1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Renesas RZ/V2H(P) Clock Pulse Generator
4 *
5 * Copyright (C) 2024 Renesas Electronics Corp.
6 *
7 * Based on rzg2l-cpg.c
8 *
9 * Copyright (C) 2015 Glider bvba
10 * Copyright (C) 2013 Ideas On Board SPRL
11 * Copyright (C) 2015 Renesas Electronics Corp.
12 */
13
14 #include <linux/bitfield.h>
15 #include <linux/clk.h>
16 #include <linux/clk-provider.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/iopoll.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_clock.h>
25 #include <linux/pm_domain.h>
26 #include <linux/refcount.h>
27 #include <linux/reset-controller.h>
28 #include <linux/string_choices.h>
29
30 #include <dt-bindings/clock/renesas-cpg-mssr.h>
31
32 #include "rzv2h-cpg.h"
33
34 #ifdef DEBUG
35 #define WARN_DEBUG(x) WARN_ON(x)
36 #else
37 #define WARN_DEBUG(x) do { } while (0)
38 #endif
39
40 #define GET_CLK_ON_OFFSET(x) (0x600 + ((x) * 4))
41 #define GET_CLK_MON_OFFSET(x) (0x800 + ((x) * 4))
42 #define GET_RST_OFFSET(x) (0x900 + ((x) * 4))
43 #define GET_RST_MON_OFFSET(x) (0xA00 + ((x) * 4))
44
45 #define CPG_BUS_1_MSTOP (0xd00)
46 #define CPG_BUS_MSTOP(m) (CPG_BUS_1_MSTOP + ((m) - 1) * 4)
47
48 #define CPG_PLL_STBY(x) ((x))
49 #define CPG_PLL_STBY_RESETB BIT(0)
50 #define CPG_PLL_STBY_RESETB_WEN BIT(16)
51 #define CPG_PLL_CLK1(x) ((x) + 0x004)
52 #define CPG_PLL_CLK1_KDIV(x) ((s16)FIELD_GET(GENMASK(31, 16), (x)))
53 #define CPG_PLL_CLK1_MDIV(x) FIELD_GET(GENMASK(15, 6), (x))
54 #define CPG_PLL_CLK1_PDIV(x) FIELD_GET(GENMASK(5, 0), (x))
55 #define CPG_PLL_CLK2(x) ((x) + 0x008)
56 #define CPG_PLL_CLK2_SDIV(x) FIELD_GET(GENMASK(2, 0), (x))
57 #define CPG_PLL_MON(x) ((x) + 0x010)
58 #define CPG_PLL_MON_RESETB BIT(0)
59 #define CPG_PLL_MON_LOCK BIT(4)
60
61 #define DDIV_DIVCTL_WEN(shift) BIT((shift) + 16)
62
63 #define GET_MOD_CLK_ID(base, index, bit) \
64 ((base) + ((((index) * (16))) + (bit)))
65
66 #define CPG_CLKSTATUS0 (0x700)
67
68 /**
69 * struct rzv2h_cpg_priv - Clock Pulse Generator Private Data
70 *
71 * @dev: CPG device
72 * @base: CPG register block base address
73 * @rmw_lock: protects register accesses
74 * @clks: Array containing all Core and Module Clocks
75 * @num_core_clks: Number of Core Clocks in clks[]
76 * @num_mod_clks: Number of Module Clocks in clks[]
77 * @resets: Array of resets
78 * @num_resets: Number of Module Resets in info->resets[]
79 * @last_dt_core_clk: ID of the last Core Clock exported to DT
80 * @mstop_count: Array of mstop values
81 * @rcdev: Reset controller entity
82 */
83 struct rzv2h_cpg_priv {
84 struct device *dev;
85 void __iomem *base;
86 spinlock_t rmw_lock;
87
88 struct clk **clks;
89 unsigned int num_core_clks;
90 unsigned int num_mod_clks;
91 struct rzv2h_reset *resets;
92 unsigned int num_resets;
93 unsigned int last_dt_core_clk;
94
95 atomic_t *mstop_count;
96
97 struct reset_controller_dev rcdev;
98 };
99
100 #define rcdev_to_priv(x) container_of(x, struct rzv2h_cpg_priv, rcdev)
101
102 struct pll_clk {
103 struct rzv2h_cpg_priv *priv;
104 void __iomem *base;
105 struct clk_hw hw;
106 struct pll pll;
107 };
108
109 #define to_pll(_hw) container_of(_hw, struct pll_clk, hw)
110
111 /**
112 * struct mod_clock - Module clock
113 *
114 * @priv: CPG private data
115 * @mstop_data: mstop data relating to module clock
116 * @hw: handle between common and hardware-specific interfaces
117 * @no_pm: flag to indicate PM is not supported
118 * @on_index: register offset
119 * @on_bit: ON/MON bit
120 * @mon_index: monitor register offset
121 * @mon_bit: monitor bit
122 */
123 struct mod_clock {
124 struct rzv2h_cpg_priv *priv;
125 unsigned int mstop_data;
126 struct clk_hw hw;
127 bool no_pm;
128 u8 on_index;
129 u8 on_bit;
130 s8 mon_index;
131 u8 mon_bit;
132 };
133
134 #define to_mod_clock(_hw) container_of(_hw, struct mod_clock, hw)
135
136 /**
137 * struct ddiv_clk - DDIV clock
138 *
139 * @priv: CPG private data
140 * @div: divider clk
141 * @mon: monitor bit in CPG_CLKSTATUS0 register
142 */
143 struct ddiv_clk {
144 struct rzv2h_cpg_priv *priv;
145 struct clk_divider div;
146 u8 mon;
147 };
148
149 #define to_ddiv_clock(_div) container_of(_div, struct ddiv_clk, div)
150
rzv2h_cpg_pll_clk_is_enabled(struct clk_hw * hw)151 static int rzv2h_cpg_pll_clk_is_enabled(struct clk_hw *hw)
