1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
4 * All rights reserved.
5 */
6
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/interrupt.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15 #include <linux/mm.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/scatterlist.h>
18 #include <linux/highmem.h>
19 #include <linux/crypto.h>
20 #include <linux/hw_random.h>
21 #include <linux/ktime.h>
22
23 #include <crypto/algapi.h>
24 #include <crypto/internal/des.h>
25 #include <crypto/internal/skcipher.h>
26
27 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
28 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
29 MODULE_PARM_DESC(hifn_pll_ref,
30 "PLL reference clock (pci[freq] or ext[freq], default ext)");
31
32 static atomic_t hifn_dev_number;
33
34 #define ACRYPTO_OP_DECRYPT 0
35 #define ACRYPTO_OP_ENCRYPT 1
36 #define ACRYPTO_OP_HMAC 2
37 #define ACRYPTO_OP_RNG 3
38
39 #define ACRYPTO_MODE_ECB 0
40 #define ACRYPTO_MODE_CBC 1
41 #define ACRYPTO_MODE_CFB 2
42 #define ACRYPTO_MODE_OFB 3
43
44 #define ACRYPTO_TYPE_AES_128 0
45 #define ACRYPTO_TYPE_AES_192 1
46 #define ACRYPTO_TYPE_AES_256 2
47 #define ACRYPTO_TYPE_3DES 3
48 #define ACRYPTO_TYPE_DES 4
49
50 #define PCI_VENDOR_ID_HIFN 0x13A3
51 #define PCI_DEVICE_ID_HIFN_7955 0x0020
52 #define PCI_DEVICE_ID_HIFN_7956 0x001d
53
54 /* I/O region sizes */
55
56 #define HIFN_BAR0_SIZE 0x1000
57 #define HIFN_BAR1_SIZE 0x2000
58 #define HIFN_BAR2_SIZE 0x8000
59
60 /* DMA registres */
61
62 #define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */
63 #define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */
64 #define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */
65 #define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */
66 #define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */
67 #define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */
68 #define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */
69 #define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */
70 #define HIFN_CHIP_ID 0x98 /* Chip ID */
71
72 /*
73 * Processing Unit Registers (offset from BASEREG0)
74 */
75 #define HIFN_0_PUDATA 0x00 /* Processing Unit Data */
76 #define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */
77 #define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */
78 #define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */
79 #define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */
80 #define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */
81 #define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */
82 #define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */
83 #define HIFN_0_SPACESIZE 0x20 /* Register space size */
84
85 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
86 #define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */
87 #define HIFN_PUCTRL_STOP 0x0008 /* stop pu */
88 #define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */
89 #define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */
90 #define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */
91
92 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
93 #define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */
94 #define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */
95 #define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
96 #define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
97 #define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */
98 #define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */
99 #define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */
100 #define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */
101 #define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */
102 #define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */
103
104 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
105 #define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */
106 #define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */
107 #define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */
108 #define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */
109 #define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */
110 #define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */
111 #define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */
112 #define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */
113 #define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */
114 #define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */
115 #define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */
116 #define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */
117 #define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */
118 #define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */
119 #define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */
120 #define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */
121 #define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */
122 #define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */
123 #define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */
124 #define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */
125 #define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */
126 #define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */
127 #define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */
128
129 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
130 #define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */
131 #define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */
132 #define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
133 #define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
134 #define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */
135 #define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */
136 #define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */
137 #define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */
138 #define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */
139 #define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */
140
141 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
142 #define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */
143 #define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */
144 #define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
145 #define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
146 #define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */
147 #define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */
148 #define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */
149 #define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */
150 #define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */
151 #define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */
152 #define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */
153 #define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */
154 #define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */
155 #define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */
156 #define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */
157 #define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */
158 #define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */
159
160 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
161 #define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */
162 #define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */
163
164 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
165 #define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */
166
167 /*
168 * DMA Interface Registers (offset from BASEREG1)
169 */
170 #define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */
171 #define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */
172 #define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */
173 #define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */
174 #define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */
175 #define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */
176 #define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */
177 #define HIFN_1_PLL 0x4c /* 795x: PLL config */
178 #define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */
179 #define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */
180 #define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */
181 #define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */
182 #define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */
183 #define HIFN_1_REVID 0x98 /* Revision ID */
184 #define HIFN_1_UNLOCK_SECRET1 0xf4
185 #define HIFN_1_UNLOCK_SECRET2 0xfc
186 #define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */
187 #define HIFN_1_PUB_BASE 0x300 /* Public Base Address */
188 #define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */
189 #define HIFN_1_PUB_OP 0x308 /* Public Operand */
190 #define HIFN_1_PUB_STATUS 0x30c /* Public Status */
191 #define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */
192 #define HIFN_1_RNG_CONFIG 0x314 /* RNG config */
193 #define HIFN_1_RNG_DATA 0x318 /* RNG data */
194 #define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */
195 #define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */
196
197 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
198 #define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */
199 #define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */
200 #define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */
201 #define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */
202 #define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */
203 #define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */
204 #define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */
205 #define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */
206 #define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */
207 #define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */
208 #define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */
209 #define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */
210 #define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */
211 #define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */
212 #define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */
213 #define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */
214 #define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */
215 #define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */
216 #define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */
217 #define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */
218 #define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */
219 #define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */
220 #define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */
221 #define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */
222 #define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */
223 #define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */
224 #define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */
225 #define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */
226 #define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */
227 #define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */
228 #define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */
229 #define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */
230 #define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */
231 #define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */
232 #define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */
233 #define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */
234 #define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */
235 #define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */
236
237 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
238 #define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */
239 #define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */
240 #define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */
241 #define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */
242 #define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */
243 #define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */
244 #define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */
245 #define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */
246 #define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */
247 #define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */
248 #define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */
249 #define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */
250 #define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */
251 #define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */
252 #define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */
253 #define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */
254 #define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */
255 #define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */
256 #define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */
257 #define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */
258 #define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */
259 #define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */
260
261 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
262 #define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */
263 #define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */
264 #define HIFN_DMACNFG_UNLOCK 0x00000800
265 #define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */
266 #define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */
267 #define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */
268 #define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */
269 #define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */
270
271 /* PLL configuration register */
272 #define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */
273 #define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */
274 #define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */
275 #define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */
276 #define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */
277 #define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */
278 #define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */
279 #define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */
280 #define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */
281 #define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */
282 #define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */
283 #define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */
284 #define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */
285 #define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */
286 #define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */
287 #define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */
288 #define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */
289
290 #define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */
291
292 /* Public key reset register (HIFN_1_PUB_RESET) */
293 #define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */
294
295 /* Public base address register (HIFN_1_PUB_BASE) */
296 #define HIFN_PUBBASE_ADDR 0x00003fff /* base address */
297
298 /* Public operand length register (HIFN_1_PUB_OPLEN) */
299 #define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */
300 #define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */
301 #define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */
302 #define HIFN_PUBOPLEN_EXP_S 7 /* exponent length shift */
303 #define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */
304 #define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */
305
306 /* Public operation register (HIFN_1_PUB_OP) */
307 #define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */
308 #define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */
309 #define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */
310 #define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */
311 #define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */
312 #define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */
313 #define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */
314 #define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */
315 #define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */
316 #define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */
317 #define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */
318 #define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */
319 #define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */
320 #define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */
321 #define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */
322 #define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */
323 #define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */
324 #define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */
325 #define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */
326 #define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */
327
328 /* Public status register (HIFN_1_PUB_STATUS) */
329 #define HIFN_PUBSTS_DONE 0x00000001 /* operation done */
330 #define HIFN_PUBSTS_CARRY 0x00000002 /* carry */
331
332 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
333 #define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */
334
335 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
336 #define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */
337
338 #define HIFN_NAMESIZE 32
339 #define HIFN_MAX_RESULT_ORDER 5
340
341 #define HIFN_D_CMD_RSIZE (24 * 1)
342 #define HIFN_D_SRC_RSIZE (80 * 1)
343 #define HIFN_D_DST_RSIZE (80 * 1)
344 #define HIFN_D_RES_RSIZE (24 * 1)
345
346 #define HIFN_D_DST_DALIGN 4
347
348 #define HIFN_QUEUE_LENGTH (HIFN_D_CMD_RSIZE - 1)
349
350 #define AES_MIN_KEY_SIZE 16
351 #define AES_MAX_KEY_SIZE 32
352
353 #define HIFN_DES_KEY_LENGTH 8
354 #define HIFN_3DES_KEY_LENGTH 24
355 #define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE
356 #define HIFN_IV_LENGTH 8
357 #define HIFN_AES_IV_LENGTH 16
358 #define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH
359
360 #define HIFN_MAC_KEY_LENGTH 64
361 #define HIFN_MD5_LENGTH 16
362 #define HIFN_SHA1_LENGTH 20
363 #define HIFN_MAC_TRUNC_LENGTH 12
364
365 #define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260)
366 #define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4)
367 #define HIFN_USED_RESULT 12
368
369 struct hifn_desc {
370 volatile __le32 l;
371 volatile __le32 p;
372 };
373
374 struct hifn_dma {
375 struct hifn_desc cmdr[HIFN_D_CMD_RSIZE + 1];
376 struct hifn_desc srcr[HIFN_D_SRC_RSIZE + 1];
377 struct hifn_desc dstr[HIFN_D_DST_RSIZE + 1];
378 struct hifn_desc resr[HIFN_D_RES_RSIZE + 1];
379
380 u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
381 u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
382
383 /*
384 * Our current positions for insertion and removal from the descriptor
385 * rings.
