xref: /linux/kernel/sched/sched.h (revision 6a68cec16b647791d448102376a7eec2820e874f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23 
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71 #include <linux/delayacct.h>
72 #include <linux/mmu_context.h>
73 
74 #include <trace/events/power.h>
75 #include <trace/events/sched.h>
76 
77 #include "../workqueue_internal.h"
78 
79 struct rq;
80 struct cfs_rq;
81 struct rt_rq;
82 struct sched_group;
83 struct cpuidle_state;
84 
85 #ifdef CONFIG_PARAVIRT
86 # include <asm/paravirt.h>
87 # include <asm/paravirt_api_clock.h>
88 #endif
89 
90 #include <asm/barrier.h>
91 
92 #include "cpupri.h"
93 #include "cpudeadline.h"
94 
95 /* task_struct::on_rq states: */
96 #define TASK_ON_RQ_QUEUED	1
97 #define TASK_ON_RQ_MIGRATING	2
98 
99 extern __read_mostly int scheduler_running;
100 
101 extern unsigned long calc_load_update;
102 extern atomic_long_t calc_load_tasks;
103 
104 extern void calc_global_load_tick(struct rq *this_rq);
105 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
106 
107 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
108 
109 extern int sysctl_sched_rt_period;
110 extern int sysctl_sched_rt_runtime;
111 extern int sched_rr_timeslice;
112 
113 /*
114  * Asymmetric CPU capacity bits
115  */
116 struct asym_cap_data {
117 	struct list_head link;
118 	struct rcu_head rcu;
119 	unsigned long capacity;
120 	unsigned long cpus[];
121 };
122 
123 extern struct list_head asym_cap_list;
124 
125 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
126 
127 /*
128  * Helpers for converting nanosecond timing to jiffy resolution
129  */
130 #define NS_TO_JIFFIES(time)	((unsigned long)(time) / (NSEC_PER_SEC/HZ))
131 
132 /*
133  * Increase resolution of nice-level calculations for 64-bit architectures.
134  * The extra resolution improves shares distribution and load balancing of
135  * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group
136  * hierarchies, especially on larger systems. This is not a user-visible change
137  * and does not change the user-interface for setting shares/weights.
138  *
139  * We increase resolution only if we have enough bits to allow this increased
140  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
141  * are pretty high and the returns do not justify the increased costs.
142  *
143  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
144  * increase coverage and consistency always enable it on 64-bit platforms.
145  */
146 #ifdef CONFIG_64BIT
147 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
148 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
149 # define scale_load_down(w)					\
150 ({								\
151 	unsigned long __w = (w);				\
152 								\
153 	if (__w)						\
154 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT);	\
155 	__w;							\
156 })
157 #else
158 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
159 # define scale_load(w)		(w)
160 # define scale_load_down(w)	(w)
161 #endif
162 
163 /*
164  * Task weight (visible to users) and its load (invisible to users) have
165  * independent resolution, but they should be well calibrated. We use
166  * scale_load() and scale_load_down(w) to convert between them. The
167  * following must be true:
168  *
169  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
170  *
171  */
172 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
173 
174 /*
175  * Single value that decides SCHED_DEADLINE internal math precision.
176  * 10 -> just above 1us
177  * 9  -> just above 0.5us
178  */
179 #define DL_SCALE		10
180 
181 /*
182  * Single value that denotes runtime == period, ie unlimited time.
183  */
184 #define RUNTIME_INF		((u64)~0ULL)
185 
186 static inline int idle_policy(int policy)
187 {
188 	return policy == SCHED_IDLE;
189 }
190 
191 static inline int normal_policy(int policy)
192 {
193 #ifdef CONFIG_SCHED_CLASS_EXT
194 	if (policy == SCHED_EXT)
195 		return true;
196 #endif
197 	return policy == SCHED_NORMAL;
198 }
199 
200 static inline int fair_policy(int policy)
201 {
202 	return normal_policy(policy) || policy == SCHED_BATCH;
203 }
204 
205 static inline int rt_policy(int policy)
206 {
207 	return policy == SCHED_FIFO || policy == SCHED_RR;
208 }
209 
210 static inline int dl_policy(int policy)
211 {
212 	return policy == SCHED_DEADLINE;
213 }
214 
215 static inline bool valid_policy(int policy)
216 {
217 	return idle_policy(policy) || fair_policy(policy) ||
218 		rt_policy(policy) || dl_policy(policy);
219 }
220 
221 static inline int task_has_idle_policy(struct task_struct *p)
222 {
223 	return idle_policy(p->policy);
224 }
225 
226 static inline int task_has_rt_policy(struct task_struct *p)
227 {
228 	return rt_policy(p->policy);
229 }
230 
231 static inline int task_has_dl_policy(struct task_struct *p)
232 {
233 	return dl_policy(p->policy);
234 }
235 
236 #define cap_scale(v, s)		((v)*(s) >> SCHED_CAPACITY_SHIFT)
237 
238 static inline void update_avg(u64 *avg, u64 sample)
239 {
240 	s64 diff = sample - *avg;
241 
242 	*avg += diff / 8;
243 }
244 
245 /*
246  * Shifting a value by an exponent greater *or equal* to the size of said value
247  * is UB; cap at size-1.
248  */
249 #define shr_bound(val, shift)							\
250 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
251 
252 /*
253  * cgroup weight knobs should use the common MIN, DFL and MAX values which are
254  * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it
255  * maps pretty well onto the shares value used by scheduler and the round-trip
256  * conversions preserve the original value over the entire range.
257  */
258 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight)
259 {
260 	return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL);
261 }
262 
263 static inline unsigned long sched_weight_to_cgroup(unsigned long weight)
264 {
265 	return clamp_t(unsigned long,
266 		       DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024),
267 		       CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
268 }
269 
270 /*
271  * !! For sched_setattr_nocheck() (kernel) only !!
272  *
273  * This is actually gross. :(
274  *
275  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
276  * tasks, but still be able to sleep. We need this on platforms that cannot
277  * atomically change clock frequency. Remove once fast switching will be
278  * available on such platforms.
279  *
280  * SUGOV stands for SchedUtil GOVernor.
281  */
282 #define SCHED_FLAG_SUGOV	0x10000000
283 
284 #define SCHED_DL_FLAGS		(SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
285 
286 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
287 {
288 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
289 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
290 #else
291 	return false;
292 #endif
293 }
294 
295 /*
296  * Tells if entity @a should preempt entity @b.
297  */
298 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
299 				     const struct sched_dl_entity *b)
300 {
301 	return dl_entity_is_special(a) ||
302 	       dl_time_before(a->deadline, b->deadline);
303 }
304 
305 /*
306  * This is the priority-queue data structure of the RT scheduling class:
307  */
308 struct rt_prio_array {
309 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
310 	struct list_head queue[MAX_RT_PRIO];
311 };
312 
313 struct rt_bandwidth {
314 	/* nests inside the rq lock: */
315 	raw_spinlock_t		rt_runtime_lock;
316 	ktime_t			rt_period;
317 	u64			rt_runtime;
318 	struct hrtimer		rt_period_timer;
319 	unsigned int		rt_period_active;
320 };
321 
322 static inline int dl_bandwidth_enabled(void)
323 {
324 	return sysctl_sched_rt_runtime >= 0;
325 }
326 
327 /*
328  * To keep the bandwidth of -deadline tasks under control
329  * we need some place where:
330  *  - store the maximum -deadline bandwidth of each cpu;
331  *  - cache the fraction of bandwidth that is currently allocated in
332  *    each root domain;
333  *
334  * This is all done in the data structure below. It is similar to the
335  * one used for RT-throttling (rt_bandwidth), with the main difference
336  * that, since here we are only interested in admission control, we
337  * do not decrease any runtime while the group "executes", neither we
338  * need a timer to replenish it.
339  *
340  * With respect to SMP, bandwidth is given on a per root domain basis,
341  * meaning that:
342  *  - bw (< 100%) is the deadline bandwidth of each CPU;
343  *  - total_bw is the currently allocated bandwidth in each root domain;
344  */
345 struct dl_bw {
346 	raw_spinlock_t		lock;
347 	u64			bw;
348 	u64			total_bw;
349 };
350 
351 extern void init_dl_bw(struct dl_bw *dl_b);
352 extern int  sched_dl_global_validate(void);
353 extern void sched_dl_do_global(void);
354 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
355 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
356 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
357 extern bool __checkparam_dl(const struct sched_attr *attr);
358 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
359 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
360 extern int  dl_bw_deactivate(int cpu);
361 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec);
362 /*
363  * SCHED_DEADLINE supports servers (nested scheduling) with the following
364  * interface:
365  *
366  *   dl_se::rq -- runqueue we belong to.
367  *
368  *   dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the
369  *                                server when it runs out of tasks to run.
370  *
371  *   dl_se::server_pick() -- nested pick_next_task(); we yield the period if this
372  *                           returns NULL.
373  *
374  *   dl_server_update() -- called from update_curr_common(), propagates runtime
375  *                         to the server.
376  *
377  *   dl_server_start()
378  *   dl_server_stop()  -- start/stop the server when it has (no) tasks.
379  *
380  *   dl_server_init() -- initializes the server.
381  */
382 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec);
383 extern void dl_server_start(struct sched_dl_entity *dl_se);
384 extern void dl_server_stop(struct sched_dl_entity *dl_se);
385 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
386 		    dl_server_has_tasks_f has_tasks,
387 		    dl_server_pick_f pick_task);
388 extern void sched_init_dl_servers(void);
389 
390 extern void dl_server_update_idle_time(struct rq *rq,
391 		    struct task_struct *p);
392 extern void fair_server_init(struct rq *rq);
393 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq);
394 extern int dl_server_apply_params(struct sched_dl_entity *dl_se,
395 		    u64 runtime, u64 period, bool init);
396 
397 static inline bool dl_server_active(struct sched_dl_entity *dl_se)
398 {
399 	return dl_se->dl_server_active;
400 }
401 
402 #ifdef CONFIG_CGROUP_SCHED
403 
404 extern struct list_head task_groups;
405 
406 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH
407 extern const u64 max_bw_quota_period_us;
408 
409 /*
410  * default period for group bandwidth.
411  * default: 0.1s, units: microseconds
412  */
413 static inline u64 default_bw_period_us(void)
414 {
415 	return 100000ULL;
416 }
417 #endif /* CONFIG_GROUP_SCHED_BANDWIDTH */
418 
419 struct cfs_bandwidth {
420 #ifdef CONFIG_CFS_BANDWIDTH
421 	raw_spinlock_t		lock;
422 	ktime_t			period;
423 	u64			quota;
424 	u64			runtime;
425 	u64			burst;
426 	u64			runtime_snap;
427 	s64			hierarchical_quota;
428 
429 	u8			idle;
430 	u8			period_active;
431 	u8			slack_started;
432 	struct hrtimer		period_timer;
433 	struct hrtimer		slack_timer;
434 	struct list_head	throttled_cfs_rq;
435 
436 	/* Statistics: */
437 	int			nr_periods;
438 	int			nr_throttled;
439 	int			nr_burst;
440 	u64			throttled_time;
441 	u64			burst_time;
442 #endif /* CONFIG_CFS_BANDWIDTH */
443 };
444 
445 /* Task group related information */
446 struct task_group {
447 	struct cgroup_subsys_state css;
448 
449 #ifdef CONFIG_GROUP_SCHED_WEIGHT
450 	/* A positive value indicates that this is a SCHED_IDLE group. */
451 	int			idle;
452 #endif
453 
454 #ifdef CONFIG_FAIR_GROUP_SCHED
455 	/* schedulable entities of this group on each CPU */
456 	struct sched_entity	**se;
457 	/* runqueue "owned" by this group on each CPU */
458 	struct cfs_rq		**cfs_rq;
459 	unsigned long		shares;
460 	/*
461 	 * load_avg can be heavily contended at clock tick time, so put
462 	 * it in its own cache-line separated from the fields above which
463 	 * will also be accessed at each tick.
464 	 */
465 	atomic_long_t		load_avg ____cacheline_aligned;
466 #endif /* CONFIG_FAIR_GROUP_SCHED */
467 
468 #ifdef CONFIG_RT_GROUP_SCHED
469 	struct sched_rt_entity	**rt_se;
470 	struct rt_rq		**rt_rq;
471 
472 	struct rt_bandwidth	rt_bandwidth;
473 #endif
474 
475 	struct scx_task_group	scx;
476 
477 	struct rcu_head		rcu;
478 	struct list_head	list;
479 
480 	struct task_group	*parent;
481 	struct list_head	siblings;
482 	struct list_head	children;
483 
484 #ifdef CONFIG_SCHED_AUTOGROUP
485 	struct autogroup	*autogroup;
486 #endif
487 
488 	struct cfs_bandwidth	cfs_bandwidth;
489 
490 #ifdef CONFIG_UCLAMP_TASK_GROUP
491 	/* The two decimal precision [%] value requested from user-space */
492 	unsigned int		uclamp_pct[UCLAMP_CNT];
493 	/* Clamp values requested for a task group */
494 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
495 	/* Effective clamp values used for a task group */
496 	struct uclamp_se	uclamp[UCLAMP_CNT];
497 #endif
498 
499 };
500 
501 #ifdef CONFIG_GROUP_SCHED_WEIGHT
502 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
503 
504 /*
505  * A weight of 0 or 1 can cause arithmetics problems.
506  * A weight of a cfs_rq is the sum of weights of which entities
507  * are queued on this cfs_rq, so a weight of a entity should not be
508  * too large, so as the shares value of a task group.
509  * (The default weight is 1024 - so there's no practical
510  *  limitation from this.)
511  */
512 #define MIN_SHARES		(1UL <<  1)
513 #define MAX_SHARES		(1UL << 18)
514 #endif
515 
516 typedef int (*tg_visitor)(struct task_group *, void *);
517 
518 extern int walk_tg_tree_from(struct task_group *from,
519 			     tg_visitor down, tg_visitor up, void *data);
520 
521 /*
522  * Iterate the full tree, calling @down when first entering a node and @up when
523  * leaving it for the final time.
524  *
525  * Caller must hold rcu_lock or sufficient equivalent.
