1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * IPv4 over IEEE 1394, per RFC 2734
4 * IPv6 over IEEE 1394, per RFC 3146
5 *
6 * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
7 *
8 * based on eth1394 by Ben Collins et al
9 */
10
11 #include <linux/bug.h>
12 #include <linux/compiler.h>
13 #include <linux/delay.h>
14 #include <linux/device.h>
15 #include <linux/ethtool.h>
16 #include <linux/firewire.h>
17 #include <linux/firewire-constants.h>
18 #include <linux/highmem.h>
19 #include <linux/in.h>
20 #include <linux/ip.h>
21 #include <linux/jiffies.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/mutex.h>
26 #include <linux/netdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30
31 #include <linux/unaligned.h>
32 #include <net/arp.h>
33 #include <net/firewire.h>
34
35 /* rx limits */
36 #define FWNET_MAX_FRAGMENTS 30 /* arbitrary, > TX queue depth */
37 #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16*1024 ? 4 : 2)
38
39 /* tx limits */
40 #define FWNET_MAX_QUEUED_DATAGRAMS 20 /* < 64 = number of tlabels */
41 #define FWNET_MIN_QUEUED_DATAGRAMS 10 /* should keep AT DMA busy enough */
42 #define FWNET_TX_QUEUE_LEN FWNET_MAX_QUEUED_DATAGRAMS /* ? */
43
44 #define IEEE1394_BROADCAST_CHANNEL 31
45 #define IEEE1394_ALL_NODES (0xffc0 | 0x003f)
46 #define IEEE1394_MAX_PAYLOAD_S100 512
47 #define FWNET_NO_FIFO_ADDR (~0ULL)
48
49 #define IANA_SPECIFIER_ID 0x00005eU
50 #define RFC2734_SW_VERSION 0x000001U
51 #define RFC3146_SW_VERSION 0x000002U
52
53 #define IEEE1394_GASP_HDR_SIZE 8
54
55 #define RFC2374_UNFRAG_HDR_SIZE 4
56 #define RFC2374_FRAG_HDR_SIZE 8
57 #define RFC2374_FRAG_OVERHEAD 4
58
59 #define RFC2374_HDR_UNFRAG 0 /* unfragmented */
60 #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */
61 #define RFC2374_HDR_LASTFRAG 2 /* last fragment */
62 #define RFC2374_HDR_INTFRAG 3 /* interior fragment */
63
fwnet_hwaddr_is_multicast(u8 * ha)64 static bool fwnet_hwaddr_is_multicast(u8 *ha)
65 {
66 return !!(*ha & 1);
67 }
68
69 /* IPv4 and IPv6 encapsulation header */
70 struct rfc2734_header {
71 u32 w0;
72 u32 w1;
73 };
74
75 #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30)
76 #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff))
77 #define fwnet_get_hdr_dg_size(h) ((((h)->w0 & 0x0fff0000) >> 16) + 1)
78 #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff))
79 #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16)
80
81 #define fwnet_set_hdr_lf(lf) ((lf) << 30)
82 #define fwnet_set_hdr_ether_type(et) (et)
83 #define fwnet_set_hdr_dg_size(dgs) (((dgs) - 1) << 16)
84 #define fwnet_set_hdr_fg_off(fgo) (fgo)
85
86 #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16)
87
fwnet_make_uf_hdr(struct rfc2734_header * hdr,unsigned ether_type)88 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
89 unsigned ether_type)
90 {
91 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
92 | fwnet_set_hdr_ether_type(ether_type);
93 }
94
fwnet_make_ff_hdr(struct rfc2734_header * hdr,unsigned ether_type,unsigned dg_size,unsigned dgl)95 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
96 unsigned ether_type, unsigned dg_size, unsigned dgl)
97 {
98 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
99 | fwnet_set_hdr_dg_size(dg_size)
100 | fwnet_set_hdr_ether_type(ether_type);
101 hdr->w1 = fwnet_set_hdr_dgl(dgl);
102 }
103
fwnet_make_sf_hdr(struct rfc2734_header * hdr,unsigned lf,unsigned dg_size,unsigned fg_off,unsigned dgl)104 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
105 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
106 {
107 hdr->w0 = fwnet_set_hdr_lf(lf)
108 | fwnet_set_hdr_dg_size(dg_size)
109 | fwnet_set_hdr_fg_off(fg_off);
110 hdr->w1 = fwnet_set_hdr_dgl(dgl);
111 }
112
113 /* This list keeps track of what parts of the datagram have been filled in */
114 struct fwnet_fragment_info {
115 struct list_head fi_link;
116 u16 offset;
117 u16 len;
118 };
119
120 struct fwnet_partial_datagram {
121 struct list_head pd_link;
122 struct list_head fi_list;
123 struct sk_buff *skb;
124 /* FIXME Why not use skb->data? */
125 char *pbuf;
126 u16 datagram_label;
127 u16 ether_type;
128 u16 datagram_size;
129 };
130
131 static DEFINE_MUTEX(fwnet_device_mutex);
132 static LIST_HEAD(fwnet_device_list);
133
134 struct fwnet_device {
135 struct list_head dev_link;
136 spinlock_t lock;
137 enum {
138 FWNET_BROADCAST_ERROR,
139 FWNET_BROADCAST_RUNNING,
140 FWNET_BROADCAST_STOPPED,
141 } broadcast_state;
142 struct fw_iso_context *broadcast_rcv_context;
143 struct fw_iso_buffer broadcast_rcv_buffer;
144 void **broadcast_rcv_buffer_ptrs;
145 unsigned broadcast_rcv_next_ptr;
146 unsigned num_broadcast_rcv_ptrs;
147 unsigned rcv_buffer_size;
148 /*
149 * This value is the maximum unfragmented datagram size that can be
150 * sent by the hardware. It already has the GASP overhead and the
151 * unfragmented datagram header overhead calculated into it.
152 */
153 unsigned broadcast_xmt_max_payload;
154 u16 broadcast_xmt_datagramlabel;
155
156 /*
157 * The CSR address that remote nodes must send datagrams to for us to
158 * receive them.
159 */
160 struct fw_address_handler handler;
161 u64 local_fifo;
162
163 /* Number of tx datagrams that have been queued but not yet acked */
164 int queued_datagrams;
165
166 int peer_count;
167 struct list_head peer_list;
168 struct fw_card *card;
169 struct net_device *netdev;
170 };
171
172 struct fwnet_peer {
173 struct list_head peer_link;
174 struct fwnet_device *dev;
175 u64 guid;
176
177 /* guarded by dev->lock */
178 struct list_head pd_list; /* received partial datagrams */
179 unsigned pdg_size; /* pd_list size */
180
181 u16 datagram_label; /* outgoing datagram label */
182 u16 max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */
183 int node_id;
184 int generation;
185 unsigned speed;
186 };
187
188 /* This is our task struct. It's used for the packet complete callback. */
189 struct fwnet_packet_task {
190 struct fw_transaction transaction;
191 struct rfc2734_header hdr;
192 struct sk_buff *skb;
193 struct fwnet_device *dev;
194
195 int outstanding_pkts;
196 u64 fifo_addr;
197 u16 dest_node;
198 u16 max_payload;
199 u8 generation;
200 u8 speed;
201 u8 enqueued;
202 };
203
204 /*
205 * saddr == NULL means use device source address.
206 * daddr == NULL means leave destination address (eg unresolved arp).
