xref: /linux/tools/testing/selftests/kvm/arm64/set_id_regs.c (revision d65bf6e317e7bb13612bd94e01c5a11b6fc67e9d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * set_id_regs - Test for setting ID register from usersapce.
4  *
5  * Copyright (c) 2023 Google LLC.
6  *
7  *
8  * Test that KVM supports setting ID registers from userspace and handles the
9  * feature set correctly.
10  */
11 
12 #include <stdint.h>
13 #include "kvm_util.h"
14 #include "processor.h"
15 #include "test_util.h"
16 #include <linux/bitfield.h>
17 
18 enum ftr_type {
19 	FTR_EXACT,			/* Use a predefined safe value */
20 	FTR_LOWER_SAFE,			/* Smaller value is safe */
21 	FTR_HIGHER_SAFE,		/* Bigger value is safe */
22 	FTR_HIGHER_OR_ZERO_SAFE,	/* Bigger value is safe, but 0 is biggest */
23 	FTR_END,			/* Mark the last ftr bits */
24 };
25 
26 #define FTR_SIGNED	true	/* Value should be treated as signed */
27 #define FTR_UNSIGNED	false	/* Value should be treated as unsigned */
28 
29 struct reg_ftr_bits {
30 	char *name;
31 	bool sign;
32 	enum ftr_type type;
33 	uint8_t shift;
34 	uint64_t mask;
35 	/*
36 	 * For FTR_EXACT, safe_val is used as the exact safe value.
37 	 * For FTR_LOWER_SAFE, safe_val is used as the minimal safe value.
38 	 */
39 	int64_t safe_val;
40 };
41 
42 struct test_feature_reg {
43 	uint32_t reg;
44 	const struct reg_ftr_bits *ftr_bits;
45 };
46 
47 #define __REG_FTR_BITS(NAME, SIGNED, TYPE, SHIFT, MASK, SAFE_VAL)	\
48 	{								\
49 		.name = #NAME,						\
50 		.sign = SIGNED,						\
51 		.type = TYPE,						\
52 		.shift = SHIFT,						\
53 		.mask = MASK,						\
54 		.safe_val = SAFE_VAL,					\
55 	}
56 
57 #define REG_FTR_BITS(type, reg, field, safe_val) \
58 	__REG_FTR_BITS(reg##_##field, FTR_UNSIGNED, type, reg##_##field##_SHIFT, \
59 		       reg##_##field##_MASK, safe_val)
60 
61 #define S_REG_FTR_BITS(type, reg, field, safe_val) \
62 	__REG_FTR_BITS(reg##_##field, FTR_SIGNED, type, reg##_##field##_SHIFT, \
63 		       reg##_##field##_MASK, safe_val)
64 
65 #define REG_FTR_END					\
66 	{						\
67 		.type = FTR_END,			\
68 	}
69 
70 static const struct reg_ftr_bits ftr_id_aa64dfr0_el1[] = {
71 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DoubleLock, 0),
72 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, WRPs, 0),
73 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, PMUVer, 0),
74 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DebugVer, ID_AA64DFR0_EL1_DebugVer_IMP),
75 	REG_FTR_END,
76 };
77 
78 static const struct reg_ftr_bits ftr_id_dfr0_el1[] = {
79 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, PerfMon, ID_DFR0_EL1_PerfMon_PMUv3),
80 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, CopDbg, ID_DFR0_EL1_CopDbg_Armv8),
81 	REG_FTR_END,
82 };
83 
84 static const struct reg_ftr_bits ftr_id_aa64isar0_el1[] = {
85 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RNDR, 0),
86 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TLB, 0),
87 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TS, 0),
88 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, FHM, 0),
89 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, DP, 0),
90 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM4, 0),
91 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM3, 0),
92 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA3, 0),
93 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RDM, 0),
94 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, ATOMIC, 0),
95 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, CRC32, 0),
96 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA2, 0),
97 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA1, 0),
