1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #define pr_fmt(fmt) "GICv3: " fmt
8
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/kernel.h>
16 #include <linux/kstrtox.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/percpu.h>
21 #include <linux/refcount.h>
22 #include <linux/slab.h>
23 #include <linux/iopoll.h>
24
25 #include <linux/irqchip.h>
26 #include <linux/irqchip/arm-gic-common.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/irqchip/arm-gic-v3-prio.h>
29 #include <linux/irqchip/irq-partition-percpu.h>
30 #include <linux/bitfield.h>
31 #include <linux/bits.h>
32 #include <linux/arm-smccc.h>
33
34 #include <asm/cputype.h>
35 #include <asm/exception.h>
36 #include <asm/smp_plat.h>
37 #include <asm/virt.h>
38
39 #include "irq-gic-common.h"
40
41 static u8 dist_prio_irq __ro_after_init = GICV3_PRIO_IRQ;
42 static u8 dist_prio_nmi __ro_after_init = GICV3_PRIO_NMI;
43
44 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996 (1ULL << 0)
45 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539 (1ULL << 1)
46 #define FLAGS_WORKAROUND_ASR_ERRATUM_8601001 (1ULL << 2)
47
48 #define GIC_IRQ_TYPE_PARTITION (GIC_IRQ_TYPE_LPI + 1)
49
50 static struct cpumask broken_rdists __read_mostly __maybe_unused;
51
52 struct redist_region {
53 void __iomem *redist_base;
54 phys_addr_t phys_base;
55 bool single_redist;
56 };
57
58 struct gic_chip_data {
59 struct fwnode_handle *fwnode;
60 phys_addr_t dist_phys_base;
61 void __iomem *dist_base;
62 struct redist_region *redist_regions;
63 struct rdists rdists;
64 struct irq_domain *domain;
65 u64 redist_stride;
66 u32 nr_redist_regions;
67 u64 flags;
68 bool has_rss;
69 unsigned int ppi_nr;
70 struct partition_desc **ppi_descs;
71 };
72
73 #define T241_CHIPS_MAX 4
74 static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly;
75 static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum);
76
77 static DEFINE_STATIC_KEY_FALSE(gic_arm64_2941627_erratum);
78
79 static struct gic_chip_data gic_data __read_mostly;
80 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
81
82 #define GIC_ID_NR (1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
83 #define GIC_LINE_NR min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
84 #define GIC_ESPI_NR GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
85
86 /*
87 * There are 16 SGIs, though we only actually use 8 in Linux. The other 8 SGIs
88 * are potentially stolen by the secure side. Some code, especially code dealing
89 * with hwirq IDs, is simplified by accounting for all 16.
90 */
91 #define SGI_NR 16
92
93 /*
94 * The behaviours of RPR and PMR registers differ depending on the value of
95 * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
96 * distributor and redistributors depends on whether security is enabled in the
97 * GIC.
98 *
99 * When security is enabled, non-secure priority values from the (re)distributor
100 * are presented to the GIC CPUIF as follow:
101 * (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
102 *
103 * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
104 * EL1 are subject to a similar operation thus matching the priorities presented
105 * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
106 * these values are unchanged by the GIC.
107 *
108 * see GICv3/GICv4 Architecture Specification (IHI0069D):
109 * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
110 * priorities.
111 * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
112 * interrupt.
113 */
114 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
115
gic_get_pribits(void)116 static u32 gic_get_pribits(void)
117 {
118 u32 pribits;
119
120 pribits = gic_read_ctlr();
121 pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
122 pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
123 pribits++;
124
125 return pribits;
126 }
127
gic_has_group0(void)128 static bool gic_has_group0(void)
129 {
130 u32 val;
131 u32 old_pmr;
132
133 old_pmr = gic_read_pmr();
134
135 /*
136 * Let's find out if Group0 is under control of EL3 or not by
137 * setting the highest possible, non-zero priority in PMR.
138 *
139 * If SCR_EL3.FIQ is set, the priority gets shifted down in
140 * order for the CPU interface to set bit 7, and keep the
141 * actual priority in the non-secure range. In the process, it
142 * looses the least significant bit and the actual priority
143 * becomes 0x80. Reading it back returns 0, indicating that
144 * we're don't have access to Group0.
145 */
146 gic_write_pmr(BIT(8 - gic_get_pribits()));
147 val = gic_read_pmr();
148
149 gic_write_pmr(old_pmr);
150
151 return val != 0;
152 }
153
gic_dist_security_disabled(void)154 static inline bool gic_dist_security_disabled(void)
155 {
156 return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
157 }
158
159 static bool cpus_have_security_disabled __ro_after_init;
160 static bool cpus_have_group0 __ro_after_init;
161
gic_prio_init(void)162 static void __init gic_prio_init(void)
163 {
164 bool ds;
165
166 ds = gic_dist_security_disabled();
167 if (!ds) {
168 u32 val;
169
170 val = readl_relaxed(gic_data.dist_base + GICD_CTLR);
171 val |= GICD_CTLR_DS;
172 writel_relaxed(val, gic_data.dist_base + GICD_CTLR);
173
174 ds = gic_dist_security_disabled();
175 if (ds)
176 pr_warn("Broken GIC integration, security disabled");
177 }
178
179 cpus_have_security_disabled = ds;
180 cpus_have_group0 = gic_has_group0();
181
182 /*
183 * How priority values are used by the GIC depends on two things:
184 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
185 * and if Group 0 interrupts can be delivered to Linux in the non-secure
186 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
187 * way priorities are presented in ICC_PMR_EL1 and in the distributor:
188 *
189 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Distributor
190 * -------------------------------------------------------
191 * 1 | - | unchanged | unchanged
192 * -------------------------------------------------------
193 * 0 | 1 | non-secure | non-secure
194 * -------------------------------------------------------
195 * 0 | 0 | unchanged | non-secure
196 *
197 * In the non-secure view reads and writes are modified:
198 *
199 * - A value written is right-shifted by one and the MSB is set,
200 * forcing the priority into the non-secure range.
201 *
202 * - A value read is left-shifted by one.
203 *
204 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
205 * are both either modified or unchanged, we can use the same set of
206 * priorities.
207 *
208 * In the last case, where only the interrupt priorities are modified to
209 * be in the non-secure range, we program the non-secure values into
210 * the distributor to match the PMR values we want.
