xref: /linux/include/net/ipv6.h (revision 9410645520e9b820069761f3450ef6661418e279)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Linux INET6 implementation
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  */
8 
9 #ifndef _NET_IPV6_H
10 #define _NET_IPV6_H
11 
12 #include <linux/ipv6.h>
13 #include <linux/hardirq.h>
14 #include <linux/jhash.h>
15 #include <linux/refcount.h>
16 #include <linux/jump_label_ratelimit.h>
17 #include <net/if_inet6.h>
18 #include <net/flow.h>
19 #include <net/flow_dissector.h>
20 #include <net/inet_dscp.h>
21 #include <net/snmp.h>
22 #include <net/netns/hash.h>
23 
24 struct ip_tunnel_info;
25 
26 #define SIN6_LEN_RFC2133	24
27 
28 #define IPV6_MAXPLEN		65535
29 
30 /*
31  *	NextHeader field of IPv6 header
32  */
33 
34 #define NEXTHDR_HOP		0	/* Hop-by-hop option header. */
35 #define NEXTHDR_IPV4		4	/* IPv4 in IPv6 */
36 #define NEXTHDR_TCP		6	/* TCP segment. */
37 #define NEXTHDR_UDP		17	/* UDP message. */
38 #define NEXTHDR_IPV6		41	/* IPv6 in IPv6 */
39 #define NEXTHDR_ROUTING		43	/* Routing header. */
40 #define NEXTHDR_FRAGMENT	44	/* Fragmentation/reassembly header. */
41 #define NEXTHDR_GRE		47	/* GRE header. */
42 #define NEXTHDR_ESP		50	/* Encapsulating security payload. */
43 #define NEXTHDR_AUTH		51	/* Authentication header. */
44 #define NEXTHDR_ICMP		58	/* ICMP for IPv6. */
45 #define NEXTHDR_NONE		59	/* No next header */
46 #define NEXTHDR_DEST		60	/* Destination options header. */
47 #define NEXTHDR_SCTP		132	/* SCTP message. */
48 #define NEXTHDR_MOBILITY	135	/* Mobility header. */
49 
50 #define NEXTHDR_MAX		255
51 
52 #define IPV6_DEFAULT_HOPLIMIT   64
53 #define IPV6_DEFAULT_MCASTHOPS	1
54 
55 /* Limits on Hop-by-Hop and Destination options.
56  *
57  * Per RFC8200 there is no limit on the maximum number or lengths of options in
58  * Hop-by-Hop or Destination options other then the packet must fit in an MTU.
59  * We allow configurable limits in order to mitigate potential denial of
60  * service attacks.
61  *
62  * There are three limits that may be set:
63  *   - Limit the number of options in a Hop-by-Hop or Destination options
64  *     extension header
65  *   - Limit the byte length of a Hop-by-Hop or Destination options extension
66  *     header
67  *   - Disallow unknown options
68  *
69  * The limits are expressed in corresponding sysctls:
70  *
71  * ipv6.sysctl.max_dst_opts_cnt
72  * ipv6.sysctl.max_hbh_opts_cnt
73  * ipv6.sysctl.max_dst_opts_len
74  * ipv6.sysctl.max_hbh_opts_len
75  *
76  * max_*_opts_cnt is the number of TLVs that are allowed for Destination
77  * options or Hop-by-Hop options. If the number is less than zero then unknown
78  * TLVs are disallowed and the number of known options that are allowed is the
79  * absolute value. Setting the value to INT_MAX indicates no limit.
80  *
81  * max_*_opts_len is the length limit in bytes of a Destination or
82  * Hop-by-Hop options extension header. Setting the value to INT_MAX
83  * indicates no length limit.
84  *
85  * If a limit is exceeded when processing an extension header the packet is
86  * silently discarded.
87  */
88 
89 /* Default limits for Hop-by-Hop and Destination options */
90 #define IP6_DEFAULT_MAX_DST_OPTS_CNT	 8
91 #define IP6_DEFAULT_MAX_HBH_OPTS_CNT	 8
92 #define IP6_DEFAULT_MAX_DST_OPTS_LEN	 INT_MAX /* No limit */
93 #define IP6_DEFAULT_MAX_HBH_OPTS_LEN	 INT_MAX /* No limit */
94 
95 /*
96  *	Addr type
97  *
98  *	type	-	unicast | multicast
99  *	scope	-	local	| site	    | global
100  *	v4	-	compat
101  *	v4mapped
102  *	any
103  *	loopback
104  */
105 
106 #define IPV6_ADDR_ANY		0x0000U
107 
108 #define IPV6_ADDR_UNICAST	0x0001U
109 #define IPV6_ADDR_MULTICAST	0x0002U
110 
111 #define IPV6_ADDR_LOOPBACK	0x0010U
112 #define IPV6_ADDR_LINKLOCAL	0x0020U
113 #define IPV6_ADDR_SITELOCAL	0x0040U
114 
115 #define IPV6_ADDR_COMPATv4	0x0080U
116 
117 #define IPV6_ADDR_SCOPE_MASK	0x00f0U
118 
119 #define IPV6_ADDR_MAPPED	0x1000U
120 
121 /*
122  *	Addr scopes
123  */
124 #define IPV6_ADDR_MC_SCOPE(a)	\
125 	((a)->s6_addr[1] & 0x0f)	/* nonstandard */
126 #define __IPV6_ADDR_SCOPE_INVALID	-1
127 #define IPV6_ADDR_SCOPE_NODELOCAL	0x01
128 #define IPV6_ADDR_SCOPE_LINKLOCAL	0x02
129 #define IPV6_ADDR_SCOPE_SITELOCAL	0x05
130 #define IPV6_ADDR_SCOPE_ORGLOCAL	0x08
131 #define IPV6_ADDR_SCOPE_GLOBAL		0x0e
132 
133 /*
134  *	Addr flags
135  */
136 #define IPV6_ADDR_MC_FLAG_TRANSIENT(a)	\
137 	((a)->s6_addr[1] & 0x10)
138 #define IPV6_ADDR_MC_FLAG_PREFIX(a)	\
139 	((a)->s6_addr[1] & 0x20)
140 #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a)	\
141 	((a)->s6_addr[1] & 0x40)
142 
143 /*
144  *	fragmentation header
145  */
146 
147 struct frag_hdr {
148 	__u8	nexthdr;
149 	__u8	reserved;
150 	__be16	frag_off;
151 	__be32	identification;
152 };
153 
154 /*
155  * Jumbo payload option, as described in RFC 2675 2.
