xref: /linux/lib/zstd/common/fse.h (revision e61f33273ca755b3e2ebee4520a76097199dc7a8)
1 /* SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause */
2 /* ******************************************************************
3  * FSE : Finite State Entropy codec
4  * Public Prototypes declaration
5  * Copyright (c) Meta Platforms, Inc. and affiliates.
6  *
7  * You can contact the author at :
8  * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
9  *
10  * This source code is licensed under both the BSD-style license (found in the
11  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
12  * in the COPYING file in the root directory of this source tree).
13  * You may select, at your option, one of the above-listed licenses.
14 ****************************************************************** */
15 #ifndef FSE_H
16 #define FSE_H
17 
18 
19 /*-*****************************************
20 *  Dependencies
21 ******************************************/
22 #include "zstd_deps.h"    /* size_t, ptrdiff_t */
23 
24 /*-*****************************************
25 *  FSE_PUBLIC_API : control library symbols visibility
26 ******************************************/
27 #if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4)
28 #  define FSE_PUBLIC_API __attribute__ ((visibility ("default")))
29 #elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1)   /* Visual expected */
30 #  define FSE_PUBLIC_API __declspec(dllexport)
31 #elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1)
32 #  define FSE_PUBLIC_API __declspec(dllimport) /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
33 #else
34 #  define FSE_PUBLIC_API
35 #endif
36 
37 /*------   Version   ------*/
38 #define FSE_VERSION_MAJOR    0
39 #define FSE_VERSION_MINOR    9
40 #define FSE_VERSION_RELEASE  0
41 
42 #define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE
43 #define FSE_QUOTE(str) #str
44 #define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str)
45 #define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION)
46 
47 #define FSE_VERSION_NUMBER  (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE)
48 FSE_PUBLIC_API unsigned FSE_versionNumber(void);   /*< library version number; to be used when checking dll version */
49 
50 
51 /*-*****************************************
52 *  Tool functions
53 ******************************************/
54 FSE_PUBLIC_API size_t FSE_compressBound(size_t size);       /* maximum compressed size */
55 
56 /* Error Management */
57 FSE_PUBLIC_API unsigned    FSE_isError(size_t code);        /* tells if a return value is an error code */
58 FSE_PUBLIC_API const char* FSE_getErrorName(size_t code);   /* provides error code string (useful for debugging) */
59 
60 
61 /*-*****************************************
62 *  FSE detailed API
63 ******************************************/
64 /*!
65 FSE_compress() does the following:
66 1. count symbol occurrence from source[] into table count[] (see hist.h)
67 2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
68 3. save normalized counters to memory buffer using writeNCount()
69 4. build encoding table 'CTable' from normalized counters
70 5. encode the data stream using encoding table 'CTable'
71 
72 FSE_decompress() does the following:
73 1. read normalized counters with readNCount()
74 2. build decoding table 'DTable' from normalized counters
75 3. decode the data stream using decoding table 'DTable'
76 
77 The following API allows targeting specific sub-functions for advanced tasks.
78 For example, it's possible to compress several blocks using the same 'CTable',
79 or to save and provide normalized distribution using external method.
80 */
81 
82 /* *** COMPRESSION *** */
83 
84 /*! FSE_optimalTableLog():
85     dynamically downsize 'tableLog' when conditions are met.
86     It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
87     @return : recommended tableLog (necessarily <= 'maxTableLog') */
88 FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
89 
90 /*! FSE_normalizeCount():
91     normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
92     'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
93     useLowProbCount is a boolean parameter which trades off compressed size for
94     faster header decoding. When it is set to 1, the compressed data will be slightly
95     smaller. And when it is set to 0, FSE_readNCount() and FSE_buildDTable() will be
96     faster. If you are compressing a small amount of data (< 2 KB) then useLowProbCount=0
97     is a good default, since header deserialization makes a big speed difference.