98 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, AES, 0),
99 	REG_FTR_END,
100 };
101 
102 static const struct reg_ftr_bits ftr_id_aa64isar1_el1[] = {
103 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LS64, 0),
104 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, XS, 0),
105 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, I8MM, 0),
106 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DGH, 0),
107 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, BF16, 0),
108 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SPECRES, 0),
109 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SB, 0),
110 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FRINTTS, 0),
111 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LRCPC, 0),
112 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FCMA, 0),
113 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, JSCVT, 0),
114 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DPB, 0),
115 	REG_FTR_END,
116 };
117 
118 static const struct reg_ftr_bits ftr_id_aa64isar2_el1[] = {
119 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, BC, 0),
120 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, RPRES, 0),
121 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, WFxT, 0),
122 	REG_FTR_END,
123 };
124 
125 static const struct reg_ftr_bits ftr_id_aa64isar3_el1[] = {
126 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR3_EL1, FPRCVT, 0),
127 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR3_EL1, LSFE, 0),
128 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR3_EL1, FAMINMAX, 0),
129 	REG_FTR_END,
130 };
131 
132 static const struct reg_ftr_bits ftr_id_aa64pfr0_el1[] = {
133 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV3, 0),
134 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV2, 0),
135 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, DIT, 0),
136 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, SEL2, 0),
137 	REG_FTR_BITS(FTR_EXACT, ID_AA64PFR0_EL1, GIC, 0),
138 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL3, 1),
139 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL2, 1),
140 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL1, 1),
141 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL0, 1),
142 	REG_FTR_END,
143 };
144 
145 static const struct reg_ftr_bits ftr_id_aa64pfr1_el1[] = {
146 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, DF2, 0),
147 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, CSV2_frac, 0),
148 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, SSBS, ID_AA64PFR1_EL1_SSBS_NI),
149 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, BT, 0),
150 	REG_FTR_END,
151 };
152 
153 static const struct reg_ftr_bits ftr_id_aa64mmfr0_el1[] = {
154 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, ECV, 0),
155 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, EXS, 0),
156 	REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN4_2, 1),
157 	REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN64_2, 1),
158 	REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN16_2, 1),
159 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN4, 0),
160 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN64, 0),
161 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN16, 0),
162 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGENDEL0, 0),
163 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, SNSMEM, 0),
164 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGEND, 0),
165 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, PARANGE, 0),
166 	REG_FTR_END,
167 };
168 
