1 // SPDX-License-Identifier: GPL-2.0-only
2 /* CAN driver for Geschwister Schneider USB/CAN devices
3 * and bytewerk.org candleLight USB CAN interfaces.
4 *
5 * Copyright (C) 2013-2016 Geschwister Schneider Technologie-,
6 * Entwicklungs- und Vertriebs UG (Haftungsbeschränkt).
7 * Copyright (C) 2016 Hubert Denkmair
8 * Copyright (c) 2023 Pengutronix, Marc Kleine-Budde <kernel@pengutronix.de>
9 *
10 * Many thanks to all socketcan devs!
11 */
12
13 #include <linux/bitfield.h>
14 #include <linux/clocksource.h>
15 #include <linux/ethtool.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/netdevice.h>
19 #include <linux/signal.h>
20 #include <linux/timecounter.h>
21 #include <linux/units.h>
22 #include <linux/usb.h>
23 #include <linux/workqueue.h>
24
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/error.h>
28 #include <linux/can/rx-offload.h>
29
30 /* Device specific constants */
31 #define USB_GS_USB_1_VENDOR_ID 0x1d50
32 #define USB_GS_USB_1_PRODUCT_ID 0x606f
33
34 #define USB_CANDLELIGHT_VENDOR_ID 0x1209
35 #define USB_CANDLELIGHT_PRODUCT_ID 0x2323
36
37 #define USB_CES_CANEXT_FD_VENDOR_ID 0x1cd2
38 #define USB_CES_CANEXT_FD_PRODUCT_ID 0x606f
39
40 #define USB_ABE_CANDEBUGGER_FD_VENDOR_ID 0x16d0
41 #define USB_ABE_CANDEBUGGER_FD_PRODUCT_ID 0x10b8
42
43 #define USB_XYLANTA_SAINT3_VENDOR_ID 0x16d0
44 #define USB_XYLANTA_SAINT3_PRODUCT_ID 0x0f30
45
46 #define USB_CANNECTIVITY_VENDOR_ID 0x1209
47 #define USB_CANNECTIVITY_PRODUCT_ID 0xca01
48
49 /* Timestamp 32 bit timer runs at 1 MHz (1 µs tick). Worker accounts
50 * for timer overflow (will be after ~71 minutes)
51 */
52 #define GS_USB_TIMESTAMP_TIMER_HZ (1 * HZ_PER_MHZ)
53 #define GS_USB_TIMESTAMP_WORK_DELAY_SEC 1800
54 static_assert(GS_USB_TIMESTAMP_WORK_DELAY_SEC <
55 CYCLECOUNTER_MASK(32) / GS_USB_TIMESTAMP_TIMER_HZ / 2);
56
57 /* Device specific constants */
58 enum gs_usb_breq {
59 GS_USB_BREQ_HOST_FORMAT = 0,
60 GS_USB_BREQ_BITTIMING,
61 GS_USB_BREQ_MODE,
62 GS_USB_BREQ_BERR,
63 GS_USB_BREQ_BT_CONST,
64 GS_USB_BREQ_DEVICE_CONFIG,
65 GS_USB_BREQ_TIMESTAMP,
66 GS_USB_BREQ_IDENTIFY,
67 GS_USB_BREQ_GET_USER_ID,
68 GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING = GS_USB_BREQ_GET_USER_ID,
69 GS_USB_BREQ_SET_USER_ID,
70 GS_USB_BREQ_DATA_BITTIMING,
71 GS_USB_BREQ_BT_CONST_EXT,
72 GS_USB_BREQ_SET_TERMINATION,
73 GS_USB_BREQ_GET_TERMINATION,
74 GS_USB_BREQ_GET_STATE,
75 };
76
77 enum gs_can_mode {
78 /* reset a channel. turns it off */
79 GS_CAN_MODE_RESET = 0,
80 /* starts a channel */
81 GS_CAN_MODE_START
82 };
83
84 enum gs_can_state {
85 GS_CAN_STATE_ERROR_ACTIVE = 0,
86 GS_CAN_STATE_ERROR_WARNING,
87 GS_CAN_STATE_ERROR_PASSIVE,
88 GS_CAN_STATE_BUS_OFF,
89 GS_CAN_STATE_STOPPED,
90 GS_CAN_STATE_SLEEPING
91 };
92
93 enum gs_can_identify_mode {
94 GS_CAN_IDENTIFY_OFF = 0,
95 GS_CAN_IDENTIFY_ON
96 };
97
98 enum gs_can_termination_state {
99 GS_CAN_TERMINATION_STATE_OFF = 0,
100 GS_CAN_TERMINATION_STATE_ON
101 };
102
103 #define GS_USB_TERMINATION_DISABLED CAN_TERMINATION_DISABLED
104 #define GS_USB_TERMINATION_ENABLED 120
105
106 /* data types passed between host and device */
107
108 /* The firmware on the original USB2CAN by Geschwister Schneider
109 * Technologie Entwicklungs- und Vertriebs UG exchanges all data
110 * between the host and the device in host byte order. This is done
111 * with the struct gs_host_config::byte_order member, which is sent
112 * first to indicate the desired byte order.
113 *
114 * The widely used open source firmware candleLight doesn't support
115 * this feature and exchanges the data in little endian byte order.
116 */
117 struct gs_host_config {
118 __le32 byte_order;
119 } __packed;
120
121 struct gs_device_config {
122 u8 reserved1;
123 u8 reserved2;
124 u8 reserved3;
125 u8 icount;
126 __le32 sw_version;
127 __le32 hw_version;
128 } __packed;
129
130 #define GS_CAN_MODE_NORMAL 0
131 #define GS_CAN_MODE_LISTEN_ONLY BIT(0)
132 #define GS_CAN_MODE_LOOP_BACK BIT(1)
133 #define GS_CAN_MODE_TRIPLE_SAMPLE BIT(2)
134 #define GS_CAN_MODE_ONE_SHOT BIT(3)
135 #define GS_CAN_MODE_HW_TIMESTAMP BIT(4)
136 /* GS_CAN_FEATURE_IDENTIFY BIT(5) */
137 /* GS_CAN_FEATURE_USER_ID BIT(6) */
138 #define GS_CAN_MODE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
139 #define GS_CAN_MODE_FD BIT(8)
140 /* GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) */
141 /* GS_CAN_FEATURE_BT_CONST_EXT BIT(10) */
142 /* GS_CAN_FEATURE_TERMINATION BIT(11) */
143 #define GS_CAN_MODE_BERR_REPORTING BIT(12)
144 /* GS_CAN_FEATURE_GET_STATE BIT(13) */
145
146 struct gs_device_mode {
147 __le32 mode;
148 __le32 flags;
149 } __packed;
150
151 struct gs_device_state {
152 __le32 state;
153 __le32 rxerr;
154 __le32 txerr;
155 } __packed;
156
157 struct gs_device_bittiming {
158 __le32 prop_seg;
159 __le32 phase_seg1;
160 __le32 phase_seg2;
161 __le32 sjw;
162 __le32 brp;
163 } __packed;
164
165 struct gs_identify_mode {
166 __le32 mode;
167 } __packed;
168
169 struct gs_device_termination_state {
170 __le32 state;
171 } __packed;
172
173 #define GS_CAN_FEATURE_LISTEN_ONLY BIT(0)
174 #define GS_CAN_FEATURE_LOOP_BACK BIT(1)
175 #define GS_CAN_FEATURE_TRIPLE_SAMPLE BIT(2)
176 #define GS_CAN_FEATURE_ONE_SHOT BIT(3)
177 #define GS_CAN_FEATURE_HW_TIMESTAMP BIT(4)
