1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fscrypt.h: declarations for per-file encryption
4 *
5 * Filesystems that implement per-file encryption must include this header
6 * file.
7 *
8 * Copyright (C) 2015, Google, Inc.
9 *
10 * Written by Michael Halcrow, 2015.
11 * Modified by Jaegeuk Kim, 2015.
12 */
13 #ifndef _LINUX_FSCRYPT_H
14 #define _LINUX_FSCRYPT_H
15
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <uapi/linux/fscrypt.h>
20
21 /*
22 * The lengths of all file contents blocks must be divisible by this value.
23 * This is needed to ensure that all contents encryption modes will work, as
24 * some of the supported modes don't support arbitrarily byte-aligned messages.
25 *
26 * Since the needed alignment is 16 bytes, most filesystems will meet this
27 * requirement naturally, as typical block sizes are powers of 2. However, if a
28 * filesystem can generate arbitrarily byte-aligned block lengths (e.g., via
29 * compression), then it will need to pad to this alignment before encryption.
30 */
31 #define FSCRYPT_CONTENTS_ALIGNMENT 16
32
33 union fscrypt_policy;
34 struct fscrypt_inode_info;
35 struct fs_parameter;
36 struct seq_file;
37
38 struct fscrypt_str {
39 unsigned char *name;
40 u32 len;
41 };
42
43 struct fscrypt_name {
44 const struct qstr *usr_fname;
45 struct fscrypt_str disk_name;
46 u32 hash;
47 u32 minor_hash;
48 struct fscrypt_str crypto_buf;
49 bool is_nokey_name;
50 };
51
52 #define FSTR_INIT(n, l) { .name = n, .len = l }
53 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
54 #define fname_name(p) ((p)->disk_name.name)
55 #define fname_len(p) ((p)->disk_name.len)
56
57 /* Maximum value for the third parameter of fscrypt_operations.set_context(). */
58 #define FSCRYPT_SET_CONTEXT_MAX_SIZE 40
59
60 #ifdef CONFIG_FS_ENCRYPTION
61
62 /* Crypto operations for filesystems */
63 struct fscrypt_operations {
64
65 /*
66 * If set, then fs/crypto/ will allocate a global bounce page pool the
67 * first time an encryption key is set up for a file. The bounce page
68 * pool is required by the following functions:
69 *
70 * - fscrypt_encrypt_pagecache_blocks()
71 * - fscrypt_zeroout_range() for files not using inline crypto
72 *
73 * If the filesystem doesn't use those, it doesn't need to set this.
74 */
75 unsigned int needs_bounce_pages : 1;
76
77 /*
78 * If set, then fs/crypto/ will allow the use of encryption settings
79 * that assume inode numbers fit in 32 bits (i.e.
80 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64}), provided that the other
81 * prerequisites for these settings are also met. This is only useful
82 * if the filesystem wants to support inline encryption hardware that is
83 * limited to 32-bit or 64-bit data unit numbers and where programming
84 * keyslots is very slow.
85 */
86 unsigned int has_32bit_inodes : 1;
87
88 /*
89 * If set, then fs/crypto/ will allow users to select a crypto data unit
90 * size that is less than the filesystem block size. This is done via
91 * the log2_data_unit_size field of the fscrypt policy. This flag is
92 * not compatible with filesystems that encrypt variable-length blocks
93 * (i.e. blocks that aren't all equal to filesystem's block size), for
94 * example as a result of compression. It's also not compatible with
95 * the fscrypt_encrypt_block_inplace() and
96 * fscrypt_decrypt_block_inplace() functions.
97 */
98 unsigned int supports_subblock_data_units : 1;
99
100 /*
101 * This field exists only for backwards compatibility reasons and should
102 * only be set by the filesystems that are setting it already. It
103 * contains the filesystem-specific key description prefix that is
104 * accepted for "logon" keys for v1 fscrypt policies. This
105 * functionality is deprecated in favor of the generic prefix
106 * "fscrypt:", which itself is deprecated in favor of the filesystem
107 * keyring ioctls such as FS_IOC_ADD_ENCRYPTION_KEY. Filesystems that
108 * are newly adding fscrypt support should not set this field.
109 */
110 const char *legacy_key_prefix;
111
112 /*
113 * Get the fscrypt context of the given inode.
114 *
115 * @inode: the inode whose context to get
116 * @ctx: the buffer into which to get the context
117 * @len: length of the @ctx buffer in bytes
118 *
119 * Return: On success, returns the length of the context in bytes; this
120 * may be less than @len. On failure, returns -ENODATA if the
121 * inode doesn't have a context, -ERANGE if the context is
122 * longer than @len, or another -errno code.
123 */
124 int (*get_context)(struct inode *inode, void *ctx, size_t len);
125
126 /*
127 * Set an fscrypt context on the given inode.
128 *
129 * @inode: the inode whose context to set. The inode won't already have
130 * an fscrypt context.
131 * @ctx: the context to set
132 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE)
133 * @fs_data: If called from fscrypt_set_context(), this will be the
134 * value the filesystem passed to fscrypt_set_context().
135 * Otherwise (i.e. when called from
136 * FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL.
137 *
138 * i_rwsem will be held for write.
139 *
140 * Return: 0 on success, -errno on failure.
141 */
142 int (*set_context)(struct inode *inode, const void *ctx, size_t len,
143 void *fs_data);
144
145 /*
146 * Get the dummy fscrypt policy in use on the filesystem (if any).