156  */
157 struct hop_jumbo_hdr {
158 	u8	nexthdr;
159 	u8	hdrlen;
160 	u8	tlv_type;	/* IPV6_TLV_JUMBO, 0xC2 */
161 	u8	tlv_len;	/* 4 */
162 	__be32	jumbo_payload_len;
163 };
164 
165 #define	IP6_MF		0x0001
166 #define	IP6_OFFSET	0xFFF8
167 
168 struct ip6_fraglist_iter {
169 	struct ipv6hdr	*tmp_hdr;
170 	struct sk_buff	*frag;
171 	int		offset;
172 	unsigned int	hlen;
173 	__be32		frag_id;
174 	u8		nexthdr;
175 };
176 
177 int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr,
178 		      u8 nexthdr, __be32 frag_id,
179 		      struct ip6_fraglist_iter *iter);
180 void ip6_fraglist_prepare(struct sk_buff *skb, struct ip6_fraglist_iter *iter);
181 
ip6_fraglist_next(struct ip6_fraglist_iter * iter)182 static inline struct sk_buff *ip6_fraglist_next(struct ip6_fraglist_iter *iter)
183 {
184 	struct sk_buff *skb = iter->frag;
185 
186 	iter->frag = skb->next;
187 	skb_mark_not_on_list(skb);
188 
189 	return skb;
190 }
191 
192 struct ip6_frag_state {
193 	u8		*prevhdr;
194 	unsigned int	hlen;
195 	unsigned int	mtu;
196 	unsigned int	left;
197 	int		offset;
198 	int		ptr;
199 	int		hroom;
200 	int		troom;
201 	__be32		frag_id;
202 	u8		nexthdr;
203 };
204 
205 void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu,
206 		   unsigned short needed_tailroom, int hdr_room, u8 *prevhdr,
207 		   u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state);
208 struct sk_buff *ip6_frag_next(struct sk_buff *skb,
209 			      struct ip6_frag_state *state);
210 
211 #define IP6_REPLY_MARK(net, mark) \
212 	((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0)
213 
214 #include <net/sock.h>
215 
216 /* sysctls */
217 extern int sysctl_mld_max_msf;
218 extern int sysctl_mld_qrv;
219 
220 #define _DEVINC(net, statname, mod, idev, field)			\
221 ({									\
222 	struct inet6_dev *_idev = (idev);				\
223 	if (likely(_idev != NULL))					\
224 		mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\
225 	mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\
226 })
227 
228 /* per device counters are atomic_long_t */
229 #define _DEVINCATOMIC(net, statname, mod, idev, field)			\
230 ({									\
231 	struct inet6_dev *_idev = (idev);				\
232 	if (likely(_idev != NULL))					\
233 		SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
234 	mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\
235 })
236 
237 /* per device and per net counters are atomic_long_t */
238 #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field)		\
239 ({									\
240 	struct inet6_dev *_idev = (idev);				\
241 	if (likely(_idev != NULL))					\
242 		SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
243 	SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
244 })
245 
246 #define _DEVADD(net, statname, mod, idev, field, val)			\
247 ({									\
248 	struct inet6_dev *_idev = (idev);				\
249 	if (likely(_idev != NULL))					\
250 		mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \
251 	mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\
252 })
253 
254 #define _DEVUPD(net, statname, mod, idev, field, val)			\
255 ({									\
256 	struct inet6_dev *_idev = (idev);				\
257 	if (likely(_idev != NULL))					\
258 		mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \
259 	mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\
260 })
261 
262 /* MIBs */
263 
264 #define IP6_INC_STATS(net, idev,field)		\
265 		_DEVINC(net, ipv6, , idev, field)
266 #define __IP6_INC_STATS(net, idev,field)	\
267 		_DEVINC(net, ipv6, __, idev, field)
268 #define IP6_ADD_STATS(net, idev,field,val)	\
269 		_DEVADD(net, ipv6, , idev, field, val)
270 #define __IP6_ADD_STATS(net, idev,field,val)	\
271 		_DEVADD(net, ipv6, __, idev, field, val)
272 #define IP6_UPD_PO_STATS(net, idev,field,val)   \
273 		_DEVUPD(net, ipv6, , idev, field, val)
274 #define __IP6_UPD_PO_STATS(net, idev,field,val)   \
275 		_DEVUPD(net, ipv6, __, idev, field, val)
276 #define ICMP6_INC_STATS(net, idev, field)	\
277 		_DEVINCATOMIC(net, icmpv6, , idev, field)
278 #define __ICMP6_INC_STATS(net, idev, field)	\
279 		_DEVINCATOMIC(net, icmpv6, __, idev, field)
280 
281 #define ICMP6MSGOUT_INC_STATS(net, idev, field)		\
282 	_DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
283 #define ICMP6MSGIN_INC_STATS(net, idev, field)	\
284 	_DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
285 
286 struct ip6_ra_chain {
287 	struct ip6_ra_chain	*next;
288 	struct sock		*sk;
289 	int			sel;
290 	void			(*destructor)(struct sock *);
291 };
292 
293 extern struct ip6_ra_chain	*ip6_ra_chain;
294 extern rwlock_t ip6_ra_lock;
295 
296 /*
297    This structure is prepared by protocol, when parsing
298    ancillary data and passed to IPv6.
