xref: /linux/net/sched/sch_fq.c (revision 8f7aa3d3c7323f4ca2768a9e74ebbe359c4f8f88)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
4  *
5  *  Copyright (C) 2013-2023 Eric Dumazet <edumazet@google.com>
6  *
7  *  Meant to be mostly used for locally generated traffic :
8  *  Fast classification depends on skb->sk being set before reaching us.
9  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
10  *  All packets belonging to a socket are considered as a 'flow'.
11  *
12  *  Flows are dynamically allocated and stored in a hash table of RB trees
13  *  They are also part of one Round Robin 'queues' (new or old flows)
14  *
15  *  Burst avoidance (aka pacing) capability :
16  *
17  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
18  *  bunch of packets, and this packet scheduler adds delay between
19  *  packets to respect rate limitation.
20  *
21  *  enqueue() :
22  *   - lookup one RB tree (out of 1024 or more) to find the flow.
23  *     If non existent flow, create it, add it to the tree.
24  *     Add skb to the per flow list of skb (fifo).
25  *   - Use a special fifo for high prio packets
26  *
27  *  dequeue() : serves flows in Round Robin
28  *  Note : When a flow becomes empty, we do not immediately remove it from
29  *  rb trees, for performance reasons (its expected to send additional packets,
30  *  or SLAB cache will reuse socket for another flow)
31  */
32 
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/jiffies.h>
37 #include <linux/string.h>
38 #include <linux/in.h>
39 #include <linux/errno.h>
40 #include <linux/init.h>
41 #include <linux/skbuff.h>
42 #include <linux/slab.h>
43 #include <linux/rbtree.h>
44 #include <linux/hash.h>
45 #include <linux/prefetch.h>
46 #include <linux/vmalloc.h>
47 #include <net/netlink.h>
48 #include <net/pkt_sched.h>
49 #include <net/sock.h>
50 #include <net/tcp_states.h>
51 #include <net/tcp.h>
52 
53 struct fq_skb_cb {
54 	u64	time_to_send;
55 	u8	band;
56 };
57 
58 static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb)
59 {
60 	qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb));
61 	return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data;
62 }
63 
64 /*
65  * Per flow structure, dynamically allocated.
66  * If packets have monotically increasing time_to_send, they are placed in O(1)
67  * in linear list (head,tail), otherwise are placed in a rbtree (t_root).
68  */
69 struct fq_flow {
70 /* First cache line : used in fq_gc(), fq_enqueue(), fq_dequeue() */
71 	struct rb_root	t_root;
72 	struct sk_buff	*head;		/* list of skbs for this flow : first skb */
73 	union {
74 		struct sk_buff *tail;	/* last skb in the list */
75 		unsigned long  age;	/* (jiffies | 1UL) when flow was emptied, for gc */
76 	};
77 	union {
78 		struct rb_node	fq_node;	/* anchor in fq_root[] trees */
79 		/* Following field is only used for q->internal,
80 		 * because q->internal is not hashed in fq_root[]
81 		 */
82 		u64		stat_fastpath_packets;
83 	};
84 	struct sock	*sk;
85 	u32		socket_hash;	/* sk_hash */
86 	int		qlen;		/* number of packets in flow queue */
87 
88 /* Second cache line */
89 	int		credit;
90 	int		band;
91 	struct fq_flow *next;		/* next pointer in RR lists */
92 
93 	struct rb_node  rate_node;	/* anchor in q->delayed tree */
94 	u64		time_next_packet;
95 };
96 
97 struct fq_flow_head {
98 	struct fq_flow *first;
99 	struct fq_flow *last;
100 };
101 
102 struct fq_perband_flows {
103 	struct fq_flow_head new_flows;
104 	struct fq_flow_head old_flows;
105 	int		    credit;
106 	int		    quantum; /* based on band nr : 576KB, 192KB, 64KB */
107 };
108 
109 #define FQ_PRIO2BAND_CRUMB_SIZE ((TC_PRIO_MAX + 1) >> 2)
110 
111 struct fq_sched_data {
112 /* Read mostly cache line */
113 
114 	u64		offload_horizon;
115 	u32		quantum;
116 	u32		initial_quantum;
117 	u32		flow_refill_delay;
118 	u32		flow_plimit;	/* max packets per flow */
119 	unsigned long	flow_max_rate;	/* optional max rate per flow */
120 	u64		ce_threshold;
121 	u64		horizon;	/* horizon in ns */
122 	u32		orphan_mask;	/* mask for orphaned skb */
123 	u32		low_rate_threshold;
124 	struct rb_root	*fq_root;
125 	u8		rate_enable;
126 	u8		fq_trees_log;
127 	u8		horizon_drop;
128 	u8		prio2band[FQ_PRIO2BAND_CRUMB_SIZE];
129 	u32		timer_slack; /* hrtimer slack in ns */
130 
131 /* Read/Write fields. */
132 
133 	unsigned int band_nr; /* band being serviced in fq_dequeue() */
134 
135 	struct fq_perband_flows band_flows[FQ_BANDS];
136 
137 	struct fq_flow	internal;	/* fastpath queue. */
138 	struct rb_root	delayed;	/* for rate limited flows */
139 	u64		time_next_delayed_flow;
140 	unsigned long	unthrottle_latency_ns;
141 
142 	u32		band_pkt_count[FQ_BANDS];
143 	u32		flows;
144 	u32		inactive_flows; /* Flows with no packet to send. */
145 	u32		throttled_flows;
146 
147 	u64		stat_throttled;
148 	struct qdisc_watchdog watchdog;
149 	u64		stat_gc_flows;
150 
151 /* Seldom used fields. */
152 
153 	u64		stat_band_drops[FQ_BANDS];
154 	u64		stat_ce_mark;
155 	u64		stat_horizon_drops;
156 	u64		stat_horizon_caps;
157 	u64		stat_flows_plimit;
158 	u64		stat_pkts_too_long;
159 	u64		stat_allocation_errors;
160 };
161 
162 /* return the i-th 2-bit value ("crumb") */
163 static u8 fq_prio2band(const u8 *prio2band, unsigned int prio)
164 {
165 	return (READ_ONCE(prio2band[prio / 4]) >> (2 * (prio & 0x3))) & 0x3;
166 }
167 
168 /*
169  * f->tail and f->age share the same location.
170  * We can use the low order bit to differentiate if this location points
171  * to a sk_buff or contains a jiffies value, if we force this value to be odd.