147 *
148 * Filesystems only need to implement this function if they support the
149 * test_dummy_encryption mount option.
150 *
151 * Return: A pointer to the dummy fscrypt policy, if the filesystem is
152 * mounted with test_dummy_encryption; otherwise NULL.
153 */
154 const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb);
155
156 /*
157 * Check whether a directory is empty. i_rwsem will be held for write.
158 */
159 bool (*empty_dir)(struct inode *inode);
160
161 /*
162 * Check whether the filesystem's inode numbers and UUID are stable,
163 * meaning that they will never be changed even by offline operations
164 * such as filesystem shrinking and therefore can be used in the
165 * encryption without the possibility of files becoming unreadable.
166 *
167 * Filesystems only need to implement this function if they want to
168 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags. These
169 * flags are designed to work around the limitations of UFS and eMMC
170 * inline crypto hardware, and they shouldn't be used in scenarios where
171 * such hardware isn't being used.
172 *
173 * Leaving this NULL is equivalent to always returning false.
174 */
175 bool (*has_stable_inodes)(struct super_block *sb);
176
177 /*
178 * Return an array of pointers to the block devices to which the
179 * filesystem may write encrypted file contents, NULL if the filesystem
180 * only has a single such block device, or an ERR_PTR() on error.
181 *
182 * On successful non-NULL return, *num_devs is set to the number of
183 * devices in the returned array. The caller must free the returned
184 * array using kfree().
185 *
186 * If the filesystem can use multiple block devices (other than block
187 * devices that aren't used for encrypted file contents, such as
188 * external journal devices), and wants to support inline encryption,
189 * then it must implement this function. Otherwise it's not needed.
190 */
191 struct block_device **(*get_devices)(struct super_block *sb,
192 unsigned int *num_devs);
193 };
194
195 int fscrypt_d_revalidate(struct inode *dir, const struct qstr *name,
196 struct dentry *dentry, unsigned int flags);
197
198 static inline struct fscrypt_inode_info *
fscrypt_get_inode_info(const struct inode * inode)199 fscrypt_get_inode_info(const struct inode *inode)
200 {
201 /*
202 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info().
203 * I.e., another task may publish ->i_crypt_info concurrently, executing
204 * a RELEASE barrier. We need to use smp_load_acquire() here to safely
205 * ACQUIRE the memory the other task published.
206 */
207 return smp_load_acquire(&inode->i_crypt_info);
208 }
209
210 /**
211 * fscrypt_needs_contents_encryption() - check whether an inode needs
212 * contents encryption
213 * @inode: the inode to check
214 *
215 * Return: %true iff the inode is an encrypted regular file and the kernel was
216 * built with fscrypt support.
217 *
218 * If you need to know whether the encrypt bit is set even when the kernel was
219 * built without fscrypt support, you must use IS_ENCRYPTED() directly instead.
220 */
fscrypt_needs_contents_encryption(const struct inode * inode)221 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
222 {
223 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
224 }
225
226 /*
227 * When d_splice_alias() moves a directory's no-key alias to its
228 * plaintext alias as a result of the encryption key being added,
229 * DCACHE_NOKEY_NAME must be cleared and there might be an opportunity
230 * to disable d_revalidate. Note that we don't have to support the
231 * inverse operation because fscrypt doesn't allow no-key names to be
232 * the source or target of a rename().
233 */
fscrypt_handle_d_move(struct dentry * dentry)234 static inline void fscrypt_handle_d_move(struct dentry *dentry)
235 {
236 /*
237 * VFS calls fscrypt_handle_d_move even for non-fscrypt
238 * filesystems.
239 */
240 if (dentry->d_flags & DCACHE_NOKEY_NAME) {
241 dentry->d_flags &= ~DCACHE_NOKEY_NAME;
242
243 /*
244 * Other filesystem features might be handling dentry
245 * revalidation, in which case it cannot be disabled.
246 */
247 if (dentry->d_op->d_revalidate == fscrypt_d_revalidate)
248 dentry->d_flags &= ~DCACHE_OP_REVALIDATE;
249 }
250 }
251
252 /**
253 * fscrypt_is_nokey_name() - test whether a dentry is a no-key name
254 * @dentry: the dentry to check
255 *
256 * This returns true if the dentry is a no-key dentry. A no-key dentry is a
257 * dentry that was created in an encrypted directory that hasn't had its
258 * encryption key added yet. Such dentries may be either positive or negative.
259 *
260 * When a filesystem is asked to create a new filename in an encrypted directory
261 * and the new filename's dentry is a no-key dentry, it must fail the operation
262 * with ENOKEY. This includes ->create(), ->mkdir(), ->mknod(), ->symlink(),
263 * ->rename(), and ->link(). (However, ->rename() and ->link() are already
264 * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().)
265 *
266 * This is necessary because creating a filename requires the directory's
267 * encryption key, but just checking for the key on the directory inode during
268 * the final filesystem operation doesn't guarantee that the key was available
269 * during the preceding dentry lookup. And the key must have already been
270 * available during the dentry lookup in order for it to have been checked
271 * whether the filename already exists in the directory and for the new file's
272 * dentry not to be invalidated due to it incorrectly having the no-key flag.
