1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing) 4 * 5 * Copyright (C) 2013-2023 Eric Dumazet <edumazet@google.com> 6 * 7 * Meant to be mostly used for locally generated traffic : 8 * Fast classification depends on skb->sk being set before reaching us. 9 * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash. 10 * All packets belonging to a socket are considered as a 'flow'. 11 * 12 * Flows are dynamically allocated and stored in a hash table of RB trees 13 * They are also part of one Round Robin 'queues' (new or old flows) 14 * 15 * Burst avoidance (aka pacing) capability : 16 * 17 * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a 18 * bunch of packets, and this packet scheduler adds delay between 19 * packets to respect rate limitation. 20 * 21 * enqueue() : 22 * - lookup one RB tree (out of 1024 or more) to find the flow. 23 * If non existent flow, create it, add it to the tree. 24 * Add skb to the per flow list of skb (fifo). 25 * - Use a special fifo for high prio packets 26 * 27 * dequeue() : serves flows in Round Robin 28 * Note : When a flow becomes empty, we do not immediately remove it from 29 * rb trees, for performance reasons (its expected to send additional packets, 30 * or SLAB cache will reuse socket for another flow) 31 */ 32 33 #include <linux/module.h> 34 #include <linux/types.h> 35 #include <linux/kernel.h> 36 #include <linux/jiffies.h> 37 #include <linux/string.h> 38 #include <linux/in.h> 39 #include <linux/errno.h> 40 #include <linux/init.h> 41 #include <linux/skbuff.h> 42 #include <linux/slab.h> 43 #include <linux/rbtree.h> 44 #include <linux/hash.h> 45 #include <linux/prefetch.h> 46 #include <linux/vmalloc.h> 47 #include <net/netlink.h> 48 #include <net/pkt_sched.h> 49 #include <net/sock.h> 50 #include <net/tcp_states.h> 51 #include <net/tcp.h> 52 53 struct fq_skb_cb { 54 u64 time_to_send; 55 u8 band; 56 }; 57 58 static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb) 59 { 60 qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb)); 61 return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data; 62 } 63 64 /* 65 * Per flow structure, dynamically allocated. 66 * If packets have monotically increasing time_to_send, they are placed in O(1) 67 * in linear list (head,tail), otherwise are placed in a rbtree (t_root). 68 */ 69 struct fq_flow { 70 /* First cache line : used in fq_gc(), fq_enqueue(), fq_dequeue() */ 71 struct rb_root t_root; 72 struct sk_buff *head; /* list of skbs for this flow : first skb */ 73 union { 74 struct sk_buff *tail; /* last skb in the list */ 75 unsigned long age; /* (jiffies | 1UL) when flow was emptied, for gc */ 76 }; 77 union { 78 struct rb_node fq_node; /* anchor in fq_root[] trees */ 79 /* Following field is only used for q->internal, 80 * because q->internal is not hashed in fq_root[] 81 */ 82 u64 stat_fastpath_packets; 83 }; 84 struct sock *sk; 85 u32 socket_hash; /* sk_hash */ 86 int qlen; /* number of packets in flow queue */ 87 88 /* Second cache line */ 89 int credit; 90 int band; 91 struct fq_flow *next; /* next pointer in RR lists */ 92 93 struct rb_node rate_node; /* anchor in q->delayed tree */ 94 u64 time_next_packet; 95 }; 96 97 struct fq_flow_head { 98 struct fq_flow *first; 99 struct fq_flow *last; 100 }; 101 102 struct fq_perband_flows { 103 struct fq_flow_head new_flows; 104 struct fq_flow_head old_flows; 105 int credit; 106 int quantum; /* based on band nr : 576KB, 192KB, 64KB */ 107 }; 108 109 #define FQ_PRIO2BAND_CRUMB_SIZE ((TC_PRIO_MAX + 1) >> 2) 110 111 struct fq_sched_data { 112 /* Read mostly cache line */ 113 114 u64 offload_horizon; 115 u32 quantum; 116 u32 initial_quantum; 117 u32 flow_refill_delay; 118 u32 flow_plimit; /* max packets per flow */ 119 unsigned long flow_max_rate; /* optional max rate per flow */ 120 u64 ce_threshold; 121 u64 horizon; /* horizon in ns */ 122 u32 orphan_mask; /* mask for orphaned skb */ 123 u32 low_rate_threshold; 124 struct rb_root *fq_root; 125 u8 rate_enable; 126 u8 fq_trees_log; 127 u8 horizon_drop; 128 u8 prio2band[FQ_PRIO2BAND_CRUMB_SIZE]; 129 u32 timer_slack; /* hrtimer slack in ns */ 130 131 /* Read/Write fields. */ 132 133 unsigned int band_nr; /* band being serviced in fq_dequeue() */ 134 135 struct fq_perband_flows band_flows[FQ_BANDS]; 136 137 struct fq_flow internal; /* fastpath queue. */ 138 struct rb_root delayed; /* for rate limited flows */ 139 u64 time_next_delayed_flow; 140 unsigned long unthrottle_latency_ns; 141 142 u32 band_pkt_count[FQ_BANDS]; 143 u32 flows; 144 u32 inactive_flows; /* Flows with no packet to send. */ 145 u32 throttled_flows; 146 147 u64 stat_throttled; 148 struct qdisc_watchdog watchdog; 149 u64 stat_gc_flows; 150 151 /* Seldom used fields. */ 152 153 u64 stat_band_drops[FQ_BANDS]; 154 u64 stat_ce_mark; 155 u64 stat_horizon_drops; 156 u64 stat_horizon_caps; 157 u64 stat_flows_plimit; 158 u64 stat_pkts_too_long; 159 u64 stat_allocation_errors; 160 }; 161 162 /* return the i-th 2-bit value ("crumb") */ 163 static u8 fq_prio2band(const u8 *prio2band, unsigned int prio) 164 { 165 return (READ_ONCE(prio2band[prio / 4]) >> (2 * (prio & 0x3))) & 0x3; 166 } 167 168 /* 169 * f->tail and f->age share the same location. 