207 */
fwnet_header_create(struct sk_buff * skb,struct net_device * net,unsigned short type,const void * daddr,const void * saddr,unsigned len)208 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
209 unsigned short type, const void *daddr,
210 const void *saddr, unsigned len)
211 {
212 struct fwnet_header *h;
213
214 h = skb_push(skb, sizeof(*h));
215 put_unaligned_be16(type, &h->h_proto);
216
217 if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
218 memset(h->h_dest, 0, net->addr_len);
219
220 return net->hard_header_len;
221 }
222
223 if (daddr) {
224 memcpy(h->h_dest, daddr, net->addr_len);
225
226 return net->hard_header_len;
227 }
228
229 return -net->hard_header_len;
230 }
231
fwnet_header_cache(const struct neighbour * neigh,struct hh_cache * hh,__be16 type)232 static int fwnet_header_cache(const struct neighbour *neigh,
233 struct hh_cache *hh, __be16 type)
234 {
235 struct net_device *net;
236 struct fwnet_header *h;
237
238 if (type == cpu_to_be16(ETH_P_802_3))
239 return -1;
240 net = neigh->dev;
241 h = (struct fwnet_header *)((u8 *)hh->hh_data + HH_DATA_OFF(sizeof(*h)));
242 h->h_proto = type;
243 memcpy(h->h_dest, neigh->ha, net->addr_len);
244
245 /* Pairs with the READ_ONCE() in neigh_resolve_output(),
246 * neigh_hh_output() and neigh_update_hhs().
247 */
248 smp_store_release(&hh->hh_len, FWNET_HLEN);
249
250 return 0;
251 }
252
253 /* Called by Address Resolution module to notify changes in address. */
fwnet_header_cache_update(struct hh_cache * hh,const struct net_device * net,const unsigned char * haddr)254 static void fwnet_header_cache_update(struct hh_cache *hh,
255 const struct net_device *net, const unsigned char *haddr)
256 {
257 memcpy((u8 *)hh->hh_data + HH_DATA_OFF(FWNET_HLEN), haddr, net->addr_len);
258 }
259
fwnet_header_parse(const struct sk_buff * skb,unsigned char * haddr)260 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
261 {
262 memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
263
264 return FWNET_ALEN;
265 }
266
267 static const struct header_ops fwnet_header_ops = {
268 .create = fwnet_header_create,
269 .cache = fwnet_header_cache,
270 .cache_update = fwnet_header_cache_update,
271 .parse = fwnet_header_parse,
272 };
273
274 /* FIXME: is this correct for all cases? */
fwnet_frag_overlap(struct fwnet_partial_datagram * pd,unsigned offset,unsigned len)275 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
276 unsigned offset, unsigned len)
277 {
278 struct fwnet_fragment_info *fi;
279 unsigned end = offset + len;
280
281 list_for_each_entry(fi, &pd->fi_list, fi_link)
282 if (offset < fi->offset + fi->len && end > fi->offset)
283 return true;
284
285 return false;
286 }
287
288 /* Assumes that new fragment does not overlap any existing fragments */
fwnet_frag_new(struct fwnet_partial_datagram * pd,unsigned offset,unsigned len)289 static struct fwnet_fragment_info *fwnet_frag_new(
290 struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
291 {
292 struct fwnet_fragment_info *fi, *fi2, *new;
293 struct list_head *list;
294
295 list = &pd->fi_list;
296 list_for_each_entry(fi, &pd->fi_list, fi_link) {
297 if (fi->offset + fi->len == offset) {
298 /* The new fragment can be tacked on to the end */
299 /* Did the new fragment plug a hole? */
300 fi2 = list_entry(fi->fi_link.next,
301 struct fwnet_fragment_info, fi_link);
302 if (fi->offset + fi->len == fi2->offset) {
303 /* glue fragments together */
304 fi->len += len + fi2->len;
305 list_del(&fi2->fi_link);
306 kfree(fi2);
307 } else {
308 fi->len += len;
309 }
310
311 return fi;
312 }
313 if (offset + len == fi->offset) {
314 /* The new fragment can be tacked on to the beginning */
315 /* Did the new fragment plug a hole? */
316 fi2 = list_entry(fi->fi_link.prev,
317 struct fwnet_fragment_info, fi_link);
318 if (fi2->offset + fi2->len == fi->offset) {
319 /* glue fragments together */
320 fi2->len += fi->len + len;
321 list_del(&fi->fi_link);
322 kfree(fi);
323
324 return fi2;
325 }
326 fi->offset = offset;
327 fi->len += len;
328
329 return fi;
330 }
331 if (offset > fi->offset + fi->len) {
332 list = &fi->fi_link;
333 break;
334 }
335 if (offset + len < fi->offset) {
336 list = fi->fi_link.prev;
337 break;
338 }
339 }
340
341 new = kmalloc(sizeof(*new), GFP_ATOMIC);
342 if (!new)
343 return NULL;
344
345 new->offset = offset;
346 new->len = len;
347 list_add(&new->fi_link, list);
348
349 return new;
350 }
351
fwnet_pd_new(struct net_device * net,struct fwnet_peer * peer,u16 datagram_label,unsigned dg_size,void * frag_buf,unsigned frag_off,unsigned frag_len)352 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
353 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
354 void *frag_buf, unsigned frag_off, unsigned frag_len)
355 {
356 struct fwnet_partial_datagram *new;
357 struct fwnet_fragment_info *fi;
358
359 new = kmalloc(sizeof(*new), GFP_ATOMIC);
360 if (!new)
361 goto fail;
362
363 INIT_LIST_HEAD(&new->fi_list);
364 fi = fwnet_frag_new(new, frag_off, frag_len);
365 if (fi == NULL)
366 goto fail_w_new;
367
368 new->datagram_label = datagram_label;
369 new->datagram_size = dg_size;
370 new->skb = dev_alloc_skb(dg_size + LL_RESERVED_SPACE(net));
371 if (new->skb == NULL)
372 goto fail_w_fi;
373
374 skb_reserve(new->skb, LL_RESERVED_SPACE(net));
375 new->pbuf = skb_put(new->skb, dg_size);
376 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
377 list_add_tail(&new->pd_link, &peer->pd_list);
378
379 return new;
380
381 fail_w_fi:
382 kfree(fi);
383 fail_w_new:
384 kfree(new);
385 fail:
386 return NULL;
387 }
388
fwnet_pd_find(struct fwnet_peer * peer,u16 datagram_label)389 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
390 u16 datagram_label)
391 {
392 struct fwnet_partial_datagram *pd;
393
394 list_for_each_entry(pd, &peer->pd_list, pd_link)
395 if (pd->datagram_label == datagram_label)
396 return pd;
397
398 return NULL;
399 }
400
401
fwnet_pd_delete(struct fwnet_partial_datagram * old)402 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
403 {
404 struct fwnet_fragment_info *fi, *n;
405
406 list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
407 kfree(fi);
408
409 list_del(&old->pd_link);
410 dev_kfree_skb_any(old->skb);
411 kfree(old);
412 }
413
fwnet_pd_update(struct fwnet_peer * peer,struct fwnet_partial_datagram * pd,void * frag_buf,unsigned frag_off,unsigned frag_len)414 static bool fwnet_pd_update(struct fwnet_peer *peer,
415 struct fwnet_partial_datagram *pd, void *frag_buf,
416 unsigned frag_off, unsigned frag_len)