152 {
153 struct pll_clk *pll_clk = to_pll(hw);
154 struct rzv2h_cpg_priv *priv = pll_clk->priv;
155 u32 val = readl(priv->base + CPG_PLL_MON(pll_clk->pll.offset));
156
157 /* Ensure both RESETB and LOCK bits are set */
158 return (val & (CPG_PLL_MON_RESETB | CPG_PLL_MON_LOCK)) ==
159 (CPG_PLL_MON_RESETB | CPG_PLL_MON_LOCK);
160 }
161
rzv2h_cpg_pll_clk_enable(struct clk_hw * hw)162 static int rzv2h_cpg_pll_clk_enable(struct clk_hw *hw)
163 {
164 struct pll_clk *pll_clk = to_pll(hw);
165 struct rzv2h_cpg_priv *priv = pll_clk->priv;
166 struct pll pll = pll_clk->pll;
167 u32 stby_offset;
168 u32 mon_offset;
169 u32 val;
170 int ret;
171
172 if (rzv2h_cpg_pll_clk_is_enabled(hw))
173 return 0;
174
175 stby_offset = CPG_PLL_STBY(pll.offset);
176 mon_offset = CPG_PLL_MON(pll.offset);
177
178 writel(CPG_PLL_STBY_RESETB_WEN | CPG_PLL_STBY_RESETB,
179 priv->base + stby_offset);
180
181 /*
182 * Ensure PLL enters into normal mode
183 *
184 * Note: There is no HW information about the worst case latency.
185 *
186 * Since this latency might depend on external crystal or PLL rate,
187 * use a "super" safe timeout value.
188 */
189 ret = readl_poll_timeout_atomic(priv->base + mon_offset, val,
190 (val & (CPG_PLL_MON_RESETB | CPG_PLL_MON_LOCK)) ==
191 (CPG_PLL_MON_RESETB | CPG_PLL_MON_LOCK), 200, 2000);
192 if (ret)
193 dev_err(priv->dev, "Failed to enable PLL 0x%x/%pC\n",
194 stby_offset, hw->clk);
195
196 return ret;
197 }
198
rzv2h_cpg_pll_clk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)199 static unsigned long rzv2h_cpg_pll_clk_recalc_rate(struct clk_hw *hw,
200 unsigned long parent_rate)
201 {
202 struct pll_clk *pll_clk = to_pll(hw);
203 struct rzv2h_cpg_priv *priv = pll_clk->priv;
204 struct pll pll = pll_clk->pll;
205 unsigned int clk1, clk2;
206 u64 rate;
207
208 if (!pll.has_clkn)
209 return 0;
210
211 clk1 = readl(priv->base + CPG_PLL_CLK1(pll.offset));
212 clk2 = readl(priv->base + CPG_PLL_CLK2(pll.offset));
213
214 rate = mul_u64_u32_shr(parent_rate, (CPG_PLL_CLK1_MDIV(clk1) << 16) +
215 CPG_PLL_CLK1_KDIV(clk1), 16 + CPG_PLL_CLK2_SDIV(clk2));
216
217 return DIV_ROUND_CLOSEST_ULL(rate, CPG_PLL_CLK1_PDIV(clk1));
218 }
219
220 static const struct clk_ops rzv2h_cpg_pll_ops = {
221 .is_enabled = rzv2h_cpg_pll_clk_is_enabled,
222 .enable = rzv2h_cpg_pll_clk_enable,
223 .recalc_rate = rzv2h_cpg_pll_clk_recalc_rate,
224 };
225
226 static struct clk * __init
rzv2h_cpg_pll_clk_register(const struct cpg_core_clk * core,struct rzv2h_cpg_priv * priv,const struct clk_ops * ops)227 rzv2h_cpg_pll_clk_register(const struct cpg_core_clk *core,
228 struct rzv2h_cpg_priv *priv,
229 const struct clk_ops *ops)
230 {
231 void __iomem *base = priv->base;
232 struct device *dev = priv->dev;
233 struct clk_init_data init;
234 const struct clk *parent;
235 const char *parent_name;
236 struct pll_clk *pll_clk;
237 int ret;
238
239 parent = priv->clks[core->parent];
240 if (IS_ERR(parent))
241 return ERR_CAST(parent);
242
243 pll_clk = devm_kzalloc(dev, sizeof(*pll_clk), GFP_KERNEL);
244 if (!pll_clk)
245 return ERR_PTR(-ENOMEM);
246
247 parent_name = __clk_get_name(parent);
248 init.name = core->name;
249 init.ops = ops;
250 init.flags = 0;
251 init.parent_names = &parent_name;
252 init.num_parents = 1;
253
254 pll_clk->hw.init = &init;
255 pll_clk->pll = core->cfg.pll;
256 pll_clk->base = base;
257 pll_clk->priv = priv;
258
259 ret = devm_clk_hw_register(dev, &pll_clk->hw);
260 if (ret)
261 return ERR_PTR(ret);
262
263 return pll_clk->hw.clk;
264 }
265
rzv2h_ddiv_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)266 static unsigned long rzv2h_ddiv_recalc_rate(struct clk_hw *hw,
267 unsigned long parent_rate)
268 {
269 struct clk_divider *divider = to_clk_divider(hw);
270 unsigned int val;
271
272 val = readl(divider->reg) >> divider->shift;
273 val &= clk_div_mask(divider->width);
274
275 return divider_recalc_rate(hw, parent_rate, val, divider->table,
276 divider->flags, divider->width);
277 }
278
rzv2h_ddiv_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * prate)279 static long rzv2h_ddiv_round_rate(struct clk_hw *hw, unsigned long rate,
280 unsigned long *prate)
281 {
282 struct clk_divider *divider = to_clk_divider(hw);
283
284 return divider_round_rate(hw, rate, prate, divider->table,