211 */
212 if (cpus_have_group0 & !cpus_have_security_disabled) {
213 dist_prio_irq = __gicv3_prio_to_ns(dist_prio_irq);
214 dist_prio_nmi = __gicv3_prio_to_ns(dist_prio_nmi);
215 }
216
217 pr_info("GICD_CTRL.DS=%d, SCR_EL3.FIQ=%d\n",
218 cpus_have_security_disabled,
219 !cpus_have_group0);
220 }
221
222 /* rdist_nmi_refs[n] == number of cpus having the rdist interrupt n set as NMI */
223 static refcount_t *rdist_nmi_refs;
224
225 static struct gic_kvm_info gic_v3_kvm_info __initdata;
226 static DEFINE_PER_CPU(bool, has_rss);
227
228 #define MPIDR_RS(mpidr) (((mpidr) & 0xF0UL) >> 4)
229 #define gic_data_rdist() (this_cpu_ptr(gic_data.rdists.rdist))
230 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
231 #define gic_data_rdist_sgi_base() (gic_data_rdist_rd_base() + SZ_64K)
232
233 /* Our default, arbitrary priority value. Linux only uses one anyway. */
234 #define DEFAULT_PMR_VALUE 0xf0
235
236 enum gic_intid_range {
237 SGI_RANGE,
238 PPI_RANGE,
239 SPI_RANGE,
240 EPPI_RANGE,
241 ESPI_RANGE,
242 LPI_RANGE,
243 __INVALID_RANGE__
244 };
245
__get_intid_range(irq_hw_number_t hwirq)246 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
247 {
248 switch (hwirq) {
249 case 0 ... 15:
250 return SGI_RANGE;
251 case 16 ... 31:
252 return PPI_RANGE;
253 case 32 ... 1019:
254 return SPI_RANGE;
255 case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
256 return EPPI_RANGE;
257 case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
258 return ESPI_RANGE;
259 case 8192 ... GENMASK(23, 0):
260 return LPI_RANGE;
261 default:
262 return __INVALID_RANGE__;
263 }
264 }
265
get_intid_range(struct irq_data * d)266 static enum gic_intid_range get_intid_range(struct irq_data *d)
267 {
268 return __get_intid_range(d->hwirq);
269 }
270
gic_irq_in_rdist(struct irq_data * d)271 static inline bool gic_irq_in_rdist(struct irq_data *d)
272 {
273 switch (get_intid_range(d)) {
274 case SGI_RANGE:
275 case PPI_RANGE:
276 case EPPI_RANGE:
277 return true;
278 default:
279 return false;
280 }
281 }
282
gic_dist_base_alias(struct irq_data * d)283 static inline void __iomem *gic_dist_base_alias(struct irq_data *d)
284 {
285 if (static_branch_unlikely(&gic_nvidia_t241_erratum)) {
286 irq_hw_number_t hwirq = irqd_to_hwirq(d);
287 u32 chip;
288
289 /*
290 * For the erratum T241-FABRIC-4, read accesses to GICD_In{E}
291 * registers are directed to the chip that owns the SPI. The
292 * the alias region can also be used for writes to the
293 * GICD_In{E} except GICD_ICENABLERn. Each chip has support
294 * for 320 {E}SPIs. Mappings for all 4 chips:
295 * Chip0 = 32-351
296 * Chip1 = 352-671
297 * Chip2 = 672-991
298 * Chip3 = 4096-4415
299 */
300 switch (__get_intid_range(hwirq)) {
301 case SPI_RANGE:
302 chip = (hwirq - 32) / 320;
303 break;
304 case ESPI_RANGE:
305 chip = 3;
306 break;
307 default:
308 unreachable();
309 }
310 return t241_dist_base_alias[chip];
311 }
312
313 return gic_data.dist_base;
314 }
315
gic_dist_base(struct irq_data * d)316 static inline void __iomem *gic_dist_base(struct irq_data *d)
317 {
318 switch (get_intid_range(d)) {
319 case SGI_RANGE:
320 case PPI_RANGE:
321 case EPPI_RANGE:
322 /* SGI+PPI -> SGI_base for this CPU */
323 return gic_data_rdist_sgi_base();
324
325 case SPI_RANGE:
326 case ESPI_RANGE:
327 /* SPI -> dist_base */
328 return gic_data.dist_base;
329
330 default:
331 return NULL;
332 }
333 }
334
gic_do_wait_for_rwp(void __iomem * base,u32 bit)335 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
336 {
337 u32 val;
338 int ret;
339
340 ret = readl_relaxed_poll_timeout_atomic(base + GICD_CTLR, val, !(val & bit),
341 1, USEC_PER_SEC);
342 if (ret == -ETIMEDOUT)
343 pr_err_ratelimited("RWP timeout, gone fishing\n");
344 }
345
346 /* Wait for completion of a distributor change */
gic_dist_wait_for_rwp(void)347 static void gic_dist_wait_for_rwp(void)
348 {
349 gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
350 }
351
352 /* Wait for completion of a redistributor change */
gic_redist_wait_for_rwp(void)353 static void gic_redist_wait_for_rwp(void)
354 {
355 gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
356 }
357
gic_enable_redist(bool enable)358 static void gic_enable_redist(bool enable)
359 {
360 void __iomem *rbase;
361 u32 val;
362 int ret;
363
364 if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
365 return;
366
367 rbase = gic_data_rdist_rd_base();
368
369 val = readl_relaxed(rbase + GICR_WAKER);
370 if (enable)
371 /* Wake up this CPU redistributor */
372 val &= ~GICR_WAKER_ProcessorSleep;
373 else
374 val |= GICR_WAKER_ProcessorSleep;
375 writel_relaxed(val, rbase + GICR_WAKER);
376
377 if (!enable) { /* Check that GICR_WAKER is writeable */
378 val = readl_relaxed(rbase + GICR_WAKER);
379 if (!(val & GICR_WAKER_ProcessorSleep))
380 return; /* No PM support in this redistributor */
381 }
382
383 ret = readl_relaxed_poll_timeout_atomic(rbase + GICR_WAKER, val,
384 enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep),
385 1, USEC_PER_SEC);
386 if (ret == -ETIMEDOUT) {
387 pr_err_ratelimited("redistributor failed to %s...\n",
388 enable ? "wakeup" : "sleep");
389 }
390 }
391
392 /*
393 * Routines to disable, enable, EOI and route interrupts
394 */
convert_offset_index(struct irq_data * d,u32 offset,u32 * index)395 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
396 {
397 switch (get_intid_range(d)) {
398 case SGI_RANGE:
399 case PPI_RANGE:
400 case SPI_RANGE:
401 *index = d->hwirq;
402 return offset;
403 case EPPI_RANGE:
404 /*
405 * Contrary to the ESPI range, the EPPI range is contiguous
406 * to the PPI range in the registers, so let's adjust the
407 * displacement accordingly. Consistency is overrated.