169 static const struct reg_ftr_bits ftr_id_aa64mmfr1_el1[] = {
170 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, TIDCP1, 0),
171 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, AFP, 0),
172 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HCX, 0),
173 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, ETS, 0),
174 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, TWED, 0),
175 	REG_FTR_BITS(FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1, SpecSEI, 0),
176 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, PAN, 0),
177 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, LO, 0),
178 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HPDS, 0),
179 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HAFDBS, 0),
180 	REG_FTR_END,
181 };
182 
183 static const struct reg_ftr_bits ftr_id_aa64mmfr2_el1[] = {
184 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, E0PD, 0),
185 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, BBM, 0),
186 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, TTL, 0),
187 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, AT, 0),
188 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, ST, 0),
189 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, VARange, 0),
190 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, IESB, 0),
191 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, LSM, 0),
192 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, UAO, 0),
193 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, CnP, 0),
194 	REG_FTR_END,
195 };
196 
197 static const struct reg_ftr_bits ftr_id_aa64mmfr3_el1[] = {
198 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, S1POE, 0),
199 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, S1PIE, 0),
200 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, SCTLRX, 0),
201 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, TCRX, 0),
202 	REG_FTR_END,
203 };
204 
205 static const struct reg_ftr_bits ftr_id_aa64zfr0_el1[] = {
206 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F64MM, 0),
207 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F32MM, 0),
208 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, I8MM, 0),
209 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SM4, 0),
210 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SHA3, 0),
211 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BF16, 0),
212 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BitPerm, 0),
213 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, AES, 0),
214 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SVEver, 0),
215 	REG_FTR_END,
216 };
217 
218 #define TEST_REG(id, table)			\
219 	{					\
220 		.reg = id,			\
221 		.ftr_bits = &((table)[0]),	\
222 	}
223 
224 static struct test_feature_reg test_regs[] = {
225 	TEST_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0_el1),
226 	TEST_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0_el1),
227 	TEST_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0_el1),
228 	TEST_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1_el1),
229 	TEST_REG(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2_el1),
230 	TEST_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3_el1),
231 	TEST_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0_el1),
232 	TEST_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1_el1),
233 	TEST_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0_el1),
234 	TEST_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1_el1),
235 	TEST_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2_el1),
236 	TEST_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3_el1),