172  * This assumes f->tail low order bit must be 0 since alignof(struct sk_buff) >= 2
173  */
174 static void fq_flow_set_detached(struct fq_flow *f)
175 {
176 	f->age = jiffies | 1UL;
177 }
178 
179 static bool fq_flow_is_detached(const struct fq_flow *f)
180 {
181 	return !!(f->age & 1UL);
182 }
183 
184 /* special value to mark a throttled flow (not on old/new list) */
185 static struct fq_flow throttled;
186 
187 static bool fq_flow_is_throttled(const struct fq_flow *f)
188 {
189 	return f->next == &throttled;
190 }
191 
192 enum new_flow {
193 	NEW_FLOW,
194 	OLD_FLOW
195 };
196 
197 static void fq_flow_add_tail(struct fq_sched_data *q, struct fq_flow *flow,
198 			     enum new_flow list_sel)
199 {
200 	struct fq_perband_flows *pband = &q->band_flows[flow->band];
201 	struct fq_flow_head *head = (list_sel == NEW_FLOW) ?
202 					&pband->new_flows :
203 					&pband->old_flows;
204 
205 	if (head->first)
206 		head->last->next = flow;
207 	else
208 		head->first = flow;
209 	head->last = flow;
210 	flow->next = NULL;
211 }
212 
213 static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
214 {
215 	rb_erase(&f->rate_node, &q->delayed);
216 	q->throttled_flows--;
217 	fq_flow_add_tail(q, f, OLD_FLOW);
218 }
219 
220 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
221 {
222 	struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
223 
224 	while (*p) {
225 		struct fq_flow *aux;
226 
227 		parent = *p;
228 		aux = rb_entry(parent, struct fq_flow, rate_node);
229 		if (f->time_next_packet >= aux->time_next_packet)
230 			p = &parent->rb_right;
231 		else
232 			p = &parent->rb_left;
233 	}
234 	rb_link_node(&f->rate_node, parent, p);
235 	rb_insert_color(&f->rate_node, &q->delayed);
236 	q->throttled_flows++;
237 	q->stat_throttled++;
238 
239 	f->next = &throttled;
240 	if (q->time_next_delayed_flow > f->time_next_packet)
241 		q->time_next_delayed_flow = f->time_next_packet;
242 }
243 
244 
245 static struct kmem_cache *fq_flow_cachep __read_mostly;
246 
247 
248 /* limit number of collected flows per round */
249 #define FQ_GC_MAX 8
250 #define FQ_GC_AGE (3*HZ)
251 
252 static bool fq_gc_candidate(const struct fq_flow *f)
253 {
254 	return fq_flow_is_detached(f) &&
255 	       time_after(jiffies, f->age + FQ_GC_AGE);
256 }
257 
258 static void fq_gc(struct fq_sched_data *q,
259 		  struct rb_root *root,
260 		  struct sock *sk)
261 {
262 	struct rb_node **p, *parent;
263 	void *tofree[FQ_GC_MAX];
264 	struct fq_flow *f;
265 	int i, fcnt = 0;
266 
267 	p = &root->rb_node;
268 	parent = NULL;
269 	while (*p) {
270 		parent = *p;
271 
272 		f = rb_entry(parent, struct fq_flow, fq_node);
273 		if (f->sk == sk)
274 			break;
275 
276 		if (fq_gc_candidate(f)) {
277 			tofree[fcnt++] = f;
278 			if (fcnt == FQ_GC_MAX)
279 				break;
280 		}
281 
282 		if (f->sk > sk)
283 			p = &parent->rb_right;
284 		else
285 			p = &parent->rb_left;
286 	}
287 
288 	if (!fcnt)
289 		return;
290 
291 	for (i = fcnt; i > 0; ) {
292 		f = tofree[--i];
293 		rb_erase(&f->fq_node, root);
294 	}
295 	q->flows -= fcnt;
296 	q->inactive_flows -= fcnt;
297 	q->stat_gc_flows += fcnt;
298 
299 	kmem_cache_free_bulk(fq_flow_cachep, fcnt, tofree);
300 }
301 
302 /* Fast path can be used if :
303  * 1) Packet tstamp is in the past, or within the pacing offload horizon.
304  * 2) FQ qlen == 0   OR
305  *   (no flow is currently eligible for transmit,
306  *    AND fast path queue has less than 8 packets)
307  * 3) No SO_MAX_PACING_RATE on the socket (if any).
308  * 4) No @maxrate attribute on this qdisc,
309  *
310  * FQ can not use generic TCQ_F_CAN_BYPASS infrastructure.
311  */
312 static bool fq_fastpath_check(const struct Qdisc *sch, struct sk_buff *skb,
313 			      u64 now)
314 {
315 	const struct fq_sched_data *q = qdisc_priv(sch);
316 	const struct sock *sk;
317 
318 	if (fq_skb_cb(skb)->time_to_send > now + q->offload_horizon)
319 		return false;
320 
321 	if (sch->q.qlen != 0) {
322 		/* Even if some packets are stored in this qdisc,
323 		 * we can still enable fast path if all of them are
324 		 * scheduled in the future (ie no flows are eligible)
325 		 * or in the fast path queue.
326 		 */
327 		if (q->flows != q->inactive_flows + q->throttled_flows)
328 			return false;
329 
330 		/* Do not allow fast path queue to explode, we want Fair Queue mode
331 		 * under pressure.
332 		 */
333 		if (q->internal.qlen >= 8)
334 			return false;
335 
336 		/* Ordering invariants fall apart if some delayed flows
337 		 * are ready but we haven't serviced them, yet.
338 		 */
339 		if (q->time_next_delayed_flow <= now + q->offload_horizon)
340 			return false;
341 	}
342 
343 	sk = skb->sk;
344 	if (sk && sk_fullsock(sk) && !sk_is_tcp(sk) &&
345 	    sk->sk_max_pacing_rate != ~0UL)
346 		return false;
347 
348 	if (q->flow_max_rate != ~0UL)
349 		return false;
350 
351 	return true;
352 }
353 
354 static struct fq_flow *fq_classify(struct Qdisc *sch, struct sk_buff *skb,
355 				   u64 now)
356 {
357 	struct fq_sched_data *q = qdisc_priv(sch);
358 	struct rb_node **p, *parent;
359 	struct sock *sk = skb->sk;
360 	struct rb_root *root;
361 	struct fq_flow *f;
362 
363 	/* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
364 	 * or a listener (SYNCOOKIE mode)
365 	 * 1) request sockets are not full blown,
366 	 *    they do not contain sk_pacing_rate
367 	 * 2) They are not part of a 'flow' yet
368 	 * 3) We do not want to rate limit them (eg SYNFLOOD attack),
369 	 *    especially if the listener set SO_MAX_PACING_RATE
370 	 * 4) We pretend they are orphaned
371 	 * TCP can also associate TIME_WAIT sockets with RST or ACK packets.