98     Otherwise, useLowProbCount=1 is a good default, since the speed difference is small.
99     @return : tableLog,
100               or an errorCode, which can be tested using FSE_isError() */
101 FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog,
102                     const unsigned* count, size_t srcSize, unsigned maxSymbolValue, unsigned useLowProbCount);
103 
104 /*! FSE_NCountWriteBound():
105     Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
106     Typically useful for allocation purpose. */
107 FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
108 
109 /*! FSE_writeNCount():
110     Compactly save 'normalizedCounter' into 'buffer'.
111     @return : size of the compressed table,
112               or an errorCode, which can be tested using FSE_isError(). */
113 FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize,
114                                  const short* normalizedCounter,
115                                  unsigned maxSymbolValue, unsigned tableLog);
116 
117 /*! Constructor and Destructor of FSE_CTable.
118     Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
119 typedef unsigned FSE_CTable;   /* don't allocate that. It's only meant to be more restrictive than void* */
120 
121 /*! FSE_buildCTable():
122     Builds `ct`, which must be already allocated, using FSE_createCTable().
123     @return : 0, or an errorCode, which can be tested using FSE_isError() */
124 FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
125 
126 /*! FSE_compress_usingCTable():
127     Compress `src` using `ct` into `dst` which must be already allocated.
128     @return : size of compressed data (<= `dstCapacity`),
129               or 0 if compressed data could not fit into `dst`,
130               or an errorCode, which can be tested using FSE_isError() */
131 FSE_PUBLIC_API size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct);
132 
133 /*!
134 Tutorial :
135 ----------
136 The first step is to count all symbols. FSE_count() does this job very fast.
137 Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
138 'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
139 maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
140 FSE_count() will return the number of occurrence of the most frequent symbol.
141 This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
142 If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
143 
144 The next step is to normalize the frequencies.
145 FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
146 It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
147 You can use 'tableLog'==0 to mean "use default tableLog value".
148 If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
149 which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
150 
151 The result of FSE_normalizeCount() will be saved into a table,
152 called 'normalizedCounter', which is a table of signed short.
153 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
154 The return value is tableLog if everything proceeded as expected.
155 It is 0 if there is a single symbol within distribution.
156 If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
157 
158 'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
159 'buffer' must be already allocated.
160 For guaranteed success, buffer size must be at least FSE_headerBound().
161 The result of the function is the number of bytes written into 'buffer'.
162 If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
163 
164 'normalizedCounter' can then be used to create the compression table 'CTable'.
165 The space required by 'CTable' must be already allocated, using FSE_createCTable().
166 You can then use FSE_buildCTable() to fill 'CTable'.
167 If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
168 
169 'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
170 Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
171 The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
172 If it returns '0', compressed data could not fit into 'dst'.
173 If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
174 */
175 
176 
177 /* *** DECOMPRESSION *** */
178 
179 /*! FSE_readNCount():
180     Read compactly saved 'normalizedCounter' from 'rBuffer'.
181     @return : size read from 'rBuffer',
182               or an errorCode, which can be tested using FSE_isError().
183               maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
184 FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter,
185                            unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
186                            const void* rBuffer, size_t rBuffSize);
187 
188 /*! FSE_readNCount_bmi2():
189  * Same as FSE_readNCount() but pass bmi2=1 when your CPU supports BMI2 and 0 otherwise.
190  */
191 FSE_PUBLIC_API size_t FSE_readNCount_bmi2(short* normalizedCounter,
192                            unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
193                            const void* rBuffer, size_t rBuffSize, int bmi2);
194 
195 typedef unsigned FSE_DTable;   /* don't allocate that. It's just a way to be more restrictive than void* */
196 
197 /*!
198 Tutorial :
199 ----------
200 (Note : these functions only decompress FSE-compressed blocks.
201  If block is uncompressed, use memcpy() instead
202  If block is a single repeated byte, use memset() instead )
203 
204 The first step is to obtain the normalized frequencies of symbols.
205 This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
206 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
207 In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
208 or size the table to handle worst case situations (typically 256).