178 #define GS_CAN_FEATURE_IDENTIFY BIT(5)
179 #define GS_CAN_FEATURE_USER_ID BIT(6)
180 #define GS_CAN_FEATURE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
181 #define GS_CAN_FEATURE_FD BIT(8)
182 #define GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9)
183 #define GS_CAN_FEATURE_BT_CONST_EXT BIT(10)
184 #define GS_CAN_FEATURE_TERMINATION BIT(11)
185 #define GS_CAN_FEATURE_BERR_REPORTING BIT(12)
186 #define GS_CAN_FEATURE_GET_STATE BIT(13)
187 #define GS_CAN_FEATURE_MASK GENMASK(13, 0)
188
189 /* internal quirks - keep in GS_CAN_FEATURE space for now */
190
191 /* CANtact Pro original firmware:
192 * BREQ DATA_BITTIMING overlaps with GET_USER_ID
193 */
194 #define GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO BIT(31)
195
196 struct gs_device_bt_const {
197 __le32 feature;
198 __le32 fclk_can;
199 __le32 tseg1_min;
200 __le32 tseg1_max;
201 __le32 tseg2_min;
202 __le32 tseg2_max;
203 __le32 sjw_max;
204 __le32 brp_min;
205 __le32 brp_max;
206 __le32 brp_inc;
207 } __packed;
208
209 struct gs_device_bt_const_extended {
210 __le32 feature;
211 __le32 fclk_can;
212 __le32 tseg1_min;
213 __le32 tseg1_max;
214 __le32 tseg2_min;
215 __le32 tseg2_max;
216 __le32 sjw_max;
217 __le32 brp_min;
218 __le32 brp_max;
219 __le32 brp_inc;
220
221 __le32 dtseg1_min;
222 __le32 dtseg1_max;
223 __le32 dtseg2_min;
224 __le32 dtseg2_max;
225 __le32 dsjw_max;
226 __le32 dbrp_min;
227 __le32 dbrp_max;
228 __le32 dbrp_inc;
229 } __packed;
230
231 #define GS_CAN_FLAG_OVERFLOW BIT(0)
232 #define GS_CAN_FLAG_FD BIT(1)
233 #define GS_CAN_FLAG_BRS BIT(2)
234 #define GS_CAN_FLAG_ESI BIT(3)
235
236 struct classic_can {
237 u8 data[8];
238 } __packed;
239
240 struct classic_can_ts {
241 u8 data[8];
242 __le32 timestamp_us;
243 } __packed;
244
245 struct classic_can_quirk {
246 u8 data[8];
247 u8 quirk;
248 } __packed;
249
250 struct canfd {
251 u8 data[64];
252 } __packed;
253
254 struct canfd_ts {
255 u8 data[64];
256 __le32 timestamp_us;
257 } __packed;
258
259 struct canfd_quirk {
260 u8 data[64];
261 u8 quirk;
262 } __packed;
263
264 struct gs_host_frame {
265 u32 echo_id;
266 __le32 can_id;
267
268 u8 can_dlc;
269 u8 channel;
270 u8 flags;
271 u8 reserved;
272
273 union {
274 DECLARE_FLEX_ARRAY(struct classic_can, classic_can);
275 DECLARE_FLEX_ARRAY(struct classic_can_ts, classic_can_ts);
276 DECLARE_FLEX_ARRAY(struct classic_can_quirk, classic_can_quirk);
277 DECLARE_FLEX_ARRAY(struct canfd, canfd);
278 DECLARE_FLEX_ARRAY(struct canfd_ts, canfd_ts);
279 DECLARE_FLEX_ARRAY(struct canfd_quirk, canfd_quirk);
280 };
281 } __packed;
282 /* The GS USB devices make use of the same flags and masks as in
283 * linux/can.h and linux/can/error.h, and no additional mapping is necessary.
284 */
285
286 /* Only send a max of GS_MAX_TX_URBS frames per channel at a time. */
287 #define GS_MAX_TX_URBS 10
288 /* Only launch a max of GS_MAX_RX_URBS usb requests at a time. */
289 #define GS_MAX_RX_URBS 30
290 #define GS_NAPI_WEIGHT 32
291
292 /* Maximum number of interfaces the driver supports per device.
293 * Current hardware only supports 3 interfaces. The future may vary.
294 */
295 #define GS_MAX_INTF 3
296
297 struct gs_tx_context {
298 struct gs_can *dev;
299 unsigned int echo_id;
300 };
301
302 struct gs_can {
303 struct can_priv can; /* must be the first member */
304
305 struct can_rx_offload offload;
306 struct gs_usb *parent;
307
308 struct net_device *netdev;
309 struct usb_device *udev;
310
311 struct can_bittiming_const bt_const, data_bt_const;
312 unsigned int channel; /* channel number */
313
314 u32 feature;
315 unsigned int hf_size_tx;
316
317 /* This lock prevents a race condition between xmit and receive. */
318 spinlock_t tx_ctx_lock;
319 struct gs_tx_context tx_context[GS_MAX_TX_URBS];
320
321 struct usb_anchor tx_submitted;
322 atomic_t active_tx_urbs;
323 };
324
325 /* usb interface struct */
326 struct gs_usb {
327 struct gs_can *canch[GS_MAX_INTF];
328 struct usb_anchor rx_submitted;
329 struct usb_device *udev;
330
331 /* time counter for hardware timestamps */
332 struct cyclecounter cc;
333 struct timecounter tc;
334 spinlock_t tc_lock; /* spinlock to guard access tc->cycle_last */
335 struct delayed_work timestamp;
336
337 unsigned int hf_size_rx;
338 u8 active_channels;
339
340 unsigned int pipe_in;
341 unsigned int pipe_out;
342 };
343
344 /* 'allocate' a tx context.
345 * returns a valid tx context or NULL if there is no space.
346 */
gs_alloc_tx_context(struct gs_can * dev)347 static struct gs_tx_context *gs_alloc_tx_context(struct gs_can *dev)
348 {
349 int i = 0;
350 unsigned long flags;
351
352 spin_lock_irqsave(&dev->tx_ctx_lock, flags);
353
354 for (; i < GS_MAX_TX_URBS; i++) {
355 if (dev->tx_context[i].echo_id == GS_MAX_TX_URBS) {
356 dev->tx_context[i].echo_id = i;
357 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
358 return &dev->tx_context[i];
359 }
360 }
361
362 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
363 return NULL;
364 }
365
366 /* releases a tx context
367 */
gs_free_tx_context(struct gs_tx_context * txc)368 static void gs_free_tx_context(struct gs_tx_context *txc)
369 {
370 txc->echo_id = GS_MAX_TX_URBS;
371 }
372
373 /* Get a tx context by id.