386 */
387 volatile int cmdi, srci, dsti, resi;
388 volatile int cmdu, srcu, dstu, resu;
389 int cmdk, srck, dstk, resk;
390 };
391
392 #define HIFN_FLAG_CMD_BUSY (1 << 0)
393 #define HIFN_FLAG_SRC_BUSY (1 << 1)
394 #define HIFN_FLAG_DST_BUSY (1 << 2)
395 #define HIFN_FLAG_RES_BUSY (1 << 3)
396 #define HIFN_FLAG_OLD_KEY (1 << 4)
397
398 #define HIFN_DEFAULT_ACTIVE_NUM 5
399
400 struct hifn_device {
401 char name[HIFN_NAMESIZE];
402
403 int irq;
404
405 struct pci_dev *pdev;
406 void __iomem *bar[3];
407
408 void *desc_virt;
409 dma_addr_t desc_dma;
410
411 u32 dmareg;
412
413 void *sa[HIFN_D_RES_RSIZE];
414
415 spinlock_t lock;
416
417 u32 flags;
418 int active, started;
419 struct delayed_work work;
420 unsigned long reset;
421 unsigned long success;
422 unsigned long prev_success;
423
424 u8 snum;
425
426 struct tasklet_struct tasklet;
427
428 struct crypto_queue queue;
429 struct list_head alg_list;
430
431 unsigned int pk_clk_freq;
432
433 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
434 unsigned int rng_wait_time;
435 ktime_t rngtime;
436 struct hwrng rng;
437 #endif
438 };
439
440 #define HIFN_D_LENGTH 0x0000ffff
441 #define HIFN_D_NOINVALID 0x01000000
442 #define HIFN_D_MASKDONEIRQ 0x02000000
443 #define HIFN_D_DESTOVER 0x04000000
444 #define HIFN_D_OVER 0x08000000
445 #define HIFN_D_LAST 0x20000000
446 #define HIFN_D_JUMP 0x40000000
447 #define HIFN_D_VALID 0x80000000
448
449 struct hifn_base_command {
450 volatile __le16 masks;
451 volatile __le16 session_num;
452 volatile __le16 total_source_count;
453 volatile __le16 total_dest_count;
454 };
455
456 #define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */
457 #define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */
458 #define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */
459 #define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */
460 #define HIFN_BASE_CMD_DECODE 0x2000
461 #define HIFN_BASE_CMD_SRCLEN_M 0xc000
462 #define HIFN_BASE_CMD_SRCLEN_S 14
463 #define HIFN_BASE_CMD_DSTLEN_M 0x3000
464 #define HIFN_BASE_CMD_DSTLEN_S 12
465 #define HIFN_BASE_CMD_LENMASK_HI 0x30000
466 #define HIFN_BASE_CMD_LENMASK_LO 0x0ffff
467
468 /*
469 * Structure to help build up the command data structure.
470 */
471 struct hifn_crypt_command {
472 volatile __le16 masks;
473 volatile __le16 header_skip;
474 volatile __le16 source_count;
475 volatile __le16 reserved;
476 };
477
478 #define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */
479 #define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */
480 #define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */
481 #define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */
482 #define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */
483 #define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */
484 #define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */
485 #define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */
486 #define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */
487 #define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */
488 #define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */
489 #define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */
490 #define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */
491 #define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */
492 #define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */
493 #define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */
494 #define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */
495 #define HIFN_CRYPT_CMD_SRCLEN_M 0xc000
496 #define HIFN_CRYPT_CMD_SRCLEN_S 14
497
498 #define HIFN_MAC_CMD_ALG_MASK 0x0001
499 #define HIFN_MAC_CMD_ALG_SHA1 0x0000
500 #define HIFN_MAC_CMD_ALG_MD5 0x0001
501 #define HIFN_MAC_CMD_MODE_MASK 0x000c
502 #define HIFN_MAC_CMD_MODE_HMAC 0x0000
503 #define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004
504 #define HIFN_MAC_CMD_MODE_HASH 0x0008
505 #define HIFN_MAC_CMD_MODE_FULL 0x0004
506 #define HIFN_MAC_CMD_TRUNC 0x0010
507 #define HIFN_MAC_CMD_RESULT 0x0020
508 #define HIFN_MAC_CMD_APPEND 0x0040
509 #define HIFN_MAC_CMD_SRCLEN_M 0xc000
510 #define HIFN_MAC_CMD_SRCLEN_S 14
511
512 /*
513 * MAC POS IPsec initiates authentication after encryption on encodes
514 * and before decryption on decodes.
515 */
516 #define HIFN_MAC_CMD_POS_IPSEC 0x0200
517 #define HIFN_MAC_CMD_NEW_KEY 0x0800
518
519 #define HIFN_COMP_CMD_SRCLEN_M 0xc000
520 #define HIFN_COMP_CMD_SRCLEN_S 14
521 #define HIFN_COMP_CMD_ONE 0x0100 /* must be one */
522 #define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */
523 #define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */
524 #define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */
525 #define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */
526 #define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */
527 #define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */
528 #define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */
529
530 struct hifn_base_result {
531 volatile __le16 flags;
532 volatile __le16 session;
533 volatile __le16 src_cnt; /* 15:0 of source count */
534 volatile __le16 dst_cnt; /* 15:0 of dest count */
535 };
536
537 #define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */
538 #define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */
539 #define HIFN_BASE_RES_SRCLEN_S 14
540 #define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */
541 #define HIFN_BASE_RES_DSTLEN_S 12
542
543 struct hifn_comp_result {
544 volatile __le16 flags;
545 volatile __le16 crc;
546 };
547
548 #define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */
549 #define HIFN_COMP_RES_LCB_S 8
550 #define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */
551 #define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */
552 #define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */
553
554 struct hifn_mac_result {
555 volatile __le16 flags;
556 volatile __le16 reserved;
557 /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
558 };
559
560 #define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */
561 #define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */
562
563 struct hifn_crypt_result {
564 volatile __le16 flags;
565 volatile __le16 reserved;
566 };
567
568 #define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */
569
570 #ifndef HIFN_POLL_FREQUENCY
571 #define HIFN_POLL_FREQUENCY 0x1
572 #endif
573
574 #ifndef HIFN_POLL_SCALAR
575 #define HIFN_POLL_SCALAR 0x0
576 #endif
577
578 #define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */
579 #define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */
580
581 struct hifn_crypto_alg {
582 struct list_head entry;
583 struct skcipher_alg alg;
584 struct hifn_device *dev;
585 };
586
587 #define ASYNC_SCATTERLIST_CACHE 16
588
589 #define ASYNC_FLAGS_MISALIGNED (1 << 0)
590
591 struct hifn_cipher_walk {
592 struct scatterlist cache[ASYNC_SCATTERLIST_CACHE];
593 u32 flags;
594 int num;
595 };
596
597 struct hifn_context {
598 u8 key[HIFN_MAX_CRYPT_KEY_LENGTH];
599 struct hifn_device *dev;
600 unsigned int keysize;
601 };
602
603 struct hifn_request_context {
604 u8 *iv;
605 unsigned int ivsize;
606 u8 op, type, mode, unused;
607 struct hifn_cipher_walk walk;
608 };
609
610 #define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg)
611
hifn_read_0(struct hifn_device * dev,u32 reg)612 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
613 {
614 return readl(dev->bar[0] + reg);
615 }
616
hifn_read_1(struct hifn_device * dev,u32 reg)617 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
618 {
619 return readl(dev->bar[1] + reg);
620 }
621
hifn_write_0(struct hifn_device * dev,u32 reg,u32 val)622 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
623 {
624 writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
625 }
626
hifn_write_1(struct hifn_device * dev,u32 reg,u32 val)627 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
628 {
629 writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
630 }
631
hifn_wait_puc(struct hifn_device * dev)632 static void hifn_wait_puc(struct hifn_device *dev)
633 {
634 int i;
635 u32 ret;
636
637 for (i = 10000; i > 0; --i) {
638 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
639 if (!(ret & HIFN_PUCTRL_RESET))
640 break;
641
642 udelay(1);
643 }
644
645 if (!i)
646 dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
647 }
648
hifn_reset_puc(struct hifn_device * dev)649 static void hifn_reset_puc(struct hifn_device *dev)
650 {
651 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
652 hifn_wait_puc(dev);
653 }
654
hifn_stop_device(struct hifn_device * dev)655 static void hifn_stop_device(struct hifn_device *dev)
656 {
657 hifn_write_1(dev, HIFN_1_DMA_CSR,
658 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
659 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
660 hifn_write_0(dev, HIFN_0_PUIER, 0);
661 hifn_write_1(dev, HIFN_1_DMA_IER, 0);
662 }
663
hifn_reset_dma(struct hifn_device * dev,int full)664 static void hifn_reset_dma(struct hifn_device *dev, int full)
665 {
666 hifn_stop_device(dev);
667
668 /*
669 * Setting poll frequency and others to 0.
670 */
671 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
672 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
673 mdelay(1);
674
675 /*
676 * Reset DMA.
