1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Bluetooth HCI UART driver for Intel devices
5 *
6 * Copyright (C) 2015 Intel Corporation
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/skbuff.h>
12 #include <linux/firmware.h>
13 #include <linux/module.h>
14 #include <linux/wait.h>
15 #include <linux/tty.h>
16 #include <linux/platform_device.h>
17 #include <linux/gpio/consumer.h>
18 #include <linux/acpi.h>
19 #include <linux/interrupt.h>
20 #include <linux/pm_runtime.h>
21
22 #include <net/bluetooth/bluetooth.h>
23 #include <net/bluetooth/hci_core.h>
24
25 #include "hci_uart.h"
26 #include "btintel.h"
27
28 #define STATE_BOOTLOADER 0
29 #define STATE_DOWNLOADING 1
30 #define STATE_FIRMWARE_LOADED 2
31 #define STATE_FIRMWARE_FAILED 3
32 #define STATE_BOOTING 4
33 #define STATE_LPM_ENABLED 5
34 #define STATE_TX_ACTIVE 6
35 #define STATE_SUSPENDED 7
36 #define STATE_LPM_TRANSACTION 8
37
38 #define HCI_LPM_WAKE_PKT 0xf0
39 #define HCI_LPM_PKT 0xf1
40 #define HCI_LPM_MAX_SIZE 10
41 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
42
43 #define LPM_OP_TX_NOTIFY 0x00
44 #define LPM_OP_SUSPEND_ACK 0x02
45 #define LPM_OP_RESUME_ACK 0x03
46
47 #define LPM_SUSPEND_DELAY_MS 1000
48
49 struct hci_lpm_pkt {
50 __u8 opcode;
51 __u8 dlen;
52 __u8 data[];
53 } __packed;
54
55 struct intel_device {
56 struct list_head list;
57 struct platform_device *pdev;
58 struct gpio_desc *reset;
59 struct hci_uart *hu;
60 struct mutex hu_lock;
61 int irq;
62 };
63
64 static LIST_HEAD(intel_device_list);
65 static DEFINE_MUTEX(intel_device_list_lock);
66
67 struct intel_data {
68 struct sk_buff *rx_skb;
69 struct sk_buff_head txq;
70 struct work_struct busy_work;
71 struct hci_uart *hu;
72 unsigned long flags;
73 };
74
intel_convert_speed(unsigned int speed)75 static u8 intel_convert_speed(unsigned int speed)
76 {
77 switch (speed) {
78 case 9600:
79 return 0x00;
80 case 19200:
81 return 0x01;
82 case 38400:
83 return 0x02;
84 case 57600:
85 return 0x03;
86 case 115200:
87 return 0x04;
88 case 230400:
89 return 0x05;
90 case 460800:
91 return 0x06;
92 case 921600:
93 return 0x07;
94 case 1843200:
95 return 0x08;
96 case 3250000:
97 return 0x09;
98 case 2000000:
99 return 0x0a;
100 case 3000000:
101 return 0x0b;
102 default:
103 return 0xff;
104 }
105 }
106
intel_wait_booting(struct hci_uart * hu)107 static int intel_wait_booting(struct hci_uart *hu)
108 {
109 struct intel_data *intel = hu->priv;
110 int err;
111
112 err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
113 TASK_INTERRUPTIBLE,
114 msecs_to_jiffies(1000));
115
116 if (err == -EINTR) {
117 bt_dev_err(hu->hdev, "Device boot interrupted");
118 return -EINTR;
119 }
120
121 if (err) {
122 bt_dev_err(hu->hdev, "Device boot timeout");
123 return -ETIMEDOUT;
124 }
125
126 return err;
127 }
128
129 #ifdef CONFIG_PM
intel_wait_lpm_transaction(struct hci_uart * hu)130 static int intel_wait_lpm_transaction(struct hci_uart *hu)
131 {
132 struct intel_data *intel = hu->priv;
133 int err;
134
135 err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
136 TASK_INTERRUPTIBLE,
137 msecs_to_jiffies(1000));
138
139 if (err == -EINTR) {
140 bt_dev_err(hu->hdev, "LPM transaction interrupted");
141 return -EINTR;
142 }
143
144 if (err) {
145 bt_dev_err(hu->hdev, "LPM transaction timeout");
146 return -ETIMEDOUT;
147 }
148
149 return err;
150 }
151
intel_lpm_suspend(struct hci_uart * hu)152 static int intel_lpm_suspend(struct hci_uart *hu)
153 {
154 static const u8 suspend[] = { 0x01, 0x01, 0x01 };
155 struct intel_data *intel = hu->priv;
156 struct sk_buff *skb;
157
158 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
159 test_bit(STATE_SUSPENDED, &intel->flags))
160 return 0;
161
162 if (test_bit(STATE_TX_ACTIVE, &intel->flags))
163 return -EAGAIN;
164
165 bt_dev_dbg(hu->hdev, "Suspending");
166
167 skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
168 if (!skb) {
169 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
170 return -ENOMEM;
171 }
172
173 skb_put_data(skb, suspend, sizeof(suspend));