417 {
418 if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
419 return false;
420
421 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
422
423 /*
424 * Move list entry to beginning of list so that oldest partial
425 * datagrams percolate to the end of the list
426 */
427 list_move_tail(&pd->pd_link, &peer->pd_list);
428
429 return true;
430 }
431
fwnet_pd_is_complete(struct fwnet_partial_datagram * pd)432 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
433 {
434 struct fwnet_fragment_info *fi;
435
436 fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
437
438 return fi->len == pd->datagram_size;
439 }
440
441 /* caller must hold dev->lock */
fwnet_peer_find_by_guid(struct fwnet_device * dev,u64 guid)442 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
443 u64 guid)
444 {
445 struct fwnet_peer *peer;
446
447 list_for_each_entry(peer, &dev->peer_list, peer_link)
448 if (peer->guid == guid)
449 return peer;
450
451 return NULL;
452 }
453
454 /* caller must hold dev->lock */
fwnet_peer_find_by_node_id(struct fwnet_device * dev,int node_id,int generation)455 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
456 int node_id, int generation)
457 {
458 struct fwnet_peer *peer;
459
460 list_for_each_entry(peer, &dev->peer_list, peer_link)
461 if (peer->node_id == node_id &&
462 peer->generation == generation)
463 return peer;
464
465 return NULL;
466 }
467
468 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
fwnet_max_payload(unsigned max_rec,unsigned speed)469 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
470 {
471 max_rec = min(max_rec, speed + 8);
472 max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */
473
474 return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
475 }
476
477
fwnet_finish_incoming_packet(struct net_device * net,struct sk_buff * skb,u16 source_node_id,bool is_broadcast,u16 ether_type)478 static int fwnet_finish_incoming_packet(struct net_device *net,
479 struct sk_buff *skb, u16 source_node_id,
480 bool is_broadcast, u16 ether_type)
481 {
482 int status, len;
483
484 switch (ether_type) {
485 case ETH_P_ARP:
486 case ETH_P_IP:
487 #if IS_ENABLED(CONFIG_IPV6)
488 case ETH_P_IPV6:
489 #endif
490 break;
491 default:
492 goto err;
493 }
494
495 /* Write metadata, and then pass to the receive level */
496 skb->dev = net;
497 skb->ip_summed = CHECKSUM_NONE;
498
499 /*
500 * Parse the encapsulation header. This actually does the job of
501 * converting to an ethernet-like pseudo frame header.
502 */
503 if (dev_hard_header(skb, net, ether_type,
504 is_broadcast ? net->broadcast : net->dev_addr,
505 NULL, skb->len) >= 0) {
506 struct fwnet_header *eth;
507 u16 *rawp;
508 __be16 protocol;
509
510 skb_reset_mac_header(skb);
511 skb_pull(skb, sizeof(*eth));
512 eth = (struct fwnet_header *)skb_mac_header(skb);
513 if (fwnet_hwaddr_is_multicast(eth->h_dest)) {
514 if (memcmp(eth->h_dest, net->broadcast,
515 net->addr_len) == 0)
516 skb->pkt_type = PACKET_BROADCAST;
517 #if 0
518 else
519 skb->pkt_type = PACKET_MULTICAST;
520 #endif
521 } else {
522 if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
523 skb->pkt_type = PACKET_OTHERHOST;
524 }
525 if (ntohs(eth->h_proto) >= ETH_P_802_3_MIN) {
526 protocol = eth->h_proto;
527 } else {
528 rawp = (u16 *)skb->data;
529 if (*rawp == 0xffff)
530 protocol = htons(ETH_P_802_3);
531 else
532 protocol = htons(ETH_P_802_2);
533 }
534 skb->protocol = protocol;
535 }
536
537 len = skb->len;
538 status = netif_rx(skb);
539 if (status == NET_RX_DROP) {
540 net->stats.rx_errors++;
541 net->stats.rx_dropped++;
542 } else {
543 net->stats.rx_packets++;
544 net->stats.rx_bytes += len;
545 }
546
547 return 0;
548
549 err:
550 net->stats.rx_errors++;
551 net->stats.rx_dropped++;
552
553 dev_kfree_skb_any(skb);
554
555 return -ENOENT;
556 }
557
fwnet_incoming_packet(struct fwnet_device * dev,__be32 * buf,int len,int source_node_id,int generation,bool is_broadcast)558 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
559 int source_node_id, int generation,
560 bool is_broadcast)
561 {
562 struct sk_buff *skb;
563 struct net_device *net = dev->netdev;
564 struct rfc2734_header hdr;
565 unsigned lf;
566 unsigned long flags;
567 struct fwnet_peer *peer;
568 struct fwnet_partial_datagram *pd;
569 int fg_off;
570 int dg_size;
571 u16 datagram_label;
572 int retval;
573 u16 ether_type;
574
575 if (len <= RFC2374_UNFRAG_HDR_SIZE)
576 return 0;
577
578 hdr.w0 = be32_to_cpu(buf[0]);
579 lf = fwnet_get_hdr_lf(&hdr);
580 if (lf == RFC2374_HDR_UNFRAG) {
581 /*
582 * An unfragmented datagram has been received by the ieee1394
583 * bus. Build an skbuff around it so we can pass it to the
584 * high level network layer.
585 */
586 ether_type = fwnet_get_hdr_ether_type(&hdr);
587 buf++;
588 len -= RFC2374_UNFRAG_HDR_SIZE;
589
590 skb = dev_alloc_skb(len + LL_RESERVED_SPACE(net));
591 if (unlikely(!skb)) {
592 net->stats.rx_dropped++;
593
594 return -ENOMEM;
595 }
596 skb_reserve(skb, LL_RESERVED_SPACE(net));
597 skb_put_data(skb, buf, len);
598
599 return fwnet_finish_incoming_packet(net, skb, source_node_id,
600 is_broadcast, ether_type);
601 }
602
603 /* A datagram fragment has been received, now the fun begins. */
604
605 if (len <= RFC2374_FRAG_HDR_SIZE)
606 return 0;
607
608 hdr.w1 = ntohl(buf[1]);
609 buf += 2;
610 len -= RFC2374_FRAG_HDR_SIZE;
611 if (lf == RFC2374_HDR_FIRSTFRAG) {
612 ether_type = fwnet_get_hdr_ether_type(&hdr);
613 fg_off = 0;
614 } else {
615 ether_type = 0;
616 fg_off = fwnet_get_hdr_fg_off(&hdr);
617 }
618 datagram_label = fwnet_get_hdr_dgl(&hdr);
619 dg_size = fwnet_get_hdr_dg_size(&hdr);
620
621 if (fg_off + len > dg_size)
622 return 0;
623
624 spin_lock_irqsave(&dev->lock, flags);
625
626 peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
627 if (!peer) {
628 retval = -ENOENT;
629 goto fail;
630 }
631
632 pd = fwnet_pd_find(peer, datagram_label);
633 if (pd == NULL) {
634 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
635 /* remove the oldest */
636 fwnet_pd_delete(list_first_entry(&peer->pd_list,
637 struct fwnet_partial_datagram, pd_link));
638 peer->pdg_size--;
639 }
640 pd = fwnet_pd_new(net, peer, datagram_label,
641 dg_size, buf, fg_off, len);
642 if (pd == NULL) {
643 retval = -ENOMEM;
644 goto fail;
645 }
646 peer->pdg_size++;
647 } else {
648 if (fwnet_frag_overlap(pd, fg_off, len) ||
649 pd->datagram_size != dg_size) {
650 /*
651 * Differing datagram sizes or overlapping fragments,
652 * discard old datagram and start a new one.
