vectors->vector_irq,
463 				      &tqp_vectors->affinity_mask);
464 
465 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
466 	}
467 
468 	return 0;
469 }
470 
hns3_mask_vector_irq(struct hns3_enet_tqp_vector * tqp_vector,u32 mask_en)471 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
472 				 u32 mask_en)
473 {
474 	writel(mask_en, tqp_vector->mask_addr);
475 }
476 
hns3_irq_enable(struct hns3_enet_tqp_vector * tqp_vector)477 static void hns3_irq_enable(struct hns3_enet_tqp_vector *tqp_vector)
478 {
479 	napi_enable(&tqp_vector->napi);
480 	enable_irq(tqp_vector->vector_irq);
481 }
482 
hns3_irq_disable(struct hns3_enet_tqp_vector * tqp_vector)483 static void hns3_irq_disable(struct hns3_enet_tqp_vector *tqp_vector)
484 {
485 	disable_irq(tqp_vector->vector_irq);
486 	napi_disable(&tqp_vector->napi);
487 	cancel_work_sync(&tqp_vector->rx_group.dim.work);
488 	cancel_work_sync(&tqp_vector->tx_group.dim.work);
489 }
490 
hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector * tqp_vector,u32 rl_value)491 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
492 				 u32 rl_value)
493 {
494 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
495 
496 	/* this defines the configuration for RL (Interrupt Rate Limiter).
497 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
498 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
499 	 */
500 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable &&
501 	    !tqp_vector->rx_group.coal.adapt_enable)
502 		/* According to the hardware, the range of rl_reg is
503 		 * 0-59 and the unit is 4.
504 		 */
505 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
506 
507 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
508 }
509 
hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector * tqp_vector,u32 gl_value)510 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
511 				    u32 gl_value)
512 {
513 	u32 new_val;
514 
515 	if (tqp_vector->rx_group.coal.unit_1us)
516 		new_val = gl_value | HNS3_INT_GL_1US;
517 	else
518 		new_val = hns3_gl_usec_to_reg(gl_value);
519 
520 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
521 }
522 
hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector * tqp_vector,u32 gl_value)523 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
524 				    u32 gl_value)
525 {
526 	u32 new_val;
527 
528 	if (tqp_vector->tx_group.coal.unit_1us)
529 		new_val = gl_value | HNS3_INT_GL_1US;
530 	else
531 		new_val = hns3_gl_usec_to_reg(gl_value);
532 
533 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
534 }
535 
hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector * tqp_vector,u32 ql_value)536 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector,
537 				    u32 ql_value)
538 {
539 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET);
540 }
541 
hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector * tqp_vector,u32 ql_value)542 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector,
543 				    u32 ql_value)
544 {
545 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET);
546 }
547 
hns3_vector_coalesce_init(struct hns3_enet_tqp_vector * tqp_vector,struct hns3_nic_priv * priv)548 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector,
549 				      struct hns3_nic_priv *priv)
550 {
551 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
552 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
553 	struct hnae3_ae_dev *ae_dev = hns3_get_ae_dev(priv->ae_handle);
554 	struct hns3_enet_coalesce *ptx_coal = &priv->tx_coal;
555 	struct hns3_enet_coalesce *prx_coal = &priv->rx_coal;
556 
557 	tx_coal->adapt_enable = ptx_coal->adapt_enable;
558 	rx_coal->adapt_enable = prx_coal->adapt_enable;
559 
560 	tx_coal->int_gl = ptx_coal->int_gl;
561 	rx_coal->int_gl = prx_coal->int_gl;
562 
563 	rx_coal->flow_level = prx_coal->flow_level;
564 	tx_coal->flow_level = ptx_coal->flow_level;
565 
566 	/* device version above V3(include V3), GL can configure 1us
567 	 * unit, so uses 1us unit.
568 	 */
569 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
570 		tx_coal->unit_1us = 1;
571 		rx_coal->unit_1us = 1;
572 	}
573 
574 	if (ae_dev->dev_specs.int_ql_max) {
575 		tx_coal->ql_enable = 1;
576 		rx_coal->ql_enable = 1;
577 		tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
578 		rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
579 		tx_coal->int_ql = ptx_coal->int_ql;
580 		rx_coal->int_ql = prx_coal->int_ql;
581 	}
582 }
583 
584 static void
hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector * tqp_vector,struct hns3_nic_priv * priv)585 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
586 			     struct hns3_nic_priv *priv)
587 {
588 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
589 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
590 	struct hnae3_handle *h = priv->ae_handle;
591 
592 	hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl);
593 	hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl);
594 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
595 
596 	if (tx_coal->ql_enable)
597 		hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql);
598 
599 	if (rx_coal->ql_enable)
600 		hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql);
601 }
602 
hns3_nic_set_real_num_queue(struct net_device * netdev)603 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
604 {
605 	struct hnae3_handle *h = hns3_get_handle(netdev);
606 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
607 	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
608 	unsigned int queue_size = kinfo->num_tqps;
609 	int i, ret;
610 
611 	if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) {
612 		netdev_reset_tc(netdev);
613 	} else {
614 		ret = netdev_set_num_tc(netdev, tc_info->num_tc);
615 		if (ret) {
616 			netdev_err(netdev,
617 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
618 			return ret;
619 		}
620 
621 		for (i = 0; i < tc_info->num_tc; i++)
622 			netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i],
623 					    tc_info->tqp_offset[i]);
624 	}
625 
626 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
627 	if (ret) {
628 		netdev_err(netdev,
629 			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
630 		return ret;
631 	}
632 
633 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
634 	if (ret) {
635 		netdev_err(netdev,
636 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
637 		return ret;
638 	}
639 
640 	return 0;
641 }
642 
hns3_get_max_available_channels(struct hnae3_handle * h)643 u16 hns3_get_max_available_channels(struct hnae3_handle *h)
644 {
645 	u16 alloc_tqps, max_rss_size, rss_size;
646 
647 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
648 	rss_size = alloc_tqps / h->kinfo.tc_info.num_tc;
649 
650 	return min_t(u16, rss_size, max_rss_size);
651 }
652 
hns3_tqp_enable(struct hnae3_queue * tqp)653 static void hns3_tqp_enable(struct hnae3_queue *tqp)
654 {
655 	u32 rcb_reg;
656 
657 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
658 	rcb_reg |= BIT(HNS3_RING_EN_B);
659 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
660 }
661 
hns3_tqp_disable(struct hnae3_queue * tqp)662 static void hns3_tqp_disable(struct hnae3_queue *tqp)
663 {
664 	u32 rcb_reg;
665 
666 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
667 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
668 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
669 }
670 
hns3_free_rx_cpu_rmap(struct net_device * netdev)671 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
672 {
673 #ifdef CONFIG_RFS_ACCEL
674 	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
675 	netdev->rx_cpu_rmap = NULL;
676 #endif
677 }
678 
hns3_set_rx_cpu_rmap(struct net_device * netdev)679 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
680 {
681 #ifdef CONFIG_RFS_ACCEL
682 	struct hns3_nic_priv *priv = netdev_priv(netdev);
683 	struct hns3_enet_tqp_vector *tqp_vector;
684 	int i, ret;
685 
686 	if (!netdev->rx_cpu_rmap) {
687 		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
688 		if (!netdev->rx_cpu_rmap)
689 			return -ENOMEM;
690 	}
691 
692 	for (i = 0; i < priv->vector_num; i++) {
693 		tqp_vector = &priv->tqp_vector[i];
694 		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
695 				       tqp_vector->vector_irq);
696 		if (ret) {
697 			hns3_free_rx_cpu_rmap(netdev);
698 			return ret;
699 		}
700 	}
701 #endif
702 	return 0;
703 }
704 
hns3_enable_irqs_and_tqps(struct net_device * netdev)705 static void hns3_enable_irqs_and_tqps(struct net_device *netdev)
706 {
707 	struct hns3_nic_priv *priv = netdev_priv(netdev);
708 	struct hnae3_handle *h = priv->ae_handle;
709 	u16 i;
710 
711 	for (i = 0; i < priv->vector_num; i++)
712 		hns3_irq_enable(&priv->tqp_vector[i]);
713 
714 	for (i = 0; i < priv->vector_num; i++)
715 		hns3_mask_vector_irq(&priv->tqp_vector[i], 1);
716 
717 	for (i = 0; i < h->kinfo.num_tqps; i++)
718 		hns3_tqp_enable(h->kinfo.tqp[i]);
719 }
720 
hns3_disable_irqs_and_tqps(struct net_device * netdev)721 static void hns3_disable_irqs_and_tqps(struct net_device *netdev)
722 {
723 	struct hns3_nic_priv *priv = netdev_priv(netdev);
724 	struct hnae3_handle *h = priv->ae_handle;
725 	u16 i;
726 
727 	for (i = 0; i < h->kinfo.num_tqps; i++)
728 		hns3_tqp_disable(h->kinfo.tqp[i]);
729 
730 	for (i = 0; i < priv->vector_num; i++)
731 		hns3_mask_vector_irq(&priv->tqp_vector[i], 0);
732 
733 	for (i = 0; i < priv->vector_num; i++)
734 		hns3_irq_disable(&priv->tqp_vector[i]);
735 }
736 
hns3_nic_net_up(struct net_device * netdev)737 static int hns3_nic_net_up(struct net_device *netdev)
738 {
739 	struct hns3_nic_priv *priv = netdev_priv(netdev);
740 	struct hnae3_handle *h = priv->ae_handle;
741 	int ret;
742 
743 	ret = hns3_nic_reset_all_ring(h);
744 	if (ret)
745 		return ret;
746 
747 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
748 
749 	hns3_enable_irqs_and_tqps(netdev);
750 
751 	/* start the ae_dev */
752 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
753 	if (ret) {
754 		set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
755 		hns3_disable_irqs_and_tqps(netdev);
756 	}
757 
758 	return ret;
759 }
760 
hns3_config_xps(struct hns3_nic_priv * priv)761 static void hns3_config_xps(struct hns3_nic_priv *priv)
762 {
763 	int i;
764 
765 	for (i = 0; i < priv->vector_num; i++) {
766 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
767 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
768 
769 		while (ring) {
770 			int ret;
771 
772 			ret = netif_set_xps_queue(priv->netdev,
773 						  &tqp_vector->affinity_mask,
774 						  ring->tqp->tqp_index);
775 			if (ret)
776 				netdev_warn(priv->netdev,
777 					    "set xps queue failed: %d", ret);
778 
779 			ring = ring->next;
780 		}
781 	}
782 }
783 
hns3_nic_net_open(struct net_device * netdev)784 static int hns3_nic_net_open(struct net_device *netdev)
785 {
786 	struct hns3_nic_priv *priv = netdev_priv(netdev);
787 	struct hnae3_handle *h = hns3_get_handle(netdev);
788 	struct hnae3_knic_private_info *kinfo;
789 	int i, ret;
790 
791 	if (hns3_nic_resetting(netdev))
792 		return -EBUSY;
793 
794 	if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
795 		netdev_warn(netdev, "net open repeatedly!\n");
796 		return 0;
797 	}
798 
799 	netif_carrier_off(netdev);
800 
801 	ret = hns3_nic_set_real_num_queue(netdev);
802 	if (ret)
803 		return ret;
804 
805 	ret = hns3_nic_net_up(netdev);
806 	if (ret) {
807 		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
808 		return ret;
809 	}
810 
811 	kinfo = &h->kinfo;
812 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
813 		netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]);
814 
815 	if (h->ae_algo->ops->set_timer_task)
816 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
817 
818 	hns3_config_xps(priv);
819 
820 	netif_dbg(h, drv, netdev, "net open\n");
821 
822 	return 0;
823 }
824 
hns3_reset_tx_queue(struct hnae3_handle * h)825 static void hns3_reset_tx_queue(struct hnae3_handle *h)
826 {
827 	struct net_device *ndev = h->kinfo.netdev;
828 	struct hns3_nic_priv *priv = netdev_priv(ndev);
829 	struct netdev_queue *dev_queue;
830 	u32 i;
831 
832 	for (i = 0; i < h->kinfo.num_tqps; i++) {
833 		dev_queue = netdev_get_tx_queue(ndev,
834 						priv->ring[i].queue_index);
835 		netdev_tx_reset_queue(dev_queue);
836 	}
837 }
838 
hns3_nic_net_down(struct net_device * netdev)839 static void hns3_nic_net_down(struct net_device *netdev)
840 {
841 	struct hns3_nic_priv *priv = netdev_priv(netdev);
842 	const struct hnae3_ae_ops *ops;
843 
844 	hns3_disable_irqs_and_tqps(netdev);
845 
846 	/* stop ae_dev */
847 	ops = priv->ae_handle->ae_algo->ops;
848 	if (ops->stop)
849 		ops->stop(priv->ae_handle);
850 
851 	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
852 	 * during reset process, because driver may not be able
853 	 * to disable the ring through firmware when downing the netdev.
854 	 */
855 	if (!hns3_nic_resetting(netdev))
856 		hns3_clear_all_ring(priv->ae_handle, false);
857 
858 	hns3_reset_tx_queue(priv->ae_handle);
859 }
860 
hns3_nic_net_stop(struct net_device * netdev)861 static int hns3_nic_net_stop(struct net_device *netdev)
862 {
863 	struct hns3_nic_priv *priv = netdev_priv(netdev);
864 	struct hnae3_handle *h = hns3_get_handle(netdev);
865 
866 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
867 		return 0;
868 
869 	netif_dbg(h, drv, netdev, "net stop\n");
870 
871 	if (h->ae_algo->ops->set_timer_task)
872 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
873 
874 	netif_carrier_off(netdev);
875 	netif_tx_disable(netdev);
876 
877 	hns3_nic_net_down(netdev);
878 
879 	return 0;
880 }
881 
hns3_nic_uc_sync(struct net_device * netdev,const unsigned char * addr)882 static int hns3_nic_uc_sync(struct net_device *netdev,
883 			    const unsigned char *addr)
884 {
885 	struct hnae3_handle *h = hns3_get_handle(netdev);
886 
887 	if (h->ae_algo->ops->add_uc_addr)
888 		return h->ae_algo->ops->add_uc_addr(h, addr);
889 
890 	return 0;
891 }
892 
hns3_nic_uc_unsync(struct net_device * netdev,const unsigned char * addr)893 static int hns3_nic_uc_unsync(struct net_device *netdev,
894 			      const unsigned char *addr)
895 {
896 	struct hnae3_handle *h = hns3_get_handle(netdev);
897 
898 	/* need ignore the request of removing device address, because
899 	 * we store the device address and other addresses of uc list
900 	 * in the function's mac filter list.
901 	 */
902 	if (ether_addr_equal(addr, netdev->dev_addr))
903 		return 0;
904 
905 	if (h->ae_algo->ops->rm_uc_addr)
906 		return h->ae_algo->ops->rm_uc_addr(h, addr);
907 
908 	return 0;
909 }
910 
hns3_nic_mc_sync(struct net_device * netdev,const unsigned char * addr)911 static int hns3_nic_mc_sync(struct net_device *netdev,
912 			    const unsigned char *addr)
913 {
914 	struct hnae3_handle *h = hns3_get_handle(netdev);
915 
916 	if (h->ae_algo->ops->add_mc_addr)
917 		return h->ae_algo->ops->add_mc_addr(h, addr);
918 
919 	return 0;
920 }
921 
hns3_nic_mc_unsync(struct net_device * netdev,const unsigned char * addr)922 static int hns3_nic_mc_unsync(struct net_device *netdev,
923 			      const unsigned char *addr)
924 {
925 	struct hnae3_handle *h = hns3_get_handle(netdev);
926 
927 	if (h->ae_algo->ops->rm_mc_addr)
928 		return h->ae_algo->ops->rm_mc_addr(h, addr);
929 
930 	return 0;
931 }
932 
hns3_get_netdev_flags(struct net_device * netdev)933 static u8 hns3_get_netdev_flags(struct net_device *netdev)
934 {
935 	u8 flags = 0;
936 
937 	if (netdev->flags & IFF_PROMISC)
938 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
939 	else if (netdev->flags & IFF_ALLMULTI)
940 		flags = HNAE3_USER_MPE;
941 
942 	return flags;
943 }
944 
hns3_nic_set_rx_mode(struct net_device * netdev)945 static void hns3_nic_set_rx_mode(struct net_device *netdev)
946 {
947 	struct hnae3_handle *h = hns3_get_handle(netdev);
948 	u8 new_flags;
949 
950 	new_flags = hns3_get_netdev_flags(netdev);
951 
952 	__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
953 	__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
954 
955 	/* User mode Promisc mode enable and vlan filtering is disabled to
956 	 * let all packets in.
957 	 */
958 	h->netdev_flags = new_flags;
959 	hns3_request_update_promisc_mode(h);
960 }
961 
hns3_request_update_promisc_mode(struct hnae3_handle * handle)962 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
963 {
964 	const struct hnae3_ae_ops *ops = hns3_get_ops(handle);
965 
966 	if (ops->request_update_promisc_mode)
967 		ops->request_update_promisc_mode(handle);
968 }
969 
hns3_tx_spare_space(struct hns3_enet_ring * ring)970 static u32 hns3_tx_spare_space(struct hns3_enet_ring *ring)
971 {
972 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
973 	u32 ntc, ntu;
974 
975 	/* This smp_load_acquire() pairs with smp_store_release() in
976 	 * hns3_tx_spare_update() called in tx desc cleaning process.
977 	 */
978 	ntc = smp_load_acquire(&tx_spare->last_to_clean);
979 	ntu = tx_spare->next_to_use;
980 
981 	if (ntc > ntu)
982 		return ntc - ntu - 1;
983 
984 	/* The free tx buffer is divided into two part, so pick the
985 	 * larger one.
986 	 */
987 	return max(ntc, tx_spare->len - ntu) - 1;
988 }
989 
hns3_tx_spare_update(struct hns3_enet_ring * ring)990 static void hns3_tx_spare_update(struct hns3_enet_ring *ring)
991 {
992 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
993 
994 	if (!tx_spare ||
995 	    tx_spare->last_to_clean == tx_spare->next_to_clean)
996 		return;
997 
998 	/* This smp_store_release() pairs with smp_load_acquire() in
999 	 * hns3_tx_spare_space() called in xmit process.
1000 	 */
1001 	smp_store_release(&tx_spare->last_to_clean,
1002 			  tx_spare->next_to_clean);
1003 }
1004 
hns3_can_use_tx_bounce(struct hns3_enet_ring * ring,struct sk_buff * skb,u32 space)1005 static bool hns3_can_use_tx_bounce(struct hns3_enet_ring *ring,
1006 				   struct sk_buff *skb,
1007 				   u32 space)
1008 {
1009 	u32 len = skb->len <= ring->tx_copybreak ? skb->len :
1010 				skb_headlen(skb);
1011 
1012 	if (len > ring->tx_copybreak)
1013 		return false;
1014 
1015 	if (ALIGN(len, dma_get_cache_alignment()) > space) {
1016 		hns3_ring_stats_update(ring, tx_spare_full);
1017 		return false;
1018 	}
1019 
1020 	return true;
1021 }
1022 
hns3_can_use_tx_sgl(struct hns3_enet_ring * ring,struct sk_buff * skb,u32 space)1023 static bool hns3_can_use_tx_sgl(struct hns3_enet_ring *ring,
1024 				struct sk_buff *skb,
1025 				u32 space)
1026 {
1027 	if (skb->len <= ring->tx_copybreak || !tx_sgl ||
1028 	    (!skb_has_frag_list(skb) &&
1029 	     skb_shinfo(skb)->nr_frags < tx_sgl))
1030 		return false;
1031 
1032 	if (space < HNS3_MAX_SGL_SIZE) {
1033 		hns3_ring_stats_update(ring, tx_spare_full);
1034 		return false;
1035 	}
1036 
1037 	return true;
1038 }
1039 
hns3_init_tx_spare_buffer(struct hns3_enet_ring * ring)1040 static void hns3_init_tx_spare_buffer(struct hns3_enet_ring *ring)
1041 {
1042 	u32 alloc_size = ring->tqp->handle->kinfo.tx_spare_buf_size;
1043 	struct net_device *netdev = ring_to_netdev(ring);
1044 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1045 	struct hns3_tx_spare *tx_spare;
1046 	struct page *page;
1047 	dma_addr_t dma;
1048 	int order;
1049 
1050 	if (!alloc_size)
1051 		return;
1052 
1053 	order = get_order(alloc_size);
1054 	if (order > MAX_PAGE_ORDER) {
1055 		if (net_ratelimit())
1056 			dev_warn(ring_to_dev(ring), "failed to allocate tx spare buffer, exceed to max order\n");
1057 		return;
1058 	}
1059 
1060 	tx_spare = devm_kzalloc(ring_to_dev(ring), sizeof(*tx_spare),
1061 				GFP_KERNEL);
1062 	if (!tx_spare) {
1063 		/* The driver still work without the tx spare buffer */
1064 		dev_warn(ring_to_dev(ring), "failed to allocate hns3_tx_spare\n");
1065 		goto devm_kzalloc_error;
1066 	}
1067 
1068 	page = alloc_pages_node(dev_to_node(ring_to_dev(ring)),
1069 				GFP_KERNEL, order);
1070 	if (!page) {
1071 		dev_warn(ring_to_dev(ring), "failed to allocate tx spare pages\n");
1072 		goto alloc_pages_error;
1073 	}
1074 
1075 	dma = dma_map_page(ring_to_dev(ring), page, 0,
1076 			   PAGE_SIZE << order, DMA_TO_DEVICE);
1077 	if (dma_mapping_error(ring_to_dev(ring), dma)) {
1078 		dev_warn(ring_to_dev(ring), "failed to map pages for tx spare\n");
1079 		goto dma_mapping_error;
1080 	}
1081 
1082 	tx_spare->dma = dma;
1083 	tx_spare->buf = page_address(page);
1084 	tx_spare->len = PAGE_SIZE << order;
1085 	ring->tx_spare = tx_spare;
1086 	ring->tx_copybreak = priv->tx_copybreak;
1087 	return;
1088 
1089 dma_mapping_error:
1090 	put_page(page);
1091 alloc_pages_error:
1092 	devm_kfree(ring_to_dev(ring), tx_spare);
1093 devm_kzalloc_error:
1094 	ring->tqp->handle->kinfo.tx_spare_buf_size = 0;
1095 }
1096 
1097 /* Use hns3_tx_spare_space() to make sure there is enough buffer
1098  * before calling below function to allocate tx buffer.
1099  */
hns3_tx_spare_alloc(struct hns3_enet_ring * ring,unsigned int size,dma_addr_t * dma,u32 * cb_len)1100 static void *hns3_tx_spare_alloc(struct hns3_enet_ring *ring,
1101 				 unsigned int size, dma_addr_t *dma,
1102 				 u32 *cb_len)
1103 {
1104 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
1105 	u32 ntu = tx_spare->next_to_use;
1106 
1107 	size = ALIGN(size, dma_get_cache_alignment());
1108 	*cb_len = size;
1109 
1110 	/* Tx spare buffer wraps back here because the end of
1111 	 * freed tx buffer is not enough.
1112 	 */
1113 	if (ntu + size > tx_spare->len) {
1114 		*cb_len += (tx_spare->len - ntu);
1115 		ntu = 0;
1116 	}
1117 
1118 	tx_spare->next_to_use = ntu + size;
1119 	if (tx_spare->next_to_use == tx_spare->len)
1120 		tx_spare->next_to_use = 0;
1121 
1122 	*dma = tx_spare->dma + ntu;
1123 
1124 	return tx_spare->buf + ntu;
1125 }
1126 
hns3_tx_spare_rollback(struct hns3_enet_ring * ring,u32 len)1127 static void hns3_tx_spare_rollback(struct hns3_enet_ring *ring, u32 len)
1128 {
1129 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
1130 
1131 	if (len > tx_spare->next_to_use) {
1132 		len -= tx_spare->next_to_use;
1133 		tx_spare->next_to_use = tx_spare->len - len;
1134 	} else {
1135 		tx_spare->next_to_use -= len;
1136 	}
1137 }
1138 
hns3_tx_spare_reclaim_cb(struct hns3_enet_ring * ring,struct hns3_desc_cb * cb)1139 static void hns3_tx_spare_reclaim_cb(struct hns3_enet_ring *ring,
1140 				     struct hns3_desc_cb *cb)
1141 {
1142 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
1143 	u32 ntc = tx_spare->next_to_clean;
1144 	u32 len = cb->length;
1145 
1146 	tx_spare->next_to_clean += len;
1147 
1148 	if (tx_spare->next_to_clean >= tx_spare->len) {
1149 		tx_spare->next_to_clean -= tx_spare->len;
1150 
1151 		if (tx_spare->next_to_clean) {
1152 			ntc = 0;
1153 			len = tx_spare->next_to_clean;
1154 		}
1155 	}
1156 
1157 	/* This tx spare buffer is only really reclaimed after calling
1158 	 * hns3_tx_spare_update(), so it is still safe to use the info in
1159 	 * the tx buffer to do the dma sync or sg unmapping after
1160 	 * tx_spare->next_to_clean is moved forword.
1161 	 */
1162 	if (cb->type & (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) {
1163 		dma_addr_t dma = tx_spare->dma + ntc;
1164 
1165 		dma_sync_single_for_cpu(ring_to_dev(ring), dma, len,
1166 					DMA_TO_DEVICE);
1167 	} else {
1168 		struct sg_table *sgt = tx_spare->buf + ntc;
1169 
1170 		dma_unmap_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
1171 			     DMA_TO_DEVICE);
1172 	}
1173 }
1174 
hns3_set_tso(struct sk_buff * skb,u32 * paylen_fdop_ol4cs,u16 * mss,u32 * type_cs_vlan_tso,u32 * send_bytes)1175 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs,
1176 			u16 *mss, u32 *type_cs_vlan_tso, u32 *send_bytes)
1177 {
1178 	u32 l4_offset, hdr_len;
1179 	union l3_hdr_info l3;
1180 	union l4_hdr_info l4;
1181 	u32 l4_paylen;
1182 	int ret;
1183 
1184 	if (!skb_is_gso(skb))
1185 		return 0;
1186 
1187 	ret = skb_cow_head(skb, 0);
1188 	if (unlikely(ret < 0))
1189 		return ret;
1190 
1191 	l3.hdr = skb_network_header(skb);
1192 	l4.hdr = skb_transport_header(skb);
1193 
1194 	/* Software should clear the IPv4's checksum field when tso is
1195 	 * needed.