677 */
678 if (full) {
679 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
680 mdelay(1);
681 } else {
682 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
683 HIFN_DMACNFG_MSTRESET);
684 hifn_reset_puc(dev);
685 }
686
687 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
688 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
689
690 hifn_reset_puc(dev);
691 }
692
hifn_next_signature(u32 a,u_int cnt)693 static u32 hifn_next_signature(u32 a, u_int cnt)
694 {
695 int i;
696 u32 v;
697
698 for (i = 0; i < cnt; i++) {
699 /* get the parity */
700 v = a & 0x80080125;
701 v ^= v >> 16;
702 v ^= v >> 8;
703 v ^= v >> 4;
704 v ^= v >> 2;
705 v ^= v >> 1;
706
707 a = (v & 1) ^ (a << 1);
708 }
709
710 return a;
711 }
712
713 static struct pci2id {
714 u_short pci_vendor;
715 u_short pci_prod;
716 char card_id[13];
717 } pci2id[] = {
718 {
719 PCI_VENDOR_ID_HIFN,
720 PCI_DEVICE_ID_HIFN_7955,
721 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
722 0x00, 0x00, 0x00, 0x00, 0x00 }
723 },
724 {
725 PCI_VENDOR_ID_HIFN,
726 PCI_DEVICE_ID_HIFN_7956,
727 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
728 0x00, 0x00, 0x00, 0x00, 0x00 }
729 }
730 };
731
732 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
hifn_rng_data_present(struct hwrng * rng,int wait)733 static int hifn_rng_data_present(struct hwrng *rng, int wait)
734 {
735 struct hifn_device *dev = (struct hifn_device *)rng->priv;
736 s64 nsec;
737
738 nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
739 nsec -= dev->rng_wait_time;
740 if (nsec <= 0)
741 return 1;
742 if (!wait)
743 return 0;
744 ndelay(nsec);
745 return 1;
746 }
747
hifn_rng_data_read(struct hwrng * rng,u32 * data)748 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
749 {
750 struct hifn_device *dev = (struct hifn_device *)rng->priv;
751
752 *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
753 dev->rngtime = ktime_get();
754 return 4;
755 }
756
hifn_register_rng(struct hifn_device * dev)757 static int hifn_register_rng(struct hifn_device *dev)
758 {
759 /*
760 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
761 */
762 dev->rng_wait_time = DIV_ROUND_UP_ULL(NSEC_PER_SEC,
763 dev->pk_clk_freq) * 256;
764
765 dev->rng.name = dev->name;
766 dev->rng.data_present = hifn_rng_data_present;
767 dev->rng.data_read = hifn_rng_data_read;
768 dev->rng.priv = (unsigned long)dev;
769
770 return hwrng_register(&dev->rng);
771 }
772
hifn_unregister_rng(struct hifn_device * dev)773 static void hifn_unregister_rng(struct hifn_device *dev)
774 {
775 hwrng_unregister(&dev->rng);
776 }
777 #else
778 #define hifn_register_rng(dev) 0
779 #define hifn_unregister_rng(dev)
780 #endif
781
hifn_init_pubrng(struct hifn_device * dev)782 static int hifn_init_pubrng(struct hifn_device *dev)
783 {
784 int i;
785
786 hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
787 HIFN_PUBRST_RESET);
788
789 for (i = 100; i > 0; --i) {
790 mdelay(1);
791
792 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
793 break;
794 }
795
796 if (!i) {
797 dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
798 } else {
799 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
800 dev->dmareg |= HIFN_DMAIER_PUBDONE;
801 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
802
803 dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
804 }
805
806 /* Enable RNG engine. */
807
808 hifn_write_1(dev, HIFN_1_RNG_CONFIG,
809 hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
810 dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
811
812 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
813 /* First value must be discarded */
814 hifn_read_1(dev, HIFN_1_RNG_DATA);
815 dev->rngtime = ktime_get();
816 #endif
817 return 0;
818 }
819
hifn_enable_crypto(struct hifn_device * dev)820 static int hifn_enable_crypto(struct hifn_device *dev)
821 {
822 u32 dmacfg, addr;
823 char *offtbl = NULL;
824 int i;
825
826 for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
827 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
828 pci2id[i].pci_prod == dev->pdev->device) {
829 offtbl = pci2id[i].card_id;
830 break;
831 }
832 }
833
834 if (!offtbl) {
835 dev_err(&dev->pdev->dev, "Unknown card!\n");
836 return -ENODEV;
837 }
838
839 dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
840
841 hifn_write_1(dev, HIFN_1_DMA_CNFG,
842 HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
843 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
844 mdelay(1);
845 addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
846 mdelay(1);
847 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
848 mdelay(1);
849
850 for (i = 0; i < 12; ++i) {
851 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
852 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
853
854 mdelay(1);
855 }
856 hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
857
858 dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
859
860 return 0;
861 }
862
hifn_init_dma(struct hifn_device * dev)863 static void hifn_init_dma(struct hifn_device *dev)
864 {
865 struct hifn_dma *dma = dev->desc_virt;
866 u32 dptr = dev->desc_dma;
867 int i;
868
869 for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
870 dma->cmdr[i].p = __cpu_to_le32(dptr +
871 offsetof(struct hifn_dma, command_bufs[i][0]));
872 for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
873 dma->resr[i].p = __cpu_to_le32(dptr +
874 offsetof(struct hifn_dma, result_bufs[i][0]));
875
876 /* Setup LAST descriptors. */
877 dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
878 offsetof(struct hifn_dma, cmdr[0]));
879 dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
880 offsetof(struct hifn_dma, srcr[0]));
881 dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
882 offsetof(struct hifn_dma, dstr[0]));
883 dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
884 offsetof(struct hifn_dma, resr[0]));
885
886 dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
887 dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
888 dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
889 }
890
891 /*
892 * Initialize the PLL. We need to know the frequency of the reference clock
893 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
894 * allows us to operate without the risk of overclocking the chip. If it
895 * actually uses 33MHz, the chip will operate at half the speed, this can be
896 * overridden by specifying the frequency as module parameter (pci33).
897 *
898 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
899 * stable clock and the PCI clock frequency may vary, so the default is the
900 * external clock. There is no way to find out its frequency, we default to
901 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
902 * has an external crystal populated at 66MHz.
903 */
hifn_init_pll(struct hifn_device * dev)904 static void hifn_init_pll(struct hifn_device *dev)
905 {
906 unsigned int freq, m;
907 u32 pllcfg;
908
909 pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
910
911 if (strncmp(hifn_pll_ref, "ext", 3) == 0)
912 pllcfg |= HIFN_PLL_REF_CLK_PLL;
913 else
914 pllcfg |= HIFN_PLL_REF_CLK_HBI;
915
916 if (hifn_pll_ref[3] == '\0' ||
917 kstrtouint(hifn_pll_ref + 3, 10, &freq)) {
918 freq = 66;
919 dev_info(&dev->pdev->dev, "assuming %u MHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
920 freq, hifn_pll_ref);
921 }
922
923 m = HIFN_PLL_FCK_MAX / freq;
924
925 pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
926 if (m <= 8)
927 pllcfg |= HIFN_PLL_IS_1_8;
928 else
929 pllcfg |= HIFN_PLL_IS_9_12;
930
931 /* Select clock source and enable clock bypass */
932 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
933 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
934
935 /* Let the chip lock to the input clock */
936 mdelay(10);
937
938 /* Disable clock bypass */
939 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
940 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
941
942 /* Switch the engines to the PLL */
943 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
944 HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
945
946 /*
947 * The Fpk_clk runs at half the total speed. Its frequency is needed to
948 * calculate the minimum time between two reads of the rng. Since 33MHz
949 * is actually 33.333... we overestimate the frequency here, resulting
950 * in slightly larger intervals.