374 */
gs_get_tx_context(struct gs_can * dev,unsigned int id)375 static struct gs_tx_context *gs_get_tx_context(struct gs_can *dev,
376 unsigned int id)
377 {
378 unsigned long flags;
379
380 if (id < GS_MAX_TX_URBS) {
381 spin_lock_irqsave(&dev->tx_ctx_lock, flags);
382 if (dev->tx_context[id].echo_id == id) {
383 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
384 return &dev->tx_context[id];
385 }
386 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
387 }
388 return NULL;
389 }
390
gs_cmd_reset(struct gs_can * dev)391 static int gs_cmd_reset(struct gs_can *dev)
392 {
393 struct gs_device_mode dm = {
394 .mode = cpu_to_le32(GS_CAN_MODE_RESET),
395 };
396
397 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
398 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
399 dev->channel, 0, &dm, sizeof(dm), 1000,
400 GFP_KERNEL);
401 }
402
gs_usb_get_timestamp(const struct gs_usb * parent,u32 * timestamp_p)403 static inline int gs_usb_get_timestamp(const struct gs_usb *parent,
404 u32 *timestamp_p)
405 {
406 __le32 timestamp;
407 int rc;
408
409 rc = usb_control_msg_recv(parent->udev, 0, GS_USB_BREQ_TIMESTAMP,
410 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
411 0, 0,
412 ×tamp, sizeof(timestamp),
413 USB_CTRL_GET_TIMEOUT,
414 GFP_KERNEL);
415 if (rc)
416 return rc;
417
418 *timestamp_p = le32_to_cpu(timestamp);
419
420 return 0;
421 }
422
gs_usb_timestamp_read(const struct cyclecounter * cc)423 static u64 gs_usb_timestamp_read(const struct cyclecounter *cc) __must_hold(&dev->tc_lock)
424 {
425 struct gs_usb *parent = container_of(cc, struct gs_usb, cc);
426 u32 timestamp = 0;
427 int err;
428
429 lockdep_assert_held(&parent->tc_lock);
430
431 /* drop lock for synchronous USB transfer */
432 spin_unlock_bh(&parent->tc_lock);
433 err = gs_usb_get_timestamp(parent, ×tamp);
434 spin_lock_bh(&parent->tc_lock);
435 if (err)
436 dev_err(&parent->udev->dev,
437 "Error %d while reading timestamp. HW timestamps may be inaccurate.",
438 err);
439
440 return timestamp;
441 }
442
gs_usb_timestamp_work(struct work_struct * work)443 static void gs_usb_timestamp_work(struct work_struct *work)
444 {
445 struct delayed_work *delayed_work = to_delayed_work(work);
446 struct gs_usb *parent;
447
448 parent = container_of(delayed_work, struct gs_usb, timestamp);
449 spin_lock_bh(&parent->tc_lock);
450 timecounter_read(&parent->tc);
451 spin_unlock_bh(&parent->tc_lock);
452
453 schedule_delayed_work(&parent->timestamp,
454 GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
455 }
456
gs_usb_skb_set_timestamp(struct gs_can * dev,struct sk_buff * skb,u32 timestamp)457 static void gs_usb_skb_set_timestamp(struct gs_can *dev,
458 struct sk_buff *skb, u32 timestamp)
459 {
460 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
461 struct gs_usb *parent = dev->parent;
462 u64 ns;
463
464 spin_lock_bh(&parent->tc_lock);
465 ns = timecounter_cyc2time(&parent->tc, timestamp);
466 spin_unlock_bh(&parent->tc_lock);
467
468 hwtstamps->hwtstamp = ns_to_ktime(ns);
469 }
470
gs_usb_timestamp_init(struct gs_usb * parent)471 static void gs_usb_timestamp_init(struct gs_usb *parent)
472 {
473 struct cyclecounter *cc = &parent->cc;
474
475 cc->read = gs_usb_timestamp_read;
476 cc->mask = CYCLECOUNTER_MASK(32);
477 cc->shift = 32 - bits_per(NSEC_PER_SEC / GS_USB_TIMESTAMP_TIMER_HZ);
478 cc->mult = clocksource_hz2mult(GS_USB_TIMESTAMP_TIMER_HZ, cc->shift);
479
480 spin_lock_init(&parent->tc_lock);
481 spin_lock_bh(&parent->tc_lock);
482 timecounter_init(&parent->tc, &parent->cc, ktime_get_real_ns());
483 spin_unlock_bh(&parent->tc_lock);
484
485 INIT_DELAYED_WORK(&parent->timestamp, gs_usb_timestamp_work);
486 schedule_delayed_work(&parent->timestamp,
487 GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
488 }
489
gs_usb_timestamp_stop(struct gs_usb * parent)490 static void gs_usb_timestamp_stop(struct gs_usb *parent)
491 {
492 cancel_delayed_work_sync(&parent->timestamp);
493 }
494
gs_update_state(struct gs_can * dev,struct can_frame * cf)495 static void gs_update_state(struct gs_can *dev, struct can_frame *cf)
496 {
497 struct can_device_stats *can_stats = &dev->can.can_stats;
498
499 if (cf->can_id & CAN_ERR_RESTARTED) {
500 dev->can.state = CAN_STATE_ERROR_ACTIVE;
501 can_stats->restarts++;
502 } else if (cf->can_id & CAN_ERR_BUSOFF) {
503 dev->can.state = CAN_STATE_BUS_OFF;
504 can_stats->bus_off++;
505 } else if (cf->can_id & CAN_ERR_CRTL) {
506 if ((cf->data[1] & CAN_ERR_CRTL_TX_WARNING) ||
507 (cf->data[1] & CAN_ERR_CRTL_RX_WARNING)) {
508 dev->can.state = CAN_STATE_ERROR_WARNING;
509 can_stats->error_warning++;
510 } else if ((cf->data[1] & CAN_ERR_CRTL_TX_PASSIVE) ||
511 (cf->data[1] & CAN_ERR_CRTL_RX_PASSIVE)) {
512 dev->can.state = CAN_STATE_ERROR_PASSIVE;
513 can_stats->error_passive++;
514 } else {
515 dev->can.state = CAN_STATE_ERROR_ACTIVE;
516 }
517 }
518 }
519
gs_usb_set_timestamp(struct gs_can * dev,struct sk_buff * skb,const struct gs_host_frame * hf)520 static u32 gs_usb_set_timestamp(struct gs_can *dev, struct sk_buff *skb,
521 const struct gs_host_frame *hf)
522 {
523 u32 timestamp;
524
525 if (hf->flags & GS_CAN_FLAG_FD)
526 timestamp = le32_to_cpu(hf->canfd_ts->timestamp_us);
527 else
528 timestamp = le32_to_cpu(hf->classic_can_ts->timestamp_us);
529
530 if (skb)
531 gs_usb_skb_set_timestamp(dev, skb, timestamp);
532
533 return timestamp;
534 }
535
gs_usb_rx_offload(struct gs_can * dev,struct sk_buff * skb,const struct gs_host_frame * hf)536 static void gs_usb_rx_offload(struct gs_can *dev, struct sk_buff *skb,
537 const struct gs_host_frame *hf)
538 {
539 struct can_rx_offload *offload = &dev->offload;
540 int rc;
541
542 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) {
543 const u32 ts = gs_usb_set_timestamp(dev, skb, hf);
544
545 rc = can_rx_offload_queue_timestamp(offload, skb, ts);
546 } else {
547 rc = can_rx_offload_queue_tail(offload, skb);
548 }
549
550 if (rc)
551 dev->netdev->stats.rx_fifo_errors++;
552 }
553
554 static unsigned int
gs_usb_get_echo_skb(struct gs_can * dev,struct sk_buff * skb,const struct gs_host_frame * hf)555 gs_usb_get_echo_skb(struct gs_can *dev, struct sk_buff *skb,
556 const struct gs_host_frame *hf)
557 {
558 struct can_rx_offload *offload = &dev->offload;
559 const u32 echo_id = hf->echo_id;
560 unsigned int len;
561
