1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Xilinx Zynq MPSoC Firmware layer
4 *
5 * Copyright (C) 2014-2022 Xilinx, Inc.
6 * Copyright (C) 2022 - 2023, Advanced Micro Devices, Inc.
7 *
8 * Michal Simek <michal.simek@amd.com>
9 * Davorin Mista <davorin.mista@aggios.com>
10 * Jolly Shah <jollys@xilinx.com>
11 * Rajan Vaja <rajanv@xilinx.com>
12 */
13
14 #include <linux/arm-smccc.h>
15 #include <linux/compiler.h>
16 #include <linux/device.h>
17 #include <linux/init.h>
18 #include <linux/mfd/core.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/slab.h>
24 #include <linux/uaccess.h>
25 #include <linux/hashtable.h>
26
27 #include <linux/firmware/xlnx-zynqmp.h>
28 #include <linux/firmware/xlnx-event-manager.h>
29 #include "zynqmp-debug.h"
30
31 /* Max HashMap Order for PM API feature check (1<<7 = 128) */
32 #define PM_API_FEATURE_CHECK_MAX_ORDER 7
33
34 /* CRL registers and bitfields */
35 #define CRL_APB_BASE 0xFF5E0000U
36 /* BOOT_PIN_CTRL- Used to control the mode pins after boot */
37 #define CRL_APB_BOOT_PIN_CTRL (CRL_APB_BASE + (0x250U))
38 /* BOOT_PIN_CTRL_MASK- out_val[11:8], out_en[3:0] */
39 #define CRL_APB_BOOTPIN_CTRL_MASK 0xF0FU
40
41 /* IOCTL/QUERY feature payload size */
42 #define FEATURE_PAYLOAD_SIZE 2
43
44 static bool feature_check_enabled;
45 static DEFINE_HASHTABLE(pm_api_features_map, PM_API_FEATURE_CHECK_MAX_ORDER);
46 static u32 ioctl_features[FEATURE_PAYLOAD_SIZE];
47 static u32 query_features[FEATURE_PAYLOAD_SIZE];
48
49 static struct platform_device *em_dev;
50
51 /**
52 * struct zynqmp_devinfo - Structure for Zynqmp device instance
53 * @dev: Device Pointer
54 * @feature_conf_id: Feature conf id
55 */
56 struct zynqmp_devinfo {
57 struct device *dev;
58 u32 feature_conf_id;
59 };
60
61 /**
62 * struct pm_api_feature_data - PM API Feature data
63 * @pm_api_id: PM API Id, used as key to index into hashmap
64 * @feature_status: status of PM API feature: valid, invalid
65 * @hentry: hlist_node that hooks this entry into hashtable
66 */
67 struct pm_api_feature_data {
68 u32 pm_api_id;
69 int feature_status;
70 struct hlist_node hentry;
71 };
72
73 static const struct mfd_cell firmware_devs[] = {
74 {
75 .name = "zynqmp_power_controller",
76 },
77 };
78
79 /**
80 * zynqmp_pm_ret_code() - Convert PMU-FW error codes to Linux error codes
81 * @ret_status: PMUFW return code
82 *
83 * Return: corresponding Linux error code
84 */
zynqmp_pm_ret_code(u32 ret_status)85 static int zynqmp_pm_ret_code(u32 ret_status)
86 {
87 switch (ret_status) {
88 case XST_PM_SUCCESS:
89 case XST_PM_DOUBLE_REQ:
90 return 0;
91 case XST_PM_NO_FEATURE:
92 return -ENOTSUPP;
93 case XST_PM_INVALID_VERSION:
94 return -EOPNOTSUPP;
95 case XST_PM_NO_ACCESS:
96 return -EACCES;
97 case XST_PM_ABORT_SUSPEND:
98 return -ECANCELED;
99 case XST_PM_MULT_USER:
100 return -EUSERS;
101 case XST_PM_INTERNAL:
102 case XST_PM_CONFLICT:
103 case XST_PM_INVALID_NODE:
104 case XST_PM_INVALID_CRC:
105 default:
106 return -EINVAL;
107 }
108 }
109
do_fw_call_fail(u32 * ret_payload,u32 num_args,...)110 static noinline int do_fw_call_fail(u32 *ret_payload, u32 num_args, ...)
111 {
112 return -ENODEV;
113 }
114
115 /*
116 * PM function call wrapper
117 * Invoke do_fw_call_smc or do_fw_call_hvc, depending on the configuration
118 */
119 static int (*do_fw_call)(u32 *ret_payload, u32, ...) = do_fw_call_fail;
120
121 /**
122 * do_fw_call_smc() - Call system-level platform management layer (SMC)
123 * @num_args: Number of variable arguments should be <= 8
124 * @ret_payload: Returned value array
125 *
126 * Invoke platform management function via SMC call (no hypervisor present).
127 *
128 * Return: Returns status, either success or error+reason
129 */
do_fw_call_smc(u32 * ret_payload,u32 num_args,...)130 static noinline int do_fw_call_smc(u32 *ret_payload, u32 num_args, ...)
131 {
132 struct arm_smccc_res res;
133 u64 args[8] = {0};
134 va_list arg_list;
135 u8 i;
136
137 if (num_args > 8)
138 return -EINVAL;
139
140 va_start(arg_list, num_args);
141
142 for (i = 0; i < num_args; i++)
143 args[i] = va_arg(arg_list, u64);
144
145 va_end(arg_list);
146
147 arm_smccc_smc(args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7], &res);
148
149 if (ret_payload) {
150 ret_payload[0] = lower_32_bits(res.a0);
151 ret_payload[1] = upper_32_bits(res.a0);
152 ret_payload[2] = lower_32_bits(res.a1);
153 ret_payload[3] = upper_32_bits(res.a1);
154 }
155
156 return zynqmp_pm_ret_code((enum pm_ret_status)res.a0);
157 }
158
159 /**
160 * do_fw_call_hvc() - Call system-level platform management layer (HVC)
161 * @num_args: Number of variable arguments should be <= 8
162 * @ret_payload: Returned value array
163 *
164 * Invoke platform management function via HVC
165 * HVC-based for communication through hypervisor
166 * (no direct communication with ATF).
167 *
168 * Return: Returns status, either success or error+reason
169 */
do_fw_call_hvc(u32 * ret_payload,u32 num_args,...)170 static noinline int do_fw_call_hvc(u32 *ret_payload, u32 num_args, ...)
171 {
172 struct arm_smccc_res res;
173 u64 args[8] = {0};
174 va_list arg_list;
175 u8 i;
176
177 if (num_args > 8)
178 return -EINVAL;
179
180 va_start(arg_list, num_args);
181
182 for (i = 0; i < num_args; i++)
183 args[i] = va_arg(arg_list, u64);
184
185 va_end(arg_list);
186
187 arm_smccc_hvc(args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7], &res);
188
189 if (ret_payload) {
190 ret_payload[0] = lower_32_bits(res.a0);
191 ret_payload[1] = upper_32_bits(res.a0);
192 ret_payload[2] = lower_32_bits(res.a1);
193 ret_payload[3] = upper_32_bits(res.a1);
194 }
195
196 return zynqmp_pm_ret_code((enum pm_ret_status)res.a0);
197 }
198
__do_feature_check_call(const u32 api_id,u32 * ret_payload)199 static int __do_feature_check_call(const u32 api_id, u32 *ret_payload)
200 {
201 int ret;
202 u64 smc_arg[2];
203 u32 module_id;
204 u32 feature_check_api_id;
205
206 module_id = FIELD_GET(MODULE_ID_MASK, api_id);
207
208 /*
209 * Feature check of APIs belonging to PM, XSEM, and TF-A are handled by calling
210 * PM_FEATURE_CHECK API. For other modules, call PM_API_FEATURES API.
211 */
212 if (module_id == PM_MODULE_ID || module_id == XSEM_MODULE_ID || module_id == TF_A_MODULE_ID)
213 feature_check_api_id = PM_FEATURE_CHECK;
214 else
215 feature_check_api_id = PM_API_FEATURES;
216
217 /*
218 * Feature check of TF-A APIs is done in the TF-A layer and it expects for
219 * MODULE_ID_MASK bits of SMC's arg[0] to be the same as PM_MODULE_ID.
220 */
221 if (module_id == TF_A_MODULE_ID)
222 module_id = PM_MODULE_ID;
223
224 smc_arg[0] = PM_SIP_SVC | FIELD_PREP(MODULE_ID_MASK, module_id) | feature_check_api_id;
225 smc_arg[1] = (api_id & API_ID_MASK);
226
227 ret = do_fw_call(ret_payload, 2, smc_arg[0], smc_arg[1]);
228 if (ret)
229 ret = -EOPNOTSUPP;
230 else
231 ret = ret_payload[1];
232
233 return ret;
234 }
235
do_feature_check_call(const u32 api_id)236 static int do_feature_check_call(const u32 api_id)
237 {
238 int ret;
239 u32 ret_payload[PAYLOAD_ARG_CNT];
240 struct pm_api_feature_data *feature_data;
241
242 /* Check for existing entry in hash table for given api */
243 hash_for_each_possible(pm_api_features_map, feature_data, hentry,
244 api_id) {
245 if (feature_data->pm_api_id == api_id)
246 return feature_data->feature_status;
247 }
248
249 /* Add new entry if not present */
250 feature_data = kmalloc(sizeof(*feature_data), GFP_ATOMIC);
251 if (!feature_data)
252 return -ENOMEM;
253
254 feature_data->pm_api_id = api_id;
255 ret = __do_feature_check_call(api_id, ret_payload);
256
257 feature_data->feature_status = ret;
258 hash_add(pm_api_features_map, &feature_data->hentry, api_id);
259
260 if (api_id == PM_IOCTL)
261 /* Store supported IOCTL IDs mask */
262 memcpy(ioctl_features, &ret_payload[2], FEATURE_PAYLOAD_SIZE * 4);
263 else if (api_id == PM_QUERY_DATA)
264 /* Store supported QUERY IDs mask */
265 memcpy(query_features, &ret_payload[2], FEATURE_PAYLOAD_SIZE * 4);
266
267 return ret;
268 }
269
270 /**
271 * zynqmp_pm_feature() - Check whether given feature is supported or not and
272 * store supported IOCTL/QUERY ID mask
273 * @api_id: API ID to check
274 *
275 * Return: Returns status, either success or error+reason
276 */
zynqmp_pm_feature(const u32 api_id)277 int zynqmp_pm_feature(const u32 api_id)
278 {
279 int ret;
280
281 if (!feature_check_enabled)
282 return 0;
283
284 ret = do_feature_check_call(api_id);
285
286 return ret;
287 }
288 EXPORT_SYMBOL_GPL(zynqmp_pm_feature);
289
290 /**
291 * zynqmp_pm_is_function_supported() - Check whether given IOCTL/QUERY function
292 * is supported or not
293 * @api_id: PM_IOCTL or PM_QUERY_DATA
294 * @id: IOCTL or QUERY function IDs
295 *
296 * Return: Returns status, either success or error+reason
297 */
zynqmp_pm_is_function_supported(const u32 api_id,const u32 id)298 int zynqmp_pm_is_function_supported(const u32 api_id, const u32 id)
299 {
300 int ret;
301 u32 *bit_mask;
302
303 /* Input arguments validation */
304 if (id >= 64 || (api_id != PM_IOCTL && api_id != PM_QUERY_DATA))
305 return -EINVAL;
306
307 /* Check feature check API version */
308 ret = do_feature_check_call(PM_FEATURE_CHECK);
309 if (ret < 0)
310 return ret;
311
312 /* Check if feature check version 2 is supported or not */
313 if ((ret & FIRMWARE_VERSION_MASK) == PM_API_VERSION_2) {
314 /*
315 * Call feature check for IOCTL/QUERY API to get IOCTL ID or
316 * QUERY ID feature status.