299  */
300 
301 struct ipv6_txoptions {
302 	refcount_t		refcnt;
303 	/* Length of this structure */
304 	int			tot_len;
305 
306 	/* length of extension headers   */
307 
308 	__u16			opt_flen;	/* after fragment hdr */
309 	__u16			opt_nflen;	/* before fragment hdr */
310 
311 	struct ipv6_opt_hdr	*hopopt;
312 	struct ipv6_opt_hdr	*dst0opt;
313 	struct ipv6_rt_hdr	*srcrt;	/* Routing Header */
314 	struct ipv6_opt_hdr	*dst1opt;
315 	struct rcu_head		rcu;
316 	/* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
317 };
318 
319 /* flowlabel_reflect sysctl values */
320 enum flowlabel_reflect {
321 	FLOWLABEL_REFLECT_ESTABLISHED		= 1,
322 	FLOWLABEL_REFLECT_TCP_RESET		= 2,
323 	FLOWLABEL_REFLECT_ICMPV6_ECHO_REPLIES	= 4,
324 };
325 
326 struct ip6_flowlabel {
327 	struct ip6_flowlabel __rcu *next;
328 	__be32			label;
329 	atomic_t		users;
330 	struct in6_addr		dst;
331 	struct ipv6_txoptions	*opt;
332 	unsigned long		linger;
333 	struct rcu_head		rcu;
334 	u8			share;
335 	union {
336 		struct pid *pid;
337 		kuid_t uid;
338 	} owner;
339 	unsigned long		lastuse;
340 	unsigned long		expires;
341 	struct net		*fl_net;
342 };
343 
344 #define IPV6_FLOWINFO_MASK		cpu_to_be32(0x0FFFFFFF)
345 #define IPV6_FLOWLABEL_MASK		cpu_to_be32(0x000FFFFF)
346 #define IPV6_FLOWLABEL_STATELESS_FLAG	cpu_to_be32(0x00080000)
347 
348 #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK)
349 #define IPV6_TCLASS_SHIFT	20
350 
351 struct ipv6_fl_socklist {
352 	struct ipv6_fl_socklist	__rcu	*next;
353 	struct ip6_flowlabel		*fl;
354 	struct rcu_head			rcu;
355 };
356 
357 struct ipcm6_cookie {
358 	struct sockcm_cookie sockc;
359 	__s16 hlimit;
360 	__s16 tclass;
361 	__u16 gso_size;
362 	__s8  dontfrag;
363 	struct ipv6_txoptions *opt;
364 };
365 
ipcm6_init(struct ipcm6_cookie * ipc6)366 static inline void ipcm6_init(struct ipcm6_cookie *ipc6)
367 {
368 	*ipc6 = (struct ipcm6_cookie) {
369 		.hlimit = -1,
370 		.tclass = -1,
371 		.dontfrag = -1,
372 	};
373 }
374 
ipcm6_init_sk(struct ipcm6_cookie * ipc6,const struct sock * sk)375 static inline void ipcm6_init_sk(struct ipcm6_cookie *ipc6,
376 				 const struct sock *sk)
377 {
378 	*ipc6 = (struct ipcm6_cookie) {
379 		.hlimit = -1,
380 		.tclass = inet6_sk(sk)->tclass,
381 		.dontfrag = inet6_test_bit(DONTFRAG, sk),
382 	};
383 }
384 
txopt_get(const struct ipv6_pinfo * np)385 static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np)
386 {
387 	struct ipv6_txoptions *opt;
388 
389 	rcu_read_lock();
390 	opt = rcu_dereference(np->opt);
391 	if (opt) {
392 		if (!refcount_inc_not_zero(&opt->refcnt))
393 			opt = NULL;
394 		else
395 			opt = rcu_pointer_handoff(opt);
396 	}
397 	rcu_read_unlock();
398 	return opt;
399 }
400 
txopt_put(struct ipv6_txoptions * opt)401 static inline void txopt_put(struct ipv6_txoptions *opt)
402 {
403 	if (opt && refcount_dec_and_test(&opt->refcnt))
404 		kfree_rcu(opt, rcu);
405 }
406 
407 #if IS_ENABLED(CONFIG_IPV6)
408 struct ip6_flowlabel *__fl6_sock_lookup(struct sock *sk, __be32 label);
409 
410 extern struct static_key_false_deferred ipv6_flowlabel_exclusive;
fl6_sock_lookup(struct sock * sk,__be32 label)411 static inline struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk,
412 						    __be32 label)
413 {
414 	if (static_branch_unlikely(&ipv6_flowlabel_exclusive.key) &&
415 	    READ_ONCE(sock_net(sk)->ipv6.flowlabel_has_excl))
416 		return __fl6_sock_lookup(sk, label) ? : ERR_PTR(-ENOENT);
417 
418 	return NULL;
419 }
420 #endif
421 
422 struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space,
423 					 struct ip6_flowlabel *fl,
424 					 struct ipv6_txoptions *fopt);
425 void fl6_free_socklist(struct sock *sk);
426 int ipv6_flowlabel_opt(struct sock *sk, sockptr_t optval, int optlen);
427 int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq,
428 			   int flags);
429 int ip6_flowlabel_init(void);
430 void ip6_flowlabel_cleanup(void);
431 bool ip6_autoflowlabel(struct net *net, const struct sock *sk);
432 
fl6_sock_release(struct ip6_flowlabel * fl)433 static inline void fl6_sock_release(struct ip6_flowlabel *fl)
434 {
435 	if (fl)
436 		atomic_dec(&fl->users);
437 }
438 
439 enum skb_drop_reason icmpv6_notify(struct sk_buff *skb, u8 type,
440 				   u8 code, __be32 info);
441 
442 void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6,
443 				struct icmp6hdr *thdr, int len);
444 
445 int ip6_ra_control(struct sock *sk, int sel);
446 
447 int ipv6_parse_hopopts(struct sk_buff *skb);
448 
449 struct ipv6_txoptions *ipv6_dup_options(struct sock *sk,
450 					struct ipv6_txoptions *opt);
451 struct ipv6_txoptions *ipv6_renew_options(struct sock *sk,
452 					  struct ipv6_txoptions *opt,
453 					  int newtype,
454 					  struct ipv6_opt_hdr *newopt);
455 struct ipv6_txoptions *__ipv6_fixup_options(struct ipv6_txoptions *opt_space,
456 					    struct ipv6_txoptions *opt);
457 
458 static inline struct ipv6_txoptions *
ipv6_fixup_options(struct ipv6_txoptions * opt_space,struct ipv6_txoptions * opt)459 ipv6_fixup_options(struct ipv6_txoptions *opt_space, struct ipv6_txoptions *opt)
460 {
461 	if (!opt)
462 		return NULL;
463 	return __ipv6_fixup_options(opt_space, opt);
464 }
465 
466 bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb,
467 		       const struct inet6_skb_parm *opt);
468 struct ipv6_txoptions *ipv6_update_options(struct sock *sk,
469 					   struct ipv6_txoptions *opt);
470 
471 /* This helper is specialized for BIG TCP needs.
472  * It assumes the hop_jumbo_hdr will immediately follow the IPV6 header.
473  * It assumes headers are already in skb->head.
474  * Returns 0, or IPPROTO_TCP if a BIG TCP packet is there.
475  */
ipv6_has_hopopt_jumbo(const struct sk_buff * skb)476 static inline int ipv6_has_hopopt_jumbo(const struct sk_buff *skb)
477 {
478 	const struct hop_jumbo_hdr *jhdr;
479 	const struct ipv6hdr *nhdr;
480 
481 	if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
482 		return 0;
483 
484 	if (skb->protocol != htons(ETH_P_IPV6))
485 		return 0;
486 
487 	if (skb_network_offset(skb) +
488 	    sizeof(struct ipv6hdr) +
489 	    sizeof(struct hop_jumbo_hdr) > skb_headlen(skb))
490 		return 0;
491 
492 	nhdr = ipv6_hdr(skb);
493 
494 	if (nhdr->nexthdr != NEXTHDR_HOP)
495 		return 0;
496 
497 	jhdr = (const struct hop_jumbo_hdr *) (nhdr + 1);
498 	if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
499 	    jhdr->nexthdr != IPPROTO_TCP)
500 		return 0;
501 	return jhdr->nexthdr;
502 }
503 
504 /* Return 0 if HBH header is successfully removed
505  * Or if HBH removal is unnecessary (packet is not big TCP)
506  * Return error to indicate dropping the packet
507  */
ipv6_hopopt_jumbo_remove(struct sk_buff * skb)508 static inline int ipv6_hopopt_jumbo_remove(struct sk_buff *skb)
509 {
510 	const int hophdr_len = sizeof(struct hop_jumbo_hdr);
511 	int nexthdr = ipv6_has_hopopt_jumbo(skb);
512 	struct ipv6hdr *h6;
513 
514 	if (!nexthdr)
515 		return 0;
516 
517 	if (skb_cow_head(skb, 0))
518 		return -1;
519 
520 	/* Remove the HBH header.