174 hci_skb_pkt_type(skb) = HCI_LPM_PKT;
175
176 set_bit(STATE_LPM_TRANSACTION, &intel->flags);
177
178 /* LPM flow is a priority, enqueue packet at list head */
179 skb_queue_head(&intel->txq, skb);
180 hci_uart_tx_wakeup(hu);
181
182 intel_wait_lpm_transaction(hu);
183 /* Even in case of failure, continue and test the suspended flag */
184
185 clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
186
187 if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
188 bt_dev_err(hu->hdev, "Device suspend error");
189 return -EINVAL;
190 }
191
192 bt_dev_dbg(hu->hdev, "Suspended");
193
194 hci_uart_set_flow_control(hu, true);
195
196 return 0;
197 }
198
intel_lpm_resume(struct hci_uart * hu)199 static int intel_lpm_resume(struct hci_uart *hu)
200 {
201 struct intel_data *intel = hu->priv;
202 struct sk_buff *skb;
203
204 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
205 !test_bit(STATE_SUSPENDED, &intel->flags))
206 return 0;
207
208 bt_dev_dbg(hu->hdev, "Resuming");
209
210 hci_uart_set_flow_control(hu, false);
211
212 skb = bt_skb_alloc(0, GFP_KERNEL);
213 if (!skb) {
214 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
215 return -ENOMEM;
216 }
217
218 hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
219
220 set_bit(STATE_LPM_TRANSACTION, &intel->flags);
221
222 /* LPM flow is a priority, enqueue packet at list head */
223 skb_queue_head(&intel->txq, skb);
224 hci_uart_tx_wakeup(hu);
225
226 intel_wait_lpm_transaction(hu);
227 /* Even in case of failure, continue and test the suspended flag */
228
229 clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
230
231 if (test_bit(STATE_SUSPENDED, &intel->flags)) {
232 bt_dev_err(hu->hdev, "Device resume error");
233 return -EINVAL;
234 }
235
236 bt_dev_dbg(hu->hdev, "Resumed");
237
238 return 0;
239 }
240 #endif /* CONFIG_PM */
241
intel_lpm_host_wake(struct hci_uart * hu)242 static int intel_lpm_host_wake(struct hci_uart *hu)
243 {
244 static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
245 struct intel_data *intel = hu->priv;
246 struct sk_buff *skb;
247
248 hci_uart_set_flow_control(hu, false);
249
250 clear_bit(STATE_SUSPENDED, &intel->flags);
251
252 skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
253 if (!skb) {
254 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
255 return -ENOMEM;
256 }
257
258 skb_put_data(skb, lpm_resume_ack, sizeof(lpm_resume_ack));
259 hci_skb_pkt_type(skb) = HCI_LPM_PKT;
260
261 /* LPM flow is a priority, enqueue packet at list head */
262 skb_queue_head(&intel->txq, skb);
263 hci_uart_tx_wakeup(hu);
264
265 bt_dev_dbg(hu->hdev, "Resumed by controller");
266
267 return 0;
268 }
269
intel_irq(int irq,void * dev_id)270 static irqreturn_t intel_irq(int irq, void *dev_id)
271 {
272 struct intel_device *idev = dev_id;
273
274 dev_info(&idev->pdev->dev, "hci_intel irq\n");
275
276 mutex_lock(&idev->hu_lock);
277 if (idev->hu)
278 intel_lpm_host_wake(idev->hu);
279 mutex_unlock(&idev->hu_lock);
280
281 /* Host/Controller are now LPM resumed, trigger a new delayed suspend */
282 pm_runtime_get(&idev->pdev->dev);
283 pm_runtime_put_autosuspend(&idev->pdev->dev);
284
285 return IRQ_HANDLED;
286 }
287
intel_set_power(struct hci_uart * hu,bool powered)288 static int intel_set_power(struct hci_uart *hu, bool powered)
289 {
290 struct intel_device *idev;
291 int err = -ENODEV;
292
293 if (!hu->tty->dev)
294 return err;
295
296 mutex_lock(&intel_device_list_lock);
297
298 list_for_each_entry(idev, &intel_device_list, list) {
299 /* tty device and pdev device should share the same parent
300 * which is the UART port.
301 */
302 if (hu->tty->dev->parent != idev->pdev->dev.parent)
303 continue;
304
305 if (!idev->reset) {
306 err = -ENOTSUPP;
307 break;
308 }
309
310 BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
311 hu, dev_name(&idev->pdev->dev), powered);
312
313 gpiod_set_value(idev->reset, powered);
314
315 /* Provide to idev a hu reference which is used to run LPM
316 * transactions (lpm suspend/resume) from PM callbacks.