273 *
274 * Return: %true if the dentry is a no-key name
275 */
fscrypt_is_nokey_name(const struct dentry * dentry)276 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
277 {
278 return dentry->d_flags & DCACHE_NOKEY_NAME;
279 }
280
fscrypt_prepare_dentry(struct dentry * dentry,bool is_nokey_name)281 static inline void fscrypt_prepare_dentry(struct dentry *dentry,
282 bool is_nokey_name)
283 {
284 /*
285 * This code tries to only take ->d_lock when necessary to write
286 * to ->d_flags. We shouldn't be peeking on d_flags for
287 * DCACHE_OP_REVALIDATE unlocked, but in the unlikely case
288 * there is a race, the worst it can happen is that we fail to
289 * unset DCACHE_OP_REVALIDATE and pay the cost of an extra
290 * d_revalidate.
291 */
292 if (is_nokey_name) {
293 spin_lock(&dentry->d_lock);
294 dentry->d_flags |= DCACHE_NOKEY_NAME;
295 spin_unlock(&dentry->d_lock);
296 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE &&
297 dentry->d_op->d_revalidate == fscrypt_d_revalidate) {
298 /*
299 * Unencrypted dentries and encrypted dentries where the
300 * key is available are always valid from fscrypt
301 * perspective. Avoid the cost of calling
302 * fscrypt_d_revalidate unnecessarily.
303 */
304 spin_lock(&dentry->d_lock);
305 dentry->d_flags &= ~DCACHE_OP_REVALIDATE;
306 spin_unlock(&dentry->d_lock);
307 }
308 }
309
310 /* crypto.c */
311 void fscrypt_enqueue_decrypt_work(struct work_struct *);
312
313 struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
314 unsigned int len,
315 unsigned int offs,
316 gfp_t gfp_flags);
317 int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
318 unsigned int len, unsigned int offs,
319 u64 lblk_num, gfp_t gfp_flags);
320
321 int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len,
322 size_t offs);
323 int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
324 unsigned int len, unsigned int offs,
325 u64 lblk_num);
326
fscrypt_is_bounce_page(struct page * page)327 static inline bool fscrypt_is_bounce_page(struct page *page)
328 {
329 return page->mapping == NULL;
330 }
331
fscrypt_pagecache_page(struct page * bounce_page)332 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
333 {
334 return (struct page *)page_private(bounce_page);
335 }
336
fscrypt_is_bounce_folio(struct folio * folio)337 static inline bool fscrypt_is_bounce_folio(struct folio *folio)
338 {
339 return folio->mapping == NULL;
340 }
341
fscrypt_pagecache_folio(struct folio * bounce_folio)342 static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio)
343 {
344 return bounce_folio->private;
345 }
346
347 void fscrypt_free_bounce_page(struct page *bounce_page);
348
349 /* policy.c */
350 int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg);
351 int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg);
352 int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg);
353 int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg);
354 int fscrypt_has_permitted_context(struct inode *parent, struct inode *child);
355 int fscrypt_context_for_new_inode(void *ctx, struct inode *inode);
356 int fscrypt_set_context(struct inode *inode, void *fs_data);
357
358 struct fscrypt_dummy_policy {
359 const union fscrypt_policy *policy;
360 };
361
362 int fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param,
363 struct fscrypt_dummy_policy *dummy_policy);
364 bool fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
365 const struct fscrypt_dummy_policy *p2);
366 void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep,
367 struct super_block *sb);
368 static inline bool
fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy * dummy_policy)369 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy)
370 {
371 return dummy_policy->policy != NULL;
372 }
373 static inline void
fscrypt_free_dummy_policy(struct fscrypt_dummy_policy * dummy_policy)374 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
375 {
376 kfree(dummy_policy->policy);
377 dummy_policy->policy = NULL;
378 }
379
380 /* keyring.c */
381 void fscrypt_destroy_keyring(struct super_block *sb);
382 int fscrypt_ioctl_add_key(struct file *filp, void __user *arg);
383 int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg);
384 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg);
385 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg);
386
387 /* keysetup.c */
388 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
389 bool *encrypt_ret);
390 void fscrypt_put_encryption_info(struct inode *inode);
391 void fscrypt_free_inode(struct inode *inode);
392 int fscrypt_drop_inode(struct inode *inode);
393
394 /* fname.c */
395 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
396 u8 *out, unsigned int olen);
397 bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
398 u32 max_len, u32 *encrypted_len_ret);
399 int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname,
400 int lookup, struct fscrypt_name *fname);
401
fscrypt_free_filename(struct fscrypt_name * fname)402 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
403 {
404 kfree(fname->crypto_buf.name);
405 }
406
407 int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
408 struct fscrypt_str *crypto_str);
409 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str);
410 int fscrypt_fname_disk_to_usr(const struct inode *inode,
411 u32 hash, u32 minor_hash,
412 const struct fscrypt_str *iname,
413 struct fscrypt_str *oname);
414 bool fscrypt_match_name(const struct fscrypt_name *fname,
415 const u8 *de_name, u32 de_name_len);
416 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name);
417
418 /* bio.c */