1196 	 */
1197 	if (l3.v4->version == 4)
1198 		l3.v4->check = 0;
1199 
1200 	/* tunnel packet */
1201 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1202 					 SKB_GSO_GRE_CSUM |
1203 					 SKB_GSO_UDP_TUNNEL |
1204 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1205 		/* reset l3&l4 pointers from outer to inner headers */
1206 		l3.hdr = skb_inner_network_header(skb);
1207 		l4.hdr = skb_inner_transport_header(skb);
1208 
1209 		/* Software should clear the IPv4's checksum field when
1210 		 * tso is needed.
1211 		 */
1212 		if (l3.v4->version == 4)
1213 			l3.v4->check = 0;
1214 	}
1215 
1216 	/* normal or tunnel packet */
1217 	l4_offset = l4.hdr - skb->data;
1218 
1219 	/* remove payload length from inner pseudo checksum when tso */
1220 	l4_paylen = skb->len - l4_offset;
1221 
1222 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1223 		hdr_len = sizeof(*l4.udp) + l4_offset;
1224 		csum_replace_by_diff(&l4.udp->check,
1225 				     (__force __wsum)htonl(l4_paylen));
1226 	} else {
1227 		hdr_len = (l4.tcp->doff << 2) + l4_offset;
1228 		csum_replace_by_diff(&l4.tcp->check,
1229 				     (__force __wsum)htonl(l4_paylen));
1230 	}
1231 
1232 	*send_bytes = (skb_shinfo(skb)->gso_segs - 1) * hdr_len + skb->len;
1233 
1234 	/* find the txbd field values */
1235 	*paylen_fdop_ol4cs = skb->len - hdr_len;
1236 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
1237 
1238 	/* offload outer UDP header checksum */
1239 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
1240 		hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1);
1241 
1242 	/* get MSS for TSO */
1243 	*mss = skb_shinfo(skb)->gso_size;
1244 
1245 	trace_hns3_tso(skb);
1246 
1247 	return 0;
1248 }
1249 
hns3_get_l4_protocol(struct sk_buff * skb,u8 * ol4_proto,u8 * il4_proto)1250 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
1251 				u8 *il4_proto)
1252 {
1253 	union l3_hdr_info l3;
1254 	unsigned char *l4_hdr;
1255 	unsigned char *exthdr;
1256 	u8 l4_proto_tmp;
1257 	__be16 frag_off;
1258 
1259 	/* find outer header point */
1260 	l3.hdr = skb_network_header(skb);
1261 	l4_hdr = skb_transport_header(skb);
1262 
1263 	if (skb->protocol == htons(ETH_P_IPV6)) {
1264 		exthdr = l3.hdr + sizeof(*l3.v6);
1265 		l4_proto_tmp = l3.v6->nexthdr;
1266 		if (l4_hdr != exthdr)
1267 			ipv6_skip_exthdr(skb, exthdr - skb->data,
1268 					 &l4_proto_tmp, &frag_off);
1269 	} else if (skb->protocol == htons(ETH_P_IP)) {
1270 		l4_proto_tmp = l3.v4->protocol;
1271 	} else {
1272 		return -EINVAL;
1273 	}
1274 
1275 	*ol4_proto = l4_proto_tmp;
1276 
1277 	/* tunnel packet */
1278 	if (!skb->encapsulation) {
1279 		*il4_proto = 0;
1280 		return 0;
1281 	}
1282 
1283 	/* find inner header point */
1284 	l3.hdr = skb_inner_network_header(skb);
1285 	l4_hdr = skb_inner_transport_header(skb);
1286 
1287 	if (l3.v6->version == 6) {
1288 		exthdr = l3.hdr + sizeof(*l3.v6);
1289 		l4_proto_tmp = l3.v6->nexthdr;
1290 		if (l4_hdr != exthdr)
1291 			ipv6_skip_exthdr(skb, exthdr - skb->data,
1292 					 &l4_proto_tmp, &frag_off);
1293 	} else if (l3.v4->version == 4) {
1294 		l4_proto_tmp = l3.v4->protocol;
1295 	}
1296 
1297 	*il4_proto = l4_proto_tmp;
1298 
1299 	return 0;
1300 }
1301 
1302 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
1303  * and it is udp packet, which has a dest port as the IANA assigned.
1304  * the hardware is expected to do the checksum offload, but the
1305  * hardware will not do the checksum offload when udp dest port is
1306  * 4789, 4790 or 6081.
1307  */
hns3_tunnel_csum_bug(struct sk_buff * skb)1308 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
1309 {
1310 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1311 	struct hnae3_ae_dev *ae_dev = hns3_get_ae_dev(priv->ae_handle);
1312 	union l4_hdr_info l4;
1313 
1314 	/* device version above V3(include V3), the hardware can
1315 	 * do this checksum offload.
1316 	 */
1317 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
1318 		return false;
1319 
1320 	l4.hdr = skb_transport_header(skb);
1321 
1322 	if (!(!skb->encapsulation &&
1323 	      (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
1324 	      l4.udp->dest == htons(GENEVE_UDP_PORT) ||
1325 	      l4.udp->dest == htons(IANA_VXLAN_GPE_UDP_PORT))))
1326 		return false;
1327 
1328 	return true;
1329 }
1330 
hns3_set_outer_l2l3l4(struct sk_buff * skb,u8 ol4_proto,u32 * ol_type_vlan_len_msec)1331 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1332 				  u32 *ol_type_vlan_len_msec)
1333 {
1334 	u32 l2_len, l3_len, l4_len;
1335 	unsigned char *il2_hdr;
1336 	union l3_hdr_info l3;
1337 	union l4_hdr_info l4;
1338 
1339 	l3.hdr = skb_network_header(skb);
1340 	l4.hdr = skb_transport_header(skb);
1341 
1342 	/* compute OL2 header size, defined in 2 Bytes */
1343 	l2_len = l3.hdr - skb->data;
1344 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
1345 
1346 	/* compute OL3 header size, defined in 4 Bytes */
1347 	l3_len = l4.hdr - l3.hdr;
1348 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
1349 
1350 	il2_hdr = skb_inner_mac_header(skb);
1351 	/* compute OL4 header size, defined in 4 Bytes */
1352 	l4_len = il2_hdr - l4.hdr;
1353 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
1354 
1355 	/* define outer network header type */
1356 	if (skb->protocol == htons(ETH_P_IP)) {
1357 		if (skb_is_gso(skb))
1358 			hns3_set_field(*ol_type_vlan_len_msec,
1359 				       HNS3_TXD_OL3T_S,
1360 				       HNS3_OL3T_IPV4_CSUM);
1361 		else
1362 			hns3_set_field(*ol_type_vlan_len_msec,
1363 				       HNS3_TXD_OL3T_S,
1364 				       HNS3_OL3T_IPV4_NO_CSUM);
1365 	} else if (skb->protocol == htons(ETH_P_IPV6)) {
1366 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
1367 			       HNS3_OL3T_IPV6);
1368 	}
1369 
1370 	if (ol4_proto == IPPROTO_UDP)
1371 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1372 			       HNS3_TUN_MAC_IN_UDP);
1373 	else if (ol4_proto == IPPROTO_GRE)
1374 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1375 			       HNS3_TUN_NVGRE);
1376 }
1377 
hns3_set_l3_type(struct sk_buff * skb,union l3_hdr_info l3,u32 * type_cs_vlan_tso)1378 static void hns3_set_l3_type(struct sk_buff *skb, union l3_hdr_info l3,
1379 			     u32 *type_cs_vlan_tso)
1380 {
1381 	if (l3.v4->version == 4) {
1382 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1383 			       HNS3_L3T_IPV4);
1384 
1385 		/* the stack computes the IP header already, the only time we
1386 		 * need the hardware to recompute it is in the case of TSO.
1387 		 */
1388 		if (skb_is_gso(skb))
1389 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
1390 	} else if (l3.v6->version == 6) {
1391 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1392 			       HNS3_L3T_IPV6);
1393 	}
1394 }
1395 
hns3_set_l4_csum_length(struct sk_buff * skb,union l4_hdr_info l4,u32 l4_proto,u32 * type_cs_vlan_tso)1396 static int hns3_set_l4_csum_length(struct sk_buff *skb, union l4_hdr_info l4,
1397 				   u32 l4_proto, u32 *type_cs_vlan_tso)
1398 {
1399 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
1400 	switch (l4_proto) {
1401 	case IPPROTO_TCP:
1402 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1403 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1404 			       HNS3_L4T_TCP);
1405 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1406 			       l4.tcp->doff);
1407 		break;
1408 	case IPPROTO_UDP:
1409 		if (hns3_tunnel_csum_bug(skb)) {
1410 			int ret = skb_put_padto(skb, HNS3_MIN_TUN_PKT_LEN);
1411 
1412 			return ret ? ret : skb_checksum_help(skb);
1413 		}
1414 
1415 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1416 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1417 			       HNS3_L4T_UDP);
1418 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1419 			       (sizeof(struct udphdr) >> 2));
1420 		break;
1421 	case IPPROTO_SCTP:
1422 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1423 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1424 			       HNS3_L4T_SCTP);
1425 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1426 			       (sizeof(struct sctphdr) >> 2));
1427 		break;
1428 	default:
1429 		/* drop the skb tunnel packet if hardware don't support,
1430 		 * because hardware can't calculate csum when TSO.
1431 		 */
1432 		if (skb_is_gso(skb))
1433 			return -EDOM;
1434 
1435 		/* the stack computes the IP header already,
1436 		 * driver calculate l4 checksum when not TSO.
1437 		 */
1438 		return skb_checksum_help(skb);
1439 	}
1440 
1441 	return 0;
1442 }
1443 
hns3_set_l2l3l4(struct sk_buff * skb,u8 ol4_proto,u8 il4_proto,u32 * type_cs_vlan_tso,u32 * ol_type_vlan_len_msec)1444 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1445 			   u8 il4_proto, u32 *type_cs_vlan_tso,
1446 			   u32 *ol_type_vlan_len_msec)
1447 {
1448 	unsigned char *l2_hdr = skb->data;
1449 	u32 l4_proto = ol4_proto;
1450 	union l4_hdr_info l4;
1451 	union l3_hdr_info l3;
1452 	u32 l2_len, l3_len;
1453 
1454 	l4.hdr = skb_transport_header(skb);
1455 	l3.hdr = skb_network_header(skb);
1456 
1457 	/* handle encapsulation skb */
1458 	if (skb->encapsulation) {
1459 		/* If this is a not UDP/GRE encapsulation skb */
1460 		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
1461 			/* drop the skb tunnel packet if hardware don't support,
1462 			 * because hardware can't calculate csum when TSO.
1463 			 */
1464 			if (skb_is_gso(skb))
1465 				return -EDOM;
1466 
1467 			/* the stack computes the IP header already,
1468 			 * driver calculate l4 checksum when not TSO.
1469 			 */
1470 			return skb_checksum_help(skb);
1471 		}
1472 
1473 		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
1474 
1475 		/* switch to inner header */
1476 		l2_hdr = skb_inner_mac_header(skb);
1477 		l3.hdr = skb_inner_network_header(skb);
1478 		l4.hdr = skb_inner_transport_header(skb);
1479 		l4_proto = il4_proto;
1480 	}
1481 
1482 	hns3_set_l3_type(skb, l3, type_cs_vlan_tso);
1483 
1484 	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
1485 	l2_len = l3.hdr - l2_hdr;
1486 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
1487 
1488 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
1489 	l3_len = l4.hdr - l3.hdr;
1490 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
1491 
1492 	return hns3_set_l4_csum_length(skb, l4, l4_proto, type_cs_vlan_tso);
1493 }
1494 
hns3_handle_vtags(struct hns3_enet_ring * tx_ring,struct sk_buff * skb)1495 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
1496 			     struct sk_buff *skb)
1497 {
1498 	struct hnae3_handle *handle = tx_ring->tqp->handle;
1499 	struct hnae3_ae_dev *ae_dev;
1500 	struct vlan_ethhdr *vhdr;
1501 	int rc;
1502 
1503 	if (!(skb->protocol == htons(ETH_P_8021Q) ||
1504 	      skb_vlan_tag_present(skb)))
1505 		return 0;
1506 
1507 	/* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert
1508 	 * VLAN enabled, only one VLAN header is allowed in skb, otherwise it
1509 	 * will cause RAS error.
1510 	 */
1511 	ae_dev = hns3_get_ae_dev(handle);
1512 	if (unlikely(skb_vlan_tagged_multi(skb) &&
1513 		     ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
1514 		     handle->port_base_vlan_state ==
1515 		     HNAE3_PORT_BASE_VLAN_ENABLE))
1516 		return -EINVAL;
1517 
1518 	if (skb->protocol == htons(ETH_P_8021Q) &&
1519 	    !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1520 		/* When HW VLAN acceleration is turned off, and the stack
1521 		 * sets the protocol to 802.1q, the driver just need to
1522 		 * set the protocol to the encapsulated ethertype.
1523 		 */
1524 		skb->protocol = vlan_get_protocol(skb);
1525 		return 0;
1526 	}
1527 
1528 	if (skb_vlan_tag_present(skb)) {
1529 		/* Based on hw strategy, use out_vtag in two layer tag case,
1530 		 * and use inner_vtag in one tag case.
1531 		 */
1532 		if (skb->protocol == htons(ETH_P_8021Q) &&
1533 		    handle->port_base_vlan_state ==
1534 		    HNAE3_PORT_BASE_VLAN_DISABLE)
1535 			rc = HNS3_OUTER_VLAN_TAG;
1536 		else
1537 			rc = HNS3_INNER_VLAN_TAG;
1538 
1539 		skb->protocol = vlan_get_protocol(skb);
1540 		return rc;
1541 	}
1542 
1543 	rc = skb_cow_head(skb, 0);
1544 	if (unlikely(rc < 0))
1545 		return rc;
1546 
1547 	vhdr = skb_vlan_eth_hdr(skb);
1548 	vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1549 					 & VLAN_PRIO_MASK);
1550 
1551 	skb->protocol = vlan_get_protocol(skb);
1552 	return 0;
1553 }
1554 
1555 /* check if the hardware is capable of checksum offloading */
hns3_check_hw_tx_csum(struct sk_buff * skb)1556 static bool hns3_check_hw_tx_csum(struct sk_buff *skb)
1557 {
1558 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1559 
1560 	/* Kindly note, due to backward compatibility of the TX descriptor,
1561 	 * HW checksum of the non-IP packets and GSO packets is handled at
1562 	 * different place in the following code
1563 	 */
1564 	if (skb_csum_is_sctp(skb) || skb_is_gso(skb) ||
1565 	    !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state))
1566 		return false;
1567 
1568 	return true;
1569 }
1570 
1571 struct hns3_desc_param {
1572 	u32 paylen_ol4cs;
1573 	u32 ol_type_vlan_len_msec;
1574 	u32 type_cs_vlan_tso;
1575 	u16 mss_hw_csum;
1576 	u16 inner_vtag;
1577 	u16 out_vtag;
1578 };
1579 
hns3_init_desc_data(struct sk_buff * skb,struct hns3_desc_param * pa)1580 static void hns3_init_desc_data(struct sk_buff *skb, struct hns3_desc_param *pa)
1581 {
1582 	pa->paylen_ol4cs = skb->len;
1583 	pa->ol_type_vlan_len_msec = 0;
1584 	pa->type_cs_vlan_tso = 0;
1585 	pa->mss_hw_csum = 0;
1586 	pa->inner_vtag = 0;
1587 	pa->out_vtag = 0;
1588 }
1589 
hns3_handle_vlan_info(struct hns3_enet_ring * ring,struct sk_buff * skb,struct hns3_desc_param * param)1590 static int hns3_handle_vlan_info(struct hns3_enet_ring *ring,
1591 				 struct sk_buff *skb,
1592 				 struct hns3_desc_param *param)
1593 {
1594 	int ret;
1595 
1596 	ret = hns3_handle_vtags(ring, skb);
1597 	if (unlikely(ret < 0)) {
1598 		hns3_ring_stats_update(ring, tx_vlan_err);
1599 		return ret;
1600 	} else if (ret == HNS3_INNER_VLAN_TAG) {
1601 		param->inner_vtag = skb_vlan_tag_get(skb);
1602 		param->inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1603 				VLAN_PRIO_MASK;
1604 		hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1605 	} else if (ret == HNS3_OUTER_VLAN_TAG) {
1606 		param->out_vtag = skb_vlan_tag_get(skb);
1607 		param->out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1608 				VLAN_PRIO_MASK;
1609 		hns3_set_field(param->ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1610 			       1);
1611 	}
1612 	return 0;
1613 }
1614 
hns3_handle_csum_partial(struct hns3_enet_ring * ring,struct sk_buff * skb,struct hns3_desc_cb * desc_cb,struct hns3_desc_param * param)1615 static int hns3_handle_csum_partial(struct hns3_enet_ring *ring,
1616 				    struct sk_buff *skb,
1617 				    struct hns3_desc_cb *desc_cb,
1618 				    struct hns3_desc_param *param)
1619 {
1620 	u8 ol4_proto, il4_proto;
1621 	int ret;
1622 
1623 	if (hns3_check_hw_tx_csum(skb)) {
1624 		/* set checksum start and offset, defined in 2 Bytes */
1625 		hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_CSUM_START_S,
1626 			       skb_checksum_start_offset(skb) >> 1);
1627 		hns3_set_field(param->ol_type_vlan_len_msec,
1628 			       HNS3_TXD_CSUM_OFFSET_S,
1629 			       skb->csum_offset >> 1);
1630 		param->mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B);
1631 		return 0;
1632 	}
1633 
1634 	skb_reset_mac_len(skb);
1635 
1636 	ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1637 	if (unlikely(ret < 0)) {
1638 		hns3_ring_stats_update(ring, tx_l4_proto_err);
1639 		return ret;
1640 	}
1641 
1642 	ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1643 			      &param->type_cs_vlan_tso,
1644 			      &param->ol_type_vlan_len_msec);
1645 	if (unlikely(ret < 0)) {
1646 		hns3_ring_stats_update(ring, tx_l2l3l4_err);
1647 		return ret;
1648 	}
1649 
1650 	ret = hns3_set_tso(skb, &param->paylen_ol4cs, &param->mss_hw_csum,
1651 			   &param->type_cs_vlan_tso, &desc_cb->send_bytes);
1652 	if (unlikely(ret < 0)) {
1653 		hns3_ring_stats_update(ring, tx_tso_err);
1654 		return ret;
1655 	}
1656 	return 0;
1657 }
1658 
hns3_fill_skb_desc(struct hns3_enet_ring * ring,struct sk_buff * skb,struct hns3_desc * desc,struct hns3_desc_cb * desc_cb)1659 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1660 			      struct sk_buff *skb, struct hns3_desc *desc,
1661 			      struct hns3_desc_cb *desc_cb)
1662 {
1663 	struct hns3_desc_param param;
1664 	int ret;
1665 
1666 	hns3_init_desc_data(skb, &param);
1667 	ret = hns3_handle_vlan_info(ring, skb, &param);
1668 	if (unlikely(ret < 0))
1669 		return ret;
1670 
1671 	desc_cb->send_bytes = skb->len;
1672 
1673 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1674 		ret = hns3_handle_csum_partial(ring, skb, desc_cb, &param);
1675 		if (ret)
1676 			return ret;
1677 	}
1678 
1679 	/* Set txbd */
1680 	desc->tx.ol_type_vlan_len_msec =
1681 		cpu_to_le32(param.ol_type_vlan_len_msec);
1682 	desc->tx.type_cs_vlan_tso_len = cpu_to_le32(param.type_cs_vlan_tso);
1683 	desc->tx.paylen_ol4cs = cpu_to_le32(param.paylen_ol4cs);
1684 	desc->tx.mss_hw_csum = cpu_to_le16(param.mss_hw_csum);
1685 	desc->tx.vlan_tag = cpu_to_le16(param.inner_vtag);
1686 	desc->tx.outer_vlan_tag = cpu_to_le16(param.out_vtag);
1687 
1688 	return 0;
1689 }
1690 
hns3_fill_desc(struct hns3_enet_ring * ring,dma_addr_t dma,unsigned int size)1691 static int hns3_fill_desc(struct hns3_enet_ring *ring, dma_addr_t dma,
1692 			  unsigned int size)
1693 {
1694 #define HNS3_LIKELY_BD_NUM	1
1695 
1696 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1697 	unsigned int frag_buf_num, k;
1698 	int sizeoflast;
1699 
1700 	if (likely(size <= HNS3_MAX_BD_SIZE)) {
1701 		desc->addr = cpu_to_le64(dma);
1702 		desc->tx.send_size = cpu_to_le16(size);
1703 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1704 			cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1705 
1706 		trace_hns3_tx_desc(ring, ring->next_to_use);
1707 		ring_ptr_move_fw(ring, next_to_use);
1708 		return HNS3_LIKELY_BD_NUM;
1709 	}
1710 
1711 	frag_buf_num = hns3_tx_bd_count(size);
1712 	sizeoflast = size % HNS3_MAX_BD_SIZE;
1713 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1714 
1715 	/* When frag size is bigger than hardware limit, split this frag */
1716 	for (k = 0; k < frag_buf_num; k++) {
1717 		/* now, fill the descriptor */
1718 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1719 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1720 				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1721 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1722 				cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1723 
1724 		trace_hns3_tx_desc(ring, ring->next_to_use);
1725 		/* move ring pointer to next */
1726 		ring_ptr_move_fw(ring, next_to_use);
1727 
1728 		desc = &ring->desc[ring->next_to_use];
1729 	}
1730 
1731 	return frag_buf_num;
1732 }
1733 
hns3_map_and_fill_desc(struct hns3_enet_ring * ring,void * priv,unsigned int type)1734 static int hns3_map_and_fill_desc(struct hns3_enet_ring *ring, void *priv,
1735 				  unsigned int type)
1736 {
1737 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1738 	struct device *dev = ring_to_dev(ring);
1739 	unsigned int size;
1740 	dma_addr_t dma;
1741 
1742 	if (type & (DESC_TYPE_FRAGLIST_SKB | DESC_TYPE_SKB)) {
1743 		struct sk_buff *skb = (struct sk_buff *)priv;
1744 
1745 		size = skb_headlen(skb);
1746 		if (!size)
1747 			return 0;
1748 
1749 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1750 	} else if (type & DESC_TYPE_BOUNCE_HEAD) {
1751 		/* Head data has been filled in hns3_handle_tx_bounce(),
1752 		 * just return 0 here.
1753 		 */
1754 		return 0;
1755 	} else {
1756 		skb_frag_t *frag = (skb_frag_t *)priv;
1757 
1758 		size = skb_frag_size(frag);
1759 		if (!size)
1760 			return 0;
1761 
1762 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1763 	}
1764 
1765 	if (unlikely(dma_mapping_error(dev, dma))) {
1766 		hns3_ring_stats_update(ring, sw_err_cnt);
1767 		return -ENOMEM;
1768 	}
1769 
1770 	desc_cb->priv = priv;
1771 	desc_cb->length = size;
1772 	desc_cb->dma = dma;
1773 	desc_cb->type = type;
1774 
1775 	return hns3_fill_desc(ring, dma, size);
1776 }
1777 
hns3_skb_bd_num(struct sk_buff * skb,unsigned int * bd_size,unsigned int bd_num)1778 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1779 				    unsigned int bd_num)
1780 {
1781 	unsigned int size;
1782 	int i;
1783 
1784 	size = skb_headlen(skb);
1785 	while (size > HNS3_MAX_BD_SIZE) {
1786 		bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1787 		size -= HNS3_MAX_BD_SIZE;
1788 
1789 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1790 			return bd_num;
1791 	}
1792 
1793 	if (size) {
1794 		bd_size[bd_num++] = size;
1795 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1796 			return bd_num;
1797 	}
1798 
1799 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1800 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1801 		size = skb_frag_size(frag);
1802 		if (!size)
1803 			continue;
1804 
1805 		while (size > HNS3_MAX_BD_SIZE) {
1806 			bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1807 			size -= HNS3_MAX_BD_SIZE;
1808 
1809 			if (bd_num > HNS3_MAX_TSO_BD_NUM)
1810 				return bd_num;
1811 		}
1812 
1813 		bd_size[bd_num++] = size;
1814 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1815 			return bd_num;
1816 	}
1817 
1818 	return bd_num;
1819 }
1820 
hns3_tx_bd_num(struct sk_buff * skb,unsigned int * bd_size,u8 max_non_tso_bd_num,unsigned int bd_num,unsigned int recursion_level)1821 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1822 				   u8 max_non_tso_bd_num, unsigned int bd_num,
1823 				   unsigned int recursion_level)
1824 {
1825 #define HNS3_MAX_RECURSION_LEVEL	24
1826 
1827 	struct sk_buff *frag_skb;
1828 
1829 	/* If the total len is within the max bd limit */
1830 	if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level &&
1831 		   !skb_has_frag_list(skb) &&
1832 		   skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1833 		return skb_shinfo(skb)->nr_frags + 1U;
1834 
1835 	if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL))
1836 		return UINT_MAX;
1837 
1838 	bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1839 	if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1840 		return bd_num;
1841 
1842 	skb_walk_frags(skb, frag_skb) {
1843 		bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num,
1844 					bd_num, recursion_level + 1);
1845 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1846 			return bd_num;
1847 	}
1848 
1849 	return bd_num;
1850 }
1851 
hns3_gso_hdr_len(struct sk_buff * skb)1852 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1853 {
1854 	if (!skb->encapsulation)
1855 		return skb_tcp_all_headers(skb);
1856 
1857 	return skb_inner_tcp_all_headers(skb);
1858 }
1859 
1860 /* HW need every continuous max_non_tso_bd_num buffer data to be larger
1861  * than MSS, we simplify it by ensuring skb_headlen + the first continuous
1862  * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
1863  * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
1864  * than MSS except the last max_non_tso_bd_num - 1 frags.