951 */
952 dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
953 }
954
hifn_init_registers(struct hifn_device * dev)955 static void hifn_init_registers(struct hifn_device *dev)
956 {
957 u32 dptr = dev->desc_dma;
958
959 /* Initialization magic... */
960 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
961 hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
962 hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
963
964 /* write all 4 ring address registers */
965 hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
966 offsetof(struct hifn_dma, cmdr[0]));
967 hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
968 offsetof(struct hifn_dma, srcr[0]));
969 hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
970 offsetof(struct hifn_dma, dstr[0]));
971 hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
972 offsetof(struct hifn_dma, resr[0]));
973
974 mdelay(2);
975 #if 0
976 hifn_write_1(dev, HIFN_1_DMA_CSR,
977 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
978 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
979 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
980 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
981 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
982 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
983 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
984 HIFN_DMACSR_S_WAIT |
985 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
986 HIFN_DMACSR_C_WAIT |
987 HIFN_DMACSR_ENGINE |
988 HIFN_DMACSR_PUBDONE);
989 #else
990 hifn_write_1(dev, HIFN_1_DMA_CSR,
991 HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
992 HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
993 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
994 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
995 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
996 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
997 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
998 HIFN_DMACSR_S_WAIT |
999 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1000 HIFN_DMACSR_C_WAIT |
1001 HIFN_DMACSR_ENGINE |
1002 HIFN_DMACSR_PUBDONE);
1003 #endif
1004 hifn_read_1(dev, HIFN_1_DMA_CSR);
1005
1006 dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1007 HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1008 HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1009 HIFN_DMAIER_ENGINE;
1010 dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1011
1012 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1013 hifn_read_1(dev, HIFN_1_DMA_IER);
1014 #if 0
1015 hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1016 HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1017 HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1018 HIFN_PUCNFG_DRAM);
1019 #else
1020 hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1021 #endif
1022 hifn_init_pll(dev);
1023
1024 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1025 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1026 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1027 ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1028 ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1029 }
1030
hifn_setup_base_command(struct hifn_device * dev,u8 * buf,unsigned dlen,unsigned slen,u16 mask,u8 snum)1031 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1032 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1033 {
1034 struct hifn_base_command *base_cmd;
1035 u8 *buf_pos = buf;
1036
1037 base_cmd = (struct hifn_base_command *)buf_pos;
1038 base_cmd->masks = __cpu_to_le16(mask);
1039 base_cmd->total_source_count =
1040 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1041 base_cmd->total_dest_count =
1042 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1043
1044 dlen >>= 16;
1045 slen >>= 16;
1046 base_cmd->session_num = __cpu_to_le16(snum |
1047 ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1048 ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1049
1050 return sizeof(struct hifn_base_command);
1051 }
1052
hifn_setup_crypto_command(struct hifn_device * dev,u8 * buf,unsigned dlen,unsigned slen,u8 * key,int keylen,u8 * iv,int ivsize,u16 mode)1053 static int hifn_setup_crypto_command(struct hifn_device *dev,
1054 u8 *buf, unsigned dlen, unsigned slen,
1055 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1056 {
1057 struct hifn_dma *dma = dev->desc_virt;
1058 struct hifn_crypt_command *cry_cmd;
1059 u8 *buf_pos = buf;
1060 u16 cmd_len;
1061
1062 cry_cmd = (struct hifn_crypt_command *)buf_pos;
1063
1064 cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1065 dlen >>= 16;
1066 cry_cmd->masks = __cpu_to_le16(mode |
1067 ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1068 HIFN_CRYPT_CMD_SRCLEN_M));
1069 cry_cmd->header_skip = 0;
1070 cry_cmd->reserved = 0;
1071
1072 buf_pos += sizeof(struct hifn_crypt_command);
1073
1074 dma->cmdu++;
1075 if (dma->cmdu > 1) {
1076 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1077 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1078 }
1079
1080 if (keylen) {
1081 memcpy(buf_pos, key, keylen);
1082 buf_pos += keylen;
1083 }
1084 if (ivsize) {
1085 memcpy(buf_pos, iv, ivsize);
1086 buf_pos += ivsize;
1087 }
1088
1089 cmd_len = buf_pos - buf;
1090
1091 return cmd_len;
1092 }
1093
hifn_setup_cmd_desc(struct hifn_device * dev,struct hifn_context * ctx,struct hifn_request_context * rctx,void * priv,unsigned int nbytes)1094 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1095 struct hifn_context *ctx, struct hifn_request_context *rctx,
1096 void *priv, unsigned int nbytes)
1097 {
1098 struct hifn_dma *dma = dev->desc_virt;
1099 int cmd_len, sa_idx;
1100 u8 *buf, *buf_pos;
1101 u16 mask;
1102
1103 sa_idx = dma->cmdi;
1104 buf_pos = buf = dma->command_bufs[dma->cmdi];
1105
1106 mask = 0;
1107 switch (rctx->op) {
1108 case ACRYPTO_OP_DECRYPT:
1109 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1110 break;
1111 case ACRYPTO_OP_ENCRYPT:
1112 mask = HIFN_BASE_CMD_CRYPT;
1113 break;
1114 case ACRYPTO_OP_HMAC:
1115 mask = HIFN_BASE_CMD_MAC;
1116 break;
1117 default:
1118 goto err_out;
1119 }
1120
1121 buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1122 nbytes, mask, dev->snum);
1123
1124 if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1125 u16 md = 0;
1126
1127 if (ctx->keysize)
1128 md |= HIFN_CRYPT_CMD_NEW_KEY;
1129 if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1130 md |= HIFN_CRYPT_CMD_NEW_IV;
1131
1132 switch (rctx->mode) {
1133 case ACRYPTO_MODE_ECB:
1134 md |= HIFN_CRYPT_CMD_MODE_ECB;
1135 break;
1136 case ACRYPTO_MODE_CBC:
1137 md |= HIFN_CRYPT_CMD_MODE_CBC;
1138 break;
1139 case ACRYPTO_MODE_CFB:
1140 md |= HIFN_CRYPT_CMD_MODE_CFB;
1141 break;
1142 case ACRYPTO_MODE_OFB:
1143 md |= HIFN_CRYPT_CMD_MODE_OFB;
1144 break;
1145 default:
1146 goto err_out;
1147 }
1148
1149 switch (rctx->type) {
1150 case ACRYPTO_TYPE_AES_128:
1151 if (ctx->keysize != 16)
1152 goto err_out;
1153 md |= HIFN_CRYPT_CMD_KSZ_128 |
1154 HIFN_CRYPT_CMD_ALG_AES;
1155 break;
1156 case ACRYPTO_TYPE_AES_192:
1157 if (ctx->keysize != 24)
1158 goto err_out;
1159 md |= HIFN_CRYPT_CMD_KSZ_192 |
1160 HIFN_CRYPT_CMD_ALG_AES;
1161 break;
1162 case ACRYPTO_TYPE_AES_256:
1163 if (ctx->keysize != 32)
1164 goto err_out;
1165 md |= HIFN_CRYPT_CMD_KSZ_256 |
1166 HIFN_CRYPT_CMD_ALG_AES;
1167 break;
1168 case ACRYPTO_TYPE_3DES:
1169 if (ctx->keysize != 24)
1170 goto err_out;
1171 md |= HIFN_CRYPT_CMD_ALG_3DES;
1172 break;
1173 case ACRYPTO_TYPE_DES:
1174 if (ctx->keysize != 8)
1175 goto err_out;
1176 md |= HIFN_CRYPT_CMD_ALG_DES;
1177 break;
1178 default:
1179 goto err_out;
1180 }
1181
1182 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1183 nbytes, nbytes, ctx->key, ctx->keysize,
1184 rctx->iv, rctx->ivsize, md);
1185 }
1186
1187 dev->sa[sa_idx] = priv;
1188 dev->started++;
1189
1190 cmd_len = buf_pos - buf;
1191 dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1192 HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1193
1194 if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1195 dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1196 HIFN_D_VALID | HIFN_D_LAST |
1197 HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1198 dma->cmdi = 0;
1199 } else {
1200 dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1201 }
1202
1203 if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1204 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1205 dev->flags |= HIFN_FLAG_CMD_BUSY;
1206 }
1207 return 0;
1208
1209 err_out:
1210 return -EINVAL;
1211 }
1212
hifn_setup_src_desc(struct hifn_device * dev,struct page * page,unsigned int offset,unsigned int size,int last)1213 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1214 unsigned int offset, unsigned int size, int last)
1215 {
1216 struct hifn_dma *dma = dev->desc_virt;
1217 int idx;
1218 dma_addr_t addr;
1219
1220 addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1221 DMA_TO_DEVICE);
1222
1223 idx = dma->srci;
1224
1225 dma->srcr[idx].p = __cpu_to_le32(addr);
1226 dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1227 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1228
1229 if (++idx == HIFN_D_SRC_RSIZE) {
1230 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1231 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1232 (last ? HIFN_D_LAST : 0));
1233 idx = 0;
1234 }
1235
1236 dma->srci = idx;
1237 dma->srcu++;
1238
1239 if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1240 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1241 dev->flags |= HIFN_FLAG_SRC_BUSY;