285 divider->width, divider->flags);
286 }
287
rzv2h_ddiv_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)288 static int rzv2h_ddiv_determine_rate(struct clk_hw *hw,
289 struct clk_rate_request *req)
290 {
291 struct clk_divider *divider = to_clk_divider(hw);
292
293 return divider_determine_rate(hw, req, divider->table, divider->width,
294 divider->flags);
295 }
296
rzv2h_cpg_wait_ddiv_clk_update_done(void __iomem * base,u8 mon)297 static inline int rzv2h_cpg_wait_ddiv_clk_update_done(void __iomem *base, u8 mon)
298 {
299 u32 bitmask = BIT(mon);
300 u32 val;
301
302 if (mon == CSDIV_NO_MON)
303 return 0;
304
305 return readl_poll_timeout_atomic(base + CPG_CLKSTATUS0, val, !(val & bitmask), 10, 200);
306 }
307
rzv2h_ddiv_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)308 static int rzv2h_ddiv_set_rate(struct clk_hw *hw, unsigned long rate,
309 unsigned long parent_rate)
310 {
311 struct clk_divider *divider = to_clk_divider(hw);
312 struct ddiv_clk *ddiv = to_ddiv_clock(divider);
313 struct rzv2h_cpg_priv *priv = ddiv->priv;
314 unsigned long flags = 0;
315 int value;
316 u32 val;
317 int ret;
318
319 value = divider_get_val(rate, parent_rate, divider->table,
320 divider->width, divider->flags);
321 if (value < 0)
322 return value;
323
324 spin_lock_irqsave(divider->lock, flags);
325
326 ret = rzv2h_cpg_wait_ddiv_clk_update_done(priv->base, ddiv->mon);
327 if (ret)
328 goto ddiv_timeout;
329
330 val = readl(divider->reg) | DDIV_DIVCTL_WEN(divider->shift);
331 val &= ~(clk_div_mask(divider->width) << divider->shift);
332 val |= (u32)value << divider->shift;
333 writel(val, divider->reg);
334
335 ret = rzv2h_cpg_wait_ddiv_clk_update_done(priv->base, ddiv->mon);
336
337 ddiv_timeout:
338 spin_unlock_irqrestore(divider->lock, flags);
339 return ret;
340 }
341
342 static const struct clk_ops rzv2h_ddiv_clk_divider_ops = {
343 .recalc_rate = rzv2h_ddiv_recalc_rate,
344 .round_rate = rzv2h_ddiv_round_rate,
345 .determine_rate = rzv2h_ddiv_determine_rate,
346 .set_rate = rzv2h_ddiv_set_rate,
347 };
348
349 static struct clk * __init
rzv2h_cpg_ddiv_clk_register(const struct cpg_core_clk * core,struct rzv2h_cpg_priv * priv)350 rzv2h_cpg_ddiv_clk_register(const struct cpg_core_clk *core,
351 struct rzv2h_cpg_priv *priv)
352 {
353 struct ddiv cfg_ddiv = core->cfg.ddiv;
354 struct clk_init_data init = {};
355 struct device *dev = priv->dev;
356 u8 shift = cfg_ddiv.shift;
357 u8 width = cfg_ddiv.width;
358 const struct clk *parent;
359 const char *parent_name;
360 struct clk_divider *div;
361 struct ddiv_clk *ddiv;
362 int ret;
363
364 parent = priv->clks[core->parent];
365 if (IS_ERR(parent))
366 return ERR_CAST(parent);
367
368 parent_name = __clk_get_name(parent);
369
370 if ((shift + width) > 16)
371 return ERR_PTR(-EINVAL);
372
373 ddiv = devm_kzalloc(priv->dev, sizeof(*ddiv), GFP_KERNEL);
374 if (!ddiv)
375 return ERR_PTR(-ENOMEM);
376
377 init.name = core->name;
378 if (cfg_ddiv.no_rmw)
379 init.ops = &clk_divider_ops;
380 else
381 init.ops = &rzv2h_ddiv_clk_divider_ops;
382 init.parent_names = &parent_name;
383 init.num_parents = 1;
384
385 ddiv->priv = priv;
386 ddiv->mon = cfg_ddiv.monbit;
387 div = &ddiv->div;
388 div->reg = priv->base + cfg_ddiv.offset;
389 div->shift = shift;
390 div->width = width;
391 div->flags = core->flag;
392 div->lock = &priv->rmw_lock;
393 div->hw.init = &init;
394 div->table = core->dtable;
395
396 ret = devm_clk_hw_register(dev, &div->hw);
397 if (ret)
398 return ERR_PTR(ret);
399
400 return div->hw.clk;
401 }
402
403 static struct clk * __init
rzv2h_cpg_mux_clk_register(const struct cpg_core_clk * core,struct rzv2h_cpg_priv * priv)404 rzv2h_cpg_mux_clk_register(const struct cpg_core_clk *core,
405 struct rzv2h_cpg_priv *priv)
406 {
407 struct smuxed mux = core->cfg.smux;
408 const struct clk_hw *clk_hw;
409
410 clk_hw = devm_clk_hw_register_mux(priv->dev, core->name,
411 core->parent_names, core->num_parents,
412 core->flag, priv->base + mux.offset,
413 mux.shift, mux.width,
414 core->mux_flags, &priv->rmw_lock);
415 if (IS_ERR(clk_hw))
416 return ERR_CAST(clk_hw);
417
418 return clk_hw->clk;
419 }
420
421 static struct clk
rzv2h_cpg_clk_src_twocell_get(struct of_phandle_args * clkspec,void * data)422 *rzv2h_cpg_clk_src_twocell_get(struct of_phandle_args *clkspec,