526  */
527 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
528 {
529 	return walk_tg_tree_from(&root_task_group, down, up, data);
530 }
531 
532 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
533 {
534 	return css ? container_of(css, struct task_group, css) : NULL;
535 }
536 
537 extern int tg_nop(struct task_group *tg, void *data);
538 
539 #ifdef CONFIG_FAIR_GROUP_SCHED
540 extern void free_fair_sched_group(struct task_group *tg);
541 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
542 extern void online_fair_sched_group(struct task_group *tg);
543 extern void unregister_fair_sched_group(struct task_group *tg);
544 #else /* !CONFIG_FAIR_GROUP_SCHED: */
545 static inline void free_fair_sched_group(struct task_group *tg) { }
546 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
547 {
548        return 1;
549 }
550 static inline void online_fair_sched_group(struct task_group *tg) { }
551 static inline void unregister_fair_sched_group(struct task_group *tg) { }
552 #endif /* !CONFIG_FAIR_GROUP_SCHED */
553 
554 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
555 			struct sched_entity *se, int cpu,
556 			struct sched_entity *parent);
557 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
558 
559 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
560 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
561 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
562 extern bool cfs_task_bw_constrained(struct task_struct *p);
563 
564 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
565 		struct sched_rt_entity *rt_se, int cpu,
566 		struct sched_rt_entity *parent);
567 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
568 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
569 extern long sched_group_rt_runtime(struct task_group *tg);
570 extern long sched_group_rt_period(struct task_group *tg);
571 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
572 
573 extern struct task_group *sched_create_group(struct task_group *parent);
574 extern void sched_online_group(struct task_group *tg,
575 			       struct task_group *parent);
576 extern void sched_destroy_group(struct task_group *tg);
577 extern void sched_release_group(struct task_group *tg);
578 
579 extern void sched_move_task(struct task_struct *tsk, bool for_autogroup);
580 
581 #ifdef CONFIG_FAIR_GROUP_SCHED
582 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
583 
584 extern int sched_group_set_idle(struct task_group *tg, long idle);
585 
586 extern void set_task_rq_fair(struct sched_entity *se,
587 			     struct cfs_rq *prev, struct cfs_rq *next);
588 #else /* !CONFIG_FAIR_GROUP_SCHED: */
589 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; }
590 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; }
591 #endif /* !CONFIG_FAIR_GROUP_SCHED */
592 
593 #else /* !CONFIG_CGROUP_SCHED: */
594 
595 struct cfs_bandwidth { };
596 
597 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
598 
599 #endif /* !CONFIG_CGROUP_SCHED */
600 
601 extern void unregister_rt_sched_group(struct task_group *tg);
602 extern void free_rt_sched_group(struct task_group *tg);
603 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
604 
605 /*
606  * u64_u32_load/u64_u32_store
607  *
608  * Use a copy of a u64 value to protect against data race. This is only
609  * applicable for 32-bits architectures.
610  */
611 #ifdef CONFIG_64BIT
612 # define u64_u32_load_copy(var, copy)		var
613 # define u64_u32_store_copy(var, copy, val)	(var = val)
614 #else
615 # define u64_u32_load_copy(var, copy)					\
616 ({									\
617 	u64 __val, __val_copy;						\
618 	do {								\
619 		__val_copy = copy;					\
620 		/*							\
621 		 * paired with u64_u32_store_copy(), ordering access	\
622 		 * to var and copy.					\
623 		 */							\
624 		smp_rmb();						\
625 		__val = var;						\
626 	} while (__val != __val_copy);					\
627 	__val;								\
628 })
629 # define u64_u32_store_copy(var, copy, val)				\
630 do {									\
631 	typeof(val) __val = (val);					\
632 	var = __val;							\
633 	/*								\
634 	 * paired with u64_u32_load_copy(), ordering access to var and	\
635 	 * copy.							\
636 	 */								\
637 	smp_wmb();							\
638 	copy = __val;							\
639 } while (0)
640 #endif
641 # define u64_u32_load(var)		u64_u32_load_copy(var, var##_copy)
642 # define u64_u32_store(var, val)	u64_u32_store_copy(var, var##_copy, val)
643 
644 struct balance_callback {
645 	struct balance_callback *next;
646 	void (*func)(struct rq *rq);
647 };
648 
649 /* CFS-related fields in a runqueue */
650 struct cfs_rq {
651 	struct load_weight	load;
652 	unsigned int		nr_queued;
653 	unsigned int		h_nr_queued;       /* SCHED_{NORMAL,BATCH,IDLE} */
654 	unsigned int		h_nr_runnable;     /* SCHED_{NORMAL,BATCH,IDLE} */
655 	unsigned int		h_nr_idle; /* SCHED_IDLE */
656 
657 	s64			avg_vruntime;
658 	u64			avg_load;
659 
660 	u64			min_vruntime;
661 #ifdef CONFIG_SCHED_CORE
662 	unsigned int		forceidle_seq;
663 	u64			min_vruntime_fi;
664 #endif
665 
666 	struct rb_root_cached	tasks_timeline;
667 
668 	/*
669 	 * 'curr' points to currently running entity on this cfs_rq.
670 	 * It is set to NULL otherwise (i.e when none are currently running).
671 	 */
672 	struct sched_entity	*curr;
673 	struct sched_entity	*next;
674 
675 	/*
676 	 * CFS load tracking
677 	 */
678 	struct sched_avg	avg;
679 #ifndef CONFIG_64BIT
680 	u64			last_update_time_copy;
681 #endif
682 	struct {
683 		raw_spinlock_t	lock ____cacheline_aligned;
684 		int		nr;
685 		unsigned long	load_avg;
686 		unsigned long	util_avg;
687 		unsigned long	runnable_avg;
688 	} removed;
689 
690 #ifdef CONFIG_FAIR_GROUP_SCHED
691 	u64			last_update_tg_load_avg;
692 	unsigned long		tg_load_avg_contrib;
693 	long			propagate;
694 	long			prop_runnable_sum;
695 
696 	/*
697 	 *   h_load = weight * f(tg)
698 	 *
699 	 * Where f(tg) is the recursive weight fraction assigned to
700 	 * this group.
701 	 */
702 	unsigned long		h_load;
703 	u64			last_h_load_update;
704 	struct sched_entity	*h_load_next;
705 #endif /* CONFIG_FAIR_GROUP_SCHED */
706 
707 #ifdef CONFIG_FAIR_GROUP_SCHED
708 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
709 
710 	/*
711 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
712 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
713 	 * (like users, containers etc.)
714 	 *
715 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
716 	 * This list is used during load balance.
717 	 */
718 	int			on_list;
719 	struct list_head	leaf_cfs_rq_list;
720 	struct task_group	*tg;	/* group that "owns" this runqueue */
721 
722 	/* Locally cached copy of our task_group's idle value */
723 	int			idle;
724 
725 #ifdef CONFIG_CFS_BANDWIDTH
726 	int			runtime_enabled;
727 	s64			runtime_remaining;
728 
729 	u64			throttled_pelt_idle;
730 #ifndef CONFIG_64BIT
731 	u64                     throttled_pelt_idle_copy;
732 #endif
733 	u64			throttled_clock;
734 	u64			throttled_clock_pelt;
735 	u64			throttled_clock_pelt_time;
736 	u64			throttled_clock_self;
737 	u64			throttled_clock_self_time;
738 	int			throttled;
739 	int			throttle_count;
740 	struct list_head	throttled_list;
741 	struct list_head	throttled_csd_list;
742 #endif /* CONFIG_CFS_BANDWIDTH */
743 #endif /* CONFIG_FAIR_GROUP_SCHED */
744 };
745 
746 #ifdef CONFIG_SCHED_CLASS_EXT
747 /* scx_rq->flags, protected by the rq lock */
748 enum scx_rq_flags {
749 	/*
750 	 * A hotplugged CPU starts scheduling before rq_online_scx(). Track
751 	 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called
752 	 * only while the BPF scheduler considers the CPU to be online.
753 	 */
754 	SCX_RQ_ONLINE		= 1 << 0,
755 	SCX_RQ_CAN_STOP_TICK	= 1 << 1,
756 	SCX_RQ_BAL_PENDING	= 1 << 2, /* balance hasn't run yet */
757 	SCX_RQ_BAL_KEEP		= 1 << 3, /* balance decided to keep current */
758 	SCX_RQ_BYPASSING	= 1 << 4,
759 	SCX_RQ_CLK_VALID	= 1 << 5, /* RQ clock is fresh and valid */
760 
761 	SCX_RQ_IN_WAKEUP	= 1 << 16,
762 	SCX_RQ_IN_BALANCE	= 1 << 17,
763 };
764 
765 struct scx_rq {
766 	struct scx_dispatch_q	local_dsq;
767 	struct list_head	runnable_list;		/* runnable tasks on this rq */
768 	struct list_head	ddsp_deferred_locals;	/* deferred ddsps from enq */
769 	unsigned long		ops_qseq;
770 	u64			extra_enq_flags;	/* see move_task_to_local_dsq() */
771 	u32			nr_running;
772 	u32			cpuperf_target;		/* [0, SCHED_CAPACITY_SCALE] */
773 	bool			cpu_released;
774 	u32			flags;
775 	u64			clock;			/* current per-rq clock -- see scx_bpf_now() */
776 	cpumask_var_t		cpus_to_kick;
777 	cpumask_var_t		cpus_to_kick_if_idle;
778 	cpumask_var_t		cpus_to_preempt;
779 	cpumask_var_t		cpus_to_wait;
780 	unsigned long		pnt_seq;
781 	struct balance_callback	deferred_bal_cb;
782 	struct irq_work		deferred_irq_work;
783 	struct irq_work		kick_cpus_irq_work;
784 };
785 #endif /* CONFIG_SCHED_CLASS_EXT */
786 
787 static inline int rt_bandwidth_enabled(void)
788 {
789 	return sysctl_sched_rt_runtime >= 0;
790 }
791 
792 /* RT IPI pull logic requires IRQ_WORK */
793 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
794 # define HAVE_RT_PUSH_IPI
795 #endif
796 
797 /* Real-Time classes' related field in a runqueue: */
798 struct rt_rq {
799 	struct rt_prio_array	active;
800 	unsigned int		rt_nr_running;
801 	unsigned int		rr_nr_running;
802 	struct {
803 		int		curr; /* highest queued rt task prio */
804 		int		next; /* next highest */
805 	} highest_prio;
806 	bool			overloaded;
807 	struct plist_head	pushable_tasks;
808 
809 	int			rt_queued;
810 
811 #ifdef CONFIG_RT_GROUP_SCHED
812 	int			rt_throttled;
813 	u64			rt_time; /* consumed RT time, goes up in update_curr_rt */
814 	u64			rt_runtime; /* allotted RT time, "slice" from rt_bandwidth, RT sharing/balancing */
815 	/* Nests inside the rq lock: */
816 	raw_spinlock_t		rt_runtime_lock;
817 
818 	unsigned int		rt_nr_boosted;
819 
820 	struct rq		*rq; /* this is always top-level rq, cache? */
821 #endif
822 #ifdef CONFIG_CGROUP_SCHED
823 	struct task_group	*tg; /* this tg has "this" rt_rq on given CPU for runnable entities */
824 #endif
825 };
826 
827 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
828 {
829 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
830 }
831 
832 /* Deadline class' related fields in a runqueue */
833 struct dl_rq {
834 	/* runqueue is an rbtree, ordered by deadline */
835 	struct rb_root_cached	root;
836 
837 	unsigned int		dl_nr_running;
838 
839 	/*
840 	 * Deadline values of the currently executing and the
841 	 * earliest ready task on this rq. Caching these facilitates
842 	 * the decision whether or not a ready but not running task
843 	 * should migrate somewhere else.
844 	 */
845 	struct {
846 		u64		curr;
847 		u64		next;
848 	} earliest_dl;
849 
850 	bool			overloaded;
851 
852 	/*
853 	 * Tasks on this rq that can be pushed away. They are kept in
854 	 * an rb-tree, ordered by tasks' deadlines, with caching
855 	 * of the leftmost (earliest deadline) element.
856 	 */
857 	struct rb_root_cached	pushable_dl_tasks_root;
858 
859 	/*
860 	 * "Active utilization" for this runqueue: increased when a
861 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
862 	 * task blocks
863 	 */
864 	u64			running_bw;
865 
866 	/*
867 	 * Utilization of the tasks "assigned" to this runqueue (including
868 	 * the tasks that are in runqueue and the tasks that executed on this
869 	 * CPU and blocked). Increased when a task moves to this runqueue, and
870 	 * decreased when the task moves away (migrates, changes scheduling
871 	 * policy, or terminates).
872 	 * This is needed to compute the "inactive utilization" for the
873 	 * runqueue (inactive utilization = this_bw - running_bw).
874 	 */
875 	u64			this_bw;
876 	u64			extra_bw;
877 
878 	/*
879 	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
880 	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
881 	 */
882 	u64			max_bw;
883 
884 	/*
885 	 * Inverse of the fraction of CPU utilization that can be reclaimed
886 	 * by the GRUB algorithm.
887 	 */
888 	u64			bw_ratio;
889 };
890 
891 #ifdef CONFIG_FAIR_GROUP_SCHED
892 
893 /* An entity is a task if it doesn't "own" a runqueue */
894 #define entity_is_task(se)	(!se->my_q)
895 
896 static inline void se_update_runnable(struct sched_entity *se)
897 {
898 	if (!entity_is_task(se))
899 		se->runnable_weight = se->my_q->h_nr_runnable;
900 }
901 
902 static inline long se_runnable(struct sched_entity *se)
903 {
904 	if (se->sched_delayed)
905 		return false;
906 
907 	if (entity_is_task(se))
908 		return !!se->on_rq;
909 	else
910 		return se->runnable_weight;
911 }
912 
913 #else /* !CONFIG_FAIR_GROUP_SCHED: */
914 
915 #define entity_is_task(se)	1
916 
917 static inline void se_update_runnable(struct sched_entity *se) { }
918 
919 static inline long se_runnable(struct sched_entity *se)
920 {
921 	if (se->sched_delayed)
922 		return false;
923 
924 	return !!se->on_rq;
925 }
926 
927 #endif /* !CONFIG_FAIR_GROUP_SCHED */
928 
929 /*
930  * XXX we want to get rid of these helpers and use the full load resolution.
931  */
932 static inline long se_weight(struct sched_entity *se)
933 {
934 	return scale_load_down(se->load.weight);
935 }
936 
937 
938 static inline bool sched_asym_prefer(int a, int b)
939 {
940 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
941 }
942 
943 struct perf_domain {
944 	struct em_perf_domain *em_pd;
945 	struct perf_domain *next;
946 	struct rcu_head rcu;
947 };
948 
949 /*
950  * We add the notion of a root-domain which will be used to define per-domain
951  * variables. Each exclusive cpuset essentially defines an island domain by
952  * fully partitioning the member CPUs from any other cpuset. Whenever a new
953  * exclusive cpuset is created, we also create and attach a new root-domain
954  * object.
955  *
956  */
957 struct root_domain {
958 	atomic_t		refcount;
959 	atomic_t		rto_count;
960 	struct rcu_head		rcu;
961 	cpumask_var_t		span;
962 	cpumask_var_t		online;
963 
964 	/*
965 	 * Indicate pullable load on at least one CPU, e.g:
966 	 * - More than one runnable task
967 	 * - Running task is misfit
968 	 */
969 	bool			overloaded;
970 
971 	/* Indicate one or more CPUs over-utilized (tipping point) */
972 	bool			overutilized;
973 
974 	/*
975 	 * The bit corresponding to a CPU gets set here if such CPU has more
976 	 * than one runnable -deadline task (as it is below for RT tasks).
977 	 */
978 	cpumask_var_t		dlo_mask;
979 	atomic_t		dlo_count;
980 	struct dl_bw		dl_bw;
981 	struct cpudl		cpudl;
982 
983 	/*
984 	 * Indicate whether a root_domain's dl_bw has been checked or
985 	 * updated. It's monotonously increasing value.
986 	 *
987 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
988 	 * that u64 is 'big enough'. So that shouldn't be a concern.