317 */
318 ret = do_feature_check_call(api_id);
319 if (ret < 0)
320 return ret;
321
322 bit_mask = (api_id == PM_IOCTL) ? ioctl_features : query_features;
323
324 if ((bit_mask[(id / 32)] & BIT((id % 32))) == 0U)
325 return -EOPNOTSUPP;
326 } else {
327 return -ENODATA;
328 }
329
330 return 0;
331 }
332 EXPORT_SYMBOL_GPL(zynqmp_pm_is_function_supported);
333
334 /**
335 * zynqmp_pm_invoke_fn() - Invoke the system-level platform management layer
336 * caller function depending on the configuration
337 * @pm_api_id: Requested PM-API call
338 * @ret_payload: Returned value array
339 * @num_args: Number of arguments to requested PM-API call
340 *
341 * Invoke platform management function for SMC or HVC call, depending on
342 * configuration.
343 * Following SMC Calling Convention (SMCCC) for SMC64:
344 * Pm Function Identifier,
345 * PM_SIP_SVC + PM_API_ID =
346 * ((SMC_TYPE_FAST << FUNCID_TYPE_SHIFT)
347 * ((SMC_64) << FUNCID_CC_SHIFT)
348 * ((SIP_START) << FUNCID_OEN_SHIFT)
349 * ((PM_API_ID) & FUNCID_NUM_MASK))
350 *
351 * PM_SIP_SVC - Registered ZynqMP SIP Service Call.
352 * PM_API_ID - Platform Management API ID.
353 *
354 * Return: Returns status, either success or error+reason
355 */
zynqmp_pm_invoke_fn(u32 pm_api_id,u32 * ret_payload,u32 num_args,...)356 int zynqmp_pm_invoke_fn(u32 pm_api_id, u32 *ret_payload, u32 num_args, ...)
357 {
358 /*
359 * Added SIP service call Function Identifier
360 * Make sure to stay in x0 register
361 */
362 u64 smc_arg[8];
363 int ret, i;
364 va_list arg_list;
365 u32 args[14] = {0};
366
367 if (num_args > 14)
368 return -EINVAL;
369
370 va_start(arg_list, num_args);
371
372 /* Check if feature is supported or not */
373 ret = zynqmp_pm_feature(pm_api_id);
374 if (ret < 0)
375 return ret;
376
377 for (i = 0; i < num_args; i++)
378 args[i] = va_arg(arg_list, u32);
379
380 va_end(arg_list);
381
382 smc_arg[0] = PM_SIP_SVC | pm_api_id;
383 for (i = 0; i < 7; i++)
384 smc_arg[i + 1] = ((u64)args[(i * 2) + 1] << 32) | args[i * 2];
385
386 return do_fw_call(ret_payload, 8, smc_arg[0], smc_arg[1], smc_arg[2], smc_arg[3],
387 smc_arg[4], smc_arg[5], smc_arg[6], smc_arg[7]);
388 }
389
390 static u32 pm_api_version;
391 static u32 pm_tz_version;
392 static u32 pm_family_code;
393 static u32 pm_sub_family_code;
394
zynqmp_pm_register_sgi(u32 sgi_num,u32 reset)395 int zynqmp_pm_register_sgi(u32 sgi_num, u32 reset)
396 {
397 int ret;
398
399 ret = zynqmp_pm_invoke_fn(TF_A_PM_REGISTER_SGI, NULL, 2, sgi_num, reset);
400 if (ret != -EOPNOTSUPP && !ret)
401 return ret;
402
403 /* try old implementation as fallback strategy if above fails */
404 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, IOCTL_REGISTER_SGI, sgi_num, reset);
405 }
406
407 /**
408 * zynqmp_pm_get_api_version() - Get version number of PMU PM firmware
409 * @version: Returned version value
410 *
411 * Return: Returns status, either success or error+reason
412 */
zynqmp_pm_get_api_version(u32 * version)413 int zynqmp_pm_get_api_version(u32 *version)
414 {
415 u32 ret_payload[PAYLOAD_ARG_CNT];
416 int ret;
417
418 if (!version)
419 return -EINVAL;
420
421 /* Check is PM API version already verified */
422 if (pm_api_version > 0) {
423 *version = pm_api_version;
424 return 0;
425 }
426 ret = zynqmp_pm_invoke_fn(PM_GET_API_VERSION, ret_payload, 0);
427 *version = ret_payload[1];
428
429 return ret;
430 }
431 EXPORT_SYMBOL_GPL(zynqmp_pm_get_api_version);
432
433 /**
434 * zynqmp_pm_get_chipid - Get silicon ID registers
435 * @idcode: IDCODE register
436 * @version: version register
437 *
438 * Return: Returns the status of the operation and the idcode and version
439 * registers in @idcode and @version.
440 */
zynqmp_pm_get_chipid(u32 * idcode,u32 * version)441 int zynqmp_pm_get_chipid(u32 *idcode, u32 *version)
442 {
443 u32 ret_payload[PAYLOAD_ARG_CNT];
444 int ret;
445
446 if (!idcode || !version)
447 return -EINVAL;
448
449 ret = zynqmp_pm_invoke_fn(PM_GET_CHIPID, ret_payload, 0);
450 *idcode = ret_payload[1];
451 *version = ret_payload[2];
452
453 return ret;
454 }
455 EXPORT_SYMBOL_GPL(zynqmp_pm_get_chipid);
456
457 /**
458 * zynqmp_pm_get_family_info() - Get family info of platform
459 * @family: Returned family code value
460 * @subfamily: Returned sub-family code value
461 *
462 * Return: Returns status, either success or error+reason
463 */
zynqmp_pm_get_family_info(u32 * family,u32 * subfamily)464 int zynqmp_pm_get_family_info(u32 *family, u32 *subfamily)
465 {
466 u32 ret_payload[PAYLOAD_ARG_CNT];
467 u32 idcode;
468 int ret;
469
470 /* Check is family or sub-family code already received */
471 if (pm_family_code && pm_sub_family_code) {
472 *family = pm_family_code;
473 *subfamily = pm_sub_family_code;
474 return 0;
475 }
476
477 ret = zynqmp_pm_invoke_fn(PM_GET_CHIPID, ret_payload, 0);
478 if (ret < 0)
479 return ret;
480
481 idcode = ret_payload[1];
482 pm_family_code = FIELD_GET(FAMILY_CODE_MASK, idcode);
483 pm_sub_family_code = FIELD_GET(SUB_FAMILY_CODE_MASK, idcode);
484 *family = pm_family_code;
485 *subfamily = pm_sub_family_code;
486
487 return 0;
488 }
489 EXPORT_SYMBOL_GPL(zynqmp_pm_get_family_info);
490
491 /**
492 * zynqmp_pm_get_trustzone_version() - Get secure trustzone firmware version
493 * @version: Returned version value
494 *
495 * Return: Returns status, either success or error+reason
496 */
zynqmp_pm_get_trustzone_version(u32 * version)497 static int zynqmp_pm_get_trustzone_version(u32 *version)
498 {
499 u32 ret_payload[PAYLOAD_ARG_CNT];
500 int ret;
501
502 if (!version)
503 return -EINVAL;
504
505 /* Check is PM trustzone version already verified */
506 if (pm_tz_version > 0) {
507 *version = pm_tz_version;
508 return 0;
509 }
510 ret = zynqmp_pm_invoke_fn(PM_GET_TRUSTZONE_VERSION, ret_payload, 0);
511 *version = ret_payload[1];
512
513 return ret;
514 }
515
516 /**
517 * get_set_conduit_method() - Choose SMC or HVC based communication
518 * @np: Pointer to the device_node structure
519 *
520 * Use SMC or HVC-based functions to communicate with EL2/EL3.
521 *
522 * Return: Returns 0 on success or error code
523 */
get_set_conduit_method(struct device_node * np)524 static int get_set_conduit_method(struct device_node *np)
525 {
526 const char *method;
527
528 if (of_property_read_string(np, "method", &method)) {
529 pr_warn("%s missing \"method\" property\n", __func__);
530 return -ENXIO;
531 }
532
533 if (!strcmp("hvc", method)) {
534 do_fw_call = do_fw_call_hvc;
535 } else if (!strcmp("smc", method)) {
536 do_fw_call = do_fw_call_smc;
537 } else {
538 pr_warn("%s Invalid \"method\" property: %s\n",
539 __func__, method);
540 return -EINVAL;
541 }
542
543 return 0;
544 }
545
546 /**
547 * zynqmp_pm_query_data() - Get query data from firmware
548 * @qdata: Variable to the zynqmp_pm_query_data structure
549 * @out: Returned output value
550 *
551 * Return: Returns status, either success or error+reason
552 */
zynqmp_pm_query_data(struct zynqmp_pm_query_data qdata,u32 * out)553 int zynqmp_pm_query_data(struct zynqmp_pm_query_data qdata, u32 *out)
554 {
555 int ret;
556
557 ret = zynqmp_pm_invoke_fn(PM_QUERY_DATA, out, 4, qdata.qid, qdata.arg1, qdata.arg2,
558 qdata.arg3);
559
560 /*
561 * For clock name query, all bytes in SMC response are clock name
562 * characters and return code is always success. For invalid clocks,
563 * clock name bytes would be zeros.