1242 }
1243
1244 return size;
1245 }
1246
hifn_setup_res_desc(struct hifn_device * dev)1247 static void hifn_setup_res_desc(struct hifn_device *dev)
1248 {
1249 struct hifn_dma *dma = dev->desc_virt;
1250
1251 dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1252 HIFN_D_VALID | HIFN_D_LAST);
1253 /*
1254 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1255 * HIFN_D_LAST);
1256 */
1257
1258 if (++dma->resi == HIFN_D_RES_RSIZE) {
1259 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1260 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1261 dma->resi = 0;
1262 }
1263
1264 dma->resu++;
1265
1266 if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1267 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1268 dev->flags |= HIFN_FLAG_RES_BUSY;
1269 }
1270 }
1271
hifn_setup_dst_desc(struct hifn_device * dev,struct page * page,unsigned offset,unsigned size,int last)1272 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1273 unsigned offset, unsigned size, int last)
1274 {
1275 struct hifn_dma *dma = dev->desc_virt;
1276 int idx;
1277 dma_addr_t addr;
1278
1279 addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1280 DMA_FROM_DEVICE);
1281
1282 idx = dma->dsti;
1283 dma->dstr[idx].p = __cpu_to_le32(addr);
1284 dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1285 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1286
1287 if (++idx == HIFN_D_DST_RSIZE) {
1288 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1289 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1290 (last ? HIFN_D_LAST : 0));
1291 idx = 0;
1292 }
1293 dma->dsti = idx;
1294 dma->dstu++;
1295
1296 if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1297 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1298 dev->flags |= HIFN_FLAG_DST_BUSY;
1299 }
1300 }
1301
hifn_setup_dma(struct hifn_device * dev,struct hifn_context * ctx,struct hifn_request_context * rctx,struct scatterlist * src,struct scatterlist * dst,unsigned int nbytes,void * priv)1302 static int hifn_setup_dma(struct hifn_device *dev,
1303 struct hifn_context *ctx, struct hifn_request_context *rctx,
1304 struct scatterlist *src, struct scatterlist *dst,
1305 unsigned int nbytes, void *priv)
1306 {
1307 struct scatterlist *t;
1308 struct page *spage, *dpage;
1309 unsigned int soff, doff;
1310 unsigned int n, len;
1311
1312 n = nbytes;
1313 while (n) {
1314 spage = sg_page(src);
1315 soff = src->offset;
1316 len = min(src->length, n);
1317
1318 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1319
1320 src++;
1321 n -= len;
1322 }
1323
1324 t = &rctx->walk.cache[0];
1325 n = nbytes;
1326 while (n) {
1327 if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1328 BUG_ON(!sg_page(t));
1329 dpage = sg_page(t);
1330 doff = 0;
1331 len = t->length;
1332 } else {
1333 BUG_ON(!sg_page(dst));
1334 dpage = sg_page(dst);
1335 doff = dst->offset;
1336 len = dst->length;
1337 }
1338 len = min(len, n);
1339
1340 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1341
1342 dst++;
1343 t++;
1344 n -= len;
1345 }
1346
1347 hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1348 hifn_setup_res_desc(dev);
1349 return 0;
1350 }
1351
hifn_cipher_walk_init(struct hifn_cipher_walk * w,int num,gfp_t gfp_flags)1352 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1353 int num, gfp_t gfp_flags)
1354 {
1355 int i;
1356
1357 num = min(ASYNC_SCATTERLIST_CACHE, num);
1358 sg_init_table(w->cache, num);
1359
1360 w->num = 0;
1361 for (i = 0; i < num; ++i) {
1362 struct page *page = alloc_page(gfp_flags);
1363 struct scatterlist *s;
1364
1365 if (!page)
1366 break;
1367
1368 s = &w->cache[i];
1369
1370 sg_set_page(s, page, PAGE_SIZE, 0);
1371 w->num++;
1372 }
1373
1374 return i;
1375 }
1376
hifn_cipher_walk_exit(struct hifn_cipher_walk * w)1377 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1378 {
1379 int i;
1380
1381 for (i = 0; i < w->num; ++i) {
1382 struct scatterlist *s = &w->cache[i];
1383
1384 __free_page(sg_page(s));
1385
1386 s->length = 0;
1387 }
1388
1389 w->num = 0;
1390 }
1391
skcipher_add(unsigned int * drestp,struct scatterlist * dst,unsigned int size,unsigned int * nbytesp)1392 static int skcipher_add(unsigned int *drestp, struct scatterlist *dst,
1393 unsigned int size, unsigned int *nbytesp)
1394 {
1395 unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1396 int idx = 0;
1397
1398 if (drest < size || size > nbytes)
1399 return -EINVAL;
1400
1401 while (size) {
1402 copy = min3(drest, size, dst->length);
1403
1404 size -= copy;
1405 drest -= copy;
1406 nbytes -= copy;
1407
1408 pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1409 __func__, copy, size, drest, nbytes);
1410
1411 dst++;
1412 idx++;
1413 }
1414
1415 *nbytesp = nbytes;
1416 *drestp = drest;
1417
1418 return idx;
1419 }
1420
hifn_cipher_walk(struct skcipher_request * req,struct hifn_cipher_walk * w)1421 static int hifn_cipher_walk(struct skcipher_request *req,
1422 struct hifn_cipher_walk *w)
1423 {
1424 struct scatterlist *dst, *t;
1425 unsigned int nbytes = req->cryptlen, offset, copy, diff;
1426 int idx, tidx, err;
1427
1428 tidx = idx = 0;
1429 offset = 0;
1430 while (nbytes) {
1431 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1432 return -EINVAL;
1433
1434 dst = &req->dst[idx];
1435
1436 pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1437 __func__, dst->length, dst->offset, offset, nbytes);
1438
1439 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1440 !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1441 offset) {
1442 unsigned slen = min(dst->length - offset, nbytes);
1443 unsigned dlen = PAGE_SIZE;
1444
1445 t = &w->cache[idx];
1446
1447 err = skcipher_add(&dlen, dst, slen, &nbytes);
1448 if (err < 0)
1449 return err;
1450
1451 idx += err;
1452
1453 copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1454 diff = slen & (HIFN_D_DST_DALIGN - 1);
1455
1456 if (dlen < nbytes) {
1457 /*
1458 * Destination page does not have enough space
1459 * to put there additional blocksized chunk,
1460 * so we mark that page as containing only
1461 * blocksize aligned chunks:
1462 * t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1463 * and increase number of bytes to be processed
1464 * in next chunk:
1465 * nbytes += diff;
1466 */
1467 nbytes += diff;
1468
1469 /*
1470 * Temporary of course...
1471 * Kick author if you will catch this one.
1472 */
1473 pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1474 __func__, dlen, nbytes, slen, offset);
1475 pr_err("%s: please contact author to fix this "
1476 "issue, generally you should not catch "
1477 "this path under any condition but who "
1478 "knows how did you use crypto code.\n"
1479 "Thank you.\n", __func__);
1480 BUG();
1481 } else {
1482 copy += diff + nbytes;
1483
1484 dst = &req->dst[idx];
1485
1486 err = skcipher_add(&dlen, dst, nbytes, &nbytes);
1487 if (err < 0)
1488 return err;
1489
1490 idx += err;
1491 }
1492
1493 t->length = copy;
1494 t->offset = offset;
1495 } else {
1496 nbytes -= min(dst->length, nbytes);
1497 idx++;
1498 }
1499
1500 tidx++;
1501 }
1502
1503 return tidx;
1504 }
1505
hifn_setup_session(struct skcipher_request * req)1506 static int hifn_setup_session(struct skcipher_request *req)
1507 {
1508 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1509 struct hifn_request_context *rctx = skcipher_request_ctx(req);
1510 struct hifn_device *dev = ctx->dev;
1511 unsigned long dlen, flags;
1512 unsigned int nbytes = req->cryptlen, idx = 0;
1513 int err = -EINVAL, sg_num;
1514 struct scatterlist *dst;
1515
1516 if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1517 goto err_out_exit;
1518
1519 rctx->walk.flags = 0;
1520
1521 while (nbytes) {
1522 dst = &req->dst[idx];
1523 dlen = min(dst->length, nbytes);
1524
1525 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1526 !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1527 rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1528
1529 nbytes -= dlen;
1530 idx++;
1531 }
1532
1533 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1534 err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1535 if (err < 0)
1536 return err;
1537 }
1538
1539 sg_num = hifn_cipher_walk(req, &rctx->walk);
1540 if (sg_num < 0) {
1541 err = sg_num;
1542 goto err_out_exit;
1543 }
1544
1545 spin_lock_irqsave(&dev->lock, flags);
1546 if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1547 err = -EAGAIN;
1548 goto err_out;
1549 }
1550
1551 err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->cryptlen, req);
1552 if (err)
1553 goto err_out;
1554
1555 dev->snum++;
1556
1557 dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1558 spin_unlock_irqrestore(&dev->lock, flags);
1559
1560 return 0;
1561
1562 err_out:
1563 spin_unlock_irqrestore(&dev->lock, flags);
1564 err_out_exit:
1565 if (err) {
1566 dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1567 "type: %u, err: %d.\n",
1568 rctx->iv, rctx->ivsize,
1569 ctx->key, ctx->keysize,
1570 rctx->mode, rctx->op, rctx->type, err);
1571 }
1572
1573 return err;
1574 }
1575
hifn_start_device(struct hifn_device * dev)1576 static int hifn_start_device(struct hifn_device *dev)
1577 {
1578 int err;
1579
1580 dev->started = dev->active = 0;
1581 hifn_reset_dma(dev, 1);
1582
1583 err = hifn_enable_crypto(dev);
1584 if (err)
1585 return err;
1586
1587 hifn_reset_puc(dev);
1588
1589 hifn_init_dma(dev);
1590
1591 hifn_init_registers(dev);
1592
1593 hifn_init_pubrng(dev);
1594
1595 return 0;