989 	 */
990 	u64 visit_cookie;
991 
992 #ifdef HAVE_RT_PUSH_IPI
993 	/*
994 	 * For IPI pull requests, loop across the rto_mask.
995 	 */
996 	struct irq_work		rto_push_work;
997 	raw_spinlock_t		rto_lock;
998 	/* These are only updated and read within rto_lock */
999 	int			rto_loop;
1000 	int			rto_cpu;
1001 	/* These atomics are updated outside of a lock */
1002 	atomic_t		rto_loop_next;
1003 	atomic_t		rto_loop_start;
1004 #endif /* HAVE_RT_PUSH_IPI */
1005 	/*
1006 	 * The "RT overload" flag: it gets set if a CPU has more than
1007 	 * one runnable RT task.
1008 	 */
1009 	cpumask_var_t		rto_mask;
1010 	struct cpupri		cpupri;
1011 
1012 	/*
1013 	 * NULL-terminated list of performance domains intersecting with the
1014 	 * CPUs of the rd. Protected by RCU.
1015 	 */
1016 	struct perf_domain __rcu *pd;
1017 };
1018 
1019 extern void init_defrootdomain(void);
1020 extern int sched_init_domains(const struct cpumask *cpu_map);
1021 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
1022 extern void sched_get_rd(struct root_domain *rd);
1023 extern void sched_put_rd(struct root_domain *rd);
1024 
1025 static inline int get_rd_overloaded(struct root_domain *rd)
1026 {
1027 	return READ_ONCE(rd->overloaded);
1028 }
1029 
1030 static inline void set_rd_overloaded(struct root_domain *rd, int status)
1031 {
1032 	if (get_rd_overloaded(rd) != status)
1033 		WRITE_ONCE(rd->overloaded, status);
1034 }
1035 
1036 #ifdef HAVE_RT_PUSH_IPI
1037 extern void rto_push_irq_work_func(struct irq_work *work);
1038 #endif
1039 
1040 #ifdef CONFIG_UCLAMP_TASK
1041 /*
1042  * struct uclamp_bucket - Utilization clamp bucket
1043  * @value: utilization clamp value for tasks on this clamp bucket
1044  * @tasks: number of RUNNABLE tasks on this clamp bucket
1045  *
1046  * Keep track of how many tasks are RUNNABLE for a given utilization
1047  * clamp value.
1048  */
1049 struct uclamp_bucket {
1050 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
1051 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
1052 };
1053 
1054 /*
1055  * struct uclamp_rq - rq's utilization clamp
1056  * @value: currently active clamp values for a rq
1057  * @bucket: utilization clamp buckets affecting a rq
1058  *
1059  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
1060  * A clamp value is affecting a rq when there is at least one task RUNNABLE
1061  * (or actually running) with that value.
1062  *
1063  * There are up to UCLAMP_CNT possible different clamp values, currently there
1064  * are only two: minimum utilization and maximum utilization.
1065  *
1066  * All utilization clamping values are MAX aggregated, since:
1067  * - for util_min: we want to run the CPU at least at the max of the minimum
1068  *   utilization required by its currently RUNNABLE tasks.
1069  * - for util_max: we want to allow the CPU to run up to the max of the
1070  *   maximum utilization allowed by its currently RUNNABLE tasks.
1071  *
1072  * Since on each system we expect only a limited number of different
1073  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
1074  * the metrics required to compute all the per-rq utilization clamp values.
1075  */
1076 struct uclamp_rq {
1077 	unsigned int value;
1078 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
1079 };
1080 
1081 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
1082 #endif /* CONFIG_UCLAMP_TASK */
1083 
1084 /*
1085  * This is the main, per-CPU runqueue data structure.
1086  *
1087  * Locking rule: those places that want to lock multiple runqueues
1088  * (such as the load balancing or the thread migration code), lock
1089  * acquire operations must be ordered by ascending &runqueue.
1090  */
1091 struct rq {
1092 	/* runqueue lock: */
1093 	raw_spinlock_t		__lock;
1094 
1095 	unsigned int		nr_running;
1096 #ifdef CONFIG_NUMA_BALANCING
1097 	unsigned int		nr_numa_running;
1098 	unsigned int		nr_preferred_running;
1099 	unsigned int		numa_migrate_on;
1100 #endif
1101 #ifdef CONFIG_NO_HZ_COMMON
1102 	unsigned long		last_blocked_load_update_tick;
1103 	unsigned int		has_blocked_load;
1104 	call_single_data_t	nohz_csd;
1105 	unsigned int		nohz_tick_stopped;
1106 	atomic_t		nohz_flags;
1107 #endif /* CONFIG_NO_HZ_COMMON */
1108 
1109 	unsigned int		ttwu_pending;
1110 	u64			nr_switches;
1111 
1112 #ifdef CONFIG_UCLAMP_TASK
1113 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
1114 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
1115 	unsigned int		uclamp_flags;
1116 #define UCLAMP_FLAG_IDLE 0x01
1117 #endif
1118 
1119 	struct cfs_rq		cfs;
1120 	struct rt_rq		rt;
1121 	struct dl_rq		dl;
1122 #ifdef CONFIG_SCHED_CLASS_EXT
1123 	struct scx_rq		scx;
1124 #endif
1125 
1126 	struct sched_dl_entity	fair_server;
1127 
1128 #ifdef CONFIG_FAIR_GROUP_SCHED
1129 	/* list of leaf cfs_rq on this CPU: */
1130 	struct list_head	leaf_cfs_rq_list;
1131 	struct list_head	*tmp_alone_branch;
1132 #endif /* CONFIG_FAIR_GROUP_SCHED */
1133 
1134 	/*
1135 	 * This is part of a global counter where only the total sum
1136 	 * over all CPUs matters. A task can increase this counter on
1137 	 * one CPU and if it got migrated afterwards it may decrease
1138 	 * it on another CPU. Always updated under the runqueue lock:
1139 	 */
1140 	unsigned long 		nr_uninterruptible;
1141 
1142 #ifdef CONFIG_SCHED_PROXY_EXEC
1143 	struct task_struct __rcu	*donor;  /* Scheduling context */
1144 	struct task_struct __rcu	*curr;   /* Execution context */
1145 #else
1146 	union {
1147 		struct task_struct __rcu *donor; /* Scheduler context */
1148 		struct task_struct __rcu *curr;  /* Execution context */
1149 	};
1150 #endif
1151 	struct sched_dl_entity	*dl_server;
1152 	struct task_struct	*idle;
1153 	struct task_struct	*stop;
1154 	unsigned long		next_balance;
1155 	struct mm_struct	*prev_mm;
1156 
1157 	unsigned int		clock_update_flags;
1158 	u64			clock;
1159 	/* Ensure that all clocks are in the same cache line */
1160 	u64			clock_task ____cacheline_aligned;
1161 	u64			clock_pelt;
1162 	unsigned long		lost_idle_time;
1163 	u64			clock_pelt_idle;
1164 	u64			clock_idle;
1165 #ifndef CONFIG_64BIT
1166 	u64			clock_pelt_idle_copy;
1167 	u64			clock_idle_copy;
1168 #endif
1169 
1170 	atomic_t		nr_iowait;
1171 
1172 	u64 last_seen_need_resched_ns;
1173 	int ticks_without_resched;
1174 
1175 #ifdef CONFIG_MEMBARRIER
1176 	int membarrier_state;
1177 #endif
1178 
1179 	struct root_domain		*rd;
1180 	struct sched_domain __rcu	*sd;
1181 
1182 	unsigned long		cpu_capacity;
1183 
1184 	struct balance_callback *balance_callback;
1185 
1186 	unsigned char		nohz_idle_balance;
1187 	unsigned char		idle_balance;
1188 
1189 	unsigned long		misfit_task_load;
1190 
1191 	/* For active balancing */
1192 	int			active_balance;
1193 	int			push_cpu;
1194 	struct cpu_stop_work	active_balance_work;
1195 
1196 	/* CPU of this runqueue: */
1197 	int			cpu;
1198 	int			online;
1199 
1200 	struct list_head cfs_tasks;
1201 
1202 	struct sched_avg	avg_rt;
1203 	struct sched_avg	avg_dl;
1204 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1205 	struct sched_avg	avg_irq;
1206 #endif
1207 #ifdef CONFIG_SCHED_HW_PRESSURE
1208 	struct sched_avg	avg_hw;
1209 #endif
1210 	u64			idle_stamp;
1211 	u64			avg_idle;
1212 
1213 	/* This is used to determine avg_idle's max value */
1214 	u64			max_idle_balance_cost;
1215 
1216 #ifdef CONFIG_HOTPLUG_CPU
1217 	struct rcuwait		hotplug_wait;
1218 #endif
1219 
1220 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1221 	u64			prev_irq_time;
1222 	u64			psi_irq_time;
1223 #endif
1224 #ifdef CONFIG_PARAVIRT
1225 	u64			prev_steal_time;
1226 #endif
1227 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1228 	u64			prev_steal_time_rq;
1229 #endif
1230 
1231 	/* calc_load related fields */
1232 	unsigned long		calc_load_update;
1233 	long			calc_load_active;
1234 
1235 #ifdef CONFIG_SCHED_HRTICK
1236 	call_single_data_t	hrtick_csd;
1237 	struct hrtimer		hrtick_timer;
1238 	ktime_t			hrtick_time;
1239 #endif
1240 
1241 #ifdef CONFIG_SCHEDSTATS
1242 	/* latency stats */
1243 	struct sched_info	rq_sched_info;
1244 	unsigned long long	rq_cpu_time;
1245 
1246 	/* sys_sched_yield() stats */
1247 	unsigned int		yld_count;
1248 
1249 	/* schedule() stats */
1250 	unsigned int		sched_count;
1251 	unsigned int		sched_goidle;
1252 
1253 	/* try_to_wake_up() stats */
1254 	unsigned int		ttwu_count;
1255 	unsigned int		ttwu_local;
1256 #endif
1257 
1258 #ifdef CONFIG_CPU_IDLE
1259 	/* Must be inspected within a RCU lock section */
1260 	struct cpuidle_state	*idle_state;
1261 #endif
1262 
1263 	unsigned int		nr_pinned;
1264 	unsigned int		push_busy;
1265 	struct cpu_stop_work	push_work;
1266 
1267 #ifdef CONFIG_SCHED_CORE
1268 	/* per rq */
1269 	struct rq		*core;
1270 	struct task_struct	*core_pick;
1271 	struct sched_dl_entity	*core_dl_server;
1272 	unsigned int		core_enabled;
1273 	unsigned int		core_sched_seq;
1274 	struct rb_root		core_tree;
1275 
1276 	/* shared state -- careful with sched_core_cpu_deactivate() */
1277 	unsigned int		core_task_seq;
1278 	unsigned int		core_pick_seq;
1279 	unsigned long		core_cookie;
1280 	unsigned int		core_forceidle_count;
1281 	unsigned int		core_forceidle_seq;
1282 	unsigned int		core_forceidle_occupation;
1283 	u64			core_forceidle_start;
1284 #endif /* CONFIG_SCHED_CORE */
1285 
1286 	/* Scratch cpumask to be temporarily used under rq_lock */
1287 	cpumask_var_t		scratch_mask;
1288 
1289 #ifdef CONFIG_CFS_BANDWIDTH
1290 	call_single_data_t	cfsb_csd;
1291 	struct list_head	cfsb_csd_list;
1292 #endif
1293 };
1294 
1295 #ifdef CONFIG_FAIR_GROUP_SCHED
1296 
1297 /* CPU runqueue to which this cfs_rq is attached */
1298 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1299 {
1300 	return cfs_rq->rq;
1301 }
1302 
1303 #else /* !CONFIG_FAIR_GROUP_SCHED: */
1304 
1305 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1306 {
1307 	return container_of(cfs_rq, struct rq, cfs);
1308 }
1309 #endif /* !CONFIG_FAIR_GROUP_SCHED */
1310 
1311 static inline int cpu_of(struct rq *rq)
1312 {
1313 	return rq->cpu;
1314 }
1315 
1316 #define MDF_PUSH		0x01
1317 
1318 static inline bool is_migration_disabled(struct task_struct *p)
1319 {
1320 	return p->migration_disabled;
1321 }
1322 
1323 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1324 
1325 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1326 #define this_rq()		this_cpu_ptr(&runqueues)
1327 #define task_rq(p)		cpu_rq(task_cpu(p))
1328 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1329 #define raw_rq()		raw_cpu_ptr(&runqueues)
1330 
1331 #ifdef CONFIG_SCHED_PROXY_EXEC
1332 static inline void rq_set_donor(struct rq *rq, struct task_struct *t)
1333 {
1334 	rcu_assign_pointer(rq->donor, t);
1335 }
1336 #else
1337 static inline void rq_set_donor(struct rq *rq, struct task_struct *t)
1338 {
1339 	/* Do nothing */
1340 }
1341 #endif
1342 
1343 #ifdef CONFIG_SCHED_CORE
1344 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1345 
1346 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1347 
1348 static inline bool sched_core_enabled(struct rq *rq)
1349 {
1350 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1351 }
1352 
1353 static inline bool sched_core_disabled(void)
1354 {
1355 	return !static_branch_unlikely(&__sched_core_enabled);
1356 }
1357 
1358 /*
1359  * Be careful with this function; not for general use. The return value isn't
1360  * stable unless you actually hold a relevant rq->__lock.
1361  */
1362 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1363 {
1364 	if (sched_core_enabled(rq))
1365 		return &rq->core->__lock;
1366 
1367 	return &rq->__lock;
1368 }
1369 
1370 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1371 {
1372 	if (rq->core_enabled)
1373 		return &rq->core->__lock;
1374 
1375 	return &rq->__lock;
1376 }
1377 
1378 extern bool
1379 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi);
1380 
1381 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1382 
1383 /*
1384  * Helpers to check if the CPU's core cookie matches with the task's cookie
1385  * when core scheduling is enabled.
1386  * A special case is that the task's cookie always matches with CPU's core
1387  * cookie if the CPU is in an idle core.
1388  */
1389 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1390 {
1391 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1392 	if (!sched_core_enabled(rq))
1393 		return true;
1394 
1395 	return rq->core->core_cookie == p->core_cookie;
1396 }
1397 
1398 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1399 {
1400 	bool idle_core = true;
1401 	int cpu;
1402 
1403 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1404 	if (!sched_core_enabled(rq))
1405 		return true;
1406 
1407 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1408 		if (!available_idle_cpu(cpu)) {
1409 			idle_core = false;
1410 			break;
1411 		}
1412 	}
1413 
1414 	/*
1415 	 * A CPU in an idle core is always the best choice for tasks with
1416 	 * cookies.