408 */
409 *index = d->hwirq - EPPI_BASE_INTID + 32;
410 return offset;
411 case ESPI_RANGE:
412 *index = d->hwirq - ESPI_BASE_INTID;
413 switch (offset) {
414 case GICD_ISENABLER:
415 return GICD_ISENABLERnE;
416 case GICD_ICENABLER:
417 return GICD_ICENABLERnE;
418 case GICD_ISPENDR:
419 return GICD_ISPENDRnE;
420 case GICD_ICPENDR:
421 return GICD_ICPENDRnE;
422 case GICD_ISACTIVER:
423 return GICD_ISACTIVERnE;
424 case GICD_ICACTIVER:
425 return GICD_ICACTIVERnE;
426 case GICD_IPRIORITYR:
427 return GICD_IPRIORITYRnE;
428 case GICD_ICFGR:
429 return GICD_ICFGRnE;
430 case GICD_IROUTER:
431 return GICD_IROUTERnE;
432 default:
433 break;
434 }
435 break;
436 default:
437 break;
438 }
439
440 WARN_ON(1);
441 *index = d->hwirq;
442 return offset;
443 }
444
gic_peek_irq(struct irq_data * d,u32 offset)445 static int gic_peek_irq(struct irq_data *d, u32 offset)
446 {
447 void __iomem *base;
448 u32 index, mask;
449
450 offset = convert_offset_index(d, offset, &index);
451 mask = 1 << (index % 32);
452
453 if (gic_irq_in_rdist(d))
454 base = gic_data_rdist_sgi_base();
455 else
456 base = gic_dist_base_alias(d);
457
458 return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
459 }
460
gic_poke_irq(struct irq_data * d,u32 offset)461 static void gic_poke_irq(struct irq_data *d, u32 offset)
462 {
463 void __iomem *base;
464 u32 index, mask;
465
466 offset = convert_offset_index(d, offset, &index);
467 mask = 1 << (index % 32);
468
469 if (gic_irq_in_rdist(d))
470 base = gic_data_rdist_sgi_base();
471 else
472 base = gic_data.dist_base;
473
474 writel_relaxed(mask, base + offset + (index / 32) * 4);
475 }
476
gic_mask_irq(struct irq_data * d)477 static void gic_mask_irq(struct irq_data *d)
478 {
479 gic_poke_irq(d, GICD_ICENABLER);
480 if (gic_irq_in_rdist(d))
481 gic_redist_wait_for_rwp();
482 else
483 gic_dist_wait_for_rwp();
484 }
485
gic_eoimode1_mask_irq(struct irq_data * d)486 static void gic_eoimode1_mask_irq(struct irq_data *d)
487 {
488 gic_mask_irq(d);
489 /*
490 * When masking a forwarded interrupt, make sure it is
491 * deactivated as well.
492 *
493 * This ensures that an interrupt that is getting
494 * disabled/masked will not get "stuck", because there is
495 * noone to deactivate it (guest is being terminated).
496 */
497 if (irqd_is_forwarded_to_vcpu(d))
498 gic_poke_irq(d, GICD_ICACTIVER);
499 }
500
gic_unmask_irq(struct irq_data * d)501 static void gic_unmask_irq(struct irq_data *d)
502 {
503 gic_poke_irq(d, GICD_ISENABLER);
504 }
505
gic_supports_nmi(void)506 static inline bool gic_supports_nmi(void)
507 {
508 return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
509 static_branch_likely(&supports_pseudo_nmis);
510 }
511
gic_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool val)512 static int gic_irq_set_irqchip_state(struct irq_data *d,
513 enum irqchip_irq_state which, bool val)
514 {
515 u32 reg;
516
517 if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
518 return -EINVAL;
519
520 switch (which) {
521 case IRQCHIP_STATE_PENDING:
522 reg = val ? GICD_ISPENDR : GICD_ICPENDR;
523 break;
524
525 case IRQCHIP_STATE_ACTIVE:
526 reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
527 break;
528
529 case IRQCHIP_STATE_MASKED:
530 if (val) {
531 gic_mask_irq(d);
532 return 0;
533 }
534 reg = GICD_ISENABLER;
535 break;
536
537 default:
538 return -EINVAL;
539 }
540
541 gic_poke_irq(d, reg);
542
543 /*
544 * Force read-back to guarantee that the active state has taken
545 * effect, and won't race with a guest-driven deactivation.
546 */
547 if (reg == GICD_ISACTIVER)
548 gic_peek_irq(d, reg);
549 return 0;
550 }
551
gic_irq_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)552 static int gic_irq_get_irqchip_state(struct irq_data *d,
553 enum irqchip_irq_state which, bool *val)
554 {
555 if (d->hwirq >= 8192) /* PPI/SPI only */
556 return -EINVAL;
557
558 switch (which) {
559 case IRQCHIP_STATE_PENDING:
560 *val = gic_peek_irq(d, GICD_ISPENDR);
561 break;
562
563 case IRQCHIP_STATE_ACTIVE:
564 *val = gic_peek_irq(d, GICD_ISACTIVER);
565 break;
566
567 case IRQCHIP_STATE_MASKED:
568 *val = !gic_peek_irq(d, GICD_ISENABLER);
569 break;
570
571 default:
572 return -EINVAL;
573 }
574
575 return 0;
576 }
577
gic_irq_set_prio(struct irq_data * d,u8 prio)578 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
579 {
580 void __iomem *base = gic_dist_base(d);
581 u32 offset, index;
582
583 offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
584
585 writeb_relaxed(prio, base + offset + index);
586 }
587
__gic_get_ppi_index(irq_hw_number_t hwirq)588 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
589 {
590 switch (__get_intid_range(hwirq)) {
591 case PPI_RANGE:
592 return hwirq - 16;
593 case EPPI_RANGE:
594 return hwirq - EPPI_BASE_INTID + 16;
595 default:
596 unreachable();
597 }
598 }
599
__gic_get_rdist_index(irq_hw_number_t hwirq)600 static u32 __gic_get_rdist_index(irq_hw_number_t hwirq)
601 {
602 switch (__get_intid_range(hwirq)) {
603 case SGI_RANGE:
604 case PPI_RANGE:
605 return hwirq;
606 case EPPI_RANGE:
607 return hwirq - EPPI_BASE_INTID + 32;
608 default:
609 unreachable();
610 }
611 }
612
gic_get_rdist_index(struct irq_data * d)613 static u32 gic_get_rdist_index(struct irq_data *d)
614 {
615 return __gic_get_rdist_index(d->hwirq);
616 }
617
gic_irq_nmi_setup(struct irq_data * d)618 static int gic_irq_nmi_setup(struct irq_data *d)
619 {
620 struct irq_desc *desc = irq_to_desc(d->irq);
621
622 if (!gic_supports_nmi())
623 return -EINVAL;
624
625 if (gic_peek_irq(d, GICD_ISENABLER)) {
626 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
627 return -EINVAL;
628 }
629
630 /*