1865  */
hns3_skb_need_linearized(struct sk_buff * skb,unsigned int * bd_size,unsigned int bd_num,u8 max_non_tso_bd_num)1866 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1867 				     unsigned int bd_num, u8 max_non_tso_bd_num)
1868 {
1869 	unsigned int tot_len = 0;
1870 	unsigned int i;
1871 
1872 	for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1873 		tot_len += bd_size[i];
1874 
1875 	/* ensure the first max_non_tso_bd_num frags is greater than
1876 	 * mss + header
1877 	 */
1878 	if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1879 	    skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1880 		return true;
1881 
1882 	/* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
1883 	 * than mss except the last one.
1884 	 */
1885 	for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1886 		tot_len -= bd_size[i];
1887 		tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1888 
1889 		if (tot_len < skb_shinfo(skb)->gso_size)
1890 			return true;
1891 	}
1892 
1893 	return false;
1894 }
1895 
hns3_shinfo_pack(struct skb_shared_info * shinfo,__u32 * size)1896 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1897 {
1898 	u32 i;
1899 
1900 	for (i = 0; i < MAX_SKB_FRAGS; i++)
1901 		size[i] = skb_frag_size(&shinfo->frags[i]);
1902 }
1903 
hns3_skb_linearize(struct hns3_enet_ring * ring,struct sk_buff * skb,unsigned int bd_num)1904 static int hns3_skb_linearize(struct hns3_enet_ring *ring,
1905 			      struct sk_buff *skb,
1906 			      unsigned int bd_num)
1907 {
1908 	/* 'bd_num == UINT_MAX' means the skb' fraglist has a
1909 	 * recursion level of over HNS3_MAX_RECURSION_LEVEL.
1910 	 */
1911 	if (bd_num == UINT_MAX) {
1912 		hns3_ring_stats_update(ring, over_max_recursion);
1913 		return -ENOMEM;
1914 	}
1915 
1916 	/* The skb->len has exceeded the hw limitation, linearization
1917 	 * will not help.
1918 	 */
1919 	if (skb->len > HNS3_MAX_TSO_SIZE ||
1920 	    (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)) {
1921 		hns3_ring_stats_update(ring, hw_limitation);
1922 		return -ENOMEM;
1923 	}
1924 
1925 	if (__skb_linearize(skb)) {
1926 		hns3_ring_stats_update(ring, sw_err_cnt);
1927 		return -ENOMEM;
1928 	}
1929 
1930 	return 0;
1931 }
1932 
hns3_nic_maybe_stop_tx(struct hns3_enet_ring * ring,struct net_device * netdev,struct sk_buff * skb)1933 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1934 				  struct net_device *netdev,
1935 				  struct sk_buff *skb)
1936 {
1937 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1938 	u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1939 	unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1940 	unsigned int bd_num;
1941 
1942 	bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0);
1943 	if (unlikely(bd_num > max_non_tso_bd_num)) {
1944 		if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1945 		    !hns3_skb_need_linearized(skb, bd_size, bd_num,
1946 					      max_non_tso_bd_num)) {
1947 			trace_hns3_over_max_bd(skb);
1948 			goto out;
1949 		}
1950 
1951 		if (hns3_skb_linearize(ring, skb, bd_num))
1952 			return -ENOMEM;
1953 
1954 		bd_num = hns3_tx_bd_count(skb->len);
1955 
1956 		hns3_ring_stats_update(ring, tx_copy);
1957 	}
1958 
1959 out:
1960 	if (likely(ring_space(ring) >= bd_num))
1961 		return bd_num;
1962 
1963 	netif_stop_subqueue(netdev, ring->queue_index);
1964 	smp_mb(); /* Memory barrier before checking ring_space */
1965 
1966 	/* Start queue in case hns3_clean_tx_ring has just made room
1967 	 * available and has not seen the queue stopped state performed
1968 	 * by netif_stop_subqueue above.
1969 	 */
1970 	if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1971 	    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1972 		netif_start_subqueue(netdev, ring->queue_index);
1973 		return bd_num;
1974 	}
1975 
1976 	hns3_ring_stats_update(ring, tx_busy);
1977 
1978 	return -EBUSY;
1979 }
1980 
hns3_clear_desc(struct hns3_enet_ring * ring,int next_to_use_orig)1981 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1982 {
1983 	struct device *dev = ring_to_dev(ring);
1984 	unsigned int i;
1985 
1986 	for (i = 0; i < ring->desc_num; i++) {
1987 		struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1988 		struct hns3_desc_cb *desc_cb;
1989 
1990 		memset(desc, 0, sizeof(*desc));
1991 
1992 		/* check if this is where we started */
1993 		if (ring->next_to_use == next_to_use_orig)
1994 			break;
1995 
1996 		/* rollback one */
1997 		ring_ptr_move_bw(ring, next_to_use);
1998 
1999 		desc_cb = &ring->desc_cb[ring->next_to_use];
2000 
2001 		if (!desc_cb->dma)
2002 			continue;
2003 
2004 		/* unmap the descriptor dma address */
2005 		if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
2006 			dma_unmap_single(dev, desc_cb->dma, desc_cb->length,
2007 					 DMA_TO_DEVICE);
2008 		else if (desc_cb->type &
2009 			 (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL))
2010 			hns3_tx_spare_rollback(ring, desc_cb->length);
2011 		else if (desc_cb->length)
2012 			dma_unmap_page(dev, desc_cb->dma, desc_cb->length,
2013 				       DMA_TO_DEVICE);
2014 
2015 		desc_cb->length = 0;
2016 		desc_cb->dma = 0;
2017 		desc_cb->type = DESC_TYPE_UNKNOWN;
2018 	}
2019 }
2020 
hns3_fill_skb_to_desc(struct hns3_enet_ring * ring,struct sk_buff * skb,unsigned int type)2021 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
2022 				 struct sk_buff *skb, unsigned int type)
2023 {
2024 	struct sk_buff *frag_skb;
2025 	int i, ret, bd_num = 0;
2026 
2027 	ret = hns3_map_and_fill_desc(ring, skb, type);
2028 	if (unlikely(ret < 0))
2029 		return ret;
2030 
2031 	bd_num += ret;
2032 
2033 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2034 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2035 
2036 		ret = hns3_map_and_fill_desc(ring, frag, DESC_TYPE_PAGE);
2037 		if (unlikely(ret < 0))
2038 			return ret;
2039 
2040 		bd_num += ret;
2041 	}
2042 
2043 	skb_walk_frags(skb, frag_skb) {
2044 		ret = hns3_fill_skb_to_desc(ring, frag_skb,
2045 					    DESC_TYPE_FRAGLIST_SKB);
2046 		if (unlikely(ret < 0))
2047 			return ret;
2048 
2049 		bd_num += ret;
2050 	}
2051 
2052 	return bd_num;
2053 }
2054 
hns3_tx_push_bd(struct hns3_enet_ring * ring,int num)2055 static void hns3_tx_push_bd(struct hns3_enet_ring *ring, int num)
2056 {
2057 #define HNS3_BYTES_PER_64BIT		8
2058 
2059 	struct hns3_desc desc[HNS3_MAX_PUSH_BD_NUM] = {};
2060 	int offset = 0;
2061 
2062 	/* make sure everything is visible to device before
2063 	 * excuting tx push or updating doorbell
2064 	 */
2065 	dma_wmb();
2066 
2067 	do {
2068 		int idx = (ring->next_to_use - num + ring->desc_num) %
2069 			  ring->desc_num;
2070 
2071 		u64_stats_update_begin(&ring->syncp);
2072 		ring->stats.tx_push++;
2073 		u64_stats_update_end(&ring->syncp);
2074 		memcpy(&desc[offset], &ring->desc[idx],
2075 		       sizeof(struct hns3_desc));
2076 		offset++;
2077 	} while (--num);
2078 
2079 	__iowrite64_copy(ring->tqp->mem_base, desc,
2080 			 (sizeof(struct hns3_desc) * HNS3_MAX_PUSH_BD_NUM) /
2081 			 HNS3_BYTES_PER_64BIT);
2082 }
2083 
hns3_tx_mem_doorbell(struct hns3_enet_ring * ring)2084 static void hns3_tx_mem_doorbell(struct hns3_enet_ring *ring)
2085 {
2086 #define HNS3_MEM_DOORBELL_OFFSET	64
2087 
2088 	__le64 bd_num = cpu_to_le64((u64)ring->pending_buf);
2089 
2090 	/* make sure everything is visible to device before
2091 	 * excuting tx push or updating doorbell
2092 	 */
2093 	dma_wmb();
2094 
2095 	__iowrite64_copy(ring->tqp->mem_base + HNS3_MEM_DOORBELL_OFFSET,
2096 			 &bd_num, 1);
2097 	u64_stats_update_begin(&ring->syncp);
2098 	ring->stats.tx_mem_doorbell += ring->pending_buf;
2099 	u64_stats_update_end(&ring->syncp);
2100 }
2101 
hns3_tx_doorbell(struct hns3_enet_ring * ring,int num,bool doorbell)2102 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
2103 			     bool doorbell)
2104 {
2105 	struct net_device *netdev = ring_to_netdev(ring);
2106 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2107 
2108 	/* when tx push is enabled, the packet whose number of BD below
2109 	 * HNS3_MAX_PUSH_BD_NUM can be pushed directly.
2110 	 */
2111 	if (test_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state) && num &&
2112 	    !ring->pending_buf && num <= HNS3_MAX_PUSH_BD_NUM && doorbell) {
2113 		/* This smp_store_release() pairs with smp_load_acquire() in
2114 		 * hns3_nic_reclaim_desc(). Ensure that the BD valid bit
2115 		 * is updated.
2116 		 */
2117 		smp_store_release(&ring->last_to_use, ring->next_to_use);
2118 		hns3_tx_push_bd(ring, num);
2119 		return;
2120 	}
2121 
2122 	ring->pending_buf += num;
2123 
2124 	if (!doorbell) {
2125 		hns3_ring_stats_update(ring, tx_more);
2126 		return;
2127 	}
2128 
2129 	/* This smp_store_release() pairs with smp_load_acquire() in
2130 	 * hns3_nic_reclaim_desc(). Ensure that the BD valid bit is updated.
2131 	 */
2132 	smp_store_release(&ring->last_to_use, ring->next_to_use);
2133 
2134 	if (ring->tqp->mem_base)
2135 		hns3_tx_mem_doorbell(ring);
2136 	else
2137 		writel(ring->pending_buf,
2138 		       ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
2139 
2140 	ring->pending_buf = 0;
2141 }
2142 
hns3_tsyn(struct net_device * netdev,struct sk_buff * skb,struct hns3_desc * desc)2143 static void hns3_tsyn(struct net_device *netdev, struct sk_buff *skb,
2144 		      struct hns3_desc *desc)
2145 {
2146 	struct hnae3_handle *h = hns3_get_handle(netdev);
2147 
2148 	if (!(h->ae_algo->ops->set_tx_hwts_info &&
2149 	      h->ae_algo->ops->set_tx_hwts_info(h, skb)))
2150 		return;
2151 
2152 	desc->tx.bdtp_fe_sc_vld_ra_ri |= cpu_to_le16(BIT(HNS3_TXD_TSYN_B));
2153 }
2154 
hns3_handle_tx_bounce(struct hns3_enet_ring * ring,struct sk_buff * skb)2155 static int hns3_handle_tx_bounce(struct hns3_enet_ring *ring,
2156 				 struct sk_buff *skb)
2157 {
2158 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2159 	unsigned int type = DESC_TYPE_BOUNCE_HEAD;
2160 	unsigned int size = skb_headlen(skb);
2161 	dma_addr_t dma;
2162 	int bd_num = 0;
2163 	u32 cb_len;
2164 	void *buf;
2165 	int ret;
2166 
2167 	if (skb->len <= ring->tx_copybreak) {
2168 		size = skb->len;
2169 		type = DESC_TYPE_BOUNCE_ALL;
2170 	}
2171 
2172 	/* hns3_can_use_tx_bounce() is called to ensure the below
2173 	 * function can always return the tx buffer.
2174 	 */
2175 	buf = hns3_tx_spare_alloc(ring, size, &dma, &cb_len);
2176 
2177 	ret = skb_copy_bits(skb, 0, buf, size);
2178 	if (unlikely(ret < 0)) {
2179 		hns3_tx_spare_rollback(ring, cb_len);
2180 		hns3_ring_stats_update(ring, copy_bits_err);
2181 		return ret;
2182 	}
2183 
2184 	desc_cb->priv = skb;
2185 	desc_cb->length = cb_len;
2186 	desc_cb->dma = dma;
2187 	desc_cb->type = type;
2188 
2189 	bd_num += hns3_fill_desc(ring, dma, size);
2190 
2191 	if (type == DESC_TYPE_BOUNCE_HEAD) {
2192 		ret = hns3_fill_skb_to_desc(ring, skb,
2193 					    DESC_TYPE_BOUNCE_HEAD);
2194 		if (unlikely(ret < 0))
2195 			return ret;
2196 
2197 		bd_num += ret;
2198 	}
2199 
2200 	dma_sync_single_for_device(ring_to_dev(ring), dma, size,
2201 				   DMA_TO_DEVICE);
2202 
2203 	hns3_ring_stats_update(ring, tx_bounce);
2204 
2205 	return bd_num;
2206 }
2207 
hns3_handle_tx_sgl(struct hns3_enet_ring * ring,struct sk_buff * skb)2208 static int hns3_handle_tx_sgl(struct hns3_enet_ring *ring,
2209 			      struct sk_buff *skb)
2210 {
2211 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2212 	u32 nfrag = skb_shinfo(skb)->nr_frags + 1;
2213 	struct sg_table *sgt;
2214 	int bd_num = 0;
2215 	dma_addr_t dma;
2216 	u32 cb_len, i;
2217 	int nents;
2218 
2219 	if (skb_has_frag_list(skb))
2220 		nfrag = HNS3_MAX_TSO_BD_NUM;
2221 
2222 	/* hns3_can_use_tx_sgl() is called to ensure the below
2223 	 * function can always return the tx buffer.
2224 	 */
2225 	sgt = hns3_tx_spare_alloc(ring, HNS3_SGL_SIZE(nfrag),
2226 				  &dma, &cb_len);
2227 
2228 	/* scatterlist follows by the sg table */
2229 	sgt->sgl = (struct scatterlist *)(sgt + 1);
2230 	sg_init_table(sgt->sgl, nfrag);
2231 	nents = skb_to_sgvec(skb, sgt->sgl, 0, skb->len);
2232 	if (unlikely(nents < 0)) {
2233 		hns3_tx_spare_rollback(ring, cb_len);
2234 		hns3_ring_stats_update(ring, skb2sgl_err);
2235 		return -ENOMEM;
2236 	}
2237 
2238 	sgt->orig_nents = nents;
2239 	sgt->nents = dma_map_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
2240 				DMA_TO_DEVICE);
2241 	if (unlikely(!sgt->nents)) {
2242 		hns3_tx_spare_rollback(ring, cb_len);
2243 		hns3_ring_stats_update(ring, map_sg_err);
2244 		return -ENOMEM;
2245 	}
2246 
2247 	desc_cb->priv = skb;
2248 	desc_cb->length = cb_len;
2249 	desc_cb->dma = dma;
2250 	desc_cb->type = DESC_TYPE_SGL_SKB;
2251 
2252 	for (i = 0; i < sgt->nents; i++)
2253 		bd_num += hns3_fill_desc(ring, sg_dma_address(sgt->sgl + i),
2254 					 sg_dma_len(sgt->sgl + i));
2255 	hns3_ring_stats_update(ring, tx_sgl);
2256 
2257 	return bd_num;
2258 }
2259 
hns3_handle_desc_filling(struct hns3_enet_ring * ring,struct sk_buff * skb)2260 static int hns3_handle_desc_filling(struct hns3_enet_ring *ring,
2261 				    struct sk_buff *skb)
2262 {
2263 	u32 space;
2264 
2265 	if (!ring->tx_spare)
2266 		goto out;
2267 
2268 	space = hns3_tx_spare_space(ring);
2269 
2270 	if (hns3_can_use_tx_sgl(ring, skb, space))
2271 		return hns3_handle_tx_sgl(ring, skb);
2272 
2273 	if (hns3_can_use_tx_bounce(ring, skb, space))
2274 		return hns3_handle_tx_bounce(ring, skb);
2275 
2276 out:
2277 	return hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
2278 }
2279 
hns3_handle_skb_desc(struct hns3_enet_ring * ring,struct sk_buff * skb,struct hns3_desc_cb * desc_cb,int next_to_use_head)2280 static int hns3_handle_skb_desc(struct hns3_enet_ring *ring,
2281 				struct sk_buff *skb,
2282 				struct hns3_desc_cb *desc_cb,
2283 				int next_to_use_head)
2284 {
2285 	int ret;
2286 
2287 	ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use],
2288 				 desc_cb);
2289 	if (unlikely(ret < 0))
2290 		goto fill_err;
2291 
2292 	/* 'ret < 0' means filling error, 'ret == 0' means skb->len is
2293 	 * zero, which is unlikely, and 'ret > 0' means how many tx desc
2294 	 * need to be notified to the hw.
2295 	 */
2296 	ret = hns3_handle_desc_filling(ring, skb);
2297 	if (likely(ret > 0))
2298 		return ret;
2299 
2300 fill_err:
2301 	hns3_clear_desc(ring, next_to_use_head);
2302 	return ret;
2303 }
2304 
hns3_nic_net_xmit(struct sk_buff * skb,struct net_device * netdev)2305 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
2306 {
2307 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2308 	struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
2309 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2310 	struct netdev_queue *dev_queue;
2311 	int pre_ntu, ret;
2312 	bool doorbell;
2313 
2314 	/* Hardware can only handle short frames above 32 bytes */
2315 	if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
2316 		hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2317 
2318 		hns3_ring_stats_update(ring, sw_err_cnt);
2319 
2320 		return NETDEV_TX_OK;
2321 	}
2322 
2323 	/* Prefetch the data used later */
2324 	prefetch(skb->data);
2325 
2326 	ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
2327 	if (unlikely(ret <= 0)) {
2328 		if (ret == -EBUSY) {
2329 			hns3_tx_doorbell(ring, 0, true);
2330 			return NETDEV_TX_BUSY;
2331 		}
2332 
2333 		hns3_rl_err(netdev, "xmit error: %d!\n", ret);
2334 		goto out_err_tx_ok;
2335 	}
2336 
2337 	ret = hns3_handle_skb_desc(ring, skb, desc_cb, ring->next_to_use);
2338 	if (unlikely(ret <= 0))
2339 		goto out_err_tx_ok;
2340 
2341 	pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
2342 					(ring->desc_num - 1);
2343 
2344 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
2345 		hns3_tsyn(netdev, skb, &ring->desc[pre_ntu]);
2346 
2347 	ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
2348 				cpu_to_le16(BIT(HNS3_TXD_FE_B));
2349 	trace_hns3_tx_desc(ring, pre_ntu);
2350 
2351 	skb_tx_timestamp(skb);
2352 
2353 	/* Complete translate all packets */
2354 	dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
2355 	doorbell = __netdev_tx_sent_queue(dev_queue, desc_cb->send_bytes,
2356 					  netdev_xmit_more());
2357 	hns3_tx_doorbell(ring, ret, doorbell);
2358 
2359 	return NETDEV_TX_OK;
2360 
2361 out_err_tx_ok:
2362 	dev_kfree_skb_any(skb);
2363 	hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2364 	return NETDEV_TX_OK;
2365 }
2366 
hns3_nic_net_set_mac_address(struct net_device * netdev,void * p)2367 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
2368 {
2369 	char format_mac_addr_perm[HNAE3_FORMAT_MAC_ADDR_LEN];
2370 	char format_mac_addr_sa[HNAE3_FORMAT_MAC_ADDR_LEN];
2371 	struct hnae3_handle *h = hns3_get_handle(netdev);
2372 	struct sockaddr *mac_addr = p;
2373 	int ret;
2374 
2375 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
2376 		return -EADDRNOTAVAIL;
2377 
2378 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
2379 		hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data);
2380 		netdev_info(netdev, "already using mac address %s\n",
2381 			    format_mac_addr_sa);
2382 		return 0;
2383 	}
2384 
2385 	/* For VF device, if there is a perm_addr, then the user will not
2386 	 * be allowed to change the address.
2387 	 */
2388 	if (!hns3_is_phys_func(h->pdev) &&
2389 	    !is_zero_ether_addr(netdev->perm_addr)) {
2390 		hnae3_format_mac_addr(format_mac_addr_perm, netdev->perm_addr);
2391 		hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data);
2392 		netdev_err(netdev, "has permanent MAC %s, user MAC %s not allow\n",
2393 			   format_mac_addr_perm, format_mac_addr_sa);
2394 		return -EPERM;
2395 	}
2396 
2397 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
2398 	if (ret) {
2399 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
2400 		return ret;
2401 	}
2402 
2403 	eth_hw_addr_set(netdev, mac_addr->sa_data);
2404 
2405 	return 0;
2406 }
2407 
hns3_nic_do_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)2408 static int hns3_nic_do_ioctl(struct net_device *netdev,
2409 			     struct ifreq *ifr, int cmd)
2410 {
2411 	struct hnae3_handle *h = hns3_get_handle(netdev);
2412 
2413 	if (!netif_running(netdev))
2414 		return -EINVAL;
2415 
2416 	if (!h->ae_algo->ops->do_ioctl)
2417 		return -EOPNOTSUPP;
2418 
2419 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
2420 }
2421 
hns3_nic_set_features(struct net_device * netdev,netdev_features_t features)2422 static int hns3_nic_set_features(struct net_device *netdev,
2423 				 netdev_features_t features)
2424 {
2425 	netdev_features_t changed = netdev->features ^ features;
2426 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2427 	struct hnae3_handle *h = priv->ae_handle;
2428 	bool enable;
2429 	int ret;
2430 
2431 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
2432 		enable = !!(features & NETIF_F_GRO_HW);
2433 		ret = h->ae_algo->ops->set_gro_en(h, enable);
2434 		if (ret)
2435 			return ret;
2436 	}
2437 
2438 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
2439 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
2440 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
2441 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
2442 		if (ret)
2443 			return ret;
2444 	}
2445 
2446 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
2447 		enable = !!(features & NETIF_F_NTUPLE);
2448 		h->ae_algo->ops->enable_fd(h, enable);
2449 	}
2450 
2451 	if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) &&
2452 	    h->ae_algo->ops->cls_flower_active(h)) {
2453 		netdev_err(netdev,
2454 			   "there are offloaded TC filters active, cannot disable HW TC offload\n");
2455 		return -EINVAL;
2456 	}
2457 
2458 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
2459 	    h->ae_algo->ops->enable_vlan_filter) {
2460 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
2461 		ret = h->ae_algo->ops->enable_vlan_filter(h, enable);
2462 		if (ret)
2463 			return ret;
2464 	}
2465 
2466 	return 0;
2467 }
2468 
hns3_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2469 static netdev_features_t hns3_features_check(struct sk_buff *skb,
2470 					     struct net_device *dev,
2471 					     netdev_features_t features)
2472 {
2473 #define HNS3_MAX_HDR_LEN	480U
2474 #define HNS3_MAX_L4_HDR_LEN	60U
2475 
2476 	size_t len;
2477 
2478 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2479 		return features;
2480 
2481 	if (skb->encapsulation)
2482 		len = skb_inner_transport_offset(skb);
2483 	else
2484 		len = skb_transport_offset(skb);
2485 
2486 	/* Assume L4 is 60 byte as TCP is the only protocol with a
2487 	 * a flexible value, and it's max len is 60 bytes.
2488 	 */
2489 	len += HNS3_MAX_L4_HDR_LEN;
2490 
2491 	/* Hardware only supports checksum on the skb with a max header
2492 	 * len of 480 bytes.