170 * We can use the low order bit to differentiate if this location points 171 * to a sk_buff or contains a jiffies value, if we force this value to be odd. 172 * This assumes f->tail low order bit must be 0 since alignof(struct sk_buff) >= 2 173 */ 174 static void fq_flow_set_detached(struct fq_flow *f) 175 { 176 f->age = jiffies | 1UL; 177 } 178 179 static bool fq_flow_is_detached(const struct fq_flow *f) 180 { 181 return !!(f->age & 1UL); 182 } 183 184 /* special value to mark a throttled flow (not on old/new list) */ 185 static struct fq_flow throttled; 186 187 static bool fq_flow_is_throttled(const struct fq_flow *f) 188 { 189 return f->next == &throttled; 190 } 191 192 enum new_flow { 193 NEW_FLOW, 194 OLD_FLOW 195 }; 196 197 static void fq_flow_add_tail(struct fq_sched_data *q, struct fq_flow *flow, 198 enum new_flow list_sel) 199 { 200 struct fq_perband_flows *pband = &q->band_flows[flow->band]; 201 struct fq_flow_head *head = (list_sel == NEW_FLOW) ? 202 &pband->new_flows : 203 &pband->old_flows; 204 205 if (head->first) 206 head->last->next = flow; 207 else 208 head->first = flow; 209 head->last = flow; 210 flow->next = NULL; 211 } 212 213 static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f) 214 { 215 rb_erase(&f->rate_node, &q->delayed); 216 q->throttled_flows--; 217 fq_flow_add_tail(q, f, OLD_FLOW); 218 } 219 220 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f) 221 { 222 struct rb_node **p = &q->delayed.rb_node, *parent = NULL; 223 224 while (*p) { 225 struct fq_flow *aux; 226 227 parent = *p; 228 aux = rb_entry(parent, struct fq_flow, rate_node); 229 if (f->time_next_packet >= aux->time_next_packet) 230 p = &parent->rb_right; 231 else 232 p = &parent->rb_left; 233 } 234 rb_link_node(&f->rate_node, parent, p); 235 rb_insert_color(&f->rate_node, &q->delayed); 236 q->throttled_flows++; 237 q->stat_throttled++; 238 239 f->next = &throttled; 240 if (q->time_next_delayed_flow > f->time_next_packet) 241 q->time_next_delayed_flow = f->time_next_packet; 242 } 243 244 245 static struct kmem_cache *fq_flow_cachep __read_mostly; 246 247 248 /* limit number of collected flows per round */ 249 #define FQ_GC_MAX 8 250 #define FQ_GC_AGE (3*HZ) 251 252 static bool fq_gc_candidate(const struct fq_flow *f) 253 { 254 return fq_flow_is_detached(f) && 255 time_after(jiffies, f->age + FQ_GC_AGE); 256 } 257 258 static void fq_gc(struct fq_sched_data *q, 259 struct rb_root *root, 260 struct sock *sk) 261 { 262 struct rb_node **p, *parent; 263 void *tofree[FQ_GC_MAX]; 264 struct fq_flow *f; 265 int i, fcnt = 0; 266 267 p = &root->rb_node; 268 parent = NULL; 269 while (*p) { 270 parent = *p; 271 272 f = rb_entry(parent, struct fq_flow, fq_node); 273 if (f->sk == sk) 274 break; 275 276 if (fq_gc_candidate(f)) { 277 tofree[fcnt++] = f; 278 if (fcnt == FQ_GC_MAX) 279 break; 280 } 281 282 if (f->sk > sk) 283 p = &parent->rb_right; 284 else 285 p = &parent->rb_left; 286 } 287 288 if (!fcnt) 289 return; 290 291 for (i = fcnt; i > 0; ) { 292 f = tofree[--i]; 293 rb_erase(&f->fq_node, root); 294 } 295 q->flows -= fcnt; 296 q->inactive_flows -= fcnt; 297 q->stat_gc_flows += fcnt; 298 299 kmem_cache_free_bulk(fq_flow_cachep, fcnt, tofree); 300 } 301 302 /* Fast path can be used if : 303 * 1) Packet tstamp is in the past, or within the pacing offload horizon. 304 * 2) FQ qlen == 0 OR 305 * (no flow is currently eligible for transmit, 306 * AND fast path queue has less than 8 packets) 307 * 3) No SO_MAX_PACING_RATE on the socket (if any). 308 * 4) No @maxrate attribute on this qdisc, 309 * 310 * FQ can not use generic TCQ_F_CAN_BYPASS infrastructure. 311 */ 312 static bool fq_fastpath_check(const struct Qdisc *sch, struct sk_buff *skb, 313 u64 now) 314 { 315 const struct fq_sched_data *q = qdisc_priv(sch); 316 const struct sock *sk; 317 318 if (fq_skb_cb(skb)->time_to_send > now + q->offload_horizon) 319 return false; 320 321 if (sch->q.qlen != 0) { 322 /* Even if some packets are stored in this qdisc, 323 * we can still enable fast path if all of them are 324 * scheduled in the future (ie no flows are eligible) 325 * or in the fast path queue. 326 */ 327 if (q->flows != q->inactive_flows + q->throttled_flows) 328 return false; 329 330 /* Do not allow fast path queue to explode, we want Fair Queue mode 331 * under pressure. 