372 	 */
373 	if (!sk || sk_listener_or_tw(sk)) {
374 		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
375 
376 		/* By forcing low order bit to 1, we make sure to not
377 		 * collide with a local flow (socket pointers are word aligned)
378 		 */
379 		sk = (struct sock *)((hash << 1) | 1UL);
380 		skb_orphan(skb);
381 	} else if (sk->sk_state == TCP_CLOSE) {
382 		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
383 		/*
384 		 * Sockets in TCP_CLOSE are non connected.
385 		 * Typical use case is UDP sockets, they can send packets
386 		 * with sendto() to many different destinations.
387 		 * We probably could use a generic bit advertising
388 		 * non connected sockets, instead of sk_state == TCP_CLOSE,
389 		 * if we care enough.
390 		 */
391 		sk = (struct sock *)((hash << 1) | 1UL);
392 	}
393 
394 	if (fq_fastpath_check(sch, skb, now)) {
395 		q->internal.stat_fastpath_packets++;
396 		if (skb->sk == sk && q->rate_enable &&
397 		    READ_ONCE(sk->sk_pacing_status) != SK_PACING_FQ)
398 			smp_store_release(&sk->sk_pacing_status,
399 					  SK_PACING_FQ);
400 		return &q->internal;
401 	}
402 
403 	root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
404 
405 	fq_gc(q, root, sk);
406 
407 	p = &root->rb_node;
408 	parent = NULL;
409 	while (*p) {
410 		parent = *p;
411 
412 		f = rb_entry(parent, struct fq_flow, fq_node);
413 		if (f->sk == sk) {
414 			/* socket might have been reallocated, so check
415 			 * if its sk_hash is the same.
416 			 * It not, we need to refill credit with
417 			 * initial quantum
418 			 */
419 			if (unlikely(skb->sk == sk &&
420 				     f->socket_hash != sk->sk_hash)) {
421 				f->credit = q->initial_quantum;
422 				f->socket_hash = sk->sk_hash;
423 				if (q->rate_enable)
424 					smp_store_release(&sk->sk_pacing_status,
425 							  SK_PACING_FQ);
426 				if (fq_flow_is_throttled(f))
427 					fq_flow_unset_throttled(q, f);
428 				f->time_next_packet = 0ULL;
429 			}
430 			return f;
431 		}
432 		if (f->sk > sk)
433 			p = &parent->rb_right;
434 		else
435 			p = &parent->rb_left;
436 	}
437 
438 	f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
439 	if (unlikely(!f)) {
440 		q->stat_allocation_errors++;
441 		return &q->internal;
442 	}
443 	/* f->t_root is already zeroed after kmem_cache_zalloc() */
444 
445 	fq_flow_set_detached(f);
446 	f->sk = sk;
447 	if (skb->sk == sk) {
448 		f->socket_hash = sk->sk_hash;
449 		if (q->rate_enable)
450 			smp_store_release(&sk->sk_pacing_status,
451 					  SK_PACING_FQ);
452 	}
453 	f->credit = q->initial_quantum;
454 
455 	rb_link_node(&f->fq_node, parent, p);
456 	rb_insert_color(&f->fq_node, root);
457 
458 	q->flows++;
459 	q->inactive_flows++;
460 	return f;
461 }
462 
463 static struct sk_buff *fq_peek(struct fq_flow *flow)
464 {
465 	struct sk_buff *skb = skb_rb_first(&flow->t_root);
466 	struct sk_buff *head = flow->head;
467 
468 	if (!skb)
469 		return head;
470 
471 	if (!head)
472 		return skb;
473 
474 	if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send)
475 		return skb;
476 	return head;
477 }
478 
479 static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow,
480 			  struct sk_buff *skb)
481 {
482 	if (skb == flow->head) {
483 		struct sk_buff *next = skb->next;
484 
485 		prefetch(next);
486 		flow->head = next;
487 	} else {
488 		rb_erase(&skb->rbnode, &flow->t_root);
489 		skb->dev = qdisc_dev(sch);
490 	}
491 }
492 
493 /* Remove one skb from flow queue.
494  * This skb must be the return value of prior fq_peek().
495  */
496 static void fq_dequeue_skb(struct Qdisc *sch, struct fq_flow *flow,
497 			   struct sk_buff *skb)
498 {
499 	fq_erase_head(sch, flow, skb);
500 	skb_mark_not_on_list(skb);
501 	qdisc_qstats_backlog_dec(sch, skb);
502 	sch->q.qlen--;
503 	qdisc_bstats_update(sch, skb);
504 }
505 
506 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
507 {
508 	struct rb_node **p, *parent;
509 	struct sk_buff *head, *aux;
510 
511 	head = flow->head;
512 	if (!head ||
513 	    fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) {
514 		if (!head)
515 			flow->head = skb;
516 		else
517 			flow->tail->next = skb;
518 		flow->tail = skb;
519 		skb->next = NULL;
520 		return;
521 	}
522 
523 	p = &flow->t_root.rb_node;
524 	parent = NULL;
525 
526 	while (*p) {
527 		parent = *p;
528 		aux = rb_to_skb(parent);
529 		if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send)
530 			p = &parent->rb_right;
531 		else
532 			p = &parent->rb_left;
533 	}
534 	rb_link_node(&skb->rbnode, parent, p);
535 	rb_insert_color(&skb->rbnode, &flow->t_root);
536 }
537 
538 static bool fq_packet_beyond_horizon(const struct sk_buff *skb,
539 				     const struct fq_sched_data *q, u64 now)
540 {
541 	return unlikely((s64)skb->tstamp > (s64)(now + q->horizon));
542 }
543 
544 #define FQDR(reason) SKB_DROP_REASON_FQ_##reason
545 
546 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
547 		      struct sk_buff **to_free)
548 {
549 	struct fq_sched_data *q = qdisc_priv(sch);
550 	struct fq_flow *f;
551 	u64 now;
552 	u8 band;
553 
554 	band = fq_prio2band(q->prio2band, skb->priority & TC_PRIO_MAX);
555 	if (unlikely(q->band_pkt_count[band] >= sch->limit)) {
556 		q->stat_band_drops[band]++;