317 * hu needs to be protected against concurrent removing during
318 * these PM ops.
319 */
320 mutex_lock(&idev->hu_lock);
321 idev->hu = powered ? hu : NULL;
322 mutex_unlock(&idev->hu_lock);
323
324 if (idev->irq < 0)
325 break;
326
327 if (powered && device_can_wakeup(&idev->pdev->dev)) {
328 err = devm_request_threaded_irq(&idev->pdev->dev,
329 idev->irq, NULL,
330 intel_irq,
331 IRQF_ONESHOT,
332 "bt-host-wake", idev);
333 if (err) {
334 BT_ERR("hu %p, unable to allocate irq-%d",
335 hu, idev->irq);
336 break;
337 }
338
339 device_wakeup_enable(&idev->pdev->dev);
340
341 pm_runtime_set_active(&idev->pdev->dev);
342 pm_runtime_use_autosuspend(&idev->pdev->dev);
343 pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
344 LPM_SUSPEND_DELAY_MS);
345 pm_runtime_enable(&idev->pdev->dev);
346 } else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
347 devm_free_irq(&idev->pdev->dev, idev->irq, idev);
348 device_wakeup_disable(&idev->pdev->dev);
349
350 pm_runtime_disable(&idev->pdev->dev);
351 }
352 }
353
354 mutex_unlock(&intel_device_list_lock);
355
356 return err;
357 }
358
intel_busy_work(struct work_struct * work)359 static void intel_busy_work(struct work_struct *work)
360 {
361 struct intel_data *intel = container_of(work, struct intel_data,
362 busy_work);
363 struct intel_device *idev;
364
365 if (!intel->hu->tty->dev)
366 return;
367
368 /* Link is busy, delay the suspend */
369 mutex_lock(&intel_device_list_lock);
370 list_for_each_entry(idev, &intel_device_list, list) {
371 if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
372 pm_runtime_get(&idev->pdev->dev);
373 pm_runtime_put_autosuspend(&idev->pdev->dev);
374 break;
375 }
376 }
377 mutex_unlock(&intel_device_list_lock);
378 }
379
intel_open(struct hci_uart * hu)380 static int intel_open(struct hci_uart *hu)
381 {
382 struct intel_data *intel;
383
384 BT_DBG("hu %p", hu);
385
386 if (!hci_uart_has_flow_control(hu))
387 return -EOPNOTSUPP;
388
389 intel = kzalloc(sizeof(*intel), GFP_KERNEL);
390 if (!intel)
391 return -ENOMEM;
392
393 skb_queue_head_init(&intel->txq);
394 INIT_WORK(&intel->busy_work, intel_busy_work);
395
396 intel->hu = hu;
397
398 hu->priv = intel;
399
400 if (!intel_set_power(hu, true))
401 set_bit(STATE_BOOTING, &intel->flags);
402
403 return 0;
404 }
405
intel_close(struct hci_uart * hu)406 static int intel_close(struct hci_uart *hu)
407 {
408 struct intel_data *intel = hu->priv;
409
410 BT_DBG("hu %p", hu);
411
412 cancel_work_sync(&intel->busy_work);
413
414 intel_set_power(hu, false);
415
416 skb_queue_purge(&intel->txq);
417 kfree_skb(intel->rx_skb);
418 kfree(intel);
419
420 hu->priv = NULL;
421 return 0;
422 }
423
intel_flush(struct hci_uart * hu)424 static int intel_flush(struct hci_uart *hu)
425 {
426 struct intel_data *intel = hu->priv;
427
428 BT_DBG("hu %p", hu);
429
430 skb_queue_purge(&intel->txq);
431
432 return 0;
433 }
434
inject_cmd_complete(struct hci_dev * hdev,__u16 opcode)435 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
436 {
437 struct sk_buff *skb;
438 struct hci_event_hdr *hdr;
439 struct hci_ev_cmd_complete *evt;
440
441 skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
442 if (!skb)
443 return -ENOMEM;
444
445 hdr = skb_put(skb, sizeof(*hdr));
446 hdr->evt = HCI_EV_CMD_COMPLETE;
447 hdr->plen = sizeof(*evt) + 1;
448
449 evt = skb_put(skb, sizeof(*evt));
450 evt->ncmd = 0x01;
451 evt->opcode = cpu_to_le16(opcode);
452
453 skb_put_u8(skb, 0x00);
454
455 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
456
457 return hci_recv_frame(hdev, skb);
458 }
459
intel_set_baudrate(struct hci_uart * hu,unsigned int speed)460 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
461 {
462 struct intel_data *intel = hu->priv;
463 struct hci_dev *hdev = hu->hdev;
464 u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
465 struct sk_buff *skb;
466 int err;
467
468 /* This can be the first command sent to the chip, check
469 * that the controller is ready.