1417 	 */
1418 	return idle_core || rq->core->core_cookie == p->core_cookie;
1419 }
1420 
1421 static inline bool sched_group_cookie_match(struct rq *rq,
1422 					    struct task_struct *p,
1423 					    struct sched_group *group)
1424 {
1425 	int cpu;
1426 
1427 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1428 	if (!sched_core_enabled(rq))
1429 		return true;
1430 
1431 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1432 		if (sched_core_cookie_match(cpu_rq(cpu), p))
1433 			return true;
1434 	}
1435 	return false;
1436 }
1437 
1438 static inline bool sched_core_enqueued(struct task_struct *p)
1439 {
1440 	return !RB_EMPTY_NODE(&p->core_node);
1441 }
1442 
1443 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1444 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1445 
1446 extern void sched_core_get(void);
1447 extern void sched_core_put(void);
1448 
1449 #else /* !CONFIG_SCHED_CORE: */
1450 
1451 static inline bool sched_core_enabled(struct rq *rq)
1452 {
1453 	return false;
1454 }
1455 
1456 static inline bool sched_core_disabled(void)
1457 {
1458 	return true;
1459 }
1460 
1461 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1462 {
1463 	return &rq->__lock;
1464 }
1465 
1466 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1467 {
1468 	return &rq->__lock;
1469 }
1470 
1471 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1472 {
1473 	return true;
1474 }
1475 
1476 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1477 {
1478 	return true;
1479 }
1480 
1481 static inline bool sched_group_cookie_match(struct rq *rq,
1482 					    struct task_struct *p,
1483 					    struct sched_group *group)
1484 {
1485 	return true;
1486 }
1487 
1488 #endif /* !CONFIG_SCHED_CORE */
1489 
1490 #ifdef CONFIG_RT_GROUP_SCHED
1491 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED
1492 DECLARE_STATIC_KEY_FALSE(rt_group_sched);
1493 static inline bool rt_group_sched_enabled(void)
1494 {
1495 	return static_branch_unlikely(&rt_group_sched);
1496 }
1497 # else /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED: */
1498 DECLARE_STATIC_KEY_TRUE(rt_group_sched);
1499 static inline bool rt_group_sched_enabled(void)
1500 {
1501 	return static_branch_likely(&rt_group_sched);
1502 }
1503 # endif /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED */
1504 #else /* !CONFIG_RT_GROUP_SCHED: */
1505 # define rt_group_sched_enabled()	false
1506 #endif /* !CONFIG_RT_GROUP_SCHED */
1507 
1508 static inline void lockdep_assert_rq_held(struct rq *rq)
1509 {
1510 	lockdep_assert_held(__rq_lockp(rq));
1511 }
1512 
1513 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1514 extern bool raw_spin_rq_trylock(struct rq *rq);
1515 extern void raw_spin_rq_unlock(struct rq *rq);
1516 
1517 static inline void raw_spin_rq_lock(struct rq *rq)
1518 {
1519 	raw_spin_rq_lock_nested(rq, 0);
1520 }
1521 
1522 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1523 {
1524 	local_irq_disable();
1525 	raw_spin_rq_lock(rq);
1526 }
1527 
1528 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1529 {
1530 	raw_spin_rq_unlock(rq);
1531 	local_irq_enable();
1532 }
1533 
1534 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1535 {
1536 	unsigned long flags;
1537 
1538 	local_irq_save(flags);
1539 	raw_spin_rq_lock(rq);
1540 
1541 	return flags;
1542 }
1543 
1544 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1545 {
1546 	raw_spin_rq_unlock(rq);
1547 	local_irq_restore(flags);
1548 }
1549 
1550 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1551 do {						\
1552 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1553 } while (0)
1554 
1555 #ifdef CONFIG_SCHED_SMT
1556 extern void __update_idle_core(struct rq *rq);
1557 
1558 static inline void update_idle_core(struct rq *rq)
1559 {
1560 	if (static_branch_unlikely(&sched_smt_present))
1561 		__update_idle_core(rq);
1562 }
1563 
1564 #else /* !CONFIG_SCHED_SMT: */
1565 static inline void update_idle_core(struct rq *rq) { }
1566 #endif /* !CONFIG_SCHED_SMT */
1567 
1568 #ifdef CONFIG_FAIR_GROUP_SCHED
1569 
1570 static inline struct task_struct *task_of(struct sched_entity *se)
1571 {
1572 	WARN_ON_ONCE(!entity_is_task(se));
1573 	return container_of(se, struct task_struct, se);
1574 }
1575 
1576 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1577 {
1578 	return p->se.cfs_rq;
1579 }
1580 
1581 /* runqueue on which this entity is (to be) queued */
1582 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1583 {
1584 	return se->cfs_rq;
1585 }
1586 
1587 /* runqueue "owned" by this group */
1588 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1589 {
1590 	return grp->my_q;
1591 }
1592 
1593 #else /* !CONFIG_FAIR_GROUP_SCHED: */
1594 
1595 #define task_of(_se)		container_of(_se, struct task_struct, se)
1596 
1597 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1598 {
1599 	return &task_rq(p)->cfs;
1600 }
1601 
1602 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1603 {
1604 	const struct task_struct *p = task_of(se);
1605 	struct rq *rq = task_rq(p);
1606 
1607 	return &rq->cfs;
1608 }
1609 
1610 /* runqueue "owned" by this group */
1611 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1612 {
1613 	return NULL;
1614 }
1615 
1616 #endif /* !CONFIG_FAIR_GROUP_SCHED */
1617 
1618 extern void update_rq_clock(struct rq *rq);
1619 
1620 /*
1621  * rq::clock_update_flags bits
1622  *
1623  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1624  *  call to __schedule(). This is an optimisation to avoid
1625  *  neighbouring rq clock updates.
1626  *
1627  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1628  *  in effect and calls to update_rq_clock() are being ignored.
1629  *
1630  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1631  *  made to update_rq_clock() since the last time rq::lock was pinned.
1632  *
1633  * If inside of __schedule(), clock_update_flags will have been
1634  * shifted left (a left shift is a cheap operation for the fast path
1635  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1636  *
1637  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1638  *
1639  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1640  * one position though, because the next rq_unpin_lock() will shift it
1641  * back.
1642  */
1643 #define RQCF_REQ_SKIP		0x01
1644 #define RQCF_ACT_SKIP		0x02
1645 #define RQCF_UPDATED		0x04
1646 
1647 static inline void assert_clock_updated(struct rq *rq)
1648 {
1649 	/*
1650 	 * The only reason for not seeing a clock update since the
1651 	 * last rq_pin_lock() is if we're currently skipping updates.
1652 	 */
1653 	WARN_ON_ONCE(rq->clock_update_flags < RQCF_ACT_SKIP);
1654 }
1655 
1656 static inline u64 rq_clock(struct rq *rq)
1657 {
1658 	lockdep_assert_rq_held(rq);
1659 	assert_clock_updated(rq);
1660 
1661 	return rq->clock;
1662 }
1663 
1664 static inline u64 rq_clock_task(struct rq *rq)
1665 {
1666 	lockdep_assert_rq_held(rq);
1667 	assert_clock_updated(rq);
1668 
1669 	return rq->clock_task;
1670 }
1671 
1672 static inline void rq_clock_skip_update(struct rq *rq)
1673 {
1674 	lockdep_assert_rq_held(rq);
1675 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1676 }
1677 
1678 /*
1679  * See rt task throttling, which is the only time a skip
1680  * request is canceled.
1681  */
1682 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1683 {
1684 	lockdep_assert_rq_held(rq);
1685 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1686 }
1687 
1688 /*
1689  * During cpu offlining and rq wide unthrottling, we can trigger
1690  * an update_rq_clock() for several cfs and rt runqueues (Typically
1691  * when using list_for_each_entry_*)
1692  * rq_clock_start_loop_update() can be called after updating the clock
1693  * once and before iterating over the list to prevent multiple update.
1694  * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1695  * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1696  */
1697 static inline void rq_clock_start_loop_update(struct rq *rq)
1698 {
1699 	lockdep_assert_rq_held(rq);
1700 	WARN_ON_ONCE(rq->clock_update_flags & RQCF_ACT_SKIP);
1701 	rq->clock_update_flags |= RQCF_ACT_SKIP;
1702 }
1703 
1704 static inline void rq_clock_stop_loop_update(struct rq *rq)
1705 {
1706 	lockdep_assert_rq_held(rq);
1707 	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1708 }
1709 
1710 struct rq_flags {
1711 	unsigned long flags;
1712 	struct pin_cookie cookie;
1713 	/*
1714 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1715 	 * current pin context is stashed here in case it needs to be
1716 	 * restored in rq_repin_lock().
1717 	 */
1718 	unsigned int clock_update_flags;
1719 };
1720 
1721 extern struct balance_callback balance_push_callback;
1722 
1723 #ifdef CONFIG_SCHED_CLASS_EXT
1724 extern const struct sched_class ext_sched_class;
1725 
1726 DECLARE_STATIC_KEY_FALSE(__scx_enabled);	/* SCX BPF scheduler loaded */
1727 DECLARE_STATIC_KEY_FALSE(__scx_switched_all);	/* all fair class tasks on SCX */
1728 
1729 #define scx_enabled()		static_branch_unlikely(&__scx_enabled)
1730 #define scx_switched_all()	static_branch_unlikely(&__scx_switched_all)
1731 
1732 static inline void scx_rq_clock_update(struct rq *rq, u64 clock)
1733 {
1734 	if (!scx_enabled())
1735 		return;
1736 	WRITE_ONCE(rq->scx.clock, clock);
1737 	smp_store_release(&rq->scx.flags, rq->scx.flags | SCX_RQ_CLK_VALID);
1738 }
1739 
1740 static inline void scx_rq_clock_invalidate(struct rq *rq)
1741 {
1742 	if (!scx_enabled())
1743 		return;
1744 	WRITE_ONCE(rq->scx.flags, rq->scx.flags & ~SCX_RQ_CLK_VALID);
1745 }
1746 
1747 #else /* !CONFIG_SCHED_CLASS_EXT: */
1748 #define scx_enabled()		false
1749 #define scx_switched_all()	false
1750 
1751 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) {}
1752 static inline void scx_rq_clock_invalidate(struct rq *rq) {}
1753 #endif /* !CONFIG_SCHED_CLASS_EXT */
1754 
1755 /*
1756  * Lockdep annotation that avoids accidental unlocks; it's like a
1757  * sticky/continuous lockdep_assert_held().
1758  *
1759  * This avoids code that has access to 'struct rq *rq' (basically everything in
1760  * the scheduler) from accidentally unlocking the rq if they do not also have a
1761  * copy of the (on-stack) 'struct rq_flags rf'.
1762  *
1763  * Also see Documentation/locking/lockdep-design.rst.
1764  */
1765 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1766 {
1767 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1768 
1769 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1770 	rf->clock_update_flags = 0;
1771 	WARN_ON_ONCE(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1772 }
1773 
1774 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1775 {
1776 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1777 		rf->clock_update_flags = RQCF_UPDATED;
1778 
1779 	scx_rq_clock_invalidate(rq);
1780 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1781 }
1782 
1783 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1784 {
1785 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1786 
1787 	/*
1788 	 * Restore the value we stashed in @rf for this pin context.
1789 	 */
1790 	rq->clock_update_flags |= rf->clock_update_flags;
1791 }
1792 
1793 extern
1794 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1795 	__acquires(rq->lock);
1796 
1797 extern
1798 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1799 	__acquires(p->pi_lock)
1800 	__acquires(rq->lock);
1801 
1802 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1803 	__releases(rq->lock)
1804 {
1805 	rq_unpin_lock(rq, rf);
1806 	raw_spin_rq_unlock(rq);
1807 }
1808 
1809 static inline void
1810 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1811 	__releases(rq->lock)
1812 	__releases(p->pi_lock)
1813 {
1814 	rq_unpin_lock(rq, rf);
1815 	raw_spin_rq_unlock(rq);
1816 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1817 }
1818 
1819 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
1820 		    _T->rq = task_rq_lock(_T->lock, &_T->rf),
1821 		    task_rq_unlock(_T->rq, _T->lock, &_T->rf),
1822 		    struct rq *rq; struct rq_flags rf)
1823 
1824 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1825 	__acquires(rq->lock)
1826 {
1827 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1828 	rq_pin_lock(rq, rf);
1829 }
1830 
1831 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1832 	__acquires(rq->lock)
1833 {
1834 	raw_spin_rq_lock_irq(rq);
1835 	rq_pin_lock(rq, rf);
1836 }
1837 
1838 static inline void rq_lock(struct rq *rq, struct rq_flags *rf)
1839 	__acquires(rq->lock)
1840 {
1841 	raw_spin_rq_lock(rq);
1842 	rq_pin_lock(rq, rf);
1843 }
1844 
1845 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1846 	__releases(rq->lock)
1847 {
1848 	rq_unpin_lock(rq, rf);
1849 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1850 }
1851 
1852 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1853 	__releases(rq->lock)
1854 {
1855 	rq_unpin_lock(rq, rf);
1856 	raw_spin_rq_unlock_irq(rq);
1857 }
1858 
1859 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf)
1860 	__releases(rq->lock)
1861 {
1862 	rq_unpin_lock(rq, rf);
1863 	raw_spin_rq_unlock(rq);
1864 }
1865 
1866 DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1867 		    rq_lock(_T->lock, &_T->rf),
1868 		    rq_unlock(_T->lock, &_T->rf),
1869 		    struct rq_flags rf)
1870 
1871 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1872 		    rq_lock_irq(_T->lock, &_T->rf),
1873 		    rq_unlock_irq(_T->lock, &_T->rf),
1874 		    struct rq_flags rf)
1875 
1876 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1877 		    rq_lock_irqsave(_T->lock, &_T->rf),
1878 		    rq_unlock_irqrestore(_T->lock, &_T->rf),
1879 		    struct rq_flags rf)
1880 
1881 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf)
1882 	__acquires(rq->lock)
1883 {
1884 	struct rq *rq;
1885 
1886 	local_irq_disable();
1887 	rq = this_rq();
1888 	rq_lock(rq, rf);
1889 
1890 	return rq;
1891 }
1892 
1893 #ifdef CONFIG_NUMA
1894 
1895 enum numa_topology_type {
1896 	NUMA_DIRECT,
1897 	NUMA_GLUELESS_MESH,
1898 	NUMA_BACKPLANE,
1899 };
1900 
1901 extern enum numa_topology_type sched_numa_topology_type;
1902 extern int sched_max_numa_distance;
1903 extern bool find_numa_distance(int distance);
1904 extern void sched_init_numa(int offline_node);
1905 extern void sched_update_numa(int cpu, bool online);
1906 extern void sched_domains_numa_masks_set(unsigned int cpu);
1907 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1908 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1909 
1910 #else /* !CONFIG_NUMA: */
1911 
1912 static inline void sched_init_numa(int offline_node) { }
1913 static inline void sched_update_numa(int cpu, bool online) { }
1914 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1915 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1916 
1917 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1918 {
1919 	return nr_cpu_ids;
1920 }
1921 
1922 #endif /* !CONFIG_NUMA */
1923 
1924 #ifdef CONFIG_NUMA_BALANCING
1925 
1926 /* The regions in numa_faults array from task_struct */
1927 enum numa_faults_stats {
1928 	NUMA_MEM = 0,
1929 	NUMA_CPU,
1930 	NUMA_MEMBUF,
1931 	NUMA_CPUBUF
1932 };
1933 
1934 extern void sched_setnuma(struct task_struct *p, int node);
1935 extern int migrate_task_to(struct task_struct *p, int cpu);
1936 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1937 			int cpu, int scpu);
1938 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1939 
1940 #else /* !CONFIG_NUMA_BALANCING: */
1941 
1942 static inline void
1943 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1944 {
1945 }
1946 
1947 #endif /* !CONFIG_NUMA_BALANCING */
1948 
1949 static inline void
1950 queue_balance_callback(struct rq *rq,
1951 		       struct balance_callback *head,
1952 		       void (*func)(struct rq *rq))
1953 {
1954 	lockdep_assert_rq_held(rq);
1955 
1956 	/*
1957 	 * Don't (re)queue an already queued item; nor queue anything when
1958 	 * balance_push() is active, see the comment with
1959 	 * balance_push_callback.