653 */
654 fwnet_pd_delete(pd);
655 pd = fwnet_pd_new(net, peer, datagram_label,
656 dg_size, buf, fg_off, len);
657 if (pd == NULL) {
658 peer->pdg_size--;
659 retval = -ENOMEM;
660 goto fail;
661 }
662 } else {
663 if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
664 /*
665 * Couldn't save off fragment anyway
666 * so might as well obliterate the
667 * datagram now.
668 */
669 fwnet_pd_delete(pd);
670 peer->pdg_size--;
671 retval = -ENOMEM;
672 goto fail;
673 }
674 }
675 } /* new datagram or add to existing one */
676
677 if (lf == RFC2374_HDR_FIRSTFRAG)
678 pd->ether_type = ether_type;
679
680 if (fwnet_pd_is_complete(pd)) {
681 ether_type = pd->ether_type;
682 peer->pdg_size--;
683 skb = skb_get(pd->skb);
684 fwnet_pd_delete(pd);
685
686 spin_unlock_irqrestore(&dev->lock, flags);
687
688 return fwnet_finish_incoming_packet(net, skb, source_node_id,
689 false, ether_type);
690 }
691 /*
692 * Datagram is not complete, we're done for the
693 * moment.
694 */
695 retval = 0;
696 fail:
697 spin_unlock_irqrestore(&dev->lock, flags);
698
699 return retval;
700 }
701
fwnet_receive_packet(struct fw_card * card,struct fw_request * r,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)702 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
703 int tcode, int destination, int source, int generation,
704 unsigned long long offset, void *payload, size_t length,
705 void *callback_data)
706 {
707 struct fwnet_device *dev = callback_data;
708 int rcode;
709
710 if (destination == IEEE1394_ALL_NODES) {
711 // Although the response to the broadcast packet is not necessarily required, the
712 // fw_send_response() function should still be called to maintain the reference
713 // counting of the object. In the case, the call of function just releases the
714 // object as a result to decrease the reference counting.
715 rcode = RCODE_COMPLETE;
716 } else if (offset != dev->handler.offset) {
717 rcode = RCODE_ADDRESS_ERROR;
718 } else if (tcode != TCODE_WRITE_BLOCK_REQUEST) {
719 rcode = RCODE_TYPE_ERROR;
720 } else if (fwnet_incoming_packet(dev, payload, length,
721 source, generation, false) != 0) {
722 dev_err(&dev->netdev->dev, "incoming packet failure\n");
723 rcode = RCODE_CONFLICT_ERROR;
724 } else {
725 rcode = RCODE_COMPLETE;
726 }
727
728 fw_send_response(card, r, rcode);
729 }
730
gasp_source_id(__be32 * p)731 static int gasp_source_id(__be32 *p)
732 {
733 return be32_to_cpu(p[0]) >> 16;
734 }
735
gasp_specifier_id(__be32 * p)736 static u32 gasp_specifier_id(__be32 *p)
737 {
738 return (be32_to_cpu(p[0]) & 0xffff) << 8 |
739 (be32_to_cpu(p[1]) & 0xff000000) >> 24;
740 }
741
gasp_version(__be32 * p)742 static u32 gasp_version(__be32 *p)
743 {
744 return be32_to_cpu(p[1]) & 0xffffff;
745 }
746
fwnet_receive_broadcast(struct fw_iso_context * context,u32 cycle,size_t header_length,void * header,void * data)747 static void fwnet_receive_broadcast(struct fw_iso_context *context,
748 u32 cycle, size_t header_length, void *header, void *data)
749 {
750 struct fwnet_device *dev;
751 struct fw_iso_packet packet;
752 __be16 *hdr_ptr;
753 __be32 *buf_ptr;
754 int retval;
755 u32 length;
756 unsigned long offset;
757 unsigned long flags;
758
759 dev = data;
760 hdr_ptr = header;
761 length = be16_to_cpup(hdr_ptr);
762
763 spin_lock_irqsave(&dev->lock, flags);
764
765 offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
766 buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
767 if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
768 dev->broadcast_rcv_next_ptr = 0;
769
770 spin_unlock_irqrestore(&dev->lock, flags);
771
772 if (length > IEEE1394_GASP_HDR_SIZE &&
773 gasp_specifier_id(buf_ptr) == IANA_SPECIFIER_ID &&
774 (gasp_version(buf_ptr) == RFC2734_SW_VERSION
775 #if IS_ENABLED(CONFIG_IPV6)
776 || gasp_version(buf_ptr) == RFC3146_SW_VERSION
777 #endif
778 ))
779 fwnet_incoming_packet(dev, buf_ptr + 2,
780 length - IEEE1394_GASP_HDR_SIZE,
781 gasp_source_id(buf_ptr),
782 context->card->generation, true);
783
784 packet.payload_length = dev->rcv_buffer_size;
785 packet.interrupt = 1;
786 packet.skip = 0;
787 packet.tag = 3;
788 packet.sy = 0;
789 packet.header_length = IEEE1394_GASP_HDR_SIZE;
790
791 spin_lock_irqsave(&dev->lock, flags);
792
793 retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
794 &dev->broadcast_rcv_buffer, offset);
795
796 spin_unlock_irqrestore(&dev->lock, flags);
797
798 if (retval >= 0)
799 fw_iso_context_queue_flush(dev->broadcast_rcv_context);
800 else
801 dev_err(&dev->netdev->dev, "requeue failed\n");
802 }
803
804 static struct kmem_cache *fwnet_packet_task_cache;
805
fwnet_free_ptask(struct fwnet_packet_task * ptask)806 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
807 {
808 dev_kfree_skb_any(ptask->skb);
809 kmem_cache_free(fwnet_packet_task_cache, ptask);
810 }
811
812 /* Caller must hold dev->lock. */
dec_queued_datagrams(struct fwnet_device * dev)813 static void dec_queued_datagrams(struct fwnet_device *dev)
814 {
815 if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
816 netif_wake_queue(dev->netdev);
817 }
818
819 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
820
fwnet_transmit_packet_done(struct fwnet_packet_task * ptask)821 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
822 {
823 struct fwnet_device *dev = ptask->dev;
824 struct sk_buff *skb = ptask->skb;
825 unsigned long flags;
826 bool free;
827
828 spin_lock_irqsave(&dev->lock, flags);
829
830 ptask->outstanding_pkts--;
831
832 /* Check whether we or the networking TX soft-IRQ is last user. */
833 free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
834 if (free)
835 dec_queued_datagrams(dev);
836
837 if (ptask->outstanding_pkts == 0) {
838 dev->netdev->stats.tx_packets++;
839 dev->netdev->stats.tx_bytes += skb->len;
840 }
841
842 spin_unlock_irqrestore(&dev->lock, flags);
843
844 if (ptask->outstanding_pkts > 0) {
845 u16 dg_size;
846 u16 fg_off;
847 u16 datagram_label;
848 u16 lf;
849
850 /* Update the ptask to point to the next fragment and send it */
851 lf = fwnet_get_hdr_lf(&ptask->hdr);
852 switch (lf) {
853 case RFC2374_HDR_LASTFRAG:
854 case RFC2374_HDR_UNFRAG:
855 default:
856 dev_err(&dev->netdev->dev,