470 */
471 err = intel_wait_booting(hu);
472
473 clear_bit(STATE_BOOTING, &intel->flags);
474
475 /* In case of timeout, try to continue anyway */
476 if (err && err != -ETIMEDOUT)
477 return err;
478
479 bt_dev_info(hdev, "Change controller speed to %d", speed);
480
481 speed_cmd[3] = intel_convert_speed(speed);
482 if (speed_cmd[3] == 0xff) {
483 bt_dev_err(hdev, "Unsupported speed");
484 return -EINVAL;
485 }
486
487 /* Device will not accept speed change if Intel version has not been
488 * previously requested.
489 */
490 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
491 if (IS_ERR(skb)) {
492 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
493 PTR_ERR(skb));
494 return PTR_ERR(skb);
495 }
496 kfree_skb(skb);
497
498 skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
499 if (!skb) {
500 bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
501 return -ENOMEM;
502 }
503
504 skb_put_data(skb, speed_cmd, sizeof(speed_cmd));
505 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
506
507 hci_uart_set_flow_control(hu, true);
508
509 skb_queue_tail(&intel->txq, skb);
510 hci_uart_tx_wakeup(hu);
511
512 /* wait 100ms to change baudrate on controller side */
513 msleep(100);
514
515 hci_uart_set_baudrate(hu, speed);
516 hci_uart_set_flow_control(hu, false);
517
518 return 0;
519 }
520
intel_setup(struct hci_uart * hu)521 static int intel_setup(struct hci_uart *hu)
522 {
523 struct intel_data *intel = hu->priv;
524 struct hci_dev *hdev = hu->hdev;
525 struct sk_buff *skb;
526 struct intel_version ver;
527 struct intel_boot_params params;
528 struct intel_device *idev;
529 const struct firmware *fw;
530 char fwname[64];
531 u32 boot_param;
532 ktime_t calltime, delta, rettime;
533 unsigned long long duration;
534 unsigned int init_speed, oper_speed;
535 int speed_change = 0;
536 int err;
537
538 bt_dev_dbg(hdev, "");
539
540 hu->hdev->set_diag = btintel_set_diag;
541 hu->hdev->set_bdaddr = btintel_set_bdaddr;
542
543 /* Set the default boot parameter to 0x0 and it is updated to
544 * SKU specific boot parameter after reading Intel_Write_Boot_Params
545 * command while downloading the firmware.
546 */
547 boot_param = 0x00000000;
548
549 calltime = ktime_get();
550
551 if (hu->init_speed)
552 init_speed = hu->init_speed;
553 else
554 init_speed = hu->proto->init_speed;
555
556 if (hu->oper_speed)
557 oper_speed = hu->oper_speed;
558 else
559 oper_speed = hu->proto->oper_speed;
560
561 if (oper_speed && init_speed && oper_speed != init_speed)
562 speed_change = 1;
563
564 /* Check that the controller is ready */
565 err = intel_wait_booting(hu);
566
567 clear_bit(STATE_BOOTING, &intel->flags);
568
569 /* In case of timeout, try to continue anyway */
570 if (err && err != -ETIMEDOUT)
571 return err;
572
573 set_bit(STATE_BOOTLOADER, &intel->flags);
574
575 /* Read the Intel version information to determine if the device
576 * is in bootloader mode or if it already has operational firmware
577 * loaded.
578 */
579 err = btintel_read_version(hdev, &ver);
580 if (err)
581 return err;
582
583 /* The hardware platform number has a fixed value of 0x37 and
584 * for now only accept this single value.
585 */
586 if (ver.hw_platform != 0x37) {
587 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
588 ver.hw_platform);
589 return -EINVAL;
590 }
591
592 /* Check for supported iBT hardware variants of this firmware
593 * loading method.
594 *
595 * This check has been put in place to ensure correct forward
596 * compatibility options when newer hardware variants come along.
597 */
598 switch (ver.hw_variant) {
599 case 0x0b: /* LnP */
600 case 0x0c: /* WsP */
601 case 0x12: /* ThP */
602 break;
603 default:
604 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
605 ver.hw_variant);
606 return -EINVAL;
607 }
608
609 btintel_version_info(hdev, &ver);
610
611 /* The firmware variant determines if the device is in bootloader
612 * mode or is running operational firmware. The value 0x06 identifies
613 * the bootloader and the value 0x23 identifies the operational
614 * firmware.
615 *
616 * When the operational firmware is already present, then only
617 * the check for valid Bluetooth device address is needed. This
618 * determines if the device will be added as configured or
619 * unconfigured controller.
620 *
621 * It is not possible to use the Secure Boot Parameters in this
622 * case since that command is only available in bootloader mode.
623 */
624 if (ver.fw_variant == 0x23) {
625 clear_bit(STATE_BOOTLOADER, &intel->flags);
626 btintel_check_bdaddr(hdev);
627 return 0;
628 }
629
630 /* If the device is not in bootloader mode, then the only possible
631 * choice is to return an error and abort the device initialization.