423 void *data)
424 {
425 unsigned int clkidx = clkspec->args[1];
426 struct rzv2h_cpg_priv *priv = data;
427 struct device *dev = priv->dev;
428 const char *type;
429 struct clk *clk;
430
431 switch (clkspec->args[0]) {
432 case CPG_CORE:
433 type = "core";
434 if (clkidx > priv->last_dt_core_clk) {
435 dev_err(dev, "Invalid %s clock index %u\n", type, clkidx);
436 return ERR_PTR(-EINVAL);
437 }
438 clk = priv->clks[clkidx];
439 break;
440
441 case CPG_MOD:
442 type = "module";
443 if (clkidx >= priv->num_mod_clks) {
444 dev_err(dev, "Invalid %s clock index %u\n", type, clkidx);
445 return ERR_PTR(-EINVAL);
446 }
447 clk = priv->clks[priv->num_core_clks + clkidx];
448 break;
449
450 default:
451 dev_err(dev, "Invalid CPG clock type %u\n", clkspec->args[0]);
452 return ERR_PTR(-EINVAL);
453 }
454
455 if (IS_ERR(clk))
456 dev_err(dev, "Cannot get %s clock %u: %ld", type, clkidx,
457 PTR_ERR(clk));
458 else
459 dev_dbg(dev, "clock (%u, %u) is %pC at %lu Hz\n",
460 clkspec->args[0], clkspec->args[1], clk,
461 clk_get_rate(clk));
462 return clk;
463 }
464
465 static void __init
rzv2h_cpg_register_core_clk(const struct cpg_core_clk * core,struct rzv2h_cpg_priv * priv)466 rzv2h_cpg_register_core_clk(const struct cpg_core_clk *core,
467 struct rzv2h_cpg_priv *priv)
468 {
469 struct clk *clk = ERR_PTR(-EOPNOTSUPP), *parent;
470 unsigned int id = core->id, div = core->div;
471 struct device *dev = priv->dev;
472 const char *parent_name;
473 struct clk_hw *clk_hw;
474
475 WARN_DEBUG(id >= priv->num_core_clks);
476 WARN_DEBUG(PTR_ERR(priv->clks[id]) != -ENOENT);
477
478 switch (core->type) {
479 case CLK_TYPE_IN:
480 clk = of_clk_get_by_name(priv->dev->of_node, core->name);
481 break;
482 case CLK_TYPE_FF:
483 WARN_DEBUG(core->parent >= priv->num_core_clks);
484 parent = priv->clks[core->parent];
485 if (IS_ERR(parent)) {
486 clk = parent;
487 goto fail;
488 }
489
490 parent_name = __clk_get_name(parent);
491 clk_hw = devm_clk_hw_register_fixed_factor(dev, core->name,
492 parent_name, CLK_SET_RATE_PARENT,
493 core->mult, div);
494 if (IS_ERR(clk_hw))
495 clk = ERR_CAST(clk_hw);
496 else
497 clk = clk_hw->clk;
498 break;
499 case CLK_TYPE_PLL:
500 clk = rzv2h_cpg_pll_clk_register(core, priv, &rzv2h_cpg_pll_ops);
501 break;
502 case CLK_TYPE_DDIV:
503 clk = rzv2h_cpg_ddiv_clk_register(core, priv);
504 break;
505 case CLK_TYPE_SMUX:
506 clk = rzv2h_cpg_mux_clk_register(core, priv);
507 break;
508 default:
509 goto fail;
510 }
511
512 if (IS_ERR_OR_NULL(clk))
513 goto fail;
514
515 dev_dbg(dev, "Core clock %pC at %lu Hz\n", clk, clk_get_rate(clk));
516 priv->clks[id] = clk;
517 return;
518
519 fail:
520 dev_err(dev, "Failed to register core clock %s: %ld\n",
521 core->name, PTR_ERR(clk));
522 }
523
rzv2h_mod_clock_mstop_enable(struct rzv2h_cpg_priv * priv,u32 mstop_data)524 static void rzv2h_mod_clock_mstop_enable(struct rzv2h_cpg_priv *priv,
525 u32 mstop_data)
526 {
527 unsigned long mstop_mask = FIELD_GET(BUS_MSTOP_BITS_MASK, mstop_data);
528 u16 mstop_index = FIELD_GET(BUS_MSTOP_IDX_MASK, mstop_data);
529 atomic_t *mstop = &priv->mstop_count[mstop_index * 16];
530 unsigned long flags;
531 unsigned int i;
532 u32 val = 0;
533
534 spin_lock_irqsave(&priv->rmw_lock, flags);
535 for_each_set_bit(i, &mstop_mask, 16) {
536 if (!atomic_read(&mstop[i]))
537 val |= BIT(i) << 16;
538 atomic_inc(&mstop[i]);
539 }
540 if (val)
541 writel(val, priv->base + CPG_BUS_MSTOP(mstop_index));
542 spin_unlock_irqrestore(&priv->rmw_lock, flags);
543 }
544
rzv2h_mod_clock_mstop_disable(struct rzv2h_cpg_priv * priv,u32 mstop_data)545 static void rzv2h_mod_clock_mstop_disable(struct rzv2h_cpg_priv *priv,
546 u32 mstop_data)
547 {
548 unsigned long mstop_mask = FIELD_GET(BUS_MSTOP_BITS_MASK, mstop_data);
549 u16 mstop_index = FIELD_GET(BUS_MSTOP_IDX_MASK, mstop_data);
550 atomic_t *mstop = &priv->mstop_count[mstop_index * 16];
551 unsigned long flags;
552 unsigned int i;
553 u32 val = 0;
554
555 spin_lock_irqsave(&priv->rmw_lock, flags);
556 for_each_set_bit(i, &mstop_mask, 16) {
557 if (!atomic_read(&mstop[i]) ||
558 atomic_dec_and_test(&mstop[i]))
559 val |= BIT(i) << 16 | BIT(i);
560 }
561 if (val)
562 writel(val, priv->base + CPG_BUS_MSTOP(mstop_index));
563 spin_unlock_irqrestore(&priv->rmw_lock, flags);
564 }