857 "outstanding packet %x lf %x, header %x,%x\n",
858 ptask->outstanding_pkts, lf, ptask->hdr.w0,
859 ptask->hdr.w1);
860 BUG();
861
862 case RFC2374_HDR_FIRSTFRAG:
863 /* Set frag type here for future interior fragments */
864 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
865 fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
866 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
867 break;
868
869 case RFC2374_HDR_INTFRAG:
870 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
871 fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
872 + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
873 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
874 break;
875 }
876
877 if (ptask->dest_node == IEEE1394_ALL_NODES) {
878 skb_pull(skb,
879 ptask->max_payload + IEEE1394_GASP_HDR_SIZE);
880 } else {
881 skb_pull(skb, ptask->max_payload);
882 }
883 if (ptask->outstanding_pkts > 1) {
884 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
885 dg_size, fg_off, datagram_label);
886 } else {
887 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
888 dg_size, fg_off, datagram_label);
889 ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
890 }
891 fwnet_send_packet(ptask);
892 }
893
894 if (free)
895 fwnet_free_ptask(ptask);
896 }
897
fwnet_transmit_packet_failed(struct fwnet_packet_task * ptask)898 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
899 {
900 struct fwnet_device *dev = ptask->dev;
901 unsigned long flags;
902 bool free;
903
904 spin_lock_irqsave(&dev->lock, flags);
905
906 /* One fragment failed; don't try to send remaining fragments. */
907 ptask->outstanding_pkts = 0;
908
909 /* Check whether we or the networking TX soft-IRQ is last user. */
910 free = ptask->enqueued;
911 if (free)
912 dec_queued_datagrams(dev);
913
914 dev->netdev->stats.tx_dropped++;
915 dev->netdev->stats.tx_errors++;
916
917 spin_unlock_irqrestore(&dev->lock, flags);
918
919 if (free)
920 fwnet_free_ptask(ptask);
921 }
922
fwnet_write_complete(struct fw_card * card,int rcode,void * payload,size_t length,void * data)923 static void fwnet_write_complete(struct fw_card *card, int rcode,
924 void *payload, size_t length, void *data)
925 {
926 struct fwnet_packet_task *ptask = data;
927 static unsigned long j;
928 static int last_rcode, errors_skipped;
929
930 if (rcode == RCODE_COMPLETE) {
931 fwnet_transmit_packet_done(ptask);
932 } else {
933 if (printk_timed_ratelimit(&j, 1000) || rcode != last_rcode) {
934 dev_err(&ptask->dev->netdev->dev,
935 "fwnet_write_complete failed: %x (skipped %d)\n",
936 rcode, errors_skipped);
937
938 errors_skipped = 0;
939 last_rcode = rcode;
940 } else {
941 errors_skipped++;
942 }
943 fwnet_transmit_packet_failed(ptask);
944 }
945 }
946
fwnet_send_packet(struct fwnet_packet_task * ptask)947 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
948 {
949 struct fwnet_device *dev;
950 unsigned tx_len;
951 struct rfc2734_header *bufhdr;
952 unsigned long flags;
953 bool free;
954
955 dev = ptask->dev;
956 tx_len = ptask->max_payload;
957 switch (fwnet_get_hdr_lf(&ptask->hdr)) {
958 case RFC2374_HDR_UNFRAG:
959 bufhdr = skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
960 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
961 break;
962
963 case RFC2374_HDR_FIRSTFRAG:
964 case RFC2374_HDR_INTFRAG:
965 case RFC2374_HDR_LASTFRAG:
966 bufhdr = skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
967 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
968 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
969 break;
970
971 default:
972 BUG();
973 }
974 if (ptask->dest_node == IEEE1394_ALL_NODES) {
975 u8 *p;
976 int generation;
977 int node_id;
978 unsigned int sw_version;
979
980 /* ptask->generation may not have been set yet */
981 generation = dev->card->generation;
982 smp_rmb();
983 node_id = dev->card->node_id;
984
985 switch (ptask->skb->protocol) {
986 default:
987 sw_version = RFC2734_SW_VERSION;
988 break;
989 #if IS_ENABLED(CONFIG_IPV6)
990 case htons(ETH_P_IPV6):
991 sw_version = RFC3146_SW_VERSION;
992 #endif
993 }
994
995 p = skb_push(ptask->skb, IEEE1394_GASP_HDR_SIZE);
996 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
997 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
998 | sw_version, &p[4]);
999
1000 /* We should not transmit if broadcast_channel.valid == 0. */
1001 fw_send_request(dev->card, &ptask->transaction,
1002 TCODE_STREAM_DATA,
1003 fw_stream_packet_destination_id(3,
1004 IEEE1394_BROADCAST_CHANNEL, 0),
1005 generation, SCODE_100, 0ULL, ptask->skb->data,
1006 tx_len + 8, fwnet_write_complete, ptask);
1007
1008 spin_lock_irqsave(&dev->lock, flags);
1009
1010 /* If the AT tasklet already ran, we may be last user. */
1011 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1012 if (!free)
1013 ptask->enqueued = true;
1014 else
1015 dec_queued_datagrams(dev);
1016
1017 spin_unlock_irqrestore(&dev->lock, flags);
1018
1019 goto out;
1020 }
1021
1022 fw_send_request(dev->card, &ptask->transaction,
1023 TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1024 ptask->generation, ptask->speed, ptask->fifo_addr,
1025 ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1026
1027 spin_lock_irqsave(&dev->lock, flags);
1028
1029 /* If the AT tasklet already ran, we may be last user. */
1030 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1031 if (!free)
1032 ptask->enqueued = true;
1033 else
1034 dec_queued_datagrams(dev);
1035
1036 spin_unlock_irqrestore(&dev->lock, flags);
1037
1038 netif_trans_update(dev->netdev);
1039 out:
1040 if (free)
1041 fwnet_free_ptask(ptask);
1042
1043 return 0;
1044 }
1045
fwnet_fifo_stop(struct fwnet_device * dev)1046 static void fwnet_fifo_stop(struct fwnet_device *dev)
1047 {
1048 if (dev->local_fifo == FWNET_NO_FIFO_ADDR)
1049 return;
1050
1051 fw_core_remove_address_handler(&dev->handler);
1052 dev->local_fifo = FWNET_NO_FIFO_ADDR;
1053 }
1054
fwnet_fifo_start(struct fwnet_device * dev)1055 static int fwnet_fifo_start(struct fwnet_device *dev)
1056 {
1057 int retval;
1058
1059 if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1060 return 0;
1061
1062 dev->handler.length = 4096;
1063 dev->handler.address_callback = fwnet_receive_packet;