209 FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
210 The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
211 Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
212 If there is an error, the function will return an error code, which can be tested using FSE_isError().
213 
214 The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
215 This is performed by the function FSE_buildDTable().
216 The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
217 If there is an error, the function will return an error code, which can be tested using FSE_isError().
218 
219 `FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
220 `cSrcSize` must be strictly correct, otherwise decompression will fail.
221 FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
222 If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
223 */
224 
225 #endif  /* FSE_H */
226 
227 
228 #if !defined(FSE_H_FSE_STATIC_LINKING_ONLY)
229 #define FSE_H_FSE_STATIC_LINKING_ONLY
230 #include "bitstream.h"
231 
232 /* *****************************************
233 *  Static allocation
234 *******************************************/
235 /* FSE buffer bounds */
236 #define FSE_NCOUNTBOUND 512
237 #define FSE_BLOCKBOUND(size) ((size) + ((size)>>7) + 4 /* fse states */ + sizeof(size_t) /* bitContainer */)
238 #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size))   /* Macro version, useful for static allocation */
239 
240 /* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */
241 #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue)   (1 + (1<<((maxTableLog)-1)) + (((maxSymbolValue)+1)*2))
242 #define FSE_DTABLE_SIZE_U32(maxTableLog)                   (1 + (1<<(maxTableLog)))
243 
244 /* or use the size to malloc() space directly. Pay attention to alignment restrictions though */
245 #define FSE_CTABLE_SIZE(maxTableLog, maxSymbolValue)   (FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(FSE_CTable))
246 #define FSE_DTABLE_SIZE(maxTableLog)                   (FSE_DTABLE_SIZE_U32(maxTableLog) * sizeof(FSE_DTable))
247 
248 
249 /* *****************************************
250  *  FSE advanced API
251  ***************************************** */
252 
253 unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
254 /*< same as FSE_optimalTableLog(), which used `minus==2` */
255 
256 size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue);
257 /*< build a fake FSE_CTable, designed to compress always the same symbolValue */
258 
259 /* FSE_buildCTable_wksp() :
260  * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
261  * `wkspSize` must be >= `FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)` of `unsigned`.
262  * See FSE_buildCTable_wksp() for breakdown of workspace usage.
263  */
264 #define FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog) (((maxSymbolValue + 2) + (1ull << (tableLog)))/2 + sizeof(U64)/sizeof(U32) /* additional 8 bytes for potential table overwrite */)
265 #define FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) (sizeof(unsigned) * FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog))
266 size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
267 
268 #define FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) (sizeof(short) * (maxSymbolValue + 1) + (1ULL << maxTableLog) + 8)
269 #define FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ((FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) + sizeof(unsigned) - 1) / sizeof(unsigned))
270 FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
271 /*< Same as FSE_buildDTable(), using an externally allocated `workspace` produced with `FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxSymbolValue)` */
272 
273 #define FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) (FSE_DTABLE_SIZE_U32(maxTableLog) + 1 + FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) + (FSE_MAX_SYMBOL_VALUE + 1) / 2 + 1)
274 #define FSE_DECOMPRESS_WKSP_SIZE(maxTableLog, maxSymbolValue) (FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(unsigned))
275 size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2);
276 /*< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DECOMPRESS_WKSP_SIZE_U32(maxLog, maxSymbolValue)`.
277  * Set bmi2 to 1 if your CPU supports BMI2 or 0 if it doesn't */
278 
279 typedef enum {
280    FSE_repeat_none,  /*< Cannot use the previous table */
281    FSE_repeat_check, /*< Can use the previous table but it must be checked */
282    FSE_repeat_valid  /*< Can use the previous table and it is assumed to be valid */
283  } FSE_repeat;
284 
285 /* *****************************************
286 *  FSE symbol compression API
287 *******************************************/
288 /*!