564 */
565 return qdata.qid == PM_QID_CLOCK_GET_NAME ? 0 : ret;
566 }
567 EXPORT_SYMBOL_GPL(zynqmp_pm_query_data);
568
569 /**
570 * zynqmp_pm_clock_enable() - Enable the clock for given id
571 * @clock_id: ID of the clock to be enabled
572 *
573 * This function is used by master to enable the clock
574 * including peripherals and PLL clocks.
575 *
576 * Return: Returns status, either success or error+reason
577 */
zynqmp_pm_clock_enable(u32 clock_id)578 int zynqmp_pm_clock_enable(u32 clock_id)
579 {
580 return zynqmp_pm_invoke_fn(PM_CLOCK_ENABLE, NULL, 1, clock_id);
581 }
582 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_enable);
583
584 /**
585 * zynqmp_pm_clock_disable() - Disable the clock for given id
586 * @clock_id: ID of the clock to be disable
587 *
588 * This function is used by master to disable the clock
589 * including peripherals and PLL clocks.
590 *
591 * Return: Returns status, either success or error+reason
592 */
zynqmp_pm_clock_disable(u32 clock_id)593 int zynqmp_pm_clock_disable(u32 clock_id)
594 {
595 return zynqmp_pm_invoke_fn(PM_CLOCK_DISABLE, NULL, 1, clock_id);
596 }
597 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_disable);
598
599 /**
600 * zynqmp_pm_clock_getstate() - Get the clock state for given id
601 * @clock_id: ID of the clock to be queried
602 * @state: 1/0 (Enabled/Disabled)
603 *
604 * This function is used by master to get the state of clock
605 * including peripherals and PLL clocks.
606 *
607 * Return: Returns status, either success or error+reason
608 */
zynqmp_pm_clock_getstate(u32 clock_id,u32 * state)609 int zynqmp_pm_clock_getstate(u32 clock_id, u32 *state)
610 {
611 u32 ret_payload[PAYLOAD_ARG_CNT];
612 int ret;
613
614 ret = zynqmp_pm_invoke_fn(PM_CLOCK_GETSTATE, ret_payload, 1, clock_id);
615 *state = ret_payload[1];
616
617 return ret;
618 }
619 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_getstate);
620
621 /**
622 * zynqmp_pm_clock_setdivider() - Set the clock divider for given id
623 * @clock_id: ID of the clock
624 * @divider: divider value
625 *
626 * This function is used by master to set divider for any clock
627 * to achieve desired rate.
628 *
629 * Return: Returns status, either success or error+reason
630 */
zynqmp_pm_clock_setdivider(u32 clock_id,u32 divider)631 int zynqmp_pm_clock_setdivider(u32 clock_id, u32 divider)
632 {
633 return zynqmp_pm_invoke_fn(PM_CLOCK_SETDIVIDER, NULL, 2, clock_id, divider);
634 }
635 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_setdivider);
636
637 /**
638 * zynqmp_pm_clock_getdivider() - Get the clock divider for given id
639 * @clock_id: ID of the clock
640 * @divider: divider value
641 *
642 * This function is used by master to get divider values
643 * for any clock.
644 *
645 * Return: Returns status, either success or error+reason
646 */
zynqmp_pm_clock_getdivider(u32 clock_id,u32 * divider)647 int zynqmp_pm_clock_getdivider(u32 clock_id, u32 *divider)
648 {
649 u32 ret_payload[PAYLOAD_ARG_CNT];
650 int ret;
651
652 ret = zynqmp_pm_invoke_fn(PM_CLOCK_GETDIVIDER, ret_payload, 1, clock_id);
653 *divider = ret_payload[1];
654
655 return ret;
656 }
657 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_getdivider);
658
659 /**
660 * zynqmp_pm_clock_setparent() - Set the clock parent for given id
661 * @clock_id: ID of the clock
662 * @parent_id: parent id
663 *
664 * This function is used by master to set parent for any clock.
665 *
666 * Return: Returns status, either success or error+reason
667 */
zynqmp_pm_clock_setparent(u32 clock_id,u32 parent_id)668 int zynqmp_pm_clock_setparent(u32 clock_id, u32 parent_id)
669 {
670 return zynqmp_pm_invoke_fn(PM_CLOCK_SETPARENT, NULL, 2, clock_id, parent_id);
671 }
672 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_setparent);
673
674 /**
675 * zynqmp_pm_clock_getparent() - Get the clock parent for given id
676 * @clock_id: ID of the clock
677 * @parent_id: parent id
678 *
679 * This function is used by master to get parent index
680 * for any clock.
681 *
682 * Return: Returns status, either success or error+reason
683 */
zynqmp_pm_clock_getparent(u32 clock_id,u32 * parent_id)684 int zynqmp_pm_clock_getparent(u32 clock_id, u32 *parent_id)
685 {
686 u32 ret_payload[PAYLOAD_ARG_CNT];
687 int ret;
688
689 ret = zynqmp_pm_invoke_fn(PM_CLOCK_GETPARENT, ret_payload, 1, clock_id);
690 *parent_id = ret_payload[1];
691
692 return ret;
693 }
694 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_getparent);
695
696 /**
697 * zynqmp_pm_set_pll_frac_mode() - PM API for set PLL mode
698 *
699 * @clk_id: PLL clock ID
700 * @mode: PLL mode (PLL_MODE_FRAC/PLL_MODE_INT)
701 *
702 * This function sets PLL mode
703 *
704 * Return: Returns status, either success or error+reason
705 */
zynqmp_pm_set_pll_frac_mode(u32 clk_id,u32 mode)706 int zynqmp_pm_set_pll_frac_mode(u32 clk_id, u32 mode)
707 {
708 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_SET_PLL_FRAC_MODE, clk_id, mode);
709 }
710 EXPORT_SYMBOL_GPL(zynqmp_pm_set_pll_frac_mode);
711
712 /**
713 * zynqmp_pm_get_pll_frac_mode() - PM API for get PLL mode
714 *
715 * @clk_id: PLL clock ID
716 * @mode: PLL mode
717 *
718 * This function return current PLL mode
719 *
720 * Return: Returns status, either success or error+reason
721 */
zynqmp_pm_get_pll_frac_mode(u32 clk_id,u32 * mode)722 int zynqmp_pm_get_pll_frac_mode(u32 clk_id, u32 *mode)
723 {
724 return zynqmp_pm_invoke_fn(PM_IOCTL, mode, 3, 0, IOCTL_GET_PLL_FRAC_MODE, clk_id);
725 }
726 EXPORT_SYMBOL_GPL(zynqmp_pm_get_pll_frac_mode);
727
728 /**
729 * zynqmp_pm_set_pll_frac_data() - PM API for setting pll fraction data
730 *
731 * @clk_id: PLL clock ID
732 * @data: fraction data
733 *
734 * This function sets fraction data.
735 * It is valid for fraction mode only.
736 *
737 * Return: Returns status, either success or error+reason
738 */
zynqmp_pm_set_pll_frac_data(u32 clk_id,u32 data)739 int zynqmp_pm_set_pll_frac_data(u32 clk_id, u32 data)
740 {
741 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_SET_PLL_FRAC_DATA, clk_id, data);
742 }
743 EXPORT_SYMBOL_GPL(zynqmp_pm_set_pll_frac_data);
744
745 /**
746 * zynqmp_pm_get_pll_frac_data() - PM API for getting pll fraction data
747 *
748 * @clk_id: PLL clock ID
749 * @data: fraction data
750 *
751 * This function returns fraction data value.
752 *
753 * Return: Returns status, either success or error+reason
754 */
zynqmp_pm_get_pll_frac_data(u32 clk_id,u32 * data)755 int zynqmp_pm_get_pll_frac_data(u32 clk_id, u32 *data)
756 {
757 return zynqmp_pm_invoke_fn(PM_IOCTL, data, 3, 0, IOCTL_GET_PLL_FRAC_DATA, clk_id);
758 }
759 EXPORT_SYMBOL_GPL(zynqmp_pm_get_pll_frac_data);
760
761 /**
762 * zynqmp_pm_set_sd_tapdelay() - Set tap delay for the SD device
763 *
764 * @node_id: Node ID of the device
765 * @type: Type of tap delay to set (input/output)
766 * @value: Value to set fot the tap delay
767 *
768 * This function sets input/output tap delay for the SD device.
769 *
770 * Return: Returns status, either success or error+reason
771 */
zynqmp_pm_set_sd_tapdelay(u32 node_id,u32 type,u32 value)772 int zynqmp_pm_set_sd_tapdelay(u32 node_id, u32 type, u32 value)
773 {
774 u32 reg = (type == PM_TAPDELAY_INPUT) ? SD_ITAPDLY : SD_OTAPDLYSEL;
775 u32 mask = (node_id == NODE_SD_0) ? GENMASK(15, 0) : GENMASK(31, 16);
776
777 if (value) {
778 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, node_id, IOCTL_SET_SD_TAPDELAY, type,
779 value);
780 }
781
782 /*
783 * Work around completely misdesigned firmware API on Xilinx ZynqMP.
784 * The IOCTL_SET_SD_TAPDELAY firmware call allows the caller to only
785 * ever set IOU_SLCR SD_ITAPDLY Register SD0_ITAPDLYENA/SD1_ITAPDLYENA
786 * bits, but there is no matching call to clear those bits. If those
787 * bits are not cleared, SDMMC tuning may fail.