1064 dev->handler.callback_data = dev;
1065
1066 retval = fw_core_add_address_handler(&dev->handler,
1067 &fw_high_memory_region);
1068 if (retval < 0)
1069 return retval;
1070
1071 dev->local_fifo = dev->handler.offset;
1072
1073 return 0;
1074 }
1075
__fwnet_broadcast_stop(struct fwnet_device * dev)1076 static void __fwnet_broadcast_stop(struct fwnet_device *dev)
1077 {
1078 unsigned u;
1079
1080 if (dev->broadcast_state != FWNET_BROADCAST_ERROR) {
1081 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++)
1082 kunmap(dev->broadcast_rcv_buffer.pages[u]);
1083 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1084 }
1085 if (dev->broadcast_rcv_context) {
1086 fw_iso_context_destroy(dev->broadcast_rcv_context);
1087 dev->broadcast_rcv_context = NULL;
1088 }
1089 kfree(dev->broadcast_rcv_buffer_ptrs);
1090 dev->broadcast_rcv_buffer_ptrs = NULL;
1091 dev->broadcast_state = FWNET_BROADCAST_ERROR;
1092 }
1093
fwnet_broadcast_stop(struct fwnet_device * dev)1094 static void fwnet_broadcast_stop(struct fwnet_device *dev)
1095 {
1096 if (dev->broadcast_state == FWNET_BROADCAST_ERROR)
1097 return;
1098 fw_iso_context_stop(dev->broadcast_rcv_context);
1099 __fwnet_broadcast_stop(dev);
1100 }
1101
fwnet_broadcast_start(struct fwnet_device * dev)1102 static int fwnet_broadcast_start(struct fwnet_device *dev)
1103 {
1104 struct fw_iso_context *context;
1105 int retval;
1106 unsigned num_packets;
1107 unsigned max_receive;
1108 struct fw_iso_packet packet;
1109 unsigned long offset;
1110 void **ptrptr;
1111 unsigned u;
1112
1113 if (dev->broadcast_state != FWNET_BROADCAST_ERROR)
1114 return 0;
1115
1116 max_receive = 1U << (dev->card->max_receive + 1);
1117 num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1118
1119 ptrptr = kmalloc_array(num_packets, sizeof(void *), GFP_KERNEL);
1120 if (!ptrptr) {
1121 retval = -ENOMEM;
1122 goto failed;
1123 }
1124 dev->broadcast_rcv_buffer_ptrs = ptrptr;
1125
1126 context = fw_iso_context_create(dev->card, FW_ISO_CONTEXT_RECEIVE,
1127 IEEE1394_BROADCAST_CHANNEL,
1128 dev->card->link_speed, 8,
1129 fwnet_receive_broadcast, dev);
1130 if (IS_ERR(context)) {
1131 retval = PTR_ERR(context);
1132 goto failed;
1133 }
1134
1135 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, dev->card,
1136 FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1137 if (retval < 0)
1138 goto failed;
1139
1140 dev->broadcast_state = FWNET_BROADCAST_STOPPED;
1141
1142 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1143 void *ptr;
1144 unsigned v;
1145
1146 ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1147 for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1148 *ptrptr++ = (void *) ((char *)ptr + v * max_receive);
1149 }
1150 dev->broadcast_rcv_context = context;
1151
1152 packet.payload_length = max_receive;
1153 packet.interrupt = 1;
1154 packet.skip = 0;
1155 packet.tag = 3;
1156 packet.sy = 0;
1157 packet.header_length = IEEE1394_GASP_HDR_SIZE;
1158 offset = 0;
1159
1160 for (u = 0; u < num_packets; u++) {
1161 retval = fw_iso_context_queue(context, &packet,
1162 &dev->broadcast_rcv_buffer, offset);
1163 if (retval < 0)
1164 goto failed;
1165
1166 offset += max_receive;
1167 }
1168 dev->num_broadcast_rcv_ptrs = num_packets;
1169 dev->rcv_buffer_size = max_receive;
1170 dev->broadcast_rcv_next_ptr = 0U;
1171 retval = fw_iso_context_start(context, -1, 0,
1172 FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1173 if (retval < 0)
1174 goto failed;
1175
1176 /* FIXME: adjust it according to the min. speed of all known peers? */
1177 dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1178 - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1179 dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1180
1181 return 0;
1182
1183 failed:
1184 __fwnet_broadcast_stop(dev);
1185 return retval;
1186 }
1187
set_carrier_state(struct fwnet_device * dev)1188 static void set_carrier_state(struct fwnet_device *dev)
1189 {
1190 if (dev->peer_count > 1)
1191 netif_carrier_on(dev->netdev);
1192 else
1193 netif_carrier_off(dev->netdev);
1194 }
1195
1196 /* ifup */
fwnet_open(struct net_device * net)1197 static int fwnet_open(struct net_device *net)
1198 {
1199 struct fwnet_device *dev = netdev_priv(net);
1200 int ret;
1201
1202 ret = fwnet_broadcast_start(dev);
1203 if (ret)
1204 return ret;
1205
1206 netif_start_queue(net);
1207
1208 spin_lock_irq(&dev->lock);
1209 set_carrier_state(dev);
1210 spin_unlock_irq(&dev->lock);
1211
1212 return 0;
1213 }
1214
1215 /* ifdown */
fwnet_stop(struct net_device * net)1216 static int fwnet_stop(struct net_device *net)
1217 {
1218 struct fwnet_device *dev = netdev_priv(net);
1219
1220 netif_stop_queue(net);
1221 fwnet_broadcast_stop(dev);
1222
1223 return 0;
1224 }
1225
fwnet_tx(struct sk_buff * skb,struct net_device * net)1226 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1227 {
1228 struct fwnet_header hdr_buf;
1229 struct fwnet_device *dev = netdev_priv(net);
1230 __be16 proto;
1231 u16 dest_node;
1232 unsigned max_payload;
1233 u16 dg_size;
1234 u16 *datagram_label_ptr;
1235 struct fwnet_packet_task *ptask;
1236 struct fwnet_peer *peer;
1237 unsigned long flags;
1238
1239 spin_lock_irqsave(&dev->lock, flags);
1240
1241 /* Can this happen? */
1242 if (netif_queue_stopped(dev->netdev)) {
1243 spin_unlock_irqrestore(&dev->lock, flags);
1244
1245 return NETDEV_TX_BUSY;
1246 }
1247
1248 ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1249 if (ptask == NULL)
1250 goto fail;
1251
1252 skb = skb_share_check(skb, GFP_ATOMIC);
1253 if (!skb)
1254 goto fail;
1255
1256 /*
1257 * Make a copy of the driver-specific header.
1258 * We might need to rebuild the header on tx failure.
1259 */
1260 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1261 proto = hdr_buf.h_proto;
1262
1263 switch (proto) {
1264 case htons(ETH_P_ARP):
1265 case htons(ETH_P_IP):
1266 #if IS_ENABLED(CONFIG_IPV6)
1267 case htons(ETH_P_IPV6):
1268 #endif
1269 break;
1270 default:
1271 goto fail;
1272 }
1273
1274 skb_pull(skb, sizeof(hdr_buf));
1275 dg_size = skb->len;
1276
1277 /*
1278 * Set the transmission type for the packet. ARP packets and IP
1279 * broadcast packets are sent via GASP.