632 */
633 if (ver.fw_variant != 0x06) {
634 bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
635 ver.fw_variant);
636 return -ENODEV;
637 }
638
639 /* Read the secure boot parameters to identify the operating
640 * details of the bootloader.
641 */
642 err = btintel_read_boot_params(hdev, ¶ms);
643 if (err)
644 return err;
645
646 /* It is required that every single firmware fragment is acknowledged
647 * with a command complete event. If the boot parameters indicate
648 * that this bootloader does not send them, then abort the setup.
649 */
650 if (params.limited_cce != 0x00) {
651 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
652 params.limited_cce);
653 return -EINVAL;
654 }
655
656 /* If the OTP has no valid Bluetooth device address, then there will
657 * also be no valid address for the operational firmware.
658 */
659 if (!bacmp(¶ms.otp_bdaddr, BDADDR_ANY)) {
660 bt_dev_info(hdev, "No device address configured");
661 hci_set_quirk(hdev, HCI_QUIRK_INVALID_BDADDR);
662 }
663
664 /* With this Intel bootloader only the hardware variant and device
665 * revision information are used to select the right firmware for SfP
666 * and WsP.
667 *
668 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
669 *
670 * Currently the supported hardware variants are:
671 * 11 (0x0b) for iBT 3.0 (LnP/SfP)
672 * 12 (0x0c) for iBT 3.5 (WsP)
673 *
674 * For ThP/JfP and for future SKU's, the FW name varies based on HW
675 * variant, HW revision and FW revision, as these are dependent on CNVi
676 * and RF Combination.
677 *
678 * 18 (0x12) for iBT3.5 (ThP/JfP)
679 *
680 * The firmware file name for these will be
681 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
682 *
683 */
684 switch (ver.hw_variant) {
685 case 0x0b: /* SfP */
686 case 0x0c: /* WsP */
687 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
688 ver.hw_variant, le16_to_cpu(params.dev_revid));
689 break;
690 case 0x12: /* ThP */
691 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.sfi",
692 ver.hw_variant, ver.hw_revision, ver.fw_revision);
693 break;
694 default:
695 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
696 ver.hw_variant);
697 return -EINVAL;
698 }
699
700 err = request_firmware(&fw, fwname, &hdev->dev);
701 if (err < 0) {
702 bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
703 err);
704 return err;
705 }
706
707 bt_dev_info(hdev, "Found device firmware: %s", fwname);
708
709 /* Save the DDC file name for later */
710 switch (ver.hw_variant) {
711 case 0x0b: /* SfP */
712 case 0x0c: /* WsP */
713 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
714 ver.hw_variant, le16_to_cpu(params.dev_revid));
715 break;
716 case 0x12: /* ThP */
717 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.ddc",
718 ver.hw_variant, ver.hw_revision, ver.fw_revision);
719 break;
720 default:
721 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
722 ver.hw_variant);
723 return -EINVAL;
724 }
725
726 if (fw->size < 644) {
727 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
728 fw->size);
729 err = -EBADF;
730 goto done;
731 }
732
733 set_bit(STATE_DOWNLOADING, &intel->flags);
734
735 /* Start firmware downloading and get boot parameter */
736 err = btintel_download_firmware(hdev, &ver, fw, &boot_param);
737 if (err < 0)
738 goto done;
739
740 set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
741
742 bt_dev_info(hdev, "Waiting for firmware download to complete");
743
744 /* Before switching the device into operational mode and with that
745 * booting the loaded firmware, wait for the bootloader notification
746 * that all fragments have been successfully received.
747 *
748 * When the event processing receives the notification, then the
749 * STATE_DOWNLOADING flag will be cleared.
750 *
751 * The firmware loading should not take longer than 5 seconds
752 * and thus just timeout if that happens and fail the setup
753 * of this device.
754 */
755 err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
756 TASK_INTERRUPTIBLE,
757 msecs_to_jiffies(5000));
758 if (err == -EINTR) {
759 bt_dev_err(hdev, "Firmware loading interrupted");
760 err = -EINTR;
761 goto done;
762 }
763
764 if (err) {
765 bt_dev_err(hdev, "Firmware loading timeout");
766 err = -ETIMEDOUT;
767 goto done;
768 }
769
770 if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
771 bt_dev_err(hdev, "Firmware loading failed");
772 err = -ENOEXEC;
773 goto done;
774 }
775
776 rettime = ktime_get();
777 delta = ktime_sub(rettime, calltime);
778 duration = (unsigned long long)ktime_to_ns(delta) >> 10;
779
780 bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
781
782 done:
783 release_firmware(fw);
784
785 /* Check if there was an error and if is not -EALREADY which means the
786 * firmware has already been loaded.