237 	TEST_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0_el1),
238 };
239 
240 #define GUEST_REG_SYNC(id) GUEST_SYNC_ARGS(0, id, read_sysreg_s(id), 0, 0);
241 
242 static void guest_code(void)
243 {
244 	GUEST_REG_SYNC(SYS_ID_AA64DFR0_EL1);
245 	GUEST_REG_SYNC(SYS_ID_DFR0_EL1);
246 	GUEST_REG_SYNC(SYS_ID_AA64ISAR0_EL1);
247 	GUEST_REG_SYNC(SYS_ID_AA64ISAR1_EL1);
248 	GUEST_REG_SYNC(SYS_ID_AA64ISAR2_EL1);
249 	GUEST_REG_SYNC(SYS_ID_AA64ISAR3_EL1);
250 	GUEST_REG_SYNC(SYS_ID_AA64PFR0_EL1);
251 	GUEST_REG_SYNC(SYS_ID_AA64PFR1_EL1);
252 	GUEST_REG_SYNC(SYS_ID_AA64MMFR0_EL1);
253 	GUEST_REG_SYNC(SYS_ID_AA64MMFR1_EL1);
254 	GUEST_REG_SYNC(SYS_ID_AA64MMFR2_EL1);
255 	GUEST_REG_SYNC(SYS_ID_AA64MMFR3_EL1);
256 	GUEST_REG_SYNC(SYS_ID_AA64ZFR0_EL1);
257 	GUEST_REG_SYNC(SYS_MPIDR_EL1);
258 	GUEST_REG_SYNC(SYS_CLIDR_EL1);
259 	GUEST_REG_SYNC(SYS_CTR_EL0);
260 	GUEST_REG_SYNC(SYS_MIDR_EL1);
261 	GUEST_REG_SYNC(SYS_REVIDR_EL1);
262 	GUEST_REG_SYNC(SYS_AIDR_EL1);
263 
264 	GUEST_DONE();
265 }
266 
267 /* Return a safe value to a given ftr_bits an ftr value */
268 uint64_t get_safe_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr)
269 {
270 	uint64_t ftr_max = ftr_bits->mask >> ftr_bits->shift;
271 
272 	TEST_ASSERT(ftr_max > 1, "This test doesn't support single bit features");
273 
274 	if (ftr_bits->sign == FTR_UNSIGNED) {
275 		switch (ftr_bits->type) {
276 		case FTR_EXACT:
277 			ftr = ftr_bits->safe_val;
278 			break;
279 		case FTR_LOWER_SAFE:
280 			if (ftr > ftr_bits->safe_val)
281 				ftr--;
282 			break;
283 		case FTR_HIGHER_SAFE:
284 			if (ftr < ftr_max)
285 				ftr++;
286 			break;
287 		case FTR_HIGHER_OR_ZERO_SAFE:
288 			if (ftr == ftr_max)
289 				ftr = 0;
290 			else if (ftr != 0)
291 				ftr++;
292 			break;
293 		default:
294 			break;
295 		}
296 	} else if (ftr != ftr_max) {
297 		switch (ftr_bits->type) {
298 		case FTR_EXACT:
299 			ftr = ftr_bits->safe_val;
300 			break;
301 		case FTR_LOWER_SAFE:
302 			if (ftr > ftr_bits->safe_val)
303 				ftr--;
304 			break;
305 		case FTR_HIGHER_SAFE:
306 			if (ftr < ftr_max - 1)
307 				ftr++;
308 			break;
309 		case FTR_HIGHER_OR_ZERO_SAFE:
310 			if (ftr != 0 && ftr != ftr_max - 1)
311 				ftr++;
312 			break;
313 		default:
314 			break;
315 		}
316 	}
317 
318 	return ftr;
319 }
320 
321 /* Return an invalid value to a given ftr_bits an ftr value */
322 uint64_t get_invalid_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr)
323 {
324 	uint64_t ftr_max = ftr_bits->mask >> ftr_bits->shift;
325 
326 	TEST_ASSERT(ftr_max > 1, "This test doesn't support single bit features");
327 
328 	if (ftr_bits->sign == FTR_UNSIGNED) {
329 		switch (ftr_bits->type) {
330 		case FTR_EXACT:
331 			ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1);
332 			break;
333 		case FTR_LOWER_SAFE:
334 			ftr++;
335 			break;
336 		case FTR_HIGHER_SAFE:
337 			ftr--;
338 			break;
339 		case FTR_HIGHER_OR_ZERO_SAFE:
340 			if (ftr == 0)
341 				ftr = ftr_max;
342 			else
343 				ftr--;
344 			break;
345 		default:
346 			break;
347 		}
348 	} else if (ftr != ftr_max) {
349 		switch (ftr_bits->type) {
350 		case FTR_EXACT:
351 			ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1);
352 			break;
353 		case FTR_LOWER_SAFE:
354 			ftr++;
355 			break;
356 		case FTR_HIGHER_SAFE:
357 			ftr--;
358 			break;
359 		case FTR_HIGHER_OR_ZERO_SAFE:
360 			if (ftr == 0)
361 				ftr = ftr_max - 1;
362 			else
363 				ftr--;
364 			break;
365 		default:
366 			break;
367 		}
368 	} else {
369 		ftr = 0;
370 	}
371 
372 	return ftr;
373 }
374 
375 static uint64_t test_reg_set_success(struct kvm_vcpu *vcpu, uint64_t reg,