1280 */
1281 if (fwnet_hwaddr_is_multicast(hdr_buf.h_dest)) {
1282 max_payload = dev->broadcast_xmt_max_payload;
1283 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1284
1285 ptask->fifo_addr = FWNET_NO_FIFO_ADDR;
1286 ptask->generation = 0;
1287 ptask->dest_node = IEEE1394_ALL_NODES;
1288 ptask->speed = SCODE_100;
1289 } else {
1290 union fwnet_hwaddr *ha = (union fwnet_hwaddr *)hdr_buf.h_dest;
1291 __be64 guid = get_unaligned(&ha->uc.uniq_id);
1292 u8 generation;
1293
1294 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1295 if (!peer)
1296 goto fail;
1297
1298 generation = peer->generation;
1299 dest_node = peer->node_id;
1300 max_payload = peer->max_payload;
1301 datagram_label_ptr = &peer->datagram_label;
1302
1303 ptask->fifo_addr = get_unaligned_be48(ha->uc.fifo);
1304 ptask->generation = generation;
1305 ptask->dest_node = dest_node;
1306 ptask->speed = peer->speed;
1307 }
1308
1309 ptask->hdr.w0 = 0;
1310 ptask->hdr.w1 = 0;
1311 ptask->skb = skb;
1312 ptask->dev = dev;
1313
1314 /* Does it all fit in one packet? */
1315 if (dg_size <= max_payload) {
1316 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1317 ptask->outstanding_pkts = 1;
1318 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1319 } else {
1320 u16 datagram_label;
1321
1322 max_payload -= RFC2374_FRAG_OVERHEAD;
1323 datagram_label = (*datagram_label_ptr)++;
1324 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1325 datagram_label);
1326 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1327 max_payload += RFC2374_FRAG_HDR_SIZE;
1328 }
1329
1330 if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1331 netif_stop_queue(dev->netdev);
1332
1333 spin_unlock_irqrestore(&dev->lock, flags);
1334
1335 ptask->max_payload = max_payload;
1336 ptask->enqueued = 0;
1337
1338 fwnet_send_packet(ptask);
1339
1340 return NETDEV_TX_OK;
1341
1342 fail:
1343 spin_unlock_irqrestore(&dev->lock, flags);
1344
1345 if (ptask)
1346 kmem_cache_free(fwnet_packet_task_cache, ptask);
1347
1348 if (skb != NULL)
1349 dev_kfree_skb(skb);
1350
1351 net->stats.tx_dropped++;
1352 net->stats.tx_errors++;
1353
1354 /*
1355 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1356 * causes serious problems" here, allegedly. Before that patch,
1357 * -ERRNO was returned which is not appropriate under Linux 2.6.
1358 * Perhaps more needs to be done? Stop the queue in serious
1359 * conditions and restart it elsewhere?
1360 */
1361 return NETDEV_TX_OK;
1362 }
1363
1364 static const struct ethtool_ops fwnet_ethtool_ops = {
1365 .get_link = ethtool_op_get_link,
1366 };
1367
1368 static const struct net_device_ops fwnet_netdev_ops = {
1369 .ndo_open = fwnet_open,
1370 .ndo_stop = fwnet_stop,
1371 .ndo_start_xmit = fwnet_tx,
1372 };
1373
fwnet_init_dev(struct net_device * net)1374 static void fwnet_init_dev(struct net_device *net)
1375 {
1376 net->header_ops = &fwnet_header_ops;
1377 net->netdev_ops = &fwnet_netdev_ops;
1378 net->watchdog_timeo = 2 * HZ;
1379 net->flags = IFF_BROADCAST | IFF_MULTICAST;
1380 net->features = NETIF_F_HIGHDMA;
1381 net->addr_len = FWNET_ALEN;
1382 net->hard_header_len = FWNET_HLEN;
1383 net->type = ARPHRD_IEEE1394;
1384 net->tx_queue_len = FWNET_TX_QUEUE_LEN;
1385 net->ethtool_ops = &fwnet_ethtool_ops;
1386 }
1387
1388 /* caller must hold fwnet_device_mutex */
fwnet_dev_find(struct fw_card * card)1389 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1390 {
1391 struct fwnet_device *dev;
1392
1393 list_for_each_entry(dev, &fwnet_device_list, dev_link)
1394 if (dev->card == card)
1395 return dev;
1396
1397 return NULL;
1398 }
1399
fwnet_add_peer(struct fwnet_device * dev,struct fw_unit * unit,struct fw_device * device)1400 static int fwnet_add_peer(struct fwnet_device *dev,
1401 struct fw_unit *unit, struct fw_device *device)
1402 {
1403 struct fwnet_peer *peer;
1404
1405 peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1406 if (!peer)
1407 return -ENOMEM;
1408
1409 dev_set_drvdata(&unit->device, peer);
1410
1411 peer->dev = dev;
1412 peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1413 INIT_LIST_HEAD(&peer->pd_list);
1414 peer->pdg_size = 0;
1415 peer->datagram_label = 0;
1416 peer->speed = device->max_speed;
1417 peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1418
1419 peer->generation = device->generation;
1420 smp_rmb();
1421 peer->node_id = device->node_id;
1422
1423 spin_lock_irq(&dev->lock);
1424 list_add_tail(&peer->peer_link, &dev->peer_list);
1425 dev->peer_count++;
1426 set_carrier_state(dev);
1427 spin_unlock_irq(&dev->lock);
1428
1429 return 0;
1430 }
1431
fwnet_probe(struct fw_unit * unit,const struct ieee1394_device_id * id)1432 static int fwnet_probe(struct fw_unit *unit,
1433 const struct ieee1394_device_id *id)
1434 {
1435 struct fw_device *device = fw_parent_device(unit);
1436 struct fw_card *card = device->card;
1437 struct net_device *net;
1438 bool allocated_netdev = false;
1439 struct fwnet_device *dev;
1440 union fwnet_hwaddr ha;
1441 int ret;
1442
1443 mutex_lock(&fwnet_device_mutex);
1444
1445 dev = fwnet_dev_find(card);
1446 if (dev) {
1447 net = dev->netdev;
1448 goto have_dev;
1449 }
1450
1451 net = alloc_netdev(sizeof(*dev), "firewire%d", NET_NAME_UNKNOWN,
1452 fwnet_init_dev);
1453 if (net == NULL) {
1454 mutex_unlock(&fwnet_device_mutex);
1455 return -ENOMEM;
1456 }
1457
1458 allocated_netdev = true;
1459 SET_NETDEV_DEV(net, card->device);
1460 dev = netdev_priv(net);
1461
1462 spin_lock_init(&dev->lock);
1463 dev->broadcast_state = FWNET_BROADCAST_ERROR;
1464 dev->broadcast_rcv_context = NULL;
1465 dev->broadcast_xmt_max_payload = 0;
1466 dev->broadcast_xmt_datagramlabel = 0;
1467 dev->local_fifo = FWNET_NO_FIFO_ADDR;
1468 dev->queued_datagrams = 0;
1469 INIT_LIST_HEAD(&dev->peer_list);
1470 dev->card = card;
1471 dev->netdev = net;
1472
1473 ret = fwnet_fifo_start(dev);
1474 if (ret < 0)
1475 goto out;
1476 dev->local_fifo = dev->handler.offset;
1477
1478 /*
1479 * default MTU: RFC 2734 cl. 4, RFC 3146 cl. 4
1480 * maximum MTU: RFC 2734 cl. 4.2, fragment encapsulation header's
1481 * maximum possible datagram_size + 1 = 0xfff + 1
1482 */
1483 net->mtu = 1500U;
1484 net->min_mtu = ETH_MIN_MTU;
1485 net->max_mtu = 4096U;
1486
1487 /* Set our hardware address while we're at it */
1488 ha.uc.uniq_id = cpu_to_be64(card->guid);
1489 ha.uc.max_rec = dev->card->max_receive;