1960 	 */
1961 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1962 		return;
1963 
1964 	head->func = func;
1965 	head->next = rq->balance_callback;
1966 	rq->balance_callback = head;
1967 }
1968 
1969 #define rcu_dereference_check_sched_domain(p) \
1970 	rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex))
1971 
1972 /*
1973  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1974  * See destroy_sched_domains: call_rcu for details.
1975  *
1976  * The domain tree of any CPU may only be accessed from within
1977  * preempt-disabled sections.
1978  */
1979 #define for_each_domain(cpu, __sd) \
1980 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1981 			__sd; __sd = __sd->parent)
1982 
1983 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1984 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1985 static const unsigned int SD_SHARED_CHILD_MASK =
1986 #include <linux/sched/sd_flags.h>
1987 0;
1988 #undef SD_FLAG
1989 
1990 /**
1991  * highest_flag_domain - Return highest sched_domain containing flag.
1992  * @cpu:	The CPU whose highest level of sched domain is to
1993  *		be returned.
1994  * @flag:	The flag to check for the highest sched_domain
1995  *		for the given CPU.
1996  *
1997  * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1998  * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1999  */
2000 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
2001 {
2002 	struct sched_domain *sd, *hsd = NULL;
2003 
2004 	for_each_domain(cpu, sd) {
2005 		if (sd->flags & flag) {
2006 			hsd = sd;
2007 			continue;
2008 		}
2009 
2010 		/*
2011 		 * Stop the search if @flag is known to be shared at lower
2012 		 * levels. It will not be found further up.
2013 		 */
2014 		if (flag & SD_SHARED_CHILD_MASK)
2015 			break;
2016 	}
2017 
2018 	return hsd;
2019 }
2020 
2021 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
2022 {
2023 	struct sched_domain *sd;
2024 
2025 	for_each_domain(cpu, sd) {
2026 		if (sd->flags & flag)
2027 			break;
2028 	}
2029 
2030 	return sd;
2031 }
2032 
2033 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
2034 DECLARE_PER_CPU(int, sd_llc_size);
2035 DECLARE_PER_CPU(int, sd_llc_id);
2036 DECLARE_PER_CPU(int, sd_share_id);
2037 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
2038 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
2039 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
2040 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
2041 
2042 extern struct static_key_false sched_asym_cpucapacity;
2043 extern struct static_key_false sched_cluster_active;
2044 
2045 static __always_inline bool sched_asym_cpucap_active(void)
2046 {
2047 	return static_branch_unlikely(&sched_asym_cpucapacity);
2048 }
2049 
2050 struct sched_group_capacity {
2051 	atomic_t		ref;
2052 	/*
2053 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
2054 	 * for a single CPU.
2055 	 */
2056 	unsigned long		capacity;
2057 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
2058 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
2059 	unsigned long		next_update;
2060 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
2061 
2062 	int			id;
2063 
2064 	unsigned long		cpumask[];		/* Balance mask */
2065 };
2066 
2067 struct sched_group {
2068 	struct sched_group	*next;			/* Must be a circular list */
2069 	atomic_t		ref;
2070 
2071 	unsigned int		group_weight;
2072 	unsigned int		cores;
2073 	struct sched_group_capacity *sgc;
2074 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
2075 	int			flags;
2076 
2077 	/*
2078 	 * The CPUs this group covers.
2079 	 *
2080 	 * NOTE: this field is variable length. (Allocated dynamically
2081 	 * by attaching extra space to the end of the structure,
2082 	 * depending on how many CPUs the kernel has booted up with)
2083 	 */
2084 	unsigned long		cpumask[];
2085 };
2086 
2087 static inline struct cpumask *sched_group_span(struct sched_group *sg)
2088 {
2089 	return to_cpumask(sg->cpumask);
2090 }
2091 
2092 /*
2093  * See build_balance_mask().
2094  */
2095 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
2096 {
2097 	return to_cpumask(sg->sgc->cpumask);
2098 }
2099 
2100 extern int group_balance_cpu(struct sched_group *sg);
2101 
2102 extern void update_sched_domain_debugfs(void);
2103 extern void dirty_sched_domain_sysctl(int cpu);
2104 
2105 extern int sched_update_scaling(void);
2106 
2107 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
2108 {
2109 	if (!p->user_cpus_ptr)
2110 		return cpu_possible_mask; /* &init_task.cpus_mask */
2111 	return p->user_cpus_ptr;
2112 }
2113 
2114 #ifdef CONFIG_CGROUP_SCHED
2115 
2116 /*
2117  * Return the group to which this tasks belongs.
2118  *
2119  * We cannot use task_css() and friends because the cgroup subsystem
2120  * changes that value before the cgroup_subsys::attach() method is called,
2121  * therefore we cannot pin it and might observe the wrong value.
2122  *
2123  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
2124  * core changes this before calling sched_move_task().
2125  *
2126  * Instead we use a 'copy' which is updated from sched_move_task() while
2127  * holding both task_struct::pi_lock and rq::lock.
2128  */
2129 static inline struct task_group *task_group(struct task_struct *p)
2130 {
2131 	return p->sched_task_group;
2132 }
2133 
2134 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
2135 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2136 {
2137 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2138 	struct task_group *tg = task_group(p);
2139 #endif
2140 
2141 #ifdef CONFIG_FAIR_GROUP_SCHED
2142 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2143 	p->se.cfs_rq = tg->cfs_rq[cpu];
2144 	p->se.parent = tg->se[cpu];
2145 	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2146 #endif
2147 
2148 #ifdef CONFIG_RT_GROUP_SCHED
2149 	/*
2150 	 * p->rt.rt_rq is NULL initially and it is easier to assign
2151 	 * root_task_group's rt_rq than switching in rt_rq_of_se()
2152 	 * Clobbers tg(!)
2153 	 */
2154 	if (!rt_group_sched_enabled())
2155 		tg = &root_task_group;
2156 	p->rt.rt_rq  = tg->rt_rq[cpu];
2157 	p->rt.parent = tg->rt_se[cpu];
2158 #endif /* CONFIG_RT_GROUP_SCHED */
2159 }
2160 
2161 #else /* !CONFIG_CGROUP_SCHED: */
2162 
2163 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
2164 
2165 static inline struct task_group *task_group(struct task_struct *p)
2166 {
2167 	return NULL;
2168 }
2169 
2170 #endif /* !CONFIG_CGROUP_SCHED */
2171 
2172 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2173 {
2174 	set_task_rq(p, cpu);
2175 #ifdef CONFIG_SMP
2176 	/*
2177 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2178 	 * successfully executed on another CPU. We must ensure that updates of
2179 	 * per-task data have been completed by this moment.
2180 	 */
2181 	smp_wmb();
2182 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2183 	p->wake_cpu = cpu;
2184 #endif /* CONFIG_SMP */
2185 }
2186 
2187 /*
2188  * Tunables:
2189  */
2190 
2191 #define SCHED_FEAT(name, enabled)	\
2192 	__SCHED_FEAT_##name ,
2193 
2194 enum {
2195 #include "features.h"
2196 	__SCHED_FEAT_NR,
2197 };
2198 
2199 #undef SCHED_FEAT
2200 
2201 /*
2202  * To support run-time toggling of sched features, all the translation units
2203  * (but core.c) reference the sysctl_sched_features defined in core.c.
2204  */
2205 extern __read_mostly unsigned int sysctl_sched_features;
2206 
2207 #ifdef CONFIG_JUMP_LABEL
2208 
2209 #define SCHED_FEAT(name, enabled)					\
2210 static __always_inline bool static_branch_##name(struct static_key *key) \
2211 {									\
2212 	return static_key_##enabled(key);				\
2213 }
2214 
2215 #include "features.h"
2216 #undef SCHED_FEAT
2217 
2218 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2219 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2220 
2221 #else /* !CONFIG_JUMP_LABEL: */
2222 
2223 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2224 
2225 #endif /* !CONFIG_JUMP_LABEL */
2226 
2227 extern struct static_key_false sched_numa_balancing;
2228 extern struct static_key_false sched_schedstats;
2229 
2230 static inline u64 global_rt_period(void)
2231 {
2232 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2233 }
2234 
2235 static inline u64 global_rt_runtime(void)
2236 {
2237 	if (sysctl_sched_rt_runtime < 0)
2238 		return RUNTIME_INF;
2239 
2240 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2241 }
2242 
2243 /*
2244  * Is p the current execution context?
2245  */
2246 static inline int task_current(struct rq *rq, struct task_struct *p)
2247 {
2248 	return rq->curr == p;
2249 }
2250 
2251 /*
2252  * Is p the current scheduling context?
2253  *
2254  * Note that it might be the current execution context at the same time if
2255  * rq->curr == rq->donor == p.
2256  */
2257 static inline int task_current_donor(struct rq *rq, struct task_struct *p)
2258 {
2259 	return rq->donor == p;
2260 }
2261 
2262 static inline bool task_is_blocked(struct task_struct *p)
2263 {
2264 	if (!sched_proxy_exec())
2265 		return false;
2266 
2267 	return !!p->blocked_on;
2268 }
2269 
2270 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2271 {
2272 	return p->on_cpu;
2273 }
2274 
2275 static inline int task_on_rq_queued(struct task_struct *p)
2276 {
2277 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED;
2278 }
2279 
2280 static inline int task_on_rq_migrating(struct task_struct *p)
2281 {
2282 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2283 }
2284 
2285 /* Wake flags. The first three directly map to some SD flag value */
2286 #define WF_EXEC			0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2287 #define WF_FORK			0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2288 #define WF_TTWU			0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2289 
2290 #define WF_SYNC			0x10 /* Waker goes to sleep after wakeup */
2291 #define WF_MIGRATED		0x20 /* Internal use, task got migrated */
2292 #define WF_CURRENT_CPU		0x40 /* Prefer to move the wakee to the current CPU. */
2293 #define WF_RQ_SELECTED		0x80 /* ->select_task_rq() was called */
2294 
2295 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2296 static_assert(WF_FORK == SD_BALANCE_FORK);
2297 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2298 
2299 /*
2300  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2301  * of tasks with abnormal "nice" values across CPUs the contribution that
2302  * each task makes to its run queue's load is weighted according to its
2303  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2304  * scaled version of the new time slice allocation that they receive on time
2305  * slice expiry etc.
2306  */
2307 
2308 #define WEIGHT_IDLEPRIO		3
2309 #define WMULT_IDLEPRIO		1431655765
2310 
2311 extern const int		sched_prio_to_weight[40];
2312 extern const u32		sched_prio_to_wmult[40];
2313 
2314 /*
2315  * {de,en}queue flags:
2316  *
2317  * DEQUEUE_SLEEP  - task is no longer runnable
2318  * ENQUEUE_WAKEUP - task just became runnable
2319  *
2320  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2321  *                are in a known state which allows modification. Such pairs
2322  *                should preserve as much state as possible.
2323  *
2324  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2325  *        in the runqueue.
2326  *
2327  * NOCLOCK - skip the update_rq_clock() (avoids double updates)
2328  *
2329  * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
2330  *
2331  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2332  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2333  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2334  * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called
2335  *
2336  */
2337 
2338 #define DEQUEUE_SLEEP		0x01 /* Matches ENQUEUE_WAKEUP */
2339 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2340 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2341 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2342 #define DEQUEUE_SPECIAL		0x10
2343 #define DEQUEUE_MIGRATING	0x100 /* Matches ENQUEUE_MIGRATING */
2344 #define DEQUEUE_DELAYED		0x200 /* Matches ENQUEUE_DELAYED */
2345 
2346 #define ENQUEUE_WAKEUP		0x01
2347 #define ENQUEUE_RESTORE		0x02
2348 #define ENQUEUE_MOVE		0x04
2349 #define ENQUEUE_NOCLOCK		0x08
2350 
2351 #define ENQUEUE_HEAD		0x10
2352 #define ENQUEUE_REPLENISH	0x20
2353 #define ENQUEUE_MIGRATED	0x40
2354 #define ENQUEUE_INITIAL		0x80
2355 #define ENQUEUE_MIGRATING	0x100
2356 #define ENQUEUE_DELAYED		0x200
2357 #define ENQUEUE_RQ_SELECTED	0x400
2358 
2359 #define RETRY_TASK		((void *)-1UL)
2360 
2361 struct affinity_context {
2362 	const struct cpumask	*new_mask;
2363 	struct cpumask		*user_mask;
2364 	unsigned int		flags;
2365 };
2366 
2367 extern s64 update_curr_common(struct rq *rq);
2368 
2369 struct sched_class {
2370 
2371 #ifdef CONFIG_UCLAMP_TASK
2372 	int uclamp_enabled;
2373 #endif
2374 
2375 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2376 	bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2377 	void (*yield_task)   (struct rq *rq);
2378 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2379 
2380 	void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
2381 
2382 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2383 	struct task_struct *(*pick_task)(struct rq *rq);
2384 	/*
2385 	 * Optional! When implemented pick_next_task() should be equivalent to:
2386 	 *
2387 	 *   next = pick_task();
2388 	 *   if (next) {
2389 	 *       put_prev_task(prev);
2390 	 *       set_next_task_first(next);
2391 	 *   }
2392 	 */
2393 	struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev);
2394 
2395 	void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next);
2396 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2397 
2398 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2399 
2400 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2401 
2402 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2403 
2404 	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2405 
2406 	void (*rq_online)(struct rq *rq);
2407 	void (*rq_offline)(struct rq *rq);
2408 
2409 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2410 
2411 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2412 	void (*task_fork)(struct task_struct *p);
2413 	void (*task_dead)(struct task_struct *p);
2414 
2415 	/*
2416 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2417 	 * cannot assume the switched_from/switched_to pair is serialized by
2418 	 * rq->lock. They are however serialized by p->pi_lock.