562 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) {
563 const u32 ts = gs_usb_set_timestamp(dev, skb, hf);
564
565 len = can_rx_offload_get_echo_skb_queue_timestamp(offload, echo_id,
566 ts, NULL);
567 } else {
568 len = can_rx_offload_get_echo_skb_queue_tail(offload, echo_id,
569 NULL);
570 }
571
572 return len;
573 }
574
gs_usb_receive_bulk_callback(struct urb * urb)575 static void gs_usb_receive_bulk_callback(struct urb *urb)
576 {
577 struct gs_usb *parent = urb->context;
578 struct gs_can *dev;
579 struct net_device *netdev;
580 int rc;
581 struct net_device_stats *stats;
582 struct gs_host_frame *hf = urb->transfer_buffer;
583 struct gs_tx_context *txc;
584 struct can_frame *cf;
585 struct canfd_frame *cfd;
586 struct sk_buff *skb;
587
588 BUG_ON(!parent);
589
590 switch (urb->status) {
591 case 0: /* success */
592 break;
593 case -ENOENT:
594 case -ESHUTDOWN:
595 return;
596 default:
597 /* do not resubmit aborted urbs. eg: when device goes down */
598 return;
599 }
600
601 /* device reports out of range channel id */
602 if (hf->channel >= GS_MAX_INTF)
603 goto device_detach;
604
605 dev = parent->canch[hf->channel];
606
607 netdev = dev->netdev;
608 stats = &netdev->stats;
609
610 if (!netif_device_present(netdev))
611 return;
612
613 if (!netif_running(netdev))
614 goto resubmit_urb;
615
616 if (hf->echo_id == -1) { /* normal rx */
617 if (hf->flags & GS_CAN_FLAG_FD) {
618 skb = alloc_canfd_skb(netdev, &cfd);
619 if (!skb)
620 return;
621
622 cfd->can_id = le32_to_cpu(hf->can_id);
623 cfd->len = can_fd_dlc2len(hf->can_dlc);
624 if (hf->flags & GS_CAN_FLAG_BRS)
625 cfd->flags |= CANFD_BRS;
626 if (hf->flags & GS_CAN_FLAG_ESI)
627 cfd->flags |= CANFD_ESI;
628
629 memcpy(cfd->data, hf->canfd->data, cfd->len);
630 } else {
631 skb = alloc_can_skb(netdev, &cf);
632 if (!skb)
633 return;
634
635 cf->can_id = le32_to_cpu(hf->can_id);
636 can_frame_set_cc_len(cf, hf->can_dlc, dev->can.ctrlmode);
637
638 memcpy(cf->data, hf->classic_can->data, 8);
639
640 /* ERROR frames tell us information about the controller */
641 if (le32_to_cpu(hf->can_id) & CAN_ERR_FLAG)
642 gs_update_state(dev, cf);
643 }
644
645 gs_usb_rx_offload(dev, skb, hf);
646 } else { /* echo_id == hf->echo_id */
647 if (hf->echo_id >= GS_MAX_TX_URBS) {
648 netdev_err(netdev,
649 "Unexpected out of range echo id %u\n",
650 hf->echo_id);
651 goto resubmit_urb;
652 }
653
654 txc = gs_get_tx_context(dev, hf->echo_id);
655
656 /* bad devices send bad echo_ids. */
657 if (!txc) {
658 netdev_err(netdev,
659 "Unexpected unused echo id %u\n",
660 hf->echo_id);
661 goto resubmit_urb;
662 }
663
664 skb = dev->can.echo_skb[hf->echo_id];
665 stats->tx_packets++;
666 stats->tx_bytes += gs_usb_get_echo_skb(dev, skb, hf);
667 gs_free_tx_context(txc);
668
669 atomic_dec(&dev->active_tx_urbs);
670
671 netif_wake_queue(netdev);
672 }
673
674 if (hf->flags & GS_CAN_FLAG_OVERFLOW) {
675 stats->rx_over_errors++;
676 stats->rx_errors++;
677
678 skb = alloc_can_err_skb(netdev, &cf);
679 if (!skb)
680 goto resubmit_urb;
681
682 cf->can_id |= CAN_ERR_CRTL;
683 cf->len = CAN_ERR_DLC;
684 cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
685
686 gs_usb_rx_offload(dev, skb, hf);
687 }
688
689 can_rx_offload_irq_finish(&dev->offload);
690
691 resubmit_urb:
692 usb_fill_bulk_urb(urb, parent->udev,
693 parent->pipe_in,
694 hf, dev->parent->hf_size_rx,
695 gs_usb_receive_bulk_callback, parent);
696
697 rc = usb_submit_urb(urb, GFP_ATOMIC);
698
699 /* USB failure take down all interfaces */
700 if (rc == -ENODEV) {
701 device_detach:
702 for (rc = 0; rc < GS_MAX_INTF; rc++) {
703 if (parent->canch[rc])
704 netif_device_detach(parent->canch[rc]->netdev);
705 }
706 }
707 }
708
gs_usb_set_bittiming(struct net_device * netdev)709 static int gs_usb_set_bittiming(struct net_device *netdev)
710 {
711 struct gs_can *dev = netdev_priv(netdev);
712 struct can_bittiming *bt = &dev->can.bittiming;
713 struct gs_device_bittiming dbt = {
714 .prop_seg = cpu_to_le32(bt->prop_seg),
715 .phase_seg1 = cpu_to_le32(bt->phase_seg1),
716 .phase_seg2 = cpu_to_le32(bt->phase_seg2),
717 .sjw = cpu_to_le32(bt->sjw),
718 .brp = cpu_to_le32(bt->brp),
719 };
720
721 /* request bit timings */
722 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_BITTIMING,
723 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
724 dev->channel, 0, &dbt, sizeof(dbt), 1000,
725 GFP_KERNEL);
726 }
727
gs_usb_set_data_bittiming(struct net_device * netdev)728 static int gs_usb_set_data_bittiming(struct net_device *netdev)
729 {
730 struct gs_can *dev = netdev_priv(netdev);
731 struct can_bittiming *bt = &dev->can.data_bittiming;
732 struct gs_device_bittiming dbt = {
733 .prop_seg = cpu_to_le32(bt->prop_seg),
734 .phase_seg1 = cpu_to_le32(bt->phase_seg1),
735 .phase_seg2 = cpu_to_le32(bt->phase_seg2),
736 .sjw = cpu_to_le32(bt->sjw),
737 .brp = cpu_to_le32(bt->brp),
738 };
739 u8 request = GS_USB_BREQ_DATA_BITTIMING;
740
741 if (dev->feature & GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO)
742 request = GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING;
743
744 /* request data bit timings */
745 return usb_control_msg_send(dev->udev, 0, request,
746 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
747 dev->channel, 0, &dbt, sizeof(dbt), 1000,
748 GFP_KERNEL);
749 }
750
gs_usb_xmit_callback(struct urb * urb)751 static void gs_usb_xmit_callback(struct urb *urb)
752 {
753 struct gs_tx_context *txc = urb->context;
754 struct gs_can *dev = txc->dev;
755 struct net_device *netdev = dev->netdev;
756
757 if (urb->status)
758 netdev_info(netdev, "usb xmit fail %u\n", txc->echo_id);
759 }
760
gs_can_start_xmit(struct sk_buff * skb,struct net_device * netdev)761 static netdev_tx_t gs_can_start_xmit(struct sk_buff *skb,
762 struct net_device *netdev)
763 {
764 struct gs_can *dev = netdev_priv(netdev);
765 struct net_device_stats *stats = &dev->netdev->stats;
766 struct urb *urb;
767 struct gs_host_frame *hf;
768 struct can_frame *cf;
769 struct canfd_frame *cfd;
770 int rc;
771 unsigned int idx;
772 struct gs_tx_context *txc;
773
774 if (can_dev_dropped_skb(netdev, skb))
775 return NETDEV_TX_OK;
776
777 /* find an empty context to keep track of transmission */
778 txc = gs_alloc_tx_context(dev);
779 if (!txc)
780 return NETDEV_TX_BUSY;
781
782 /* create a URB, and a buffer for it */