521 	 * Layout: [Ethernet header][IPv6 header][HBH][L4 Header]
522 	 */
523 	memmove(skb_mac_header(skb) + hophdr_len, skb_mac_header(skb),
524 		skb_network_header(skb) - skb_mac_header(skb) +
525 		sizeof(struct ipv6hdr));
526 
527 	__skb_pull(skb, hophdr_len);
528 	skb->network_header += hophdr_len;
529 	skb->mac_header += hophdr_len;
530 
531 	h6 = ipv6_hdr(skb);
532 	h6->nexthdr = nexthdr;
533 
534 	return 0;
535 }
536 
ipv6_accept_ra(const struct inet6_dev * idev)537 static inline bool ipv6_accept_ra(const struct inet6_dev *idev)
538 {
539 	s32 accept_ra = READ_ONCE(idev->cnf.accept_ra);
540 
541 	/* If forwarding is enabled, RA are not accepted unless the special
542 	 * hybrid mode (accept_ra=2) is enabled.
543 	 */
544 	return READ_ONCE(idev->cnf.forwarding) ? accept_ra == 2 :
545 		accept_ra;
546 }
547 
548 #define IPV6_FRAG_HIGH_THRESH	(4 * 1024*1024)	/* 4194304 */
549 #define IPV6_FRAG_LOW_THRESH	(3 * 1024*1024)	/* 3145728 */
550 #define IPV6_FRAG_TIMEOUT	(60 * HZ)	/* 60 seconds */
551 
552 int __ipv6_addr_type(const struct in6_addr *addr);
ipv6_addr_type(const struct in6_addr * addr)553 static inline int ipv6_addr_type(const struct in6_addr *addr)
554 {
555 	return __ipv6_addr_type(addr) & 0xffff;
556 }
557 
ipv6_addr_scope(const struct in6_addr * addr)558 static inline int ipv6_addr_scope(const struct in6_addr *addr)
559 {
560 	return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
561 }
562 
__ipv6_addr_src_scope(int type)563 static inline int __ipv6_addr_src_scope(int type)
564 {
565 	return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
566 }
567 
ipv6_addr_src_scope(const struct in6_addr * addr)568 static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
569 {
570 	return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
571 }
572 
__ipv6_addr_needs_scope_id(int type)573 static inline bool __ipv6_addr_needs_scope_id(int type)
574 {
575 	return type & IPV6_ADDR_LINKLOCAL ||
576 	       (type & IPV6_ADDR_MULTICAST &&
577 		(type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)));
578 }
579 
ipv6_iface_scope_id(const struct in6_addr * addr,int iface)580 static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface)
581 {
582 	return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0;
583 }
584 
ipv6_addr_cmp(const struct in6_addr * a1,const struct in6_addr * a2)585 static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
586 {
587 	return memcmp(a1, a2, sizeof(struct in6_addr));
588 }
589 
590 static inline bool
ipv6_masked_addr_cmp(const struct in6_addr * a1,const struct in6_addr * m,const struct in6_addr * a2)591 ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
592 		     const struct in6_addr *a2)
593 {
594 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
595 	const unsigned long *ul1 = (const unsigned long *)a1;
596 	const unsigned long *ulm = (const unsigned long *)m;
597 	const unsigned long *ul2 = (const unsigned long *)a2;
598 
599 	return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
600 		  ((ul1[1] ^ ul2[1]) & ulm[1]));
601 #else
602 	return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
603 		  ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
604 		  ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
605 		  ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
606 #endif
607 }
608 
ipv6_addr_prefix(struct in6_addr * pfx,const struct in6_addr * addr,int plen)609 static inline void ipv6_addr_prefix(struct in6_addr *pfx,
610 				    const struct in6_addr *addr,
611 				    int plen)
612 {
613 	/* caller must guarantee 0 <= plen <= 128 */
614 	int o = plen >> 3,
615 	    b = plen & 0x7;
616 
617 	memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
618 	memcpy(pfx->s6_addr, addr, o);
619 	if (b != 0)
620 		pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
621 }
622 
ipv6_addr_prefix_copy(struct in6_addr * addr,const struct in6_addr * pfx,int plen)623 static inline void ipv6_addr_prefix_copy(struct in6_addr *addr,
624 					 const struct in6_addr *pfx,
625 					 int plen)
626 {
627 	/* caller must guarantee 0 <= plen <= 128 */
628 	int o = plen >> 3,
629 	    b = plen & 0x7;
630 
631 	memcpy(addr->s6_addr, pfx, o);
632 	if (b != 0) {
633 		addr->s6_addr[o] &= ~(0xff00 >> b);
634 		addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b));
635 	}
636 }
637 
__ipv6_addr_set_half(__be32 * addr,__be32 wh,__be32 wl)638 static inline void __ipv6_addr_set_half(__be32 *addr,
639 					__be32 wh, __be32 wl)
640 {
641 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
642 #if defined(__BIG_ENDIAN)
643 	if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
644 		*(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
645 		return;
646 	}
647 #elif defined(__LITTLE_ENDIAN)
648 	if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
649 		*(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
650 		return;
651 	}
652 #endif
653 #endif
654 	addr[0] = wh;
655 	addr[1] = wl;
656 }
657 
ipv6_addr_set(struct in6_addr * addr,__be32 w1,__be32 w2,__be32 w3,__be32 w4)658 static inline void ipv6_addr_set(struct in6_addr *addr,
659 				     __be32 w1, __be32 w2,
660 				     __be32 w3, __be32 w4)
661 {
662 	__ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
663 	__ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
664 }
665 
ipv6_addr_equal(const struct in6_addr * a1,const struct in6_addr * a2)666 static inline bool ipv6_addr_equal(const struct in6_addr *a1,
667 				   const struct in6_addr *a2)
668 {
669 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
670 	const unsigned long *ul1 = (const unsigned long *)a1;
671 	const unsigned long *ul2 = (const unsigned long *)a2;
672 
673 	return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
674 #else
675 	return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
676 		(a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
677 		(a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
678 		(a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
679 #endif
680 }
681 
682 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
__ipv6_prefix_equal64_half(const __be64 * a1,const __be64 * a2,unsigned int len)683 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
684 					      const __be64 *a2,