788 *
789 * Luckily, there are PM_MMIO_READ/PM_MMIO_WRITE calls which seem to
790 * allow complete unrestricted access to all address space, including
791 * IOU_SLCR SD_ITAPDLY Register and all the other registers, access
792 * to which was supposed to be protected by the current firmware API.
793 *
794 * Use PM_MMIO_READ/PM_MMIO_WRITE to re-implement the missing counter
795 * part of IOCTL_SET_SD_TAPDELAY which clears SDx_ITAPDLYENA bits.
796 */
797 return zynqmp_pm_invoke_fn(PM_MMIO_WRITE, NULL, 2, reg, mask);
798 }
799 EXPORT_SYMBOL_GPL(zynqmp_pm_set_sd_tapdelay);
800
801 /**
802 * zynqmp_pm_sd_dll_reset() - Reset DLL logic
803 *
804 * @node_id: Node ID of the device
805 * @type: Reset type
806 *
807 * This function resets DLL logic for the SD device.
808 *
809 * Return: Returns status, either success or error+reason
810 */
zynqmp_pm_sd_dll_reset(u32 node_id,u32 type)811 int zynqmp_pm_sd_dll_reset(u32 node_id, u32 type)
812 {
813 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, node_id, IOCTL_SD_DLL_RESET, type);
814 }
815 EXPORT_SYMBOL_GPL(zynqmp_pm_sd_dll_reset);
816
817 /**
818 * zynqmp_pm_ospi_mux_select() - OSPI Mux selection
819 *
820 * @dev_id: Device Id of the OSPI device.
821 * @select: OSPI Mux select value.
822 *
823 * This function select the OSPI Mux.
824 *
825 * Return: Returns status, either success or error+reason
826 */
zynqmp_pm_ospi_mux_select(u32 dev_id,u32 select)827 int zynqmp_pm_ospi_mux_select(u32 dev_id, u32 select)
828 {
829 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, dev_id, IOCTL_OSPI_MUX_SELECT, select);
830 }
831 EXPORT_SYMBOL_GPL(zynqmp_pm_ospi_mux_select);
832
833 /**
834 * zynqmp_pm_write_ggs() - PM API for writing global general storage (ggs)
835 * @index: GGS register index
836 * @value: Register value to be written
837 *
838 * This function writes value to GGS register.
839 *
840 * Return: Returns status, either success or error+reason
841 */
zynqmp_pm_write_ggs(u32 index,u32 value)842 int zynqmp_pm_write_ggs(u32 index, u32 value)
843 {
844 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_WRITE_GGS, index, value);
845 }
846 EXPORT_SYMBOL_GPL(zynqmp_pm_write_ggs);
847
848 /**
849 * zynqmp_pm_read_ggs() - PM API for reading global general storage (ggs)
850 * @index: GGS register index
851 * @value: Register value to be written
852 *
853 * This function returns GGS register value.
854 *
855 * Return: Returns status, either success or error+reason
856 */
zynqmp_pm_read_ggs(u32 index,u32 * value)857 int zynqmp_pm_read_ggs(u32 index, u32 *value)
858 {
859 return zynqmp_pm_invoke_fn(PM_IOCTL, value, 3, 0, IOCTL_READ_GGS, index);
860 }
861 EXPORT_SYMBOL_GPL(zynqmp_pm_read_ggs);
862
863 /**
864 * zynqmp_pm_write_pggs() - PM API for writing persistent global general
865 * storage (pggs)
866 * @index: PGGS register index
867 * @value: Register value to be written
868 *
869 * This function writes value to PGGS register.
870 *
871 * Return: Returns status, either success or error+reason
872 */
zynqmp_pm_write_pggs(u32 index,u32 value)873 int zynqmp_pm_write_pggs(u32 index, u32 value)
874 {
875 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_WRITE_PGGS, index, value);
876 }
877 EXPORT_SYMBOL_GPL(zynqmp_pm_write_pggs);
878
879 /**
880 * zynqmp_pm_read_pggs() - PM API for reading persistent global general
881 * storage (pggs)
882 * @index: PGGS register index
883 * @value: Register value to be written
884 *
885 * This function returns PGGS register value.
886 *
887 * Return: Returns status, either success or error+reason
888 */
zynqmp_pm_read_pggs(u32 index,u32 * value)889 int zynqmp_pm_read_pggs(u32 index, u32 *value)
890 {
891 return zynqmp_pm_invoke_fn(PM_IOCTL, value, 3, 0, IOCTL_READ_PGGS, index);
892 }
893 EXPORT_SYMBOL_GPL(zynqmp_pm_read_pggs);
894
zynqmp_pm_set_tapdelay_bypass(u32 index,u32 value)895 int zynqmp_pm_set_tapdelay_bypass(u32 index, u32 value)
896 {
897 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_SET_TAPDELAY_BYPASS, index, value);
898 }
899 EXPORT_SYMBOL_GPL(zynqmp_pm_set_tapdelay_bypass);
900
901 /**
902 * zynqmp_pm_set_boot_health_status() - PM API for setting healthy boot status
903 * @value: Status value to be written
904 *
905 * This function sets healthy bit value to indicate boot health status
906 * to firmware.
907 *
908 * Return: Returns status, either success or error+reason
909 */
zynqmp_pm_set_boot_health_status(u32 value)910 int zynqmp_pm_set_boot_health_status(u32 value)
911 {
912 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, 0, IOCTL_SET_BOOT_HEALTH_STATUS, value);
913 }
914
915 /**
916 * zynqmp_pm_reset_assert - Request setting of reset (1 - assert, 0 - release)
917 * @reset: Reset to be configured
918 * @assert_flag: Flag stating should reset be asserted (1) or
919 * released (0)
920 *
921 * Return: Returns status, either success or error+reason
922 */
zynqmp_pm_reset_assert(const enum zynqmp_pm_reset reset,const enum zynqmp_pm_reset_action assert_flag)923 int zynqmp_pm_reset_assert(const enum zynqmp_pm_reset reset,
924 const enum zynqmp_pm_reset_action assert_flag)
925 {
926 return zynqmp_pm_invoke_fn(PM_RESET_ASSERT, NULL, 2, reset, assert_flag);
927 }
928 EXPORT_SYMBOL_GPL(zynqmp_pm_reset_assert);
929
930 /**
931 * zynqmp_pm_reset_get_status - Get status of the reset
932 * @reset: Reset whose status should be returned
933 * @status: Returned status
934 *
935 * Return: Returns status, either success or error+reason
936 */
zynqmp_pm_reset_get_status(const enum zynqmp_pm_reset reset,u32 * status)937 int zynqmp_pm_reset_get_status(const enum zynqmp_pm_reset reset, u32 *status)
938 {
939 u32 ret_payload[PAYLOAD_ARG_CNT];
940 int ret;
941
942 if (!status)
943 return -EINVAL;
944
945 ret = zynqmp_pm_invoke_fn(PM_RESET_GET_STATUS, ret_payload, 1, reset);
946 *status = ret_payload[1];
947
948 return ret;
949 }
950 EXPORT_SYMBOL_GPL(zynqmp_pm_reset_get_status);
951
952 /**
953 * zynqmp_pm_fpga_load - Perform the fpga load
954 * @address: Address to write to
955 * @size: pl bitstream size
956 * @flags: Bitstream type
957 * -XILINX_ZYNQMP_PM_FPGA_FULL: FPGA full reconfiguration
958 * -XILINX_ZYNQMP_PM_FPGA_PARTIAL: FPGA partial reconfiguration
959 *
960 * This function provides access to pmufw. To transfer
961 * the required bitstream into PL.
962 *
963 * Return: Returns status, either success or error+reason
964 */
zynqmp_pm_fpga_load(const u64 address,const u32 size,const u32 flags)965 int zynqmp_pm_fpga_load(const u64 address, const u32 size, const u32 flags)
966 {
967 u32 ret_payload[PAYLOAD_ARG_CNT];
968 int ret;
969
970 ret = zynqmp_pm_invoke_fn(PM_FPGA_LOAD, ret_payload, 4, lower_32_bits(address),
971 upper_32_bits(address), size, flags);
972 if (ret_payload[0])
973 return -ret_payload[0];
974
975 return ret;
976 }
977 EXPORT_SYMBOL_GPL(zynqmp_pm_fpga_load);
978
979 /**
980 * zynqmp_pm_fpga_get_status - Read value from PCAP status register
981 * @value: Value to read
982 *
983 * This function provides access to the pmufw to get the PCAP
984 * status
985 *
986 * Return: Returns status, either success or error+reason
987 */
zynqmp_pm_fpga_get_status(u32 * value)988 int zynqmp_pm_fpga_get_status(u32 *value)
989 {
990 u32 ret_payload[PAYLOAD_ARG_CNT];
991 int ret;
992
993 if (!value)
994 return -EINVAL;
995
996 ret = zynqmp_pm_invoke_fn(PM_FPGA_GET_STATUS, ret_payload, 0);
997 *value = ret_payload[1];
998
999 return ret;
1000 }
1001 EXPORT_SYMBOL_GPL(zynqmp_pm_fpga_get_status);
1002
1003 /**
1004 * zynqmp_pm_fpga_get_config_status - Get the FPGA configuration status.
1005 * @value: Buffer to store FPGA configuration status.
1006 *
1007 * This function provides access to the pmufw to get the FPGA configuration
1008 * status
1009 *
1010 * Return: 0 on success, a negative value on error
1011 */
zynqmp_pm_fpga_get_config_status(u32 * value)1012 int zynqmp_pm_fpga_get_config_status(u32 *value)
1013 {
1014 u32 ret_payload[PAYLOAD_ARG_CNT];
1015 u32 buf, lower_addr, upper_addr;
1016 int ret;
1017
1018 if (!value)
1019 return -EINVAL;
1020
1021 lower_addr = lower_32_bits((u64)&buf);
1022 upper_addr = upper_32_bits((u64)&buf);
1023
1024 ret = zynqmp_pm_invoke_fn(PM_FPGA_READ, ret_payload, 4,
1025 XILINX_ZYNQMP_PM_FPGA_CONFIG_STAT_OFFSET, lower_addr, upper_addr,
1026 XILINX_ZYNQMP_PM_FPGA_READ_CONFIG_REG);
1027
1028 *value = ret_payload[1];
1029
1030 return ret;
1031 }
1032 EXPORT_SYMBOL_GPL(zynqmp_pm_fpga_get_config_status);
1033
1034 /**
1035 * zynqmp_pm_pinctrl_request - Request Pin from firmware
1036 * @pin: Pin number to request
1037 *
1038 * This function requests pin from firmware.