783 urb = usb_alloc_urb(0, GFP_ATOMIC);
784 if (!urb)
785 goto nomem_urb;
786
787 hf = kmalloc(dev->hf_size_tx, GFP_ATOMIC);
788 if (!hf)
789 goto nomem_hf;
790
791 idx = txc->echo_id;
792
793 if (idx >= GS_MAX_TX_URBS) {
794 netdev_err(netdev, "Invalid tx context %u\n", idx);
795 goto badidx;
796 }
797
798 hf->echo_id = idx;
799 hf->channel = dev->channel;
800 hf->flags = 0;
801 hf->reserved = 0;
802
803 if (can_is_canfd_skb(skb)) {
804 cfd = (struct canfd_frame *)skb->data;
805
806 hf->can_id = cpu_to_le32(cfd->can_id);
807 hf->can_dlc = can_fd_len2dlc(cfd->len);
808 hf->flags |= GS_CAN_FLAG_FD;
809 if (cfd->flags & CANFD_BRS)
810 hf->flags |= GS_CAN_FLAG_BRS;
811 if (cfd->flags & CANFD_ESI)
812 hf->flags |= GS_CAN_FLAG_ESI;
813
814 memcpy(hf->canfd->data, cfd->data, cfd->len);
815 } else {
816 cf = (struct can_frame *)skb->data;
817
818 hf->can_id = cpu_to_le32(cf->can_id);
819 hf->can_dlc = can_get_cc_dlc(cf, dev->can.ctrlmode);
820
821 memcpy(hf->classic_can->data, cf->data, cf->len);
822 }
823
824 usb_fill_bulk_urb(urb, dev->udev,
825 dev->parent->pipe_out,
826 hf, dev->hf_size_tx,
827 gs_usb_xmit_callback, txc);
828
829 urb->transfer_flags |= URB_FREE_BUFFER;
830 usb_anchor_urb(urb, &dev->tx_submitted);
831
832 can_put_echo_skb(skb, netdev, idx, 0);
833
834 atomic_inc(&dev->active_tx_urbs);
835
836 rc = usb_submit_urb(urb, GFP_ATOMIC);
837 if (unlikely(rc)) { /* usb send failed */
838 atomic_dec(&dev->active_tx_urbs);
839
840 can_free_echo_skb(netdev, idx, NULL);
841 gs_free_tx_context(txc);
842
843 usb_unanchor_urb(urb);
844
845 if (rc == -ENODEV) {
846 netif_device_detach(netdev);
847 } else {
848 netdev_err(netdev, "usb_submit failed (err=%d)\n", rc);
849 stats->tx_dropped++;
850 }
851 } else {
852 /* Slow down tx path */
853 if (atomic_read(&dev->active_tx_urbs) >= GS_MAX_TX_URBS)
854 netif_stop_queue(netdev);
855 }
856
857 /* let usb core take care of this urb */
858 usb_free_urb(urb);
859
860 return NETDEV_TX_OK;
861
862 badidx:
863 kfree(hf);
864 nomem_hf:
865 usb_free_urb(urb);
866
867 nomem_urb:
868 gs_free_tx_context(txc);
869 dev_kfree_skb(skb);
870 stats->tx_dropped++;
871 return NETDEV_TX_OK;
872 }
873
gs_can_open(struct net_device * netdev)874 static int gs_can_open(struct net_device *netdev)
875 {
876 struct gs_can *dev = netdev_priv(netdev);
877 struct gs_usb *parent = dev->parent;
878 struct gs_device_mode dm = {
879 .mode = cpu_to_le32(GS_CAN_MODE_START),
880 };
881 struct gs_host_frame *hf;
882 struct urb *urb = NULL;
883 u32 ctrlmode;
884 u32 flags = 0;
885 int rc, i;
886
887 rc = open_candev(netdev);
888 if (rc)
889 return rc;
890
891 ctrlmode = dev->can.ctrlmode;
892 if (ctrlmode & CAN_CTRLMODE_FD) {
893 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
894 dev->hf_size_tx = struct_size(hf, canfd_quirk, 1);
895 else
896 dev->hf_size_tx = struct_size(hf, canfd, 1);
897 } else {
898 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
899 dev->hf_size_tx = struct_size(hf, classic_can_quirk, 1);
900 else
901 dev->hf_size_tx = struct_size(hf, classic_can, 1);
902 }
903
904 can_rx_offload_enable(&dev->offload);
905
906 if (!parent->active_channels) {
907 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
908 gs_usb_timestamp_init(parent);
909
910 for (i = 0; i < GS_MAX_RX_URBS; i++) {
911 u8 *buf;
912
913 /* alloc rx urb */
914 urb = usb_alloc_urb(0, GFP_KERNEL);
915 if (!urb) {
916 rc = -ENOMEM;
917 goto out_usb_kill_anchored_urbs;
918 }
919
920 /* alloc rx buffer */
921 buf = kmalloc(dev->parent->hf_size_rx,
922 GFP_KERNEL);
923 if (!buf) {
924 rc = -ENOMEM;
925 goto out_usb_free_urb;
926 }
927
928 /* fill, anchor, and submit rx urb */
929 usb_fill_bulk_urb(urb,
930 dev->udev,
931 dev->parent->pipe_in,
932 buf,
933 dev->parent->hf_size_rx,
934 gs_usb_receive_bulk_callback, parent);
935 urb->transfer_flags |= URB_FREE_BUFFER;
936
937 usb_anchor_urb(urb, &parent->rx_submitted);
938
939 rc = usb_submit_urb(urb, GFP_KERNEL);
940 if (rc) {
941 if (rc == -ENODEV)
942 netif_device_detach(dev->netdev);
943
944 netdev_err(netdev,
945 "usb_submit_urb() failed, error %pe\n",
946 ERR_PTR(rc));
947
948 goto out_usb_unanchor_urb;
949 }
950
951 /* Drop reference,
952 * USB core will take care of freeing it
953 */
954 usb_free_urb(urb);
955 }
956 }
957
958 /* flags */
959 if (ctrlmode & CAN_CTRLMODE_LOOPBACK)
960 flags |= GS_CAN_MODE_LOOP_BACK;
961
962 if (ctrlmode & CAN_CTRLMODE_LISTENONLY)
963 flags |= GS_CAN_MODE_LISTEN_ONLY;
964
965 if (ctrlmode & CAN_CTRLMODE_3_SAMPLES)
966 flags |= GS_CAN_MODE_TRIPLE_SAMPLE;
967
968 if (ctrlmode & CAN_CTRLMODE_ONE_SHOT)
969 flags |= GS_CAN_MODE_ONE_SHOT;
970
971 if (ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
972 flags |= GS_CAN_MODE_BERR_REPORTING;
973
974 if (ctrlmode & CAN_CTRLMODE_FD)
975 flags |= GS_CAN_MODE_FD;
976
977 /* if hardware supports timestamps, enable it */
978 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
979 flags |= GS_CAN_MODE_HW_TIMESTAMP;
980
981 /* finally start device */
982 dev->can.state = CAN_STATE_ERROR_ACTIVE;
983 dm.flags = cpu_to_le32(flags);
984 rc = usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
985 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
986 dev->channel, 0, &dm, sizeof(dm), 1000,
987 GFP_KERNEL);
988 if (rc) {
989 netdev_err(netdev, "Couldn't start device (err=%d)\n", rc);
990 dev->can.state = CAN_STATE_STOPPED;
991
992 goto out_usb_kill_anchored_urbs;
993 }
994
995 parent->active_channels++;
996 if (!(dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY))
997 netif_start_queue(netdev);
998
999 return 0;
1000
1001 out_usb_unanchor_urb:
1002 usb_unanchor_urb(urb);
1003 out_usb_free_urb:
1004 usb_free_urb(urb);
1005 out_usb_kill_anchored_urbs:
1006 if (!parent->active_channels) {
1007 usb_kill_anchored_urbs(&dev->tx_submitted);
1008
1009 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1010 gs_usb_timestamp_stop(parent);
1011 }
1012
1013 can_rx_offload_disable(&dev->offload);
1014 close_candev(netdev);
1015
1016 return rc;
1017 }
1018
gs_usb_get_state(const struct net_device * netdev,struct can_berr_counter * bec,enum can_state * state)1019 static int gs_usb_get_state(const struct net_device *netdev,
1020 struct can_berr_counter *bec,
1021 enum can_state *state)
1022 {
1023 struct gs_can *dev = netdev_priv(netdev);
1024 struct gs_device_state ds;