332 */ 333 if (q->internal.qlen >= 8) 334 return false; 335 336 /* Ordering invariants fall apart if some delayed flows 337 * are ready but we haven't serviced them, yet. 338 */ 339 if (q->time_next_delayed_flow <= now + q->offload_horizon) 340 return false; 341 } 342 343 sk = skb->sk; 344 if (sk && sk_fullsock(sk) && !sk_is_tcp(sk) && 345 sk->sk_max_pacing_rate != ~0UL) 346 return false; 347 348 if (q->flow_max_rate != ~0UL) 349 return false; 350 351 return true; 352 } 353 354 static struct fq_flow *fq_classify(struct Qdisc *sch, struct sk_buff *skb, 355 u64 now) 356 { 357 struct fq_sched_data *q = qdisc_priv(sch); 358 struct rb_node **p, *parent; 359 struct sock *sk = skb->sk; 360 struct rb_root *root; 361 struct fq_flow *f; 362 363 /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket 364 * or a listener (SYNCOOKIE mode) 365 * 1) request sockets are not full blown, 366 * they do not contain sk_pacing_rate 367 * 2) They are not part of a 'flow' yet 368 * 3) We do not want to rate limit them (eg SYNFLOOD attack), 369 * especially if the listener set SO_MAX_PACING_RATE 370 * 4) We pretend they are orphaned 371 * TCP can also associate TIME_WAIT sockets with RST or ACK packets. 372 */ 373 if (!sk || sk_listener_or_tw(sk)) { 374 unsigned long hash = skb_get_hash(skb) & q->orphan_mask; 375 376 /* By forcing low order bit to 1, we make sure to not 377 * collide with a local flow (socket pointers are word aligned) 378 */ 379 sk = (struct sock *)((hash << 1) | 1UL); 380 skb_orphan(skb); 381 } else if (sk->sk_state == TCP_CLOSE) { 382 unsigned long hash = skb_get_hash(skb) & q->orphan_mask; 383 /* 384 * Sockets in TCP_CLOSE are non connected. 385 * Typical use case is UDP sockets, they can send packets 386 * with sendto() to many different destinations. 387 * We probably could use a generic bit advertising 388 * non connected sockets, instead of sk_state == TCP_CLOSE, 389 * if we care enough. 390 */ 391 sk = (struct sock *)((hash << 1) | 1UL); 392 } 393 394 if (fq_fastpath_check(sch, skb, now)) { 395 q->internal.stat_fastpath_packets++; 396 if (skb->sk == sk && q->rate_enable && 397 READ_ONCE(sk->sk_pacing_status) != SK_PACING_FQ) 398 smp_store_release(&sk->sk_pacing_status, 399 SK_PACING_FQ); 400 return &q->internal; 401 } 402 403 root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)]; 404 405 fq_gc(q, root, sk); 406 407 p = &root->rb_node; 408 parent = NULL; 409 while (*p) { 410 parent = *p; 411 412 f = rb_entry(parent, struct fq_flow, fq_node); 413 if (f->sk == sk) { 414 /* socket might have been reallocated, so check 415 * if its sk_hash is the same. 416 * It not, we need to refill credit with 417 * initial quantum 418 */ 419 if (unlikely(skb->sk == sk && 420 f->socket_hash != sk->sk_hash)) { 421 f->credit = q->initial_quantum; 422 f->socket_hash = sk->sk_hash; 423 if (q->rate_enable) 424 smp_store_release(&sk->sk_pacing_status, 425 SK_PACING_FQ); 426 if (fq_flow_is_throttled(f)) 427 fq_flow_unset_throttled(q, f); 428 f->time_next_packet = 0ULL; 429 } 430 return f; 431 } 432 if (f->sk > sk) 433 p = &parent->rb_right; 434 else 435 p = &parent->rb_left; 436 } 437 438 f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN); 439 if (unlikely(!f)) { 440 q->stat_allocation_errors++; 441 return &q->internal; 442 } 443 /* f->t_root is already zeroed after kmem_cache_zalloc() */ 444 445 fq_flow_set_detached(f); 446 f->sk = sk; 447 if (skb->sk == sk) { 448 f->socket_hash = sk->sk_hash; 449 if (q->rate_enable) 450 smp_store_release(&sk->sk_pacing_status, 451 SK_PACING_FQ); 452 } 453 f->credit = q->initial_quantum; 454 455 rb_link_node(&f->fq_node, parent, p); 456 rb_insert_color(&f->fq_node, root); 457 458 q->flows++; 459 q->inactive_flows++; 460 return f; 461 } 462 463 static struct sk_buff *fq_peek(struct fq_flow *flow) 464 { 465 struct sk_buff *skb = skb_rb_first(&flow->t_root); 466 struct sk_buff *head = flow->head; 467 468 if (!skb) 469 return head; 470 471 if (!head) 472 return skb; 473 474 if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send) 475 return skb; 476 return head; 477 } 478 479 static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow, 480 struct sk_buff *skb) 481 { 482 if (skb == flow->head) { 483 struct sk_buff *next = skb->next; 484 485 prefetch(next); 486 flow->head = next; 487 } else { 488 rb_erase(&skb->rbnode, &flow->t_root); 489 skb->dev = qdisc_dev(sch); 490 } 491 } 492 493 /* Remove one skb from flow queue. 494 * This skb must be the return value of prior fq_peek(). 