685 					      unsigned int len)
686 {
687 	if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
688 		return false;
689 	return true;
690 }
691 
ipv6_prefix_equal(const struct in6_addr * addr1,const struct in6_addr * addr2,unsigned int prefixlen)692 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
693 				     const struct in6_addr *addr2,
694 				     unsigned int prefixlen)
695 {
696 	const __be64 *a1 = (const __be64 *)addr1;
697 	const __be64 *a2 = (const __be64 *)addr2;
698 
699 	if (prefixlen >= 64) {
700 		if (a1[0] ^ a2[0])
701 			return false;
702 		return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
703 	}
704 	return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
705 }
706 #else
ipv6_prefix_equal(const struct in6_addr * addr1,const struct in6_addr * addr2,unsigned int prefixlen)707 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
708 				     const struct in6_addr *addr2,
709 				     unsigned int prefixlen)
710 {
711 	const __be32 *a1 = addr1->s6_addr32;
712 	const __be32 *a2 = addr2->s6_addr32;
713 	unsigned int pdw, pbi;
714 
715 	/* check complete u32 in prefix */
716 	pdw = prefixlen >> 5;
717 	if (pdw && memcmp(a1, a2, pdw << 2))
718 		return false;
719 
720 	/* check incomplete u32 in prefix */
721 	pbi = prefixlen & 0x1f;
722 	if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
723 		return false;
724 
725 	return true;
726 }
727 #endif
728 
ipv6_addr_any(const struct in6_addr * a)729 static inline bool ipv6_addr_any(const struct in6_addr *a)
730 {
731 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
732 	const unsigned long *ul = (const unsigned long *)a;
733 
734 	return (ul[0] | ul[1]) == 0UL;
735 #else
736 	return (a->s6_addr32[0] | a->s6_addr32[1] |
737 		a->s6_addr32[2] | a->s6_addr32[3]) == 0;
738 #endif
739 }
740 
ipv6_addr_hash(const struct in6_addr * a)741 static inline u32 ipv6_addr_hash(const struct in6_addr *a)
742 {
743 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
744 	const unsigned long *ul = (const unsigned long *)a;
745 	unsigned long x = ul[0] ^ ul[1];
746 
747 	return (u32)(x ^ (x >> 32));
748 #else
749 	return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
750 			     a->s6_addr32[2] ^ a->s6_addr32[3]);
751 #endif
752 }
753 
754 /* more secured version of ipv6_addr_hash() */
__ipv6_addr_jhash(const struct in6_addr * a,const u32 initval)755 static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval)
756 {
757 	return jhash2((__force const u32 *)a->s6_addr32,
758 		      ARRAY_SIZE(a->s6_addr32), initval);
759 }
760 
ipv6_addr_loopback(const struct in6_addr * a)761 static inline bool ipv6_addr_loopback(const struct in6_addr *a)
762 {
763 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
764 	const __be64 *be = (const __be64 *)a;
765 
766 	return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL;
767 #else
768 	return (a->s6_addr32[0] | a->s6_addr32[1] |
769 		a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0;
770 #endif
771 }
772 
773 /*
774  * Note that we must __force cast these to unsigned long to make sparse happy,
775  * since all of the endian-annotated types are fixed size regardless of arch.
776  */
ipv6_addr_v4mapped(const struct in6_addr * a)777 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
778 {
779 	return (
780 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
781 		*(unsigned long *)a |
782 #else
783 		(__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
784 #endif
785 		(__force unsigned long)(a->s6_addr32[2] ^
786 					cpu_to_be32(0x0000ffff))) == 0UL;
787 }
788 
ipv6_addr_v4mapped_loopback(const struct in6_addr * a)789 static inline bool ipv6_addr_v4mapped_loopback(const struct in6_addr *a)
790 {
791 	return ipv6_addr_v4mapped(a) && ipv4_is_loopback(a->s6_addr32[3]);
792 }
793 
ipv6_portaddr_hash(const struct net * net,const struct in6_addr * addr6,unsigned int port)794 static inline u32 ipv6_portaddr_hash(const struct net *net,
795 				     const struct in6_addr *addr6,
796 				     unsigned int port)
797 {
798 	unsigned int hash, mix = net_hash_mix(net);
799 
800 	if (ipv6_addr_any(addr6))
801 		hash = jhash_1word(0, mix);
802 	else if (ipv6_addr_v4mapped(addr6))
803 		hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix);
804 	else
805 		hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix);
806 
807 	return hash ^ port;
808 }
809 
810 /*
811  * Check for a RFC 4843 ORCHID address
812  * (Overlay Routable Cryptographic Hash Identifiers)
813  */
ipv6_addr_orchid(const struct in6_addr * a)814 static inline bool ipv6_addr_orchid(const struct in6_addr *a)
815 {
816 	return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
817 }
818 
ipv6_addr_is_multicast(const struct in6_addr * addr)819 static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr)
820 {
821 	return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000);
822 }
823 
ipv6_addr_set_v4mapped(const __be32 addr,struct in6_addr * v4mapped)824 static inline void ipv6_addr_set_v4mapped(const __be32 addr,
825 					  struct in6_addr *v4mapped)
826 {
827 	ipv6_addr_set(v4mapped,
828 			0, 0,
829 			htonl(0x0000FFFF),
830 			addr);
831 }
832 
833 /*
834  * find the first different bit between two addresses
835  * length of address must be a multiple of 32bits
836  */
__ipv6_addr_diff32(const void * token1,const void * token2,int addrlen)837 static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
838 {
839 	const __be32 *a1 = token1, *a2 = token2;
840 	int i;
841 
842 	addrlen >>= 2;
843 
844 	for (i = 0; i < addrlen; i++) {
845 		__be32 xb = a1[i] ^ a2[i];
846 		if (xb)
847 			return i * 32 + 31 - __fls(ntohl(xb));
848 	}
849 
850 	/*
851 	 *	we should *never* get to this point since that
852 	 *	would mean the addrs are equal
853 	 *
854 	 *	However, we do get to it 8) And exactly, when
855 	 *	addresses are equal 8)
856 	 *
857 	 *	ip route add 1111::/128 via ...
858 	 *	ip route add 1111::/64 via ...
859 	 *	and we are here.
860 	 *
861 	 *	Ideally, this function should stop comparison
862 	 *	at prefix length. It does not, but it is still OK,
863 	 *	if returned value is greater than prefix length.