557 		return qdisc_drop_reason(skb, sch, to_free,
558 					 FQDR(BAND_LIMIT));
559 	}
560 
561 	now = ktime_get_ns();
562 	if (!skb->tstamp) {
563 		fq_skb_cb(skb)->time_to_send = now;
564 	} else {
565 		/* Check if packet timestamp is too far in the future. */
566 		if (fq_packet_beyond_horizon(skb, q, now)) {
567 			if (q->horizon_drop) {
568 				q->stat_horizon_drops++;
569 				return qdisc_drop_reason(skb, sch, to_free,
570 							 FQDR(HORIZON_LIMIT));
571 			}
572 			q->stat_horizon_caps++;
573 			skb->tstamp = now + q->horizon;
574 		}
575 		fq_skb_cb(skb)->time_to_send = skb->tstamp;
576 	}
577 
578 	f = fq_classify(sch, skb, now);
579 
580 	if (f != &q->internal) {
581 		if (unlikely(f->qlen >= q->flow_plimit)) {
582 			q->stat_flows_plimit++;
583 			return qdisc_drop_reason(skb, sch, to_free,
584 						 FQDR(FLOW_LIMIT));
585 		}
586 
587 		if (fq_flow_is_detached(f)) {
588 			fq_flow_add_tail(q, f, NEW_FLOW);
589 			if (time_after(jiffies, f->age + q->flow_refill_delay))
590 				f->credit = max_t(u32, f->credit, q->quantum);
591 		}
592 
593 		f->band = band;
594 		q->band_pkt_count[band]++;
595 		fq_skb_cb(skb)->band = band;
596 		if (f->qlen == 0)
597 			q->inactive_flows--;
598 	}
599 
600 	f->qlen++;
601 	/* Note: this overwrites f->age */
602 	flow_queue_add(f, skb);
603 
604 	qdisc_qstats_backlog_inc(sch, skb);
605 	sch->q.qlen++;
606 
607 	return NET_XMIT_SUCCESS;
608 }
609 #undef FQDR
610 
611 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
612 {
613 	unsigned long sample;
614 	struct rb_node *p;
615 
616 	if (q->time_next_delayed_flow > now + q->offload_horizon)
617 		return;
618 
619 	/* Update unthrottle latency EWMA.
620 	 * This is cheap and can help diagnosing timer/latency problems.
621 	 */
622 	sample = (unsigned long)(now - q->time_next_delayed_flow);
623 	if ((long)sample > 0) {
624 		q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
625 		q->unthrottle_latency_ns += sample >> 3;
626 	}
627 	now += q->offload_horizon;
628 
629 	q->time_next_delayed_flow = ~0ULL;
630 	while ((p = rb_first(&q->delayed)) != NULL) {
631 		struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
632 
633 		if (f->time_next_packet > now) {
634 			q->time_next_delayed_flow = f->time_next_packet;
635 			break;
636 		}
637 		fq_flow_unset_throttled(q, f);
638 	}
639 }
640 
641 static struct fq_flow_head *fq_pband_head_select(struct fq_perband_flows *pband)
642 {
643 	if (pband->credit <= 0)
644 		return NULL;
645 
646 	if (pband->new_flows.first)
647 		return &pband->new_flows;
648 
649 	return pband->old_flows.first ? &pband->old_flows : NULL;
650 }
651 
652 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
653 {
654 	struct fq_sched_data *q = qdisc_priv(sch);
655 	struct fq_perband_flows *pband;
656 	struct fq_flow_head *head;
657 	struct sk_buff *skb;
658 	struct fq_flow *f;
659 	unsigned long rate;
660 	int retry;
661 	u32 plen;
662 	u64 now;
663 
664 	if (!sch->q.qlen)
665 		return NULL;
666 
667 	skb = fq_peek(&q->internal);
668 	if (unlikely(skb)) {
669 		q->internal.qlen--;
670 		fq_dequeue_skb(sch, &q->internal, skb);
671 		goto out;
672 	}
673 
674 	now = ktime_get_ns();
675 	fq_check_throttled(q, now);
676 	retry = 0;
677 	pband = &q->band_flows[q->band_nr];
678 begin:
679 	head = fq_pband_head_select(pband);
680 	if (!head) {
681 		while (++retry <= FQ_BANDS) {
682 			if (++q->band_nr == FQ_BANDS)
683 				q->band_nr = 0;
684 			pband = &q->band_flows[q->band_nr];
685 			pband->credit = min(pband->credit + pband->quantum,
686 					    pband->quantum);
687 			if (pband->credit > 0)
688 				goto begin;
689 			retry = 0;
690 		}
691 		if (q->time_next_delayed_flow != ~0ULL)
692 			qdisc_watchdog_schedule_range_ns(&q->watchdog,
693 							q->time_next_delayed_flow,
694 							q->timer_slack);
695 		return NULL;
696 	}
697 	f = head->first;
698 	retry = 0;
699 	if (f->credit <= 0) {
700 		f->credit += q->quantum;
701 		head->first = f->next;
702 		fq_flow_add_tail(q, f, OLD_FLOW);
703 		goto begin;
704 	}
705 
706 	skb = fq_peek(f);
707 	if (skb) {
708 		u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send,
709 					     f->time_next_packet);
710 
711 		if (now + q->offload_horizon < time_next_packet) {
712 			head->first = f->next;
713 			f->time_next_packet = time_next_packet;
714 			fq_flow_set_throttled(q, f);
715 			goto begin;
716 		}
717 		prefetch(&skb->end);
718 		fq_dequeue_skb(sch, f, skb);
719 		if ((s64)(now - time_next_packet - q->ce_threshold) > 0) {
720 			INET_ECN_set_ce(skb);
721 			q->stat_ce_mark++;
722 		}
723 		if (--f->qlen == 0)
724 			q->inactive_flows++;
725 		q->band_pkt_count[fq_skb_cb(skb)->band]--;
726 	} else {
727 		head->first = f->next;
728 		/* force a pass through old_flows to prevent starvation */
729 		if (head == &pband->new_flows) {
730 			fq_flow_add_tail(q, f, OLD_FLOW);
731 		} else {
732 			fq_flow_set_detached(f);
733 		}
734 		goto begin;
735 	}
736 	plen = qdisc_pkt_len(skb);
737 	f->credit -= plen;
738 	pband->credit -= plen;
739 
740 	if (!q->rate_enable)
741 		goto out;
742 
743 	rate = q->flow_max_rate;
744 
745 	/* If EDT time was provided for this skb, we need to
746 	 * update f->time_next_packet only if this qdisc enforces
747 	 * a flow max rate.