376 				     const struct reg_ftr_bits *ftr_bits)
377 {
378 	uint8_t shift = ftr_bits->shift;
379 	uint64_t mask = ftr_bits->mask;
380 	uint64_t val, new_val, ftr;
381 
382 	val = vcpu_get_reg(vcpu, reg);
383 	ftr = (val & mask) >> shift;
384 
385 	ftr = get_safe_value(ftr_bits, ftr);
386 
387 	ftr <<= shift;
388 	val &= ~mask;
389 	val |= ftr;
390 
391 	vcpu_set_reg(vcpu, reg, val);
392 	new_val = vcpu_get_reg(vcpu, reg);
393 	TEST_ASSERT_EQ(new_val, val);
394 
395 	return new_val;
396 }
397 
398 static void test_reg_set_fail(struct kvm_vcpu *vcpu, uint64_t reg,
399 			      const struct reg_ftr_bits *ftr_bits)
400 {
401 	uint8_t shift = ftr_bits->shift;
402 	uint64_t mask = ftr_bits->mask;
403 	uint64_t val, old_val, ftr;
404 	int r;
405 
406 	val = vcpu_get_reg(vcpu, reg);
407 	ftr = (val & mask) >> shift;
408 
409 	ftr = get_invalid_value(ftr_bits, ftr);
410 
411 	old_val = val;
412 	ftr <<= shift;
413 	val &= ~mask;
414 	val |= ftr;
415 
416 	r = __vcpu_set_reg(vcpu, reg, val);
417 	TEST_ASSERT(r < 0 && errno == EINVAL,
418 		    "Unexpected KVM_SET_ONE_REG error: r=%d, errno=%d", r, errno);
419 
420 	val = vcpu_get_reg(vcpu, reg);
421 	TEST_ASSERT_EQ(val, old_val);
422 }
423 
424 static uint64_t test_reg_vals[KVM_ARM_FEATURE_ID_RANGE_SIZE];
425 
426 #define encoding_to_range_idx(encoding)							\
427 	KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(encoding), sys_reg_Op1(encoding),	\
428 				     sys_reg_CRn(encoding), sys_reg_CRm(encoding),	\
429 				     sys_reg_Op2(encoding))
430 
431 
432 static void test_vm_ftr_id_regs(struct kvm_vcpu *vcpu, bool aarch64_only)
433 {
434 	uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
435 	struct reg_mask_range range = {
436 		.addr = (__u64)masks,
437 	};
438 	int ret;
439 
440 	/* KVM should return error when reserved field is not zero */
441 	range.reserved[0] = 1;
442 	ret = __vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
443 	TEST_ASSERT(ret, "KVM doesn't check invalid parameters.");
444 
445 	/* Get writable masks for feature ID registers */
446 	memset(range.reserved, 0, sizeof(range.reserved));
447 	vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
448 
449 	for (int i = 0; i < ARRAY_SIZE(test_regs); i++) {
450 		const struct reg_ftr_bits *ftr_bits = test_regs[i].ftr_bits;
451 		uint32_t reg_id = test_regs[i].reg;
452 		uint64_t reg = KVM_ARM64_SYS_REG(reg_id);
453 		int idx;
454 
455 		/* Get the index to masks array for the idreg */
456 		idx = encoding_to_range_idx(reg_id);
457 
458 		for (int j = 0;  ftr_bits[j].type != FTR_END; j++) {
459 			/* Skip aarch32 reg on aarch64 only system, since they are RAZ/WI. */
460 			if (aarch64_only && sys_reg_CRm(reg_id) < 4) {
461 				ksft_test_result_skip("%s on AARCH64 only system\n",
462 						      ftr_bits[j].name);
463 				continue;
464 			}
465 
466 			/* Make sure the feature field is writable */
467 			TEST_ASSERT_EQ(masks[idx] & ftr_bits[j].mask, ftr_bits[j].mask);
468 
469 			test_reg_set_fail(vcpu, reg, &ftr_bits[j]);
470 
471 			test_reg_vals[idx] = test_reg_set_success(vcpu, reg,
472 								  &ftr_bits[j]);
473 
474 			ksft_test_result_pass("%s\n", ftr_bits[j].name);
475 		}
476 	}
477 }
478 
479 #define MPAM_IDREG_TEST	6
480 static void test_user_set_mpam_reg(struct kvm_vcpu *vcpu)
481 {
482 	uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
483 	struct reg_mask_range range = {
484 		.addr = (__u64)masks,
485 	};
486 	uint64_t val;
487 	int idx, err;
488 
489 	/*
490 	 * If ID_AA64PFR0.MPAM is _not_ officially modifiable and is zero,
491 	 * check that if it can be set to 1, (i.e. it is supported by the
492 	 * hardware), that it can't be set to other values.