495 */ 496 static void fq_dequeue_skb(struct Qdisc *sch, struct fq_flow *flow, 497 struct sk_buff *skb) 498 { 499 fq_erase_head(sch, flow, skb); 500 skb_mark_not_on_list(skb); 501 qdisc_qstats_backlog_dec(sch, skb); 502 sch->q.qlen--; 503 qdisc_bstats_update(sch, skb); 504 } 505 506 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb) 507 { 508 struct rb_node **p, *parent; 509 struct sk_buff *head, *aux; 510 511 head = flow->head; 512 if (!head || 513 fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) { 514 if (!head) 515 flow->head = skb; 516 else 517 flow->tail->next = skb; 518 flow->tail = skb; 519 skb->next = NULL; 520 return; 521 } 522 523 p = &flow->t_root.rb_node; 524 parent = NULL; 525 526 while (*p) { 527 parent = *p; 528 aux = rb_to_skb(parent); 529 if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send) 530 p = &parent->rb_right; 531 else 532 p = &parent->rb_left; 533 } 534 rb_link_node(&skb->rbnode, parent, p); 535 rb_insert_color(&skb->rbnode, &flow->t_root); 536 } 537 538 static bool fq_packet_beyond_horizon(const struct sk_buff *skb, 539 const struct fq_sched_data *q, u64 now) 540 { 541 return unlikely((s64)skb->tstamp > (s64)(now + q->horizon)); 542 } 543 544 #define FQDR(reason) SKB_DROP_REASON_FQ_##reason 545 546 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch, 547 struct sk_buff **to_free) 548 { 549 struct fq_sched_data *q = qdisc_priv(sch); 550 struct fq_flow *f; 551 u64 now; 552 u8 band; 553 554 band = fq_prio2band(q->prio2band, skb->priority & TC_PRIO_MAX); 555 if (unlikely(q->band_pkt_count[band] >= sch->limit)) { 556 q->stat_band_drops[band]++; 557 return qdisc_drop_reason(skb, sch, to_free, 558 FQDR(BAND_LIMIT)); 559 } 560 561 now = ktime_get_ns(); 562 if (!skb->tstamp) { 563 fq_skb_cb(skb)->time_to_send = now; 564 } else { 565 /* Check if packet timestamp is too far in the future. */ 566 if (fq_packet_beyond_horizon(skb, q, now)) { 567 if (q->horizon_drop) { 568 q->stat_horizon_drops++; 569 return qdisc_drop_reason(skb, sch, to_free, 570 FQDR(HORIZON_LIMIT)); 571 } 572 q->stat_horizon_caps++; 573 skb->tstamp = now + q->horizon; 574 } 575 fq_skb_cb(skb)->time_to_send = skb->tstamp; 576 } 577 578 f = fq_classify(sch, skb, now); 579 580 if (f != &q->internal) { 581 if (unlikely(f->qlen >= q->flow_plimit)) { 582 q->stat_flows_plimit++; 583 return qdisc_drop_reason(skb, sch, to_free, 584 FQDR(FLOW_LIMIT)); 585 } 586 587 if (fq_flow_is_detached(f)) { 588 fq_flow_add_tail(q, f, NEW_FLOW); 589 if (time_after(jiffies, f->age + q->flow_refill_delay)) 590 f->credit = max_t(u32, f->credit, q->quantum); 591 } 592 593 f->band = band; 594 q->band_pkt_count[band]++; 595 fq_skb_cb(skb)->band = band; 596 if (f->qlen == 0) 597 q->inactive_flows--; 598 } 599 600 f->qlen++; 601 /* Note: this overwrites f->age */ 602 flow_queue_add(f, skb); 603 604 qdisc_qstats_backlog_inc(sch, skb); 605 sch->q.qlen++; 606 607 return NET_XMIT_SUCCESS; 608 } 609 #undef FQDR 610 611 static void fq_check_throttled(struct fq_sched_data *q, u64 now) 612 { 613 unsigned long sample; 614 struct rb_node *p; 615 616 if (q->time_next_delayed_flow > now + q->offload_horizon) 617 return; 618 619 /* Update unthrottle latency EWMA. 620 * This is cheap and can help diagnosing timer/latency problems. 621 */ 622 sample = (unsigned long)(now - q->time_next_delayed_flow); 623 if ((long)sample > 0) { 624 q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3; 625 q->unthrottle_latency_ns += sample >> 3; 626 } 627 now += q->offload_horizon; 628 629 q->time_next_delayed_flow = ~0ULL; 630 while ((p = rb_first(&q->delayed)) != NULL) { 631 struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node); 632 633 if (f->time_next_packet > now) { 634 q->time_next_delayed_flow = f->time_next_packet; 635 break; 636 } 637 fq_flow_unset_throttled(q, f); 638 } 639 } 640 641 static struct fq_flow_head *fq_pband_head_select(struct fq_perband_flows *pband) 642 { 643 if (pband->credit <= 0) 644 return NULL; 645 646 if (pband->new_flows.first) 647 return &pband->new_flows; 648 649 return pband->old_flows.first ? &pband->old_flows : NULL; 650 } 651 652 static struct sk_buff *fq_dequeue(struct Qdisc *sch) 653 { 654 struct fq_sched_data *q = qdisc_priv(sch); 655 struct fq_perband_flows *pband; 656 struct fq_flow_head *head; 657 struct sk_buff *skb; 658 struct fq_flow *f; 659 unsigned long rate; 660 int retry; 661 u32 plen; 662 u64 now; 663 664 if (!sch->q.qlen) 665 return NULL; 666 667 skb = fq_peek(&q->internal); 668 if (unlikely(skb)) { 669 q->internal.qlen--; 670 fq_dequeue_skb(sch, &q->internal, skb); 671 goto out; 672 } 673 674 now = ktime_get_ns(); 675 fq_check_throttled(q, now); 676 retry = 0; 677 pband = &q->band_flows[q->band_nr]; 678 begin: 679 head = fq_pband_head_select(pband); 680 if (!head) { 681 while (++retry <= FQ_BANDS) { 682 if (++q->band_nr == FQ_BANDS) 683 q->band_nr = 0; 684 pband = &q->band_flows[q->band_nr]; 685 pband->credit = min(pband->credit + pband->quantum, 686 pband->quantum); 687 if (pband->credit > 0) 688 goto begin; 689 retry = 0; 690 } 691 if (q->time_next_delayed_flow != ~0ULL) 692 qdisc_watchdog_schedule_range_ns(&q->watchdog, 693 q->time_next_delayed_flow, 694 q->timer_slack); 695 return NULL; 696 } 697 f = head->first; 