748 	 */
749 	if (!skb->tstamp) {
750 		if (skb->sk)
751 			rate = min(READ_ONCE(skb->sk->sk_pacing_rate), rate);
752 
753 		if (rate <= q->low_rate_threshold) {
754 			f->credit = 0;
755 		} else {
756 			plen = max(plen, q->quantum);
757 			if (f->credit > 0)
758 				goto out;
759 		}
760 	}
761 	if (rate != ~0UL) {
762 		u64 len = (u64)plen * NSEC_PER_SEC;
763 
764 		if (likely(rate))
765 			len = div64_ul(len, rate);
766 		/* Since socket rate can change later,
767 		 * clamp the delay to 1 second.
768 		 * Really, providers of too big packets should be fixed !
769 		 */
770 		if (unlikely(len > NSEC_PER_SEC)) {
771 			len = NSEC_PER_SEC;
772 			q->stat_pkts_too_long++;
773 		}
774 		/* Account for schedule/timers drifts.
775 		 * f->time_next_packet was set when prior packet was sent,
776 		 * and current time (@now) can be too late by tens of us.
777 		 */
778 		if (f->time_next_packet)
779 			len -= min(len/2, now - f->time_next_packet);
780 		f->time_next_packet = now + len;
781 	}
782 out:
783 	return skb;
784 }
785 
786 static void fq_flow_purge(struct fq_flow *flow)
787 {
788 	struct rb_node *p = rb_first(&flow->t_root);
789 
790 	while (p) {
791 		struct sk_buff *skb = rb_to_skb(p);
792 
793 		p = rb_next(p);
794 		rb_erase(&skb->rbnode, &flow->t_root);
795 		rtnl_kfree_skbs(skb, skb);
796 	}
797 	rtnl_kfree_skbs(flow->head, flow->tail);
798 	flow->head = NULL;
799 	flow->qlen = 0;
800 }
801 
802 static void fq_reset(struct Qdisc *sch)
803 {
804 	struct fq_sched_data *q = qdisc_priv(sch);
805 	struct rb_root *root;
806 	struct rb_node *p;
807 	struct fq_flow *f;
808 	unsigned int idx;
809 
810 	sch->q.qlen = 0;
811 	sch->qstats.backlog = 0;
812 
813 	fq_flow_purge(&q->internal);
814 
815 	if (!q->fq_root)
816 		return;
817 
818 	for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
819 		root = &q->fq_root[idx];
820 		while ((p = rb_first(root)) != NULL) {
821 			f = rb_entry(p, struct fq_flow, fq_node);
822 			rb_erase(p, root);
823 
824 			fq_flow_purge(f);
825 
826 			kmem_cache_free(fq_flow_cachep, f);
827 		}
828 	}
829 	for (idx = 0; idx < FQ_BANDS; idx++) {
830 		q->band_flows[idx].new_flows.first = NULL;
831 		q->band_flows[idx].old_flows.first = NULL;
832 	}
833 	q->delayed		= RB_ROOT;
834 	q->flows		= 0;
835 	q->inactive_flows	= 0;
836 	q->throttled_flows	= 0;
837 }
838 
839 static void fq_rehash(struct fq_sched_data *q,
840 		      struct rb_root *old_array, u32 old_log,
841 		      struct rb_root *new_array, u32 new_log)
842 {
843 	struct rb_node *op, **np, *parent;
844 	struct rb_root *oroot, *nroot;
845 	struct fq_flow *of, *nf;
846 	int fcnt = 0;
847 	u32 idx;
848 
849 	for (idx = 0; idx < (1U << old_log); idx++) {
850 		oroot = &old_array[idx];
851 		while ((op = rb_first(oroot)) != NULL) {
852 			rb_erase(op, oroot);
853 			of = rb_entry(op, struct fq_flow, fq_node);
854 			if (fq_gc_candidate(of)) {
855 				fcnt++;
856 				kmem_cache_free(fq_flow_cachep, of);
857 				continue;
858 			}
859 			nroot = &new_array[hash_ptr(of->sk, new_log)];
860 
861 			np = &nroot->rb_node;
862 			parent = NULL;
863 			while (*np) {
864 				parent = *np;
865 
866 				nf = rb_entry(parent, struct fq_flow, fq_node);
867 				BUG_ON(nf->sk == of->sk);
868 
869 				if (nf->sk > of->sk)
870 					np = &parent->rb_right;
871 				else
872 					np = &parent->rb_left;
873 			}
874 
875 			rb_link_node(&of->fq_node, parent, np);
876 			rb_insert_color(&of->fq_node, nroot);
877 		}
878 	}
879 	q->flows -= fcnt;
880 	q->inactive_flows -= fcnt;
881 	q->stat_gc_flows += fcnt;
882 }
883 
884 static void fq_free(void *addr)
885 {
886 	kvfree(addr);
887 }
888 
889 static int fq_resize(struct Qdisc *sch, u32 log)
890 {
891 	struct fq_sched_data *q = qdisc_priv(sch);
892 	struct rb_root *array;
893 	void *old_fq_root;
894 	u32 idx;
895 
896 	if (q->fq_root && log == q->fq_trees_log)
897 		return 0;
898 
899 	/* If XPS was setup, we can allocate memory on right NUMA node */
900 	array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
901 			      netdev_queue_numa_node_read(sch->dev_queue));
902 	if (!array)
903 		return -ENOMEM;
904 
905 	for (idx = 0; idx < (1U << log); idx++)
906 		array[idx] = RB_ROOT;
907 
908 	sch_tree_lock(sch);
909 
910 	old_fq_root = q->fq_root;
911 	if (old_fq_root)
912 		fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
913 
914 	q->fq_root = array;
915 	WRITE_ONCE(q->fq_trees_log, log);
916 
917 	sch_tree_unlock(sch);
918 
919 	fq_free(old_fq_root);
920 
921 	return 0;
922 }
923 
924 static const struct netlink_range_validation iq_range = {
925 	.max = INT_MAX,
926 };
927 
928 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
929 	[TCA_FQ_UNSPEC]			= { .strict_start_type = TCA_FQ_TIMER_SLACK },
930 