419 bool fscrypt_decrypt_bio(struct bio *bio);
420 int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
421 sector_t pblk, unsigned int len);
422
423 /* hooks.c */
424 int fscrypt_file_open(struct inode *inode, struct file *filp);
425 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
426 struct dentry *dentry);
427 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
428 struct inode *new_dir, struct dentry *new_dentry,
429 unsigned int flags);
430 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
431 struct fscrypt_name *fname);
432 int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry);
433 int __fscrypt_prepare_readdir(struct inode *dir);
434 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr);
435 int fscrypt_prepare_setflags(struct inode *inode,
436 unsigned int oldflags, unsigned int flags);
437 int fscrypt_prepare_symlink(struct inode *dir, const char *target,
438 unsigned int len, unsigned int max_len,
439 struct fscrypt_str *disk_link);
440 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
441 unsigned int len, struct fscrypt_str *disk_link);
442 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
443 unsigned int max_size,
444 struct delayed_call *done);
445 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat);
fscrypt_set_ops(struct super_block * sb,const struct fscrypt_operations * s_cop)446 static inline void fscrypt_set_ops(struct super_block *sb,
447 const struct fscrypt_operations *s_cop)
448 {
449 sb->s_cop = s_cop;
450 }
451 #else /* !CONFIG_FS_ENCRYPTION */
452
453 static inline struct fscrypt_inode_info *
fscrypt_get_inode_info(const struct inode * inode)454 fscrypt_get_inode_info(const struct inode *inode)
455 {
456 return NULL;
457 }
458
fscrypt_needs_contents_encryption(const struct inode * inode)459 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
460 {
461 return false;
462 }
463
fscrypt_handle_d_move(struct dentry * dentry)464 static inline void fscrypt_handle_d_move(struct dentry *dentry)
465 {
466 }
467
fscrypt_is_nokey_name(const struct dentry * dentry)468 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
469 {
470 return false;
471 }
472
fscrypt_prepare_dentry(struct dentry * dentry,bool is_nokey_name)473 static inline void fscrypt_prepare_dentry(struct dentry *dentry,
474 bool is_nokey_name)
475 {
476 }
477
478 /* crypto.c */
fscrypt_enqueue_decrypt_work(struct work_struct * work)479 static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work)
480 {
481 }
482
fscrypt_encrypt_pagecache_blocks(struct page * page,unsigned int len,unsigned int offs,gfp_t gfp_flags)483 static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
484 unsigned int len,
485 unsigned int offs,
486 gfp_t gfp_flags)
487 {
488 return ERR_PTR(-EOPNOTSUPP);
489 }
490
fscrypt_encrypt_block_inplace(const struct inode * inode,struct page * page,unsigned int len,unsigned int offs,u64 lblk_num,gfp_t gfp_flags)491 static inline int fscrypt_encrypt_block_inplace(const struct inode *inode,
492 struct page *page,
493 unsigned int len,
494 unsigned int offs, u64 lblk_num,
495 gfp_t gfp_flags)
496 {
497 return -EOPNOTSUPP;
498 }
499
fscrypt_decrypt_pagecache_blocks(struct folio * folio,size_t len,size_t offs)500 static inline int fscrypt_decrypt_pagecache_blocks(struct folio *folio,
501 size_t len, size_t offs)
502 {
503 return -EOPNOTSUPP;
504 }
505
fscrypt_decrypt_block_inplace(const struct inode * inode,struct page * page,unsigned int len,unsigned int offs,u64 lblk_num)506 static inline int fscrypt_decrypt_block_inplace(const struct inode *inode,
507 struct page *page,
508 unsigned int len,
509 unsigned int offs, u64 lblk_num)
510 {
511 return -EOPNOTSUPP;
512 }
513
fscrypt_is_bounce_page(struct page * page)514 static inline bool fscrypt_is_bounce_page(struct page *page)
515 {
516 return false;
517 }
518
fscrypt_pagecache_page(struct page * bounce_page)519 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
520 {
521 WARN_ON_ONCE(1);
522 return ERR_PTR(-EINVAL);
523 }
524
fscrypt_is_bounce_folio(struct folio * folio)525 static inline bool fscrypt_is_bounce_folio(struct folio *folio)
526 {
527 return false;
528 }
529
fscrypt_pagecache_folio(struct folio * bounce_folio)530 static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio)
531 {
532 WARN_ON_ONCE(1);
533 return ERR_PTR(-EINVAL);
534 }
535
fscrypt_free_bounce_page(struct page * bounce_page)536 static inline void fscrypt_free_bounce_page(struct page *bounce_page)
537 {
538 }
539
540 /* policy.c */
fscrypt_ioctl_set_policy(struct file * filp,const void __user * arg)541 static inline int fscrypt_ioctl_set_policy(struct file *filp,
542 const void __user *arg)
543 {
544 return -EOPNOTSUPP;
545 }
546
fscrypt_ioctl_get_policy(struct file * filp,void __user * arg)547 static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg)
548 {
549 return -EOPNOTSUPP;
550 }
551
fscrypt_ioctl_get_policy_ex(struct file * filp,void __user * arg)552 static inline int fscrypt_ioctl_get_policy_ex(struct file *filp,
553 void __user *arg)
554 {
555 return -EOPNOTSUPP;
556 }
557
fscrypt_ioctl_get_nonce(struct file * filp,void __user * arg)558 static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg)
559 {
560 return -EOPNOTSUPP;
561 }
562
fscrypt_has_permitted_context(struct inode * parent,struct inode * child)563 static inline int fscrypt_has_permitted_context(struct inode *parent,
564 struct inode *child)
565 {
566 return 0;
567 }
568
fscrypt_set_context(struct inode * inode,void * fs_data)569 static inline int fscrypt_set_context(struct inode *inode, void *fs_data)
570 {
571 return -EOPNOTSUPP;
572 }
573
574 struct fscrypt_dummy_policy {