1490 ha.uc.sspd = dev->card->link_speed;
1491 put_unaligned_be48(dev->local_fifo, ha.uc.fifo);
1492 dev_addr_set(net, ha.u);
1493
1494 memset(net->broadcast, -1, net->addr_len);
1495
1496 ret = register_netdev(net);
1497 if (ret)
1498 goto out;
1499
1500 list_add_tail(&dev->dev_link, &fwnet_device_list);
1501 dev_notice(&net->dev, "IP over IEEE 1394 on card %s\n",
1502 dev_name(card->device));
1503 have_dev:
1504 ret = fwnet_add_peer(dev, unit, device);
1505 if (ret && allocated_netdev) {
1506 unregister_netdev(net);
1507 list_del(&dev->dev_link);
1508 out:
1509 fwnet_fifo_stop(dev);
1510 free_netdev(net);
1511 }
1512
1513 mutex_unlock(&fwnet_device_mutex);
1514
1515 return ret;
1516 }
1517
1518 /*
1519 * FIXME abort partially sent fragmented datagrams,
1520 * discard partially received fragmented datagrams
1521 */
fwnet_update(struct fw_unit * unit)1522 static void fwnet_update(struct fw_unit *unit)
1523 {
1524 struct fw_device *device = fw_parent_device(unit);
1525 struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1526 int generation;
1527
1528 generation = device->generation;
1529
1530 spin_lock_irq(&peer->dev->lock);
1531 peer->node_id = device->node_id;
1532 peer->generation = generation;
1533 spin_unlock_irq(&peer->dev->lock);
1534 }
1535
fwnet_remove_peer(struct fwnet_peer * peer,struct fwnet_device * dev)1536 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1537 {
1538 struct fwnet_partial_datagram *pd, *pd_next;
1539
1540 spin_lock_irq(&dev->lock);
1541 list_del(&peer->peer_link);
1542 dev->peer_count--;
1543 set_carrier_state(dev);
1544 spin_unlock_irq(&dev->lock);
1545
1546 list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1547 fwnet_pd_delete(pd);
1548
1549 kfree(peer);
1550 }
1551
fwnet_remove(struct fw_unit * unit)1552 static void fwnet_remove(struct fw_unit *unit)
1553 {
1554 struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1555 struct fwnet_device *dev = peer->dev;
1556 struct net_device *net;
1557 int i;
1558
1559 mutex_lock(&fwnet_device_mutex);
1560
1561 net = dev->netdev;
1562
1563 fwnet_remove_peer(peer, dev);
1564
1565 if (list_empty(&dev->peer_list)) {
1566 unregister_netdev(net);
1567
1568 fwnet_fifo_stop(dev);
1569
1570 for (i = 0; dev->queued_datagrams && i < 5; i++)
1571 ssleep(1);
1572 WARN_ON(dev->queued_datagrams);
1573 list_del(&dev->dev_link);
1574
1575 free_netdev(net);
1576 }
1577
1578 mutex_unlock(&fwnet_device_mutex);
1579 }
1580
1581 static const struct ieee1394_device_id fwnet_id_table[] = {
1582 {
1583 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1584 IEEE1394_MATCH_VERSION,
1585 .specifier_id = IANA_SPECIFIER_ID,
1586 .version = RFC2734_SW_VERSION,
1587 },
1588 #if IS_ENABLED(CONFIG_IPV6)
1589 {
1590 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1591 IEEE1394_MATCH_VERSION,
1592 .specifier_id = IANA_SPECIFIER_ID,
1593 .version = RFC3146_SW_VERSION,
1594 },
1595 #endif
1596 { }
1597 };
1598
1599 static struct fw_driver fwnet_driver = {
1600 .driver = {
1601 .owner = THIS_MODULE,
1602 .name = KBUILD_MODNAME,
1603 .bus = &fw_bus_type,
1604 },
1605 .probe = fwnet_probe,
1606 .update = fwnet_update,
1607 .remove = fwnet_remove,
1608 .id_table = fwnet_id_table,
1609 };
1610
1611 static const u32 rfc2374_unit_directory_data[] = {
1612 0x00040000, /* directory_length */
1613 0x1200005e, /* unit_specifier_id: IANA */
1614 0x81000003, /* textual descriptor offset */
1615 0x13000001, /* unit_sw_version: RFC 2734 */
1616 0x81000005, /* textual descriptor offset */
1617 0x00030000, /* descriptor_length */
1618 0x00000000, /* text */
1619 0x00000000, /* minimal ASCII, en */
1620 0x49414e41, /* I A N A */
1621 0x00030000, /* descriptor_length */
1622 0x00000000, /* text */
1623 0x00000000, /* minimal ASCII, en */
1624 0x49507634, /* I P v 4 */
1625 };
1626
1627 static struct fw_descriptor rfc2374_unit_directory = {
1628 .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1629 .key = (CSR_DIRECTORY | CSR_UNIT) << 24,
1630 .data = rfc2374_unit_directory_data
1631 };
1632
1633 #if IS_ENABLED(CONFIG_IPV6)
1634 static const u32 rfc3146_unit_directory_data[] = {
1635 0x00040000, /* directory_length */
1636 0x1200005e, /* unit_specifier_id: IANA */
1637 0x81000003, /* textual descriptor offset */
1638 0x13000002, /* unit_sw_version: RFC 3146 */
1639 0x81000005, /* textual descriptor offset */
1640 0x00030000, /* descriptor_length */
1641 0x00000000, /* text */
1642 0x00000000, /* minimal ASCII, en */
1643 0x49414e41, /* I A N A */
1644 0x00030000, /* descriptor_length */
1645 0x00000000, /* text */
1646 0x00000000, /* minimal ASCII, en */
1647 0x49507636, /* I P v 6 */
1648 };
1649
1650 static struct fw_descriptor rfc3146_unit_directory = {
1651 .length = ARRAY_SIZE(rfc3146_unit_directory_data),
1652 .key = (CSR_DIRECTORY | CSR_UNIT) << 24,
1653 .data = rfc3146_unit_directory_data
1654 };
1655 #endif
1656
fwnet_init(void)1657 static int __init fwnet_init(void)
1658 {
1659 int err;
1660
1661 err = fw_core_add_descriptor(&rfc2374_unit_directory);
1662 if (err)
1663 return err;
1664
1665 #if IS_ENABLED(CONFIG_IPV6)
1666 err = fw_core_add_descriptor(&rfc3146_unit_directory);
1667 if (err)
1668 goto out;
1669 #endif
1670
1671 fwnet_packet_task_cache = kmem_cache_create("packet_task",
1672 sizeof(struct fwnet_packet_task), 0, 0, NULL);
1673 if (!fwnet_packet_task_cache) {
1674 err = -ENOMEM;
1675 goto out2;
1676 }
1677
1678 err = driver_register(&fwnet_driver.driver);
1679 if (!err)
1680 return 0;
1681
1682 kmem_cache_destroy(fwnet_packet_task_cache);
1683 out2:
1684 #if IS_ENABLED(CONFIG_IPV6)
1685 fw_core_remove_descriptor(&rfc3146_unit_directory);
1686 out:
1687 #endif
1688 fw_core_remove_descriptor(&rfc2374_unit_directory);
1689
1690 return err;
1691 }
1692 module_init(fwnet_init);
1693
fwnet_cleanup(void)1694 static void __exit fwnet_cleanup(void)
1695 {
1696 driver_unregister(&fwnet_driver.driver);
1697 kmem_cache_destroy(fwnet_packet_task_cache);
1698 #if IS_ENABLED(CONFIG_IPV6)
1699 fw_core_remove_descriptor(&rfc3146_unit_directory);
1700 #endif
1701 fw_core_remove_descriptor(&rfc2374_unit_directory);
1702 }
1703 module_exit(fwnet_cleanup);
1704
1705 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1706 MODULE_DESCRIPTION("IP over IEEE1394 as per RFC 2734/3146");
1707 MODULE_LICENSE("GPL");
1708 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);
1709