631 * A secondary irq_chip should be in charge of LPI request,
632 * it should not be possible to get there
633 */
634 if (WARN_ON(irqd_to_hwirq(d) >= 8192))
635 return -EINVAL;
636
637 /* desc lock should already be held */
638 if (gic_irq_in_rdist(d)) {
639 u32 idx = gic_get_rdist_index(d);
640
641 /*
642 * Setting up a percpu interrupt as NMI, only switch handler
643 * for first NMI
644 */
645 if (!refcount_inc_not_zero(&rdist_nmi_refs[idx])) {
646 refcount_set(&rdist_nmi_refs[idx], 1);
647 desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
648 }
649 } else {
650 desc->handle_irq = handle_fasteoi_nmi;
651 }
652
653 gic_irq_set_prio(d, dist_prio_nmi);
654
655 return 0;
656 }
657
gic_irq_nmi_teardown(struct irq_data * d)658 static void gic_irq_nmi_teardown(struct irq_data *d)
659 {
660 struct irq_desc *desc = irq_to_desc(d->irq);
661
662 if (WARN_ON(!gic_supports_nmi()))
663 return;
664
665 if (gic_peek_irq(d, GICD_ISENABLER)) {
666 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
667 return;
668 }
669
670 /*
671 * A secondary irq_chip should be in charge of LPI request,
672 * it should not be possible to get there
673 */
674 if (WARN_ON(irqd_to_hwirq(d) >= 8192))
675 return;
676
677 /* desc lock should already be held */
678 if (gic_irq_in_rdist(d)) {
679 u32 idx = gic_get_rdist_index(d);
680
681 /* Tearing down NMI, only switch handler for last NMI */
682 if (refcount_dec_and_test(&rdist_nmi_refs[idx]))
683 desc->handle_irq = handle_percpu_devid_irq;
684 } else {
685 desc->handle_irq = handle_fasteoi_irq;
686 }
687
688 gic_irq_set_prio(d, dist_prio_irq);
689 }
690
gic_arm64_erratum_2941627_needed(struct irq_data * d)691 static bool gic_arm64_erratum_2941627_needed(struct irq_data *d)
692 {
693 enum gic_intid_range range;
694
695 if (!static_branch_unlikely(&gic_arm64_2941627_erratum))
696 return false;
697
698 range = get_intid_range(d);
699
700 /*
701 * The workaround is needed if the IRQ is an SPI and
702 * the target cpu is different from the one we are
703 * executing on.
704 */
705 return (range == SPI_RANGE || range == ESPI_RANGE) &&
706 !cpumask_test_cpu(raw_smp_processor_id(),
707 irq_data_get_effective_affinity_mask(d));
708 }
709
gic_eoi_irq(struct irq_data * d)710 static void gic_eoi_irq(struct irq_data *d)
711 {
712 write_gicreg(irqd_to_hwirq(d), ICC_EOIR1_EL1);
713 isb();
714
715 if (gic_arm64_erratum_2941627_needed(d)) {
716 /*
717 * Make sure the GIC stream deactivate packet
718 * issued by ICC_EOIR1_EL1 has completed before
719 * deactivating through GICD_IACTIVER.
720 */
721 dsb(sy);
722 gic_poke_irq(d, GICD_ICACTIVER);
723 }
724 }
725
gic_eoimode1_eoi_irq(struct irq_data * d)726 static void gic_eoimode1_eoi_irq(struct irq_data *d)
727 {
728 /*
729 * No need to deactivate an LPI, or an interrupt that
730 * is is getting forwarded to a vcpu.
731 */
732 if (irqd_to_hwirq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
733 return;
734
735 if (!gic_arm64_erratum_2941627_needed(d))
736 gic_write_dir(irqd_to_hwirq(d));
737 else
738 gic_poke_irq(d, GICD_ICACTIVER);
739 }
740
gic_set_type(struct irq_data * d,unsigned int type)741 static int gic_set_type(struct irq_data *d, unsigned int type)
742 {
743 irq_hw_number_t irq = irqd_to_hwirq(d);
744 enum gic_intid_range range;
745 void __iomem *base;
746 u32 offset, index;
747 int ret;
748
749 range = get_intid_range(d);
750
751 /* Interrupt configuration for SGIs can't be changed */
752 if (range == SGI_RANGE)
753 return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
754
755 /* SPIs have restrictions on the supported types */
756 if ((range == SPI_RANGE || range == ESPI_RANGE) &&
757 type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
758 return -EINVAL;
759
760 if (gic_irq_in_rdist(d))
761 base = gic_data_rdist_sgi_base();
762 else
763 base = gic_dist_base_alias(d);
764
765 offset = convert_offset_index(d, GICD_ICFGR, &index);
766
767 ret = gic_configure_irq(index, type, base + offset);
768 if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
769 /* Misconfigured PPIs are usually not fatal */
770 pr_warn("GIC: PPI INTID%ld is secure or misconfigured\n", irq);
771 ret = 0;
772 }
773
774 return ret;
775 }
776
gic_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu)777 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
778 {
779 if (get_intid_range(d) == SGI_RANGE)
780 return -EINVAL;
781
782 if (vcpu)
783 irqd_set_forwarded_to_vcpu(d);
784 else
785 irqd_clr_forwarded_to_vcpu(d);
786 return 0;
787 }
788
gic_cpu_to_affinity(int cpu)789 static u64 gic_cpu_to_affinity(int cpu)
790 {
791 u64 mpidr = cpu_logical_map(cpu);
792 u64 aff;
793
794 /* ASR8601 needs to have its affinities shifted down... */
795 if (unlikely(gic_data.flags & FLAGS_WORKAROUND_ASR_ERRATUM_8601001))
796 mpidr = (MPIDR_AFFINITY_LEVEL(mpidr, 1) |
797 (MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8));
798
799 aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
800 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
801 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
802 MPIDR_AFFINITY_LEVEL(mpidr, 0));
803
804 return aff;
805 }
806
gic_deactivate_unhandled(u32 irqnr)807 static void gic_deactivate_unhandled(u32 irqnr)
808 {
809 if (static_branch_likely(&supports_deactivate_key)) {
810 if (irqnr < 8192)
811 gic_write_dir(irqnr);
812 } else {
813 write_gicreg(irqnr, ICC_EOIR1_EL1);
814 isb();
815 }
816 }
817
818 /*
819 * Follow a read of the IAR with any HW maintenance that needs to happen prior
820 * to invoking the relevant IRQ handler. We must do two things:
821 *
822 * (1) Ensure instruction ordering between a read of IAR and subsequent
823 * instructions in the IRQ handler using an ISB.