565
rzv2h_mod_clock_is_enabled(struct clk_hw * hw)566 static int rzv2h_mod_clock_is_enabled(struct clk_hw *hw)
567 {
568 struct mod_clock *clock = to_mod_clock(hw);
569 struct rzv2h_cpg_priv *priv = clock->priv;
570 u32 bitmask;
571 u32 offset;
572
573 if (clock->mon_index >= 0) {
574 offset = GET_CLK_MON_OFFSET(clock->mon_index);
575 bitmask = BIT(clock->mon_bit);
576
577 if (!(readl(priv->base + offset) & bitmask))
578 return 0;
579 }
580
581 offset = GET_CLK_ON_OFFSET(clock->on_index);
582 bitmask = BIT(clock->on_bit);
583
584 return readl(priv->base + offset) & bitmask;
585 }
586
rzv2h_mod_clock_endisable(struct clk_hw * hw,bool enable)587 static int rzv2h_mod_clock_endisable(struct clk_hw *hw, bool enable)
588 {
589 bool enabled = rzv2h_mod_clock_is_enabled(hw);
590 struct mod_clock *clock = to_mod_clock(hw);
591 unsigned int reg = GET_CLK_ON_OFFSET(clock->on_index);
592 struct rzv2h_cpg_priv *priv = clock->priv;
593 u32 bitmask = BIT(clock->on_bit);
594 struct device *dev = priv->dev;
595 u32 value;
596 int error;
597
598 dev_dbg(dev, "CLK_ON 0x%x/%pC %s\n", reg, hw->clk,
599 str_on_off(enable));
600
601 if (enabled == enable)
602 return 0;
603
604 value = bitmask << 16;
605 if (enable) {
606 value |= bitmask;
607 writel(value, priv->base + reg);
608 if (clock->mstop_data != BUS_MSTOP_NONE)
609 rzv2h_mod_clock_mstop_enable(priv, clock->mstop_data);
610 } else {
611 if (clock->mstop_data != BUS_MSTOP_NONE)
612 rzv2h_mod_clock_mstop_disable(priv, clock->mstop_data);
613 writel(value, priv->base + reg);
614 }
615
616 if (!enable || clock->mon_index < 0)
617 return 0;
618
619 reg = GET_CLK_MON_OFFSET(clock->mon_index);
620 bitmask = BIT(clock->mon_bit);
621 error = readl_poll_timeout_atomic(priv->base + reg, value,
622 value & bitmask, 0, 10);
623 if (error)
624 dev_err(dev, "Failed to enable CLK_ON 0x%x/%pC\n",
625 GET_CLK_ON_OFFSET(clock->on_index), hw->clk);
626
627 return error;
628 }
629
rzv2h_mod_clock_enable(struct clk_hw * hw)630 static int rzv2h_mod_clock_enable(struct clk_hw *hw)
631 {
632 return rzv2h_mod_clock_endisable(hw, true);
633 }
634
rzv2h_mod_clock_disable(struct clk_hw * hw)635 static void rzv2h_mod_clock_disable(struct clk_hw *hw)
636 {
637 rzv2h_mod_clock_endisable(hw, false);
638 }
639
640 static const struct clk_ops rzv2h_mod_clock_ops = {
641 .enable = rzv2h_mod_clock_enable,
642 .disable = rzv2h_mod_clock_disable,
643 .is_enabled = rzv2h_mod_clock_is_enabled,
644 };
645
646 static void __init
rzv2h_cpg_register_mod_clk(const struct rzv2h_mod_clk * mod,struct rzv2h_cpg_priv * priv)647 rzv2h_cpg_register_mod_clk(const struct rzv2h_mod_clk *mod,
648 struct rzv2h_cpg_priv *priv)
649 {
650 struct mod_clock *clock = NULL;
651 struct device *dev = priv->dev;
652 struct clk_init_data init;
653 struct clk *parent, *clk;
654 const char *parent_name;
655 unsigned int id;
656 int ret;
657
658 id = GET_MOD_CLK_ID(priv->num_core_clks, mod->on_index, mod->on_bit);
659 WARN_DEBUG(id >= priv->num_core_clks + priv->num_mod_clks);
660 WARN_DEBUG(mod->parent >= priv->num_core_clks + priv->num_mod_clks);
661 WARN_DEBUG(PTR_ERR(priv->clks[id]) != -ENOENT);
662
663 parent = priv->clks[mod->parent];
664 if (IS_ERR(parent)) {
665 clk = parent;
666 goto fail;
667 }
668
669 clock = devm_kzalloc(dev, sizeof(*clock), GFP_KERNEL);
670 if (!clock) {
671 clk = ERR_PTR(-ENOMEM);
672 goto fail;
673 }
674
675 init.name = mod->name;
676 init.ops = &rzv2h_mod_clock_ops;
677 init.flags = CLK_SET_RATE_PARENT;
678 if (mod->critical)
679 init.flags |= CLK_IS_CRITICAL;
680
681 parent_name = __clk_get_name(parent);
682 init.parent_names = &parent_name;
683 init.num_parents = 1;
684
685 clock->on_index = mod->on_index;
686 clock->on_bit = mod->on_bit;
687 clock->mon_index = mod->mon_index;
688 clock->mon_bit = mod->mon_bit;
689 clock->no_pm = mod->no_pm;
690 clock->priv = priv;
691 clock->hw.init = &init;
692 clock->mstop_data = mod->mstop_data;
693
694 ret = devm_clk_hw_register(dev, &clock->hw);
695 if (ret) {
696 clk = ERR_PTR(ret);
697 goto fail;
698 }
699
700 priv->clks[id] = clock->hw.clk;
701
702 /*
703 * Ensure the module clocks and MSTOP bits are synchronized when they are
704 * turned ON by the bootloader. Enable MSTOP bits for module clocks that were
705 * turned ON in an earlier boot stage.