698 retry = 0; 699 if (f->credit <= 0) { 700 f->credit += q->quantum; 701 head->first = f->next; 702 fq_flow_add_tail(q, f, OLD_FLOW); 703 goto begin; 704 } 705 706 skb = fq_peek(f); 707 if (skb) { 708 u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send, 709 f->time_next_packet); 710 711 if (now + q->offload_horizon < time_next_packet) { 712 head->first = f->next; 713 f->time_next_packet = time_next_packet; 714 fq_flow_set_throttled(q, f); 715 goto begin; 716 } 717 prefetch(&skb->end); 718 fq_dequeue_skb(sch, f, skb); 719 if ((s64)(now - time_next_packet - q->ce_threshold) > 0) { 720 INET_ECN_set_ce(skb); 721 q->stat_ce_mark++; 722 } 723 if (--f->qlen == 0) 724 q->inactive_flows++; 725 q->band_pkt_count[fq_skb_cb(skb)->band]--; 726 } else { 727 head->first = f->next; 728 /* force a pass through old_flows to prevent starvation */ 729 if (head == &pband->new_flows) { 730 fq_flow_add_tail(q, f, OLD_FLOW); 731 } else { 732 fq_flow_set_detached(f); 733 } 734 goto begin; 735 } 736 plen = qdisc_pkt_len(skb); 737 f->credit -= plen; 738 pband->credit -= plen; 739 740 if (!q->rate_enable) 741 goto out; 742 743 rate = q->flow_max_rate; 744 745 /* If EDT time was provided for this skb, we need to 746 * update f->time_next_packet only if this qdisc enforces 747 * a flow max rate. 748 */ 749 if (!skb->tstamp) { 750 if (skb->sk) 751 rate = min(READ_ONCE(skb->sk->sk_pacing_rate), rate); 752 753 if (rate <= q->low_rate_threshold) { 754 f->credit = 0; 755 } else { 756 plen = max(plen, q->quantum); 757 if (f->credit > 0) 758 goto out; 759 } 760 } 761 if (rate != ~0UL) { 762 u64 len = (u64)plen * NSEC_PER_SEC; 763 764 if (likely(rate)) 765 len = div64_ul(len, rate); 766 /* Since socket rate can change later, 767 * clamp the delay to 1 second. 768 * Really, providers of too big packets should be fixed ! 769 */ 770 if (unlikely(len > NSEC_PER_SEC)) { 771 len = NSEC_PER_SEC; 772 q->stat_pkts_too_long++; 773 } 774 /* Account for schedule/timers drifts. 775 * f->time_next_packet was set when prior packet was sent, 776 * and current time (@now) can be too late by tens of us. 777 */ 778 if (f->time_next_packet) 779 len -= min(len/2, now - f->time_next_packet); 780 f->time_next_packet = now + len; 781 } 782 out: 783 return skb; 784 } 785 786 static void fq_flow_purge(struct fq_flow *flow) 787 { 788 struct rb_node *p = rb_first(&flow->t_root); 789 790 while (p) { 791 struct sk_buff *skb = rb_to_skb(p); 792 793 p = rb_next(p); 794 rb_erase(&skb->rbnode, &flow->t_root); 795 rtnl_kfree_skbs(skb, skb); 796 } 797 rtnl_kfree_skbs(flow->head, flow->tail); 798 flow->head = NULL; 799 flow->qlen = 0; 800 } 801 802 static void fq_reset(struct Qdisc *sch) 803 { 804 struct fq_sched_data *q = qdisc_priv(sch); 805 struct rb_root *root; 806 struct rb_node *p; 807 struct fq_flow *f; 808 unsigned int idx; 809 810 sch->q.qlen = 0; 811 sch->qstats.backlog = 0; 812 813 fq_flow_purge(&q->internal); 814 815 if (!q->fq_root) 816 return; 817 818 for (idx = 0; idx < (1U << q->fq_trees_log); idx++) { 819 root = &q->fq_root[idx]; 820 while ((p = rb_first(root)) != NULL) { 821 f = rb_entry(p, struct fq_flow, fq_node); 822 rb_erase(p, root); 823 824 fq_flow_purge(f); 825 826 kmem_cache_free(fq_flow_cachep, f); 827 } 828 } 829 for (idx = 0; idx < FQ_BANDS; idx++) { 830 q->band_flows[idx].new_flows.first = NULL; 831 q->band_flows[idx].old_flows.first = NULL; 832 } 833 q->delayed = RB_ROOT; 834 q->flows = 0; 835 q->inactive_flows = 0; 836 q->throttled_flows = 0; 837 } 838 839 static void fq_rehash(struct fq_sched_data *q, 840 struct rb_root *old_array, u32 old_log, 841 struct rb_root *new_array, u32 new_log) 842 { 843 struct rb_node *op, **np, *parent; 844 struct rb_root *oroot, *nroot; 845 struct fq_flow *of, *nf; 846 int fcnt = 0; 847 u32 idx; 848 849 for (idx = 0; idx < (1U << old_log); idx++) { 850 oroot = &old_array[idx]; 851 while ((op = rb_first(oroot)) != NULL) { 852 rb_erase(op, oroot); 853 of = rb_entry(op, struct fq_flow, fq_node); 854 if (fq_gc_candidate(of)) { 855 fcnt++; 856 kmem_cache_free(fq_flow_cachep, of); 857 continue; 858 } 859 nroot = &new_array[hash_ptr(of->sk, new_log)]; 860 861 np = &nroot->rb_node; 862 parent = NULL; 863 while (*np) { 864 parent = *np; 865 866 nf = rb_entry(parent, struct fq_flow, fq_node); 867 BUG_ON(nf->sk == of->sk); 868 869 if (nf->sk > of->sk) 870 np = &parent->rb_right; 871 else 872 np = &parent->rb_left; 873 } 874 875 rb_link_node(&of->fq_node, parent, np); 876 rb_insert_color(&of->fq_node, nroot); 877 } 878 } 879 q->flows -= fcnt; 880 q->inactive_flows -= fcnt; 881 q->stat_gc_flows += fcnt; 882 } 883 884 static void fq_free(void *addr) 885 { 886 kvfree(addr); 887 } 888 889 static int fq_resize(struct Qdisc *sch, u32 log) 890 { 891 struct fq_sched_data *q = qdisc_priv(sch); 892 struct rb_root *array; 893 