2419 	 */
2420 	void (*switching_to) (struct rq *this_rq, struct task_struct *task);
2421 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2422 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2423 	void (*reweight_task)(struct rq *this_rq, struct task_struct *task,
2424 			      const struct load_weight *lw);
2425 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2426 			      int oldprio);
2427 
2428 	unsigned int (*get_rr_interval)(struct rq *rq,
2429 					struct task_struct *task);
2430 
2431 	void (*update_curr)(struct rq *rq);
2432 
2433 #ifdef CONFIG_FAIR_GROUP_SCHED
2434 	void (*task_change_group)(struct task_struct *p);
2435 #endif
2436 
2437 #ifdef CONFIG_SCHED_CORE
2438 	int (*task_is_throttled)(struct task_struct *p, int cpu);
2439 #endif
2440 };
2441 
2442 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2443 {
2444 	WARN_ON_ONCE(rq->donor != prev);
2445 	prev->sched_class->put_prev_task(rq, prev, NULL);
2446 }
2447 
2448 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2449 {
2450 	next->sched_class->set_next_task(rq, next, false);
2451 }
2452 
2453 static inline void
2454 __put_prev_set_next_dl_server(struct rq *rq,
2455 			      struct task_struct *prev,
2456 			      struct task_struct *next)
2457 {
2458 	prev->dl_server = NULL;
2459 	next->dl_server = rq->dl_server;
2460 	rq->dl_server = NULL;
2461 }
2462 
2463 static inline void put_prev_set_next_task(struct rq *rq,
2464 					  struct task_struct *prev,
2465 					  struct task_struct *next)
2466 {
2467 	WARN_ON_ONCE(rq->donor != prev);
2468 
2469 	__put_prev_set_next_dl_server(rq, prev, next);
2470 
2471 	if (next == prev)
2472 		return;
2473 
2474 	prev->sched_class->put_prev_task(rq, prev, next);
2475 	next->sched_class->set_next_task(rq, next, true);
2476 }
2477 
2478 /*
2479  * Helper to define a sched_class instance; each one is placed in a separate
2480  * section which is ordered by the linker script:
2481  *
2482  *   include/asm-generic/vmlinux.lds.h
2483  *
2484  * *CAREFUL* they are laid out in *REVERSE* order!!!
2485  *
2486  * Also enforce alignment on the instance, not the type, to guarantee layout.
2487  */
2488 #define DEFINE_SCHED_CLASS(name) \
2489 const struct sched_class name##_sched_class \
2490 	__aligned(__alignof__(struct sched_class)) \
2491 	__section("__" #name "_sched_class")
2492 
2493 /* Defined in include/asm-generic/vmlinux.lds.h */
2494 extern struct sched_class __sched_class_highest[];
2495 extern struct sched_class __sched_class_lowest[];
2496 
2497 extern const struct sched_class stop_sched_class;
2498 extern const struct sched_class dl_sched_class;
2499 extern const struct sched_class rt_sched_class;
2500 extern const struct sched_class fair_sched_class;
2501 extern const struct sched_class idle_sched_class;
2502 
2503 /*
2504  * Iterate only active classes. SCX can take over all fair tasks or be
2505  * completely disabled. If the former, skip fair. If the latter, skip SCX.
2506  */
2507 static inline const struct sched_class *next_active_class(const struct sched_class *class)
2508 {
2509 	class++;
2510 #ifdef CONFIG_SCHED_CLASS_EXT
2511 	if (scx_switched_all() && class == &fair_sched_class)
2512 		class++;
2513 	if (!scx_enabled() && class == &ext_sched_class)
2514 		class++;
2515 #endif
2516 	return class;
2517 }
2518 
2519 #define for_class_range(class, _from, _to) \
2520 	for (class = (_from); class < (_to); class++)
2521 
2522 #define for_each_class(class) \
2523 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2524 
2525 #define for_active_class_range(class, _from, _to)				\
2526 	for (class = (_from); class != (_to); class = next_active_class(class))
2527 
2528 #define for_each_active_class(class)						\
2529 	for_active_class_range(class, __sched_class_highest, __sched_class_lowest)
2530 
2531 #define sched_class_above(_a, _b)	((_a) < (_b))
2532 
2533 static inline bool sched_stop_runnable(struct rq *rq)
2534 {
2535 	return rq->stop && task_on_rq_queued(rq->stop);
2536 }
2537 
2538 static inline bool sched_dl_runnable(struct rq *rq)
2539 {
2540 	return rq->dl.dl_nr_running > 0;
2541 }
2542 
2543 static inline bool sched_rt_runnable(struct rq *rq)
2544 {
2545 	return rq->rt.rt_queued > 0;
2546 }
2547 
2548 static inline bool sched_fair_runnable(struct rq *rq)
2549 {
2550 	return rq->cfs.nr_queued > 0;
2551 }
2552 
2553 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2554 extern struct task_struct *pick_task_idle(struct rq *rq);
2555 
2556 #define SCA_CHECK		0x01
2557 #define SCA_MIGRATE_DISABLE	0x02
2558 #define SCA_MIGRATE_ENABLE	0x04
2559 #define SCA_USER		0x08
2560 
2561 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2562 
2563 extern void sched_balance_trigger(struct rq *rq);
2564 
2565 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx);
2566 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2567 
2568 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
2569 {
2570 	/* When not in the task's cpumask, no point in looking further. */
2571 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2572 		return false;
2573 
2574 	/* Can @cpu run a user thread? */
2575 	if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p))
2576 		return false;
2577 
2578 	return true;
2579 }
2580 
2581 static inline cpumask_t *alloc_user_cpus_ptr(int node)
2582 {
2583 	/*
2584 	 * See do_set_cpus_allowed() above for the rcu_head usage.
2585 	 */
2586 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2587 
2588 	return kmalloc_node(size, GFP_KERNEL, node);
2589 }
2590 
2591 static inline struct task_struct *get_push_task(struct rq *rq)
2592 {
2593 	struct task_struct *p = rq->donor;
2594 
2595 	lockdep_assert_rq_held(rq);
2596 
2597 	if (rq->push_busy)
2598 		return NULL;
2599 
2600 	if (p->nr_cpus_allowed == 1)
2601 		return NULL;
2602 
2603 	if (p->migration_disabled)
2604 		return NULL;
2605 
2606 	rq->push_busy = true;
2607 	return get_task_struct(p);
2608 }
2609 
2610 extern int push_cpu_stop(void *arg);
2611 
2612 #ifdef CONFIG_CPU_IDLE
2613 
2614 static inline void idle_set_state(struct rq *rq,
2615 				  struct cpuidle_state *idle_state)
2616 {
2617 	rq->idle_state = idle_state;
2618 }
2619 
2620 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2621 {
2622 	WARN_ON_ONCE(!rcu_read_lock_held());
2623 
2624 	return rq->idle_state;
2625 }
2626 
2627 #else /* !CONFIG_CPU_IDLE: */
2628 
2629 static inline void idle_set_state(struct rq *rq,
2630 				  struct cpuidle_state *idle_state)
2631 {
2632 }
2633 
2634 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2635 {
2636 	return NULL;
2637 }
2638 
2639 #endif /* !CONFIG_CPU_IDLE */
2640 
2641 extern void schedule_idle(void);
2642 asmlinkage void schedule_user(void);
2643 
2644 extern void sysrq_sched_debug_show(void);
2645 extern void sched_init_granularity(void);
2646 extern void update_max_interval(void);
2647 
2648 extern void init_sched_dl_class(void);
2649 extern void init_sched_rt_class(void);
2650 extern void init_sched_fair_class(void);
2651 
2652 extern void resched_curr(struct rq *rq);
2653 extern void resched_curr_lazy(struct rq *rq);
2654 extern void resched_cpu(int cpu);
2655 
2656 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2657 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2658 
2659 extern void init_dl_entity(struct sched_dl_entity *dl_se);
2660 
2661 #define BW_SHIFT		20
2662 #define BW_UNIT			(1 << BW_SHIFT)
2663 #define RATIO_SHIFT		8
2664 #define MAX_BW_BITS		(64 - BW_SHIFT)
2665 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2666 
2667 extern unsigned long to_ratio(u64 period, u64 runtime);
2668 
2669 extern void init_entity_runnable_average(struct sched_entity *se);
2670 extern void post_init_entity_util_avg(struct task_struct *p);
2671 
2672 #ifdef CONFIG_NO_HZ_FULL
2673 extern bool sched_can_stop_tick(struct rq *rq);
2674 extern int __init sched_tick_offload_init(void);
2675 
2676 /*
2677  * Tick may be needed by tasks in the runqueue depending on their policy and
2678  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2679  * nohz mode if necessary.
2680  */
2681 static inline void sched_update_tick_dependency(struct rq *rq)
2682 {
2683 	int cpu = cpu_of(rq);
2684 
2685 	if (!tick_nohz_full_cpu(cpu))
2686 		return;
2687 
2688 	if (sched_can_stop_tick(rq))
2689 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2690 	else
2691 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2692 }
2693 #else /* !CONFIG_NO_HZ_FULL: */
2694 static inline int sched_tick_offload_init(void) { return 0; }
2695 static inline void sched_update_tick_dependency(struct rq *rq) { }
2696 #endif /* !CONFIG_NO_HZ_FULL */
2697 
2698 static inline void add_nr_running(struct rq *rq, unsigned count)
2699 {
2700 	unsigned prev_nr = rq->nr_running;
2701 
2702 	rq->nr_running = prev_nr + count;
2703 	if (trace_sched_update_nr_running_tp_enabled()) {
2704 		call_trace_sched_update_nr_running(rq, count);
2705 	}
2706 
2707 	if (prev_nr < 2 && rq->nr_running >= 2)
2708 		set_rd_overloaded(rq->rd, 1);
2709 
2710 	sched_update_tick_dependency(rq);
2711 }
2712 
2713 static inline void sub_nr_running(struct rq *rq, unsigned count)
2714 {
2715 	rq->nr_running -= count;
2716 	if (trace_sched_update_nr_running_tp_enabled()) {
2717 		call_trace_sched_update_nr_running(rq, -count);
2718 	}
2719 
2720 	/* Check if we still need preemption */
2721 	sched_update_tick_dependency(rq);
2722 }
2723 
2724 static inline void __block_task(struct rq *rq, struct task_struct *p)
2725 {
2726 	if (p->sched_contributes_to_load)
2727 		rq->nr_uninterruptible++;
2728 
2729 	if (p->in_iowait) {
2730 		atomic_inc(&rq->nr_iowait);
2731 		delayacct_blkio_start();
2732 	}
2733 
2734 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2735 
2736 	/*
2737 	 * The moment this write goes through, ttwu() can swoop in and migrate
2738 	 * this task, rendering our rq->__lock ineffective.
2739 	 *
2740 	 * __schedule()				try_to_wake_up()
2741 	 *   LOCK rq->__lock			  LOCK p->pi_lock
2742 	 *   pick_next_task()
2743 	 *     pick_next_task_fair()
2744 	 *       pick_next_entity()
2745 	 *         dequeue_entities()
2746 	 *           __block_task()
2747 	 *             RELEASE p->on_rq = 0	  if (p->on_rq && ...)
2748 	 *					    break;
2749 	 *
2750 	 *					  ACQUIRE (after ctrl-dep)
2751 	 *
2752 	 *					  cpu = select_task_rq();
2753 	 *					  set_task_cpu(p, cpu);
2754 	 *					  ttwu_queue()
2755 	 *					    ttwu_do_activate()
2756 	 *					      LOCK rq->__lock
2757 	 *					      activate_task()
2758 	 *					        STORE p->on_rq = 1
2759 	 *   UNLOCK rq->__lock
2760 	 *
2761 	 * Callers must ensure to not reference @p after this -- we no longer
2762 	 * own it.
2763 	 */
2764 	smp_store_release(&p->on_rq, 0);
2765 }
2766 
2767 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2768 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2769 
2770 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
2771 
2772 #ifdef CONFIG_PREEMPT_RT
2773 # define SCHED_NR_MIGRATE_BREAK 8
2774 #else
2775 # define SCHED_NR_MIGRATE_BREAK 32
2776 #endif
2777 
2778 extern __read_mostly unsigned int sysctl_sched_nr_migrate;
2779 extern __read_mostly unsigned int sysctl_sched_migration_cost;
2780 
2781 extern unsigned int sysctl_sched_base_slice;
2782 
2783 extern int sysctl_resched_latency_warn_ms;
2784 extern int sysctl_resched_latency_warn_once;
2785 
2786 extern unsigned int sysctl_sched_tunable_scaling;
2787 
2788 extern unsigned int sysctl_numa_balancing_scan_delay;
2789 extern unsigned int sysctl_numa_balancing_scan_period_min;
2790 extern unsigned int sysctl_numa_balancing_scan_period_max;
2791 extern unsigned int sysctl_numa_balancing_scan_size;
2792 extern unsigned int sysctl_numa_balancing_hot_threshold;
2793 
2794 #ifdef CONFIG_SCHED_HRTICK
2795 
2796 /*
2797  * Use hrtick when:
2798  *  - enabled by features
2799  *  - hrtimer is actually high res
2800  */
2801 static inline int hrtick_enabled(struct rq *rq)
2802 {
2803 	if (!cpu_active(cpu_of(rq)))
2804 		return 0;
2805 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2806 }
2807 
2808 static inline int hrtick_enabled_fair(struct rq *rq)
2809 {
2810 	if (!sched_feat(HRTICK))
2811 		return 0;
2812 	return hrtick_enabled(rq);
2813 }
2814 
2815 static inline int hrtick_enabled_dl(struct rq *rq)
2816 {
2817 	if (!sched_feat(HRTICK_DL))
2818 		return 0;
2819 	return hrtick_enabled(rq);
2820 }
2821 
2822 extern void hrtick_start(struct rq *rq, u64 delay);
2823 
2824 #else /* !CONFIG_SCHED_HRTICK: */
2825 
2826 static inline int hrtick_enabled_fair(struct rq *rq)
2827 {
2828 	return 0;
2829 }
2830 
2831 static inline int hrtick_enabled_dl(struct rq *rq)
2832 {
2833 	return 0;
2834 }
2835 
2836 static inline int hrtick_enabled(struct rq *rq)
2837 {
2838 	return 0;
2839 }
2840 
2841 #endif /* !CONFIG_SCHED_HRTICK */
2842 
2843 #ifndef arch_scale_freq_tick
2844 static __always_inline void arch_scale_freq_tick(void) { }
2845 #endif
2846 
2847 #ifndef arch_scale_freq_capacity
2848 /**
2849  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2850  * @cpu: the CPU in question.
2851  *
2852  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2853  *
2854  *     f_curr
2855  *     ------ * SCHED_CAPACITY_SCALE
2856  *     f_max
2857  */
2858 static __always_inline
2859 unsigned long arch_scale_freq_capacity(int cpu)
2860 {
2861 	return SCHED_CAPACITY_SCALE;
2862 }
2863 #endif
2864 
2865 /*
2866  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2867  * acquire rq lock instead of rq_lock(). So at the end of these two functions
2868  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2869  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2870  */
2871 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2872 {
2873 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2874 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2875 }
2876 
2877 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)				\
2878 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__)			\
2879 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2)	\
2880 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t;			\
2881   _lock; return _t; }
2882 
2883 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2884 {
2885 #ifdef CONFIG_SCHED_CORE
2886 	/*
2887 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2888 	 * order by core-id first and cpu-id second.
2889 	 *
2890 	 * Notably:
2891 	 *
2892 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2893 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2894 	 *
2895 	 * when only cpu-id is considered.