1596 }
1597
skcipher_get(void * saddr,unsigned int * srestp,unsigned int offset,struct scatterlist * dst,unsigned int size,unsigned int * nbytesp)1598 static int skcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1599 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1600 {
1601 unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1602 void *daddr;
1603 int idx = 0;
1604
1605 if (srest < size || size > nbytes)
1606 return -EINVAL;
1607
1608 while (size) {
1609 copy = min3(srest, dst->length, size);
1610
1611 daddr = kmap_atomic(sg_page(dst));
1612 memcpy(daddr + dst->offset + offset, saddr, copy);
1613 kunmap_atomic(daddr);
1614
1615 nbytes -= copy;
1616 size -= copy;
1617 srest -= copy;
1618 saddr += copy;
1619 offset = 0;
1620
1621 pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1622 __func__, copy, size, srest, nbytes);
1623
1624 dst++;
1625 idx++;
1626 }
1627
1628 *nbytesp = nbytes;
1629 *srestp = srest;
1630
1631 return idx;
1632 }
1633
hifn_complete_sa(struct hifn_device * dev,int i)1634 static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1635 {
1636 unsigned long flags;
1637
1638 spin_lock_irqsave(&dev->lock, flags);
1639 dev->sa[i] = NULL;
1640 dev->started--;
1641 if (dev->started < 0)
1642 dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1643 dev->started);
1644 spin_unlock_irqrestore(&dev->lock, flags);
1645 BUG_ON(dev->started < 0);
1646 }
1647
hifn_process_ready(struct skcipher_request * req,int error)1648 static void hifn_process_ready(struct skcipher_request *req, int error)
1649 {
1650 struct hifn_request_context *rctx = skcipher_request_ctx(req);
1651
1652 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1653 unsigned int nbytes = req->cryptlen;
1654 int idx = 0, err;
1655 struct scatterlist *dst, *t;
1656 void *saddr;
1657
1658 while (nbytes) {
1659 t = &rctx->walk.cache[idx];
1660 dst = &req->dst[idx];
1661
1662 pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1663 "sg_page(dst): %p, dst->length: %u, "
1664 "nbytes: %u.\n",
1665 __func__, sg_page(t), t->length,
1666 sg_page(dst), dst->length, nbytes);
1667
1668 if (!t->length) {
1669 nbytes -= min(dst->length, nbytes);
1670 idx++;
1671 continue;
1672 }
1673
1674 saddr = kmap_atomic(sg_page(t));
1675
1676 err = skcipher_get(saddr, &t->length, t->offset,
1677 dst, nbytes, &nbytes);
1678 if (err < 0) {
1679 kunmap_atomic(saddr);
1680 break;
1681 }
1682
1683 idx += err;
1684 kunmap_atomic(saddr);
1685 }
1686
1687 hifn_cipher_walk_exit(&rctx->walk);
1688 }
1689
1690 skcipher_request_complete(req, error);
1691 }
1692
hifn_clear_rings(struct hifn_device * dev,int error)1693 static void hifn_clear_rings(struct hifn_device *dev, int error)
1694 {
1695 struct hifn_dma *dma = dev->desc_virt;
1696 int i, u;
1697
1698 dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1699 "k: %d.%d.%d.%d.\n",
1700 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1701 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1702 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1703
1704 i = dma->resk; u = dma->resu;
1705 while (u != 0) {
1706 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1707 break;
1708
1709 if (dev->sa[i]) {
1710 dev->success++;
1711 dev->reset = 0;
1712 hifn_process_ready(dev->sa[i], error);
1713 hifn_complete_sa(dev, i);
1714 }
1715
1716 if (++i == HIFN_D_RES_RSIZE)
1717 i = 0;
1718 u--;
1719 }
1720 dma->resk = i; dma->resu = u;
1721
1722 i = dma->srck; u = dma->srcu;
1723 while (u != 0) {
1724 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1725 break;
1726 if (++i == HIFN_D_SRC_RSIZE)
1727 i = 0;
1728 u--;
1729 }
1730 dma->srck = i; dma->srcu = u;
1731
1732 i = dma->cmdk; u = dma->cmdu;
1733 while (u != 0) {
1734 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1735 break;
1736 if (++i == HIFN_D_CMD_RSIZE)
1737 i = 0;
1738 u--;
1739 }
1740 dma->cmdk = i; dma->cmdu = u;
1741
1742 i = dma->dstk; u = dma->dstu;
1743 while (u != 0) {
1744 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1745 break;
1746 if (++i == HIFN_D_DST_RSIZE)
1747 i = 0;
1748 u--;
1749 }
1750 dma->dstk = i; dma->dstu = u;
1751
1752 dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1753 "k: %d.%d.%d.%d.\n",
1754 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1755 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1756 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1757 }
1758
hifn_work(struct work_struct * work)1759 static void hifn_work(struct work_struct *work)
1760 {
1761 struct delayed_work *dw = to_delayed_work(work);
1762 struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1763 unsigned long flags;
1764 int reset = 0;
1765 u32 r = 0;
1766
1767 spin_lock_irqsave(&dev->lock, flags);
1768 if (dev->active == 0) {
1769 struct hifn_dma *dma = dev->desc_virt;
1770
1771 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1772 dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1773 r |= HIFN_DMACSR_C_CTRL_DIS;
1774 }
1775 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1776 dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1777 r |= HIFN_DMACSR_S_CTRL_DIS;
1778 }
1779 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1780 dev->flags &= ~HIFN_FLAG_DST_BUSY;
1781 r |= HIFN_DMACSR_D_CTRL_DIS;
1782 }
1783 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1784 dev->flags &= ~HIFN_FLAG_RES_BUSY;
1785 r |= HIFN_DMACSR_R_CTRL_DIS;
1786 }
1787 if (r)
1788 hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1789 } else
1790 dev->active--;
1791
1792 if ((dev->prev_success == dev->success) && dev->started)
1793 reset = 1;
1794 dev->prev_success = dev->success;
1795 spin_unlock_irqrestore(&dev->lock, flags);
1796
1797 if (reset) {
1798 if (++dev->reset >= 5) {
1799 int i;
1800 struct hifn_dma *dma = dev->desc_virt;
1801
1802 dev_info(&dev->pdev->dev,
1803 "r: %08x, active: %d, started: %d, "
1804 "success: %lu: qlen: %u/%u, reset: %d.\n",
1805 r, dev->active, dev->started,
1806 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1807 reset);
1808
1809 dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1810 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1811 pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1812 if (dev->sa[i]) {
1813 hifn_process_ready(dev->sa[i], -ENODEV);
1814 hifn_complete_sa(dev, i);
1815 }
1816 }
1817 pr_info("\n");
1818
1819 hifn_reset_dma(dev, 1);
1820 hifn_stop_device(dev);
1821 hifn_start_device(dev);
1822 dev->reset = 0;
1823 }
1824
1825 tasklet_schedule(&dev->tasklet);
1826 }
1827
1828 schedule_delayed_work(&dev->work, HZ);
1829 }
1830
hifn_interrupt(int irq,void * data)1831 static irqreturn_t hifn_interrupt(int irq, void *data)
1832 {
1833 struct hifn_device *dev = data;
1834 struct hifn_dma *dma = dev->desc_virt;
1835 u32 dmacsr, restart;
1836
1837 dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1838
1839 dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1840 "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1841 dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1842 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1843 dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1844
1845 if ((dmacsr & dev->dmareg) == 0)
1846 return IRQ_NONE;
1847
1848 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1849
1850 if (dmacsr & HIFN_DMACSR_ENGINE)
1851 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1852 if (dmacsr & HIFN_DMACSR_PUBDONE)
1853 hifn_write_1(dev, HIFN_1_PUB_STATUS,
1854 hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1855
1856 restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1857 if (restart) {
1858 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1859
1860 dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1861 !!(dmacsr & HIFN_DMACSR_R_OVER),
1862 !!(dmacsr & HIFN_DMACSR_D_OVER),
1863 puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1864 if (!!(puisr & HIFN_PUISR_DSTOVER))
1865 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1866 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1867 HIFN_DMACSR_D_OVER));
1868 }
1869
1870 restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1871 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1872 if (restart) {
1873 dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1874 !!(dmacsr & HIFN_DMACSR_C_ABORT),
1875 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1876 !!(dmacsr & HIFN_DMACSR_D_ABORT),
1877 !!(dmacsr & HIFN_DMACSR_R_ABORT));
1878 hifn_reset_dma(dev, 1);
1879 hifn_init_dma(dev);
1880 hifn_init_registers(dev);
1881 }
1882
1883 if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1884 dev_dbg(&dev->pdev->dev, "wait on command.\n");
1885 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1886 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1887 }
1888
1889 tasklet_schedule(&dev->tasklet);
1890
1891 return IRQ_HANDLED;
1892 }
1893
hifn_flush(struct hifn_device * dev)1894 static void hifn_flush(struct hifn_device *dev)
1895 {
1896 unsigned long flags;
1897 struct crypto_async_request *async_req;
1898 struct skcipher_request *req;
1899 struct hifn_dma *dma = dev->desc_virt;
1900 int i;
1901
1902 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1903 struct hifn_desc *d = &dma->resr[i];
1904
1905 if (dev->sa[i]) {
1906 hifn_process_ready(dev->sa[i],
1907 (d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1908 hifn_complete_sa(dev, i);
1909 }
1910 }
1911
1912 spin_lock_irqsave(&dev->lock, flags);
1913 while ((async_req = crypto_dequeue_request(&dev->queue))) {