824 *
825 * It is possible for the IAR to report an IRQ which was signalled *after*
826 * the CPU took an IRQ exception as multiple interrupts can race to be
827 * recognized by the GIC, earlier interrupts could be withdrawn, and/or
828 * later interrupts could be prioritized by the GIC.
829 *
830 * For devices which are tightly coupled to the CPU, such as PMUs, a
831 * context synchronization event is necessary to ensure that system
832 * register state is not stale, as these may have been indirectly written
833 * *after* exception entry.
834 *
835 * (2) Execute an interrupt priority drop when EOI mode 1 is in use.
836 */
gic_complete_ack(u32 irqnr)837 static inline void gic_complete_ack(u32 irqnr)
838 {
839 if (static_branch_likely(&supports_deactivate_key))
840 write_gicreg(irqnr, ICC_EOIR1_EL1);
841
842 isb();
843 }
844
gic_rpr_is_nmi_prio(void)845 static bool gic_rpr_is_nmi_prio(void)
846 {
847 if (!gic_supports_nmi())
848 return false;
849
850 return unlikely(gic_read_rpr() == GICV3_PRIO_NMI);
851 }
852
gic_irqnr_is_special(u32 irqnr)853 static bool gic_irqnr_is_special(u32 irqnr)
854 {
855 return irqnr >= 1020 && irqnr <= 1023;
856 }
857
__gic_handle_irq(u32 irqnr,struct pt_regs * regs)858 static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs)
859 {
860 if (gic_irqnr_is_special(irqnr))
861 return;
862
863 gic_complete_ack(irqnr);
864
865 if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
866 WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr);
867 gic_deactivate_unhandled(irqnr);
868 }
869 }
870
__gic_handle_nmi(u32 irqnr,struct pt_regs * regs)871 static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
872 {
873 if (gic_irqnr_is_special(irqnr))
874 return;
875
876 gic_complete_ack(irqnr);
877
878 if (generic_handle_domain_nmi(gic_data.domain, irqnr)) {
879 WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr);
880 gic_deactivate_unhandled(irqnr);
881 }
882 }
883
884 /*
885 * An exception has been taken from a context with IRQs enabled, and this could
886 * be an IRQ or an NMI.
887 *
888 * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear
889 * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning,
890 * after handling any NMI but before handling any IRQ.
891 *
892 * The entry code has performed IRQ entry, and if an NMI is detected we must
893 * perform NMI entry/exit around invoking the handler.
894 */
__gic_handle_irq_from_irqson(struct pt_regs * regs)895 static void __gic_handle_irq_from_irqson(struct pt_regs *regs)
896 {
897 bool is_nmi;
898 u32 irqnr;
899
900 irqnr = gic_read_iar();
901
902 is_nmi = gic_rpr_is_nmi_prio();
903
904 if (is_nmi) {
905 nmi_enter();
906 __gic_handle_nmi(irqnr, regs);
907 nmi_exit();
908 }
909
910 if (gic_prio_masking_enabled()) {
911 gic_pmr_mask_irqs();
912 gic_arch_enable_irqs();
913 }
914
915 if (!is_nmi)
916 __gic_handle_irq(irqnr, regs);
917 }
918
919 /*
920 * An exception has been taken from a context with IRQs disabled, which can only
921 * be an NMI.
922 *
923 * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave
924 * DAIF.IF (and ICC_PMR_EL1) unchanged.
925 *
926 * The entry code has performed NMI entry.
927 */
__gic_handle_irq_from_irqsoff(struct pt_regs * regs)928 static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs)
929 {
930 u64 pmr;
931 u32 irqnr;
932
933 /*
934 * We were in a context with IRQs disabled. However, the
935 * entry code has set PMR to a value that allows any
936 * interrupt to be acknowledged, and not just NMIs. This can
937 * lead to surprising effects if the NMI has been retired in
938 * the meantime, and that there is an IRQ pending. The IRQ
939 * would then be taken in NMI context, something that nobody
940 * wants to debug twice.
941 *
942 * Until we sort this, drop PMR again to a level that will
943 * actually only allow NMIs before reading IAR, and then
944 * restore it to what it was.
945 */
946 pmr = gic_read_pmr();
947 gic_pmr_mask_irqs();
948 isb();
949 irqnr = gic_read_iar();
950 gic_write_pmr(pmr);
951
952 __gic_handle_nmi(irqnr, regs);
953 }
954
gic_handle_irq(struct pt_regs * regs)955 static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
956 {
957 if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs)))
958 __gic_handle_irq_from_irqsoff(regs);
959 else
960 __gic_handle_irq_from_irqson(regs);
961 }
962
gic_dist_init(void)963 static void __init gic_dist_init(void)
964 {
965 unsigned int i;
966 u64 affinity;
967 void __iomem *base = gic_data.dist_base;
968 u32 val;
969
970 /* Disable the distributor */
971 writel_relaxed(0, base + GICD_CTLR);
972 gic_dist_wait_for_rwp();
973
974 /*
975 * Configure SPIs as non-secure Group-1. This will only matter
976 * if the GIC only has a single security state. This will not
977 * do the right thing if the kernel is running in secure mode,
978 * but that's not the intended use case anyway.
979 */
980 for (i = 32; i < GIC_LINE_NR; i += 32)
981 writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
982
983 /* Extended SPI range, not handled by the GICv2/GICv3 common code */
984 for (i = 0; i < GIC_ESPI_NR; i += 32) {
985 writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
986 writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
987 }
988
989 for (i = 0; i < GIC_ESPI_NR; i += 32)
990 writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
991
992 for (i = 0; i < GIC_ESPI_NR; i += 16)
993 writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
994
995 for (i = 0; i < GIC_ESPI_NR; i += 4)
996 writel_relaxed(REPEAT_BYTE_U32(dist_prio_irq),
997 base + GICD_IPRIORITYRnE + i);
998
999 /* Now do the common stuff */
1000 gic_dist_config(base, GIC_LINE_NR, dist_prio_irq);
1001
1002 val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
1003 if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
1004 pr_info("Enabling SGIs without active state\n");
1005 val |= GICD_CTLR_nASSGIreq;
1006 }
1007
1008 /* Enable distributor with ARE, Group1, and wait for it to drain */
1009 writel_relaxed(val, base + GICD_CTLR);
1010 gic_dist_wait_for_rwp();
1011
1012 /*
1013 * Set all global interrupts to the boot CPU only. ARE must be
1014 * enabled.