493 	 */
494 
495 	/* Get writable masks for feature ID registers */
496 	memset(range.reserved, 0, sizeof(range.reserved));
497 	vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
498 
499 	/* Writeable? Nothing to test! */
500 	idx = encoding_to_range_idx(SYS_ID_AA64PFR0_EL1);
501 	if ((masks[idx] & ID_AA64PFR0_EL1_MPAM_MASK) == ID_AA64PFR0_EL1_MPAM_MASK) {
502 		ksft_test_result_skip("ID_AA64PFR0_EL1.MPAM is officially writable, nothing to test\n");
503 		return;
504 	}
505 
506 	/* Get the id register value */
507 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1));
508 
509 	/* Try to set MPAM=0. This should always be possible. */
510 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
511 	val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 0);
512 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
513 	if (err)
514 		ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM=0 was not accepted\n");
515 	else
516 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM=0 worked\n");
517 
518 	/* Try to set MPAM=1 */
519 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
520 	val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 1);
521 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
522 	if (err)
523 		ksft_test_result_skip("ID_AA64PFR0_EL1.MPAM is not writable, nothing to test\n");
524 	else
525 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM=1 was writable\n");
526 
527 	/* Try to set MPAM=2 */
528 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
529 	val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 2);
530 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
531 	if (err)
532 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM not arbitrarily modifiable\n");
533 	else
534 		ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM value should not be ignored\n");
535 
536 	/* And again for ID_AA64PFR1_EL1.MPAM_frac */
537 	idx = encoding_to_range_idx(SYS_ID_AA64PFR1_EL1);
538 	if ((masks[idx] & ID_AA64PFR1_EL1_MPAM_frac_MASK) == ID_AA64PFR1_EL1_MPAM_frac_MASK) {
539 		ksft_test_result_skip("ID_AA64PFR1_EL1.MPAM_frac is officially writable, nothing to test\n");
540 		return;
541 	}
542 
543 	/* Get the id register value */
544 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
545 
546 	/* Try to set MPAM_frac=0. This should always be possible. */
547 	val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
548 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 0);
549 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
550 	if (err)
551 		ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM_frac=0 was not accepted\n");
552 	else
553 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM_frac=0 worked\n");
554 
555 	/* Try to set MPAM_frac=1 */
556 	val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
557 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 1);
558 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
559 	if (err)
560 		ksft_test_result_skip("ID_AA64PFR1_EL1.MPAM_frac is not writable, nothing to test\n");
561 	else
562 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM_frac=1 was writable\n");
563 
564 	/* Try to set MPAM_frac=2 */
565 	val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
566 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 2);
567 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
568 	if (err)
569 		ksft_test_result_pass("ID_AA64PFR1_EL1.MPAM_frac not arbitrarily modifiable\n");
570 	else
571 		ksft_test_result_fail("ID_AA64PFR1_EL1.MPAM_frac value should not be ignored\n");
572 }
573 
574 #define MTE_IDREG_TEST 1
575 static void test_user_set_mte_reg(struct kvm_vcpu *vcpu)
576 {
577 	uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
578 	struct reg_mask_range range = {
579 		.addr = (__u64)masks,
580 	};
581 	uint64_t val;
582 	uint64_t mte;
583 	uint64_t mte_frac;
584 	int idx, err;
585 
586 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
587 	mte = FIELD_GET(ID_AA64PFR1_EL1_MTE, val);
588 	if (!mte) {
589 		ksft_test_result_skip("MTE capability not supported, nothing to test\n");
590 		return;
591 	}
592 
593 	/* Get writable masks for feature ID registers */
594 	memset(range.reserved, 0, sizeof(range.reserved));
595 	vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
596 
597 	idx = encoding_to_range_idx(SYS_ID_AA64PFR1_EL1);
598 	if ((masks[idx] & ID_AA64PFR1_EL1_MTE_frac_MASK) == ID_AA64PFR1_EL1_MTE_frac_MASK) {
599 		ksft_test_result_skip("ID_AA64PFR1_EL1.MTE_frac is officially writable, nothing to test\n");
600 		return;
601 	}
602 
603 	/*
604 	 * When MTE is supported but MTE_ASYMM is not (ID_AA64PFR1_EL1.MTE == 2)
605 	 * ID_AA64PFR1_EL1.MTE_frac == 0xF indicates MTE_ASYNC is unsupported
606 	 * and MTE_frac == 0 indicates it is supported.
607 	 *
608 	 * As MTE_frac was previously unconditionally read as 0, check
609 	 * that the set to 0 succeeds but does not change MTE_frac
610 	 * from unsupported (0xF) to supported (0).