1025 int rc;
1026
1027 rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_STATE,
1028 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1029 dev->channel, 0,
1030 &ds, sizeof(ds),
1031 USB_CTRL_GET_TIMEOUT,
1032 GFP_KERNEL);
1033 if (rc)
1034 return rc;
1035
1036 if (le32_to_cpu(ds.state) >= CAN_STATE_MAX)
1037 return -EOPNOTSUPP;
1038
1039 *state = le32_to_cpu(ds.state);
1040 bec->txerr = le32_to_cpu(ds.txerr);
1041 bec->rxerr = le32_to_cpu(ds.rxerr);
1042
1043 return 0;
1044 }
1045
gs_usb_can_get_berr_counter(const struct net_device * netdev,struct can_berr_counter * bec)1046 static int gs_usb_can_get_berr_counter(const struct net_device *netdev,
1047 struct can_berr_counter *bec)
1048 {
1049 enum can_state state;
1050
1051 return gs_usb_get_state(netdev, bec, &state);
1052 }
1053
gs_can_close(struct net_device * netdev)1054 static int gs_can_close(struct net_device *netdev)
1055 {
1056 int rc;
1057 struct gs_can *dev = netdev_priv(netdev);
1058 struct gs_usb *parent = dev->parent;
1059
1060 netif_stop_queue(netdev);
1061
1062 /* Stop polling */
1063 parent->active_channels--;
1064 if (!parent->active_channels) {
1065 usb_kill_anchored_urbs(&parent->rx_submitted);
1066
1067 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1068 gs_usb_timestamp_stop(parent);
1069 }
1070
1071 /* Stop sending URBs */
1072 usb_kill_anchored_urbs(&dev->tx_submitted);
1073 atomic_set(&dev->active_tx_urbs, 0);
1074
1075 dev->can.state = CAN_STATE_STOPPED;
1076
1077 /* reset the device */
1078 gs_cmd_reset(dev);
1079
1080 /* reset tx contexts */
1081 for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1082 dev->tx_context[rc].dev = dev;
1083 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1084 }
1085
1086 can_rx_offload_disable(&dev->offload);
1087
1088 /* close the netdev */
1089 close_candev(netdev);
1090
1091 return 0;
1092 }
1093
gs_can_eth_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)1094 static int gs_can_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1095 {
1096 const struct gs_can *dev = netdev_priv(netdev);
1097
1098 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1099 return can_eth_ioctl_hwts(netdev, ifr, cmd);
1100
1101 return -EOPNOTSUPP;
1102 }
1103
1104 static const struct net_device_ops gs_usb_netdev_ops = {
1105 .ndo_open = gs_can_open,
1106 .ndo_stop = gs_can_close,
1107 .ndo_start_xmit = gs_can_start_xmit,
1108 .ndo_change_mtu = can_change_mtu,
1109 .ndo_eth_ioctl = gs_can_eth_ioctl,
1110 };
1111
gs_usb_set_identify(struct net_device * netdev,bool do_identify)1112 static int gs_usb_set_identify(struct net_device *netdev, bool do_identify)
1113 {
1114 struct gs_can *dev = netdev_priv(netdev);
1115 struct gs_identify_mode imode;
1116
1117 if (do_identify)
1118 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_ON);
1119 else
1120 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_OFF);
1121
1122 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_IDENTIFY,
1123 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1124 dev->channel, 0, &imode, sizeof(imode), 100,
1125 GFP_KERNEL);
1126 }
1127
1128 /* blink LED's for finding the this interface */
gs_usb_set_phys_id(struct net_device * netdev,enum ethtool_phys_id_state state)1129 static int gs_usb_set_phys_id(struct net_device *netdev,
1130 enum ethtool_phys_id_state state)
1131 {
1132 const struct gs_can *dev = netdev_priv(netdev);
1133 int rc = 0;
1134
1135 if (!(dev->feature & GS_CAN_FEATURE_IDENTIFY))
1136 return -EOPNOTSUPP;
1137
1138 switch (state) {
1139 case ETHTOOL_ID_ACTIVE:
1140 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_ON);
1141 break;
1142 case ETHTOOL_ID_INACTIVE:
1143 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_OFF);
1144 break;
1145 default:
1146 break;
1147 }
1148
1149 return rc;
1150 }
1151
gs_usb_get_ts_info(struct net_device * netdev,struct kernel_ethtool_ts_info * info)1152 static int gs_usb_get_ts_info(struct net_device *netdev,
1153 struct kernel_ethtool_ts_info *info)
1154 {
1155 struct gs_can *dev = netdev_priv(netdev);
1156
1157 /* report if device supports HW timestamps */
1158 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1159 return can_ethtool_op_get_ts_info_hwts(netdev, info);
1160
1161 return ethtool_op_get_ts_info(netdev, info);
1162 }
1163
1164 static const struct ethtool_ops gs_usb_ethtool_ops = {
1165 .set_phys_id = gs_usb_set_phys_id,
1166 .get_ts_info = gs_usb_get_ts_info,
1167 };
1168
gs_usb_get_termination(struct net_device * netdev,u16 * term)1169 static int gs_usb_get_termination(struct net_device *netdev, u16 *term)
1170 {
1171 struct gs_can *dev = netdev_priv(netdev);
1172 struct gs_device_termination_state term_state;
1173 int rc;
1174
1175 rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_TERMINATION,
1176 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1177 dev->channel, 0,
1178 &term_state, sizeof(term_state), 1000,
1179 GFP_KERNEL);
1180 if (rc)
1181 return rc;
1182
1183 if (term_state.state == cpu_to_le32(GS_CAN_TERMINATION_STATE_ON))
1184 *term = GS_USB_TERMINATION_ENABLED;
1185 else
1186 *term = GS_USB_TERMINATION_DISABLED;
1187
1188 return 0;
1189 }
1190
gs_usb_set_termination(struct net_device * netdev,u16 term)1191 static int gs_usb_set_termination(struct net_device *netdev, u16 term)
1192 {
1193 struct gs_can *dev = netdev_priv(netdev);
1194 struct gs_device_termination_state term_state;
1195
1196 if (term == GS_USB_TERMINATION_ENABLED)
1197 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_ON);
1198 else
1199 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_OFF);
1200
1201 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_SET_TERMINATION,
1202 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1203 dev->channel, 0,
1204 &term_state, sizeof(term_state), 1000,
1205 GFP_KERNEL);
1206 }
1207
1208 static const u16 gs_usb_termination_const[] = {
1209 GS_USB_TERMINATION_DISABLED,
1210 GS_USB_TERMINATION_ENABLED
1211 };
1212
gs_make_candev(unsigned int channel,struct usb_interface * intf,struct gs_device_config * dconf)1213 static struct gs_can *gs_make_candev(unsigned int channel,
1214 struct usb_interface *intf,
1215 struct gs_device_config *dconf)
1216 {
1217 struct gs_can *dev;
1218 struct net_device *netdev;
1219 int rc;
1220 struct gs_device_bt_const_extended bt_const_extended;