864 	 *					--ANK (980803)
865 	 */
866 	return addrlen << 5;
867 }
868 
869 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
__ipv6_addr_diff64(const void * token1,const void * token2,int addrlen)870 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
871 {
872 	const __be64 *a1 = token1, *a2 = token2;
873 	int i;
874 
875 	addrlen >>= 3;
876 
877 	for (i = 0; i < addrlen; i++) {
878 		__be64 xb = a1[i] ^ a2[i];
879 		if (xb)
880 			return i * 64 + 63 - __fls(be64_to_cpu(xb));
881 	}
882 
883 	return addrlen << 6;
884 }
885 #endif
886 
__ipv6_addr_diff(const void * token1,const void * token2,int addrlen)887 static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
888 {
889 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
890 	if (__builtin_constant_p(addrlen) && !(addrlen & 7))
891 		return __ipv6_addr_diff64(token1, token2, addrlen);
892 #endif
893 	return __ipv6_addr_diff32(token1, token2, addrlen);
894 }
895 
ipv6_addr_diff(const struct in6_addr * a1,const struct in6_addr * a2)896 static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
897 {
898 	return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
899 }
900 
901 __be32 ipv6_select_ident(struct net *net,
902 			 const struct in6_addr *daddr,
903 			 const struct in6_addr *saddr);
904 __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb);
905 
906 int ip6_dst_hoplimit(struct dst_entry *dst);
907 
ip6_sk_dst_hoplimit(struct ipv6_pinfo * np,struct flowi6 * fl6,struct dst_entry * dst)908 static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6,
909 				      struct dst_entry *dst)
910 {
911 	int hlimit;
912 
913 	if (ipv6_addr_is_multicast(&fl6->daddr))
914 		hlimit = READ_ONCE(np->mcast_hops);
915 	else
916 		hlimit = READ_ONCE(np->hop_limit);
917 	if (hlimit < 0)
918 		hlimit = ip6_dst_hoplimit(dst);
919 	return hlimit;
920 }
921 
922 /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store
923  * Equivalent to :	flow->v6addrs.src = iph->saddr;
924  *			flow->v6addrs.dst = iph->daddr;
925  */
iph_to_flow_copy_v6addrs(struct flow_keys * flow,const struct ipv6hdr * iph)926 static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow,
927 					    const struct ipv6hdr *iph)
928 {
929 	BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) !=
930 		     offsetof(typeof(flow->addrs), v6addrs.src) +
931 		     sizeof(flow->addrs.v6addrs.src));
932 	memcpy(&flow->addrs.v6addrs, &iph->addrs, sizeof(flow->addrs.v6addrs));
933 	flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
934 }
935 
936 #if IS_ENABLED(CONFIG_IPV6)
937 
ipv6_can_nonlocal_bind(struct net * net,struct inet_sock * inet)938 static inline bool ipv6_can_nonlocal_bind(struct net *net,
939 					  struct inet_sock *inet)
940 {
941 	return net->ipv6.sysctl.ip_nonlocal_bind ||
942 		test_bit(INET_FLAGS_FREEBIND, &inet->inet_flags) ||
943 		test_bit(INET_FLAGS_TRANSPARENT, &inet->inet_flags);
944 }
945 
946 /* Sysctl settings for net ipv6.auto_flowlabels */
947 #define IP6_AUTO_FLOW_LABEL_OFF		0
948 #define IP6_AUTO_FLOW_LABEL_OPTOUT	1
949 #define IP6_AUTO_FLOW_LABEL_OPTIN	2
950 #define IP6_AUTO_FLOW_LABEL_FORCED	3
951 
952 #define IP6_AUTO_FLOW_LABEL_MAX		IP6_AUTO_FLOW_LABEL_FORCED
953 
954 #define IP6_DEFAULT_AUTO_FLOW_LABELS	IP6_AUTO_FLOW_LABEL_OPTOUT
955 
ip6_make_flowlabel(struct net * net,struct sk_buff * skb,__be32 flowlabel,bool autolabel,struct flowi6 * fl6)956 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
957 					__be32 flowlabel, bool autolabel,
958 					struct flowi6 *fl6)
959 {
960 	u32 hash;
961 
962 	/* @flowlabel may include more than a flow label, eg, the traffic class.
963 	 * Here we want only the flow label value.
964 	 */
965 	flowlabel &= IPV6_FLOWLABEL_MASK;
966 
967 	if (flowlabel ||
968 	    net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF ||
969 	    (!autolabel &&
970 	     net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED))
971 		return flowlabel;
972 
973 	hash = skb_get_hash_flowi6(skb, fl6);
974 
975 	/* Since this is being sent on the wire obfuscate hash a bit
976 	 * to minimize possibility that any useful information to an
977 	 * attacker is leaked. Only lower 20 bits are relevant.
978 	 */
979 	hash = rol32(hash, 16);
980 
981 	flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK;
982 
983 	if (net->ipv6.sysctl.flowlabel_state_ranges)
984 		flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG;
985 
986 	return flowlabel;
987 }
988 
ip6_default_np_autolabel(struct net * net)989 static inline int ip6_default_np_autolabel(struct net *net)
990 {
991 	switch (net->ipv6.sysctl.auto_flowlabels) {
992 	case IP6_AUTO_FLOW_LABEL_OFF:
993 	case IP6_AUTO_FLOW_LABEL_OPTIN:
994 	default:
995 		return 0;
996 	case IP6_AUTO_FLOW_LABEL_OPTOUT:
997 	case IP6_AUTO_FLOW_LABEL_FORCED:
998 		return 1;
999 	}
1000 }
1001 #else
ip6_make_flowlabel(struct net * net,struct sk_buff * skb,__be32 flowlabel,bool autolabel,struct flowi6 * fl6)1002 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
1003 					__be32 flowlabel, bool autolabel,
1004 					struct flowi6 *fl6)
1005 {
1006 	return flowlabel;
1007 }
ip6_default_np_autolabel(struct net * net)1008 static inline int ip6_default_np_autolabel(struct net *net)
1009 {
1010 	return 0;
1011 }
1012 #endif
1013 
1014 #if IS_ENABLED(CONFIG_IPV6)
ip6_multipath_hash_policy(const struct net * net)1015 static inline int ip6_multipath_hash_policy(const struct net *net)
1016 {
1017 	return net->ipv6.sysctl.multipath_hash_policy;
1018 }
ip6_multipath_hash_fields(const struct net * net)1019 static inline u32 ip6_multipath_hash_fields(const struct net *net)
1020 {
1021 	return net->ipv6.sysctl.multipath_hash_fields;
1022 }
1023 #else
ip6_multipath_hash_policy(const struct net * net)1024 static inline int ip6_multipath_hash_policy(const struct net *net)
1025 {
1026 	return 0;
1027 }
ip6_multipath_hash_fields(const struct net * net)1028 static inline u32 ip6_multipath_hash_fields(const struct net *net)
1029 {
1030 	return 0;
1031 }
1032 #endif
1033 
1034 /*
1035  *	Header manipulation
1036  */
ip6_flow_hdr(struct ipv6hdr * hdr,unsigned int tclass,__be32 flowlabel)1037 static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
1038 				__be32 flowlabel)
1039 {
1040 	*(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