611 	 *
612 	 */
613 	mte_frac = FIELD_GET(ID_AA64PFR1_EL1_MTE_frac, val);
614 	if (mte != ID_AA64PFR1_EL1_MTE_MTE2 ||
615 	    mte_frac != ID_AA64PFR1_EL1_MTE_frac_NI) {
616 		ksft_test_result_skip("MTE_ASYNC or MTE_ASYMM are supported, nothing to test\n");
617 		return;
618 	}
619 
620 	/* Try to set MTE_frac=0. */
621 	val &= ~ID_AA64PFR1_EL1_MTE_frac_MASK;
622 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MTE_frac_MASK, 0);
623 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
624 	if (err) {
625 		ksft_test_result_fail("ID_AA64PFR1_EL1.MTE_frac=0 was not accepted\n");
626 		return;
627 	}
628 
629 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
630 	mte_frac = FIELD_GET(ID_AA64PFR1_EL1_MTE_frac, val);
631 	if (mte_frac == ID_AA64PFR1_EL1_MTE_frac_NI)
632 		ksft_test_result_pass("ID_AA64PFR1_EL1.MTE_frac=0 accepted and still 0xF\n");
633 	else
634 		ksft_test_result_pass("ID_AA64PFR1_EL1.MTE_frac no longer 0xF\n");
635 }
636 
637 static void test_guest_reg_read(struct kvm_vcpu *vcpu)
638 {
639 	bool done = false;
640 	struct ucall uc;
641 
642 	while (!done) {
643 		vcpu_run(vcpu);
644 
645 		switch (get_ucall(vcpu, &uc)) {
646 		case UCALL_ABORT:
647 			REPORT_GUEST_ASSERT(uc);
648 			break;
649 		case UCALL_SYNC:
650 			/* Make sure the written values are seen by guest */
651 			TEST_ASSERT_EQ(test_reg_vals[encoding_to_range_idx(uc.args[2])],
652 				       uc.args[3]);
653 			break;
654 		case UCALL_DONE:
655 			done = true;
656 			break;
657 		default:
658 			TEST_FAIL("Unexpected ucall: %lu", uc.cmd);
659 		}
660 	}
661 }
662 
663 /* Politely lifted from arch/arm64/include/asm/cache.h */
664 /* Ctypen, bits[3(n - 1) + 2 : 3(n - 1)], for n = 1 to 7 */
665 #define CLIDR_CTYPE_SHIFT(level)	(3 * (level - 1))
666 #define CLIDR_CTYPE_MASK(level)		(7 << CLIDR_CTYPE_SHIFT(level))
667 #define CLIDR_CTYPE(clidr, level)	\
668 	(((clidr) & CLIDR_CTYPE_MASK(level)) >> CLIDR_CTYPE_SHIFT(level))
669 
670 static void test_clidr(struct kvm_vcpu *vcpu)
671 {
672 	uint64_t clidr;
673 	int level;
674 
675 	clidr = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1));
676 
677 	/* find the first empty level in the cache hierarchy */
678 	for (level = 1; level <= 7; level++) {
679 		if (!CLIDR_CTYPE(clidr, level))
680 			break;
681 	}
682 
683 	/*
684 	 * If you have a mind-boggling 7 levels of cache, congratulations, you
685 	 * get to fix this.
686 	 */
687 	TEST_ASSERT(level <= 7, "can't find an empty level in cache hierarchy");
688 
689 	/* stick in a unified cache level */
690 	clidr |= BIT(2) << CLIDR_CTYPE_SHIFT(level);
691 
692 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1), clidr);
693 	test_reg_vals[encoding_to_range_idx(SYS_CLIDR_EL1)] = clidr;
694 }
695 
696 static void test_ctr(struct kvm_vcpu *vcpu)
697 {
698 	u64 ctr;
699 
700 	ctr = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0));
701 	ctr &= ~CTR_EL0_DIC_MASK;
702 	if (ctr & CTR_EL0_IminLine_MASK)
703 		ctr--;
704 
705 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0), ctr);
706 	test_reg_vals[encoding_to_range_idx(SYS_CTR_EL0)] = ctr;
707 }
708 