1221 struct gs_device_bt_const bt_const;
1222 u32 feature;
1223
1224 /* fetch bit timing constants */
1225 rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1226 GS_USB_BREQ_BT_CONST,
1227 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1228 channel, 0, &bt_const, sizeof(bt_const), 1000,
1229 GFP_KERNEL);
1230
1231 if (rc) {
1232 dev_err(&intf->dev,
1233 "Couldn't get bit timing const for channel %d (%pe)\n",
1234 channel, ERR_PTR(rc));
1235 return ERR_PTR(rc);
1236 }
1237
1238 /* create netdev */
1239 netdev = alloc_candev(sizeof(struct gs_can), GS_MAX_TX_URBS);
1240 if (!netdev) {
1241 dev_err(&intf->dev, "Couldn't allocate candev\n");
1242 return ERR_PTR(-ENOMEM);
1243 }
1244
1245 dev = netdev_priv(netdev);
1246
1247 netdev->netdev_ops = &gs_usb_netdev_ops;
1248 netdev->ethtool_ops = &gs_usb_ethtool_ops;
1249
1250 netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */
1251 netdev->dev_id = channel;
1252
1253 /* dev setup */
1254 strcpy(dev->bt_const.name, KBUILD_MODNAME);
1255 dev->bt_const.tseg1_min = le32_to_cpu(bt_const.tseg1_min);
1256 dev->bt_const.tseg1_max = le32_to_cpu(bt_const.tseg1_max);
1257 dev->bt_const.tseg2_min = le32_to_cpu(bt_const.tseg2_min);
1258 dev->bt_const.tseg2_max = le32_to_cpu(bt_const.tseg2_max);
1259 dev->bt_const.sjw_max = le32_to_cpu(bt_const.sjw_max);
1260 dev->bt_const.brp_min = le32_to_cpu(bt_const.brp_min);
1261 dev->bt_const.brp_max = le32_to_cpu(bt_const.brp_max);
1262 dev->bt_const.brp_inc = le32_to_cpu(bt_const.brp_inc);
1263
1264 dev->udev = interface_to_usbdev(intf);
1265 dev->netdev = netdev;
1266 dev->channel = channel;
1267
1268 init_usb_anchor(&dev->tx_submitted);
1269 atomic_set(&dev->active_tx_urbs, 0);
1270 spin_lock_init(&dev->tx_ctx_lock);
1271 for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1272 dev->tx_context[rc].dev = dev;
1273 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1274 }
1275
1276 /* can setup */
1277 dev->can.state = CAN_STATE_STOPPED;
1278 dev->can.clock.freq = le32_to_cpu(bt_const.fclk_can);
1279 dev->can.bittiming_const = &dev->bt_const;
1280 dev->can.do_set_bittiming = gs_usb_set_bittiming;
1281
1282 dev->can.ctrlmode_supported = CAN_CTRLMODE_CC_LEN8_DLC;
1283
1284 feature = le32_to_cpu(bt_const.feature);
1285 dev->feature = FIELD_GET(GS_CAN_FEATURE_MASK, feature);
1286 if (feature & GS_CAN_FEATURE_LISTEN_ONLY)
1287 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY;
1288
1289 if (feature & GS_CAN_FEATURE_LOOP_BACK)
1290 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK;
1291
1292 if (feature & GS_CAN_FEATURE_TRIPLE_SAMPLE)
1293 dev->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES;
1294
1295 if (feature & GS_CAN_FEATURE_ONE_SHOT)
1296 dev->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;
1297
1298 if (feature & GS_CAN_FEATURE_FD) {
1299 dev->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
1300 /* The data bit timing will be overwritten, if
1301 * GS_CAN_FEATURE_BT_CONST_EXT is set.
1302 */
1303 dev->can.data_bittiming_const = &dev->bt_const;
1304 dev->can.do_set_data_bittiming = gs_usb_set_data_bittiming;
1305 }
1306
1307 if (feature & GS_CAN_FEATURE_TERMINATION) {
1308 rc = gs_usb_get_termination(netdev, &dev->can.termination);
1309 if (rc) {
1310 dev->feature &= ~GS_CAN_FEATURE_TERMINATION;
1311
1312 dev_info(&intf->dev,
1313 "Disabling termination support for channel %d (%pe)\n",
1314 channel, ERR_PTR(rc));
1315 } else {
1316 dev->can.termination_const = gs_usb_termination_const;
1317 dev->can.termination_const_cnt = ARRAY_SIZE(gs_usb_termination_const);
1318 dev->can.do_set_termination = gs_usb_set_termination;
1319 }
1320 }
1321
1322 if (feature & GS_CAN_FEATURE_BERR_REPORTING)
1323 dev->can.ctrlmode_supported |= CAN_CTRLMODE_BERR_REPORTING;
1324
1325 if (feature & GS_CAN_FEATURE_GET_STATE)
1326 dev->can.do_get_berr_counter = gs_usb_can_get_berr_counter;
1327
1328 /* The CANtact Pro from LinkLayer Labs is based on the
1329 * LPC54616 µC, which is affected by the NXP LPC USB transfer
1330 * erratum. However, the current firmware (version 2) doesn't
1331 * set the GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX bit. Set the
1332 * feature GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX to workaround
1333 * this issue.
1334 *
1335 * For the GS_USB_BREQ_DATA_BITTIMING USB control message the
1336 * CANtact Pro firmware uses a request value, which is already
1337 * used by the candleLight firmware for a different purpose
1338 * (GS_USB_BREQ_GET_USER_ID). Set the feature
1339 * GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO to workaround this
1340 * issue.
1341 */
1342 if (dev->udev->descriptor.idVendor == cpu_to_le16(USB_GS_USB_1_VENDOR_ID) &&
1343 dev->udev->descriptor.idProduct == cpu_to_le16(USB_GS_USB_1_PRODUCT_ID) &&
1344 dev->udev->manufacturer && dev->udev->product &&
1345 !strcmp(dev->udev->manufacturer, "LinkLayer Labs") &&
1346 !strcmp(dev->udev->product, "CANtact Pro") &&
1347 (le32_to_cpu(dconf->sw_version) <= 2))
1348 dev->feature |= GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX |
1349 GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO;
1350
1351 /* GS_CAN_FEATURE_IDENTIFY is only supported for sw_version > 1 */
1352 if (!(le32_to_cpu(dconf->sw_version) > 1 &&
1353 feature & GS_CAN_FEATURE_IDENTIFY))
1354 dev->feature &= ~GS_CAN_FEATURE_IDENTIFY;
1355
1356 /* fetch extended bit timing constants if device has feature
1357 * GS_CAN_FEATURE_FD and GS_CAN_FEATURE_BT_CONST_EXT
1358 */
1359 if (feature & GS_CAN_FEATURE_FD &&
1360 feature & GS_CAN_FEATURE_BT_CONST_EXT) {
1361 rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1362 GS_USB_BREQ_BT_CONST_EXT,
1363 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1364 channel, 0, &bt_const_extended,
1365 sizeof(bt_const_extended),
1366 1000, GFP_KERNEL);
1367 if (rc) {
1368 dev_err(&intf->dev,
1369 "Couldn't get extended bit timing const for channel %d (%pe)\n",
1370 channel, ERR_PTR(rc));
1371 goto out_free_candev;
1372 }
1373
1374 strcpy(dev->data_bt_const.name, KBUILD_MODNAME);
1375 dev->data_bt_const.tseg1_min = le32_to_cpu(bt_const_extended.dtseg1_min);
1376 dev->data_bt_const.tseg1_max = le32_to_cpu(bt_const_extended.dtseg1_max);
1377 dev->data_bt_const.tseg2_min = le32_to_cpu(bt_const_extended.dtseg2_min);
1378 dev->data_bt_const.tseg2_max = le32_to_cpu(bt_const_extended.dtseg2_max);