1015 */
1016 affinity = gic_cpu_to_affinity(smp_processor_id());
1017 for (i = 32; i < GIC_LINE_NR; i++)
1018 gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
1019
1020 for (i = 0; i < GIC_ESPI_NR; i++)
1021 gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
1022 }
1023
gic_iterate_rdists(int (* fn)(struct redist_region *,void __iomem *))1024 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
1025 {
1026 int ret = -ENODEV;
1027 int i;
1028
1029 for (i = 0; i < gic_data.nr_redist_regions; i++) {
1030 void __iomem *ptr = gic_data.redist_regions[i].redist_base;
1031 u64 typer;
1032 u32 reg;
1033
1034 reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
1035 if (reg != GIC_PIDR2_ARCH_GICv3 &&
1036 reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
1037 pr_warn("No redistributor present @%p\n", ptr);
1038 break;
1039 }
1040
1041 do {
1042 typer = gic_read_typer(ptr + GICR_TYPER);
1043 ret = fn(gic_data.redist_regions + i, ptr);
1044 if (!ret)
1045 return 0;
1046
1047 if (gic_data.redist_regions[i].single_redist)
1048 break;
1049
1050 if (gic_data.redist_stride) {
1051 ptr += gic_data.redist_stride;
1052 } else {
1053 ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
1054 if (typer & GICR_TYPER_VLPIS)
1055 ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
1056 }
1057 } while (!(typer & GICR_TYPER_LAST));
1058 }
1059
1060 return ret ? -ENODEV : 0;
1061 }
1062
__gic_populate_rdist(struct redist_region * region,void __iomem * ptr)1063 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
1064 {
1065 unsigned long mpidr;
1066 u64 typer;
1067 u32 aff;
1068
1069 /*
1070 * Convert affinity to a 32bit value that can be matched to
1071 * GICR_TYPER bits [63:32].
1072 */
1073 mpidr = gic_cpu_to_affinity(smp_processor_id());
1074
1075 aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
1076 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
1077 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
1078 MPIDR_AFFINITY_LEVEL(mpidr, 0));
1079
1080 typer = gic_read_typer(ptr + GICR_TYPER);
1081 if ((typer >> 32) == aff) {
1082 u64 offset = ptr - region->redist_base;
1083 raw_spin_lock_init(&gic_data_rdist()->rd_lock);
1084 gic_data_rdist_rd_base() = ptr;
1085 gic_data_rdist()->phys_base = region->phys_base + offset;
1086
1087 pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
1088 smp_processor_id(), mpidr,
1089 (int)(region - gic_data.redist_regions),
1090 &gic_data_rdist()->phys_base);
1091 return 0;
1092 }
1093
1094 /* Try next one */
1095 return 1;
1096 }
1097
gic_populate_rdist(void)1098 static int gic_populate_rdist(void)
1099 {
1100 if (gic_iterate_rdists(__gic_populate_rdist) == 0)
1101 return 0;
1102
1103 /* We couldn't even deal with ourselves... */
1104 WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
1105 smp_processor_id(),
1106 (unsigned long)cpu_logical_map(smp_processor_id()));
1107 return -ENODEV;
1108 }
1109
__gic_update_rdist_properties(struct redist_region * region,void __iomem * ptr)1110 static int __gic_update_rdist_properties(struct redist_region *region,
1111 void __iomem *ptr)
1112 {
1113 u64 typer = gic_read_typer(ptr + GICR_TYPER);
1114 u32 ctlr = readl_relaxed(ptr + GICR_CTLR);
1115
1116 /* Boot-time cleanup */
1117 if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
1118 u64 val;
1119
1120 /* Deactivate any present vPE */
1121 val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
1122 if (val & GICR_VPENDBASER_Valid)
1123 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
1124 ptr + SZ_128K + GICR_VPENDBASER);
1125
1126 /* Mark the VPE table as invalid */
1127 val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
1128 val &= ~GICR_VPROPBASER_4_1_VALID;
1129 gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
1130 }
1131
1132 gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
1133
1134 /*
1135 * TYPER.RVPEID implies some form of DirectLPI, no matter what the
1136 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI
1137 * that the ITS driver can make use of for LPIs (and not VLPIs).
1138 *
1139 * These are 3 different ways to express the same thing, depending
1140 * on the revision of the architecture and its relaxations over
1141 * time. Just group them under the 'direct_lpi' banner.
1142 */
1143 gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
1144 gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
1145 !!(ctlr & GICR_CTLR_IR) |
1146 gic_data.rdists.has_rvpeid);
1147 gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
1148
1149 /* Detect non-sensical configurations */
1150 if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
1151 gic_data.rdists.has_direct_lpi = false;
1152 gic_data.rdists.has_vlpis = false;
1153 gic_data.rdists.has_rvpeid = false;
1154 }
1155
1156 gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
1157
1158 return 1;
1159 }
1160
gic_update_rdist_properties(void)1161 static void gic_update_rdist_properties(void)
1162 {
1163 gic_data.ppi_nr = UINT_MAX;
1164 gic_iterate_rdists(__gic_update_rdist_properties);
1165 if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
1166 gic_data.ppi_nr = 0;
1167 pr_info("GICv3 features: %d PPIs%s%s\n",
1168 gic_data.ppi_nr,
1169 gic_data.has_rss ? ", RSS" : "",
1170 gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "");
1171
1172 if (gic_data.rdists.has_vlpis)
1173 pr_info("GICv4 features: %s%s%s\n",
1174 gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
1175 gic_data.rdists.has_rvpeid ? "RVPEID " : "",
1176 gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
1177 }
1178
gic_cpu_sys_reg_enable(void)1179 static void gic_cpu_sys_reg_enable(void)
1180 {
1181 /*
1182 * Need to check that the SRE bit has actually been set. If
1183 * not, it means that SRE is disabled at EL2. We're going to
1184 * die painfully, and there is nothing we can do about it.
1185 *
1186 * Kindly inform the luser.