1039 *
1040 * Return: Returns status, either success or error+reason.
1041 */
zynqmp_pm_pinctrl_request(const u32 pin)1042 int zynqmp_pm_pinctrl_request(const u32 pin)
1043 {
1044 return zynqmp_pm_invoke_fn(PM_PINCTRL_REQUEST, NULL, 1, pin);
1045 }
1046 EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_request);
1047
1048 /**
1049 * zynqmp_pm_pinctrl_release - Inform firmware that Pin control is released
1050 * @pin: Pin number to release
1051 *
1052 * This function release pin from firmware.
1053 *
1054 * Return: Returns status, either success or error+reason.
1055 */
zynqmp_pm_pinctrl_release(const u32 pin)1056 int zynqmp_pm_pinctrl_release(const u32 pin)
1057 {
1058 return zynqmp_pm_invoke_fn(PM_PINCTRL_RELEASE, NULL, 1, pin);
1059 }
1060 EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_release);
1061
1062 /**
1063 * zynqmp_pm_pinctrl_set_function - Set requested function for the pin
1064 * @pin: Pin number
1065 * @id: Function ID to set
1066 *
1067 * This function sets requested function for the given pin.
1068 *
1069 * Return: Returns status, either success or error+reason.
1070 */
zynqmp_pm_pinctrl_set_function(const u32 pin,const u32 id)1071 int zynqmp_pm_pinctrl_set_function(const u32 pin, const u32 id)
1072 {
1073 return zynqmp_pm_invoke_fn(PM_PINCTRL_SET_FUNCTION, NULL, 2, pin, id);
1074 }
1075 EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_set_function);
1076
1077 /**
1078 * zynqmp_pm_pinctrl_get_config - Get configuration parameter for the pin
1079 * @pin: Pin number
1080 * @param: Parameter to get
1081 * @value: Buffer to store parameter value
1082 *
1083 * This function gets requested configuration parameter for the given pin.
1084 *
1085 * Return: Returns status, either success or error+reason.
1086 */
zynqmp_pm_pinctrl_get_config(const u32 pin,const u32 param,u32 * value)1087 int zynqmp_pm_pinctrl_get_config(const u32 pin, const u32 param,
1088 u32 *value)
1089 {
1090 u32 ret_payload[PAYLOAD_ARG_CNT];
1091 int ret;
1092
1093 if (!value)
1094 return -EINVAL;
1095
1096 ret = zynqmp_pm_invoke_fn(PM_PINCTRL_CONFIG_PARAM_GET, ret_payload, 2, pin, param);
1097 *value = ret_payload[1];
1098
1099 return ret;
1100 }
1101 EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_get_config);
1102
1103 /**
1104 * zynqmp_pm_pinctrl_set_config - Set configuration parameter for the pin
1105 * @pin: Pin number
1106 * @param: Parameter to set
1107 * @value: Parameter value to set
1108 *
1109 * This function sets requested configuration parameter for the given pin.
1110 *
1111 * Return: Returns status, either success or error+reason.
1112 */
zynqmp_pm_pinctrl_set_config(const u32 pin,const u32 param,u32 value)1113 int zynqmp_pm_pinctrl_set_config(const u32 pin, const u32 param,
1114 u32 value)
1115 {
1116 int ret;
1117
1118 if (pm_family_code == ZYNQMP_FAMILY_CODE &&
1119 param == PM_PINCTRL_CONFIG_TRI_STATE) {
1120 ret = zynqmp_pm_feature(PM_PINCTRL_CONFIG_PARAM_SET);
1121 if (ret < PM_PINCTRL_PARAM_SET_VERSION)
1122 return -EOPNOTSUPP;
1123 }
1124
1125 return zynqmp_pm_invoke_fn(PM_PINCTRL_CONFIG_PARAM_SET, NULL, 3, pin, param, value);
1126 }
1127 EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_set_config);
1128
1129 /**
1130 * zynqmp_pm_bootmode_read() - PM Config API for read bootpin status
1131 * @ps_mode: Returned output value of ps_mode
1132 *
1133 * This API function is to be used for notify the power management controller
1134 * to read bootpin status.
1135 *
1136 * Return: status, either success or error+reason
1137 */
zynqmp_pm_bootmode_read(u32 * ps_mode)1138 unsigned int zynqmp_pm_bootmode_read(u32 *ps_mode)
1139 {
1140 unsigned int ret;
1141 u32 ret_payload[PAYLOAD_ARG_CNT];
1142
1143 ret = zynqmp_pm_invoke_fn(PM_MMIO_READ, ret_payload, 1, CRL_APB_BOOT_PIN_CTRL);
1144
1145 *ps_mode = ret_payload[1];
1146
1147 return ret;
1148 }
1149 EXPORT_SYMBOL_GPL(zynqmp_pm_bootmode_read);
1150
1151 /**
1152 * zynqmp_pm_bootmode_write() - PM Config API for Configure bootpin
1153 * @ps_mode: Value to be written to the bootpin ctrl register
1154 *
1155 * This API function is to be used for notify the power management controller
1156 * to configure bootpin.
1157 *
1158 * Return: Returns status, either success or error+reason
1159 */
zynqmp_pm_bootmode_write(u32 ps_mode)1160 int zynqmp_pm_bootmode_write(u32 ps_mode)
1161 {
1162 return zynqmp_pm_invoke_fn(PM_MMIO_WRITE, NULL, 3, CRL_APB_BOOT_PIN_CTRL,
1163 CRL_APB_BOOTPIN_CTRL_MASK, ps_mode);
1164 }
1165 EXPORT_SYMBOL_GPL(zynqmp_pm_bootmode_write);
1166
1167 /**
1168 * zynqmp_pm_init_finalize() - PM call to inform firmware that the caller
1169 * master has initialized its own power management
1170 *
1171 * Return: Returns status, either success or error+reason
1172 *
1173 * This API function is to be used for notify the power management controller
1174 * about the completed power management initialization.
1175 */
zynqmp_pm_init_finalize(void)1176 int zynqmp_pm_init_finalize(void)
1177 {
1178 return zynqmp_pm_invoke_fn(PM_PM_INIT_FINALIZE, NULL, 0);
1179 }
1180 EXPORT_SYMBOL_GPL(zynqmp_pm_init_finalize);
1181
1182 /**
1183 * zynqmp_pm_set_suspend_mode() - Set system suspend mode
1184 * @mode: Mode to set for system suspend
1185 *
1186 * This API function is used to set mode of system suspend.
1187 *
1188 * Return: Returns status, either success or error+reason
1189 */
zynqmp_pm_set_suspend_mode(u32 mode)1190 int zynqmp_pm_set_suspend_mode(u32 mode)
1191 {
1192 return zynqmp_pm_invoke_fn(PM_SET_SUSPEND_MODE, NULL, 1, mode);
1193 }
1194 EXPORT_SYMBOL_GPL(zynqmp_pm_set_suspend_mode);
1195
1196 /**
1197 * zynqmp_pm_request_node() - Request a node with specific capabilities
1198 * @node: Node ID of the slave
1199 * @capabilities: Requested capabilities of the slave
1200 * @qos: Quality of service (not supported)
1201 * @ack: Flag to specify whether acknowledge is requested
1202 *
1203 * This function is used by master to request particular node from firmware.
1204 * Every master must request node before using it.
1205 *
1206 * Return: Returns status, either success or error+reason
1207 */
zynqmp_pm_request_node(const u32 node,const u32 capabilities,const u32 qos,const enum zynqmp_pm_request_ack ack)1208 int zynqmp_pm_request_node(const u32 node, const u32 capabilities,
1209 const u32 qos, const enum zynqmp_pm_request_ack ack)
1210 {
1211 return zynqmp_pm_invoke_fn(PM_REQUEST_NODE, NULL, 4, node, capabilities, qos, ack);
1212 }
1213 EXPORT_SYMBOL_GPL(zynqmp_pm_request_node);
1214
1215 /**
1216 * zynqmp_pm_release_node() - Release a node
1217 * @node: Node ID of the slave
1218 *
1219 * This function is used by master to inform firmware that master
1220 * has released node. Once released, master must not use that node
1221 * without re-request.
1222 *
1223 * Return: Returns status, either success or error+reason
1224 */
zynqmp_pm_release_node(const u32 node)1225 int zynqmp_pm_release_node(const u32 node)
1226 {
1227 return zynqmp_pm_invoke_fn(PM_RELEASE_NODE, NULL, 1, node);
1228 }
1229 EXPORT_SYMBOL_GPL(zynqmp_pm_release_node);
1230
1231 /**
1232 * zynqmp_pm_get_rpu_mode() - Get RPU mode
1233 * @node_id: Node ID of the device
1234 * @rpu_mode: return by reference value
1235 * either split or lockstep
1236 *
1237 * Return: return 0 on success or error+reason.
1238 * if success, then rpu_mode will be set
1239 * to current rpu mode.