1379 dev->data_bt_const.sjw_max = le32_to_cpu(bt_const_extended.dsjw_max);
1380 dev->data_bt_const.brp_min = le32_to_cpu(bt_const_extended.dbrp_min);
1381 dev->data_bt_const.brp_max = le32_to_cpu(bt_const_extended.dbrp_max);
1382 dev->data_bt_const.brp_inc = le32_to_cpu(bt_const_extended.dbrp_inc);
1383
1384 dev->can.data_bittiming_const = &dev->data_bt_const;
1385 }
1386
1387 can_rx_offload_add_manual(netdev, &dev->offload, GS_NAPI_WEIGHT);
1388 SET_NETDEV_DEV(netdev, &intf->dev);
1389
1390 rc = register_candev(dev->netdev);
1391 if (rc) {
1392 dev_err(&intf->dev,
1393 "Couldn't register candev for channel %d (%pe)\n",
1394 channel, ERR_PTR(rc));
1395 goto out_can_rx_offload_del;
1396 }
1397
1398 return dev;
1399
1400 out_can_rx_offload_del:
1401 can_rx_offload_del(&dev->offload);
1402 out_free_candev:
1403 free_candev(dev->netdev);
1404 return ERR_PTR(rc);
1405 }
1406
gs_destroy_candev(struct gs_can * dev)1407 static void gs_destroy_candev(struct gs_can *dev)
1408 {
1409 unregister_candev(dev->netdev);
1410 can_rx_offload_del(&dev->offload);
1411 free_candev(dev->netdev);
1412 }
1413
gs_usb_probe(struct usb_interface * intf,const struct usb_device_id * id)1414 static int gs_usb_probe(struct usb_interface *intf,
1415 const struct usb_device_id *id)
1416 {
1417 struct usb_device *udev = interface_to_usbdev(intf);
1418 struct usb_endpoint_descriptor *ep_in, *ep_out;
1419 struct gs_host_frame *hf;
1420 struct gs_usb *parent;
1421 struct gs_host_config hconf = {
1422 .byte_order = cpu_to_le32(0x0000beef),
1423 };
1424 struct gs_device_config dconf;
1425 unsigned int icount, i;
1426 int rc;
1427
1428 rc = usb_find_common_endpoints(intf->cur_altsetting,
1429 &ep_in, &ep_out, NULL, NULL);
1430 if (rc) {
1431 dev_err(&intf->dev, "Required endpoints not found\n");
1432 return rc;
1433 }
1434
1435 /* send host config */
1436 rc = usb_control_msg_send(udev, 0,
1437 GS_USB_BREQ_HOST_FORMAT,
1438 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1439 1, intf->cur_altsetting->desc.bInterfaceNumber,
1440 &hconf, sizeof(hconf), 1000,
1441 GFP_KERNEL);
1442 if (rc) {
1443 dev_err(&intf->dev, "Couldn't send data format (err=%d)\n", rc);
1444 return rc;
1445 }
1446
1447 /* read device config */
1448 rc = usb_control_msg_recv(udev, 0,
1449 GS_USB_BREQ_DEVICE_CONFIG,
1450 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1451 1, intf->cur_altsetting->desc.bInterfaceNumber,
1452 &dconf, sizeof(dconf), 1000,
1453 GFP_KERNEL);
1454 if (rc) {
1455 dev_err(&intf->dev, "Couldn't get device config: (err=%d)\n",
1456 rc);
1457 return rc;
1458 }
1459
1460 icount = dconf.icount + 1;
1461 dev_info(&intf->dev, "Configuring for %u interfaces\n", icount);
1462
1463 if (icount > GS_MAX_INTF) {
1464 dev_err(&intf->dev,
1465 "Driver cannot handle more that %u CAN interfaces\n",
1466 GS_MAX_INTF);
1467 return -EINVAL;
1468 }
1469
1470 parent = kzalloc(sizeof(*parent), GFP_KERNEL);
1471 if (!parent)
1472 return -ENOMEM;
1473
1474 init_usb_anchor(&parent->rx_submitted);
1475
1476 usb_set_intfdata(intf, parent);
1477 parent->udev = udev;
1478
1479 /* store the detected endpoints */
1480 parent->pipe_in = usb_rcvbulkpipe(parent->udev, ep_in->bEndpointAddress);
1481 parent->pipe_out = usb_sndbulkpipe(parent->udev, ep_out->bEndpointAddress);
1482
1483 for (i = 0; i < icount; i++) {
1484 unsigned int hf_size_rx = 0;
1485
1486 parent->canch[i] = gs_make_candev(i, intf, &dconf);
1487 if (IS_ERR_OR_NULL(parent->canch[i])) {
1488 /* save error code to return later */
1489 rc = PTR_ERR(parent->canch[i]);
1490
1491 /* on failure destroy previously created candevs */
1492 icount = i;
1493 for (i = 0; i < icount; i++)
1494 gs_destroy_candev(parent->canch[i]);
1495
1496 usb_kill_anchored_urbs(&parent->rx_submitted);
1497 kfree(parent);
1498 return rc;
1499 }
1500 parent->canch[i]->parent = parent;
1501
1502 /* set RX packet size based on FD and if hardware
1503 * timestamps are supported.
1504 */
1505 if (parent->canch[i]->can.ctrlmode_supported & CAN_CTRLMODE_FD) {
1506 if (parent->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1507 hf_size_rx = struct_size(hf, canfd_ts, 1);
1508 else
1509 hf_size_rx = struct_size(hf, canfd, 1);
1510 } else {
1511 if (parent->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1512 hf_size_rx = struct_size(hf, classic_can_ts, 1);
1513 else
1514 hf_size_rx = struct_size(hf, classic_can, 1);
1515 }
1516 parent->hf_size_rx = max(parent->hf_size_rx, hf_size_rx);
1517 }
1518
1519 return 0;
1520 }
1521
gs_usb_disconnect(struct usb_interface * intf)1522 static void gs_usb_disconnect(struct usb_interface *intf)
1523 {
1524 struct gs_usb *parent = usb_get_intfdata(intf);
1525 unsigned int i;
1526
1527 usb_set_intfdata(intf, NULL);
1528
1529 if (!parent) {
1530 dev_err(&intf->dev, "Disconnect (nodata)\n");
1531 return;
1532 }
1533
1534 for (i = 0; i < GS_MAX_INTF; i++)
1535 if (parent->canch[i])
1536 gs_destroy_candev(parent->canch[i]);
1537
1538 kfree(parent);
1539 }
1540
1541 static const struct usb_device_id gs_usb_table[] = {
1542 { USB_DEVICE_INTERFACE_NUMBER(USB_GS_USB_1_VENDOR_ID,
1543 USB_GS_USB_1_PRODUCT_ID, 0) },
1544 { USB_DEVICE_INTERFACE_NUMBER(USB_CANDLELIGHT_VENDOR_ID,
1545 USB_CANDLELIGHT_PRODUCT_ID, 0) },
1546 { USB_DEVICE_INTERFACE_NUMBER(USB_CES_CANEXT_FD_VENDOR_ID,
1547 USB_CES_CANEXT_FD_PRODUCT_ID, 0) },
1548 { USB_DEVICE_INTERFACE_NUMBER(USB_ABE_CANDEBUGGER_FD_VENDOR_ID,
1549 USB_ABE_CANDEBUGGER_FD_PRODUCT_ID, 0) },
1550 { USB_DEVICE_INTERFACE_NUMBER(USB_XYLANTA_SAINT3_VENDOR_ID,
1551 USB_XYLANTA_SAINT3_PRODUCT_ID, 0) },
1552 { USB_DEVICE_INTERFACE_NUMBER(USB_CANNECTIVITY_VENDOR_ID,
1553 USB_CANNECTIVITY_PRODUCT_ID, 0) },
1554 {} /* Terminating entry */
1555 };
1556
1557 MODULE_DEVICE_TABLE(usb, gs_usb_table);
1558
1559 static struct usb_driver gs_usb_driver = {
1560 .name = KBUILD_MODNAME,
1561 .probe = gs_usb_probe,
1562 .disconnect = gs_usb_disconnect,
1563 .id_table = gs_usb_table,
1564 };
1565
1566 module_usb_driver(gs_usb_driver);
1567
1568 MODULE_AUTHOR("Maximilian Schneider <mws@schneidersoft.net>");
1569 MODULE_DESCRIPTION(
1570 "Socket CAN device driver for Geschwister Schneider Technologie-, "
1571 "Entwicklungs- und Vertriebs UG. USB2.0 to CAN interfaces\n"
1572 "and bytewerk.org candleLight USB CAN interfaces.");
1573 MODULE_LICENSE("GPL v2");
1574