2896 	 */
2897 	if (rq1->core->cpu < rq2->core->cpu)
2898 		return true;
2899 	if (rq1->core->cpu > rq2->core->cpu)
2900 		return false;
2901 
2902 	/*
2903 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2904 	 */
2905 #endif /* CONFIG_SCHED_CORE */
2906 	return rq1->cpu < rq2->cpu;
2907 }
2908 
2909 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2910 
2911 #ifdef CONFIG_PREEMPTION
2912 
2913 /*
2914  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2915  * way at the expense of forcing extra atomic operations in all
2916  * invocations.  This assures that the double_lock is acquired using the
2917  * same underlying policy as the spinlock_t on this architecture, which
2918  * reduces latency compared to the unfair variant below.  However, it
2919  * also adds more overhead and therefore may reduce throughput.
2920  */
2921 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2922 	__releases(this_rq->lock)
2923 	__acquires(busiest->lock)
2924 	__acquires(this_rq->lock)
2925 {
2926 	raw_spin_rq_unlock(this_rq);
2927 	double_rq_lock(this_rq, busiest);
2928 
2929 	return 1;
2930 }
2931 
2932 #else /* !CONFIG_PREEMPTION: */
2933 /*
2934  * Unfair double_lock_balance: Optimizes throughput at the expense of
2935  * latency by eliminating extra atomic operations when the locks are
2936  * already in proper order on entry.  This favors lower CPU-ids and will
2937  * grant the double lock to lower CPUs over higher ids under contention,
2938  * regardless of entry order into the function.
2939  */
2940 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2941 	__releases(this_rq->lock)
2942 	__acquires(busiest->lock)
2943 	__acquires(this_rq->lock)
2944 {
2945 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2946 	    likely(raw_spin_rq_trylock(busiest))) {
2947 		double_rq_clock_clear_update(this_rq, busiest);
2948 		return 0;
2949 	}
2950 
2951 	if (rq_order_less(this_rq, busiest)) {
2952 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2953 		double_rq_clock_clear_update(this_rq, busiest);
2954 		return 0;
2955 	}
2956 
2957 	raw_spin_rq_unlock(this_rq);
2958 	double_rq_lock(this_rq, busiest);
2959 
2960 	return 1;
2961 }
2962 
2963 #endif /* !CONFIG_PREEMPTION */
2964 
2965 /*
2966  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2967  */
2968 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2969 {
2970 	lockdep_assert_irqs_disabled();
2971 
2972 	return _double_lock_balance(this_rq, busiest);
2973 }
2974 
2975 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2976 	__releases(busiest->lock)
2977 {
2978 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2979 		raw_spin_rq_unlock(busiest);
2980 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2981 }
2982 
2983 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2984 {
2985 	if (l1 > l2)
2986 		swap(l1, l2);
2987 
2988 	spin_lock(l1);
2989 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2990 }
2991 
2992 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2993 {
2994 	if (l1 > l2)
2995 		swap(l1, l2);
2996 
2997 	spin_lock_irq(l1);
2998 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2999 }
3000 
3001 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
3002 {
3003 	if (l1 > l2)
3004 		swap(l1, l2);
3005 
3006 	raw_spin_lock(l1);
3007 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3008 }
3009 
3010 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
3011 {
3012 	raw_spin_unlock(l1);
3013 	raw_spin_unlock(l2);
3014 }
3015 
3016 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
3017 		    double_raw_lock(_T->lock, _T->lock2),
3018 		    double_raw_unlock(_T->lock, _T->lock2))
3019 
3020 /*
3021  * double_rq_unlock - safely unlock two runqueues
3022  *
3023  * Note this does not restore interrupts like task_rq_unlock,
3024  * you need to do so manually after calling.
3025  */
3026 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3027 	__releases(rq1->lock)
3028 	__releases(rq2->lock)
3029 {
3030 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
3031 		raw_spin_rq_unlock(rq2);
3032 	else
3033 		__release(rq2->lock);
3034 	raw_spin_rq_unlock(rq1);
3035 }
3036 
3037 extern void set_rq_online (struct rq *rq);
3038 extern void set_rq_offline(struct rq *rq);
3039 
3040 extern bool sched_smp_initialized;
3041 
3042 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
3043 		    double_rq_lock(_T->lock, _T->lock2),
3044 		    double_rq_unlock(_T->lock, _T->lock2))
3045 
3046 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq);
3047 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
3048 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
3049 
3050 extern bool sched_debug_verbose;
3051 
3052 extern void print_cfs_stats(struct seq_file *m, int cpu);
3053 extern void print_rt_stats(struct seq_file *m, int cpu);
3054 extern void print_dl_stats(struct seq_file *m, int cpu);
3055 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
3056 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
3057 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
3058 
3059 extern void resched_latency_warn(int cpu, u64 latency);
3060 
3061 #ifdef CONFIG_NUMA_BALANCING
3062 extern void show_numa_stats(struct task_struct *p, struct seq_file *m);
3063 extern void
3064 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
3065 		 unsigned long tpf, unsigned long gsf, unsigned long gpf);
3066 #endif /* CONFIG_NUMA_BALANCING */
3067 
3068 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
3069 extern void init_rt_rq(struct rt_rq *rt_rq);
3070 extern void init_dl_rq(struct dl_rq *dl_rq);
3071 
3072 extern void cfs_bandwidth_usage_inc(void);
3073 extern void cfs_bandwidth_usage_dec(void);
3074 
3075 #ifdef CONFIG_NO_HZ_COMMON
3076 
3077 #define NOHZ_BALANCE_KICK_BIT	0
3078 #define NOHZ_STATS_KICK_BIT	1
3079 #define NOHZ_NEWILB_KICK_BIT	2
3080 #define NOHZ_NEXT_KICK_BIT	3
3081 
3082 /* Run sched_balance_domains() */
3083 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
3084 /* Update blocked load */
3085 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
3086 /* Update blocked load when entering idle */
3087 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
3088 /* Update nohz.next_balance */
3089 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
3090 
3091 #define NOHZ_KICK_MASK		(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
3092 
3093 #define nohz_flags(cpu)		(&cpu_rq(cpu)->nohz_flags)
3094 
3095 extern void nohz_balance_exit_idle(struct rq *rq);
3096 #else /* !CONFIG_NO_HZ_COMMON: */
3097 static inline void nohz_balance_exit_idle(struct rq *rq) { }
3098 #endif /* !CONFIG_NO_HZ_COMMON */
3099 
3100 #ifdef CONFIG_NO_HZ_COMMON
3101 extern void nohz_run_idle_balance(int cpu);
3102 #else
3103 static inline void nohz_run_idle_balance(int cpu) { }
3104 #endif
3105 
3106 #include "stats.h"
3107 
3108 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
3109 
3110 extern void __sched_core_account_forceidle(struct rq *rq);
3111 
3112 static inline void sched_core_account_forceidle(struct rq *rq)
3113 {
3114 	if (schedstat_enabled())
3115 		__sched_core_account_forceidle(rq);
3116 }
3117 
3118 extern void __sched_core_tick(struct rq *rq);
3119 
3120 static inline void sched_core_tick(struct rq *rq)
3121 {
3122 	if (sched_core_enabled(rq) && schedstat_enabled())
3123 		__sched_core_tick(rq);
3124 }
3125 
3126 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */
3127 
3128 static inline void sched_core_account_forceidle(struct rq *rq) { }
3129 
3130 static inline void sched_core_tick(struct rq *rq) { }
3131 
3132 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */
3133 
3134 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3135 
3136 struct irqtime {
3137 	u64			total;
3138 	u64			tick_delta;
3139 	u64			irq_start_time;
3140 	struct u64_stats_sync	sync;
3141 };
3142 
3143 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
3144 extern int sched_clock_irqtime;
3145 
3146 static inline int irqtime_enabled(void)
3147 {
3148 	return sched_clock_irqtime;
3149 }
3150 
3151 /*
3152  * Returns the irqtime minus the softirq time computed by ksoftirqd.
3153  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
3154  * and never move forward.
3155  */
3156 static inline u64 irq_time_read(int cpu)
3157 {
3158 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
3159 	unsigned int seq;
3160 	u64 total;
3161 
3162 	do {
3163 		seq = __u64_stats_fetch_begin(&irqtime->sync);
3164 		total = irqtime->total;
3165 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
3166 
3167 	return total;
3168 }
3169 
3170 #else /* !CONFIG_IRQ_TIME_ACCOUNTING: */
3171 
3172 static inline int irqtime_enabled(void)
3173 {
3174 	return 0;
3175 }
3176 
3177 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
3178 
3179 #ifdef CONFIG_CPU_FREQ
3180 
3181 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
3182 
3183 /**
3184  * cpufreq_update_util - Take a note about CPU utilization changes.
3185  * @rq: Runqueue to carry out the update for.
3186  * @flags: Update reason flags.
3187  *
3188  * This function is called by the scheduler on the CPU whose utilization is
3189  * being updated.
3190  *
3191  * It can only be called from RCU-sched read-side critical sections.
3192  *
3193  * The way cpufreq is currently arranged requires it to evaluate the CPU
3194  * performance state (frequency/voltage) on a regular basis to prevent it from
3195  * being stuck in a completely inadequate performance level for too long.
3196  * That is not guaranteed to happen if the updates are only triggered from CFS
3197  * and DL, though, because they may not be coming in if only RT tasks are
3198  * active all the time (or there are RT tasks only).
3199  *
3200  * As a workaround for that issue, this function is called periodically by the
3201  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
3202  * but that really is a band-aid.  Going forward it should be replaced with
3203  * solutions targeted more specifically at RT tasks.
3204  */
3205 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
3206 {
3207 	struct update_util_data *data;
3208 
3209 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
3210 						  cpu_of(rq)));
3211 	if (data)
3212 		data->func(data, rq_clock(rq), flags);
3213 }
3214 #else /* !CONFIG_CPU_FREQ: */
3215 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { }
3216 #endif /* !CONFIG_CPU_FREQ */
3217 
3218 #ifdef arch_scale_freq_capacity
3219 # ifndef arch_scale_freq_invariant
3220 #  define arch_scale_freq_invariant()	true
3221 # endif
3222 #else
3223 # define arch_scale_freq_invariant()	false
3224 #endif
3225 
3226 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3227 				 unsigned long *min,
3228 				 unsigned long *max);
3229 
3230 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
3231 				 unsigned long min,
3232 				 unsigned long max);
3233 
3234 
3235 /*
3236  * Verify the fitness of task @p to run on @cpu taking into account the
3237  * CPU original capacity and the runtime/deadline ratio of the task.
3238  *
3239  * The function will return true if the original capacity of @cpu is
3240  * greater than or equal to task's deadline density right shifted by
3241  * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3242  */
3243 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3244 {
3245 	unsigned long cap = arch_scale_cpu_capacity(cpu);
3246 
3247 	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3248 }
3249 
3250 static inline unsigned long cpu_bw_dl(struct rq *rq)
3251 {
3252 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3253 }
3254 
3255 static inline unsigned long cpu_util_dl(struct rq *rq)
3256 {
3257 	return READ_ONCE(rq->avg_dl.util_avg);
3258 }
3259 
3260 
3261 extern unsigned long cpu_util_cfs(int cpu);
3262 extern unsigned long cpu_util_cfs_boost(int cpu);
3263 
3264 static inline unsigned long cpu_util_rt(struct rq *rq)
3265 {
3266 	return READ_ONCE(rq->avg_rt.util_avg);
3267 }
3268 
3269 #ifdef CONFIG_UCLAMP_TASK
3270 
3271 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3272 
3273 /*
3274  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3275  * by default in the fast path and only gets turned on once userspace performs
3276  * an operation that requires it.
3277  *
3278  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3279  * hence is active.
3280  */
3281 static inline bool uclamp_is_used(void)
3282 {
3283 	return static_branch_likely(&sched_uclamp_used);
3284 }
3285 
3286 /*
3287  * Enabling static branches would get the cpus_read_lock(),
3288  * check whether uclamp_is_used before enable it to avoid always
3289  * calling cpus_read_lock(). Because we never disable this
3290  * static key once enable it.
3291  */
3292 static inline void sched_uclamp_enable(void)
3293 {
3294 	if (!uclamp_is_used())
3295 		static_branch_enable(&sched_uclamp_used);
3296 }
3297 
3298 static inline unsigned long uclamp_rq_get(struct rq *rq,
3299 					  enum uclamp_id clamp_id)
3300 {
3301 	return READ_ONCE(rq->uclamp[clamp_id].value);
3302 }
3303 
3304 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3305 				 unsigned int value)
3306 {
3307 	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3308 }
3309 
3310 static inline bool uclamp_rq_is_idle(struct rq *rq)
3311 {
3312 	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3313 }
3314 
3315 /* Is the rq being capped/throttled by uclamp_max? */
3316 static inline bool uclamp_rq_is_capped(struct rq *rq)
3317 {
3318 	unsigned long rq_util;
3319 	unsigned long max_util;
3320 
3321 	if (!uclamp_is_used())
3322 		return false;
3323 
3324 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3325 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3326 
3327 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3328 }
3329 
3330 #define for_each_clamp_id(clamp_id) \
3331 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
3332 
3333 extern unsigned int sysctl_sched_uclamp_util_min_rt_default;
3334 
3335 
3336 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
3337 {
3338 	if (clamp_id == UCLAMP_MIN)
3339 		return 0;
3340 	return SCHED_CAPACITY_SCALE;
3341 }
3342 
3343 /* Integer rounded range for each bucket */
3344 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
3345 
3346 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
3347 {
3348 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
3349 }
3350 
3351 static inline void
3352 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined)
3353 {
3354 	uc_se->value = value;
3355 	uc_se->bucket_id = uclamp_bucket_id(value);
3356 	uc_se->user_defined = user_defined;
3357 }
3358 
3359 #else /* !CONFIG_UCLAMP_TASK: */
3360 
3361 static inline unsigned long
3362 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
3363 {
3364 	if (clamp_id == UCLAMP_MIN)
3365 		return 0;
3366 
3367 	return SCHED_CAPACITY_SCALE;
3368 }
3369 
3370 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3371 
3372 static inline bool uclamp_is_used(void)
3373 {
3374 	return false;
3375 }
3376 
3377 static inline void sched_uclamp_enable(void) {}
3378 
3379 static inline unsigned long
3380 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id)
3381 {
3382 	if (clamp_id == UCLAMP_MIN)
3383 		return 0;
3384 
3385 	return SCHED_CAPACITY_SCALE;
3386 }
3387 
3388 static inline void
3389 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value)
3390 {
3391 }
3392 
3393 static inline bool uclamp_rq_is_idle(struct rq *rq)
3394 {
3395 	return false;
3396 }
3397 
3398 #endif /* !CONFIG_UCLAMP_TASK */
3399 
3400 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3401 
3402 static inline unsigned long cpu_util_irq(struct rq *rq)
3403 {
3404 	return READ_ONCE(rq->avg_irq.util_avg);
3405 }
3406 
3407 static inline
3408 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3409 {
3410 	util *= (max - irq);
3411 	util /= max;
3412 
3413 	return util;
3414 
3415 }
3416 
3417 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */
3418 
3419 static inline unsigned long cpu_util_irq(struct rq *rq)
3420 {
3421 	return 0;
3422 }
3423 
3424 static inline
3425 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3426 {
3427 	return util;
3428 }
3429 
3430 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */
3431 
3432 extern void __setparam_fair(struct task_struct *p, const struct sched_attr *attr);
3433 
3434 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3435 
3436 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3437 
3438 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3439 
3440 static inline bool sched_energy_enabled(void)
3441 {
3442 	return static_branch_unlikely(&sched_energy_present);
3443 }
3444 
3445 #else /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL): */
3446 
3447 #define perf_domain_span(pd) NULL
3448 
3449 static inline bool sched_energy_enabled(void) { return false; }
3450 
3451 #endif /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3452 
3453 #ifdef CONFIG_MEMBARRIER
3454 
3455 /*
3456  * The scheduler provides memory barriers required by membarrier between:
3457  * - prior user-space memory accesses and store to rq->membarrier_state,
3458  * - store to rq->membarrier_state and following user-space memory accesses.