289    This API consists of small unitary functions, which highly benefit from being inlined.
290    Hence their body are included in next section.
291 */
292 typedef struct {
293     ptrdiff_t   value;
294     const void* stateTable;
295     const void* symbolTT;
296     unsigned    stateLog;
297 } FSE_CState_t;
298 
299 static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct);
300 
301 static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol);
302 
303 static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr);
304 
305 /*<
306 These functions are inner components of FSE_compress_usingCTable().
307 They allow the creation of custom streams, mixing multiple tables and bit sources.
308 
309 A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
310 So the first symbol you will encode is the last you will decode, like a LIFO stack.
311 
312 You will need a few variables to track your CStream. They are :
313 
314 FSE_CTable    ct;         // Provided by FSE_buildCTable()
315 BIT_CStream_t bitStream;  // bitStream tracking structure
316 FSE_CState_t  state;      // State tracking structure (can have several)
317 
318 
319 The first thing to do is to init bitStream and state.
320     size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
321     FSE_initCState(&state, ct);
322 
323 Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
324 You can then encode your input data, byte after byte.
325 FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
326 Remember decoding will be done in reverse direction.
327     FSE_encodeByte(&bitStream, &state, symbol);
328 
329 At any time, you can also add any bit sequence.
330 Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
331     BIT_addBits(&bitStream, bitField, nbBits);
332 
333 The above methods don't commit data to memory, they just store it into local register, for speed.
334 Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
335 Writing data to memory is a manual operation, performed by the flushBits function.
336     BIT_flushBits(&bitStream);
337 
338 Your last FSE encoding operation shall be to flush your last state value(s).
339     FSE_flushState(&bitStream, &state);
340 
341 Finally, you must close the bitStream.
342 The function returns the size of CStream in bytes.
343 If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
344 If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
345     size_t size = BIT_closeCStream(&bitStream);
346 */
347 
348 
349 /* *****************************************
350 *  FSE symbol decompression API
351 *******************************************/
352 typedef struct {
353     size_t      state;
354     const void* table;   /* precise table may vary, depending on U16 */
355 } FSE_DState_t;
356 
357 
358 static void     FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
359 
360 static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
361 
362 static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
363 
364 /*<
365 Let's now decompose FSE_decompress_usingDTable() into its unitary components.
366 You will decode FSE-encoded symbols from the bitStream,
367 and also any other bitFields you put in, **in reverse order**.
368 
369 You will need a few variables to track your bitStream. They are :
370 
371 BIT_DStream_t DStream;    // Stream context
372 FSE_DState_t  DState;     // State context. Multiple ones are possible
373 FSE_DTable*   DTablePtr;  // Decoding table, provided by FSE_buildDTable()
374 
375 The first thing to do is to init the bitStream.
376     errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
377 
378 You should then retrieve your initial state(s)
379 (in reverse flushing order if you have several ones) :
380     errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
381 
382 You can then decode your data, symbol after symbol.
383 For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
384 Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
385     unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
386 
387 You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
388 Note : maximum allowed nbBits is 25, for 32-bits compatibility
389     size_t bitField = BIT_readBits(&DStream, nbBits);
390 
391 All above operations only read from local register (which size depends on size_t).
392 Refueling the register from memory is manually performed by the reload method.
393     endSignal = FSE_reloadDStream(&DStream);
394 
395 BIT_reloadDStream() result tells if there is still some more data to read from DStream.
396 BIT_DStream_unfinished : there is still some data left into the DStream.
397 BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
398 BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
399 BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
400 
401 When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
402 to properly detect the exact end of stream.