void *old_fq_root; 894 u32 idx; 895 896 if (q->fq_root && log == q->fq_trees_log) 897 return 0; 898 899 /* If XPS was setup, we can allocate memory on right NUMA node */ 900 array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL, 901 netdev_queue_numa_node_read(sch->dev_queue)); 902 if (!array) 903 return -ENOMEM; 904 905 for (idx = 0; idx < (1U << log); idx++) 906 array[idx] = RB_ROOT; 907 908 sch_tree_lock(sch); 909 910 old_fq_root = q->fq_root; 911 if (old_fq_root) 912 fq_rehash(q, old_fq_root, q->fq_trees_log, array, log); 913 914 q->fq_root = array; 915 WRITE_ONCE(q->fq_trees_log, log); 916 917 sch_tree_unlock(sch); 918 919 fq_free(old_fq_root); 920 921 return 0; 922 } 923 924 static const struct netlink_range_validation iq_range = { 925 .max = INT_MAX, 926 }; 927 928 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = { 929 [TCA_FQ_UNSPEC] = { .strict_start_type = TCA_FQ_TIMER_SLACK }, 930 931 [TCA_FQ_PLIMIT] = { .type = NLA_U32 }, 932 [TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 }, 933 [TCA_FQ_QUANTUM] = { .type = NLA_U32 }, 934 [TCA_FQ_INITIAL_QUANTUM] = NLA_POLICY_FULL_RANGE(NLA_U32, &iq_range), 935 [TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 }, 936 [TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 }, 937 [TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 }, 938 [TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 }, 939 [TCA_FQ_FLOW_REFILL_DELAY] = { .type = NLA_U32 }, 940 [TCA_FQ_ORPHAN_MASK] = { .type = NLA_U32 }, 941 [TCA_FQ_LOW_RATE_THRESHOLD] = { .type = NLA_U32 }, 942 [TCA_FQ_CE_THRESHOLD] = { .type = NLA_U32 }, 943 [TCA_FQ_TIMER_SLACK] = { .type = NLA_U32 }, 944 [TCA_FQ_HORIZON] = { .type = NLA_U32 }, 945 [TCA_FQ_HORIZON_DROP] = { .type = NLA_U8 }, 946 [TCA_FQ_PRIOMAP] = NLA_POLICY_EXACT_LEN(sizeof(struct tc_prio_qopt)), 947 [TCA_FQ_WEIGHTS] = NLA_POLICY_EXACT_LEN(FQ_BANDS * sizeof(s32)), 948 [TCA_FQ_OFFLOAD_HORIZON] = { .type = NLA_U32 }, 949 }; 950 951 /* compress a u8 array with all elems <= 3 to an array of 2-bit fields */ 952 static void fq_prio2band_compress_crumb(const u8 *in, u8 *out) 953 { 954 const int num_elems = TC_PRIO_MAX + 1; 955 u8 tmp[FQ_PRIO2BAND_CRUMB_SIZE]; 956 int i; 957 958 memset(tmp, 0, sizeof(tmp)); 959 for (i = 0; i < num_elems; i++) 960 tmp[i / 4] |= in[i] << (2 * (i & 0x3)); 961 962 for (i = 0; i < FQ_PRIO2BAND_CRUMB_SIZE; i++) 963 WRITE_ONCE(out[i], tmp[i]); 964 } 965 966 static void fq_prio2band_decompress_crumb(const u8 *in, u8 *out) 967 { 968 const int num_elems = TC_PRIO_MAX + 1; 969 int i; 970 971 for (i = 0; i < num_elems; i++) 972 out[i] = fq_prio2band(in, i); 973 } 974 975 static int fq_load_weights(struct fq_sched_data *q, 976 const struct nlattr *attr, 977 struct netlink_ext_ack *extack) 978 { 979 s32 *weights = nla_data(attr); 980 int i; 981 982 for (i = 0; i < FQ_BANDS; i++) { 983 if (weights[i] < FQ_MIN_WEIGHT) { 984 NL_SET_ERR_MSG_FMT_MOD(extack, "Weight %d less that minimum allowed %d", 985 weights[i], FQ_MIN_WEIGHT); 986 return -EINVAL; 987 } 988 } 989 for (i = 0; i < FQ_BANDS; i++) 990 WRITE_ONCE(q->band_flows[i].quantum, weights[i]); 991 return 0; 992 } 993 994 static int fq_load_priomap(struct fq_sched_data *q, 995 const struct nlattr *attr, 996 struct netlink_ext_ack *extack) 997 { 998 const struct tc_prio_qopt *map = nla_data(attr); 999 int i; 1000 1001 if (map->bands != FQ_BANDS) { 1002 NL_SET_ERR_MSG_MOD(extack, "FQ only supports 3 bands"); 1003 return -EINVAL; 1004 } 1005 for (i = 0; i < TC_PRIO_MAX + 1; i++) { 1006 if (map->priomap[i] >= FQ_BANDS) { 1007 NL_SET_ERR_MSG_FMT_MOD(extack, "FQ priomap field %d maps to a too high band %d", 1008 i, map->priomap[i]); 1009 return -EINVAL; 1010 } 1011 } 1012 fq_prio2band_compress_crumb(map->priomap, q->prio2band); 1013 return 0; 1014 } 1015 1016 static int fq_change(struct Qdisc *sch, struct nlattr *opt, 1017 struct netlink_ext_ack *extack) 1018 { 1019 unsigned int dropped_pkts = 0, dropped_bytes = 0; 1020 struct fq_sched_data *q = qdisc_priv(sch); 1021 struct nlattr *tb[TCA_FQ_MAX + 1]; 1022 u32 fq_log; 1023 int err; 1024 1025 err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy, 1026 NULL); 1027 if (err < 0) 1028 return err; 1029 1030 sch_tree_lock(sch); 1031 1032 fq_log = q->fq_trees_log; 1033 1034 if (tb[TCA_FQ_BUCKETS_LOG]) { 1035 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]); 1036 1037 if (nval >= 1 && nval <= ilog2(256*1024)) 1038 fq_log = nval; 1039 else 1040 err = -EINVAL; 1041 } 1042 if (tb[TCA_FQ_PLIMIT]) 1043 WRITE_ONCE(sch->limit, 1044 nla_get_u32(tb[TCA_FQ_PLIMIT])); 1045 1046 if (tb[TCA_FQ_FLOW_PLIMIT]) 1047 WRITE_ONCE(q->flow_plimit, 1048 nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT])); 1049 1050 if (tb[TCA_FQ_QUANTUM]) { 1051 u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]); 1052 1053 if (quantum > 0 && quantum <= (1 << 20)) { 1054 WRITE_ONCE(q->quantum, quantum); 1055 } else { 1056 NL_SET_ERR_MSG_MOD(extack, "invalid quantum"); 1057 err = -EINVAL; 1058 } 1059 } 1060 1061 if (tb[TCA_FQ_INITIAL_QUANTUM]) 1062 WRITE_ONCE(q->initial_quantum, 1063 nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM])); 1064 1065 if (tb[TCA_FQ_FLOW_DEFAULT_RATE]) 1066 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n", 1067 nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE])); 1068 1069 if (tb[TCA_FQ_FLOW_MAX_RATE]) { 1070 u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]); 1071 1072 WRITE_ONCE(q->flow_max_rate, 1073 (rate == ~0U) ? ~0UL : rate); 1074 } 1075 if (tb[TCA_FQ_LOW_RATE_THRESHOLD]) 1076 WRITE_ONCE(q->low_rate_threshold, 1077 nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD])); 1078 1079 if (tb[TCA_FQ_RATE_ENABLE]) { 1080 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]); 1081 1082 if (enable <= 1) 1083 WRITE_ONCE(q->rate_enable, 1084 enable); 1085 else 1086 err = -EINVAL; 1087 } 1088 1089 if (tb[TCA_FQ_FLOW_REFILL_DELAY]) { 1090 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ; 1091 1092 WRITE_ONCE(q->flow_refill_delay, 1093 usecs_to_jiffies(usecs_delay)); 1094 } 1095 1096 if (!err && tb[TCA_FQ_PRIOMAP]) 1097 err = fq_load_priomap(q, tb[TCA_FQ_PRIOMAP], extack); 1098 1099 if (!err && tb[TCA_FQ_WEIGHTS]) 1100 err = fq_load_weights(q, tb[TCA_FQ_WEIGHTS], extack); 1101 1102 if (tb[TCA_FQ_ORPHAN_MASK]) 1103 WRITE_ONCE(q->orphan_mask, 1104 nla_get_u32(tb[TCA_FQ_ORPHAN_MASK])); 1105 1106 if (tb[TCA_FQ_CE_THRESHOLD]) 1107 WRITE_ONCE(q->ce_threshold, 1108 (u64)NSEC_PER_USEC * 1109 nla_get_u32(tb[TCA_FQ_CE_THRESHOLD])); 1110 1111 if (tb[TCA_FQ_TIMER_SLACK]) 1112 WRITE_ONCE(q->timer_slack, 1113 nla_get_u32(tb[TCA_FQ_TIMER_SLACK])); 1114 1115 if (tb[TCA_FQ_HORIZON]) 1116 WRITE_ONCE(q->horizon, 1117 (u64)NSEC_PER_USEC * 1118 nla_get_u32(tb[TCA_FQ_HORIZON])); 1119 1120 if (tb[TCA_FQ_HORIZON_DROP]) 1121 WRITE_ONCE(q->horizon_drop, 1122 nla_get_u8(tb[TCA_FQ_HORIZON_DROP])); 1123 1124 if (tb[TCA_FQ_OFFLOAD_HORIZON]) { 1125 u64 offload_horizon = (u64)NSEC_PER_USEC * 1126 nla_get_u32(tb[TCA_FQ_OFFLOAD_HORIZON]); 1127 1128 if (offload_horizon <= qdisc_dev(sch)->max_pacing_offload_horizon) { 1129 WRITE_ONCE(q->offload_horizon, offload_horizon); 1130 } else { 1131 NL_SET_ERR_MSG_MOD(extack, "invalid offload_horizon"); 1132 err = -EINVAL; 1133 } 1134 } 1135 if (!err) { 1136 1137 sch_tree_unlock(sch); 1138 err = fq_resize(sch, fq_log); 1139 sch_tree_lock(sch); 1140 } 1141 1142 while (sch->q.qlen > sch->limit) { 1143 struct sk_buff *skb = qdisc_dequeue_internal(sch, false); 1144 1145 if (!skb) 1146 break; 1147 1148 dropped_pkts++; 1149 dropped_bytes += qdisc_pkt_len(skb); 1150 rtnl_kfree_skbs(skb, skb); 1151 } 1152 qdisc_tree_reduce_backlog(sch, dropped_pkts, dropped_bytes); 1153 1154 sch_tree_unlock(sch); 1155 return err; 1156 } 1157 1158 static void fq_destroy(struct Qdisc *sch) 1159 { 1160 struct fq_sched_data *q = qdisc_priv(sch); 1161 1162 fq_reset(sch); 1163 fq_free(q->fq_root); 1164 qdisc_watchdog_cancel(&q->watchdog); 1165 } 1166 1167 static int fq_init(struct Qdisc *sch, struct nlattr *opt, 1168 struct netlink_ext_ack *extack) 1169 { 1170 struct fq_sched_data *q = qdisc_priv(sch); 1171 int i, err; 1172 1173 sch->limit = 10000; 1174 q->flow_plimit = 100; 1175 q->quantum = 2 * psched_mtu(qdisc_dev(sch)); 1176 q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch)); 1177 q->flow_refill_delay = msecs_to_jiffies(40); 1178 q->flow_max_rate = ~0UL; 1179 q->time_next_delayed_flow = ~0ULL; 1180 q->rate_enable = 1; 1181 for (i = 0; i < FQ_BANDS; i++) { 1182 q->band_flows[i].new_flows.first = NULL; 1183 q->band_flows[i].old_flows.first = NULL; 1184 } 1185 q->band_flows[0].quantum = 9 << 16; 1186 q->band_flows[1].quantum = 3 << 16; 1187 q->band_flows[2].quantum = 1 << 16; 1188 q->delayed = RB_ROOT; 1189 q->fq_root = NULL; 1190 q->fq_trees_log = ilog2(1024); 1191 q->orphan_mask = 1024 - 1; 1192 q->low_rate_threshold = 550000 / 8; 1193 1194 q->timer_slack = 10 * NSEC_PER_USEC; /* 10 usec of hrtimer slack */ 1195 1196 q->horizon = 10ULL * NSEC_PER_SEC; /* 10 seconds */ 1197 q->horizon_drop = 1; /* by default, drop packets beyond horizon */ 1198 1199 /* Default ce_threshold of 4294 seconds */ 1200 q->ce_threshold = (u64)NSEC_PER_USEC * ~0U; 1201 1202 fq_prio2band_compress_crumb(sch_default_prio2band, q->prio2band); 1203 qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC); 1204 1205 if (opt) 1206 err = fq_change(sch, opt, extack); 1207 else 1208 err = fq_resize(sch, q->fq_trees_log); 1209 1210 return err; 1211 } 1212 1213 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb) 1214 { 1215 struct fq_sched_data *q = qdisc_priv(sch); 1216 struct tc_prio_qopt prio = { 1217 .bands = FQ_BANDS, 1218 }; 1219 