931 	[TCA_FQ_PLIMIT]			= { .type = NLA_U32 },
932 	[TCA_FQ_FLOW_PLIMIT]		= { .type = NLA_U32 },
933 	[TCA_FQ_QUANTUM]		= { .type = NLA_U32 },
934 	[TCA_FQ_INITIAL_QUANTUM]	= NLA_POLICY_FULL_RANGE(NLA_U32, &iq_range),
935 	[TCA_FQ_RATE_ENABLE]		= { .type = NLA_U32 },
936 	[TCA_FQ_FLOW_DEFAULT_RATE]	= { .type = NLA_U32 },
937 	[TCA_FQ_FLOW_MAX_RATE]		= { .type = NLA_U32 },
938 	[TCA_FQ_BUCKETS_LOG]		= { .type = NLA_U32 },
939 	[TCA_FQ_FLOW_REFILL_DELAY]	= { .type = NLA_U32 },
940 	[TCA_FQ_ORPHAN_MASK]		= { .type = NLA_U32 },
941 	[TCA_FQ_LOW_RATE_THRESHOLD]	= { .type = NLA_U32 },
942 	[TCA_FQ_CE_THRESHOLD]		= { .type = NLA_U32 },
943 	[TCA_FQ_TIMER_SLACK]		= { .type = NLA_U32 },
944 	[TCA_FQ_HORIZON]		= { .type = NLA_U32 },
945 	[TCA_FQ_HORIZON_DROP]		= { .type = NLA_U8 },
946 	[TCA_FQ_PRIOMAP]		= NLA_POLICY_EXACT_LEN(sizeof(struct tc_prio_qopt)),
947 	[TCA_FQ_WEIGHTS]		= NLA_POLICY_EXACT_LEN(FQ_BANDS * sizeof(s32)),
948 	[TCA_FQ_OFFLOAD_HORIZON]	= { .type = NLA_U32 },
949 };
950 
951 /* compress a u8 array with all elems <= 3 to an array of 2-bit fields */
952 static void fq_prio2band_compress_crumb(const u8 *in, u8 *out)
953 {
954 	const int num_elems = TC_PRIO_MAX + 1;
955 	u8 tmp[FQ_PRIO2BAND_CRUMB_SIZE];
956 	int i;
957 
958 	memset(tmp, 0, sizeof(tmp));
959 	for (i = 0; i < num_elems; i++)
960 		tmp[i / 4] |= in[i] << (2 * (i & 0x3));
961 
962 	for (i = 0; i < FQ_PRIO2BAND_CRUMB_SIZE; i++)
963 		WRITE_ONCE(out[i], tmp[i]);
964 }
965 
966 static void fq_prio2band_decompress_crumb(const u8 *in, u8 *out)
967 {
968 	const int num_elems = TC_PRIO_MAX + 1;
969 	int i;
970 
971 	for (i = 0; i < num_elems; i++)
972 		out[i] = fq_prio2band(in, i);
973 }
974 
975 static int fq_load_weights(struct fq_sched_data *q,
976 			   const struct nlattr *attr,
977 			   struct netlink_ext_ack *extack)
978 {
979 	s32 *weights = nla_data(attr);
980 	int i;
981 
982 	for (i = 0; i < FQ_BANDS; i++) {
983 		if (weights[i] < FQ_MIN_WEIGHT) {
984 			NL_SET_ERR_MSG_FMT_MOD(extack, "Weight %d less that minimum allowed %d",
985 					       weights[i], FQ_MIN_WEIGHT);
986 			return -EINVAL;
987 		}
988 	}
989 	for (i = 0; i < FQ_BANDS; i++)
990 		WRITE_ONCE(q->band_flows[i].quantum, weights[i]);
991 	return 0;
992 }
993 
994 static int fq_load_priomap(struct fq_sched_data *q,
995 			   const struct nlattr *attr,
996 			   struct netlink_ext_ack *extack)
997 {
998 	const struct tc_prio_qopt *map = nla_data(attr);
999 	int i;
1000 
1001 	if (map->bands != FQ_BANDS) {
1002 		NL_SET_ERR_MSG_MOD(extack, "FQ only supports 3 bands");
1003 		return -EINVAL;
1004 	}
1005 	for (i = 0; i < TC_PRIO_MAX + 1; i++) {
1006 		if (map->priomap[i] >= FQ_BANDS) {
1007 			NL_SET_ERR_MSG_FMT_MOD(extack, "FQ priomap field %d maps to a too high band %d",
1008 					       i, map->priomap[i]);
1009 			return -EINVAL;
1010 		}
1011 	}
1012 	fq_prio2band_compress_crumb(map->priomap, q->prio2band);
1013 	return 0;
1014 }
1015 
1016 static int fq_change(struct Qdisc *sch, struct nlattr *opt,
1017 		     struct netlink_ext_ack *extack)
1018 {
1019 	unsigned int dropped_pkts = 0, dropped_bytes = 0;
1020 	struct fq_sched_data *q = qdisc_priv(sch);
1021 	struct nlattr *tb[TCA_FQ_MAX + 1];
1022 	u32 fq_log;
1023 	int err;
1024 
1025 	err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy,
1026 					  NULL);
1027 	if (err < 0)
1028 		return err;
1029 
1030 	sch_tree_lock(sch);
1031 
1032 	fq_log = q->fq_trees_log;
1033 
1034 	if (tb[TCA_FQ_BUCKETS_LOG]) {
1035 		u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
1036 
1037 		if (nval >= 1 && nval <= ilog2(256*1024))
1038 			fq_log = nval;
1039 		else
1040 			err = -EINVAL;
1041 	}
1042 	if (tb[TCA_FQ_PLIMIT])
1043 		WRITE_ONCE(sch->limit,
1044 			   nla_get_u32(tb[TCA_FQ_PLIMIT]));
1045 
1046 	if (tb[TCA_FQ_FLOW_PLIMIT])
1047 		WRITE_ONCE(q->flow_plimit,
1048 			   nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]));
1049 
1050 	if (tb[TCA_FQ_QUANTUM]) {
1051 		u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
1052 
1053 		if (quantum > 0 && quantum <= (1 << 20)) {
1054 			WRITE_ONCE(q->quantum, quantum);
1055 		} else {
1056 			NL_SET_ERR_MSG_MOD(extack, "invalid quantum");
1057 			err = -EINVAL;
1058 		}
1059 	}
1060 
1061 	if (tb[TCA_FQ_INITIAL_QUANTUM])
1062 		WRITE_ONCE(q->initial_quantum,
1063 			   nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]));
1064 
1065 	if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
1066 		pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
1067 				    nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
1068 
1069 	if (tb[TCA_FQ_FLOW_MAX_RATE]) {
1070 		u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
1071 
1072 		WRITE_ONCE(q->flow_max_rate,
1073 			   (rate == ~0U) ? ~0UL : rate);
1074 	}