575 };
576
577 static inline int
fscrypt_parse_test_dummy_encryption(const struct fs_parameter * param,struct fscrypt_dummy_policy * dummy_policy)578 fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param,
579 struct fscrypt_dummy_policy *dummy_policy)
580 {
581 return -EINVAL;
582 }
583
584 static inline bool
fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy * p1,const struct fscrypt_dummy_policy * p2)585 fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
586 const struct fscrypt_dummy_policy *p2)
587 {
588 return true;
589 }
590
fscrypt_show_test_dummy_encryption(struct seq_file * seq,char sep,struct super_block * sb)591 static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq,
592 char sep,
593 struct super_block *sb)
594 {
595 }
596
597 static inline bool
fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy * dummy_policy)598 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy)
599 {
600 return false;
601 }
602
603 static inline void
fscrypt_free_dummy_policy(struct fscrypt_dummy_policy * dummy_policy)604 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
605 {
606 }
607
608 /* keyring.c */
fscrypt_destroy_keyring(struct super_block * sb)609 static inline void fscrypt_destroy_keyring(struct super_block *sb)
610 {
611 }
612
fscrypt_ioctl_add_key(struct file * filp,void __user * arg)613 static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg)
614 {
615 return -EOPNOTSUPP;
616 }
617
fscrypt_ioctl_remove_key(struct file * filp,void __user * arg)618 static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg)
619 {
620 return -EOPNOTSUPP;
621 }
622
fscrypt_ioctl_remove_key_all_users(struct file * filp,void __user * arg)623 static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp,
624 void __user *arg)
625 {
626 return -EOPNOTSUPP;
627 }
628
fscrypt_ioctl_get_key_status(struct file * filp,void __user * arg)629 static inline int fscrypt_ioctl_get_key_status(struct file *filp,
630 void __user *arg)
631 {
632 return -EOPNOTSUPP;
633 }
634
635 /* keysetup.c */
636
fscrypt_prepare_new_inode(struct inode * dir,struct inode * inode,bool * encrypt_ret)637 static inline int fscrypt_prepare_new_inode(struct inode *dir,
638 struct inode *inode,
639 bool *encrypt_ret)
640 {
641 if (IS_ENCRYPTED(dir))
642 return -EOPNOTSUPP;
643 return 0;
644 }
645
fscrypt_put_encryption_info(struct inode * inode)646 static inline void fscrypt_put_encryption_info(struct inode *inode)
647 {
648 return;
649 }
650
fscrypt_free_inode(struct inode * inode)651 static inline void fscrypt_free_inode(struct inode *inode)
652 {
653 }
654
fscrypt_drop_inode(struct inode * inode)655 static inline int fscrypt_drop_inode(struct inode *inode)
656 {
657 return 0;
658 }
659
660 /* fname.c */
fscrypt_setup_filename(struct inode * dir,const struct qstr * iname,int lookup,struct fscrypt_name * fname)661 static inline int fscrypt_setup_filename(struct inode *dir,
662 const struct qstr *iname,
663 int lookup, struct fscrypt_name *fname)
664 {
665 if (IS_ENCRYPTED(dir))
666 return -EOPNOTSUPP;
667
668 memset(fname, 0, sizeof(*fname));
669 fname->usr_fname = iname;
670 fname->disk_name.name = (unsigned char *)iname->name;
671 fname->disk_name.len = iname->len;
672 return 0;
673 }
674
fscrypt_free_filename(struct fscrypt_name * fname)675 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
676 {
677 return;
678 }
679
fscrypt_fname_alloc_buffer(u32 max_encrypted_len,struct fscrypt_str * crypto_str)680 static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
681 struct fscrypt_str *crypto_str)
682 {
683 return -EOPNOTSUPP;
684 }
685
fscrypt_fname_free_buffer(struct fscrypt_str * crypto_str)686 static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
687 {
688 return;
689 }
690
fscrypt_fname_disk_to_usr(const struct inode * inode,u32 hash,u32 minor_hash,const struct fscrypt_str * iname,struct fscrypt_str * oname)691 static inline int fscrypt_fname_disk_to_usr(const struct inode *inode,
692 u32 hash, u32 minor_hash,
693 const struct fscrypt_str *iname,
694 struct fscrypt_str *oname)
695 {
696 return -EOPNOTSUPP;
697 }
698
fscrypt_match_name(const struct fscrypt_name * fname,const u8 * de_name,u32 de_name_len)699 static inline bool fscrypt_match_name(const struct fscrypt_name *fname,
700 const u8 *de_name, u32 de_name_len)
701 {
702 /* Encryption support disabled; use standard comparison */
703 if (de_name_len != fname->disk_name.len)
704 return false;
705 return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len);
706 }
707
fscrypt_fname_siphash(const struct inode * dir,const struct qstr * name)708 static inline u64 fscrypt_fname_siphash(const struct inode *dir,
709 const struct qstr *name)
710 {
711 WARN_ON_ONCE(1);
712 return 0;
713 }
714
fscrypt_d_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)715 static inline int fscrypt_d_revalidate(struct inode *dir, const struct qstr *name,
716 struct dentry *dentry, unsigned int flags)
717 {
718 return 1;
719 }
720
721 /* bio.c */
fscrypt_decrypt_bio(struct bio * bio)722 static inline bool fscrypt_decrypt_bio(struct bio *bio)
723 {
724 return true;
725 }
726
fscrypt_zeroout_range(const struct inode * inode,pgoff_t lblk,sector_t pblk,unsigned int len)727 static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
728 sector_t pblk, unsigned int len)
729 {
730 return -EOPNOTSUPP;
731 }
732
733 /* hooks.c */
734
fscrypt_file_open(struct inode * inode,struct file * filp)735 static inline int fscrypt_file_open(struct inode *inode, struct file *filp)
736 {
737 if (IS_ENCRYPTED(inode))
738 return -EOPNOTSUPP;
739 return 0;
740 }
741