787 */
788 if (err < 0 && err != -EALREADY)
789 return err;
790
791 /* We need to restore the default speed before Intel reset */
792 if (speed_change) {
793 err = intel_set_baudrate(hu, init_speed);
794 if (err)
795 return err;
796 }
797
798 calltime = ktime_get();
799
800 set_bit(STATE_BOOTING, &intel->flags);
801
802 err = btintel_send_intel_reset(hdev, boot_param);
803 if (err)
804 return err;
805
806 /* The bootloader will not indicate when the device is ready. This
807 * is done by the operational firmware sending bootup notification.
808 *
809 * Booting into operational firmware should not take longer than
810 * 1 second. However if that happens, then just fail the setup
811 * since something went wrong.
812 */
813 bt_dev_info(hdev, "Waiting for device to boot");
814
815 err = intel_wait_booting(hu);
816 if (err)
817 return err;
818
819 clear_bit(STATE_BOOTING, &intel->flags);
820
821 rettime = ktime_get();
822 delta = ktime_sub(rettime, calltime);
823 duration = (unsigned long long)ktime_to_ns(delta) >> 10;
824
825 bt_dev_info(hdev, "Device booted in %llu usecs", duration);
826
827 /* Enable LPM if matching pdev with wakeup enabled, set TX active
828 * until further LPM TX notification.
829 */
830 mutex_lock(&intel_device_list_lock);
831 list_for_each_entry(idev, &intel_device_list, list) {
832 if (!hu->tty->dev)
833 break;
834 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
835 if (device_may_wakeup(&idev->pdev->dev)) {
836 set_bit(STATE_LPM_ENABLED, &intel->flags);
837 set_bit(STATE_TX_ACTIVE, &intel->flags);
838 }
839 break;
840 }
841 }
842 mutex_unlock(&intel_device_list_lock);
843
844 /* Ignore errors, device can work without DDC parameters */
845 btintel_load_ddc_config(hdev, fwname);
846
847 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
848 if (IS_ERR(skb))
849 return PTR_ERR(skb);
850 kfree_skb(skb);
851
852 if (speed_change) {
853 err = intel_set_baudrate(hu, oper_speed);
854 if (err)
855 return err;
856 }
857
858 bt_dev_info(hdev, "Setup complete");
859
860 clear_bit(STATE_BOOTLOADER, &intel->flags);
861
862 return 0;
863 }
864
intel_recv_event(struct hci_dev * hdev,struct sk_buff * skb)865 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
866 {
867 struct hci_uart *hu = hci_get_drvdata(hdev);
868 struct intel_data *intel = hu->priv;
869 struct hci_event_hdr *hdr;
870
871 if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
872 !test_bit(STATE_BOOTING, &intel->flags))
873 goto recv;
874
875 hdr = (void *)skb->data;
876
877 /* When the firmware loading completes the device sends
878 * out a vendor specific event indicating the result of
879 * the firmware loading.
880 */
881 if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
882 skb->data[2] == 0x06) {
883 if (skb->data[3] != 0x00)
884 set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
885
886 if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
887 test_bit(STATE_FIRMWARE_LOADED, &intel->flags))
888 wake_up_bit(&intel->flags, STATE_DOWNLOADING);
889
890 /* When switching to the operational firmware the device
891 * sends a vendor specific event indicating that the bootup
892 * completed.
893 */
894 } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
895 skb->data[2] == 0x02) {
896 if (test_and_clear_bit(STATE_BOOTING, &intel->flags))
897 wake_up_bit(&intel->flags, STATE_BOOTING);
898 }
899 recv:
900 return hci_recv_frame(hdev, skb);
901 }
902
intel_recv_lpm_notify(struct hci_dev * hdev,int value)903 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
904 {
905 struct hci_uart *hu = hci_get_drvdata(hdev);
906 struct intel_data *intel = hu->priv;
907
908 bt_dev_dbg(hdev, "TX idle notification (%d)", value);
909
910 if (value) {
911 set_bit(STATE_TX_ACTIVE, &intel->flags);
912 schedule_work(&intel->busy_work);
913 } else {
914 clear_bit(STATE_TX_ACTIVE, &intel->flags);
915 }
916 }
917
intel_recv_lpm(struct hci_dev * hdev,struct sk_buff * skb)918 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
919 {
920 struct hci_lpm_pkt *lpm = (void *)skb->data;
921 struct hci_uart *hu = hci_get_drvdata(hdev);
922 struct intel_data *intel = hu->priv;
923
924 switch (lpm->opcode) {
925 case LPM_OP_TX_NOTIFY:
926 if (lpm->dlen < 1) {
927 bt_dev_err(hu->hdev, "Invalid LPM notification packet");
928 break;
929 }
930 intel_recv_lpm_notify(hdev, lpm->data[0]);