3459  * In the same way it provides those guarantees around store to rq->curr.
3460  */
3461 static inline void membarrier_switch_mm(struct rq *rq,
3462 					struct mm_struct *prev_mm,
3463 					struct mm_struct *next_mm)
3464 {
3465 	int membarrier_state;
3466 
3467 	if (prev_mm == next_mm)
3468 		return;
3469 
3470 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3471 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3472 		return;
3473 
3474 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3475 }
3476 
3477 #else /* !CONFIG_MEMBARRIER: */
3478 
3479 static inline void membarrier_switch_mm(struct rq *rq,
3480 					struct mm_struct *prev_mm,
3481 					struct mm_struct *next_mm)
3482 {
3483 }
3484 
3485 #endif /* !CONFIG_MEMBARRIER */
3486 
3487 static inline bool is_per_cpu_kthread(struct task_struct *p)
3488 {
3489 	if (!(p->flags & PF_KTHREAD))
3490 		return false;
3491 
3492 	if (p->nr_cpus_allowed != 1)
3493 		return false;
3494 
3495 	return true;
3496 }
3497 
3498 extern void swake_up_all_locked(struct swait_queue_head *q);
3499 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3500 
3501 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3502 
3503 #ifdef CONFIG_PREEMPT_DYNAMIC
3504 extern int preempt_dynamic_mode;
3505 extern int sched_dynamic_mode(const char *str);
3506 extern void sched_dynamic_update(int mode);
3507 #endif
3508 extern const char *preempt_modes[];
3509 
3510 #ifdef CONFIG_SCHED_MM_CID
3511 
3512 #define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
3513 #define MM_CID_SCAN_DELAY	100			/* 100ms */
3514 
3515 extern raw_spinlock_t cid_lock;
3516 extern int use_cid_lock;
3517 
3518 extern void sched_mm_cid_migrate_from(struct task_struct *t);
3519 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3520 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3521 extern void init_sched_mm_cid(struct task_struct *t);
3522 
3523 static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3524 {
3525 	if (cid < 0)
3526 		return;
3527 	cpumask_clear_cpu(cid, mm_cidmask(mm));
3528 }
3529 
3530 /*
3531  * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3532  * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3533  * be held to transition to other states.
3534  *
3535  * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3536  * consistent across CPUs, which prevents use of this_cpu_cmpxchg.
3537  */
3538 static inline void mm_cid_put_lazy(struct task_struct *t)
3539 {
3540 	struct mm_struct *mm = t->mm;
3541 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3542 	int cid;
3543 
3544 	lockdep_assert_irqs_disabled();
3545 	cid = __this_cpu_read(pcpu_cid->cid);
3546 	if (!mm_cid_is_lazy_put(cid) ||
3547 	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3548 		return;
3549 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3550 }
3551 
3552 static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3553 {
3554 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3555 	int cid, res;
3556 
3557 	lockdep_assert_irqs_disabled();
3558 	cid = __this_cpu_read(pcpu_cid->cid);
3559 	for (;;) {
3560 		if (mm_cid_is_unset(cid))
3561 			return MM_CID_UNSET;
3562 		/*
3563 		 * Attempt transition from valid or lazy-put to unset.
3564 		 */
3565 		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3566 		if (res == cid)
3567 			break;
3568 		cid = res;
3569 	}
3570 	return cid;
3571 }
3572 
3573 static inline void mm_cid_put(struct mm_struct *mm)
3574 {
3575 	int cid;
3576 
3577 	lockdep_assert_irqs_disabled();
3578 	cid = mm_cid_pcpu_unset(mm);
3579 	if (cid == MM_CID_UNSET)
3580 		return;
3581 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3582 }
3583 
3584 static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm)
3585 {
3586 	struct cpumask *cidmask = mm_cidmask(mm);
3587 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3588 	int cid, max_nr_cid, allowed_max_nr_cid;
3589 
3590 	/*
3591 	 * After shrinking the number of threads or reducing the number
3592 	 * of allowed cpus, reduce the value of max_nr_cid so expansion
3593 	 * of cid allocation will preserve cache locality if the number
3594 	 * of threads or allowed cpus increase again.
3595 	 */
3596 	max_nr_cid = atomic_read(&mm->max_nr_cid);
3597 	while ((allowed_max_nr_cid = min_t(int, READ_ONCE(mm->nr_cpus_allowed),
3598 					   atomic_read(&mm->mm_users))),
3599 	       max_nr_cid > allowed_max_nr_cid) {
3600 		/* atomic_try_cmpxchg loads previous mm->max_nr_cid into max_nr_cid. */
3601 		if (atomic_try_cmpxchg(&mm->max_nr_cid, &max_nr_cid, allowed_max_nr_cid)) {
3602 			max_nr_cid = allowed_max_nr_cid;
3603 			break;
3604 		}
3605 	}
3606 	/* Try to re-use recent cid. This improves cache locality. */
3607 	cid = __this_cpu_read(pcpu_cid->recent_cid);
3608 	if (!mm_cid_is_unset(cid) && cid < max_nr_cid &&
3609 	    !cpumask_test_and_set_cpu(cid, cidmask))
3610 		return cid;
3611 	/*
3612 	 * Expand cid allocation if the maximum number of concurrency
3613 	 * IDs allocated (max_nr_cid) is below the number cpus allowed
3614 	 * and number of threads. Expanding cid allocation as much as
3615 	 * possible improves cache locality.
3616 	 */
3617 	cid = max_nr_cid;
3618 	while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) {
3619 		/* atomic_try_cmpxchg loads previous mm->max_nr_cid into cid. */
3620 		if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1))
3621 			continue;
3622 		if (!cpumask_test_and_set_cpu(cid, cidmask))
3623 			return cid;
3624 	}
3625 	/*
3626 	 * Find the first available concurrency id.
3627 	 * Retry finding first zero bit if the mask is temporarily
3628 	 * filled. This only happens during concurrent remote-clear
3629 	 * which owns a cid without holding a rq lock.
3630 	 */
3631 	for (;;) {
3632 		cid = cpumask_first_zero(cidmask);
3633 		if (cid < READ_ONCE(mm->nr_cpus_allowed))
3634 			break;
3635 		cpu_relax();
3636 	}
3637 	if (cpumask_test_and_set_cpu(cid, cidmask))
3638 		return -1;
3639 
3640 	return cid;
3641 }
3642 
3643 /*
3644  * Save a snapshot of the current runqueue time of this cpu
3645  * with the per-cpu cid value, allowing to estimate how recently it was used.
3646  */
3647 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3648 {
3649 	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3650 
3651 	lockdep_assert_rq_held(rq);
3652 	WRITE_ONCE(pcpu_cid->time, rq->clock);
3653 }
3654 
3655 static inline int __mm_cid_get(struct rq *rq, struct task_struct *t,
3656 			       struct mm_struct *mm)
3657 {
3658 	int cid;
3659 
3660 	/*
3661 	 * All allocations (even those using the cid_lock) are lock-free. If
3662 	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3663 	 * guarantee forward progress.
3664 	 */
3665 	if (!READ_ONCE(use_cid_lock)) {
3666 		cid = __mm_cid_try_get(t, mm);
3667 		if (cid >= 0)
3668 			goto end;
3669 		raw_spin_lock(&cid_lock);
3670 	} else {
3671 		raw_spin_lock(&cid_lock);
3672 		cid = __mm_cid_try_get(t, mm);
3673 		if (cid >= 0)
3674 			goto unlock;
3675 	}
3676 
3677 	/*
3678 	 * cid concurrently allocated. Retry while forcing following
3679 	 * allocations to use the cid_lock to ensure forward progress.
3680 	 */
3681 	WRITE_ONCE(use_cid_lock, 1);
3682 	/*
3683 	 * Set use_cid_lock before allocation. Only care about program order
3684 	 * because this is only required for forward progress.
3685 	 */
3686 	barrier();
3687 	/*
3688 	 * Retry until it succeeds. It is guaranteed to eventually succeed once
3689 	 * all newcoming allocations observe the use_cid_lock flag set.
3690 	 */
3691 	do {
3692 		cid = __mm_cid_try_get(t, mm);
3693 		cpu_relax();
3694 	} while (cid < 0);
3695 	/*
3696 	 * Allocate before clearing use_cid_lock. Only care about
3697 	 * program order because this is for forward progress.
3698 	 */
3699 	barrier();
3700 	WRITE_ONCE(use_cid_lock, 0);
3701 unlock:
3702 	raw_spin_unlock(&cid_lock);
3703 end:
3704 	mm_cid_snapshot_time(rq, mm);
3705 
3706 	return cid;
3707 }
3708 
3709 static inline int mm_cid_get(struct rq *rq, struct task_struct *t,
3710 			     struct mm_struct *mm)
3711 {
3712 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3713 	struct cpumask *cpumask;
3714 	int cid;
3715 
3716 	lockdep_assert_rq_held(rq);
3717 	cpumask = mm_cidmask(mm);
3718 	cid = __this_cpu_read(pcpu_cid->cid);
3719 	if (mm_cid_is_valid(cid)) {
3720 		mm_cid_snapshot_time(rq, mm);
3721 		return cid;
3722 	}
3723 	if (mm_cid_is_lazy_put(cid)) {
3724 		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3725 			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3726 	}
3727 	cid = __mm_cid_get(rq, t, mm);
3728 	__this_cpu_write(pcpu_cid->cid, cid);
3729 	__this_cpu_write(pcpu_cid->recent_cid, cid);
3730 
3731 	return cid;
3732 }
3733 
3734 static inline void switch_mm_cid(struct rq *rq,
3735 				 struct task_struct *prev,
3736 				 struct task_struct *next)
3737 {
3738 	/*
3739 	 * Provide a memory barrier between rq->curr store and load of
3740 	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3741 	 *
3742 	 * Should be adapted if context_switch() is modified.
3743 	 */
3744 	if (!next->mm) {                                // to kernel
3745 		/*
3746 		 * user -> kernel transition does not guarantee a barrier, but
3747 		 * we can use the fact that it performs an atomic operation in
3748 		 * mmgrab().
3749 		 */
3750 		if (prev->mm)                           // from user
3751 			smp_mb__after_mmgrab();
3752 		/*
3753 		 * kernel -> kernel transition does not change rq->curr->mm
3754 		 * state. It stays NULL.
3755 		 */
3756 	} else {                                        // to user
3757 		/*
3758 		 * kernel -> user transition does not provide a barrier
3759 		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3760 		 * Provide it here.
3761 		 */
3762 		if (!prev->mm) {                        // from kernel
3763 			smp_mb();
3764 		} else {				// from user
3765 			/*
3766 			 * user->user transition relies on an implicit
3767 			 * memory barrier in switch_mm() when
3768 			 * current->mm changes. If the architecture
3769 			 * switch_mm() does not have an implicit memory
3770 			 * barrier, it is emitted here.  If current->mm
3771 			 * is unchanged, no barrier is needed.
3772 			 */
3773 			smp_mb__after_switch_mm();
3774 		}
3775 	}
3776 	if (prev->mm_cid_active) {
3777 		mm_cid_snapshot_time(rq, prev->mm);
3778 		mm_cid_put_lazy(prev);
3779 		prev->mm_cid = -1;
3780 	}
3781 	if (next->mm_cid_active)
3782 		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm);
3783 }
3784 
3785 #else /* !CONFIG_SCHED_MM_CID: */
3786 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
3787 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
3788 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
3789 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
3790 static inline void init_sched_mm_cid(struct task_struct *t) { }
3791 #endif /* !CONFIG_SCHED_MM_CID */
3792 
3793 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3794 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3795 static inline
3796 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task)
3797 {
3798 	lockdep_assert_rq_held(src_rq);
3799 	lockdep_assert_rq_held(dst_rq);
3800 
3801 	deactivate_task(src_rq, task, 0);
3802 	set_task_cpu(task, dst_rq->cpu);
3803 	activate_task(dst_rq, task, 0);
3804 }
3805 
3806 static inline
3807 bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu)
3808 {
3809 	if (!task_on_cpu(rq, p) &&
3810 	    cpumask_test_cpu(cpu, &p->cpus_mask))
3811 		return true;
3812 
3813 	return false;
3814 }
3815 
3816 #ifdef CONFIG_RT_MUTEXES
3817 
3818 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3819 {
3820 	if (pi_task)
3821 		prio = min(prio, pi_task->prio);
3822 
3823 	return prio;
3824 }
3825 
3826 static inline int rt_effective_prio(struct task_struct *p, int prio)
3827 {
3828 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3829 
3830 	return __rt_effective_prio(pi_task, prio);
3831 }
3832 
3833 #else /* !CONFIG_RT_MUTEXES: */
3834 
3835 static inline int rt_effective_prio(struct task_struct *p, int prio)
3836 {
3837 	return prio;
3838 }
3839 
3840 #endif /* !CONFIG_RT_MUTEXES */
3841 
3842 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi);
3843 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3844 extern const struct sched_class *__setscheduler_class(int policy, int prio);
3845 extern void set_load_weight(struct task_struct *p, bool update_load);
3846 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
3847 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags);
3848 
3849 extern void check_class_changing(struct rq *rq, struct task_struct *p,
3850 				 const struct sched_class *prev_class);
3851 extern void check_class_changed(struct rq *rq, struct task_struct *p,
3852 				const struct sched_class *prev_class,
3853 				int oldprio);
3854 
3855 extern struct balance_callback *splice_balance_callbacks(struct rq *rq);
3856 extern void balance_callbacks(struct rq *rq, struct balance_callback *head);
3857 
3858 #ifdef CONFIG_SCHED_CLASS_EXT
3859 /*
3860  * Used by SCX in the enable/disable paths to move tasks between sched_classes
3861  * and establish invariants.
3862  */
3863 struct sched_enq_and_set_ctx {
3864 	struct task_struct	*p;
3865 	int			queue_flags;
3866 	bool			queued;
3867 	bool			running;
3868 };
3869 
3870 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
3871 			    struct sched_enq_and_set_ctx *ctx);
3872 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx);
3873 
3874 #endif /* CONFIG_SCHED_CLASS_EXT */
3875 
3876 #include "ext.h"
3877 
3878 #endif /* _KERNEL_SCHED_SCHED_H */
3879