__fscrypt_prepare_link(struct inode * inode,struct inode * dir,struct dentry * dentry)742 static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
743 struct dentry *dentry)
744 {
745 return -EOPNOTSUPP;
746 }
747
__fscrypt_prepare_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)748 static inline int __fscrypt_prepare_rename(struct inode *old_dir,
749 struct dentry *old_dentry,
750 struct inode *new_dir,
751 struct dentry *new_dentry,
752 unsigned int flags)
753 {
754 return -EOPNOTSUPP;
755 }
756
__fscrypt_prepare_lookup(struct inode * dir,struct dentry * dentry,struct fscrypt_name * fname)757 static inline int __fscrypt_prepare_lookup(struct inode *dir,
758 struct dentry *dentry,
759 struct fscrypt_name *fname)
760 {
761 return -EOPNOTSUPP;
762 }
763
fscrypt_prepare_lookup_partial(struct inode * dir,struct dentry * dentry)764 static inline int fscrypt_prepare_lookup_partial(struct inode *dir,
765 struct dentry *dentry)
766 {
767 return -EOPNOTSUPP;
768 }
769
__fscrypt_prepare_readdir(struct inode * dir)770 static inline int __fscrypt_prepare_readdir(struct inode *dir)
771 {
772 return -EOPNOTSUPP;
773 }
774
__fscrypt_prepare_setattr(struct dentry * dentry,struct iattr * attr)775 static inline int __fscrypt_prepare_setattr(struct dentry *dentry,
776 struct iattr *attr)
777 {
778 return -EOPNOTSUPP;
779 }
780
fscrypt_prepare_setflags(struct inode * inode,unsigned int oldflags,unsigned int flags)781 static inline int fscrypt_prepare_setflags(struct inode *inode,
782 unsigned int oldflags,
783 unsigned int flags)
784 {
785 return 0;
786 }
787
fscrypt_prepare_symlink(struct inode * dir,const char * target,unsigned int len,unsigned int max_len,struct fscrypt_str * disk_link)788 static inline int fscrypt_prepare_symlink(struct inode *dir,
789 const char *target,
790 unsigned int len,
791 unsigned int max_len,
792 struct fscrypt_str *disk_link)
793 {
794 if (IS_ENCRYPTED(dir))
795 return -EOPNOTSUPP;
796 disk_link->name = (unsigned char *)target;
797 disk_link->len = len + 1;
798 if (disk_link->len > max_len)
799 return -ENAMETOOLONG;
800 return 0;
801 }
802
__fscrypt_encrypt_symlink(struct inode * inode,const char * target,unsigned int len,struct fscrypt_str * disk_link)803 static inline int __fscrypt_encrypt_symlink(struct inode *inode,
804 const char *target,
805 unsigned int len,
806 struct fscrypt_str *disk_link)
807 {
808 return -EOPNOTSUPP;
809 }
810
fscrypt_get_symlink(struct inode * inode,const void * caddr,unsigned int max_size,struct delayed_call * done)811 static inline const char *fscrypt_get_symlink(struct inode *inode,
812 const void *caddr,
813 unsigned int max_size,
814 struct delayed_call *done)
815 {
816 return ERR_PTR(-EOPNOTSUPP);
817 }
818
fscrypt_symlink_getattr(const struct path * path,struct kstat * stat)819 static inline int fscrypt_symlink_getattr(const struct path *path,
820 struct kstat *stat)
821 {
822 return -EOPNOTSUPP;
823 }
824
fscrypt_set_ops(struct super_block * sb,const struct fscrypt_operations * s_cop)825 static inline void fscrypt_set_ops(struct super_block *sb,
826 const struct fscrypt_operations *s_cop)
827 {
828 }
829
830 #endif /* !CONFIG_FS_ENCRYPTION */
831
832 /* inline_crypt.c */
833 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
834
835 bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode);
836
837 void fscrypt_set_bio_crypt_ctx(struct bio *bio,
838 const struct inode *inode, u64 first_lblk,
839 gfp_t gfp_mask);
840
841 void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio,
842 const struct buffer_head *first_bh,
843 gfp_t gfp_mask);
844
845 bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
846 u64 next_lblk);
847
848 bool fscrypt_mergeable_bio_bh(struct bio *bio,
849 const struct buffer_head *next_bh);
850
851 bool fscrypt_dio_supported(struct inode *inode);
852
853 u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks);
854
855 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
856
__fscrypt_inode_uses_inline_crypto(const struct inode * inode)857 static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
858 {
859 return false;
860 }
861
fscrypt_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,u64 first_lblk,gfp_t gfp_mask)862 static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio,
863 const struct inode *inode,
864 u64 first_lblk, gfp_t gfp_mask) { }
865
fscrypt_set_bio_crypt_ctx_bh(struct bio * bio,const struct buffer_head * first_bh,gfp_t gfp_mask)866 static inline void fscrypt_set_bio_crypt_ctx_bh(
867 struct bio *bio,
868 const struct buffer_head *first_bh,
869 gfp_t gfp_mask) { }
870
fscrypt_mergeable_bio(struct bio * bio,const struct inode * inode,u64 next_lblk)871 static inline bool fscrypt_mergeable_bio(struct bio *bio,
872 const struct inode *inode,
873 u64 next_lblk)
874 {
875 return true;
876 }
877
fscrypt_mergeable_bio_bh(struct bio * bio,const struct buffer_head * next_bh)878 static inline bool fscrypt_mergeable_bio_bh(struct bio *bio,
879 const struct buffer_head *next_bh)
880 {
881 return true;
882 }
883
fscrypt_dio_supported(struct inode * inode)884 static inline bool fscrypt_dio_supported(struct inode *inode)
885 {
886 return !fscrypt_needs_contents_encryption(inode);
887 }
888
fscrypt_limit_io_blocks(const struct inode * inode,u64 lblk,u64 nr_blocks)889 static inline u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk,
890 u64 nr_blocks)
891 {
892 return nr_blocks;
893 }
894 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
895
896 /**
897 * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline
898 * encryption
899 * @inode: an inode. If encrypted, its key must be set up.