403 After each decoded symbol, check if DStream is fully consumed using this simple test :
404     BIT_reloadDStream(&DStream) >= BIT_DStream_completed
405 
406 When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
407 Checking if DStream has reached its end is performed by :
408     BIT_endOfDStream(&DStream);
409 Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
410     FSE_endOfDState(&DState);
411 */
412 
413 
414 /* *****************************************
415 *  FSE unsafe API
416 *******************************************/
417 static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
418 /* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
419 
420 
421 /* *****************************************
422 *  Implementation of inlined functions
423 *******************************************/
424 typedef struct {
425     int deltaFindState;
426     U32 deltaNbBits;
427 } FSE_symbolCompressionTransform; /* total 8 bytes */
428 
FSE_initCState(FSE_CState_t * statePtr,const FSE_CTable * ct)429 MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct)
430 {
431     const void* ptr = ct;
432     const U16* u16ptr = (const U16*) ptr;
433     const U32 tableLog = MEM_read16(ptr);
434     statePtr->value = (ptrdiff_t)1<<tableLog;
435     statePtr->stateTable = u16ptr+2;
436     statePtr->symbolTT = ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1);
437     statePtr->stateLog = tableLog;
438 }
439 
440 
441 /*! FSE_initCState2() :
442 *   Same as FSE_initCState(), but the first symbol to include (which will be the last to be read)
443 *   uses the smallest state value possible, saving the cost of this symbol */
FSE_initCState2(FSE_CState_t * statePtr,const FSE_CTable * ct,U32 symbol)444 MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol)
445 {
446     FSE_initCState(statePtr, ct);
447     {   const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
448         const U16* stateTable = (const U16*)(statePtr->stateTable);
449         U32 nbBitsOut  = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16);
450         statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
451         statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
452     }
453 }
454 
FSE_encodeSymbol(BIT_CStream_t * bitC,FSE_CState_t * statePtr,unsigned symbol)455 MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, unsigned symbol)
456 {
457     FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
458     const U16* const stateTable = (const U16*)(statePtr->stateTable);
459     U32 const nbBitsOut  = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
460     BIT_addBits(bitC, (BitContainerType)statePtr->value, nbBitsOut);
461     statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
462 }
463 
FSE_flushCState(BIT_CStream_t * bitC,const FSE_CState_t * statePtr)464 MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr)
465 {
466     BIT_addBits(bitC, (BitContainerType)statePtr->value, statePtr->stateLog);
467     BIT_flushBits(bitC);
468 }
469 
470 
471 /* FSE_getMaxNbBits() :
472  * Approximate maximum cost of a symbol, in bits.
473  * Fractional get rounded up (i.e. a symbol with a normalized frequency of 3 gives the same result as a frequency of 2)
474  * note 1 : assume symbolValue is valid (<= maxSymbolValue)
475  * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
FSE_getMaxNbBits(const void * symbolTTPtr,U32 symbolValue)476 MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue)
477 {
478     const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
479     return (symbolTT[symbolValue].deltaNbBits + ((1<<16)-1)) >> 16;
480 }
481 
482 /* FSE_bitCost() :
483  * Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits)
484  * note 1 : assume symbolValue is valid (<= maxSymbolValue)
485  * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
FSE_bitCost(const void * symbolTTPtr,U32 tableLog,U32 symbolValue,U32 accuracyLog)486 MEM_STATIC U32 FSE_bitCost(const void* symbolTTPtr, U32 tableLog, U32 symbolValue, U32 accuracyLog)
487 {
488     const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
489     U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16;
490     U32 const threshold = (minNbBits+1) << 16;
491     assert(tableLog < 16);
492     assert(accuracyLog < 31-tableLog);  /* ensure enough room for renormalization double shift */
493     {   U32 const tableSize = 1 << tableLog;
494         U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize);
495         U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog;   /* linear interpolation (very approximate) */
496         U32 const bitMultiplier = 1 << accuracyLog;
497         assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold);