931 break;
932 case LPM_OP_SUSPEND_ACK:
933 set_bit(STATE_SUSPENDED, &intel->flags);
934 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
935 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
936 break;
937 case LPM_OP_RESUME_ACK:
938 clear_bit(STATE_SUSPENDED, &intel->flags);
939 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
940 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
941 break;
942 default:
943 bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
944 break;
945 }
946
947 kfree_skb(skb);
948
949 return 0;
950 }
951
952 #define INTEL_RECV_LPM \
953 .type = HCI_LPM_PKT, \
954 .hlen = HCI_LPM_HDR_SIZE, \
955 .loff = 1, \
956 .lsize = 1, \
957 .maxlen = HCI_LPM_MAX_SIZE
958
959 static const struct h4_recv_pkt intel_recv_pkts[] = {
960 { H4_RECV_ACL, .recv = hci_recv_frame },
961 { H4_RECV_SCO, .recv = hci_recv_frame },
962 { H4_RECV_EVENT, .recv = intel_recv_event },
963 { INTEL_RECV_LPM, .recv = intel_recv_lpm },
964 };
965
intel_recv(struct hci_uart * hu,const void * data,int count)966 static int intel_recv(struct hci_uart *hu, const void *data, int count)
967 {
968 struct intel_data *intel = hu->priv;
969
970 if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
971 return -EUNATCH;
972
973 intel->rx_skb = h4_recv_buf(hu, intel->rx_skb, data, count,
974 intel_recv_pkts,
975 ARRAY_SIZE(intel_recv_pkts));
976 if (IS_ERR(intel->rx_skb)) {
977 int err = PTR_ERR(intel->rx_skb);
978
979 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
980 intel->rx_skb = NULL;
981 return err;
982 }
983
984 return count;
985 }
986
intel_enqueue(struct hci_uart * hu,struct sk_buff * skb)987 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
988 {
989 struct intel_data *intel = hu->priv;
990 struct intel_device *idev;
991
992 BT_DBG("hu %p skb %p", hu, skb);
993
994 if (!hu->tty->dev)
995 goto out_enqueue;
996
997 /* Be sure our controller is resumed and potential LPM transaction
998 * completed before enqueuing any packet.
999 */
1000 mutex_lock(&intel_device_list_lock);
1001 list_for_each_entry(idev, &intel_device_list, list) {
1002 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1003 pm_runtime_get_sync(&idev->pdev->dev);
1004 pm_runtime_put_autosuspend(&idev->pdev->dev);
1005 break;
1006 }
1007 }
1008 mutex_unlock(&intel_device_list_lock);
1009 out_enqueue:
1010 skb_queue_tail(&intel->txq, skb);
1011
1012 return 0;
1013 }
1014
intel_dequeue(struct hci_uart * hu)1015 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1016 {
1017 struct intel_data *intel = hu->priv;
1018 struct sk_buff *skb;
1019
1020 skb = skb_dequeue(&intel->txq);
1021 if (!skb)
1022 return skb;
1023
1024 if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1025 (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1026 struct hci_command_hdr *cmd = (void *)skb->data;
1027 __u16 opcode = le16_to_cpu(cmd->opcode);
1028
1029 /* When the BTINTEL_HCI_OP_RESET command is issued to boot into
1030 * the operational firmware, it will actually not send a command
1031 * complete event. To keep the flow control working inject that
1032 * event here.
1033 */
1034 if (opcode == BTINTEL_HCI_OP_RESET)
1035 inject_cmd_complete(hu->hdev, opcode);
1036 }
1037
1038 /* Prepend skb with frame type */
1039 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1040
1041 return skb;
1042 }
1043
1044 static const struct hci_uart_proto intel_proto = {
1045 .id = HCI_UART_INTEL,
1046 .name = "Intel",
1047 .manufacturer = 2,
1048 .init_speed = 115200,
1049 .oper_speed = 3000000,
1050 .open = intel_open,
1051 .close = intel_close,
1052 .flush = intel_flush,
1053 .setup = intel_setup,
1054 .set_baudrate = intel_set_baudrate,
1055 .recv = intel_recv,
1056 .enqueue = intel_enqueue,
1057 .dequeue = intel_dequeue,
1058 };
1059
1060 #ifdef CONFIG_ACPI
1061 static const struct acpi_device_id intel_acpi_match[] = {
1062 { "INT33E1", 0 },
1063 { "INT33E3", 0 },
1064 { }
1065 };
1066 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1067 #endif
1068
1069 #ifdef CONFIG_PM
intel_suspend_device(struct device * dev)1070 static int intel_suspend_device(struct device *dev)
1071 {
1072 struct intel_device *idev = dev_get_drvdata(dev);
1073
1074 mutex_lock(&idev->hu_lock);
1075 if (idev->hu)
1076 intel_lpm_suspend(idev->hu);
1077 mutex_unlock(&idev->hu_lock);
1078