1914 req = skcipher_request_cast(async_req);
1915 spin_unlock_irqrestore(&dev->lock, flags);
1916
1917 hifn_process_ready(req, -ENODEV);
1918
1919 spin_lock_irqsave(&dev->lock, flags);
1920 }
1921 spin_unlock_irqrestore(&dev->lock, flags);
1922 }
1923
hifn_setkey(struct crypto_skcipher * cipher,const u8 * key,unsigned int len)1924 static int hifn_setkey(struct crypto_skcipher *cipher, const u8 *key,
1925 unsigned int len)
1926 {
1927 struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1928 struct hifn_device *dev = ctx->dev;
1929 int err;
1930
1931 err = verify_skcipher_des_key(cipher, key);
1932 if (err)
1933 return err;
1934
1935 dev->flags &= ~HIFN_FLAG_OLD_KEY;
1936
1937 memcpy(ctx->key, key, len);
1938 ctx->keysize = len;
1939
1940 return 0;
1941 }
1942
hifn_des3_setkey(struct crypto_skcipher * cipher,const u8 * key,unsigned int len)1943 static int hifn_des3_setkey(struct crypto_skcipher *cipher, const u8 *key,
1944 unsigned int len)
1945 {
1946 struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1947 struct hifn_device *dev = ctx->dev;
1948 int err;
1949
1950 err = verify_skcipher_des3_key(cipher, key);
1951 if (err)
1952 return err;
1953
1954 dev->flags &= ~HIFN_FLAG_OLD_KEY;
1955
1956 memcpy(ctx->key, key, len);
1957 ctx->keysize = len;
1958
1959 return 0;
1960 }
1961
hifn_handle_req(struct skcipher_request * req)1962 static int hifn_handle_req(struct skcipher_request *req)
1963 {
1964 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1965 struct hifn_device *dev = ctx->dev;
1966 int err = -EAGAIN;
1967
1968 if (dev->started + DIV_ROUND_UP(req->cryptlen, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1969 err = hifn_setup_session(req);
1970
1971 if (err == -EAGAIN) {
1972 unsigned long flags;
1973
1974 spin_lock_irqsave(&dev->lock, flags);
1975 err = crypto_enqueue_request(&dev->queue, &req->base);
1976 spin_unlock_irqrestore(&dev->lock, flags);
1977 }
1978
1979 return err;
1980 }
1981
hifn_setup_crypto_req(struct skcipher_request * req,u8 op,u8 type,u8 mode)1982 static int hifn_setup_crypto_req(struct skcipher_request *req, u8 op,
1983 u8 type, u8 mode)
1984 {
1985 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1986 struct hifn_request_context *rctx = skcipher_request_ctx(req);
1987 unsigned ivsize;
1988
1989 ivsize = crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
1990
1991 if (req->iv && mode != ACRYPTO_MODE_ECB) {
1992 if (type == ACRYPTO_TYPE_AES_128)
1993 ivsize = HIFN_AES_IV_LENGTH;
1994 else if (type == ACRYPTO_TYPE_DES)
1995 ivsize = HIFN_DES_KEY_LENGTH;
1996 else if (type == ACRYPTO_TYPE_3DES)
1997 ivsize = HIFN_3DES_KEY_LENGTH;
1998 }
1999
2000 if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2001 if (ctx->keysize == 24)
2002 type = ACRYPTO_TYPE_AES_192;
2003 else if (ctx->keysize == 32)
2004 type = ACRYPTO_TYPE_AES_256;
2005 }
2006
2007 rctx->op = op;
2008 rctx->mode = mode;
2009 rctx->type = type;
2010 rctx->iv = req->iv;
2011 rctx->ivsize = ivsize;
2012
2013 /*
2014 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2015 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2016 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2017 */
2018
2019 return hifn_handle_req(req);
2020 }
2021
hifn_process_queue(struct hifn_device * dev)2022 static int hifn_process_queue(struct hifn_device *dev)
2023 {
2024 struct crypto_async_request *async_req, *backlog;
2025 struct skcipher_request *req;
2026 unsigned long flags;
2027 int err = 0;
2028
2029 while (dev->started < HIFN_QUEUE_LENGTH) {
2030 spin_lock_irqsave(&dev->lock, flags);
2031 backlog = crypto_get_backlog(&dev->queue);
2032 async_req = crypto_dequeue_request(&dev->queue);
2033 spin_unlock_irqrestore(&dev->lock, flags);
2034
2035 if (!async_req)
2036 break;
2037
2038 if (backlog)
2039 crypto_request_complete(backlog, -EINPROGRESS);
2040
2041 req = skcipher_request_cast(async_req);
2042
2043 err = hifn_handle_req(req);
2044 if (err)
2045 break;
2046 }
2047
2048 return err;
2049 }
2050
hifn_setup_crypto(struct skcipher_request * req,u8 op,u8 type,u8 mode)2051 static int hifn_setup_crypto(struct skcipher_request *req, u8 op,
2052 u8 type, u8 mode)
2053 {
2054 int err;
2055 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2056 struct hifn_device *dev = ctx->dev;
2057
2058 err = hifn_setup_crypto_req(req, op, type, mode);
2059 if (err)
2060 return err;
2061
2062 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2063 hifn_process_queue(dev);
2064
2065 return -EINPROGRESS;
2066 }
2067
2068 /*
2069 * AES ecryption functions.
2070 */
hifn_encrypt_aes_ecb(struct skcipher_request * req)2071 static inline int hifn_encrypt_aes_ecb(struct skcipher_request *req)
2072 {
2073 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2074 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2075 }
hifn_encrypt_aes_cbc(struct skcipher_request * req)2076 static inline int hifn_encrypt_aes_cbc(struct skcipher_request *req)
2077 {
2078 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2079 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2080 }
2081
2082 /*
2083 * AES decryption functions.
2084 */
hifn_decrypt_aes_ecb(struct skcipher_request * req)2085 static inline int hifn_decrypt_aes_ecb(struct skcipher_request *req)
2086 {
2087 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2088 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2089 }
hifn_decrypt_aes_cbc(struct skcipher_request * req)2090 static inline int hifn_decrypt_aes_cbc(struct skcipher_request *req)
2091 {
2092 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2093 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2094 }
2095
2096 /*
2097 * DES ecryption functions.
2098 */
hifn_encrypt_des_ecb(struct skcipher_request * req)2099 static inline int hifn_encrypt_des_ecb(struct skcipher_request *req)
2100 {
2101 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2102 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2103 }
hifn_encrypt_des_cbc(struct skcipher_request * req)2104 static inline int hifn_encrypt_des_cbc(struct skcipher_request *req)
2105 {
2106 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2107 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2108 }
2109
2110 /*
2111 * DES decryption functions.
2112 */
hifn_decrypt_des_ecb(struct skcipher_request * req)2113 static inline int hifn_decrypt_des_ecb(struct skcipher_request *req)
2114 {
2115 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2116 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2117 }
hifn_decrypt_des_cbc(struct skcipher_request * req)2118 static inline int hifn_decrypt_des_cbc(struct skcipher_request *req)
2119 {
2120 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2121 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2122 }
2123
2124 /*
2125 * 3DES ecryption functions.
2126 */
hifn_encrypt_3des_ecb(struct skcipher_request * req)2127 static inline int hifn_encrypt_3des_ecb(struct skcipher_request *req)
2128 {
2129 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2130 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2131 }
hifn_encrypt_3des_cbc(struct skcipher_request * req)2132 static inline int hifn_encrypt_3des_cbc(struct skcipher_request *req)
2133 {
2134 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2135 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2136 }
2137
2138 /* 3DES decryption functions. */
hifn_decrypt_3des_ecb(struct skcipher_request * req)2139 static inline int hifn_decrypt_3des_ecb(struct skcipher_request *req)
2140 {
2141 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2142 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2143 }
hifn_decrypt_3des_cbc(struct skcipher_request * req)2144 static inline int hifn_decrypt_3des_cbc(struct skcipher_request *req)
2145 {
2146 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2147 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2148 }
2149
2150 struct hifn_alg_template {
2151 char name[CRYPTO_MAX_ALG_NAME];
2152 char drv_name[CRYPTO_MAX_ALG_NAME];
2153 unsigned int bsize;
2154 struct skcipher_alg skcipher;
2155 };
2156
2157 static const struct hifn_alg_template hifn_alg_templates[] = {
2158 /*
2159 * 3DES ECB and CBC modes.
2160 */
2161 {
2162 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2163 .skcipher = {
2164 .ivsize = HIFN_IV_LENGTH,
2165 .min_keysize = HIFN_3DES_KEY_LENGTH,
2166 .max_keysize = HIFN_3DES_KEY_LENGTH,
2167 .setkey = hifn_des3_setkey,
2168 .encrypt = hifn_encrypt_3des_cbc,
2169 .decrypt = hifn_decrypt_3des_cbc,
2170 },
2171 },
2172 {
2173 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2174 .skcipher = {
2175 .min_keysize = HIFN_3DES_KEY_LENGTH,
2176 .max_keysize = HIFN_3DES_KEY_LENGTH,
2177 .setkey = hifn_des3_setkey,
2178 .encrypt = hifn_encrypt_3des_ecb,
2179 .decrypt = hifn_decrypt_3des_ecb,
2180 },
2181 },
2182
2183 /*
2184 * DES ECB and CBC modes.
2185 */
2186 {
2187 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2188 .skcipher = {
2189 .ivsize = HIFN_IV_LENGTH,
2190 .min_keysize = HIFN_DES_KEY_LENGTH,
2191 .max_keysize = HIFN_DES_KEY_LENGTH,
2192 .setkey = hifn_setkey,
2193 .encrypt = hifn_encrypt_des_cbc,
2194 .decrypt = hifn_decrypt_des_cbc,
2195 },
2196 },
2197 {
2198 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2199 .skcipher = {
2200 .min_keysize = HIFN_DES_KEY_LENGTH,
2201 .max_keysize = HIFN_DES_KEY_LENGTH,
2202 .setkey = hifn_setkey,
2203 .encrypt = hifn_encrypt_des_ecb,
2204 .decrypt = hifn_decrypt_des_ecb,
2205 },
2206 },
2207
2208 /*
2209 * AES ECB and CBC modes.