706 */
707 if (clock->mstop_data != BUS_MSTOP_NONE &&
708 !mod->critical && rzv2h_mod_clock_is_enabled(&clock->hw)) {
709 rzv2h_mod_clock_mstop_enable(priv, clock->mstop_data);
710 } else if (clock->mstop_data != BUS_MSTOP_NONE && mod->critical) {
711 unsigned long mstop_mask = FIELD_GET(BUS_MSTOP_BITS_MASK, clock->mstop_data);
712 u16 mstop_index = FIELD_GET(BUS_MSTOP_IDX_MASK, clock->mstop_data);
713 atomic_t *mstop = &priv->mstop_count[mstop_index * 16];
714 unsigned long flags;
715 unsigned int i;
716 u32 val = 0;
717
718 /*
719 * Critical clocks are turned ON immediately upon registration, and the
720 * MSTOP counter is updated through the rzv2h_mod_clock_enable() path.
721 * However, if the critical clocks were already turned ON by the initial
722 * bootloader, synchronize the atomic counter here and clear the MSTOP bit.
723 */
724 spin_lock_irqsave(&priv->rmw_lock, flags);
725 for_each_set_bit(i, &mstop_mask, 16) {
726 if (atomic_read(&mstop[i]))
727 continue;
728 val |= BIT(i) << 16;
729 atomic_inc(&mstop[i]);
730 }
731 if (val)
732 writel(val, priv->base + CPG_BUS_MSTOP(mstop_index));
733 spin_unlock_irqrestore(&priv->rmw_lock, flags);
734 }
735
736 return;
737
738 fail:
739 dev_err(dev, "Failed to register module clock %s: %ld\n",
740 mod->name, PTR_ERR(clk));
741 }
742
__rzv2h_cpg_assert(struct reset_controller_dev * rcdev,unsigned long id,bool assert)743 static int __rzv2h_cpg_assert(struct reset_controller_dev *rcdev,
744 unsigned long id, bool assert)
745 {
746 struct rzv2h_cpg_priv *priv = rcdev_to_priv(rcdev);
747 unsigned int reg = GET_RST_OFFSET(priv->resets[id].reset_index);
748 u32 mask = BIT(priv->resets[id].reset_bit);
749 u8 monbit = priv->resets[id].mon_bit;
750 u32 value = mask << 16;
751
752 dev_dbg(rcdev->dev, "%s id:%ld offset:0x%x\n",
753 assert ? "assert" : "deassert", id, reg);
754
755 if (!assert)
756 value |= mask;
757 writel(value, priv->base + reg);
758
759 reg = GET_RST_MON_OFFSET(priv->resets[id].mon_index);
760 mask = BIT(monbit);
761
762 return readl_poll_timeout_atomic(priv->base + reg, value,
763 assert ? (value & mask) : !(value & mask),
764 10, 200);
765 }
766
rzv2h_cpg_assert(struct reset_controller_dev * rcdev,unsigned long id)767 static int rzv2h_cpg_assert(struct reset_controller_dev *rcdev,
768 unsigned long id)
769 {
770 return __rzv2h_cpg_assert(rcdev, id, true);
771 }
772
rzv2h_cpg_deassert(struct reset_controller_dev * rcdev,unsigned long id)773 static int rzv2h_cpg_deassert(struct reset_controller_dev *rcdev,
774 unsigned long id)
775 {
776 return __rzv2h_cpg_assert(rcdev, id, false);
777 }
778
rzv2h_cpg_reset(struct reset_controller_dev * rcdev,unsigned long id)779 static int rzv2h_cpg_reset(struct reset_controller_dev *rcdev,
780 unsigned long id)
781 {
782 int ret;
783
784 ret = rzv2h_cpg_assert(rcdev, id);
785 if (ret)
786 return ret;
787
788 return rzv2h_cpg_deassert(rcdev, id);
789 }
790
rzv2h_cpg_status(struct reset_controller_dev * rcdev,unsigned long id)791 static int rzv2h_cpg_status(struct reset_controller_dev *rcdev,
792 unsigned long id)
793 {
794 struct rzv2h_cpg_priv *priv = rcdev_to_priv(rcdev);
795 unsigned int reg = GET_RST_MON_OFFSET(priv->resets[id].mon_index);
796 u8 monbit = priv->resets[id].mon_bit;
797
798 return !!(readl(priv->base + reg) & BIT(monbit));
799 }
800
801 static const struct reset_control_ops rzv2h_cpg_reset_ops = {
802 .reset = rzv2h_cpg_reset,
803 .assert = rzv2h_cpg_assert,
804 .deassert = rzv2h_cpg_deassert,
805 .status = rzv2h_cpg_status,
806 };
807
rzv2h_cpg_reset_xlate(struct reset_controller_dev * rcdev,const struct of_phandle_args * reset_spec)808 static int rzv2h_cpg_reset_xlate(struct reset_controller_dev *rcdev,
809 const struct of_phandle_args *reset_spec)
810 {
811 struct rzv2h_cpg_priv *priv = rcdev_to_priv(rcdev);