2493 	 */
2494 	if (len > HNS3_MAX_HDR_LEN)
2495 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2496 
2497 	return features;
2498 }
2499 
hns3_fetch_stats(struct rtnl_link_stats64 * stats,struct hns3_enet_ring * ring,bool is_tx)2500 static void hns3_fetch_stats(struct rtnl_link_stats64 *stats,
2501 			     struct hns3_enet_ring *ring, bool is_tx)
2502 {
2503 	unsigned int start;
2504 
2505 	do {
2506 		start = u64_stats_fetch_begin(&ring->syncp);
2507 		if (is_tx) {
2508 			stats->tx_bytes += ring->stats.tx_bytes;
2509 			stats->tx_packets += ring->stats.tx_pkts;
2510 			stats->tx_dropped += ring->stats.sw_err_cnt;
2511 			stats->tx_dropped += ring->stats.tx_vlan_err;
2512 			stats->tx_dropped += ring->stats.tx_l4_proto_err;
2513 			stats->tx_dropped += ring->stats.tx_l2l3l4_err;
2514 			stats->tx_dropped += ring->stats.tx_tso_err;
2515 			stats->tx_dropped += ring->stats.over_max_recursion;
2516 			stats->tx_dropped += ring->stats.hw_limitation;
2517 			stats->tx_dropped += ring->stats.copy_bits_err;
2518 			stats->tx_dropped += ring->stats.skb2sgl_err;
2519 			stats->tx_dropped += ring->stats.map_sg_err;
2520 			stats->tx_errors += ring->stats.sw_err_cnt;
2521 			stats->tx_errors += ring->stats.tx_vlan_err;
2522 			stats->tx_errors += ring->stats.tx_l4_proto_err;
2523 			stats->tx_errors += ring->stats.tx_l2l3l4_err;
2524 			stats->tx_errors += ring->stats.tx_tso_err;
2525 			stats->tx_errors += ring->stats.over_max_recursion;
2526 			stats->tx_errors += ring->stats.hw_limitation;
2527 			stats->tx_errors += ring->stats.copy_bits_err;
2528 			stats->tx_errors += ring->stats.skb2sgl_err;
2529 			stats->tx_errors += ring->stats.map_sg_err;
2530 		} else {
2531 			stats->rx_bytes += ring->stats.rx_bytes;
2532 			stats->rx_packets += ring->stats.rx_pkts;
2533 			stats->rx_dropped += ring->stats.l2_err;
2534 			stats->rx_errors += ring->stats.l2_err;
2535 			stats->rx_errors += ring->stats.l3l4_csum_err;
2536 			stats->rx_crc_errors += ring->stats.l2_err;
2537 			stats->multicast += ring->stats.rx_multicast;
2538 			stats->rx_length_errors += ring->stats.err_pkt_len;
2539 		}
2540 	} while (u64_stats_fetch_retry(&ring->syncp, start));
2541 }
2542 
hns3_nic_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)2543 static void hns3_nic_get_stats64(struct net_device *netdev,
2544 				 struct rtnl_link_stats64 *stats)
2545 {
2546 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2547 	int queue_num = priv->ae_handle->kinfo.num_tqps;
2548 	struct hnae3_handle *handle = priv->ae_handle;
2549 	struct rtnl_link_stats64 ring_total_stats;
2550 	struct hns3_enet_ring *ring;
2551 	int idx;
2552 
2553 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
2554 		return;
2555 
2556 	handle->ae_algo->ops->update_stats(handle);
2557 
2558 	memset(&ring_total_stats, 0, sizeof(ring_total_stats));
2559 	for (idx = 0; idx < queue_num; idx++) {
2560 		/* fetch the tx stats */
2561 		ring = &priv->ring[idx];
2562 		hns3_fetch_stats(&ring_total_stats, ring, true);
2563 
2564 		/* fetch the rx stats */
2565 		ring = &priv->ring[idx + queue_num];
2566 		hns3_fetch_stats(&ring_total_stats, ring, false);
2567 	}
2568 
2569 	stats->tx_bytes = ring_total_stats.tx_bytes;
2570 	stats->tx_packets = ring_total_stats.tx_packets;
2571 	stats->rx_bytes = ring_total_stats.rx_bytes;
2572 	stats->rx_packets = ring_total_stats.rx_packets;
2573 
2574 	stats->rx_errors = ring_total_stats.rx_errors;
2575 	stats->multicast = ring_total_stats.multicast;
2576 	stats->rx_length_errors = ring_total_stats.rx_length_errors;
2577 	stats->rx_crc_errors = ring_total_stats.rx_crc_errors;
2578 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
2579 
2580 	stats->tx_errors = ring_total_stats.tx_errors;
2581 	stats->rx_dropped = ring_total_stats.rx_dropped;
2582 	stats->tx_dropped = ring_total_stats.tx_dropped;
2583 	stats->collisions = netdev->stats.collisions;
2584 	stats->rx_over_errors = netdev->stats.rx_over_errors;
2585 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
2586 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
2587 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
2588 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
2589 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
2590 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
2591 	stats->tx_window_errors = netdev->stats.tx_window_errors;
2592 	stats->rx_compressed = netdev->stats.rx_compressed;
2593 	stats->tx_compressed = netdev->stats.tx_compressed;
2594 }
2595 
hns3_setup_tc(struct net_device * netdev,void * type_data)2596 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
2597 {
2598 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2599 	struct hnae3_knic_private_info *kinfo;
2600 	u8 tc = mqprio_qopt->qopt.num_tc;
2601 	u16 mode = mqprio_qopt->mode;
2602 	u8 hw = mqprio_qopt->qopt.hw;
2603 	struct hnae3_handle *h;
2604 
2605 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
2606 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
2607 		return -EOPNOTSUPP;
2608 
2609 	if (tc > HNAE3_MAX_TC)
2610 		return -EINVAL;
2611 
2612 	if (!netdev)
2613 		return -EINVAL;
2614 
2615 	h = hns3_get_handle(netdev);
2616 	kinfo = &h->kinfo;
2617 
2618 	netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
2619 
2620 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
2621 		kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP;
2622 }
2623 
hns3_setup_tc_cls_flower(struct hns3_nic_priv * priv,struct flow_cls_offload * flow)2624 static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv,
2625 				    struct flow_cls_offload *flow)
2626 {
2627 	int tc = tc_classid_to_hwtc(priv->netdev, flow->classid);
2628 	struct hnae3_handle *h = hns3_get_handle(priv->netdev);
2629 
2630 	switch (flow->command) {
2631 	case FLOW_CLS_REPLACE:
2632 		if (h->ae_algo->ops->add_cls_flower)
2633 			return h->ae_algo->ops->add_cls_flower(h, flow, tc);
2634 		break;
2635 	case FLOW_CLS_DESTROY:
2636 		if (h->ae_algo->ops->del_cls_flower)
2637 			return h->ae_algo->ops->del_cls_flower(h, flow);
2638 		break;
2639 	default:
2640 		break;
2641 	}
2642 
2643 	return -EOPNOTSUPP;
2644 }
2645 
hns3_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2646 static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2647 				  void *cb_priv)
2648 {
2649 	struct hns3_nic_priv *priv = cb_priv;
2650 
2651 	if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data))
2652 		return -EOPNOTSUPP;
2653 
2654 	switch (type) {
2655 	case TC_SETUP_CLSFLOWER:
2656 		return hns3_setup_tc_cls_flower(priv, type_data);
2657 	default:
2658 		return -EOPNOTSUPP;
2659 	}
2660 }
2661 
2662 static LIST_HEAD(hns3_block_cb_list);
2663 
hns3_nic_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)2664 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
2665 			     void *type_data)
2666 {
2667 	struct hns3_nic_priv *priv = netdev_priv(dev);
2668 	int ret;
2669 
2670 	switch (type) {
2671 	case TC_SETUP_QDISC_MQPRIO:
2672 		ret = hns3_setup_tc(dev, type_data);
2673 		break;
2674 	case TC_SETUP_BLOCK:
2675 		ret = flow_block_cb_setup_simple(type_data,
2676 						 &hns3_block_cb_list,
2677 						 hns3_setup_tc_block_cb,
2678 						 priv, priv, true);
2679 		break;
2680 	default:
2681 		return -EOPNOTSUPP;
2682 	}
2683 
2684 	return ret;
2685 }
2686 
hns3_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)2687 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
2688 				__be16 proto, u16 vid)
2689 {
2690 	struct hnae3_handle *h = hns3_get_handle(netdev);
2691 	int ret = -EIO;
2692 
2693 	if (h->ae_algo->ops->set_vlan_filter)
2694 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
2695 
2696 	return ret;
2697 }
2698 
hns3_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)2699 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
2700 				 __be16 proto, u16 vid)
2701 {
2702 	struct hnae3_handle *h = hns3_get_handle(netdev);
2703 	int ret = -EIO;
2704 
2705 	if (h->ae_algo->ops->set_vlan_filter)
2706 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
2707 
2708 	return ret;
2709 }
2710 
hns3_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)2711 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
2712 				u8 qos, __be16 vlan_proto)
2713 {
2714 	struct hnae3_handle *h = hns3_get_handle(netdev);
2715 	int ret = -EIO;
2716 
2717 	netif_dbg(h, drv, netdev,
2718 		  "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
2719 		  vf, vlan, qos, ntohs(vlan_proto));
2720 
2721 	if (h->ae_algo->ops->set_vf_vlan_filter)
2722 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
2723 							  qos, vlan_proto);
2724 
2725 	return ret;
2726 }
2727 
hns3_set_vf_spoofchk(struct net_device * netdev,int vf,bool enable)2728 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
2729 {
2730 	struct hnae3_handle *handle = hns3_get_handle(netdev);
2731 
2732 	if (hns3_nic_resetting(netdev))
2733 		return -EBUSY;
2734 
2735 	if (!handle->ae_algo->ops->set_vf_spoofchk)
2736 		return -EOPNOTSUPP;
2737 
2738 	return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
2739 }
2740 
hns3_set_vf_trust(struct net_device * netdev,int vf,bool enable)2741 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
2742 {
2743 	struct hnae3_handle *handle = hns3_get_handle(netdev);
2744 
2745 	if (!handle->ae_algo->ops->set_vf_trust)
2746 		return -EOPNOTSUPP;
2747 
2748 	return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
2749 }
2750 
hns3_nic_change_mtu(struct net_device * netdev,int new_mtu)2751 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
2752 {
2753 	struct hnae3_handle *h = hns3_get_handle(netdev);
2754 	int ret;
2755 
2756 	if (hns3_nic_resetting(netdev))
2757 		return -EBUSY;
2758 
2759 	if (!h->ae_algo->ops->set_mtu)
2760 		return -EOPNOTSUPP;
2761 
2762 	netif_dbg(h, drv, netdev,
2763 		  "change mtu from %u to %d\n", netdev->mtu, new_mtu);
2764 
2765 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
2766 	if (ret)
2767 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
2768 			   ret);
2769 	else
2770 		WRITE_ONCE(netdev->mtu, new_mtu);
2771 
2772 	return ret;
2773 }
2774 
hns3_get_timeout_queue(struct net_device * ndev)2775 static int hns3_get_timeout_queue(struct net_device *ndev)
2776 {
2777 	unsigned int i;
2778 
2779 	/* Find the stopped queue the same way the stack does */
2780 	for (i = 0; i < ndev->num_tx_queues; i++) {
2781 		struct netdev_queue *q;
2782 		unsigned long trans_start;
2783 
2784 		q = netdev_get_tx_queue(ndev, i);
2785 		trans_start = READ_ONCE(q->trans_start);
2786 		if (netif_xmit_stopped(q) &&
2787 		    time_after(jiffies,
2788 			       (trans_start + ndev->watchdog_timeo))) {
2789 #ifdef CONFIG_BQL
2790 			struct dql *dql = &q->dql;
2791 
2792 			netdev_info(ndev, "DQL info last_cnt: %u, queued: %u, adj_limit: %u, completed: %u\n",
2793 				    dql->last_obj_cnt, dql->num_queued,
2794 				    dql->adj_limit, dql->num_completed);
2795 #endif
2796 			netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
2797 				    q->state,
2798 				    jiffies_to_msecs(jiffies - trans_start));
2799 			break;
2800 		}
2801 	}
2802 
2803 	return i;
2804 }
2805 
hns3_dump_queue_stats(struct net_device * ndev,struct hns3_enet_ring * tx_ring,int timeout_queue)2806 static void hns3_dump_queue_stats(struct net_device *ndev,
2807 				  struct hns3_enet_ring *tx_ring,
2808 				  int timeout_queue)
2809 {
2810 	struct napi_struct *napi = &tx_ring->tqp_vector->napi;
2811 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2812 
2813 	netdev_info(ndev,
2814 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
2815 		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
2816 		    tx_ring->next_to_clean, napi->state);
2817 
2818 	netdev_info(ndev,
2819 		    "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
2820 		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
2821 		    tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
2822 
2823 	netdev_info(ndev,
2824 		    "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
2825 		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
2826 		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
2827 
2828 	netdev_info(ndev, "tx_push: %llu, tx_mem_doorbell: %llu\n",
2829 		    tx_ring->stats.tx_push, tx_ring->stats.tx_mem_doorbell);
2830 }
2831 
hns3_dump_queue_reg(struct net_device * ndev,struct hns3_enet_ring * tx_ring)2832 static void hns3_dump_queue_reg(struct net_device *ndev,
2833 				struct hns3_enet_ring *tx_ring)
2834 {
2835 	netdev_info(ndev,
2836 		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
2837 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_NUM_REG),
2838 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_HEAD_REG),
2839 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TAIL_REG),
2840 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_ERR_REG),
2841 		    readl(tx_ring->tqp_vector->mask_addr));
2842 	netdev_info(ndev,
2843 		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
2844 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_EN_REG),
2845 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TC_REG),
2846 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_FBDNUM_REG),
2847 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_OFFSET_REG),
2848 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_EBDNUM_REG),
2849 		    hns3_tqp_read_reg(tx_ring,
2850 				      HNS3_RING_TX_RING_EBD_OFFSET_REG));
2851 }
2852 
hns3_get_tx_timeo_queue_info(struct net_device * ndev)2853 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
2854 {
2855 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2856 	struct hnae3_handle *h = hns3_get_handle(ndev);
2857 	struct hns3_enet_ring *tx_ring;
2858 	u32 timeout_queue;
2859 
2860 	timeout_queue = hns3_get_timeout_queue(ndev);
2861 	if (timeout_queue >= ndev->num_tx_queues) {
2862 		netdev_info(ndev,
2863 			    "no netdev TX timeout queue found, timeout count: %llu\n",
2864 			    priv->tx_timeout_count);
2865 		return false;
2866 	}
2867 
2868 	priv->tx_timeout_count++;
2869 
2870 	tx_ring = &priv->ring[timeout_queue];
2871 	hns3_dump_queue_stats(ndev, tx_ring, timeout_queue);
2872 
2873 	/* When mac received many pause frames continuous, it's unable to send
2874 	 * packets, which may cause tx timeout
2875 	 */
2876 	if (h->ae_algo->ops->get_mac_stats) {
2877 		struct hns3_mac_stats mac_stats;
2878 
2879 		h->ae_algo->ops->get_mac_stats(h, &mac_stats);
2880 		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
2881 			    mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
2882 	}
2883 
2884 	hns3_dump_queue_reg(ndev, tx_ring);
2885 
2886 	return true;
2887 }
2888 
hns3_nic_net_timeout(struct net_device * ndev,unsigned int txqueue)2889 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
2890 {
2891 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2892 	struct hnae3_handle *h = priv->ae_handle;
2893 
2894 	if (!hns3_get_tx_timeo_queue_info(ndev))
2895 		return;
2896 
2897 	/* request the reset, and let the hclge to determine
2898 	 * which reset level should be done
2899 	 */
2900 	if (h->ae_algo->ops->reset_event)
2901 		h->ae_algo->ops->reset_event(h->pdev, h);
2902 }
2903 
2904 #ifdef CONFIG_RFS_ACCEL
hns3_rx_flow_steer(struct net_device * dev,const struct sk_buff * skb,u16 rxq_index,u32 flow_id)2905 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
2906 			      u16 rxq_index, u32 flow_id)
2907 {
2908 	struct hnae3_handle *h = hns3_get_handle(dev);
2909 	struct flow_keys fkeys;
2910 
2911 	if (!h->ae_algo->ops->add_arfs_entry)
2912 		return -EOPNOTSUPP;
2913 
2914 	if (skb->encapsulation)
2915 		return -EPROTONOSUPPORT;
2916 
2917 	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
2918 		return -EPROTONOSUPPORT;
2919 
2920 	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
2921 	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
2922 	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
2923 	     fkeys.basic.ip_proto != IPPROTO_UDP))
2924 		return -EPROTONOSUPPORT;
2925 
2926 	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
2927 }
2928 #endif
2929 
hns3_nic_get_vf_config(struct net_device * ndev,int vf,struct ifla_vf_info * ivf)2930 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
2931 				  struct ifla_vf_info *ivf)
2932 {
2933 	struct hnae3_handle *h = hns3_get_handle(ndev);
2934 
2935 	if (!h->ae_algo->ops->get_vf_config)
2936 		return -EOPNOTSUPP;
2937 
2938 	return h->ae_algo->ops->get_vf_config(h, vf, ivf);
2939 }
2940 
hns3_nic_set_vf_link_state(struct net_device * ndev,int vf,int link_state)2941 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
2942 				      int link_state)
2943 {
2944 	struct hnae3_handle *h = hns3_get_handle(ndev);
2945 
2946 	if (!h->ae_algo->ops->set_vf_link_state)
2947 		return -EOPNOTSUPP;
2948 
2949 	return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
2950 }
2951 
hns3_nic_set_vf_rate(struct net_device * ndev,int vf,int min_tx_rate,int max_tx_rate)2952 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
2953 				int min_tx_rate, int max_tx_rate)
2954 {
2955 	struct hnae3_handle *h = hns3_get_handle(ndev);
2956 
2957 	if (!h->ae_algo->ops->set_vf_rate)
2958 		return -EOPNOTSUPP;
2959 
2960 	return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
2961 					    false);
2962 }
2963 
hns3_nic_set_vf_mac(struct net_device * netdev,int vf_id,u8 * mac)2964 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
2965 {
2966 	struct hnae3_handle *h = hns3_get_handle(netdev);
2967 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
2968 
2969 	if (!h->ae_algo->ops->set_vf_mac)
2970 		return -EOPNOTSUPP;
2971 
2972 	if (is_multicast_ether_addr(mac)) {
2973 		hnae3_format_mac_addr(format_mac_addr, mac);
2974 		netdev_err(netdev,
2975 			   "Invalid MAC:%s specified. Could not set MAC\n",
2976 			   format_mac_addr);
2977 		return -EINVAL;
2978 	}
2979 
2980 	return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2981 }
2982 
2983 #define HNS3_INVALID_DSCP		0xff
2984 #define HNS3_DSCP_SHIFT			2
2985 
hns3_get_skb_dscp(struct sk_buff * skb)2986 static u8 hns3_get_skb_dscp(struct sk_buff *skb)
2987 {
2988 	__be16 protocol = skb->protocol;
2989 	u8 dscp = HNS3_INVALID_DSCP;
2990 
2991 	if (protocol == htons(ETH_P_8021Q))
2992 		protocol = vlan_get_protocol(skb);
2993 
2994 	if (protocol == htons(ETH_P_IP))
2995 		dscp = ipv4_get_dsfield(ip_hdr(skb)) >> HNS3_DSCP_SHIFT;
2996 	else if (protocol == htons(ETH_P_IPV6))
2997 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> HNS3_DSCP_SHIFT;
2998 
2999 	return dscp;
3000 }
3001 
hns3_nic_select_queue(struct net_device * netdev,struct sk_buff * skb,struct net_device * sb_dev)3002 static u16 hns3_nic_select_queue(struct net_device *netdev,
3003 				 struct sk_buff *skb,
3004 				 struct net_device *sb_dev)
3005 {
3006 	struct hnae3_handle *h = hns3_get_handle(netdev);
3007 	u8 dscp;
3008 
3009 	if (h->kinfo.tc_map_mode != HNAE3_TC_MAP_MODE_DSCP ||
3010 	    !h->ae_algo->ops->get_dscp_prio)
3011 		goto out;
3012 
3013 	dscp = hns3_get_skb_dscp(skb);
3014 	if (unlikely(dscp >= HNAE3_MAX_DSCP))
3015 		goto out;
3016 
3017 	skb->priority = h->kinfo.dscp_prio[dscp];
3018 	if (skb->priority == HNAE3_PRIO_ID_INVALID)
3019 		skb->priority = 0;
3020 
3021 out:
3022 	return netdev_pick_tx(netdev, skb, sb_dev);
3023 }
3024 
3025 static const struct net_device_ops hns3_nic_netdev_ops = {
3026 	.ndo_open		= hns3_nic_net_open,
3027 	.ndo_stop		= hns3_nic_net_stop,
3028 	.ndo_start_xmit		= hns3_nic_net_xmit,
3029 	.ndo_tx_timeout		= hns3_nic_net_timeout,
3030 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
3031 	.ndo_eth_ioctl		= hns3_nic_do_ioctl,
3032 	.ndo_change_mtu		= hns3_nic_change_mtu,
3033 	.ndo_set_features	= hns3_nic_set_features,
3034 	.ndo_features_check	= hns3_features_check,
3035 	.ndo_get_stats64	= hns3_nic_get_stats64,
3036 	.ndo_setup_tc		= hns3_nic_setup_tc,
3037 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
3038 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
3039 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
3040 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
3041 	.ndo_set_vf_spoofchk	= hns3_set_vf_spoofchk,
3042 	.ndo_set_vf_trust	= hns3_set_vf_trust,
3043 #ifdef CONFIG_RFS_ACCEL
3044 	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
3045 #endif
3046 	.ndo_get_vf_config	= hns3_nic_get_vf_config,
3047 	.ndo_set_vf_link_state	= hns3_nic_set_vf_link_state,
3048 	.ndo_set_vf_rate	= hns3_nic_set_vf_rate,
3049 	.ndo_set_vf_mac		= hns3_nic_set_vf_mac,
3050 	.ndo_select_queue	= hns3_nic_select_queue,
3051 };
3052 
hns3_is_phys_func(struct pci_dev * pdev)3053 bool hns3_is_phys_func(struct pci_dev *pdev)
3054 {
3055 	u32 dev_id = pdev->device;
3056 
3057 	switch (dev_id) {
3058 	case HNAE3_DEV_ID_GE:
3059 	case HNAE3_DEV_ID_25GE:
3060 	case HNAE3_DEV_ID_25GE_RDMA:
3061 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
3062 	case HNAE3_DEV_ID_50GE_RDMA:
3063 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
3064 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
3065 	case HNAE3_DEV_ID_200G_RDMA:
3066 		return true;
3067 	case HNAE3_DEV_ID_VF:
3068 	case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
3069 		return false;
3070 	default:
3071 		dev_warn(&pdev->dev, "un-recognized pci device-id %u",
3072 			 dev_id);
3073 	}
3074 
3075 	return false;
3076 }
3077 
hns3_disable_sriov(struct pci_dev * pdev)3078 static void hns3_disable_sriov(struct pci_dev *pdev)
3079 {
3080 	/* If our VFs are assigned we cannot shut down SR-IOV
3081 	 * without causing issues, so just leave the hardware
3082 	 * available but disabled
3083 	 */
3084 	if (pci_vfs_assigned(pdev)) {
3085 		dev_warn(&pdev->dev,
3086 			 "disabling driver while VFs are assigned\n");
3087 		return;
3088 	}
3089 
3090 	pci_disable_sriov(pdev);
3091 }
3092 
3093 /* hns3_probe - Device initialization routine
3094  * @pdev: PCI device information struct
3095  * @ent: entry in hns3_pci_tbl
3096  *
3097  * hns3_probe initializes a PF identified by a pci_dev structure.
3098  * The OS initialization, configuring of the PF private structure,
3099  * and a hardware reset occur.
3100  *
3101  * Returns 0 on success, negative on failure
3102  */
hns3_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3103 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3104 {
3105 	struct hnae3_ae_dev *ae_dev;
3106 	int ret;
3107 
3108 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
3109 	if (!ae_dev)
3110 		return -ENOMEM;
3111 
3112 	ae_dev->pdev = pdev;
3113 	ae_dev->flag = ent->driver_data;
3114 	pci_set_drvdata(pdev, ae_dev);
3115 
3116 	ret = hnae3_register_ae_dev(ae_dev);
3117 	if (ret)
3118 		pci_set_drvdata(pdev, NULL);
3119 
3120 	return ret;
3121 }
3122 
3123 /**
3124  * hns3_clean_vf_config
3125  * @pdev: pointer to a pci_dev structure
3126  * @num_vfs: number of VFs allocated
3127  *
3128  * Clean residual vf config after disable sriov
3129  **/
hns3_clean_vf_config(struct pci_dev * pdev,int num_vfs)3130 static void hns3_clean_vf_config(struct pci_dev *pdev, int num_vfs)
3131 {
3132 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3133 
3134 	if (ae_dev->ops->clean_vf_config)
3135 		ae_dev->ops->clean_vf_config(ae_dev, num_vfs);
3136 }
3137 
3138 /* hns3_remove - Device removal routine
3139  * @pdev: PCI device information struct
3140  */
hns3_remove(struct pci_dev * pdev)3141 static void hns3_remove(struct pci_dev *pdev)
3142 {
3143 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3144 
3145 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
3146 		hns3_disable_sriov(pdev);
3147 
3148 	hnae3_unregister_ae_dev(ae_dev);
3149 	pci_set_drvdata(pdev, NULL);
3150 }
3151 
3152 /**
3153  * hns3_pci_sriov_configure
3154  * @pdev: pointer to a pci_dev structure
3155  * @num_vfs: number of VFs to allocate
3156  *
3157  * Enable or change the number of VFs. Called when the user updates the number
3158  * of VFs in sysfs.