1041 }
1042 
ip6_flowinfo(const struct ipv6hdr * hdr)1043 static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
1044 {
1045 	return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
1046 }
1047 
ip6_flowlabel(const struct ipv6hdr * hdr)1048 static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr)
1049 {
1050 	return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK;
1051 }
1052 
ip6_tclass(__be32 flowinfo)1053 static inline u8 ip6_tclass(__be32 flowinfo)
1054 {
1055 	return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT;
1056 }
1057 
ip6_dscp(__be32 flowinfo)1058 static inline dscp_t ip6_dscp(__be32 flowinfo)
1059 {
1060 	return inet_dsfield_to_dscp(ip6_tclass(flowinfo));
1061 }
1062 
ip6_make_flowinfo(unsigned int tclass,__be32 flowlabel)1063 static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel)
1064 {
1065 	return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel;
1066 }
1067 
flowi6_get_flowlabel(const struct flowi6 * fl6)1068 static inline __be32 flowi6_get_flowlabel(const struct flowi6 *fl6)
1069 {
1070 	return fl6->flowlabel & IPV6_FLOWLABEL_MASK;
1071 }
1072 
1073 /*
1074  *	Prototypes exported by ipv6
1075  */
1076 
1077 /*
1078  *	rcv function (called from netdevice level)
1079  */
1080 
1081 int ipv6_rcv(struct sk_buff *skb, struct net_device *dev,
1082 	     struct packet_type *pt, struct net_device *orig_dev);
1083 void ipv6_list_rcv(struct list_head *head, struct packet_type *pt,
1084 		   struct net_device *orig_dev);
1085 
1086 int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb);
1087 
1088 /*
1089  *	upper-layer output functions
1090  */
1091 int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
1092 	     __u32 mark, struct ipv6_txoptions *opt, int tclass, u32 priority);
1093 
1094 int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
1095 
1096 int ip6_append_data(struct sock *sk,
1097 		    int getfrag(void *from, char *to, int offset, int len,
1098 				int odd, struct sk_buff *skb),
1099 		    void *from, size_t length, int transhdrlen,
1100 		    struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
1101 		    struct rt6_info *rt, unsigned int flags);
1102 
1103 int ip6_push_pending_frames(struct sock *sk);
1104 
1105 void ip6_flush_pending_frames(struct sock *sk);
1106 
1107 int ip6_send_skb(struct sk_buff *skb);
1108 
1109 struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue,
1110 			       struct inet_cork_full *cork,
1111 			       struct inet6_cork *v6_cork);
1112 struct sk_buff *ip6_make_skb(struct sock *sk,
1113 			     int getfrag(void *from, char *to, int offset,
1114 					 int len, int odd, struct sk_buff *skb),
1115 			     void *from, size_t length, int transhdrlen,
1116 			     struct ipcm6_cookie *ipc6,
1117 			     struct rt6_info *rt, unsigned int flags,
1118 			     struct inet_cork_full *cork);
1119 
ip6_finish_skb(struct sock * sk)1120 static inline struct sk_buff *ip6_finish_skb(struct sock *sk)
1121 {
1122 	return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork,
1123 			      &inet6_sk(sk)->cork);
1124 }
1125 
1126 int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst,
1127 		   struct flowi6 *fl6);
1128 struct dst_entry *ip6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6,
1129 				      const struct in6_addr *final_dst);
1130 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
1131 					 const struct in6_addr *final_dst,
1132 					 bool connected);
1133 struct dst_entry *ip6_blackhole_route(struct net *net,
1134 				      struct dst_entry *orig_dst);
1135 
1136 /*
1137  *	skb processing functions
1138  */
1139 
1140 int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb);
1141 int ip6_forward(struct sk_buff *skb);
1142 int ip6_input(struct sk_buff *skb);
1143 int ip6_mc_input(struct sk_buff *skb);
1144 void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr,
1145 			      bool have_final);
1146 
1147 int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1148 int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1149 
1150 /*
1151  *	Extension header (options) processing
1152  */
1153 
1154 void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1155 			  u8 *proto, struct in6_addr **daddr_p,
1156 			  struct in6_addr *saddr);
1157 void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1158 			 u8 *proto);
1159 
1160 int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp,
1161 		     __be16 *frag_offp);
1162 
1163 bool ipv6_ext_hdr(u8 nexthdr);
1164 
1165 enum {
1166 	IP6_FH_F_FRAG		= (1 << 0),
1167 	IP6_FH_F_AUTH		= (1 << 1),
1168 	IP6_FH_F_SKIP_RH	= (1 << 2),
1169 };
1170 
1171 /* find specified header and get offset to it */
1172 int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target,
1173 		  unsigned short *fragoff, int *fragflg);
1174 
1175 int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type);
1176 
1177 struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
1178 				const struct ipv6_txoptions *opt,
1179 				struct in6_addr *orig);
1180 
1181 /*
1182  *	socket options (ipv6_sockglue.c)
1183  */
1184 DECLARE_STATIC_KEY_FALSE(ip6_min_hopcount);
1185 
1186 int do_ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
1187 		       unsigned int optlen);
1188 int ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
1189 		    unsigned int optlen);
1190 int do_ipv6_getsockopt(struct sock *sk, int level, int optname,
1191 		       sockptr_t optval, sockptr_t optlen);
1192 int ipv6_getsockopt(struct sock *sk, int level, int optname,
1193 		    char __user *optval, int __user *optlen);
1194 
1195 int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr,
1196 			   int addr_len);
1197 int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len);
1198 int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr,
1199 				 int addr_len);
1200 int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr);
1201 void ip6_datagram_release_cb(struct sock *sk);
1202 
1203 int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len,
1204 		    int *addr_len);
1205 int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
1206 		     int *addr_len);
1207 void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
1208 		     u32 info, u8 *payload);