900 *
901 * Return: true if the inode requires file contents encryption and if the
902 * encryption should be done in the block layer via blk-crypto rather
903 * than in the filesystem layer.
904 */
fscrypt_inode_uses_inline_crypto(const struct inode * inode)905 static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode)
906 {
907 return fscrypt_needs_contents_encryption(inode) &&
908 __fscrypt_inode_uses_inline_crypto(inode);
909 }
910
911 /**
912 * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer
913 * encryption
914 * @inode: an inode. If encrypted, its key must be set up.
915 *
916 * Return: true if the inode requires file contents encryption and if the
917 * encryption should be done in the filesystem layer rather than in the
918 * block layer via blk-crypto.
919 */
fscrypt_inode_uses_fs_layer_crypto(const struct inode * inode)920 static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode)
921 {
922 return fscrypt_needs_contents_encryption(inode) &&
923 !__fscrypt_inode_uses_inline_crypto(inode);
924 }
925
926 /**
927 * fscrypt_has_encryption_key() - check whether an inode has had its key set up
928 * @inode: the inode to check
929 *
930 * Return: %true if the inode has had its encryption key set up, else %false.
931 *
932 * Usually this should be preceded by fscrypt_get_encryption_info() to try to
933 * set up the key first.
934 */
fscrypt_has_encryption_key(const struct inode * inode)935 static inline bool fscrypt_has_encryption_key(const struct inode *inode)
936 {
937 return fscrypt_get_inode_info(inode) != NULL;
938 }
939
940 /**
941 * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted
942 * directory
943 * @old_dentry: an existing dentry for the inode being linked
944 * @dir: the target directory
945 * @dentry: negative dentry for the target filename
946 *
947 * A new link can only be added to an encrypted directory if the directory's
948 * encryption key is available --- since otherwise we'd have no way to encrypt
949 * the filename.
950 *
951 * We also verify that the link will not violate the constraint that all files
952 * in an encrypted directory tree use the same encryption policy.
953 *
954 * Return: 0 on success, -ENOKEY if the directory's encryption key is missing,
955 * -EXDEV if the link would result in an inconsistent encryption policy, or
956 * another -errno code.
957 */
fscrypt_prepare_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)958 static inline int fscrypt_prepare_link(struct dentry *old_dentry,
959 struct inode *dir,
960 struct dentry *dentry)
961 {
962 if (IS_ENCRYPTED(dir))
963 return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry);
964 return 0;
965 }
966
967 /**
968 * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted
969 * directories
970 * @old_dir: source directory
971 * @old_dentry: dentry for source file
972 * @new_dir: target directory
973 * @new_dentry: dentry for target location (may be negative unless exchanging)
974 * @flags: rename flags (we care at least about %RENAME_EXCHANGE)
975 *
976 * Prepare for ->rename() where the source and/or target directories may be
977 * encrypted. A new link can only be added to an encrypted directory if the
978 * directory's encryption key is available --- since otherwise we'd have no way
979 * to encrypt the filename. A rename to an existing name, on the other hand,
980 * *is* cryptographically possible without the key. However, we take the more
981 * conservative approach and just forbid all no-key renames.
982 *
983 * We also verify that the rename will not violate the constraint that all files
984 * in an encrypted directory tree use the same encryption policy.
985 *
986 * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the
987 * rename would cause inconsistent encryption policies, or another -errno code.
988 */
fscrypt_prepare_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)989 static inline int fscrypt_prepare_rename(struct inode *old_dir,
990 struct dentry *old_dentry,
991 struct inode *new_dir,
992 struct dentry *new_dentry,
993 unsigned int flags)
994 {
995 if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir))
996 return __fscrypt_prepare_rename(old_dir, old_dentry,
997 new_dir, new_dentry, flags);
998 return 0;
999 }
1000
1001 /**
1002 * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted
1003 * directory
1004 * @dir: directory being searched
1005 * @dentry: filename being looked up
1006 * @fname: (output) the name to use to search the on-disk directory
1007 *
1008 * Prepare for ->lookup() in a directory which may be encrypted by determining
1009 * the name that will actually be used to search the directory on-disk. If the
1010 * directory's encryption policy is supported by this kernel and its encryption
1011 * key is available, then the lookup is assumed to be by plaintext name;
1012 * otherwise, it is assumed to be by no-key name.