3159  **/
hns3_pci_sriov_configure(struct pci_dev * pdev,int num_vfs)3160 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
3161 {
3162 	int ret;
3163 
3164 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
3165 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
3166 		return -EINVAL;
3167 	}
3168 
3169 	if (num_vfs) {
3170 		ret = pci_enable_sriov(pdev, num_vfs);
3171 		if (ret)
3172 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
3173 		else
3174 			return num_vfs;
3175 	} else if (!pci_vfs_assigned(pdev)) {
3176 		int num_vfs_pre = pci_num_vf(pdev);
3177 
3178 		pci_disable_sriov(pdev);
3179 		hns3_clean_vf_config(pdev, num_vfs_pre);
3180 	} else {
3181 		dev_warn(&pdev->dev,
3182 			 "Unable to free VFs because some are assigned to VMs.\n");
3183 	}
3184 
3185 	return 0;
3186 }
3187 
hns3_shutdown(struct pci_dev * pdev)3188 static void hns3_shutdown(struct pci_dev *pdev)
3189 {
3190 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3191 
3192 	hnae3_unregister_ae_dev(ae_dev);
3193 	pci_set_drvdata(pdev, NULL);
3194 
3195 	if (system_state == SYSTEM_POWER_OFF)
3196 		pci_set_power_state(pdev, PCI_D3hot);
3197 }
3198 
hns3_suspend(struct device * dev)3199 static int __maybe_unused hns3_suspend(struct device *dev)
3200 {
3201 	struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3202 
3203 	if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3204 		dev_info(dev, "Begin to suspend.\n");
3205 		if (ae_dev->ops && ae_dev->ops->reset_prepare)
3206 			ae_dev->ops->reset_prepare(ae_dev, HNAE3_FUNC_RESET);
3207 	}
3208 
3209 	return 0;
3210 }
3211 
hns3_resume(struct device * dev)3212 static int __maybe_unused hns3_resume(struct device *dev)
3213 {
3214 	struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3215 
3216 	if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3217 		dev_info(dev, "Begin to resume.\n");
3218 		if (ae_dev->ops && ae_dev->ops->reset_done)
3219 			ae_dev->ops->reset_done(ae_dev);
3220 	}
3221 
3222 	return 0;
3223 }
3224 
hns3_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3225 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
3226 					    pci_channel_state_t state)
3227 {
3228 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3229 	pci_ers_result_t ret;
3230 
3231 	dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state);
3232 
3233 	if (state == pci_channel_io_perm_failure)
3234 		return PCI_ERS_RESULT_DISCONNECT;
3235 
3236 	if (!ae_dev || !ae_dev->ops) {
3237 		dev_err(&pdev->dev,
3238 			"Can't recover - error happened before device initialized\n");
3239 		return PCI_ERS_RESULT_NONE;
3240 	}
3241 
3242 	if (ae_dev->ops->handle_hw_ras_error)
3243 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
3244 	else
3245 		return PCI_ERS_RESULT_NONE;
3246 
3247 	return ret;
3248 }
3249 
hns3_slot_reset(struct pci_dev * pdev)3250 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
3251 {
3252 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3253 	const struct hnae3_ae_ops *ops;
3254 	enum hnae3_reset_type reset_type;
3255 	struct device *dev = &pdev->dev;
3256 
3257 	if (!ae_dev || !ae_dev->ops)
3258 		return PCI_ERS_RESULT_NONE;
3259 
3260 	ops = ae_dev->ops;
3261 	/* request the reset */
3262 	if (ops->reset_event && ops->get_reset_level &&
3263 	    ops->set_default_reset_request) {
3264 		if (ae_dev->hw_err_reset_req) {
3265 			reset_type = ops->get_reset_level(ae_dev,
3266 						&ae_dev->hw_err_reset_req);
3267 			ops->set_default_reset_request(ae_dev, reset_type);
3268 			dev_info(dev, "requesting reset due to PCI error\n");
3269 			ops->reset_event(pdev, NULL);
3270 		}
3271 
3272 		return PCI_ERS_RESULT_RECOVERED;
3273 	}
3274 
3275 	return PCI_ERS_RESULT_DISCONNECT;
3276 }
3277 
hns3_reset_prepare(struct pci_dev * pdev)3278 static void hns3_reset_prepare(struct pci_dev *pdev)
3279 {
3280 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3281 
3282 	dev_info(&pdev->dev, "FLR prepare\n");
3283 	if (ae_dev && ae_dev->ops && ae_dev->ops->reset_prepare)
3284 		ae_dev->ops->reset_prepare(ae_dev, HNAE3_FLR_RESET);
3285 }
3286 
hns3_reset_done(struct pci_dev * pdev)3287 static void hns3_reset_done(struct pci_dev *pdev)
3288 {
3289 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3290 
3291 	dev_info(&pdev->dev, "FLR done\n");
3292 	if (ae_dev && ae_dev->ops && ae_dev->ops->reset_done)
3293 		ae_dev->ops->reset_done(ae_dev);
3294 }
3295 
3296 static const struct pci_error_handlers hns3_err_handler = {
3297 	.error_detected = hns3_error_detected,
3298 	.slot_reset     = hns3_slot_reset,
3299 	.reset_prepare	= hns3_reset_prepare,
3300 	.reset_done	= hns3_reset_done,
3301 };
3302 
3303 static SIMPLE_DEV_PM_OPS(hns3_pm_ops, hns3_suspend, hns3_resume);
3304 
3305 static struct pci_driver hns3_driver = {
3306 	.name     = hns3_driver_name,
3307 	.id_table = hns3_pci_tbl,
3308 	.probe    = hns3_probe,
3309 	.remove   = hns3_remove,
3310 	.shutdown = hns3_shutdown,
3311 	.driver.pm  = &hns3_pm_ops,
3312 	.sriov_configure = hns3_pci_sriov_configure,
3313 	.err_handler    = &hns3_err_handler,
3314 };
3315 
3316 /* set default feature to hns3 */
hns3_set_default_feature(struct net_device * netdev)3317 static void hns3_set_default_feature(struct net_device *netdev)
3318 {
3319 	struct hnae3_handle *h = hns3_get_handle(netdev);
3320 	struct pci_dev *pdev = h->pdev;
3321 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3322 
3323 	netdev->priv_flags |= IFF_UNICAST_FLT;
3324 
3325 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3326 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
3327 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
3328 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
3329 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
3330 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
3331 
3332 	if (hnae3_ae_dev_gro_supported(ae_dev))
3333 		netdev->features |= NETIF_F_GRO_HW;
3334 
3335 	if (hnae3_ae_dev_fd_supported(ae_dev))
3336 		netdev->features |= NETIF_F_NTUPLE;
3337 
3338 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps))
3339 		netdev->features |= NETIF_F_GSO_UDP_L4;
3340 
3341 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
3342 		netdev->features |= NETIF_F_HW_CSUM;
3343 	else
3344 		netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3345 
3346 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps))
3347 		netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
3348 
3349 	if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps))
3350 		netdev->features |= NETIF_F_HW_TC;
3351 
3352 	netdev->hw_features |= netdev->features;
3353 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
3354 		netdev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
3355 
3356 	netdev->vlan_features |= netdev->features &
3357 		~(NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX |
3358 		  NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_GRO_HW | NETIF_F_NTUPLE |
3359 		  NETIF_F_HW_TC);
3360 
3361 	netdev->hw_enc_features |= netdev->vlan_features | NETIF_F_TSO_MANGLEID;
3362 
3363 	/* The device_version V3 hardware can't offload the checksum for IP in
3364 	 * GRE packets, but can do it for NvGRE. So default to disable the
3365 	 * checksum and GSO offload for GRE.
3366 	 */
3367 	if (ae_dev->dev_version > HNAE3_DEVICE_VERSION_V2) {
3368 		netdev->features &= ~NETIF_F_GSO_GRE;
3369 		netdev->features &= ~NETIF_F_GSO_GRE_CSUM;
3370 	}
3371 }
3372 
hns3_alloc_buffer(struct hns3_enet_ring * ring,struct hns3_desc_cb * cb)3373 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
3374 			     struct hns3_desc_cb *cb)
3375 {
3376 	unsigned int order = hns3_page_order(ring);
3377 	struct page *p;
3378 
3379 	if (ring->page_pool) {
3380 		p = page_pool_dev_alloc_frag(ring->page_pool,
3381 					     &cb->page_offset,
3382 					     hns3_buf_size(ring));
3383 		if (unlikely(!p))
3384 			return -ENOMEM;
3385 
3386 		cb->priv = p;
3387 		cb->buf = page_address(p);
3388 		cb->dma = page_pool_get_dma_addr(p);
3389 		cb->type = DESC_TYPE_PP_FRAG;
3390 		cb->reuse_flag = 0;
3391 		return 0;
3392 	}
3393 
3394 	p = dev_alloc_pages(order);
3395 	if (!p)
3396 		return -ENOMEM;
3397 
3398 	cb->priv = p;
3399 	cb->page_offset = 0;
3400 	cb->reuse_flag = 0;
3401 	cb->buf  = page_address(p);
3402 	cb->length = hns3_page_size(ring);
3403 	cb->type = DESC_TYPE_PAGE;
3404 	page_ref_add(p, USHRT_MAX - 1);
3405 	cb->pagecnt_bias = USHRT_MAX;
3406 
3407 	return 0;
3408 }
3409 
hns3_free_buffer(struct hns3_enet_ring * ring,struct hns3_desc_cb * cb,int budget)3410 static void hns3_free_buffer(struct hns3_enet_ring *ring,
3411 			     struct hns3_desc_cb *cb, int budget)
3412 {
3413 	if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_HEAD |
3414 			DESC_TYPE_BOUNCE_ALL | DESC_TYPE_SGL_SKB))
3415 		napi_consume_skb(cb->priv, budget);
3416 	else if (!HNAE3_IS_TX_RING(ring)) {
3417 		if (cb->type & DESC_TYPE_PAGE && cb->pagecnt_bias)
3418 			__page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
3419 		else if (cb->type & DESC_TYPE_PP_FRAG)
3420 			page_pool_put_full_page(ring->page_pool, cb->priv,
3421 						false);
3422 	}
3423 	memset(cb, 0, sizeof(*cb));
3424 }
3425 
hns3_map_buffer(struct hns3_enet_ring * ring,struct hns3_desc_cb * cb)3426 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
3427 {
3428 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
3429 			       cb->length, ring_to_dma_dir(ring));
3430 
3431 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
3432 		return -EIO;
3433 
3434 	return 0;
3435 }
3436 
hns3_unmap_buffer(struct hns3_enet_ring * ring,struct hns3_desc_cb * cb)3437 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
3438 			      struct hns3_desc_cb *cb)
3439 {
3440 	if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
3441 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
3442 				 ring_to_dma_dir(ring));
3443 	else if ((cb->type & DESC_TYPE_PAGE) && cb->length)
3444 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
3445 			       ring_to_dma_dir(ring));
3446 	else if (cb->type & (DESC_TYPE_BOUNCE_ALL | DESC_TYPE_BOUNCE_HEAD |
3447 			     DESC_TYPE_SGL_SKB))
3448 		hns3_tx_spare_reclaim_cb(ring, cb);
3449 }
3450 
hns3_buffer_detach(struct hns3_enet_ring * ring,int i)3451 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
3452 {
3453 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3454 	ring->desc[i].addr = 0;
3455 	ring->desc_cb[i].refill = 0;
3456 }
3457 
hns3_free_buffer_detach(struct hns3_enet_ring * ring,int i,int budget)3458 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
3459 				    int budget)
3460 {
3461 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
3462 
3463 	if (!ring->desc_cb[i].dma)
3464 		return;
3465 
3466 	hns3_buffer_detach(ring, i);
3467 	hns3_free_buffer(ring, cb, budget);
3468 }
3469 
hns3_free_buffers(struct hns3_enet_ring * ring)3470 static void hns3_free_buffers(struct hns3_enet_ring *ring)
3471 {
3472 	int i;
3473 
3474 	for (i = 0; i < ring->desc_num; i++)
3475 		hns3_free_buffer_detach(ring, i, 0);
3476 }
3477 
3478 /* free desc along with its attached buffer */
hns3_free_desc(struct hns3_enet_ring * ring)3479 static void hns3_free_desc(struct hns3_enet_ring *ring)
3480 {
3481 	int size = ring->desc_num * sizeof(ring->desc[0]);
3482 
3483 	hns3_free_buffers(ring);
3484 
3485 	if (ring->desc) {
3486 		dma_free_coherent(ring_to_dev(ring), size,
3487 				  ring->desc, ring->desc_dma_addr);
3488 		ring->desc = NULL;
3489 	}
3490 }
3491 
hns3_alloc_desc(struct hns3_enet_ring * ring)3492 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
3493 {
3494 	int size = ring->desc_num * sizeof(ring->desc[0]);
3495 
3496 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
3497 					&ring->desc_dma_addr, GFP_KERNEL);
3498 	if (!ring->desc)
3499 		return -ENOMEM;
3500 
3501 	return 0;
3502 }
3503 
hns3_alloc_and_map_buffer(struct hns3_enet_ring * ring,struct hns3_desc_cb * cb)3504 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
3505 				   struct hns3_desc_cb *cb)
3506 {
3507 	int ret;
3508 
3509 	ret = hns3_alloc_buffer(ring, cb);
3510 	if (ret || ring->page_pool)
3511 		goto out;
3512 
3513 	ret = hns3_map_buffer(ring, cb);
3514 	if (ret)
3515 		goto out_with_buf;
3516 
3517 	return 0;
3518 
3519 out_with_buf:
3520 	hns3_free_buffer(ring, cb, 0);
3521 out:
3522 	return ret;
3523 }
3524 
hns3_alloc_and_attach_buffer(struct hns3_enet_ring * ring,int i)3525 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
3526 {
3527 	int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
3528 
3529 	if (ret)
3530 		return ret;
3531 
3532 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3533 					 ring->desc_cb[i].page_offset);
3534 	ring->desc_cb[i].refill = 1;
3535 
3536 	return 0;
3537 }
3538 
3539 /* Allocate memory for raw pkg, and map with dma */
hns3_alloc_ring_buffers(struct hns3_enet_ring * ring)3540 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
3541 {
3542 	int i, j, ret;
3543 
3544 	for (i = 0; i < ring->desc_num; i++) {
3545 		ret = hns3_alloc_and_attach_buffer(ring, i);
3546 		if (ret)
3547 			goto out_buffer_fail;
3548 
3549 		if (!(i % HNS3_RESCHED_BD_NUM))
3550 			cond_resched();
3551 	}
3552 
3553 	return 0;
3554 
3555 out_buffer_fail:
3556 	for (j = i - 1; j >= 0; j--)
3557 		hns3_free_buffer_detach(ring, j, 0);
3558 	return ret;
3559 }
3560 
3561 /* detach a in-used buffer and replace with a reserved one */
hns3_replace_buffer(struct hns3_enet_ring * ring,int i,struct hns3_desc_cb * res_cb)3562 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
3563 				struct hns3_desc_cb *res_cb)
3564 {
3565 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3566 	ring->desc_cb[i] = *res_cb;
3567 	ring->desc_cb[i].refill = 1;
3568 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3569 					 ring->desc_cb[i].page_offset);
3570 	ring->desc[i].rx.bd_base_info = 0;
3571 }
3572 
hns3_reuse_buffer(struct hns3_enet_ring * ring,int i)3573 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
3574 {
3575 	ring->desc_cb[i].reuse_flag = 0;
3576 	ring->desc_cb[i].refill = 1;
3577 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3578 					 ring->desc_cb[i].page_offset);
3579 	ring->desc[i].rx.bd_base_info = 0;
3580 
3581 	dma_sync_single_for_device(ring_to_dev(ring),
3582 			ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
3583 			hns3_buf_size(ring),
3584 			DMA_FROM_DEVICE);
3585 }
3586 
hns3_nic_reclaim_desc(struct hns3_enet_ring * ring,int * bytes,int * pkts,int budget)3587 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
3588 				  int *bytes, int *pkts, int budget)
3589 {
3590 	/* This smp_load_acquire() pairs with smp_store_release() in
3591 	 * hns3_tx_doorbell().
3592 	 */
3593 	int ltu = smp_load_acquire(&ring->last_to_use);
3594 	int ntc = ring->next_to_clean;
3595 	struct hns3_desc_cb *desc_cb;
3596 	bool reclaimed = false;
3597 	struct hns3_desc *desc;
3598 
3599 	while (ltu != ntc) {
3600 		desc = &ring->desc[ntc];
3601 
3602 		if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
3603 				BIT(HNS3_TXD_VLD_B))
3604 			break;
3605 
3606 		desc_cb = &ring->desc_cb[ntc];
3607 
3608 		if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_ALL |
3609 				     DESC_TYPE_BOUNCE_HEAD |
3610 				     DESC_TYPE_SGL_SKB)) {
3611 			(*pkts)++;
3612 			(*bytes) += desc_cb->send_bytes;
3613 		}
3614 
3615 		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
3616 		hns3_free_buffer_detach(ring, ntc, budget);
3617 
3618 		if (++ntc == ring->desc_num)
3619 			ntc = 0;
3620 
3621 		/* Issue prefetch for next Tx descriptor */
3622 		prefetch(&ring->desc_cb[ntc]);
3623 		reclaimed = true;
3624 	}
3625 
3626 	if (unlikely(!reclaimed))
3627 		return false;
3628 
3629 	/* This smp_store_release() pairs with smp_load_acquire() in
3630 	 * ring_space called by hns3_nic_net_xmit.
3631 	 */
3632 	smp_store_release(&ring->next_to_clean, ntc);
3633 
3634 	hns3_tx_spare_update(ring);
3635 
3636 	return true;
3637 }
3638 
hns3_clean_tx_ring(struct hns3_enet_ring * ring,int budget)3639 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
3640 {
3641 	struct net_device *netdev = ring_to_netdev(ring);
3642 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3643 	struct netdev_queue *dev_queue;
3644 	int bytes, pkts;
3645 
3646 	bytes = 0;
3647 	pkts = 0;
3648 
3649 	if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
3650 		return;
3651 
3652 	ring->tqp_vector->tx_group.total_bytes += bytes;
3653 	ring->tqp_vector->tx_group.total_packets += pkts;
3654 
3655 	u64_stats_update_begin(&ring->syncp);
3656 	ring->stats.tx_bytes += bytes;
3657 	ring->stats.tx_pkts += pkts;
3658 	u64_stats_update_end(&ring->syncp);
3659 
3660 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
3661 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
3662 
3663 	if (unlikely(netif_carrier_ok(netdev) &&
3664 		     ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
3665 		/* Make sure that anybody stopping the queue after this
3666 		 * sees the new next_to_clean.
3667 		 */
3668 		smp_mb();
3669 		if (netif_tx_queue_stopped(dev_queue) &&
3670 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
3671 			netif_tx_wake_queue(dev_queue);
3672 			ring->stats.restart_queue++;
3673 		}
3674 	}
3675 }
3676 
hns3_desc_unused(struct hns3_enet_ring * ring)3677 static int hns3_desc_unused(struct hns3_enet_ring *ring)
3678 {
3679 	int ntc = ring->next_to_clean;
3680 	int ntu = ring->next_to_use;
3681 
3682 	if (unlikely(ntc == ntu && !ring->desc_cb[ntc].refill))
3683 		return ring->desc_num;
3684 
3685 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
3686 }
3687 
3688 /* Return true if there is any allocation failure */
hns3_nic_alloc_rx_buffers(struct hns3_enet_ring * ring,int cleand_count)3689 static bool hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
3690 				      int cleand_count)
3691 {
3692 	struct hns3_desc_cb *desc_cb;
3693 	struct hns3_desc_cb res_cbs;
3694 	int i, ret;
3695 
3696 	for (i = 0; i < cleand_count; i++) {
3697 		desc_cb = &ring->desc_cb[ring->next_to_use];
3698 		if (desc_cb->reuse_flag) {
3699 			hns3_ring_stats_update(ring, reuse_pg_cnt);
3700 
3701 			hns3_reuse_buffer(ring, ring->next_to_use);
3702 		} else {
3703 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
3704 			if (ret) {
3705 				hns3_ring_stats_update(ring, sw_err_cnt);
3706 
3707 				hns3_rl_err(ring_to_netdev(ring),
3708 					    "alloc rx buffer failed: %d\n",
3709 					    ret);
3710 
3711 				writel(i, ring->tqp->io_base +
3712 				       HNS3_RING_RX_RING_HEAD_REG);
3713 				return true;
3714 			}
3715 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
3716 
3717 			hns3_ring_stats_update(ring, non_reuse_pg);
3718 		}
3719 
3720 		ring_ptr_move_fw(ring, next_to_use);
3721 	}
3722 
3723 	writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
3724 	return false;
3725 }
3726 
hns3_can_reuse_page(struct hns3_desc_cb * cb)3727 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
3728 {
3729 	return page_count(cb->priv) == cb->pagecnt_bias;
3730 }
3731 
hns3_handle_rx_copybreak(struct sk_buff * skb,int i,struct hns3_enet_ring * ring,int pull_len,struct hns3_desc_cb * desc_cb)3732 static int hns3_handle_rx_copybreak(struct sk_buff *skb, int i,
3733 				    struct hns3_enet_ring *ring,
3734 				    int pull_len,
3735 				    struct hns3_desc_cb *desc_cb)
3736 {
3737 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
3738 	u32 frag_offset = desc_cb->page_offset + pull_len;
3739 	int size = le16_to_cpu(desc->rx.size);
3740 	u32 frag_size = size - pull_len;
3741 	void *frag = napi_alloc_frag(frag_size);
3742 
3743 	if (unlikely(!frag)) {
3744 		hns3_ring_stats_update(ring, frag_alloc_err);
3745 
3746 		hns3_rl_err(ring_to_netdev(ring),
3747 			    "failed to allocate rx frag\n");
3748 		return -ENOMEM;
3749 	}
3750 
3751 	desc_cb->reuse_flag = 1;
3752 	memcpy(frag, desc_cb->buf + frag_offset, frag_size);
3753 	skb_add_rx_frag(skb, i, virt_to_page(frag),
3754 			offset_in_page(frag), frag_size, frag_size);
3755 
3756 	hns3_ring_stats_update(ring, frag_alloc);
3757 	return 0;
3758 }
3759 
hns3_nic_reuse_page(struct sk_buff * skb,int i,struct hns3_enet_ring * ring,int pull_len,struct hns3_desc_cb * desc_cb)3760 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
3761 				struct hns3_enet_ring *ring, int pull_len,
3762 				struct hns3_desc_cb *desc_cb)
3763 {
3764 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
3765 	u32 frag_offset = desc_cb->page_offset + pull_len;
3766 	int size = le16_to_cpu(desc->rx.size);
3767 	u32 truesize = hns3_buf_size(ring);
3768 	u32 frag_size = size - pull_len;
3769 	int ret = 0;
3770 	bool reused;
3771 
3772 	if (ring->page_pool) {
3773 		skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3774 				frag_size, truesize);
3775 		return;
3776 	}
3777 
3778 	/* Avoid re-using remote or pfmem page */
3779 	if (unlikely(!dev_page_is_reusable(desc_cb->priv)))
3780 		goto out;
3781 
3782 	reused = hns3_can_reuse_page(desc_cb);
3783 
3784 	/* Rx page can be reused when:
3785 	 * 1. Rx page is only owned by the driver when page_offset
3786 	 *    is zero, which means 0 @ truesize will be used by
3787 	 *    stack after skb_add_rx_frag() is called, and the rest
3788 	 *    of rx page can be reused by driver.
3789 	 * Or
3790 	 * 2. Rx page is only owned by the driver when page_offset
3791 	 *    is non-zero, which means page_offset @ truesize will
3792 	 *    be used by stack after skb_add_rx_frag() is called,
3793 	 *    and 0 @ truesize can be reused by driver.
3794 	 */
3795 	if ((!desc_cb->page_offset && reused) ||
3796 	    ((desc_cb->page_offset + truesize + truesize) <=
3797 	     hns3_page_size(ring) && desc_cb->page_offset)) {
3798 		desc_cb->page_offset += truesize;
3799 		desc_cb->reuse_flag = 1;
3800 	} else if (desc_cb->page_offset && reused) {
3801 		desc_cb->page_offset = 0;
3802 		desc_cb->reuse_flag = 1;
3803 	} else if (frag_size <= ring->rx_copybreak) {
3804 		ret = hns3_handle_rx_copybreak(skb, i, ring, pull_len, desc_cb);
3805 		if (!ret)
3806 			return;
3807 	}
3808 
3809 out:
3810 	desc_cb->pagecnt_bias--;
3811 
3812 	if (unlikely(!desc_cb->pagecnt_bias)) {
3813 		page_ref_add(desc_cb->priv, USHRT_MAX);
3814 		desc_cb->pagecnt_bias = USHRT_MAX;
3815 	}
3816 
3817 	skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3818 			frag_size, truesize);
3819 
3820 	if (unlikely(!desc_cb->reuse_flag))
3821 		__page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
3822 }
3823 
hns3_gro_complete(struct sk_buff * skb,u32 l234info)3824 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
3825 {
3826 	__be16 type = skb->protocol;
3827 	struct tcphdr *th;
3828 	u32 depth = 0;
3829 
3830 	while (eth_type_vlan(type)) {
3831 		struct vlan_hdr *vh;
3832 
3833 		if ((depth + VLAN_HLEN) > skb_headlen(skb))
3834 			return -EFAULT;
3835 
3836 		vh = (struct vlan_hdr *)(skb->data + depth);
3837 		type = vh->h_vlan_encapsulated_proto;
3838 		depth += VLAN_HLEN;
3839 	}
3840 
3841 	skb_set_network_header(skb, depth);
3842 
3843 	if (type == htons(ETH_P_IP)) {
3844 		const struct iphdr *iph = ip_hdr(skb);
3845 
3846 		depth += sizeof(struct iphdr);
3847 		skb_set_transport_header(skb, depth);
3848 		th = tcp_hdr(skb);
3849 		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
3850 					  iph->daddr, 0);
3851 	} else if (type == htons(ETH_P_IPV6)) {
3852 		const struct ipv6hdr *iph = ipv6_hdr(skb);
3853 
3854 		depth += sizeof(struct ipv6hdr);
3855 		skb_set_transport_header(skb, depth);
3856 		th = tcp_hdr(skb);
3857 		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
3858 					  &iph->daddr, 0);
3859 	} else {
3860 		hns3_rl_err(skb->dev,
3861 			    "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
3862 			    be16_to_cpu(type), depth);
3863 		return -EFAULT;
3864 	}
3865 
3866 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3867 	if (th->cwr)
3868 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3869 
3870 	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
3871 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
3872 
3873 	skb->csum_start = (unsigned char *)th - skb->head;
3874 	skb->csum_offset = offsetof(struct tcphdr, check);
3875 	skb->ip_summed = CHECKSUM_PARTIAL;
3876 
3877 	trace_hns3_gro(skb);
3878 
3879 	return 0;
3880 }
3881 
hns3_checksum_complete(struct hns3_enet_ring * ring,struct sk_buff * skb,u32 ptype,u16 csum)3882 static void hns3_checksum_complete(struct hns3_enet_ring *ring,
3883 				   struct sk_buff *skb, u32 ptype, u16 csum)
3884 {
3885 	if (ptype == HNS3_INVALID_PTYPE ||
3886 	    hns3_rx_ptype_tbl[ptype].ip_summed != CHECKSUM_COMPLETE)
3887 		return;
3888 
3889 	hns3_ring_stats_update(ring, csum_complete);
3890 	skb->ip_summed = CHECKSUM_COMPLETE;
3891 	skb->csum = csum_unfold((__force __sum16)csum);
3892 }
3893 
hns3_rx_handle_csum(struct sk_buff * skb,u32 l234info,u32 ol_info,u32 ptype)3894 static void hns3_rx_handle_csum(struct sk_buff *skb, u32 l234info,
3895 				u32 ol_info, u32 ptype)
3896 {
3897 	int l3_type, l4_type;
3898 	int ol4_type;
3899 
3900 	if (ptype != HNS3_INVALID_PTYPE) {
3901 		skb->csum_level = hns3_rx_ptype_tbl[ptype].csum_level;
3902 		skb->ip_summed = hns3_rx_ptype_tbl[ptype].ip_summed;
3903 
3904 		return;
3905 	}
3906 
3907 	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
3908 				   HNS3_RXD_OL4ID_S);
3909 	switch (ol4_type) {
3910 	case HNS3_OL4_TYPE_MAC_IN_UDP:
3911 	case HNS3_OL4_TYPE_NVGRE:
3912 		skb->csum_level = 1;
3913 		fallthrough;
3914 	case HNS3_OL4_TYPE_NO_TUN:
3915 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
3916 					  HNS3_RXD_L3ID_S);
3917 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
3918 					  HNS3_RXD_L4ID_S);
3919 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
3920 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
3921 		     l3_type == HNS3_L3_TYPE_IPV6) &&
3922 		    (l4_type == HNS3_L4_TYPE_UDP ||
3923 		     l4_type == HNS3_L4_TYPE_TCP ||
3924 		     l4_type == HNS3_L4_TYPE_SCTP))
3925 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3926 		break;
3927 	default:
3928 		break;
3929 	}
3930 }
3931 
hns3_rx_checksum(struct hns3_enet_ring * ring,struct sk_buff * skb,u32 l234info,u32 bd_base_info,u32 ol_info,u16 csum)3932 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
3933 			     u32 l234info, u32 bd_base_info, u32 ol_info,
3934 			     u16 csum)
3935 {
3936 	struct net_device *netdev = ring_to_netdev(ring);
3937 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3938 	u32 ptype = HNS3_INVALID_PTYPE;
3939 
3940 	skb->ip_summed = CHECKSUM_NONE;
3941 
3942 	skb_checksum_none_assert(skb);
3943 
3944 	if (!(netdev->features & NETIF_F_RXCSUM))
3945 		return;
3946 
3947 	if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state))
3948 		ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
3949 					HNS3_RXD_PTYPE_S);
3950 
3951 	hns3_checksum_complete(ring, skb, ptype, csum);
3952 
3953 	/* check if hardware has done checksum */
3954 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
3955 		return;
3956 
3957 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
3958 				 BIT(HNS3_RXD_OL3E_B) |
3959 				 BIT(HNS3_RXD_OL4E_B)))) {
3960 		skb->ip_summed = CHECKSUM_NONE;
3961 		hns3_ring_stats_update(ring, l3l4_csum_err);
3962 
3963 		return;
3964 	}
3965 
3966 	hns3_rx_handle_csum(skb, l234info, ol_info, ptype);
3967 }
3968 
hns3_rx_skb(struct hns3_enet_ring * ring,struct sk_buff * skb)3969 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
3970 {
3971 	if (skb_has_frag_list(skb))
3972 		napi_gro_flush(&ring->tqp_vector->napi, false);
3973 
3974 	napi_gro_receive(&ring->tqp_vector->napi, skb);
3975 }
3976 
hns3_parse_vlan_tag(struct hns3_enet_ring * ring,struct hns3_desc * desc,u32 l234info,u16 * vlan_tag)3977 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
3978 				struct hns3_desc *desc, u32 l234info,
3979 				u16 *vlan_tag)
3980 {
3981 	struct hnae3_handle *handle = ring->tqp->handle;
3982 	struct pci_dev *pdev = ring->tqp->handle->pdev;
3983 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3984 
3985 	if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
3986 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3987 		if (!(*vlan_tag & VLAN_VID_MASK))
3988 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3989 
3990 		return (*vlan_tag != 0);
3991 	}
3992 
3993 #define HNS3_STRP_OUTER_VLAN	0x1
3994 #define HNS3_STRP_INNER_VLAN	0x2
3995 #define HNS3_STRP_BOTH		0x3
3996 
3997 	/* Hardware always insert VLAN tag into RX descriptor when
3998 	 * remove the tag from packet, driver needs to determine
3999 	 * reporting which tag to stack.