1079 return 0;
1080 }
1081
intel_resume_device(struct device * dev)1082 static int intel_resume_device(struct device *dev)
1083 {
1084 struct intel_device *idev = dev_get_drvdata(dev);
1085
1086 mutex_lock(&idev->hu_lock);
1087 if (idev->hu)
1088 intel_lpm_resume(idev->hu);
1089 mutex_unlock(&idev->hu_lock);
1090
1091 return 0;
1092 }
1093 #endif
1094
1095 #ifdef CONFIG_PM_SLEEP
intel_suspend(struct device * dev)1096 static int intel_suspend(struct device *dev)
1097 {
1098 struct intel_device *idev = dev_get_drvdata(dev);
1099
1100 if (device_may_wakeup(dev))
1101 enable_irq_wake(idev->irq);
1102
1103 return intel_suspend_device(dev);
1104 }
1105
intel_resume(struct device * dev)1106 static int intel_resume(struct device *dev)
1107 {
1108 struct intel_device *idev = dev_get_drvdata(dev);
1109
1110 if (device_may_wakeup(dev))
1111 disable_irq_wake(idev->irq);
1112
1113 return intel_resume_device(dev);
1114 }
1115 #endif
1116
1117 static const struct dev_pm_ops intel_pm_ops = {
1118 SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1119 SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1120 };
1121
1122 static const struct acpi_gpio_params reset_gpios = { 0, 0, false };
1123 static const struct acpi_gpio_params host_wake_gpios = { 1, 0, false };
1124
1125 static const struct acpi_gpio_mapping acpi_hci_intel_gpios[] = {
1126 { "reset-gpios", &reset_gpios, 1, ACPI_GPIO_QUIRK_ONLY_GPIOIO },
1127 { "host-wake-gpios", &host_wake_gpios, 1, ACPI_GPIO_QUIRK_ONLY_GPIOIO },
1128 { }
1129 };
1130
intel_probe(struct platform_device * pdev)1131 static int intel_probe(struct platform_device *pdev)
1132 {
1133 struct intel_device *idev;
1134 int ret;
1135
1136 idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1137 if (!idev)
1138 return -ENOMEM;
1139
1140 mutex_init(&idev->hu_lock);
1141
1142 idev->pdev = pdev;
1143
1144 ret = devm_acpi_dev_add_driver_gpios(&pdev->dev, acpi_hci_intel_gpios);
1145 if (ret)
1146 dev_dbg(&pdev->dev, "Unable to add GPIO mapping table\n");
1147
1148 idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1149 if (IS_ERR(idev->reset)) {
1150 dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1151 return PTR_ERR(idev->reset);
1152 }
1153
1154 idev->irq = platform_get_irq(pdev, 0);
1155 if (idev->irq < 0) {
1156 struct gpio_desc *host_wake;
1157
1158 dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1159
1160 host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1161 if (IS_ERR(host_wake)) {
1162 dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1163 goto no_irq;
1164 }
1165
1166 idev->irq = gpiod_to_irq(host_wake);
1167 if (idev->irq < 0) {
1168 dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1169 goto no_irq;
1170 }
1171 }
1172
1173 /* Only enable wake-up/irq when controller is powered */
1174 device_set_wakeup_capable(&pdev->dev, true);
1175 device_wakeup_disable(&pdev->dev);
1176
1177 no_irq:
1178 platform_set_drvdata(pdev, idev);
1179
1180 /* Place this instance on the device list */
1181 mutex_lock(&intel_device_list_lock);
1182 list_add_tail(&idev->list, &intel_device_list);
1183 mutex_unlock(&intel_device_list_lock);
1184
1185 dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1186 desc_to_gpio(idev->reset), idev->irq);
1187
1188 return 0;
1189 }
1190
intel_remove(struct platform_device * pdev)1191 static void intel_remove(struct platform_device *pdev)
1192 {
1193 struct intel_device *idev = platform_get_drvdata(pdev);
1194
1195 device_wakeup_disable(&pdev->dev);
1196
1197 mutex_lock(&intel_device_list_lock);
1198 list_del(&idev->list);
1199 mutex_unlock(&intel_device_list_lock);
1200
1201 dev_info(&pdev->dev, "unregistered.\n");
1202 }
1203
1204 static struct platform_driver intel_driver = {
1205 .probe = intel_probe,
1206 .remove = intel_remove,
1207 .driver = {
1208 .name = "hci_intel",
1209 .acpi_match_table = ACPI_PTR(intel_acpi_match),
1210 .pm = &intel_pm_ops,
1211 },
1212 };
1213
intel_init(void)1214 int __init intel_init(void)
1215 {
1216 int err;
1217
1218 err = platform_driver_register(&intel_driver);
1219 if (err)
1220 return err;
1221
1222 return hci_uart_register_proto(&intel_proto);
1223 }
1224
intel_deinit(void)1225 int __exit intel_deinit(void)
1226 {
1227 platform_driver_unregister(&intel_driver);
1228
1229 return hci_uart_unregister_proto(&intel_proto);
1230 }
1231