1013 *
1014 * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key
1015 * name. In this case the filesystem must assign the dentry a dentry_operations
1016 * which contains fscrypt_d_revalidate (or contains a d_revalidate method that
1017 * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the
1018 * directory's encryption key is later added.
1019 *
1020 * Return: 0 on success; -ENOENT if the directory's key is unavailable but the
1021 * filename isn't a valid no-key name, so a negative dentry should be created;
1022 * or another -errno code.
1023 */
fscrypt_prepare_lookup(struct inode * dir,struct dentry * dentry,struct fscrypt_name * fname)1024 static inline int fscrypt_prepare_lookup(struct inode *dir,
1025 struct dentry *dentry,
1026 struct fscrypt_name *fname)
1027 {
1028 if (IS_ENCRYPTED(dir))
1029 return __fscrypt_prepare_lookup(dir, dentry, fname);
1030
1031 memset(fname, 0, sizeof(*fname));
1032 fname->usr_fname = &dentry->d_name;
1033 fname->disk_name.name = (unsigned char *)dentry->d_name.name;
1034 fname->disk_name.len = dentry->d_name.len;
1035
1036 fscrypt_prepare_dentry(dentry, false);
1037
1038 return 0;
1039 }
1040
1041 /**
1042 * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory
1043 * @dir: the directory inode
1044 *
1045 * If the directory is encrypted and it doesn't already have its encryption key
1046 * set up, try to set it up so that the filenames will be listed in plaintext
1047 * form rather than in no-key form.
1048 *
1049 * Return: 0 on success; -errno on error. Note that the encryption key being
1050 * unavailable is not considered an error. It is also not an error if
1051 * the encryption policy is unsupported by this kernel; that is treated
1052 * like the key being unavailable, so that files can still be deleted.
1053 */
fscrypt_prepare_readdir(struct inode * dir)1054 static inline int fscrypt_prepare_readdir(struct inode *dir)
1055 {
1056 if (IS_ENCRYPTED(dir))
1057 return __fscrypt_prepare_readdir(dir);
1058 return 0;
1059 }
1060
1061 /**
1062 * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's
1063 * attributes
1064 * @dentry: dentry through which the inode is being changed
1065 * @attr: attributes to change
1066 *
1067 * Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file,
1068 * most attribute changes are allowed even without the encryption key. However,
1069 * without the encryption key we do have to forbid truncates. This is needed
1070 * because the size being truncated to may not be a multiple of the filesystem
1071 * block size, and in that case we'd have to decrypt the final block, zero the
1072 * portion past i_size, and re-encrypt it. (We *could* allow truncating to a
1073 * filesystem block boundary, but it's simpler to just forbid all truncates ---
1074 * and we already forbid all other contents modifications without the key.)
1075 *
1076 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
1077 * if a problem occurred while setting up the encryption key.
1078 */
fscrypt_prepare_setattr(struct dentry * dentry,struct iattr * attr)1079 static inline int fscrypt_prepare_setattr(struct dentry *dentry,
1080 struct iattr *attr)
1081 {
1082 if (IS_ENCRYPTED(d_inode(dentry)))
1083 return __fscrypt_prepare_setattr(dentry, attr);
1084 return 0;
1085 }
1086
1087 /**
1088 * fscrypt_encrypt_symlink() - encrypt the symlink target if needed
1089 * @inode: symlink inode
1090 * @target: plaintext symlink target
1091 * @len: length of @target excluding null terminator
1092 * @disk_link: (in/out) the on-disk symlink target being prepared
1093 *
1094 * If the symlink target needs to be encrypted, then this function encrypts it
1095 * into @disk_link->name. fscrypt_prepare_symlink() must have been called
1096 * previously to compute @disk_link->len. If the filesystem did not allocate a
1097 * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one
1098 * will be kmalloc()'ed and the filesystem will be responsible for freeing it.
1099 *
1100 * Return: 0 on success, -errno on failure
1101 */
fscrypt_encrypt_symlink(struct inode * inode,const char * target,unsigned int len,struct fscrypt_str * disk_link)1102 static inline int fscrypt_encrypt_symlink(struct inode *inode,
1103 const char *target,
1104 unsigned int len,
1105 struct fscrypt_str *disk_link)
1106 {
1107 if (IS_ENCRYPTED(inode))
1108 return __fscrypt_encrypt_symlink(inode, target, len, disk_link);
1109 return 0;
1110 }
1111
1112 /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */
fscrypt_finalize_bounce_page(struct page ** pagep)1113 static inline void fscrypt_finalize_bounce_page(struct page **pagep)
1114 {
1115 struct page *page = *pagep;
1116
1117 if (fscrypt_is_bounce_page(page)) {
1118 *pagep = fscrypt_pagecache_page(page);
1119 fscrypt_free_bounce_page(page);
1120 }
1121 }
1122
1123 #endif /* _LINUX_FSCRYPT_H */
1124