1209 void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
1210 void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
1211 
1212 void inet6_cleanup_sock(struct sock *sk);
1213 void inet6_sock_destruct(struct sock *sk);
1214 int inet6_release(struct socket *sock);
1215 int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len);
1216 int inet6_bind_sk(struct sock *sk, struct sockaddr *uaddr, int addr_len);
1217 int inet6_getname(struct socket *sock, struct sockaddr *uaddr,
1218 		  int peer);
1219 int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
1220 int inet6_compat_ioctl(struct socket *sock, unsigned int cmd,
1221 		unsigned long arg);
1222 
1223 int inet6_hash_connect(struct inet_timewait_death_row *death_row,
1224 			      struct sock *sk);
1225 int inet6_sendmsg(struct socket *sock, struct msghdr *msg, size_t size);
1226 int inet6_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1227 		  int flags);
1228 
1229 /*
1230  * reassembly.c
1231  */
1232 extern const struct proto_ops inet6_stream_ops;
1233 extern const struct proto_ops inet6_dgram_ops;
1234 extern const struct proto_ops inet6_sockraw_ops;
1235 
1236 struct group_source_req;
1237 struct group_filter;
1238 
1239 int ip6_mc_source(int add, int omode, struct sock *sk,
1240 		  struct group_source_req *pgsr);
1241 int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf,
1242 		  struct sockaddr_storage *list);
1243 int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
1244 		  sockptr_t optval, size_t ss_offset);
1245 
1246 #ifdef CONFIG_PROC_FS
1247 int ac6_proc_init(struct net *net);
1248 void ac6_proc_exit(struct net *net);
1249 int raw6_proc_init(void);
1250 void raw6_proc_exit(void);
1251 int tcp6_proc_init(struct net *net);
1252 void tcp6_proc_exit(struct net *net);
1253 int udp6_proc_init(struct net *net);
1254 void udp6_proc_exit(struct net *net);
1255 int udplite6_proc_init(void);
1256 void udplite6_proc_exit(void);
1257 int ipv6_misc_proc_init(void);
1258 void ipv6_misc_proc_exit(void);
1259 int snmp6_register_dev(struct inet6_dev *idev);
1260 int snmp6_unregister_dev(struct inet6_dev *idev);
1261 
1262 #else
ac6_proc_init(struct net * net)1263 static inline int ac6_proc_init(struct net *net) { return 0; }
ac6_proc_exit(struct net * net)1264 static inline void ac6_proc_exit(struct net *net) { }
snmp6_register_dev(struct inet6_dev * idev)1265 static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
snmp6_unregister_dev(struct inet6_dev * idev)1266 static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
1267 #endif
1268 
1269 #ifdef CONFIG_SYSCTL
1270 struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
1271 size_t ipv6_icmp_sysctl_table_size(void);
1272 struct ctl_table *ipv6_route_sysctl_init(struct net *net);
1273 size_t ipv6_route_sysctl_table_size(struct net *net);
1274 int ipv6_sysctl_register(void);
1275 void ipv6_sysctl_unregister(void);
1276 #endif
1277 
1278 int ipv6_sock_mc_join(struct sock *sk, int ifindex,
1279 		      const struct in6_addr *addr);
1280 int ipv6_sock_mc_join_ssm(struct sock *sk, int ifindex,
1281 			  const struct in6_addr *addr, unsigned int mode);
1282 int ipv6_sock_mc_drop(struct sock *sk, int ifindex,
1283 		      const struct in6_addr *addr);
1284 
ip6_sock_set_v6only(struct sock * sk)1285 static inline int ip6_sock_set_v6only(struct sock *sk)
1286 {
1287 	if (inet_sk(sk)->inet_num)
1288 		return -EINVAL;
1289 	lock_sock(sk);
1290 	sk->sk_ipv6only = true;
1291 	release_sock(sk);
1292 	return 0;
1293 }
1294 
ip6_sock_set_recverr(struct sock * sk)1295 static inline void ip6_sock_set_recverr(struct sock *sk)
1296 {
1297 	inet6_set_bit(RECVERR6, sk);
1298 }
1299 
1300 #define IPV6_PREFER_SRC_MASK (IPV6_PREFER_SRC_TMP | IPV6_PREFER_SRC_PUBLIC | \
1301 			      IPV6_PREFER_SRC_COA)
1302 
ip6_sock_set_addr_preferences(struct sock * sk,int val)1303 static inline int ip6_sock_set_addr_preferences(struct sock *sk, int val)
1304 {
1305 	unsigned int prefmask = ~IPV6_PREFER_SRC_MASK;
1306 	unsigned int pref = 0;
1307 
1308 	/* check PUBLIC/TMP/PUBTMP_DEFAULT conflicts */
1309 	switch (val & (IPV6_PREFER_SRC_PUBLIC |
1310 		       IPV6_PREFER_SRC_TMP |
1311 		       IPV6_PREFER_SRC_PUBTMP_DEFAULT)) {
1312 	case IPV6_PREFER_SRC_PUBLIC:
1313 		pref |= IPV6_PREFER_SRC_PUBLIC;
1314 		prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1315 			      IPV6_PREFER_SRC_TMP);
1316 		break;
1317 	case IPV6_PREFER_SRC_TMP:
1318 		pref |= IPV6_PREFER_SRC_TMP;
1319 		prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1320 			      IPV6_PREFER_SRC_TMP);
1321 		break;
1322 	case IPV6_PREFER_SRC_PUBTMP_DEFAULT:
1323 		prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1324 			      IPV6_PREFER_SRC_TMP);
1325 		break;
1326 	case 0:
1327 		break;
1328 	default:
1329 		return -EINVAL;
1330 	}
1331 
1332 	/* check HOME/COA conflicts */
1333 	switch (val & (IPV6_PREFER_SRC_HOME | IPV6_PREFER_SRC_COA)) {
1334 	case IPV6_PREFER_SRC_HOME:
1335 		prefmask &= ~IPV6_PREFER_SRC_COA;
1336 		break;
1337 	case IPV6_PREFER_SRC_COA:
1338 		pref |= IPV6_PREFER_SRC_COA;
1339 		break;
1340 	case 0:
1341 		break;
1342 	default:
1343 		return -EINVAL;
1344 	}
1345 
1346 	/* check CGA/NONCGA conflicts */
1347 	switch (val & (IPV6_PREFER_SRC_CGA|IPV6_PREFER_SRC_NONCGA)) {
1348 	case IPV6_PREFER_SRC_CGA:
1349 	case IPV6_PREFER_SRC_NONCGA:
1350 	case 0:
1351 		break;
1352 	default:
1353 		return -EINVAL;
1354 	}
1355 
1356 	WRITE_ONCE(inet6_sk(sk)->srcprefs,
1357 		   (READ_ONCE(inet6_sk(sk)->srcprefs) & prefmask) | pref);
1358 	return 0;
1359 }
1360 
ip6_sock_set_recvpktinfo(struct sock * sk)1361 static inline void ip6_sock_set_recvpktinfo(struct sock *sk)
1362 {
1363 	lock_sock(sk);
1364 	inet6_sk(sk)->rxopt.bits.rxinfo = true;
1365 	release_sock(sk);
1366 }
1367 
1368 #define IPV6_ADDR_WORDS 4
1369 
ipv6_addr_cpu_to_be32(__be32 * dst,const u32 * src)1370 static inline void ipv6_addr_cpu_to_be32(__be32 *dst, const u32 *src)
1371 {
1372 	cpu_to_be32_array(dst, src, IPV6_ADDR_WORDS);
1373 }
1374 
ipv6_addr_be32_to_cpu(u32 * dst,const __be32 * src)1375 static inline void ipv6_addr_be32_to_cpu(u32 *dst, const __be32 *src)
1376 {
1377 	be32_to_cpu_array(dst, src, IPV6_ADDR_WORDS);
1378 }
1379 
1380 #endif /* _NET_IPV6_H */
1381