1075 	if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
1076 		WRITE_ONCE(q->low_rate_threshold,
1077 			   nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]));
1078 
1079 	if (tb[TCA_FQ_RATE_ENABLE]) {
1080 		u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
1081 
1082 		if (enable <= 1)
1083 			WRITE_ONCE(q->rate_enable,
1084 				   enable);
1085 		else
1086 			err = -EINVAL;
1087 	}
1088 
1089 	if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
1090 		u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
1091 
1092 		WRITE_ONCE(q->flow_refill_delay,
1093 			   usecs_to_jiffies(usecs_delay));
1094 	}
1095 
1096 	if (!err && tb[TCA_FQ_PRIOMAP])
1097 		err = fq_load_priomap(q, tb[TCA_FQ_PRIOMAP], extack);
1098 
1099 	if (!err && tb[TCA_FQ_WEIGHTS])
1100 		err = fq_load_weights(q, tb[TCA_FQ_WEIGHTS], extack);
1101 
1102 	if (tb[TCA_FQ_ORPHAN_MASK])
1103 		WRITE_ONCE(q->orphan_mask,
1104 			   nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]));
1105 
1106 	if (tb[TCA_FQ_CE_THRESHOLD])
1107 		WRITE_ONCE(q->ce_threshold,
1108 			   (u64)NSEC_PER_USEC *
1109 			   nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]));
1110 
1111 	if (tb[TCA_FQ_TIMER_SLACK])
1112 		WRITE_ONCE(q->timer_slack,
1113 			   nla_get_u32(tb[TCA_FQ_TIMER_SLACK]));
1114 
1115 	if (tb[TCA_FQ_HORIZON])
1116 		WRITE_ONCE(q->horizon,
1117 			   (u64)NSEC_PER_USEC *
1118 			   nla_get_u32(tb[TCA_FQ_HORIZON]));
1119 
1120 	if (tb[TCA_FQ_HORIZON_DROP])
1121 		WRITE_ONCE(q->horizon_drop,
1122 			   nla_get_u8(tb[TCA_FQ_HORIZON_DROP]));
1123 
1124 	if (tb[TCA_FQ_OFFLOAD_HORIZON]) {
1125 		u64 offload_horizon = (u64)NSEC_PER_USEC *
1126 				      nla_get_u32(tb[TCA_FQ_OFFLOAD_HORIZON]);
1127 
1128 		if (offload_horizon <= qdisc_dev(sch)->max_pacing_offload_horizon) {
1129 			WRITE_ONCE(q->offload_horizon, offload_horizon);
1130 		} else {
1131 			NL_SET_ERR_MSG_MOD(extack, "invalid offload_horizon");
1132 			err = -EINVAL;
1133 		}
1134 	}
1135 	if (!err) {
1136 
1137 		sch_tree_unlock(sch);
1138 		err = fq_resize(sch, fq_log);
1139 		sch_tree_lock(sch);
1140 	}
1141 
1142 	while (sch->q.qlen > sch->limit) {
1143 		struct sk_buff *skb = qdisc_dequeue_internal(sch, false);
1144 
1145 		if (!skb)
1146 			break;
1147 
1148 		dropped_pkts++;
1149 		dropped_bytes += qdisc_pkt_len(skb);
1150 		rtnl_kfree_skbs(skb, skb);
1151 	}
1152 	qdisc_tree_reduce_backlog(sch, dropped_pkts, dropped_bytes);
1153 
1154 	sch_tree_unlock(sch);
1155 	return err;
1156 }
1157 
1158 static void fq_destroy(struct Qdisc *sch)
1159 {
1160 	struct fq_sched_data *q = qdisc_priv(sch);
1161 
1162 	fq_reset(sch);
1163 	fq_free(q->fq_root);
1164 	qdisc_watchdog_cancel(&q->watchdog);
1165 }
1166 
1167 static int fq_init(struct Qdisc *sch, struct nlattr *opt,
1168 		   struct netlink_ext_ack *extack)
1169 {
1170 	struct fq_sched_data *q = qdisc_priv(sch);
1171 	int i, err;
1172 
1173 	sch->limit		= 10000;
1174 	q->flow_plimit		= 100;
1175 	q->quantum		= 2 * psched_mtu(qdisc_dev(sch));
1176 	q->initial_quantum	= 10 * psched_mtu(qdisc_dev(sch));
1177 	q->flow_refill_delay	= msecs_to_jiffies(40);
1178 	q->flow_max_rate	= ~0UL;
1179 	q->time_next_delayed_flow = ~0ULL;
1180 	q->rate_enable		= 1;
1181 	for (i = 0; i < FQ_BANDS; i++) {
1182 		q->band_flows[i].new_flows.first = NULL;
1183 		q->band_flows[i].old_flows.first = NULL;
1184 	}
1185 	q->band_flows[0].quantum = 9 << 16;
1186 	q->band_flows[1].quantum = 3 << 16;
1187 	q->band_flows[2].quantum = 1 << 16;
1188 	q->delayed		= RB_ROOT;
1189 	q->fq_root		= NULL;
1190 	q->fq_trees_log		= ilog2(1024);
1191 	q->orphan_mask		= 1024 - 1;
1192 	q->low_rate_threshold	= 550000 / 8;
1193 
1194 	q->timer_slack = 10 * NSEC_PER_USEC; /* 10 usec of hrtimer slack */
1195 
1196 	q->horizon = 10ULL * NSEC_PER_SEC; /* 10 seconds */
1197 	q->horizon_drop = 1; /* by default, drop packets beyond horizon */
1198 
1199 	/* Default ce_threshold of 4294 seconds */
1200 	q->ce_threshold		= (u64)NSEC_PER_USEC * ~0U;
1201 
1202 	fq_prio2band_compress_crumb(sch_default_prio2band, q->prio2band);
1203 	qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);
1204 
1205 	if (opt)
1206 		err = fq_change(sch, opt, extack);
1207 	else
1208 		err = fq_resize(sch, q->fq_trees_log);
1209 
1210 	return err;
1211 }
1212 
1213 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
1214 {
1215 	struct fq_sched_data *q = qdisc_priv(sch);
1216 	struct tc_prio_qopt prio = {
1217 		.bands = FQ_BANDS,
1218 	};
1219 	struct nlattr *opts;
1220 	u64 offload_horizon;
1221 	u64 ce_threshold;
1222 	s32 weights[3];
1223 	u64 horizon;
1224 
1225 	opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
1226 	if (opts == NULL)
1227 		goto nla_put_failure;
1228 
1229 	/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
1230 