812 unsigned int id = reset_spec->args[0];
813 u8 rst_index = id / 16;
814 u8 rst_bit = id % 16;
815 unsigned int i;
816
817 for (i = 0; i < rcdev->nr_resets; i++) {
818 if (rst_index == priv->resets[i].reset_index &&
819 rst_bit == priv->resets[i].reset_bit)
820 return i;
821 }
822
823 return -EINVAL;
824 }
825
rzv2h_cpg_reset_controller_register(struct rzv2h_cpg_priv * priv)826 static int rzv2h_cpg_reset_controller_register(struct rzv2h_cpg_priv *priv)
827 {
828 priv->rcdev.ops = &rzv2h_cpg_reset_ops;
829 priv->rcdev.of_node = priv->dev->of_node;
830 priv->rcdev.dev = priv->dev;
831 priv->rcdev.of_reset_n_cells = 1;
832 priv->rcdev.of_xlate = rzv2h_cpg_reset_xlate;
833 priv->rcdev.nr_resets = priv->num_resets;
834
835 return devm_reset_controller_register(priv->dev, &priv->rcdev);
836 }
837
838 /**
839 * struct rzv2h_cpg_pd - RZ/V2H power domain data structure
840 * @priv: pointer to CPG private data structure
841 * @genpd: generic PM domain
842 */
843 struct rzv2h_cpg_pd {
844 struct rzv2h_cpg_priv *priv;
845 struct generic_pm_domain genpd;
846 };
847
rzv2h_cpg_is_pm_clk(struct rzv2h_cpg_pd * pd,const struct of_phandle_args * clkspec)848 static bool rzv2h_cpg_is_pm_clk(struct rzv2h_cpg_pd *pd,
849 const struct of_phandle_args *clkspec)
850 {
851 if (clkspec->np != pd->genpd.dev.of_node || clkspec->args_count != 2)
852 return false;
853
854 switch (clkspec->args[0]) {
855 case CPG_MOD: {
856 struct rzv2h_cpg_priv *priv = pd->priv;
857 unsigned int id = clkspec->args[1];
858 struct mod_clock *clock;
859
860 if (id >= priv->num_mod_clks)
861 return false;
862
863 if (priv->clks[priv->num_core_clks + id] == ERR_PTR(-ENOENT))
864 return false;
865
866 clock = to_mod_clock(__clk_get_hw(priv->clks[priv->num_core_clks + id]));
867
868 return !clock->no_pm;
869 }
870
871 case CPG_CORE:
872 default:
873 return false;
874 }
875 }
876
rzv2h_cpg_attach_dev(struct generic_pm_domain * domain,struct device * dev)877 static int rzv2h_cpg_attach_dev(struct generic_pm_domain *domain, struct device *dev)
878 {
879 struct rzv2h_cpg_pd *pd = container_of(domain, struct rzv2h_cpg_pd, genpd);
880 struct device_node *np = dev->of_node;
881 struct of_phandle_args clkspec;
882 bool once = true;
883 struct clk *clk;
884 unsigned int i;
885 int error;
886
887 for (i = 0; !of_parse_phandle_with_args(np, "clocks", "#clock-cells", i, &clkspec); i++) {
888 if (!rzv2h_cpg_is_pm_clk(pd, &clkspec)) {
889 of_node_put(clkspec.np);
890 continue;
891 }
892
893 if (once) {
894 once = false;
895 error = pm_clk_create(dev);
896 if (error) {
897 of_node_put(clkspec.np);
898 goto err;
899 }
900 }
901 clk = of_clk_get_from_provider(&clkspec);
902 of_node_put(clkspec.np);
903 if (IS_ERR(clk)) {
904 error = PTR_ERR(clk);
905 goto fail_destroy;
906 }
907
908 error = pm_clk_add_clk(dev, clk);
909 if (error) {
910 dev_err(dev, "pm_clk_add_clk failed %d\n",
911 error);
912 goto fail_put;
913 }
914 }
915
916 return 0;
917
918 fail_put:
919 clk_put(clk);
920
921 fail_destroy:
922 pm_clk_destroy(dev);
923 err:
924 return error;
925 }
926
rzv2h_cpg_detach_dev(struct generic_pm_domain * unused,struct device * dev)927 static void rzv2h_cpg_detach_dev(struct generic_pm_domain *unused, struct device *dev)
928 {
929 if (!pm_clk_no_clocks(dev))
930 pm_clk_destroy(dev);
931 }
932
rzv2h_cpg_genpd_remove_simple(void * data)933 static void rzv2h_cpg_genpd_remove_simple(void *data)
934 {
935 pm_genpd_remove(data);
936 }
937
rzv2h_cpg_add_pm_domains(struct rzv2h_cpg_priv * priv)938 static int __init rzv2h_cpg_add_pm_domains(struct rzv2h_cpg_priv *priv)
939 {
940 struct device *dev = priv->dev;
941 struct device_node *np = dev->of_node;
942 struct rzv2h_cpg_pd *pd;
943 int ret;
944
945 pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
946 if (!pd)
947 return -ENOMEM;
948
949 pd->genpd.name = np->name;
950 pd->priv = priv;