1187 */
1188 if (!gic_enable_sre())
1189 pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
1190
1191 }
1192
gic_cpu_sys_reg_init(void)1193 static void gic_cpu_sys_reg_init(void)
1194 {
1195 int i, cpu = smp_processor_id();
1196 u64 mpidr = gic_cpu_to_affinity(cpu);
1197 u64 need_rss = MPIDR_RS(mpidr);
1198 bool group0;
1199 u32 pribits;
1200
1201 pribits = gic_get_pribits();
1202
1203 group0 = gic_has_group0();
1204
1205 /* Set priority mask register */
1206 if (!gic_prio_masking_enabled()) {
1207 write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
1208 } else if (gic_supports_nmi()) {
1209 /*
1210 * Check that all CPUs use the same priority space.
1211 *
1212 * If there's a mismatch with the boot CPU, the system is
1213 * likely to die as interrupt masking will not work properly on
1214 * all CPUs.
1215 */
1216 WARN_ON(group0 != cpus_have_group0);
1217 WARN_ON(gic_dist_security_disabled() != cpus_have_security_disabled);
1218 }
1219
1220 /*
1221 * Some firmwares hand over to the kernel with the BPR changed from
1222 * its reset value (and with a value large enough to prevent
1223 * any pre-emptive interrupts from working at all). Writing a zero
1224 * to BPR restores is reset value.
1225 */
1226 gic_write_bpr1(0);
1227
1228 if (static_branch_likely(&supports_deactivate_key)) {
1229 /* EOI drops priority only (mode 1) */
1230 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1231 } else {
1232 /* EOI deactivates interrupt too (mode 0) */
1233 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1234 }
1235
1236 /* Always whack Group0 before Group1 */
1237 if (group0) {
1238 switch(pribits) {
1239 case 8:
1240 case 7:
1241 write_gicreg(0, ICC_AP0R3_EL1);
1242 write_gicreg(0, ICC_AP0R2_EL1);
1243 fallthrough;
1244 case 6:
1245 write_gicreg(0, ICC_AP0R1_EL1);
1246 fallthrough;
1247 case 5:
1248 case 4:
1249 write_gicreg(0, ICC_AP0R0_EL1);
1250 }
1251
1252 isb();
1253 }
1254
1255 switch(pribits) {
1256 case 8:
1257 case 7:
1258 write_gicreg(0, ICC_AP1R3_EL1);
1259 write_gicreg(0, ICC_AP1R2_EL1);
1260 fallthrough;
1261 case 6:
1262 write_gicreg(0, ICC_AP1R1_EL1);
1263 fallthrough;
1264 case 5:
1265 case 4:
1266 write_gicreg(0, ICC_AP1R0_EL1);
1267 }
1268
1269 isb();
1270
1271 /* ... and let's hit the road... */
1272 gic_write_grpen1(1);
1273
1274 /* Keep the RSS capability status in per_cpu variable */
1275 per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1276
1277 /* Check all the CPUs have capable of sending SGIs to other CPUs */
1278 for_each_online_cpu(i) {
1279 bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1280
1281 need_rss |= MPIDR_RS(gic_cpu_to_affinity(i));
1282 if (need_rss && (!have_rss))
1283 pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1284 cpu, (unsigned long)mpidr,
1285 i, (unsigned long)gic_cpu_to_affinity(i));
1286 }
1287
1288 /**
1289 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1290 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1291 * UNPREDICTABLE choice of :
1292 * - The write is ignored.
1293 * - The RS field is treated as 0.
1294 */
1295 if (need_rss && (!gic_data.has_rss))
1296 pr_crit_once("RSS is required but GICD doesn't support it\n");
1297 }
1298
1299 static bool gicv3_nolpi;
1300
gicv3_nolpi_cfg(char * buf)1301 static int __init gicv3_nolpi_cfg(char *buf)
1302 {
1303 return kstrtobool(buf, &gicv3_nolpi);
1304 }
1305 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1306
gic_dist_supports_lpis(void)1307 static int gic_dist_supports_lpis(void)
1308 {
1309 return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1310 !!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1311 !gicv3_nolpi);
1312 }
1313
gic_cpu_init(void)1314 static void gic_cpu_init(void)
1315 {
1316 void __iomem *rbase;
1317 int i;
1318
1319 /* Register ourselves with the rest of the world */
1320 if (gic_populate_rdist())
1321 return;
1322
1323 gic_enable_redist(true);
1324
1325 WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1326 !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1327 "Distributor has extended ranges, but CPU%d doesn't\n",
1328 smp_processor_id());
1329
1330 rbase = gic_data_rdist_sgi_base();
1331
1332 /* Configure SGIs/PPIs as non-secure Group-1 */
1333 for (i = 0; i < gic_data.ppi_nr + SGI_NR; i += 32)
1334 writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1335
1336 gic_cpu_config(rbase, gic_data.ppi_nr + SGI_NR, dist_prio_irq);
1337 gic_redist_wait_for_rwp();
1338
1339 /* initialise system registers */
1340 gic_cpu_sys_reg_init();
1341 }
1342
1343 #ifdef CONFIG_SMP
1344
1345 #define MPIDR_TO_SGI_RS(mpidr) (MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1346 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr) ((mpidr) & ~0xFUL)
1347
1348 /*
1349 * gic_starting_cpu() is called after the last point where cpuhp is allowed
1350 * to fail. So pre check for problems earlier.
1351 */
gic_check_rdist(unsigned int cpu)1352 static int gic_check_rdist(unsigned int cpu)
1353 {
1354 if (cpumask_test_cpu(cpu, &broken_rdists))
1355 return -EINVAL;
1356
1357 return 0;
1358 }
1359
gic_starting_cpu(unsigned int cpu)1360 static int gic_starting_cpu(unsigned int cpu)
1361 {
1362 gic_cpu_sys_reg_enable();
1363 gic_cpu_init();
1364
1365 if (gic_dist_supports_lpis())
1366 its_cpu_init();
1367
1368 return 0;
1369 }
1370
gic_compute_target_list(int * base_cpu,const struct cpumask * mask,unsigned long cluster_id)1371 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1372 unsigned long cluster_id)
1373 {
1374 int next_cpu, cpu = *base_cpu;
1375 unsigned long mpidr;
1376 u16 tlist = 0;
1377
1378 mpidr = gic_cpu_to_affinity(cpu);
1379
1380 while (cpu < nr_cpu_ids) {
1381 tlist |= 1 << (mpidr & 0xf);
1382
1383 next_cpu = cpumask_next(cpu, mask);
1384 if (next_cpu >= nr_cpu_ids)
1385 goto out;
1386 cpu = next_cpu;
1387
1388 mpidr = gic_cpu_to_affinity(cpu);
1389
1390 if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1391 cpu--;
1392 goto out;
1393 }
1394 }
1395 out:
1396 *base_cpu = cpu;
1397 return tlist;
1398 }
1399
1400 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1401 (MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1402 << ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1403
gic_send_sgi(u64 cluster_id,u16 tlist,unsigned int irq)1404 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1405 {
1406 u64 val;
1407
1408 val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3) |
1409 MPIDR_TO_SGI_AFFINITY(cluster_id, 2) |
1410 irq << ICC_SGI1R_SGI_ID_SHIFT |
1411 MPIDR_TO_SGI_AFFINITY(cluster_id, 1) |
1412 MPIDR_TO_SGI_RS(cluster_id) |
1413 tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1414
1415 pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1416 gic_write_sgi1r(val);
1417 }
1418
gic_ipi_send_mask(struct irq_data * d,const struct cpumask * mask)1419 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1420 {
1421 int cpu;
1422
1423 if (WARN_ON(d->hwirq >= 16))
1424 return;
1425
1426 /*
1427 * Ensure that stores to Normal memory are visible to the
1428 * other CPUs before issuing the IPI.