4000 	 */
4001 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
4002 				HNS3_RXD_STRP_TAGP_S)) {
4003 	case HNS3_STRP_OUTER_VLAN:
4004 		if (handle->port_base_vlan_state !=
4005 				HNAE3_PORT_BASE_VLAN_DISABLE)
4006 			return false;
4007 
4008 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
4009 		return true;
4010 	case HNS3_STRP_INNER_VLAN:
4011 		if (handle->port_base_vlan_state !=
4012 				HNAE3_PORT_BASE_VLAN_DISABLE)
4013 			return false;
4014 
4015 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
4016 		return true;
4017 	case HNS3_STRP_BOTH:
4018 		if (handle->port_base_vlan_state ==
4019 				HNAE3_PORT_BASE_VLAN_DISABLE)
4020 			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
4021 		else
4022 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
4023 
4024 		return true;
4025 	default:
4026 		return false;
4027 	}
4028 }
4029 
hns3_rx_ring_move_fw(struct hns3_enet_ring * ring)4030 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
4031 {
4032 	ring->desc[ring->next_to_clean].rx.bd_base_info &=
4033 		cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
4034 	ring->desc_cb[ring->next_to_clean].refill = 0;
4035 	ring->next_to_clean += 1;
4036 
4037 	if (unlikely(ring->next_to_clean == ring->desc_num))
4038 		ring->next_to_clean = 0;
4039 }
4040 
hns3_alloc_skb(struct hns3_enet_ring * ring,unsigned int length,unsigned char * va)4041 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
4042 			  unsigned char *va)
4043 {
4044 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
4045 	struct net_device *netdev = ring_to_netdev(ring);
4046 	struct sk_buff *skb;
4047 
4048 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
4049 	skb = ring->skb;
4050 	if (unlikely(!skb)) {
4051 		hns3_rl_err(netdev, "alloc rx skb fail\n");
4052 		hns3_ring_stats_update(ring, sw_err_cnt);
4053 
4054 		return -ENOMEM;
4055 	}
4056 
4057 	trace_hns3_rx_desc(ring);
4058 	prefetchw(skb->data);
4059 
4060 	ring->pending_buf = 1;
4061 	ring->frag_num = 0;
4062 	ring->tail_skb = NULL;
4063 	if (length <= HNS3_RX_HEAD_SIZE) {
4064 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
4065 
4066 		/* We can reuse buffer as-is, just make sure it is reusable */
4067 		if (dev_page_is_reusable(desc_cb->priv))
4068 			desc_cb->reuse_flag = 1;
4069 		else if (desc_cb->type & DESC_TYPE_PP_FRAG)
4070 			page_pool_put_full_page(ring->page_pool, desc_cb->priv,
4071 						false);
4072 		else /* This page cannot be reused so discard it */
4073 			__page_frag_cache_drain(desc_cb->priv,
4074 						desc_cb->pagecnt_bias);
4075 
4076 		hns3_rx_ring_move_fw(ring);
4077 		return 0;
4078 	}
4079 
4080 	if (ring->page_pool)
4081 		skb_mark_for_recycle(skb);
4082 
4083 	hns3_ring_stats_update(ring, seg_pkt_cnt);
4084 
4085 	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
4086 	__skb_put(skb, ring->pull_len);
4087 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
4088 			    desc_cb);
4089 	hns3_rx_ring_move_fw(ring);
4090 
4091 	return 0;
4092 }
4093 
hns3_add_frag(struct hns3_enet_ring * ring)4094 static int hns3_add_frag(struct hns3_enet_ring *ring)
4095 {
4096 	struct sk_buff *skb = ring->skb;
4097 	struct sk_buff *head_skb = skb;
4098 	struct sk_buff *new_skb;
4099 	struct hns3_desc_cb *desc_cb;
4100 	struct hns3_desc *desc;
4101 	u32 bd_base_info;
4102 
4103 	do {
4104 		desc = &ring->desc[ring->next_to_clean];
4105 		desc_cb = &ring->desc_cb[ring->next_to_clean];
4106 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4107 		/* make sure HW write desc complete */
4108 		dma_rmb();
4109 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
4110 			return -ENXIO;
4111 
4112 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
4113 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
4114 			if (unlikely(!new_skb)) {
4115 				hns3_rl_err(ring_to_netdev(ring),
4116 					    "alloc rx fraglist skb fail\n");
4117 				return -ENXIO;
4118 			}
4119 
4120 			if (ring->page_pool)
4121 				skb_mark_for_recycle(new_skb);
4122 
4123 			ring->frag_num = 0;
4124 
4125 			if (ring->tail_skb) {
4126 				ring->tail_skb->next = new_skb;
4127 				ring->tail_skb = new_skb;
4128 			} else {
4129 				skb_shinfo(skb)->frag_list = new_skb;
4130 				ring->tail_skb = new_skb;
4131 			}
4132 		}
4133 
4134 		if (ring->tail_skb) {
4135 			head_skb->truesize += hns3_buf_size(ring);
4136 			head_skb->data_len += le16_to_cpu(desc->rx.size);
4137 			head_skb->len += le16_to_cpu(desc->rx.size);
4138 			skb = ring->tail_skb;
4139 		}
4140 
4141 		dma_sync_single_for_cpu(ring_to_dev(ring),
4142 				desc_cb->dma + desc_cb->page_offset,
4143 				hns3_buf_size(ring),
4144 				DMA_FROM_DEVICE);
4145 
4146 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
4147 		trace_hns3_rx_desc(ring);
4148 		hns3_rx_ring_move_fw(ring);
4149 		ring->pending_buf++;
4150 	} while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
4151 
4152 	return 0;
4153 }
4154 
hns3_set_gro_and_checksum(struct hns3_enet_ring * ring,struct sk_buff * skb,u32 l234info,u32 bd_base_info,u32 ol_info,u16 csum)4155 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
4156 				     struct sk_buff *skb, u32 l234info,
4157 				     u32 bd_base_info, u32 ol_info, u16 csum)
4158 {
4159 	struct net_device *netdev = ring_to_netdev(ring);
4160 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4161 	u32 l3_type;
4162 
4163 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
4164 						    HNS3_RXD_GRO_SIZE_M,
4165 						    HNS3_RXD_GRO_SIZE_S);
4166 	/* if there is no HW GRO, do not set gro params */
4167 	if (!skb_shinfo(skb)->gso_size) {
4168 		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info,
4169 				 csum);
4170 		return 0;
4171 	}
4172 
4173 	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
4174 						  HNS3_RXD_GRO_COUNT_M,
4175 						  HNS3_RXD_GRO_COUNT_S);
4176 
4177 	if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) {
4178 		u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
4179 					    HNS3_RXD_PTYPE_S);
4180 
4181 		l3_type = hns3_rx_ptype_tbl[ptype].l3_type;
4182 	} else {
4183 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
4184 					  HNS3_RXD_L3ID_S);
4185 	}
4186 
4187 	if (l3_type == HNS3_L3_TYPE_IPV4)
4188 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
4189 	else if (l3_type == HNS3_L3_TYPE_IPV6)
4190 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
4191 	else
4192 		return -EFAULT;
4193 
4194 	return  hns3_gro_complete(skb, l234info);
4195 }
4196 
hns3_set_rx_skb_rss_type(struct hns3_enet_ring * ring,struct sk_buff * skb,u32 rss_hash,u32 l234info,u32 ol_info)4197 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
4198 				     struct sk_buff *skb, u32 rss_hash,
4199 				     u32 l234info, u32 ol_info)
4200 {
4201 	enum pkt_hash_types rss_type = PKT_HASH_TYPE_NONE;
4202 	struct net_device *netdev = ring_to_netdev(ring);
4203 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4204 
4205 	if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) {
4206 		u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
4207 					    HNS3_RXD_PTYPE_S);
4208 
4209 		rss_type = hns3_rx_ptype_tbl[ptype].hash_type;
4210 	} else {
4211 		int l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
4212 					      HNS3_RXD_L3ID_S);
4213 		int l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
4214 					      HNS3_RXD_L4ID_S);
4215 
4216 		if (l3_type == HNS3_L3_TYPE_IPV4 ||
4217 		    l3_type == HNS3_L3_TYPE_IPV6) {
4218 			if (l4_type == HNS3_L4_TYPE_UDP ||
4219 			    l4_type == HNS3_L4_TYPE_TCP ||
4220 			    l4_type == HNS3_L4_TYPE_SCTP)
4221 				rss_type = PKT_HASH_TYPE_L4;
4222 			else if (l4_type == HNS3_L4_TYPE_IGMP ||
4223 				 l4_type == HNS3_L4_TYPE_ICMP)
4224 				rss_type = PKT_HASH_TYPE_L3;
4225 		}
4226 	}
4227 
4228 	skb_set_hash(skb, rss_hash, rss_type);
4229 }
4230 
hns3_handle_rx_ts_info(struct net_device * netdev,struct hns3_desc * desc,struct sk_buff * skb,u32 bd_base_info)4231 static void hns3_handle_rx_ts_info(struct net_device *netdev,
4232 				   struct hns3_desc *desc, struct sk_buff *skb,
4233 				   u32 bd_base_info)
4234 {
4235 	if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B))) {
4236 		struct hnae3_handle *h = hns3_get_handle(netdev);
4237 		u32 nsec = le32_to_cpu(desc->ts_nsec);
4238 		u32 sec = le32_to_cpu(desc->ts_sec);
4239 
4240 		if (h->ae_algo->ops->get_rx_hwts)
4241 			h->ae_algo->ops->get_rx_hwts(h, skb, nsec, sec);
4242 	}
4243 }
4244 
hns3_handle_rx_vlan_tag(struct hns3_enet_ring * ring,struct hns3_desc * desc,struct sk_buff * skb,u32 l234info)4245 static void hns3_handle_rx_vlan_tag(struct hns3_enet_ring *ring,
4246 				    struct hns3_desc *desc, struct sk_buff *skb,
4247 				    u32 l234info)
4248 {
4249 	struct net_device *netdev = ring_to_netdev(ring);
4250 
4251 	/* Based on hw strategy, the tag offloaded will be stored at
4252 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
4253 	 * in one layer tag case.
4254 	 */
4255 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
4256 		u16 vlan_tag;
4257 
4258 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
4259 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
4260 					       vlan_tag);
4261 	}
4262 }
4263 
hns3_handle_bdinfo(struct hns3_enet_ring * ring,struct sk_buff * skb)4264 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
4265 {
4266 	struct net_device *netdev = ring_to_netdev(ring);
4267 	enum hns3_pkt_l2t_type l2_frame_type;
4268 	u32 bd_base_info, l234info, ol_info;
4269 	struct hns3_desc *desc;
4270 	unsigned int len;
4271 	int pre_ntc, ret;
4272 	u16 csum;
4273 
4274 	/* bdinfo handled below is only valid on the last BD of the
4275 	 * current packet, and ring->next_to_clean indicates the first
4276 	 * descriptor of next packet, so need - 1 below.
4277 	 */
4278 	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
4279 					(ring->desc_num - 1);
4280 	desc = &ring->desc[pre_ntc];
4281 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4282 	l234info = le32_to_cpu(desc->rx.l234_info);
4283 	ol_info = le32_to_cpu(desc->rx.ol_info);
4284 	csum = le16_to_cpu(desc->csum);
4285 
4286 	hns3_handle_rx_ts_info(netdev, desc, skb, bd_base_info);
4287 
4288 	hns3_handle_rx_vlan_tag(ring, desc, skb, l234info);
4289 
4290 	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
4291 				  BIT(HNS3_RXD_L2E_B))))) {
4292 		u64_stats_update_begin(&ring->syncp);
4293 		if (l234info & BIT(HNS3_RXD_L2E_B))
4294 			ring->stats.l2_err++;
4295 		else
4296 			ring->stats.err_pkt_len++;
4297 		u64_stats_update_end(&ring->syncp);
4298 
4299 		return -EFAULT;
4300 	}
4301 
4302 	len = skb->len;
4303 
4304 	/* Do update ip stack process */
4305 	skb->protocol = eth_type_trans(skb, netdev);
4306 
4307 	/* This is needed in order to enable forwarding support */
4308 	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
4309 					bd_base_info, ol_info, csum);
4310 	if (unlikely(ret)) {
4311 		hns3_ring_stats_update(ring, rx_err_cnt);
4312 		return ret;
4313 	}
4314 
4315 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
4316 					HNS3_RXD_DMAC_S);
4317 
4318 	u64_stats_update_begin(&ring->syncp);
4319 	ring->stats.rx_pkts++;
4320 	ring->stats.rx_bytes += len;
4321 
4322 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
4323 		ring->stats.rx_multicast++;
4324 
4325 	u64_stats_update_end(&ring->syncp);
4326 
4327 	ring->tqp_vector->rx_group.total_bytes += len;
4328 
4329 	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash),
4330 				 l234info, ol_info);
4331 	return 0;
4332 }
4333 
hns3_handle_rx_bd(struct hns3_enet_ring * ring)4334 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
4335 {
4336 	struct sk_buff *skb = ring->skb;
4337 	struct hns3_desc_cb *desc_cb;
4338 	struct hns3_desc *desc;
4339 	unsigned int length;
4340 	u32 bd_base_info;
4341 	int ret;
4342 
4343 	desc = &ring->desc[ring->next_to_clean];
4344 	desc_cb = &ring->desc_cb[ring->next_to_clean];
4345 
4346 	prefetch(desc);
4347 
4348 	if (!skb) {
4349 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4350 		/* Check valid BD */
4351 		if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
4352 			return -ENXIO;
4353 
4354 		dma_rmb();
4355 		length = le16_to_cpu(desc->rx.size);
4356 
4357 		ring->va = desc_cb->buf + desc_cb->page_offset;
4358 
4359 		dma_sync_single_for_cpu(ring_to_dev(ring),
4360 				desc_cb->dma + desc_cb->page_offset,
4361 				hns3_buf_size(ring),
4362 				DMA_FROM_DEVICE);
4363 
4364 		/* Prefetch first cache line of first page.
4365 		 * Idea is to cache few bytes of the header of the packet.
4366 		 * Our L1 Cache line size is 64B so need to prefetch twice to make
4367 		 * it 128B. But in actual we can have greater size of caches with
4368 		 * 128B Level 1 cache lines. In such a case, single fetch would
4369 		 * suffice to cache in the relevant part of the header.
4370 		 */
4371 		net_prefetch(ring->va);
4372 
4373 		ret = hns3_alloc_skb(ring, length, ring->va);
4374 		skb = ring->skb;
4375 
4376 		if (ret < 0) /* alloc buffer fail */
4377 			return ret;
4378 		if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
4379 			ret = hns3_add_frag(ring);
4380 			if (ret)
4381 				return ret;
4382 		}
4383 	} else {
4384 		ret = hns3_add_frag(ring);
4385 		if (ret)
4386 			return ret;
4387 	}
4388 
4389 	/* As the head data may be changed when GRO enable, copy
4390 	 * the head data in after other data rx completed
4391 	 */
4392 	if (skb->len > HNS3_RX_HEAD_SIZE)
4393 		memcpy(skb->data, ring->va,
4394 		       ALIGN(ring->pull_len, sizeof(long)));
4395 
4396 	ret = hns3_handle_bdinfo(ring, skb);
4397 	if (unlikely(ret)) {
4398 		dev_kfree_skb_any(skb);
4399 		return ret;
4400 	}
4401 
4402 	skb_record_rx_queue(skb, ring->tqp->tqp_index);
4403 	return 0;
4404 }
4405 
hns3_clean_rx_ring(struct hns3_enet_ring * ring,int budget,void (* rx_fn)(struct hns3_enet_ring *,struct sk_buff *))4406 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
4407 		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
4408 {
4409 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
4410 	int unused_count = hns3_desc_unused(ring);
4411 	bool failure = false;
4412 	int recv_pkts = 0;
4413 	int err;
4414 
4415 	unused_count -= ring->pending_buf;
4416 
4417 	while (recv_pkts < budget) {
4418 		/* Reuse or realloc buffers */
4419 		if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
4420 			failure = failure ||
4421 				hns3_nic_alloc_rx_buffers(ring, unused_count);
4422 			unused_count = 0;
4423 		}
4424 
4425 		/* Poll one pkt */
4426 		err = hns3_handle_rx_bd(ring);
4427 		/* Do not get FE for the packet or failed to alloc skb */
4428 		if (unlikely(!ring->skb || err == -ENXIO)) {
4429 			goto out;
4430 		} else if (likely(!err)) {
4431 			rx_fn(ring, ring->skb);
4432 			recv_pkts++;
4433 		}
4434 
4435 		unused_count += ring->pending_buf;
4436 		ring->skb = NULL;
4437 		ring->pending_buf = 0;
4438 	}
4439 
4440 out:
4441 	/* sync head pointer before exiting, since hardware will calculate
4442 	 * FBD number with head pointer
4443 	 */
4444 	if (unused_count > 0)
4445 		failure = failure ||
4446 			  hns3_nic_alloc_rx_buffers(ring, unused_count);
4447 
4448 	return failure ? budget : recv_pkts;
4449 }
4450 
hns3_update_rx_int_coalesce(struct hns3_enet_tqp_vector * tqp_vector)4451 static void hns3_update_rx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4452 {
4453 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
4454 	struct dim_sample sample = {};
4455 
4456 	if (!rx_group->coal.adapt_enable)
4457 		return;
4458 
4459 	dim_update_sample(tqp_vector->event_cnt, rx_group->total_packets,
4460 			  rx_group->total_bytes, &sample);
4461 	net_dim(&rx_group->dim, &sample);
4462 }
4463 
hns3_update_tx_int_coalesce(struct hns3_enet_tqp_vector * tqp_vector)4464 static void hns3_update_tx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4465 {
4466 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
4467 	struct dim_sample sample = {};
4468 
4469 	if (!tx_group->coal.adapt_enable)
4470 		return;
4471 
4472 	dim_update_sample(tqp_vector->event_cnt, tx_group->total_packets,
4473 			  tx_group->total_bytes, &sample);
4474 	net_dim(&tx_group->dim, &sample);
4475 }
4476 
hns3_nic_common_poll(struct napi_struct * napi,int budget)4477 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
4478 {
4479 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
4480 	struct hns3_enet_ring *ring;
4481 	int rx_pkt_total = 0;
4482 
4483 	struct hns3_enet_tqp_vector *tqp_vector =
4484 		container_of(napi, struct hns3_enet_tqp_vector, napi);
4485 	bool clean_complete = true;
4486 	int rx_budget = budget;
4487 
4488 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4489 		napi_complete(napi);
4490 		return 0;
4491 	}
4492 
4493 	/* Since the actual Tx work is minimal, we can give the Tx a larger
4494 	 * budget and be more aggressive about cleaning up the Tx descriptors.