1240 */
zynqmp_pm_get_rpu_mode(u32 node_id,enum rpu_oper_mode * rpu_mode)1241 int zynqmp_pm_get_rpu_mode(u32 node_id, enum rpu_oper_mode *rpu_mode)
1242 {
1243 u32 ret_payload[PAYLOAD_ARG_CNT];
1244 int ret;
1245
1246 ret = zynqmp_pm_invoke_fn(PM_IOCTL, ret_payload, 2, node_id, IOCTL_GET_RPU_OPER_MODE);
1247
1248 /* only set rpu_mode if no error */
1249 if (ret == XST_PM_SUCCESS)
1250 *rpu_mode = ret_payload[0];
1251
1252 return ret;
1253 }
1254 EXPORT_SYMBOL_GPL(zynqmp_pm_get_rpu_mode);
1255
1256 /**
1257 * zynqmp_pm_set_rpu_mode() - Set RPU mode
1258 * @node_id: Node ID of the device
1259 * @rpu_mode: Argument 1 to requested IOCTL call. either split or lockstep
1260 *
1261 * This function is used to set RPU mode to split or
1262 * lockstep
1263 *
1264 * Return: Returns status, either success or error+reason
1265 */
zynqmp_pm_set_rpu_mode(u32 node_id,enum rpu_oper_mode rpu_mode)1266 int zynqmp_pm_set_rpu_mode(u32 node_id, enum rpu_oper_mode rpu_mode)
1267 {
1268 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, node_id, IOCTL_SET_RPU_OPER_MODE,
1269 (u32)rpu_mode);
1270 }
1271 EXPORT_SYMBOL_GPL(zynqmp_pm_set_rpu_mode);
1272
1273 /**
1274 * zynqmp_pm_set_tcm_config - configure TCM
1275 * @node_id: Firmware specific TCM subsystem ID
1276 * @tcm_mode: Argument 1 to requested IOCTL call
1277 * either PM_RPU_TCM_COMB or PM_RPU_TCM_SPLIT
1278 *
1279 * This function is used to set RPU mode to split or combined
1280 *
1281 * Return: status: 0 for success, else failure
1282 */
zynqmp_pm_set_tcm_config(u32 node_id,enum rpu_tcm_comb tcm_mode)1283 int zynqmp_pm_set_tcm_config(u32 node_id, enum rpu_tcm_comb tcm_mode)
1284 {
1285 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, node_id, IOCTL_TCM_COMB_CONFIG,
1286 (u32)tcm_mode);
1287 }
1288 EXPORT_SYMBOL_GPL(zynqmp_pm_set_tcm_config);
1289
1290 /**
1291 * zynqmp_pm_force_pwrdwn - PM call to request for another PU or subsystem to
1292 * be powered down forcefully
1293 * @node: Node ID of the targeted PU or subsystem
1294 * @ack: Flag to specify whether acknowledge is requested
1295 *
1296 * Return: status, either success or error+reason
1297 */
zynqmp_pm_force_pwrdwn(const u32 node,const enum zynqmp_pm_request_ack ack)1298 int zynqmp_pm_force_pwrdwn(const u32 node,
1299 const enum zynqmp_pm_request_ack ack)
1300 {
1301 return zynqmp_pm_invoke_fn(PM_FORCE_POWERDOWN, NULL, 2, node, ack);
1302 }
1303 EXPORT_SYMBOL_GPL(zynqmp_pm_force_pwrdwn);
1304
1305 /**
1306 * zynqmp_pm_request_wake - PM call to wake up selected master or subsystem
1307 * @node: Node ID of the master or subsystem
1308 * @set_addr: Specifies whether the address argument is relevant
1309 * @address: Address from which to resume when woken up
1310 * @ack: Flag to specify whether acknowledge requested
1311 *
1312 * Return: status, either success or error+reason
1313 */
zynqmp_pm_request_wake(const u32 node,const bool set_addr,const u64 address,const enum zynqmp_pm_request_ack ack)1314 int zynqmp_pm_request_wake(const u32 node,
1315 const bool set_addr,
1316 const u64 address,
1317 const enum zynqmp_pm_request_ack ack)
1318 {
1319 /* set_addr flag is encoded into 1st bit of address */
1320 return zynqmp_pm_invoke_fn(PM_REQUEST_WAKEUP, NULL, 4, node, address | set_addr,
1321 address >> 32, ack);
1322 }
1323 EXPORT_SYMBOL_GPL(zynqmp_pm_request_wake);
1324
1325 /**
1326 * zynqmp_pm_set_requirement() - PM call to set requirement for PM slaves
1327 * @node: Node ID of the slave
1328 * @capabilities: Requested capabilities of the slave
1329 * @qos: Quality of service (not supported)
1330 * @ack: Flag to specify whether acknowledge is requested
1331 *
1332 * This API function is to be used for slaves a PU already has requested
1333 * to change its capabilities.
1334 *
1335 * Return: Returns status, either success or error+reason
1336 */
zynqmp_pm_set_requirement(const u32 node,const u32 capabilities,const u32 qos,const enum zynqmp_pm_request_ack ack)1337 int zynqmp_pm_set_requirement(const u32 node, const u32 capabilities,
1338 const u32 qos,
1339 const enum zynqmp_pm_request_ack ack)
1340 {
1341 return zynqmp_pm_invoke_fn(PM_SET_REQUIREMENT, NULL, 4, node, capabilities, qos, ack);
1342 }
1343 EXPORT_SYMBOL_GPL(zynqmp_pm_set_requirement);
1344
1345 /**
1346 * zynqmp_pm_load_pdi - Load and process PDI
1347 * @src: Source device where PDI is located
1348 * @address: PDI src address
1349 *
1350 * This function provides support to load PDI from linux
1351 *
1352 * Return: Returns status, either success or error+reason
1353 */
zynqmp_pm_load_pdi(const u32 src,const u64 address)1354 int zynqmp_pm_load_pdi(const u32 src, const u64 address)
1355 {
1356 return zynqmp_pm_invoke_fn(PM_LOAD_PDI, NULL, 3, src, lower_32_bits(address),
1357 upper_32_bits(address));
1358 }
1359 EXPORT_SYMBOL_GPL(zynqmp_pm_load_pdi);
1360
1361 /**
1362 * zynqmp_pm_aes_engine - Access AES hardware to encrypt/decrypt the data using
1363 * AES-GCM core.
1364 * @address: Address of the AesParams structure.
1365 * @out: Returned output value
1366 *
1367 * Return: Returns status, either success or error code.
1368 */
zynqmp_pm_aes_engine(const u64 address,u32 * out)1369 int zynqmp_pm_aes_engine(const u64 address, u32 *out)
1370 {
1371 u32 ret_payload[PAYLOAD_ARG_CNT];
1372 int ret;
1373
1374 if (!out)
1375 return -EINVAL;
1376
1377 ret = zynqmp_pm_invoke_fn(PM_SECURE_AES, ret_payload, 2, upper_32_bits(address),
1378 lower_32_bits(address));
1379 *out = ret_payload[1];
1380
1381 return ret;
1382 }
1383 EXPORT_SYMBOL_GPL(zynqmp_pm_aes_engine);
1384
1385 /**
1386 * zynqmp_pm_efuse_access - Provides access to efuse memory.
1387 * @address: Address of the efuse params structure
1388 * @out: Returned output value
1389 *
1390 * Return: Returns status, either success or error code.
1391 */
zynqmp_pm_efuse_access(const u64 address,u32 * out)1392 int zynqmp_pm_efuse_access(const u64 address, u32 *out)
1393 {
1394 u32 ret_payload[PAYLOAD_ARG_CNT];
1395 int ret;
1396
1397 if (!out)
1398 return -EINVAL;
1399
1400 ret = zynqmp_pm_invoke_fn(PM_EFUSE_ACCESS, ret_payload, 2,
1401 upper_32_bits(address),
1402 lower_32_bits(address));
1403 *out = ret_payload[1];
1404
1405 return ret;
1406 }
1407 EXPORT_SYMBOL_GPL(zynqmp_pm_efuse_access);
1408
1409 /**
1410 * zynqmp_pm_sha_hash - Access the SHA engine to calculate the hash
1411 * @address: Address of the data/ Address of output buffer where
1412 * hash should be stored.
1413 * @size: Size of the data.
1414 * @flags:
1415 * BIT(0) - for initializing csudma driver and SHA3(Here address
1416 * and size inputs can be NULL).
1417 * BIT(1) - to call Sha3_Update API which can be called multiple
1418 * times when data is not contiguous.
1419 * BIT(2) - to get final hash of the whole updated data.
1420 * Hash will be overwritten at provided address with
1421 * 48 bytes.
1422 *
1423 * Return: Returns status, either success or error code.
1424 */
zynqmp_pm_sha_hash(const u64 address,const u32 size,const u32 flags)1425 int zynqmp_pm_sha_hash(const u64 address, const u32 size, const u32 flags)
1426 {
1427 u32 lower_addr = lower_32_bits(address);
1428 u32 upper_addr = upper_32_bits(address);
1429
1430 return zynqmp_pm_invoke_fn(PM_SECURE_SHA, NULL, 4, upper_addr, lower_addr, size, flags);
1431 }
1432 EXPORT_SYMBOL_GPL(zynqmp_pm_sha_hash);
1433
1434 /**
1435 * zynqmp_pm_register_notifier() - PM API for register a subsystem
1436 * to be notified about specific
1437 * event/error.
1438 * @node: Node ID to which the event is related.
1439 * @event: Event Mask of Error events for which wants to get notified.
1440 * @wake: Wake subsystem upon capturing the event if value 1
1441 * @enable: Enable the registration for value 1, disable for value 0
1442 *
1443 * This function is used to register/un-register for particular node-event
1444 * combination in firmware.
1445 *
1446 * Return: Returns status, either success or error+reason
1447 */
1448
zynqmp_pm_register_notifier(const u32 node,const u32 event,const u32 wake,const u32 enable)1449 int zynqmp_pm_register_notifier(const u32 node, const u32 event,
1450 const u32 wake, const u32 enable)
1451 {
1452 return zynqmp_pm_invoke_fn(PM_REGISTER_NOTIFIER, NULL, 4, node, event, wake, enable);
1453 }
1454 EXPORT_SYMBOL_GPL(zynqmp_pm_register_notifier);
1455
1456 /**
1457 * zynqmp_pm_system_shutdown - PM call to request a system shutdown or restart
1458 * @type: Shutdown or restart? 0 for shutdown, 1 for restart
1459 * @subtype: Specifies which system should be restarted or shut down
1460 *
1461 * Return: Returns status, either success or error+reason
1462 */
zynqmp_pm_system_shutdown(const u32 type,const u32 subtype)1463 int zynqmp_pm_system_shutdown(const u32 type, const u32 subtype)
1464 {
1465 return zynqmp_pm_invoke_fn(PM_SYSTEM_SHUTDOWN, NULL, 2, type, subtype);
1466 }
1467
1468 /**
1469 * zynqmp_pm_set_feature_config - PM call to request IOCTL for feature config
1470 * @id: The config ID of the feature to be configured
1471 * @value: The config value of the feature to be configured
1472 *
1473 * Return: Returns 0 on success or error value on failure.