709 static void test_id_reg(struct kvm_vcpu *vcpu, u32 id)
710 {
711 	u64 val;
712 
713 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(id));
714 	val++;
715 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(id), val);
716 	test_reg_vals[encoding_to_range_idx(id)] = val;
717 }
718 
719 static void test_vcpu_ftr_id_regs(struct kvm_vcpu *vcpu)
720 {
721 	test_clidr(vcpu);
722 	test_ctr(vcpu);
723 
724 	test_id_reg(vcpu, SYS_MPIDR_EL1);
725 	ksft_test_result_pass("%s\n", __func__);
726 }
727 
728 static void test_vcpu_non_ftr_id_regs(struct kvm_vcpu *vcpu)
729 {
730 	test_id_reg(vcpu, SYS_MIDR_EL1);
731 	test_id_reg(vcpu, SYS_REVIDR_EL1);
732 	test_id_reg(vcpu, SYS_AIDR_EL1);
733 
734 	ksft_test_result_pass("%s\n", __func__);
735 }
736 
737 static void test_assert_id_reg_unchanged(struct kvm_vcpu *vcpu, uint32_t encoding)
738 {
739 	size_t idx = encoding_to_range_idx(encoding);
740 	uint64_t observed;
741 
742 	observed = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(encoding));
743 	TEST_ASSERT_EQ(test_reg_vals[idx], observed);
744 }
745 
746 static void test_reset_preserves_id_regs(struct kvm_vcpu *vcpu)
747 {
748 	/*
749 	 * Calls KVM_ARM_VCPU_INIT behind the scenes, which will do an
750 	 * architectural reset of the vCPU.
751 	 */
752 	aarch64_vcpu_setup(vcpu, NULL);
753 
754 	for (int i = 0; i < ARRAY_SIZE(test_regs); i++)
755 		test_assert_id_reg_unchanged(vcpu, test_regs[i].reg);
756 
757 	test_assert_id_reg_unchanged(vcpu, SYS_MPIDR_EL1);
758 	test_assert_id_reg_unchanged(vcpu, SYS_CLIDR_EL1);
759 	test_assert_id_reg_unchanged(vcpu, SYS_CTR_EL0);
760 	test_assert_id_reg_unchanged(vcpu, SYS_MIDR_EL1);
761 	test_assert_id_reg_unchanged(vcpu, SYS_REVIDR_EL1);
762 	test_assert_id_reg_unchanged(vcpu, SYS_AIDR_EL1);
763 
764 	ksft_test_result_pass("%s\n", __func__);
765 }
766 
767 int main(void)
768 {
769 	struct kvm_vcpu *vcpu;
770 	struct kvm_vm *vm;
771 	bool aarch64_only;
772 	uint64_t val, el0;
773 	int test_cnt, i, j;
774 
775 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES));
776 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_WRITABLE_IMP_ID_REGS));
777 
778 	test_wants_mte();
779 
780 	vm = vm_create(1);
781 	vm_enable_cap(vm, KVM_CAP_ARM_WRITABLE_IMP_ID_REGS, 0);
782 	vcpu = vm_vcpu_add(vm, 0, guest_code);
783 	kvm_arch_vm_finalize_vcpus(vm);
784 
785 	/* Check for AARCH64 only system */
786 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1));
787 	el0 = FIELD_GET(ID_AA64PFR0_EL1_EL0, val);
788 	aarch64_only = (el0 == ID_AA64PFR0_EL1_EL0_IMP);
789 
790 	ksft_print_header();
791 
792 	test_cnt = 3 + MPAM_IDREG_TEST + MTE_IDREG_TEST;
793 	for (i = 0; i < ARRAY_SIZE(test_regs); i++)
794 		for (j = 0; test_regs[i].ftr_bits[j].type != FTR_END; j++)
795 			test_cnt++;
796 
797 	ksft_set_plan(test_cnt);
798 
799 	test_vm_ftr_id_regs(vcpu, aarch64_only);
800 	test_vcpu_ftr_id_regs(vcpu);
801 	test_vcpu_non_ftr_id_regs(vcpu);
802 	test_user_set_mpam_reg(vcpu);
803 	test_user_set_mte_reg(vcpu);
804 
805 	test_guest_reg_read(vcpu);
806 
807 	test_reset_preserves_id_regs(vcpu);
808 
809 	kvm_vm_free(vm);
810 
811 	ksft_finished();
812 }
813