4495 	 */
4496 	hns3_for_each_ring(ring, tqp_vector->tx_group)
4497 		hns3_clean_tx_ring(ring, budget);
4498 
4499 	/* make sure rx ring budget not smaller than 1 */
4500 	if (tqp_vector->num_tqps > 1)
4501 		rx_budget = max(budget / tqp_vector->num_tqps, 1);
4502 
4503 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
4504 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
4505 						    hns3_rx_skb);
4506 		if (rx_cleaned >= rx_budget)
4507 			clean_complete = false;
4508 
4509 		rx_pkt_total += rx_cleaned;
4510 	}
4511 
4512 	tqp_vector->rx_group.total_packets += rx_pkt_total;
4513 
4514 	if (!clean_complete)
4515 		return budget;
4516 
4517 	if (napi_complete(napi) &&
4518 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4519 		hns3_update_rx_int_coalesce(tqp_vector);
4520 		hns3_update_tx_int_coalesce(tqp_vector);
4521 
4522 		hns3_mask_vector_irq(tqp_vector, 1);
4523 	}
4524 
4525 	return rx_pkt_total;
4526 }
4527 
hns3_create_ring_chain(struct hns3_enet_tqp_vector * tqp_vector,struct hnae3_ring_chain_node ** head,bool is_tx)4528 static int hns3_create_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4529 				  struct hnae3_ring_chain_node **head,
4530 				  bool is_tx)
4531 {
4532 	u32 bit_value = is_tx ? HNAE3_RING_TYPE_TX : HNAE3_RING_TYPE_RX;
4533 	u32 field_value = is_tx ? HNAE3_RING_GL_TX : HNAE3_RING_GL_RX;
4534 	struct hnae3_ring_chain_node *cur_chain = *head;
4535 	struct pci_dev *pdev = tqp_vector->handle->pdev;
4536 	struct hnae3_ring_chain_node *chain;
4537 	struct hns3_enet_ring *ring;
4538 
4539 	ring = is_tx ? tqp_vector->tx_group.ring : tqp_vector->rx_group.ring;
4540 
4541 	if (cur_chain) {
4542 		while (cur_chain->next)
4543 			cur_chain = cur_chain->next;
4544 	}
4545 
4546 	while (ring) {
4547 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
4548 		if (!chain)
4549 			return -ENOMEM;
4550 		if (cur_chain)
4551 			cur_chain->next = chain;
4552 		else
4553 			*head = chain;
4554 		chain->tqp_index = ring->tqp->tqp_index;
4555 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
4556 				bit_value);
4557 		hnae3_set_field(chain->int_gl_idx,
4558 				HNAE3_RING_GL_IDX_M,
4559 				HNAE3_RING_GL_IDX_S, field_value);
4560 
4561 		cur_chain = chain;
4562 
4563 		ring = ring->next;
4564 	}
4565 
4566 	return 0;
4567 }
4568 
4569 static struct hnae3_ring_chain_node *
hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector * tqp_vector)4570 hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector)
4571 {
4572 	struct pci_dev *pdev = tqp_vector->handle->pdev;
4573 	struct hnae3_ring_chain_node *cur_chain = NULL;
4574 	struct hnae3_ring_chain_node *chain;
4575 
4576 	if (hns3_create_ring_chain(tqp_vector, &cur_chain, true))
4577 		goto err_free_chain;
4578 
4579 	if (hns3_create_ring_chain(tqp_vector, &cur_chain, false))
4580 		goto err_free_chain;
4581 
4582 	return cur_chain;
4583 
4584 err_free_chain:
4585 	while (cur_chain) {
4586 		chain = cur_chain->next;
4587 		devm_kfree(&pdev->dev, cur_chain);
4588 		cur_chain = chain;
4589 	}
4590 
4591 	return NULL;
4592 }
4593 
hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector * tqp_vector,struct hnae3_ring_chain_node * head)4594 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4595 					struct hnae3_ring_chain_node *head)
4596 {
4597 	struct pci_dev *pdev = tqp_vector->handle->pdev;
4598 	struct hnae3_ring_chain_node *chain_tmp, *chain;
4599 
4600 	chain = head;
4601 
4602 	while (chain) {
4603 		chain_tmp = chain->next;
4604 		devm_kfree(&pdev->dev, chain);
4605 		chain = chain_tmp;
4606 	}
4607 }
4608 
hns3_add_ring_to_group(struct hns3_enet_ring_group * group,struct hns3_enet_ring * ring)4609 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
4610 				   struct hns3_enet_ring *ring)
4611 {
4612 	ring->next = group->ring;
4613 	group->ring = ring;
4614 
4615 	group->count++;
4616 }
4617 
hns3_nic_set_cpumask(struct hns3_nic_priv * priv)4618 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
4619 {
4620 	struct pci_dev *pdev = priv->ae_handle->pdev;
4621 	struct hns3_enet_tqp_vector *tqp_vector;
4622 	int num_vectors = priv->vector_num;
4623 	int numa_node;
4624 	int vector_i;
4625 
4626 	numa_node = dev_to_node(&pdev->dev);
4627 
4628 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
4629 		tqp_vector = &priv->tqp_vector[vector_i];
4630 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
4631 				&tqp_vector->affinity_mask);
4632 	}
4633 }
4634 
hns3_rx_dim_work(struct work_struct * work)4635 static void hns3_rx_dim_work(struct work_struct *work)
4636 {
4637 	struct dim *dim = container_of(work, struct dim, work);
4638 	struct hns3_enet_ring_group *group = container_of(dim,
4639 		struct hns3_enet_ring_group, dim);
4640 	struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4641 	struct dim_cq_moder cur_moder =
4642 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
4643 
4644 	hns3_set_vector_coalesce_rx_gl(group->ring->tqp_vector, cur_moder.usec);
4645 	tqp_vector->rx_group.coal.int_gl = cur_moder.usec;
4646 
4647 	if (cur_moder.pkts < tqp_vector->rx_group.coal.int_ql_max) {
4648 		hns3_set_vector_coalesce_rx_ql(tqp_vector, cur_moder.pkts);
4649 		tqp_vector->rx_group.coal.int_ql = cur_moder.pkts;
4650 	}
4651 
4652 	dim->state = DIM_START_MEASURE;
4653 }
4654 
hns3_tx_dim_work(struct work_struct * work)4655 static void hns3_tx_dim_work(struct work_struct *work)
4656 {
4657 	struct dim *dim = container_of(work, struct dim, work);
4658 	struct hns3_enet_ring_group *group = container_of(dim,
4659 		struct hns3_enet_ring_group, dim);
4660 	struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4661 	struct dim_cq_moder cur_moder =
4662 		net_dim_get_tx_moderation(dim->mode, dim->profile_ix);
4663 
4664 	hns3_set_vector_coalesce_tx_gl(tqp_vector, cur_moder.usec);
4665 	tqp_vector->tx_group.coal.int_gl = cur_moder.usec;
4666 
4667 	if (cur_moder.pkts < tqp_vector->tx_group.coal.int_ql_max) {
4668 		hns3_set_vector_coalesce_tx_ql(tqp_vector, cur_moder.pkts);
4669 		tqp_vector->tx_group.coal.int_ql = cur_moder.pkts;
4670 	}
4671 
4672 	dim->state = DIM_START_MEASURE;
4673 }
4674 
hns3_nic_init_dim(struct hns3_enet_tqp_vector * tqp_vector)4675 static void hns3_nic_init_dim(struct hns3_enet_tqp_vector *tqp_vector)
4676 {
4677 	INIT_WORK(&tqp_vector->rx_group.dim.work, hns3_rx_dim_work);
4678 	INIT_WORK(&tqp_vector->tx_group.dim.work, hns3_tx_dim_work);
4679 }
4680 
hns3_nic_init_vector_data(struct hns3_nic_priv * priv)4681 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
4682 {
4683 	struct hnae3_handle *h = priv->ae_handle;
4684 	struct hns3_enet_tqp_vector *tqp_vector;
4685 	int ret;
4686 	int i;
4687 
4688 	hns3_nic_set_cpumask(priv);
4689 
4690 	for (i = 0; i < priv->vector_num; i++) {
4691 		tqp_vector = &priv->tqp_vector[i];
4692 		hns3_vector_coalesce_init_hw(tqp_vector, priv);
4693 		tqp_vector->num_tqps = 0;
4694 		hns3_nic_init_dim(tqp_vector);
4695 	}
4696 
4697 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4698 		u16 vector_i = i % priv->vector_num;
4699 		u16 tqp_num = h->kinfo.num_tqps;
4700 
4701 		tqp_vector = &priv->tqp_vector[vector_i];
4702 
4703 		hns3_add_ring_to_group(&tqp_vector->tx_group,
4704 				       &priv->ring[i]);
4705 
4706 		hns3_add_ring_to_group(&tqp_vector->rx_group,
4707 				       &priv->ring[i + tqp_num]);
4708 
4709 		priv->ring[i].tqp_vector = tqp_vector;
4710 		priv->ring[i + tqp_num].tqp_vector = tqp_vector;
4711 		tqp_vector->num_tqps++;
4712 	}
4713 
4714 	for (i = 0; i < priv->vector_num; i++) {
4715 		struct hnae3_ring_chain_node *vector_ring_chain;
4716 
4717 		tqp_vector = &priv->tqp_vector[i];
4718 
4719 		tqp_vector->rx_group.total_bytes = 0;
4720 		tqp_vector->rx_group.total_packets = 0;
4721 		tqp_vector->tx_group.total_bytes = 0;
4722 		tqp_vector->tx_group.total_packets = 0;
4723 		tqp_vector->handle = h;
4724 
4725 		vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector);
4726 		if (!vector_ring_chain) {
4727 			ret = -ENOMEM;
4728 			goto map_ring_fail;
4729 		}
4730 
4731 		ret = h->ae_algo->ops->map_ring_to_vector(h,
4732 			tqp_vector->vector_irq, vector_ring_chain);
4733 
4734 		hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain);
4735 
4736 		if (ret)
4737 			goto map_ring_fail;
4738 
4739 		netif_napi_add(priv->netdev, &tqp_vector->napi,
4740 			       hns3_nic_common_poll);
4741 	}
4742 
4743 	return 0;
4744 
4745 map_ring_fail:
4746 	while (i--)
4747 		netif_napi_del(&priv->tqp_vector[i].napi);
4748 
4749 	return ret;
4750 }
4751 
hns3_nic_init_coal_cfg(struct hns3_nic_priv * priv)4752 static void hns3_nic_init_coal_cfg(struct hns3_nic_priv *priv)
4753 {
4754 	struct hnae3_ae_dev *ae_dev = hns3_get_ae_dev(priv->ae_handle);
4755 	struct hns3_enet_coalesce *tx_coal = &priv->tx_coal;
4756 	struct hns3_enet_coalesce *rx_coal = &priv->rx_coal;
4757 
4758 	/* initialize the configuration for interrupt coalescing.
4759 	 * 1. GL (Interrupt Gap Limiter)
4760 	 * 2. RL (Interrupt Rate Limiter)
4761 	 * 3. QL (Interrupt Quantity Limiter)
4762 	 *
4763 	 * Default: enable interrupt coalescing self-adaptive and GL
4764 	 */
4765 	tx_coal->adapt_enable = 1;
4766 	rx_coal->adapt_enable = 1;
4767 
4768 	tx_coal->int_gl = HNS3_INT_GL_50K;
4769 	rx_coal->int_gl = HNS3_INT_GL_50K;
4770 
4771 	rx_coal->flow_level = HNS3_FLOW_LOW;
4772 	tx_coal->flow_level = HNS3_FLOW_LOW;
4773 
4774 	if (ae_dev->dev_specs.int_ql_max) {
4775 		tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4776 		rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4777 	}
4778 }
4779 
hns3_nic_alloc_vector_data(struct hns3_nic_priv * priv)4780 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
4781 {
4782 	struct hnae3_handle *h = priv->ae_handle;
4783 	struct hns3_enet_tqp_vector *tqp_vector;
4784 	struct hnae3_vector_info *vector;
4785 	struct pci_dev *pdev = h->pdev;
4786 	u16 tqp_num = h->kinfo.num_tqps;
4787 	u16 vector_num;
4788 	int ret = 0;
4789 	u16 i;
4790 
4791 	/* RSS size, cpu online and vector_num should be the same */
4792 	/* Should consider 2p/4p later */
4793 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
4794 
4795 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
4796 			      GFP_KERNEL);
4797 	if (!vector)
4798 		return -ENOMEM;
4799 
4800 	/* save the actual available vector number */
4801 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
4802 
4803 	priv->vector_num = vector_num;
4804 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
4805 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
4806 			     GFP_KERNEL);
4807 	if (!priv->tqp_vector) {
4808 		ret = -ENOMEM;
4809 		goto out;
4810 	}
4811 
4812 	for (i = 0; i < priv->vector_num; i++) {
4813 		tqp_vector = &priv->tqp_vector[i];
4814 		tqp_vector->idx = i;
4815 		tqp_vector->mask_addr = vector[i].io_addr;
4816 		tqp_vector->vector_irq = vector[i].vector;
4817 		hns3_vector_coalesce_init(tqp_vector, priv);
4818 	}
4819 
4820 out:
4821 	devm_kfree(&pdev->dev, vector);
4822 	return ret;
4823 }
4824 
hns3_clear_ring_group(struct hns3_enet_ring_group * group)4825 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
4826 {
4827 	group->ring = NULL;
4828 	group->count = 0;
4829 }
4830 
hns3_nic_uninit_vector_data(struct hns3_nic_priv * priv)4831 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
4832 {
4833 	struct hnae3_ring_chain_node *vector_ring_chain;
4834 	struct hnae3_handle *h = priv->ae_handle;
4835 	struct hns3_enet_tqp_vector *tqp_vector;
4836 	int i;
4837 
4838 	for (i = 0; i < priv->vector_num; i++) {
4839 		tqp_vector = &priv->tqp_vector[i];
4840 
4841 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
4842 			continue;
4843 
4844 		/* Since the mapping can be overwritten, when fail to get the
4845 		 * chain between vector and ring, we should go on to deal with
4846 		 * the remaining options.
4847 		 */
4848 		vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector);
4849 		if (!vector_ring_chain)
4850 			dev_warn(priv->dev, "failed to get ring chain\n");
4851 
4852 		h->ae_algo->ops->unmap_ring_from_vector(h,
4853 			tqp_vector->vector_irq, vector_ring_chain);
4854 
4855 		hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain);
4856 
4857 		hns3_clear_ring_group(&tqp_vector->rx_group);
4858 		hns3_clear_ring_group(&tqp_vector->tx_group);
4859 		netif_napi_del(&priv->tqp_vector[i].napi);
4860 	}
4861 }
4862 
hns3_nic_dealloc_vector_data(struct hns3_nic_priv * priv)4863 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
4864 {
4865 	struct hnae3_handle *h = priv->ae_handle;
4866 	struct pci_dev *pdev = h->pdev;
4867 	int i, ret;
4868 
4869 	for (i = 0; i < priv->vector_num; i++) {
4870 		struct hns3_enet_tqp_vector *tqp_vector;
4871 
4872 		tqp_vector = &priv->tqp_vector[i];
4873 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
4874 		if (ret)
4875 			return;
4876 	}
4877 
4878 	devm_kfree(&pdev->dev, priv->tqp_vector);
4879 }
4880 
hns3_update_tx_spare_buf_config(struct hns3_nic_priv * priv)4881 static void hns3_update_tx_spare_buf_config(struct hns3_nic_priv *priv)
4882 {
4883 #define HNS3_MIN_SPARE_BUF_SIZE (2 * 1024 * 1024)
4884 #define HNS3_MAX_PACKET_SIZE (64 * 1024)
4885 
4886 	struct iommu_domain *domain = iommu_get_domain_for_dev(priv->dev);
4887 	struct hnae3_ae_dev *ae_dev = hns3_get_ae_dev(priv->ae_handle);
4888 	struct hnae3_handle *handle = priv->ae_handle;
4889 
4890 	if (ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3)
4891 		return;
4892 
4893 	if (!(domain && iommu_is_dma_domain(domain)))
4894 		return;
4895 
4896 	priv->min_tx_copybreak = HNS3_MAX_PACKET_SIZE;
4897 	priv->min_tx_spare_buf_size = HNS3_MIN_SPARE_BUF_SIZE;
4898 
4899 	if (priv->tx_copybreak < priv->min_tx_copybreak)
4900 		priv->tx_copybreak = priv->min_tx_copybreak;
4901 	if (handle->kinfo.tx_spare_buf_size < priv->min_tx_spare_buf_size)
4902 		handle->kinfo.tx_spare_buf_size = priv->min_tx_spare_buf_size;
4903 }
4904 
hns3_ring_get_cfg(struct hnae3_queue * q,struct hns3_nic_priv * priv,unsigned int ring_type)4905 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
4906 			      unsigned int ring_type)
4907 {
4908 	int queue_num = priv->ae_handle->kinfo.num_tqps;
4909 	struct hns3_enet_ring *ring;
4910 	int desc_num;
4911 
4912 	if (ring_type == HNAE3_RING_TYPE_TX) {
4913 		ring = &priv->ring[q->tqp_index];
4914 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
4915 		ring->queue_index = q->tqp_index;
4916 		ring->tx_copybreak = priv->tx_copybreak;
4917 		ring->last_to_use = 0;
4918 	} else {
4919 		ring = &priv->ring[q->tqp_index + queue_num];
4920 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
4921 		ring->queue_index = q->tqp_index;
4922 		ring->rx_copybreak = priv->rx_copybreak;
4923 	}
4924 
4925 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
4926 
4927 	ring->tqp = q;
4928 	ring->desc = NULL;
4929 	ring->desc_cb = NULL;
4930 	ring->dev = priv->dev;
4931 	ring->desc_dma_addr = 0;
4932 	ring->buf_size = q->buf_size;
4933 	ring->desc_num = desc_num;
4934 	ring->next_to_use = 0;
4935 	ring->next_to_clean = 0;
4936 }
4937 
hns3_queue_to_ring(struct hnae3_queue * tqp,struct hns3_nic_priv * priv)4938 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
4939 			       struct hns3_nic_priv *priv)
4940 {
4941 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
4942 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
4943 }
4944 
hns3_get_ring_config(struct hns3_nic_priv * priv)4945 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
4946 {
4947 	struct hnae3_handle *h = priv->ae_handle;
4948 	struct pci_dev *pdev = h->pdev;
4949 	int i;
4950 
4951 	priv->ring = devm_kzalloc(&pdev->dev,
4952 				  array3_size(h->kinfo.num_tqps,
4953 					      sizeof(*priv->ring), 2),
4954 				  GFP_KERNEL);
4955 	if (!priv->ring)
4956 		return -ENOMEM;
4957 
4958 	for (i = 0; i < h->kinfo.num_tqps; i++)
4959 		hns3_queue_to_ring(h->kinfo.tqp[i], priv);
4960 
4961 	return 0;
4962 }
4963 
hns3_put_ring_config(struct hns3_nic_priv * priv)4964 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
4965 {
4966 	if (!priv->ring)
4967 		return;
4968 
4969 	devm_kfree(priv->dev, priv->ring);
4970 	priv->ring = NULL;
4971 }
4972 
hns3_alloc_page_pool(struct hns3_enet_ring * ring)4973 static void hns3_alloc_page_pool(struct hns3_enet_ring *ring)
4974 {
4975 	struct page_pool_params pp_params = {
4976 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
4977 		.order = hns3_page_order(ring),
4978 		.pool_size = ring->desc_num * hns3_buf_size(ring) /
4979 				(PAGE_SIZE << hns3_page_order(ring)),
4980 		.nid = dev_to_node(ring_to_dev(ring)),
4981 		.dev = ring_to_dev(ring),
4982 		.dma_dir = DMA_FROM_DEVICE,
4983 		.offset = 0,
4984 		.max_len = PAGE_SIZE << hns3_page_order(ring),
4985 	};
4986 
4987 	ring->page_pool = page_pool_create(&pp_params);
4988 	if (IS_ERR(ring->page_pool)) {
4989 		dev_warn(ring_to_dev(ring), "page pool creation failed: %ld\n",
4990 			 PTR_ERR(ring->page_pool));
4991 		ring->page_pool = NULL;
4992 	}
4993 }
4994 
hns3_alloc_ring_memory(struct hns3_enet_ring * ring)4995 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
4996 {
4997 	int ret;
4998 
4999 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
5000 		return -EINVAL;
5001 
5002 	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
5003 				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
5004 	if (!ring->desc_cb) {
5005 		ret = -ENOMEM;
5006 		goto out;
5007 	}
5008 
5009 	ret = hns3_alloc_desc(ring);
5010 	if (ret)
5011 		goto out_with_desc_cb;
5012 
5013 	if (!HNAE3_IS_TX_RING(ring)) {
5014 		if (page_pool_enabled)
5015 			hns3_alloc_page_pool(ring);
5016 
5017 		ret = hns3_alloc_ring_buffers(ring);
5018 		if (ret)
5019 			goto out_with_desc;
5020 	} else {
5021 		hns3_init_tx_spare_buffer(ring);
5022 	}
5023 
5024 	return 0;
5025 
5026 out_with_desc:
5027 	hns3_free_desc(ring);
5028 out_with_desc_cb:
5029 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
5030 	ring->desc_cb = NULL;
5031 out:
5032 	return ret;
5033 }
5034 
hns3_fini_ring(struct hns3_enet_ring * ring)5035 void hns3_fini_ring(struct hns3_enet_ring *ring)
5036 {
5037 	hns3_free_desc(ring);
5038 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
5039 	ring->desc_cb = NULL;
5040 	ring->next_to_clean = 0;
5041 	ring->next_to_use = 0;
5042 	ring->last_to_use = 0;
5043 	ring->pending_buf = 0;
5044 	if (!HNAE3_IS_TX_RING(ring) && ring->skb) {
5045 		dev_kfree_skb_any(ring->skb);
5046 		ring->skb = NULL;
5047 	} else if (HNAE3_IS_TX_RING(ring) && ring->tx_spare) {
5048 		struct hns3_tx_spare *tx_spare = ring->tx_spare;
5049 
5050 		dma_unmap_page(ring_to_dev(ring), tx_spare->dma, tx_spare->len,
5051 			       DMA_TO_DEVICE);
5052 		free_pages((unsigned long)tx_spare->buf,
5053 			   get_order(tx_spare->len));
5054 		devm_kfree(ring_to_dev(ring), tx_spare);
5055 		ring->tx_spare = NULL;
5056 	}
5057 
5058 	if (!HNAE3_IS_TX_RING(ring) && ring->page_pool) {
5059 		page_pool_destroy(ring->page_pool);
5060 		ring->page_pool = NULL;
5061 	}
5062 }
5063 
hns3_buf_size2type(u32 buf_size)5064 static int hns3_buf_size2type(u32 buf_size)
5065 {
5066 	int bd_size_type;
5067 
5068 	switch (buf_size) {
5069 	case 512:
5070 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
5071 		break;
5072 	case 1024:
5073 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
5074 		break;
5075 	case 2048:
5076 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
5077 		break;
5078 	case 4096:
5079 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
5080 		break;
5081 	default:
5082 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
5083 	}
5084 
5085 	return bd_size_type;
5086 }
5087 
hns3_init_ring_hw(struct hns3_enet_ring * ring)5088 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
5089 {
5090 	dma_addr_t dma = ring->desc_dma_addr;
5091 	struct hnae3_queue *q = ring->tqp;
5092 
5093 	if (!HNAE3_IS_TX_RING(ring)) {
5094 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
5095 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
5096 			       (u32)((dma >> 31) >> 1));
5097 
5098 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
5099 			       hns3_buf_size2type(ring->buf_size));
5100 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
5101 			       ring->desc_num / 8 - 1);
5102 	} else {
5103 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
5104 			       (u32)dma);
5105 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
5106 			       (u32)((dma >> 31) >> 1));
5107 
5108 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
5109 			       ring->desc_num / 8 - 1);
5110 	}
5111 }
5112 
hns3_init_tx_ring_tc(struct hns3_nic_priv * priv)5113 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
5114 {
5115 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
5116 	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
5117 	int i;
5118 
5119 	for (i = 0; i < tc_info->num_tc; i++) {
5120 		int j;
5121 
5122 		for (j = 0; j < tc_info->tqp_count[i]; j++) {
5123 			struct hnae3_queue *q;
5124 
5125 			q = priv->ring[tc_info->tqp_offset[i] + j].tqp;
5126 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i);
5127 		}
5128 	}
5129 }
5130 
hns3_init_all_ring(struct hns3_nic_priv * priv)5131 int hns3_init_all_ring(struct hns3_nic_priv *priv)
5132 {
5133 	struct hnae3_handle *h = priv->ae_handle;
5134 	int ring_num = h->kinfo.num_tqps * 2;
5135 	int i, j;
5136 	int ret;
5137 
5138 	hns3_update_tx_spare_buf_config(priv);
5139 	for (i = 0; i < ring_num; i++) {
5140 		ret = hns3_alloc_ring_memory(&priv->ring[i]);
5141 		if (ret) {
5142 			dev_err(priv->dev,
5143 				"Alloc ring memory fail! ret=%d\n", ret);
5144 			goto out_when_alloc_ring_memory;
5145 		}
5146 
5147 		u64_stats_init(&priv->ring[i].syncp);
5148 		cond_resched();
5149 	}
5150 
5151 	return 0;
5152 
5153 out_when_alloc_ring_memory:
5154 	for (j = i - 1; j >= 0; j--)
5155 		hns3_fini_ring(&priv->ring[j]);
5156 
5157 	return -ENOMEM;
5158 }
5159 
hns3_uninit_all_ring(struct hns3_nic_priv * priv)5160 static void hns3_uninit_all_ring(struct hns3_nic_priv *priv)
5161 {
5162 	struct hnae3_handle *h = priv->ae_handle;
5163 	int i;
5164 
5165 	for (i = 0; i < h->kinfo.num_tqps; i++) {
5166 		hns3_fini_ring(&priv->ring[i]);
5167 		hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
5168 	}
5169 }
5170 
5171 /* Set mac addr if it is configured. or leave it to the AE driver */
hns3_init_mac_addr(struct net_device * netdev)5172 static int hns3_init_mac_addr(struct net_device *netdev)
5173 {
5174 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5175 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
5176 	struct hnae3_handle *h = priv->ae_handle;
5177 	u8 mac_addr_temp[ETH_ALEN] = {0};
5178 	int ret = 0;
5179 
5180 	if (h->ae_algo->ops->get_mac_addr)
5181 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
5182 
5183 	/* Check if the MAC address is valid, if not get a random one */
5184 	if (!is_valid_ether_addr(mac_addr_temp)) {
5185 		eth_hw_addr_random(netdev);
5186 		hnae3_format_mac_addr(format_mac_addr, netdev->dev_addr);
5187 		dev_warn(priv->dev, "using random MAC address %s\n",
5188 			 format_mac_addr);
5189 	} else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
5190 		eth_hw_addr_set(netdev, mac_addr_temp);
5191 		ether_addr_copy(netdev->perm_addr, mac_addr_temp);
5192 	} else {
5193 		return 0;
5194 	}
5195 
5196 	if (h->ae_algo->ops->set_mac_addr)
5197 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
5198 
5199 	return ret;
5200 }
5201 
hns3_init_phy(struct net_device * netdev)5202 static int hns3_init_phy(struct net_device *netdev)
5203 {
5204 	struct hnae3_handle *h = hns3_get_handle(netdev);
5205 	int ret = 0;
5206 
5207 	if (h->ae_algo->ops->mac_connect_phy)
5208 		ret = h->ae_algo->ops->mac_connect_phy(h);
5209 
5210 	return ret;
5211 }
5212 
hns3_uninit_phy(struct net_device * netdev)5213 static void hns3_uninit_phy(struct net_device *netdev)
5214 {
5215 	struct hnae3_handle *h = hns3_get_handle(netdev);
5216 
5217 	if (h->ae_algo->ops->mac_disconnect_phy)
5218 		h->ae_algo->ops->mac_disconnect_phy(h);
5219 }
5220 
hns3_client_start(struct hnae3_handle * handle)5221 static int hns3_client_start(struct hnae3_handle *handle)
5222 {
5223 	if (!handle->ae_algo->ops->client_start)
5224 		return 0;
5225 
5226 	return handle->ae_algo->ops->client_start(handle);
5227 }
5228 
hns3_client_stop(struct hnae3_handle * handle)5229 static void hns3_client_stop(struct hnae3_handle *handle)
5230 {
5231 	if (!handle->ae_algo->ops->client_stop)
5232 		return;
5233 
5234 	handle->ae_algo->ops->client_stop(handle);
5235 }
5236 
hns3_info_show(struct hns3_nic_priv * priv)5237 static void hns3_info_show(struct hns3_nic_priv *priv)
5238 {
5239 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
5240 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
5241 
5242 	hnae3_format_mac_addr(format_mac_addr, priv->netdev->dev_addr);
5243 	dev_info(priv->dev, "MAC address: %s\n", format_mac_addr);
5244 	dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
5245 	dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
5246 	dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
5247 	dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
5248 	dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
5249 	dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
5250 	dev_info(priv->dev, "Total number of enabled TCs: %u\n",
5251 		 kinfo->tc_info.num_tc);
5252 	dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
5253 }
5254 
hns3_set_cq_period_mode(struct hns3_nic_priv * priv,enum dim_cq_period_mode mode,bool is_tx)5255 static void hns3_set_cq_period_mode(struct hns3_nic_priv *priv,
5256 				    enum dim_cq_period_mode mode, bool is_tx)
5257 {
5258 	struct hnae3_ae_dev *ae_dev = hns3_get_ae_dev(priv->ae_handle);
5259 	struct hnae3_handle *handle = priv->ae_handle;
5260 	int i;
5261 
5262 	if (is_tx) {
5263 		priv->tx_cqe_mode = mode;
5264 
5265 		for (i = 0; i < priv->vector_num; i++)
5266 			priv->tqp_vector[i].tx_group.dim.mode = mode;
5267 	} else {
5268 		priv->rx_cqe_mode = mode;
5269 
5270 		for (i = 0; i < priv->vector_num; i++)
5271 			priv->tqp_vector[i].rx_group.dim.mode = mode;
5272 	}
5273 
5274 	if (hnae3_ae_dev_cq_supported(ae_dev)) {
5275 		u32 new_mode;
5276 		u64 reg;
5277 
5278 		new_mode = (mode == DIM_CQ_PERIOD_MODE_START_FROM_CQE) ?