951 pd->genpd.flags |= GENPD_FLAG_ALWAYS_ON | GENPD_FLAG_PM_CLK | GENPD_FLAG_ACTIVE_WAKEUP;
952 pd->genpd.attach_dev = rzv2h_cpg_attach_dev;
953 pd->genpd.detach_dev = rzv2h_cpg_detach_dev;
954 ret = pm_genpd_init(&pd->genpd, &pm_domain_always_on_gov, false);
955 if (ret)
956 return ret;
957
958 ret = devm_add_action_or_reset(dev, rzv2h_cpg_genpd_remove_simple, &pd->genpd);
959 if (ret)
960 return ret;
961
962 return of_genpd_add_provider_simple(np, &pd->genpd);
963 }
964
rzv2h_cpg_del_clk_provider(void * data)965 static void rzv2h_cpg_del_clk_provider(void *data)
966 {
967 of_clk_del_provider(data);
968 }
969
rzv2h_cpg_probe(struct platform_device * pdev)970 static int __init rzv2h_cpg_probe(struct platform_device *pdev)
971 {
972 struct device *dev = &pdev->dev;
973 struct device_node *np = dev->of_node;
974 const struct rzv2h_cpg_info *info;
975 struct rzv2h_cpg_priv *priv;
976 unsigned int nclks, i;
977 struct clk **clks;
978 int error;
979
980 info = of_device_get_match_data(dev);
981
982 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
983 if (!priv)
984 return -ENOMEM;
985
986 spin_lock_init(&priv->rmw_lock);
987
988 priv->dev = dev;
989
990 priv->base = devm_platform_ioremap_resource(pdev, 0);
991 if (IS_ERR(priv->base))
992 return PTR_ERR(priv->base);
993
994 nclks = info->num_total_core_clks + info->num_hw_mod_clks;
995 clks = devm_kmalloc_array(dev, nclks, sizeof(*clks), GFP_KERNEL);
996 if (!clks)
997 return -ENOMEM;
998
999 priv->mstop_count = devm_kcalloc(dev, info->num_mstop_bits,
1000 sizeof(*priv->mstop_count), GFP_KERNEL);
1001 if (!priv->mstop_count)
1002 return -ENOMEM;
1003
1004 /* Adjust for CPG_BUS_m_MSTOP starting from m = 1 */
1005 priv->mstop_count -= 16;
1006
1007 priv->resets = devm_kmemdup(dev, info->resets, sizeof(*info->resets) *
1008 info->num_resets, GFP_KERNEL);
1009 if (!priv->resets)
1010 return -ENOMEM;
1011
1012 dev_set_drvdata(dev, priv);
1013 priv->clks = clks;
1014 priv->num_core_clks = info->num_total_core_clks;
1015 priv->num_mod_clks = info->num_hw_mod_clks;
1016 priv->last_dt_core_clk = info->last_dt_core_clk;
1017 priv->num_resets = info->num_resets;
1018
1019 for (i = 0; i < nclks; i++)
1020 clks[i] = ERR_PTR(-ENOENT);
1021
1022 for (i = 0; i < info->num_core_clks; i++)
1023 rzv2h_cpg_register_core_clk(&info->core_clks[i], priv);
1024
1025 for (i = 0; i < info->num_mod_clks; i++)
1026 rzv2h_cpg_register_mod_clk(&info->mod_clks[i], priv);
1027
1028 error = of_clk_add_provider(np, rzv2h_cpg_clk_src_twocell_get, priv);
1029 if (error)
1030 return error;
1031
1032 error = devm_add_action_or_reset(dev, rzv2h_cpg_del_clk_provider, np);
1033 if (error)
1034 return error;
1035
1036 error = rzv2h_cpg_add_pm_domains(priv);
1037 if (error)
1038 return error;
1039
1040 error = rzv2h_cpg_reset_controller_register(priv);
1041 if (error)
1042 return error;
1043
1044 return 0;
1045 }
1046
1047 static const struct of_device_id rzv2h_cpg_match[] = {
1048 #ifdef CONFIG_CLK_R9A09G047
1049 {
1050 .compatible = "renesas,r9a09g047-cpg",
1051 .data = &r9a09g047_cpg_info,
1052 },
1053 #endif
1054 #ifdef CONFIG_CLK_R9A09G056
1055 {
1056 .compatible = "renesas,r9a09g056-cpg",
1057 .data = &r9a09g056_cpg_info,
1058 },
1059 #endif
1060 #ifdef CONFIG_CLK_R9A09G057
1061 {
1062 .compatible = "renesas,r9a09g057-cpg",
1063 .data = &r9a09g057_cpg_info,
1064 },
1065 #endif
1066 { /* sentinel */ }
1067 };
1068
1069 static struct platform_driver rzv2h_cpg_driver = {
1070 .driver = {
1071 .name = "rzv2h-cpg",
1072 .of_match_table = rzv2h_cpg_match,
1073 },
1074 };
1075
rzv2h_cpg_init(void)1076 static int __init rzv2h_cpg_init(void)
1077 {
1078 return platform_driver_probe(&rzv2h_cpg_driver, rzv2h_cpg_probe);
1079 }
1080
1081 subsys_initcall(rzv2h_cpg_init);
1082
1083 MODULE_DESCRIPTION("Renesas RZ/V2H CPG Driver");
1084