1474 */
zynqmp_pm_set_feature_config(enum pm_feature_config_id id,u32 value)1475 int zynqmp_pm_set_feature_config(enum pm_feature_config_id id, u32 value)
1476 {
1477 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_SET_FEATURE_CONFIG, id, value);
1478 }
1479
1480 /**
1481 * zynqmp_pm_get_feature_config - PM call to get value of configured feature
1482 * @id: The config id of the feature to be queried
1483 * @payload: Returned value array
1484 *
1485 * Return: Returns 0 on success or error value on failure.
1486 */
zynqmp_pm_get_feature_config(enum pm_feature_config_id id,u32 * payload)1487 int zynqmp_pm_get_feature_config(enum pm_feature_config_id id,
1488 u32 *payload)
1489 {
1490 return zynqmp_pm_invoke_fn(PM_IOCTL, payload, 3, 0, IOCTL_GET_FEATURE_CONFIG, id);
1491 }
1492
1493 /**
1494 * zynqmp_pm_set_sd_config - PM call to set value of SD config registers
1495 * @node: SD node ID
1496 * @config: The config type of SD registers
1497 * @value: Value to be set
1498 *
1499 * Return: Returns 0 on success or error value on failure.
1500 */
zynqmp_pm_set_sd_config(u32 node,enum pm_sd_config_type config,u32 value)1501 int zynqmp_pm_set_sd_config(u32 node, enum pm_sd_config_type config, u32 value)
1502 {
1503 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, node, IOCTL_SET_SD_CONFIG, config, value);
1504 }
1505 EXPORT_SYMBOL_GPL(zynqmp_pm_set_sd_config);
1506
1507 /**
1508 * zynqmp_pm_set_gem_config - PM call to set value of GEM config registers
1509 * @node: GEM node ID
1510 * @config: The config type of GEM registers
1511 * @value: Value to be set
1512 *
1513 * Return: Returns 0 on success or error value on failure.
1514 */
zynqmp_pm_set_gem_config(u32 node,enum pm_gem_config_type config,u32 value)1515 int zynqmp_pm_set_gem_config(u32 node, enum pm_gem_config_type config,
1516 u32 value)
1517 {
1518 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, node, IOCTL_SET_GEM_CONFIG, config, value);
1519 }
1520 EXPORT_SYMBOL_GPL(zynqmp_pm_set_gem_config);
1521
1522 /**
1523 * struct zynqmp_pm_shutdown_scope - Struct for shutdown scope
1524 * @subtype: Shutdown subtype
1525 * @name: Matching string for scope argument
1526 *
1527 * This struct encapsulates mapping between shutdown scope ID and string.
1528 */
1529 struct zynqmp_pm_shutdown_scope {
1530 const enum zynqmp_pm_shutdown_subtype subtype;
1531 const char *name;
1532 };
1533
1534 static struct zynqmp_pm_shutdown_scope shutdown_scopes[] = {
1535 [ZYNQMP_PM_SHUTDOWN_SUBTYPE_SUBSYSTEM] = {
1536 .subtype = ZYNQMP_PM_SHUTDOWN_SUBTYPE_SUBSYSTEM,
1537 .name = "subsystem",
1538 },
1539 [ZYNQMP_PM_SHUTDOWN_SUBTYPE_PS_ONLY] = {
1540 .subtype = ZYNQMP_PM_SHUTDOWN_SUBTYPE_PS_ONLY,
1541 .name = "ps_only",
1542 },
1543 [ZYNQMP_PM_SHUTDOWN_SUBTYPE_SYSTEM] = {
1544 .subtype = ZYNQMP_PM_SHUTDOWN_SUBTYPE_SYSTEM,
1545 .name = "system",
1546 },
1547 };
1548
1549 static struct zynqmp_pm_shutdown_scope *selected_scope =
1550 &shutdown_scopes[ZYNQMP_PM_SHUTDOWN_SUBTYPE_SYSTEM];
1551
1552 /**
1553 * zynqmp_pm_is_shutdown_scope_valid - Check if shutdown scope string is valid
1554 * @scope_string: Shutdown scope string
1555 *
1556 * Return: Return pointer to matching shutdown scope struct from
1557 * array of available options in system if string is valid,
1558 * otherwise returns NULL.
1559 */
1560 static struct zynqmp_pm_shutdown_scope*
zynqmp_pm_is_shutdown_scope_valid(const char * scope_string)1561 zynqmp_pm_is_shutdown_scope_valid(const char *scope_string)
1562 {
1563 int count;
1564
1565 for (count = 0; count < ARRAY_SIZE(shutdown_scopes); count++)
1566 if (sysfs_streq(scope_string, shutdown_scopes[count].name))
1567 return &shutdown_scopes[count];
1568
1569 return NULL;
1570 }
1571
shutdown_scope_show(struct device * device,struct device_attribute * attr,char * buf)1572 static ssize_t shutdown_scope_show(struct device *device,
1573 struct device_attribute *attr,
1574 char *buf)
1575 {
1576 int i;
1577
1578 for (i = 0; i < ARRAY_SIZE(shutdown_scopes); i++) {
1579 if (&shutdown_scopes[i] == selected_scope) {
1580 strcat(buf, "[");
1581 strcat(buf, shutdown_scopes[i].name);
1582 strcat(buf, "]");
1583 } else {
1584 strcat(buf, shutdown_scopes[i].name);
1585 }
1586 strcat(buf, " ");
1587 }
1588 strcat(buf, "\n");
1589
1590 return strlen(buf);
1591 }
1592
shutdown_scope_store(struct device * device,struct device_attribute * attr,const char * buf,size_t count)1593 static ssize_t shutdown_scope_store(struct device *device,
1594 struct device_attribute *attr,
1595 const char *buf, size_t count)
1596 {
1597 int ret;
1598 struct zynqmp_pm_shutdown_scope *scope;
1599
1600 scope = zynqmp_pm_is_shutdown_scope_valid(buf);
1601 if (!scope)
1602 return -EINVAL;
1603
1604 ret = zynqmp_pm_system_shutdown(ZYNQMP_PM_SHUTDOWN_TYPE_SETSCOPE_ONLY,
1605 scope->subtype);
1606 if (ret) {
1607 pr_err("unable to set shutdown scope %s\n", buf);
1608 return ret;
1609 }
1610
1611 selected_scope = scope;
1612
1613 return count;
1614 }
1615
1616 static DEVICE_ATTR_RW(shutdown_scope);
1617
health_status_store(struct device * device,struct device_attribute * attr,const char * buf,size_t count)1618 static ssize_t health_status_store(struct device *device,
1619 struct device_attribute *attr,
1620 const char *buf, size_t count)
1621 {
1622 int ret;
1623 unsigned int value;
1624
1625 ret = kstrtouint(buf, 10, &value);
1626 if (ret)
1627 return ret;
1628
1629 ret = zynqmp_pm_set_boot_health_status(value);
1630 if (ret) {
1631 dev_err(device, "unable to set healthy bit value to %u\n",
1632 value);
1633 return ret;
1634 }
1635
1636 return count;
1637 }
1638
1639 static DEVICE_ATTR_WO(health_status);
1640
ggs_show(struct device * device,struct device_attribute * attr,char * buf,u32 reg)1641 static ssize_t ggs_show(struct device *device,
1642 struct device_attribute *attr,
1643 char *buf,
1644 u32 reg)
1645 {
1646 int ret;
1647 u32 ret_payload[PAYLOAD_ARG_CNT];
1648
1649 ret = zynqmp_pm_read_ggs(reg, ret_payload);
1650 if (ret)
1651 return ret;
1652
1653 return sprintf(buf, "0x%x\n", ret_payload[1]);
1654 }
1655
ggs_store(struct device * device,struct device_attribute * attr,const char * buf,size_t count,u32 reg)1656 static ssize_t ggs_store(struct device *device,
1657 struct device_attribute *attr,
1658 const char *buf, size_t count,
1659 u32 reg)
1660 {
1661 long value;
1662 int ret;
1663
1664 if (reg >= GSS_NUM_REGS)
1665 return -EINVAL;
1666
1667 ret = kstrtol(buf, 16, &value);
1668 if (ret) {
1669 count = -EFAULT;
1670 goto err;
1671 }
1672
1673 ret = zynqmp_pm_write_ggs(reg, value);
1674 if (ret)
1675 count = -EFAULT;
1676 err:
1677 return count;
1678 }
1679
1680 /* GGS register show functions */
1681 #define GGS0_SHOW(N) \
1682 ssize_t ggs##N##_show(struct device *device, \
1683 struct device_attribute *attr, \
1684 char *buf) \
1685 { \
1686 return ggs_show(device, attr, buf, N); \
1687 }
1688
1689 static GGS0_SHOW(0);
1690 static GGS0_SHOW(1);
1691 static GGS0_SHOW(2);
1692 static GGS0_SHOW(3);
1693
1694 /* GGS register store function */
1695 #define GGS0_STORE(N) \
1696 ssize_t ggs##N##_store(struct device *device, \
1697 struct device_attribute *attr, \
1698 const char *buf, \
1699 size_t count) \
1700 { \
1701 return ggs_store(device, attr, buf, count, N); \
1702 }
1703
1704 static GGS0_STORE(0);
1705 static GGS0_STORE(1);
1706 static GGS0_STORE(2);
1707 static GGS0_STORE(3);
1708
pggs_show(struct device * device,struct device_attribute * attr,char * buf,u32 reg)1709 static ssize_t pggs_show(struct device *device,
1710 struct device_attribute *attr,
1711 char *buf,
1712 u32 reg)
1713 {
1714 int ret;
1715 u32 ret_payload[PAYLOAD_ARG_CNT];
1716
1717 ret = zynqmp_pm_read_pggs(reg, ret_payload);
1718 if (ret)
1719 return ret;
1720
1721 return sprintf(buf, "0x%x\n", ret_payload[1]);
1722 }
1723
pggs_store(struct device * device,struct device_attribute * attr,const char * buf,size_t count,u32 reg)1724 static ssize_t pggs_store(struct device *device,