5279 			HNS3_CQ_MODE_CQE : HNS3_CQ_MODE_EQE;
5280 		reg = is_tx ? HNS3_GL1_CQ_MODE_REG : HNS3_GL0_CQ_MODE_REG;
5281 
5282 		writel(new_mode, handle->kinfo.io_base + reg);
5283 	}
5284 }
5285 
hns3_cq_period_mode_init(struct hns3_nic_priv * priv,enum dim_cq_period_mode tx_mode,enum dim_cq_period_mode rx_mode)5286 void hns3_cq_period_mode_init(struct hns3_nic_priv *priv,
5287 			      enum dim_cq_period_mode tx_mode,
5288 			      enum dim_cq_period_mode rx_mode)
5289 {
5290 	hns3_set_cq_period_mode(priv, tx_mode, true);
5291 	hns3_set_cq_period_mode(priv, rx_mode, false);
5292 }
5293 
hns3_state_init(struct hnae3_handle * handle)5294 static void hns3_state_init(struct hnae3_handle *handle)
5295 {
5296 	struct hnae3_ae_dev *ae_dev = hns3_get_ae_dev(handle);
5297 	struct net_device *netdev = handle->kinfo.netdev;
5298 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5299 
5300 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5301 
5302 	if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
5303 		set_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state);
5304 
5305 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
5306 		set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags);
5307 
5308 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
5309 		set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state);
5310 
5311 	if (hnae3_ae_dev_rxd_adv_layout_supported(ae_dev))
5312 		set_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state);
5313 }
5314 
hns3_state_uninit(struct hnae3_handle * handle)5315 static void hns3_state_uninit(struct hnae3_handle *handle)
5316 {
5317 	struct hns3_nic_priv *priv  = handle->priv;
5318 
5319 	clear_bit(HNS3_NIC_STATE_INITED, &priv->state);
5320 }
5321 
hns3_client_init(struct hnae3_handle * handle)5322 static int hns3_client_init(struct hnae3_handle *handle)
5323 {
5324 	struct pci_dev *pdev = handle->pdev;
5325 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
5326 	u16 alloc_tqps, max_rss_size;
5327 	struct hns3_nic_priv *priv;
5328 	struct net_device *netdev;
5329 	int ret;
5330 
5331 	ae_dev->handle = handle;
5332 
5333 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
5334 						    &max_rss_size);
5335 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
5336 	if (!netdev)
5337 		return -ENOMEM;
5338 
5339 	priv = netdev_priv(netdev);
5340 	priv->dev = &pdev->dev;
5341 	priv->netdev = netdev;
5342 	priv->ae_handle = handle;
5343 	priv->tx_timeout_count = 0;
5344 	priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
5345 	priv->min_tx_copybreak = 0;
5346 	priv->min_tx_spare_buf_size = 0;
5347 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
5348 
5349 	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
5350 
5351 	handle->kinfo.netdev = netdev;
5352 	handle->priv = (void *)priv;
5353 
5354 	hns3_init_mac_addr(netdev);
5355 
5356 	hns3_set_default_feature(netdev);
5357 
5358 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
5359 	netdev->priv_flags |= IFF_UNICAST_FLT;
5360 	netdev->netdev_ops = &hns3_nic_netdev_ops;
5361 	SET_NETDEV_DEV(netdev, &pdev->dev);
5362 	hns3_ethtool_set_ops(netdev);
5363 
5364 	/* Carrier off reporting is important to ethtool even BEFORE open */
5365 	netif_carrier_off(netdev);
5366 
5367 	ret = hns3_get_ring_config(priv);
5368 	if (ret) {
5369 		ret = -ENOMEM;
5370 		goto out_get_ring_cfg;
5371 	}
5372 
5373 	hns3_nic_init_coal_cfg(priv);
5374 
5375 	ret = hns3_nic_alloc_vector_data(priv);
5376 	if (ret) {
5377 		ret = -ENOMEM;
5378 		goto out_alloc_vector_data;
5379 	}
5380 
5381 	ret = hns3_nic_init_vector_data(priv);
5382 	if (ret) {
5383 		ret = -ENOMEM;
5384 		goto out_init_vector_data;
5385 	}
5386 
5387 	ret = hns3_init_all_ring(priv);
5388 	if (ret) {
5389 		ret = -ENOMEM;
5390 		goto out_init_ring;
5391 	}
5392 
5393 	hns3_cq_period_mode_init(priv, DIM_CQ_PERIOD_MODE_START_FROM_EQE,
5394 				 DIM_CQ_PERIOD_MODE_START_FROM_EQE);
5395 
5396 	ret = hns3_init_phy(netdev);
5397 	if (ret)
5398 		goto out_init_phy;
5399 
5400 	/* the device can work without cpu rmap, only aRFS needs it */
5401 	ret = hns3_set_rx_cpu_rmap(netdev);
5402 	if (ret)
5403 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5404 
5405 	ret = hns3_nic_init_irq(priv);
5406 	if (ret) {
5407 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5408 		hns3_free_rx_cpu_rmap(netdev);
5409 		goto out_init_irq_fail;
5410 	}
5411 
5412 	ret = hns3_client_start(handle);
5413 	if (ret) {
5414 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5415 		goto out_client_start;
5416 	}
5417 
5418 	hns3_dcbnl_setup(handle);
5419 
5420 	ret = hns3_dbg_init(handle);
5421 	if (ret) {
5422 		dev_err(priv->dev, "failed to init debugfs, ret = %d\n",
5423 			ret);
5424 		goto out_client_start;
5425 	}
5426 
5427 	netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size);
5428 
5429 	hns3_state_init(handle);
5430 
5431 	ret = register_netdev(netdev);
5432 	if (ret) {
5433 		dev_err(priv->dev, "probe register netdev fail!\n");
5434 		goto out_reg_netdev_fail;
5435 	}
5436 
5437 	if (netif_msg_drv(handle))
5438 		hns3_info_show(priv);
5439 
5440 	return ret;
5441 
5442 out_reg_netdev_fail:
5443 	hns3_state_uninit(handle);
5444 	hns3_dbg_uninit(handle);
5445 	hns3_client_stop(handle);
5446 out_client_start:
5447 	hns3_free_rx_cpu_rmap(netdev);
5448 	hns3_nic_uninit_irq(priv);
5449 out_init_irq_fail:
5450 	hns3_uninit_phy(netdev);
5451 out_init_phy:
5452 	hns3_uninit_all_ring(priv);
5453 out_init_ring:
5454 	hns3_nic_uninit_vector_data(priv);
5455 out_init_vector_data:
5456 	hns3_nic_dealloc_vector_data(priv);
5457 out_alloc_vector_data:
5458 	priv->ring = NULL;
5459 out_get_ring_cfg:
5460 	priv->ae_handle = NULL;
5461 	free_netdev(netdev);
5462 	return ret;
5463 }
5464 
hns3_client_uninit(struct hnae3_handle * handle,bool reset)5465 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
5466 {
5467 	struct net_device *netdev = handle->kinfo.netdev;
5468 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5469 
5470 	if (netdev->reg_state != NETREG_UNINITIALIZED)
5471 		unregister_netdev(netdev);
5472 
5473 	hns3_client_stop(handle);
5474 
5475 	hns3_uninit_phy(netdev);
5476 
5477 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5478 		netdev_warn(netdev, "already uninitialized\n");
5479 		goto out_netdev_free;
5480 	}
5481 
5482 	hns3_free_rx_cpu_rmap(netdev);
5483 
5484 	hns3_nic_uninit_irq(priv);
5485 
5486 	hns3_clear_all_ring(handle, true);
5487 
5488 	hns3_nic_uninit_vector_data(priv);
5489 
5490 	hns3_nic_dealloc_vector_data(priv);
5491 
5492 	hns3_uninit_all_ring(priv);
5493 
5494 	hns3_put_ring_config(priv);
5495 
5496 out_netdev_free:
5497 	hns3_dbg_uninit(handle);
5498 	free_netdev(netdev);
5499 }
5500 
hns3_link_status_change(struct hnae3_handle * handle,bool linkup)5501 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
5502 {
5503 	struct net_device *netdev = handle->kinfo.netdev;
5504 
5505 	if (!netdev)
5506 		return;
5507 
5508 	if (linkup) {
5509 		netif_tx_wake_all_queues(netdev);
5510 		netif_carrier_on(netdev);
5511 		if (netif_msg_link(handle))
5512 			netdev_info(netdev, "link up\n");
5513 	} else {
5514 		netif_carrier_off(netdev);
5515 		netif_tx_stop_all_queues(netdev);
5516 		if (netif_msg_link(handle))
5517 			netdev_info(netdev, "link down\n");
5518 	}
5519 }
5520 
hns3_clear_tx_ring(struct hns3_enet_ring * ring)5521 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
5522 {
5523 	while (ring->next_to_clean != ring->next_to_use) {
5524 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
5525 		hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
5526 		ring_ptr_move_fw(ring, next_to_clean);
5527 	}
5528 
5529 	ring->pending_buf = 0;
5530 }
5531 
hns3_clear_rx_ring(struct hns3_enet_ring * ring)5532 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
5533 {
5534 	struct hns3_desc_cb res_cbs;
5535 	int ret;
5536 
5537 	while (ring->next_to_use != ring->next_to_clean) {
5538 		/* When a buffer is not reused, it's memory has been
5539 		 * freed in hns3_handle_rx_bd or will be freed by
5540 		 * stack, so we need to replace the buffer here.
5541 		 */
5542 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5543 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
5544 			if (ret) {
5545 				hns3_ring_stats_update(ring, sw_err_cnt);
5546 				/* if alloc new buffer fail, exit directly
5547 				 * and reclear in up flow.
5548 				 */
5549 				netdev_warn(ring_to_netdev(ring),
5550 					    "reserve buffer map failed, ret = %d\n",
5551 					    ret);
5552 				return ret;
5553 			}
5554 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
5555 		}
5556 		ring_ptr_move_fw(ring, next_to_use);
5557 	}
5558 
5559 	/* Free the pending skb in rx ring */
5560 	if (ring->skb) {
5561 		dev_kfree_skb_any(ring->skb);
5562 		ring->skb = NULL;
5563 		ring->pending_buf = 0;
5564 	}
5565 
5566 	return 0;
5567 }
5568 
hns3_force_clear_rx_ring(struct hns3_enet_ring * ring)5569 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
5570 {
5571 	while (ring->next_to_use != ring->next_to_clean) {
5572 		/* When a buffer is not reused, it's memory has been
5573 		 * freed in hns3_handle_rx_bd or will be freed by
5574 		 * stack, so only need to unmap the buffer here.
5575 		 */
5576 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5577 			hns3_unmap_buffer(ring,
5578 					  &ring->desc_cb[ring->next_to_use]);
5579 			ring->desc_cb[ring->next_to_use].dma = 0;
5580 		}
5581 
5582 		ring_ptr_move_fw(ring, next_to_use);
5583 	}
5584 }
5585 
hns3_clear_all_ring(struct hnae3_handle * h,bool force)5586 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
5587 {
5588 	struct net_device *ndev = h->kinfo.netdev;
5589 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5590 	u32 i;
5591 
5592 	for (i = 0; i < h->kinfo.num_tqps; i++) {
5593 		struct hns3_enet_ring *ring;
5594 
5595 		ring = &priv->ring[i];
5596 		hns3_clear_tx_ring(ring);
5597 
5598 		ring = &priv->ring[i + h->kinfo.num_tqps];
5599 		/* Continue to clear other rings even if clearing some
5600 		 * rings failed.
5601 		 */
5602 		if (force)
5603 			hns3_force_clear_rx_ring(ring);
5604 		else
5605 			hns3_clear_rx_ring(ring);
5606 	}
5607 }
5608 
hns3_nic_reset_all_ring(struct hnae3_handle * h)5609 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
5610 {
5611 	struct net_device *ndev = h->kinfo.netdev;
5612 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5613 	struct hns3_enet_ring *rx_ring;
5614 	int i, j;
5615 	int ret;
5616 
5617 	ret = h->ae_algo->ops->reset_queue(h);
5618 	if (ret)
5619 		return ret;
5620 
5621 	for (i = 0; i < h->kinfo.num_tqps; i++) {
5622 		hns3_init_ring_hw(&priv->ring[i]);
5623 
5624 		/* We need to clear tx ring here because self test will
5625 		 * use the ring and will not run down before up
5626 		 */
5627 		hns3_clear_tx_ring(&priv->ring[i]);
5628 		priv->ring[i].next_to_clean = 0;
5629 		priv->ring[i].next_to_use = 0;
5630 		priv->ring[i].last_to_use = 0;
5631 
5632 		rx_ring = &priv->ring[i + h->kinfo.num_tqps];
5633 		hns3_init_ring_hw(rx_ring);
5634 		ret = hns3_clear_rx_ring(rx_ring);
5635 		if (ret)
5636 			return ret;
5637 
5638 		/* We can not know the hardware head and tail when this
5639 		 * function is called in reset flow, so we reuse all desc.
5640 		 */
5641 		for (j = 0; j < rx_ring->desc_num; j++)
5642 			hns3_reuse_buffer(rx_ring, j);
5643 
5644 		rx_ring->next_to_clean = 0;
5645 		rx_ring->next_to_use = 0;
5646 	}
5647 
5648 	hns3_init_tx_ring_tc(priv);
5649 
5650 	return 0;
5651 }
5652 
hns3_reset_notify_down_enet(struct hnae3_handle * handle)5653 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
5654 {
5655 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5656 	struct net_device *ndev = kinfo->netdev;
5657 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5658 
5659 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
5660 		return 0;
5661 
5662 	if (!netif_running(ndev))
5663 		return 0;
5664 
5665 	return hns3_nic_net_stop(ndev);
5666 }
5667 
hns3_reset_notify_up_enet(struct hnae3_handle * handle)5668 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
5669 {
5670 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5671 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
5672 	int ret = 0;
5673 
5674 	if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5675 		netdev_err(kinfo->netdev, "device is not initialized yet\n");
5676 		return -EFAULT;
5677 	}
5678 
5679 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5680 
5681 	if (netif_running(kinfo->netdev)) {
5682 		ret = hns3_nic_net_open(kinfo->netdev);
5683 		if (ret) {
5684 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5685 			netdev_err(kinfo->netdev,
5686 				   "net up fail, ret=%d!\n", ret);
5687 			return ret;
5688 		}
5689 	}
5690 
5691 	return ret;
5692 }
5693 
hns3_reset_notify_init_enet(struct hnae3_handle * handle)5694 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
5695 {
5696 	struct net_device *netdev = handle->kinfo.netdev;
5697 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5698 	int ret;
5699 
5700 	/* Carrier off reporting is important to ethtool even BEFORE open */
5701 	netif_carrier_off(netdev);
5702 
5703 	ret = hns3_get_ring_config(priv);
5704 	if (ret)
5705 		return ret;
5706 
5707 	ret = hns3_nic_alloc_vector_data(priv);
5708 	if (ret)
5709 		goto err_put_ring;
5710 
5711 	ret = hns3_nic_init_vector_data(priv);
5712 	if (ret)
5713 		goto err_dealloc_vector;
5714 
5715 	ret = hns3_init_all_ring(priv);
5716 	if (ret)
5717 		goto err_uninit_vector;
5718 
5719 	hns3_cq_period_mode_init(priv, priv->tx_cqe_mode, priv->rx_cqe_mode);
5720 
5721 	/* the device can work without cpu rmap, only aRFS needs it */
5722 	ret = hns3_set_rx_cpu_rmap(netdev);
5723 	if (ret)
5724 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5725 
5726 	ret = hns3_nic_init_irq(priv);
5727 	if (ret) {
5728 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5729 		hns3_free_rx_cpu_rmap(netdev);
5730 		goto err_init_irq_fail;
5731 	}
5732 
5733 	if (!hns3_is_phys_func(handle->pdev))
5734 		hns3_init_mac_addr(netdev);
5735 
5736 	ret = hns3_client_start(handle);
5737 	if (ret) {
5738 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5739 		goto err_client_start_fail;
5740 	}
5741 
5742 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5743 
5744 	return ret;
5745 
5746 err_client_start_fail:
5747 	hns3_free_rx_cpu_rmap(netdev);
5748 	hns3_nic_uninit_irq(priv);
5749 err_init_irq_fail:
5750 	hns3_uninit_all_ring(priv);
5751 err_uninit_vector:
5752 	hns3_nic_uninit_vector_data(priv);
5753 err_dealloc_vector:
5754 	hns3_nic_dealloc_vector_data(priv);
5755 err_put_ring:
5756 	hns3_put_ring_config(priv);
5757 
5758 	return ret;
5759 }
5760 
hns3_reset_notify_uninit_enet(struct hnae3_handle * handle)5761 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
5762 {
5763 	struct net_device *netdev = handle->kinfo.netdev;
5764 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5765 
5766 	if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
5767 		hns3_nic_net_stop(netdev);
5768 
5769 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5770 		netdev_warn(netdev, "already uninitialized\n");
5771 		return 0;
5772 	}
5773 
5774 	hns3_free_rx_cpu_rmap(netdev);
5775 	hns3_nic_uninit_irq(priv);
5776 	hns3_clear_all_ring(handle, true);
5777 	hns3_reset_tx_queue(priv->ae_handle);
5778 
5779 	hns3_nic_uninit_vector_data(priv);
5780 
5781 	hns3_nic_dealloc_vector_data(priv);
5782 
5783 	hns3_uninit_all_ring(priv);
5784 
5785 	hns3_put_ring_config(priv);
5786 
5787 	return 0;
5788 }
5789 
hns3_reset_notify(struct hnae3_handle * handle,enum hnae3_reset_notify_type type)5790 int hns3_reset_notify(struct hnae3_handle *handle,
5791 		      enum hnae3_reset_notify_type type)
5792 {
5793 	int ret = 0;
5794 
5795 	switch (type) {
5796 	case HNAE3_UP_CLIENT:
5797 		ret = hns3_reset_notify_up_enet(handle);
5798 		break;
5799 	case HNAE3_DOWN_CLIENT:
5800 		ret = hns3_reset_notify_down_enet(handle);
5801 		break;
5802 	case HNAE3_INIT_CLIENT:
5803 		ret = hns3_reset_notify_init_enet(handle);
5804 		break;
5805 	case HNAE3_UNINIT_CLIENT:
5806 		ret = hns3_reset_notify_uninit_enet(handle);
5807 		break;
5808 	default:
5809 		break;
5810 	}
5811 
5812 	return ret;
5813 }
5814 
hns3_change_channels(struct hnae3_handle * handle,u32 new_tqp_num,bool rxfh_configured)5815 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
5816 				bool rxfh_configured)
5817 {
5818 	int ret;
5819 
5820 	ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
5821 						 rxfh_configured);
5822 	if (ret) {
5823 		dev_err(&handle->pdev->dev,
5824 			"Change tqp num(%u) fail.\n", new_tqp_num);
5825 		return ret;
5826 	}
5827 
5828 	ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
5829 	if (ret)
5830 		return ret;
5831 
5832 	ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
5833 	if (ret)
5834 		hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
5835 
5836 	return ret;
5837 }
5838 
hns3_set_channels(struct net_device * netdev,struct ethtool_channels * ch)5839 int hns3_set_channels(struct net_device *netdev,
5840 		      struct ethtool_channels *ch)
5841 {
5842 	struct hnae3_handle *h = hns3_get_handle(netdev);
5843 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
5844 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
5845 	u32 new_tqp_num = ch->combined_count;
5846 	u16 org_tqp_num;
5847 	int ret;
5848 
5849 	if (hns3_nic_resetting(netdev))
5850 		return -EBUSY;
5851 
5852 	if (ch->rx_count || ch->tx_count)
5853 		return -EINVAL;
5854 
5855 	if (kinfo->tc_info.mqprio_active) {
5856 		dev_err(&netdev->dev,
5857 			"it's not allowed to set channels via ethtool when MQPRIO mode is on\n");
5858 		return -EINVAL;
5859 	}
5860 
5861 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
5862 	    new_tqp_num < 1) {
5863 		dev_err(&netdev->dev,
5864 			"Change tqps fail, the tqp range is from 1 to %u",
5865 			hns3_get_max_available_channels(h));
5866 		return -EINVAL;
5867 	}
5868 
5869 	if (kinfo->rss_size == new_tqp_num)
5870 		return 0;
5871 
5872 	netif_dbg(h, drv, netdev,
5873 		  "set channels: tqp_num=%u, rxfh=%d\n",
5874 		  new_tqp_num, rxfh_configured);
5875 
5876 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
5877 	if (ret)
5878 		return ret;
5879 
5880 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
5881 	if (ret)
5882 		return ret;
5883 
5884 	org_tqp_num = h->kinfo.num_tqps;
5885 	ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
5886 	if (ret) {
5887 		int ret1;
5888 
5889 		netdev_warn(netdev,
5890 			    "Change channels fail, revert to old value\n");
5891 		ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
5892 		if (ret1) {
5893 			netdev_err(netdev,
5894 				   "revert to old channel fail\n");
5895 			return ret1;
5896 		}
5897 
5898 		return ret;
5899 	}
5900 
5901 	return 0;
5902 }
5903 
hns3_external_lb_prepare(struct net_device * ndev,bool if_running)5904 void hns3_external_lb_prepare(struct net_device *ndev, bool if_running)
5905 {
5906 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5907 
5908 	if (!if_running)
5909 		return;
5910 
5911 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
5912 		return;
5913 
5914 	netif_carrier_off(ndev);
5915 	netif_tx_disable(ndev);
5916 
5917 	hns3_disable_irqs_and_tqps(ndev);
5918 
5919 	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
5920 	 * during reset process, because driver may not be able
5921 	 * to disable the ring through firmware when downing the netdev.
5922 	 */
5923 	if (!hns3_nic_resetting(ndev))
5924 		hns3_nic_reset_all_ring(priv->ae_handle);
5925 
5926 	hns3_reset_tx_queue(priv->ae_handle);
5927 }
5928 
hns3_external_lb_restore(struct net_device * ndev,bool if_running)5929 void hns3_external_lb_restore(struct net_device *ndev, bool if_running)
5930 {
5931 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5932 	struct hnae3_handle *h = priv->ae_handle;
5933 
5934 	if (!if_running)
5935 		return;
5936 
5937 	if (hns3_nic_resetting(ndev))
5938 		return;
5939 
5940 	if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
5941 		return;
5942 
5943 	if (hns3_nic_reset_all_ring(priv->ae_handle))
5944 		return;
5945 
5946 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
5947 
5948 	hns3_enable_irqs_and_tqps(ndev);
5949 
5950 	netif_tx_wake_all_queues(ndev);
5951 
5952 	if (h->ae_algo->ops->get_status(h))
5953 		netif_carrier_on(ndev);
5954 }
5955 
5956 static const struct hns3_hw_error_info hns3_hw_err[] = {
5957 	{ .type = HNAE3_PPU_POISON_ERROR,
5958 	  .msg = "PPU poison" },
5959 	{ .type = HNAE3_CMDQ_ECC_ERROR,
5960 	  .msg = "IMP CMDQ error" },
5961 	{ .type = HNAE3_IMP_RD_POISON_ERROR,
5962 	  .msg = "IMP RD poison" },
5963 	{ .type = HNAE3_ROCEE_AXI_RESP_ERROR,
5964 	  .msg = "ROCEE AXI RESP error" },
5965 };
5966 
hns3_process_hw_error(struct hnae3_handle * handle,enum hnae3_hw_error_type type)5967 static void hns3_process_hw_error(struct hnae3_handle *handle,
5968 				  enum hnae3_hw_error_type type)
5969 {
5970 	u32 i;
5971 
5972 	for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
5973 		if (hns3_hw_err[i].type == type) {
5974 			dev_err(&handle->pdev->dev, "Detected %s!\n",
5975 				hns3_hw_err[i].msg);
5976 			break;
5977 		}
5978 	}
5979 }
5980 
5981 static const struct hnae3_client_ops client_ops = {
5982 	.init_instance = hns3_client_init,
5983 	.uninit_instance = hns3_client_uninit,
5984 	.link_status_change = hns3_link_status_change,
5985 	.reset_notify = hns3_reset_notify,
5986 	.process_hw_error = hns3_process_hw_error,
5987 };
5988 
5989 /* hns3_init_module - Driver registration routine
5990  * hns3_init_module is the first routine called when the driver is
5991  * loaded. All it does is register with the PCI subsystem.
5992  */
hns3_init_module(void)5993 static int __init hns3_init_module(void)
5994 {
5995 	int ret;
5996 
5997 	pr_debug("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
5998 	pr_debug("%s: %s\n", hns3_driver_name, hns3_copyright);
5999 
6000 	client.type = HNAE3_CLIENT_KNIC;
6001 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
6002 		 hns3_driver_name);
6003 
6004 	client.ops = &client_ops;
6005 
6006 	INIT_LIST_HEAD(&client.node);
6007 
6008 	hns3_dbg_register_debugfs(hns3_driver_name);
6009 
6010 	ret = hnae3_register_client(&client);
6011 	if (ret)
6012 		goto err_reg_client;
6013 
6014 	ret = pci_register_driver(&hns3_driver);
6015 	if (ret)
6016 		goto err_reg_driver;
6017 
6018 	return ret;
6019 
6020 err_reg_driver:
6021 	hnae3_unregister_client(&client);
6022 err_reg_client:
6023 	hns3_dbg_unregister_debugfs();
6024 	return ret;
6025 }
6026 module_init(hns3_init_module);
6027 
6028 /* hns3_exit_module - Driver exit cleanup routine
6029  * hns3_exit_module is called just before the driver is removed
6030  * from memory.
6031  */
hns3_exit_module(void)6032 static void __exit hns3_exit_module(void)
6033 {
6034 	hnae3_acquire_unload_lock();
6035 	pci_unregister_driver(&hns3_driver);
6036 	hnae3_unregister_client(&client);
6037 	hns3_dbg_unregister_debugfs();
6038 	hnae3_release_unload_lock();
6039 }
6040 module_exit(hns3_exit_module);
6041 
6042 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
6043 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
6044 MODULE_LICENSE("GPL");
6045 MODULE_ALIAS("pci:hns-nic");
6046