1231 	ce_threshold = READ_ONCE(q->ce_threshold);
1232 	do_div(ce_threshold, NSEC_PER_USEC);
1233 
1234 	horizon = READ_ONCE(q->horizon);
1235 	do_div(horizon, NSEC_PER_USEC);
1236 
1237 	offload_horizon = READ_ONCE(q->offload_horizon);
1238 	do_div(offload_horizon, NSEC_PER_USEC);
1239 
1240 	if (nla_put_u32(skb, TCA_FQ_PLIMIT,
1241 			READ_ONCE(sch->limit)) ||
1242 	    nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT,
1243 			READ_ONCE(q->flow_plimit)) ||
1244 	    nla_put_u32(skb, TCA_FQ_QUANTUM,
1245 			READ_ONCE(q->quantum)) ||
1246 	    nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM,
1247 			READ_ONCE(q->initial_quantum)) ||
1248 	    nla_put_u32(skb, TCA_FQ_RATE_ENABLE,
1249 			READ_ONCE(q->rate_enable)) ||
1250 	    nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
1251 			min_t(unsigned long,
1252 			      READ_ONCE(q->flow_max_rate), ~0U)) ||
1253 	    nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
1254 			jiffies_to_usecs(READ_ONCE(q->flow_refill_delay))) ||
1255 	    nla_put_u32(skb, TCA_FQ_ORPHAN_MASK,
1256 			READ_ONCE(q->orphan_mask)) ||
1257 	    nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
1258 			READ_ONCE(q->low_rate_threshold)) ||
1259 	    nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
1260 	    nla_put_u32(skb, TCA_FQ_BUCKETS_LOG,
1261 			READ_ONCE(q->fq_trees_log)) ||
1262 	    nla_put_u32(skb, TCA_FQ_TIMER_SLACK,
1263 			READ_ONCE(q->timer_slack)) ||
1264 	    nla_put_u32(skb, TCA_FQ_HORIZON, (u32)horizon) ||
1265 	    nla_put_u32(skb, TCA_FQ_OFFLOAD_HORIZON, (u32)offload_horizon) ||
1266 	    nla_put_u8(skb, TCA_FQ_HORIZON_DROP,
1267 		       READ_ONCE(q->horizon_drop)))
1268 		goto nla_put_failure;
1269 
1270 	fq_prio2band_decompress_crumb(q->prio2band, prio.priomap);
1271 	if (nla_put(skb, TCA_FQ_PRIOMAP, sizeof(prio), &prio))
1272 		goto nla_put_failure;
1273 
1274 	weights[0] = READ_ONCE(q->band_flows[0].quantum);
1275 	weights[1] = READ_ONCE(q->band_flows[1].quantum);
1276 	weights[2] = READ_ONCE(q->band_flows[2].quantum);
1277 	if (nla_put(skb, TCA_FQ_WEIGHTS, sizeof(weights), &weights))
1278 		goto nla_put_failure;
1279 
1280 	return nla_nest_end(skb, opts);
1281 
1282 nla_put_failure:
1283 	return -1;
1284 }
1285 
1286 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
1287 {
1288 	struct fq_sched_data *q = qdisc_priv(sch);
1289 	struct tc_fq_qd_stats st;
1290 	int i;
1291 
1292 	st.pad = 0;
1293 
1294 	sch_tree_lock(sch);
1295 
1296 	st.gc_flows		  = q->stat_gc_flows;
1297 	st.highprio_packets	  = 0;
1298 	st.fastpath_packets	  = q->internal.stat_fastpath_packets;
1299 	st.tcp_retrans		  = 0;
1300 	st.throttled		  = q->stat_throttled;
1301 	st.flows_plimit		  = q->stat_flows_plimit;
1302 	st.pkts_too_long	  = q->stat_pkts_too_long;
1303 	st.allocation_errors	  = q->stat_allocation_errors;
1304 	st.time_next_delayed_flow = q->time_next_delayed_flow + q->timer_slack -
1305 				    ktime_get_ns();
1306 	st.flows		  = q->flows;
1307 	st.inactive_flows	  = q->inactive_flows;
1308 	st.throttled_flows	  = q->throttled_flows;
1309 	st.unthrottle_latency_ns  = min_t(unsigned long,
1310 					  q->unthrottle_latency_ns, ~0U);
1311 	st.ce_mark		  = q->stat_ce_mark;
1312 	st.horizon_drops	  = q->stat_horizon_drops;
1313 	st.horizon_caps		  = q->stat_horizon_caps;
1314 	for (i = 0; i < FQ_BANDS; i++) {
1315 		st.band_drops[i]  = q->stat_band_drops[i];
1316 		st.band_pkt_count[i] = q->band_pkt_count[i];
1317 	}
1318 	sch_tree_unlock(sch);
1319 
1320 	return gnet_stats_copy_app(d, &st, sizeof(st));
1321 }
1322 
1323 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
1324 	.id		=	"fq",
1325 	.priv_size	=	sizeof(struct fq_sched_data),
1326 
1327 	.enqueue	=	fq_enqueue,
1328 	.dequeue	=	fq_dequeue,
1329 	.peek		=	qdisc_peek_dequeued,
1330 	.init		=	fq_init,
1331 	.reset		=	fq_reset,
1332 	.destroy	=	fq_destroy,
1333 	.change		=	fq_change,
1334 	.dump		=	fq_dump,
1335 	.dump_stats	=	fq_dump_stats,
1336 	.owner		=	THIS_MODULE,
1337 };
1338 MODULE_ALIAS_NET_SCH("fq");
1339 
1340 static int __init fq_module_init(void)
1341 {
1342 	int ret;
1343 
1344 	fq_flow_cachep = kmem_cache_create("fq_flow_cache",
1345 					   sizeof(struct fq_flow),
1346 					   0, SLAB_HWCACHE_ALIGN, NULL);
1347 	if (!fq_flow_cachep)
1348 		return -ENOMEM;
1349 
1350 	ret = register_qdisc(&fq_qdisc_ops);
1351 	if (ret)
1352 		kmem_cache_destroy(fq_flow_cachep);
1353 	return ret;
1354 }
1355 
1356 static void __exit fq_module_exit(void)
1357 {
1358 	unregister_qdisc(&fq_qdisc_ops);
1359 	kmem_cache_destroy(fq_flow_cachep);
1360 }
1361 
1362 module_init(fq_module_init)
1363 module_exit(fq_module_exit)
1364 MODULE_AUTHOR("Eric Dumazet");
1365 MODULE_LICENSE("GPL");
1366 MODULE_DESCRIPTION("Fair Queue Packet Scheduler");
1367