1725 struct device_attribute *attr,
1726 const char *buf, size_t count,
1727 u32 reg)
1728 {
1729 long value;
1730 int ret;
1731
1732 if (reg >= GSS_NUM_REGS)
1733 return -EINVAL;
1734
1735 ret = kstrtol(buf, 16, &value);
1736 if (ret) {
1737 count = -EFAULT;
1738 goto err;
1739 }
1740
1741 ret = zynqmp_pm_write_pggs(reg, value);
1742 if (ret)
1743 count = -EFAULT;
1744
1745 err:
1746 return count;
1747 }
1748
1749 #define PGGS0_SHOW(N) \
1750 ssize_t pggs##N##_show(struct device *device, \
1751 struct device_attribute *attr, \
1752 char *buf) \
1753 { \
1754 return pggs_show(device, attr, buf, N); \
1755 }
1756
1757 #define PGGS0_STORE(N) \
1758 ssize_t pggs##N##_store(struct device *device, \
1759 struct device_attribute *attr, \
1760 const char *buf, \
1761 size_t count) \
1762 { \
1763 return pggs_store(device, attr, buf, count, N); \
1764 }
1765
1766 /* PGGS register show functions */
1767 static PGGS0_SHOW(0);
1768 static PGGS0_SHOW(1);
1769 static PGGS0_SHOW(2);
1770 static PGGS0_SHOW(3);
1771
1772 /* PGGS register store functions */
1773 static PGGS0_STORE(0);
1774 static PGGS0_STORE(1);
1775 static PGGS0_STORE(2);
1776 static PGGS0_STORE(3);
1777
1778 /* GGS register attributes */
1779 static DEVICE_ATTR_RW(ggs0);
1780 static DEVICE_ATTR_RW(ggs1);
1781 static DEVICE_ATTR_RW(ggs2);
1782 static DEVICE_ATTR_RW(ggs3);
1783
1784 /* PGGS register attributes */
1785 static DEVICE_ATTR_RW(pggs0);
1786 static DEVICE_ATTR_RW(pggs1);
1787 static DEVICE_ATTR_RW(pggs2);
1788 static DEVICE_ATTR_RW(pggs3);
1789
feature_config_id_show(struct device * device,struct device_attribute * attr,char * buf)1790 static ssize_t feature_config_id_show(struct device *device,
1791 struct device_attribute *attr,
1792 char *buf)
1793 {
1794 struct zynqmp_devinfo *devinfo = dev_get_drvdata(device);
1795
1796 return sysfs_emit(buf, "%d\n", devinfo->feature_conf_id);
1797 }
1798
feature_config_id_store(struct device * device,struct device_attribute * attr,const char * buf,size_t count)1799 static ssize_t feature_config_id_store(struct device *device,
1800 struct device_attribute *attr,
1801 const char *buf, size_t count)
1802 {
1803 u32 config_id;
1804 int ret;
1805 struct zynqmp_devinfo *devinfo = dev_get_drvdata(device);
1806
1807 if (!buf)
1808 return -EINVAL;
1809
1810 ret = kstrtou32(buf, 10, &config_id);
1811 if (ret)
1812 return ret;
1813
1814 devinfo->feature_conf_id = config_id;
1815
1816 return count;
1817 }
1818
1819 static DEVICE_ATTR_RW(feature_config_id);
1820
feature_config_value_show(struct device * device,struct device_attribute * attr,char * buf)1821 static ssize_t feature_config_value_show(struct device *device,
1822 struct device_attribute *attr,
1823 char *buf)
1824 {
1825 int ret;
1826 u32 ret_payload[PAYLOAD_ARG_CNT];
1827 struct zynqmp_devinfo *devinfo = dev_get_drvdata(device);
1828
1829 ret = zynqmp_pm_get_feature_config(devinfo->feature_conf_id,
1830 ret_payload);
1831 if (ret)
1832 return ret;
1833
1834 return sysfs_emit(buf, "%d\n", ret_payload[1]);
1835 }
1836
feature_config_value_store(struct device * device,struct device_attribute * attr,const char * buf,size_t count)1837 static ssize_t feature_config_value_store(struct device *device,
1838 struct device_attribute *attr,
1839 const char *buf, size_t count)
1840 {
1841 u32 value;
1842 int ret;
1843 struct zynqmp_devinfo *devinfo = dev_get_drvdata(device);
1844
1845 if (!buf)
1846 return -EINVAL;
1847
1848 ret = kstrtou32(buf, 10, &value);
1849 if (ret)
1850 return ret;
1851
1852 ret = zynqmp_pm_set_feature_config(devinfo->feature_conf_id,
1853 value);
1854 if (ret)
1855 return ret;
1856
1857 return count;
1858 }
1859
1860 static DEVICE_ATTR_RW(feature_config_value);
1861
1862 static struct attribute *zynqmp_firmware_attrs[] = {
1863 &dev_attr_ggs0.attr,
1864 &dev_attr_ggs1.attr,
1865 &dev_attr_ggs2.attr,
1866 &dev_attr_ggs3.attr,
1867 &dev_attr_pggs0.attr,
1868 &dev_attr_pggs1.attr,
1869 &dev_attr_pggs2.attr,
1870 &dev_attr_pggs3.attr,
1871 &dev_attr_shutdown_scope.attr,
1872 &dev_attr_health_status.attr,
1873 &dev_attr_feature_config_id.attr,
1874 &dev_attr_feature_config_value.attr,
1875 NULL,
1876 };
1877
1878 ATTRIBUTE_GROUPS(zynqmp_firmware);
1879
zynqmp_firmware_probe(struct platform_device * pdev)1880 static int zynqmp_firmware_probe(struct platform_device *pdev)
1881 {
1882 struct device *dev = &pdev->dev;
1883 struct zynqmp_devinfo *devinfo;
1884 int ret;
1885
1886 ret = get_set_conduit_method(dev->of_node);
1887 if (ret)
1888 return ret;
1889
1890 ret = do_feature_check_call(PM_FEATURE_CHECK);
1891 if (ret >= 0 && ((ret & FIRMWARE_VERSION_MASK) >= PM_API_VERSION_1))
1892 feature_check_enabled = true;
1893
1894 devinfo = devm_kzalloc(dev, sizeof(*devinfo), GFP_KERNEL);
1895 if (!devinfo)
1896 return -ENOMEM;
1897
1898 devinfo->dev = dev;
1899
1900 platform_set_drvdata(pdev, devinfo);
1901
1902 /* Check PM API version number */
1903 ret = zynqmp_pm_get_api_version(&pm_api_version);
1904 if (ret)
1905 return ret;
1906
1907 if (pm_api_version < ZYNQMP_PM_VERSION) {
1908 panic("%s Platform Management API version error. Expected: v%d.%d - Found: v%d.%d\n",
1909 __func__,
1910 ZYNQMP_PM_VERSION_MAJOR, ZYNQMP_PM_VERSION_MINOR,
1911 pm_api_version >> 16, pm_api_version & 0xFFFF);
1912 }
1913
1914 pr_info("%s Platform Management API v%d.%d\n", __func__,
1915 pm_api_version >> 16, pm_api_version & 0xFFFF);
1916
1917 /* Get the Family code and sub family code of platform */
1918 ret = zynqmp_pm_get_family_info(&pm_family_code, &pm_sub_family_code);
1919 if (ret < 0)
1920 return ret;
1921
1922 /* Check trustzone version number */
1923 ret = zynqmp_pm_get_trustzone_version(&pm_tz_version);
1924 if (ret)
1925 panic("Legacy trustzone found without version support\n");
1926
1927 if (pm_tz_version < ZYNQMP_TZ_VERSION)
1928 panic("%s Trustzone version error. Expected: v%d.%d - Found: v%d.%d\n",
1929 __func__,
1930 ZYNQMP_TZ_VERSION_MAJOR, ZYNQMP_TZ_VERSION_MINOR,
1931 pm_tz_version >> 16, pm_tz_version & 0xFFFF);
1932
1933 pr_info("%s Trustzone version v%d.%d\n", __func__,
1934 pm_tz_version >> 16, pm_tz_version & 0xFFFF);
1935
1936 ret = mfd_add_devices(&pdev->dev, PLATFORM_DEVID_NONE, firmware_devs,
1937 ARRAY_SIZE(firmware_devs), NULL, 0, NULL);
1938 if (ret) {
1939 dev_err(&pdev->dev, "failed to add MFD devices %d\n", ret);
1940 return ret;
1941 }
1942
1943 zynqmp_pm_api_debugfs_init();
1944
1945 if (pm_family_code == VERSAL_FAMILY_CODE) {
1946 em_dev = platform_device_register_data(&pdev->dev, "xlnx_event_manager",
1947 -1, NULL, 0);
1948 if (IS_ERR(em_dev))
1949 dev_err_probe(&pdev->dev, PTR_ERR(em_dev), "EM register fail with error\n");
1950 }
1951
1952 return of_platform_populate(dev->of_node, NULL, NULL, dev);
1953 }
1954
zynqmp_firmware_remove(struct platform_device * pdev)1955 static void zynqmp_firmware_remove(struct platform_device *pdev)
1956 {
1957 struct pm_api_feature_data *feature_data;
1958 struct hlist_node *tmp;
1959 int i;
1960
1961 mfd_remove_devices(&pdev->dev);
1962 zynqmp_pm_api_debugfs_exit();
1963
1964 hash_for_each_safe(pm_api_features_map, i, tmp, feature_data, hentry) {
1965 hash_del(&feature_data->hentry);
1966 kfree(feature_data);
1967 }
1968
1969 platform_device_unregister(em_dev);
1970 }
1971
1972 static const struct of_device_id zynqmp_firmware_of_match[] = {
1973 {.compatible = "xlnx,zynqmp-firmware"},
1974 {.compatible = "xlnx,versal-firmware"},
1975 {},
1976 };
1977 MODULE_DEVICE_TABLE(of, zynqmp_firmware_of_match);
1978
1979 static struct platform_driver zynqmp_firmware_driver = {
1980 .driver = {
1981 .name = "zynqmp_firmware",
1982 .of_match_table = zynqmp_firmware_of_match,
1983 .dev_groups = zynqmp_firmware_groups,
1984 },
1985 .probe = zynqmp_firmware_probe,
1986 .remove_new = zynqmp_firmware_remove,
1987 };
1988 module_platform_driver(zynqmp_firmware_driver);
1989