498         assert(normalizedDeltaFromThreshold <= bitMultiplier);
499         return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold;
500     }
501 }
502 
503 
504 /* ======    Decompression    ====== */
505 
506 typedef struct {
507     U16 tableLog;
508     U16 fastMode;
509 } FSE_DTableHeader;   /* sizeof U32 */
510 
511 typedef struct
512 {
513     unsigned short newState;
514     unsigned char  symbol;
515     unsigned char  nbBits;
516 } FSE_decode_t;   /* size == U32 */
517 
FSE_initDState(FSE_DState_t * DStatePtr,BIT_DStream_t * bitD,const FSE_DTable * dt)518 MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
519 {
520     const void* ptr = dt;
521     const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
522     DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
523     BIT_reloadDStream(bitD);
524     DStatePtr->table = dt + 1;
525 }
526 
FSE_peekSymbol(const FSE_DState_t * DStatePtr)527 MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr)
528 {
529     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
530     return DInfo.symbol;
531 }
532 
FSE_updateState(FSE_DState_t * DStatePtr,BIT_DStream_t * bitD)533 MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
534 {
535     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
536     U32 const nbBits = DInfo.nbBits;
537     size_t const lowBits = BIT_readBits(bitD, nbBits);
538     DStatePtr->state = DInfo.newState + lowBits;
539 }
540 
FSE_decodeSymbol(FSE_DState_t * DStatePtr,BIT_DStream_t * bitD)541 MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
542 {
543     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
544     U32 const nbBits = DInfo.nbBits;
545     BYTE const symbol = DInfo.symbol;
546     size_t const lowBits = BIT_readBits(bitD, nbBits);
547 
548     DStatePtr->state = DInfo.newState + lowBits;
549     return symbol;
550 }
551 
552 /*! FSE_decodeSymbolFast() :
553     unsafe, only works if no symbol has a probability > 50% */
FSE_decodeSymbolFast(FSE_DState_t * DStatePtr,BIT_DStream_t * bitD)554 MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
555 {
556     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
557     U32 const nbBits = DInfo.nbBits;
558     BYTE const symbol = DInfo.symbol;
559     size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
560 
561     DStatePtr->state = DInfo.newState + lowBits;
562     return symbol;
563 }
564 
FSE_endOfDState(const FSE_DState_t * DStatePtr)565 MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
566 {
567     return DStatePtr->state == 0;
568 }
569 
570 
571 
572 #ifndef FSE_COMMONDEFS_ONLY
573 
574 /* **************************************************************
575 *  Tuning parameters
576 ****************************************************************/
577 /*!MEMORY_USAGE :
578 *  Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
579 *  Increasing memory usage improves compression ratio
580 *  Reduced memory usage can improve speed, due to cache effect
581 *  Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
582 #ifndef FSE_MAX_MEMORY_USAGE
583 #  define FSE_MAX_MEMORY_USAGE 14
584 #endif
585 #ifndef FSE_DEFAULT_MEMORY_USAGE
586 #  define FSE_DEFAULT_MEMORY_USAGE 13
587 #endif
588 #if (FSE_DEFAULT_MEMORY_USAGE > FSE_MAX_MEMORY_USAGE)
589 #  error "FSE_DEFAULT_MEMORY_USAGE must be <= FSE_MAX_MEMORY_USAGE"
590 #endif
591 
592 /*!FSE_MAX_SYMBOL_VALUE :
593 *  Maximum symbol value authorized.
594 *  Required for proper stack allocation */
595 #ifndef FSE_MAX_SYMBOL_VALUE
596 #  define FSE_MAX_SYMBOL_VALUE 255
597 #endif
598 
599 /* **************************************************************
600 *  template functions type & suffix
601 ****************************************************************/
602 #define FSE_FUNCTION_TYPE BYTE
603 #define FSE_FUNCTION_EXTENSION
604 #define FSE_DECODE_TYPE FSE_decode_t
605 
606 
607 #endif   /* !FSE_COMMONDEFS_ONLY */
608 
609 
610 /* ***************************************************************
611 *  Constants
612 *****************************************************************/
613 #define FSE_MAX_TABLELOG  (FSE_MAX_MEMORY_USAGE-2)
614 #define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
615 #define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
616 #define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
617 #define FSE_MIN_TABLELOG 5
618 
619 #define FSE_TABLELOG_ABSOLUTE_MAX 15
620 #if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
621 #  error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
622 #endif
623 
624 #define FSE_TABLESTEP(tableSize) (((tableSize)>>1) + ((tableSize)>>3) + 3)
625 
626 #endif /* FSE_STATIC_LINKING_ONLY */
627