struct nlattr *opts; 1220 u64 offload_horizon; 1221 u64 ce_threshold; 1222 s32 weights[3]; 1223 u64 horizon; 1224 1225 opts = nla_nest_start_noflag(skb, TCA_OPTIONS); 1226 if (opts == NULL) 1227 goto nla_put_failure; 1228 1229 /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */ 1230 1231 ce_threshold = READ_ONCE(q->ce_threshold); 1232 do_div(ce_threshold, NSEC_PER_USEC); 1233 1234 horizon = READ_ONCE(q->horizon); 1235 do_div(horizon, NSEC_PER_USEC); 1236 1237 offload_horizon = READ_ONCE(q->offload_horizon); 1238 do_div(offload_horizon, NSEC_PER_USEC); 1239 1240 if (nla_put_u32(skb, TCA_FQ_PLIMIT, 1241 READ_ONCE(sch->limit)) || 1242 nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, 1243 READ_ONCE(q->flow_plimit)) || 1244 nla_put_u32(skb, TCA_FQ_QUANTUM, 1245 READ_ONCE(q->quantum)) || 1246 nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, 1247 READ_ONCE(q->initial_quantum)) || 1248 nla_put_u32(skb, TCA_FQ_RATE_ENABLE, 1249 READ_ONCE(q->rate_enable)) || 1250 nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, 1251 min_t(unsigned long, 1252 READ_ONCE(q->flow_max_rate), ~0U)) || 1253 nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY, 1254 jiffies_to_usecs(READ_ONCE(q->flow_refill_delay))) || 1255 nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, 1256 READ_ONCE(q->orphan_mask)) || 1257 nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD, 1258 READ_ONCE(q->low_rate_threshold)) || 1259 nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) || 1260 nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, 1261 READ_ONCE(q->fq_trees_log)) || 1262 nla_put_u32(skb, TCA_FQ_TIMER_SLACK, 1263 READ_ONCE(q->timer_slack)) || 1264 nla_put_u32(skb, TCA_FQ_HORIZON, (u32)horizon) || 1265 nla_put_u32(skb, TCA_FQ_OFFLOAD_HORIZON, (u32)offload_horizon) || 1266 nla_put_u8(skb, TCA_FQ_HORIZON_DROP, 1267 READ_ONCE(q->horizon_drop))) 1268 goto nla_put_failure; 1269 1270 fq_prio2band_decompress_crumb(q->prio2band, prio.priomap); 1271 if (nla_put(skb, TCA_FQ_PRIOMAP, sizeof(prio), &prio)) 1272 goto nla_put_failure; 1273 1274 weights[0] = READ_ONCE(q->band_flows[0].quantum); 1275 weights[1] = READ_ONCE(q->band_flows[1].quantum); 1276 weights[2] = READ_ONCE(q->band_flows[2].quantum); 1277 if (nla_put(skb, TCA_FQ_WEIGHTS, sizeof(weights), &weights)) 1278 goto nla_put_failure; 1279 1280 return nla_nest_end(skb, opts); 1281 1282 nla_put_failure: 1283 return -1; 1284 } 1285 1286 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d) 1287 { 1288 struct fq_sched_data *q = qdisc_priv(sch); 1289 struct tc_fq_qd_stats st; 1290 int i; 1291 1292 st.pad = 0; 1293 1294 sch_tree_lock(sch); 1295 1296 st.gc_flows = q->stat_gc_flows; 1297 st.highprio_packets = 0; 1298 st.fastpath_packets = q->internal.stat_fastpath_packets; 1299 st.tcp_retrans = 0; 1300 st.throttled = q->stat_throttled; 1301 st.flows_plimit = q->stat_flows_plimit; 1302 st.pkts_too_long = q->stat_pkts_too_long; 1303 st.allocation_errors = q->stat_allocation_errors; 1304 st.time_next_delayed_flow = q->time_next_delayed_flow + q->timer_slack - 1305 ktime_get_ns(); 1306 st.flows = q->flows; 1307 st.inactive_flows = q->inactive_flows; 1308 st.throttled_flows = q->throttled_flows; 1309 st.unthrottle_latency_ns = min_t(unsigned long, 1310 q->unthrottle_latency_ns, ~0U); 1311 st.ce_mark = q->stat_ce_mark; 1312 st.horizon_drops = q->stat_horizon_drops; 1313 st.horizon_caps = q->stat_horizon_caps; 1314 for (i = 0; i < FQ_BANDS; i++) { 1315 st.band_drops[i] = q->stat_band_drops[i]; 1316 st.band_pkt_count[i] = q->band_pkt_count[i]; 1317 } 1318 sch_tree_unlock(sch); 1319 1320 return gnet_stats_copy_app(d, &st, sizeof(st)); 1321 } 1322 1323 static struct Qdisc_ops fq_qdisc_ops __read_mostly = { 1324 .id = "fq", 1325 .priv_size = sizeof(struct fq_sched_data), 1326 1327 .enqueue = fq_enqueue, 1328 .dequeue = fq_dequeue, 1329 .peek = qdisc_peek_dequeued, 1330 .init = fq_init, 1331 .reset = fq_reset, 1332 .destroy = fq_destroy, 1333 .change = fq_change, 1334 .dump = fq_dump, 1335 .dump_stats = fq_dump_stats, 1336 .owner = THIS_MODULE, 1337 }; 1338 MODULE_ALIAS_NET_SCH("fq"); 1339 1340 static int __init fq_module_init(void) 1341 { 1342 int ret; 1343 1344 fq_flow_cachep = kmem_cache_create("fq_flow_cache", 1345 sizeof(struct fq_flow), 1346 0, SLAB_HWCACHE_ALIGN, NULL); 1347 if (!fq_flow_cachep) 1348 return -ENOMEM; 1349 1350 ret = register_qdisc(&fq_qdisc_ops); 1351 if (ret) 1352 kmem_cache_destroy(fq_flow_cachep); 1353 return ret; 1354 } 1355 1356 static void __exit fq_module_exit(void) 1357 { 1358 unregister_qdisc(&fq_qdisc_ops); 1359 kmem_cache_destroy(fq_flow_cachep); 1360 } 1361 1362 module_init(fq_module_init) 1363 module_exit(fq_module_exit) 1364 MODULE_AUTHOR("Eric Dumazet"); 1365 MODULE_LICENSE("GPL"); 1366 MODULE_DESCRIPTION("Fair Queue Packet Scheduler"); 1367