2210 */
2211 {
2212 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2213 .skcipher = {
2214 .min_keysize = AES_MIN_KEY_SIZE,
2215 .max_keysize = AES_MAX_KEY_SIZE,
2216 .setkey = hifn_setkey,
2217 .encrypt = hifn_encrypt_aes_ecb,
2218 .decrypt = hifn_decrypt_aes_ecb,
2219 },
2220 },
2221 {
2222 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2223 .skcipher = {
2224 .ivsize = HIFN_AES_IV_LENGTH,
2225 .min_keysize = AES_MIN_KEY_SIZE,
2226 .max_keysize = AES_MAX_KEY_SIZE,
2227 .setkey = hifn_setkey,
2228 .encrypt = hifn_encrypt_aes_cbc,
2229 .decrypt = hifn_decrypt_aes_cbc,
2230 },
2231 },
2232 };
2233
hifn_init_tfm(struct crypto_skcipher * tfm)2234 static int hifn_init_tfm(struct crypto_skcipher *tfm)
2235 {
2236 struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
2237 struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2238 struct hifn_context *ctx = crypto_skcipher_ctx(tfm);
2239
2240 ctx->dev = ha->dev;
2241 crypto_skcipher_set_reqsize(tfm, sizeof(struct hifn_request_context));
2242
2243 return 0;
2244 }
2245
hifn_alg_alloc(struct hifn_device * dev,const struct hifn_alg_template * t)2246 static int hifn_alg_alloc(struct hifn_device *dev, const struct hifn_alg_template *t)
2247 {
2248 struct hifn_crypto_alg *alg;
2249 int err;
2250
2251 alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2252 if (!alg)
2253 return -ENOMEM;
2254
2255 alg->alg = t->skcipher;
2256 alg->alg.init = hifn_init_tfm;
2257
2258 err = -EINVAL;
2259 if (snprintf(alg->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
2260 "%s", t->name) >= CRYPTO_MAX_ALG_NAME)
2261 goto out_free_alg;
2262 if (snprintf(alg->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
2263 "%s-%s", t->drv_name, dev->name) >= CRYPTO_MAX_ALG_NAME)
2264 goto out_free_alg;
2265
2266 alg->alg.base.cra_priority = 300;
2267 alg->alg.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2268 alg->alg.base.cra_blocksize = t->bsize;
2269 alg->alg.base.cra_ctxsize = sizeof(struct hifn_context);
2270 alg->alg.base.cra_alignmask = 0;
2271 alg->alg.base.cra_module = THIS_MODULE;
2272
2273 alg->dev = dev;
2274
2275 list_add_tail(&alg->entry, &dev->alg_list);
2276
2277 err = crypto_register_skcipher(&alg->alg);
2278 if (err) {
2279 list_del(&alg->entry);
2280 out_free_alg:
2281 kfree(alg);
2282 }
2283
2284 return err;
2285 }
2286
hifn_unregister_alg(struct hifn_device * dev)2287 static void hifn_unregister_alg(struct hifn_device *dev)
2288 {
2289 struct hifn_crypto_alg *a, *n;
2290
2291 list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2292 list_del(&a->entry);
2293 crypto_unregister_skcipher(&a->alg);
2294 kfree(a);
2295 }
2296 }
2297
hifn_register_alg(struct hifn_device * dev)2298 static int hifn_register_alg(struct hifn_device *dev)
2299 {
2300 int i, err;
2301
2302 for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2303 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2304 if (err)
2305 goto err_out_exit;
2306 }
2307
2308 return 0;
2309
2310 err_out_exit:
2311 hifn_unregister_alg(dev);
2312 return err;
2313 }
2314
hifn_tasklet_callback(unsigned long data)2315 static void hifn_tasklet_callback(unsigned long data)
2316 {
2317 struct hifn_device *dev = (struct hifn_device *)data;
2318
2319 /*
2320 * This is ok to call this without lock being held,
2321 * althogh it modifies some parameters used in parallel,
2322 * (like dev->success), but they are used in process
2323 * context or update is atomic (like setting dev->sa[i] to NULL).
2324 */
2325 hifn_clear_rings(dev, 0);
2326
2327 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2328 hifn_process_queue(dev);
2329 }
2330
hifn_probe(struct pci_dev * pdev,const struct pci_device_id * id)2331 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2332 {
2333 int err, i;
2334 struct hifn_device *dev;
2335 char name[8];
2336
2337 err = pci_enable_device(pdev);
2338 if (err)
2339 return err;
2340 pci_set_master(pdev);
2341
2342 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2343 if (err)
2344 goto err_out_disable_pci_device;
2345
2346 snprintf(name, sizeof(name), "hifn%d",
2347 atomic_inc_return(&hifn_dev_number) - 1);
2348
2349 err = pci_request_regions(pdev, name);
2350 if (err)
2351 goto err_out_disable_pci_device;
2352
2353 if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2354 pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2355 pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2356 dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2357 err = -ENODEV;
2358 goto err_out_free_regions;
2359 }
2360
2361 dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2362 GFP_KERNEL);
2363 if (!dev) {
2364 err = -ENOMEM;
2365 goto err_out_free_regions;
2366 }
2367
2368 INIT_LIST_HEAD(&dev->alg_list);
2369
2370 snprintf(dev->name, sizeof(dev->name), "%s", name);
2371 spin_lock_init(&dev->lock);
2372
2373 for (i = 0; i < 3; ++i) {
2374 unsigned long addr, size;
2375
2376 addr = pci_resource_start(pdev, i);
2377 size = pci_resource_len(pdev, i);
2378
2379 dev->bar[i] = ioremap(addr, size);
2380 if (!dev->bar[i]) {
2381 err = -ENOMEM;
2382 goto err_out_unmap_bars;
2383 }
2384 }
2385
2386 dev->desc_virt = dma_alloc_coherent(&pdev->dev,
2387 sizeof(struct hifn_dma),
2388 &dev->desc_dma, GFP_KERNEL);
2389 if (!dev->desc_virt) {
2390 dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2391 err = -ENOMEM;
2392 goto err_out_unmap_bars;
2393 }
2394
2395 dev->pdev = pdev;
2396 dev->irq = pdev->irq;
2397
2398 for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2399 dev->sa[i] = NULL;
2400
2401 pci_set_drvdata(pdev, dev);
2402
2403 tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2404
2405 crypto_init_queue(&dev->queue, 1);
2406
2407 err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2408 if (err) {
2409 dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2410 dev->irq, err);
2411 dev->irq = 0;
2412 goto err_out_free_desc;
2413 }
2414
2415 err = hifn_start_device(dev);
2416 if (err)
2417 goto err_out_free_irq;
2418
2419 err = hifn_register_rng(dev);
2420 if (err)
2421 goto err_out_stop_device;
2422
2423 err = hifn_register_alg(dev);
2424 if (err)
2425 goto err_out_unregister_rng;
2426
2427 INIT_DELAYED_WORK(&dev->work, hifn_work);
2428 schedule_delayed_work(&dev->work, HZ);
2429
2430 dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2431 "successfully registered as %s.\n",
2432 pci_name(pdev), dev->name);
2433
2434 return 0;
2435
2436 err_out_unregister_rng:
2437 hifn_unregister_rng(dev);
2438 err_out_stop_device:
2439 hifn_reset_dma(dev, 1);
2440 hifn_stop_device(dev);
2441 err_out_free_irq:
2442 free_irq(dev->irq, dev);
2443 tasklet_kill(&dev->tasklet);
2444 err_out_free_desc:
2445 dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma), dev->desc_virt,
2446 dev->desc_dma);
2447
2448 err_out_unmap_bars:
2449 for (i = 0; i < 3; ++i)
2450 if (dev->bar[i])
2451 iounmap(dev->bar[i]);
2452 kfree(dev);
2453
2454 err_out_free_regions:
2455 pci_release_regions(pdev);
2456
2457 err_out_disable_pci_device:
2458 pci_disable_device(pdev);
2459
2460 return err;
2461 }
2462
hifn_remove(struct pci_dev * pdev)2463 static void hifn_remove(struct pci_dev *pdev)
2464 {
2465 int i;
2466 struct hifn_device *dev;
2467
2468 dev = pci_get_drvdata(pdev);
2469
2470 if (dev) {
2471 cancel_delayed_work_sync(&dev->work);
2472
2473 hifn_unregister_rng(dev);
2474 hifn_unregister_alg(dev);
2475 hifn_reset_dma(dev, 1);
2476 hifn_stop_device(dev);
2477
2478 free_irq(dev->irq, dev);
2479 tasklet_kill(&dev->tasklet);
2480
2481 hifn_flush(dev);
2482
2483 dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma),
2484 dev->desc_virt, dev->desc_dma);
2485 for (i = 0; i < 3; ++i)
2486 if (dev->bar[i])
2487 iounmap(dev->bar[i]);
2488
2489 kfree(dev);
2490 }
2491
2492 pci_release_regions(pdev);
2493 pci_disable_device(pdev);
2494 }
2495
2496 static struct pci_device_id hifn_pci_tbl[] = {
2497 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2498 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2499 { 0 }
2500 };
2501 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2502
2503 static struct pci_driver hifn_pci_driver = {
2504 .name = "hifn795x",
2505 .id_table = hifn_pci_tbl,
2506 .probe = hifn_probe,
2507 .remove = hifn_remove,
2508 };
2509
hifn_init(void)2510 static int __init hifn_init(void)
2511 {
2512 unsigned int freq;
2513 int err;
2514
2515 if (strncmp(hifn_pll_ref, "ext", 3) &&
2516 strncmp(hifn_pll_ref, "pci", 3)) {
2517 pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2518 return -EINVAL;
2519 }
2520
2521 /*
2522 * For the 7955/7956 the reference clock frequency must be in the
2523 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2524 * but this chip is currently not supported.
2525 */
2526 if (hifn_pll_ref[3] != '\0') {
2527 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2528 if (freq < 20 || freq > 100) {
2529 pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2530 "be in the range of 20-100");
2531 return -EINVAL;
2532 }
2533 }
2534
2535 err = pci_register_driver(&hifn_pci_driver);
2536 if (err < 0) {
2537 pr_err("Failed to register PCI driver for %s device.\n",
2538 hifn_pci_driver.name);
2539 return -ENODEV;
2540 }
2541
2542 pr_info("Driver for HIFN 795x crypto accelerator chip "
2543 "has been successfully registered.\n");
2544
2545 return 0;
2546 }
2547
hifn_fini(void)2548 static void __exit hifn_fini(void)
2549 {
2550 pci_unregister_driver(&hifn_pci_driver);
2551
2552 pr_info("Driver for HIFN 795x crypto accelerator chip "
2553 "has been successfully unregistered.\n");
2554 }
2555
2556 module_init(hifn_init);
2557 module_exit(hifn_fini);
2558
2559 MODULE_LICENSE("GPL");
2560 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2561 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
2562