1429 */
1430 dsb(ishst);
1431
1432 for_each_cpu(cpu, mask) {
1433 u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(gic_cpu_to_affinity(cpu));
1434 u16 tlist;
1435
1436 tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1437 gic_send_sgi(cluster_id, tlist, d->hwirq);
1438 }
1439
1440 /* Force the above writes to ICC_SGI1R_EL1 to be executed */
1441 isb();
1442 }
1443
gic_smp_init(void)1444 static void __init gic_smp_init(void)
1445 {
1446 struct irq_fwspec sgi_fwspec = {
1447 .fwnode = gic_data.fwnode,
1448 .param_count = 1,
1449 };
1450 int base_sgi;
1451
1452 cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
1453 "irqchip/arm/gicv3:checkrdist",
1454 gic_check_rdist, NULL);
1455
1456 cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1457 "irqchip/arm/gicv3:starting",
1458 gic_starting_cpu, NULL);
1459
1460 /* Register all 8 non-secure SGIs */
1461 base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec);
1462 if (WARN_ON(base_sgi <= 0))
1463 return;
1464
1465 set_smp_ipi_range(base_sgi, 8);
1466 }
1467
gic_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1468 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1469 bool force)
1470 {
1471 unsigned int cpu;
1472 u32 offset, index;
1473 void __iomem *reg;
1474 int enabled;
1475 u64 val;
1476
1477 if (force)
1478 cpu = cpumask_first(mask_val);
1479 else
1480 cpu = cpumask_any_and(mask_val, cpu_online_mask);
1481
1482 if (cpu >= nr_cpu_ids)
1483 return -EINVAL;
1484
1485 if (gic_irq_in_rdist(d))
1486 return -EINVAL;
1487
1488 /* If interrupt was enabled, disable it first */
1489 enabled = gic_peek_irq(d, GICD_ISENABLER);
1490 if (enabled)
1491 gic_mask_irq(d);
1492
1493 offset = convert_offset_index(d, GICD_IROUTER, &index);
1494 reg = gic_dist_base(d) + offset + (index * 8);
1495 val = gic_cpu_to_affinity(cpu);
1496
1497 gic_write_irouter(val, reg);
1498
1499 /*
1500 * If the interrupt was enabled, enabled it again. Otherwise,
1501 * just wait for the distributor to have digested our changes.
1502 */
1503 if (enabled)
1504 gic_unmask_irq(d);
1505
1506 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1507
1508 return IRQ_SET_MASK_OK_DONE;
1509 }
1510 #else
1511 #define gic_set_affinity NULL
1512 #define gic_ipi_send_mask NULL
1513 #define gic_smp_init() do { } while(0)
1514 #endif
1515
gic_retrigger(struct irq_data * data)1516 static int gic_retrigger(struct irq_data *data)
1517 {
1518 return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1519 }
1520
1521 #ifdef CONFIG_CPU_PM
gic_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1522 static int gic_cpu_pm_notifier(struct notifier_block *self,
1523 unsigned long cmd, void *v)
1524 {
1525 if (cmd == CPU_PM_EXIT) {
1526 if (gic_dist_security_disabled())
1527 gic_enable_redist(true);
1528 gic_cpu_sys_reg_enable();
1529 gic_cpu_sys_reg_init();
1530 } else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1531 gic_write_grpen1(0);
1532 gic_enable_redist(false);
1533 }
1534 return NOTIFY_OK;
1535 }
1536
1537 static struct notifier_block gic_cpu_pm_notifier_block = {
1538 .notifier_call = gic_cpu_pm_notifier,
1539 };
1540
gic_cpu_pm_init(void)1541 static void gic_cpu_pm_init(void)
1542 {
1543 cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1544 }
1545
1546 #else
gic_cpu_pm_init(void)1547 static inline void gic_cpu_pm_init(void) { }
1548 #endif /* CONFIG_CPU_PM */
1549
1550 static struct irq_chip gic_chip = {
1551 .name = "GICv3",
1552 .irq_mask = gic_mask_irq,
1553 .irq_unmask = gic_unmask_irq,
1554 .irq_eoi = gic_eoi_irq,
1555 .irq_set_type = gic_set_type,
1556 .irq_set_affinity = gic_set_affinity,
1557 .irq_retrigger = gic_retrigger,
1558 .irq_get_irqchip_state = gic_irq_get_irqchip_state,
1559 .irq_set_irqchip_state = gic_irq_set_irqchip_state,
1560 .irq_nmi_setup = gic_irq_nmi_setup,
1561 .irq_nmi_teardown = gic_irq_nmi_teardown,
1562 .ipi_send_mask = gic_ipi_send_mask,
1563 .flags = IRQCHIP_SET_TYPE_MASKED |
1564 IRQCHIP_SKIP_SET_WAKE |
1565 IRQCHIP_MASK_ON_SUSPEND,
1566 };
1567
1568 static struct irq_chip gic_eoimode1_chip = {
1569 .name = "GICv3",
1570 .irq_mask = gic_eoimode1_mask_irq,
1571 .irq_unmask = gic_unmask_irq,
1572 .irq_eoi = gic_eoimode1_eoi_irq,
1573 .irq_set_type = gic_set_type,
1574 .irq_set_affinity = gic_set_affinity,
1575 .irq_retrigger = gic_retrigger,
1576 .irq_get_irqchip_state = gic_irq_get_irqchip_state,
1577 .irq_set_irqchip_state = gic_irq_set_irqchip_state,
1578 .irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity,
1579 .irq_nmi_setup = gic_irq_nmi_setup,
1580 .irq_nmi_teardown = gic_irq_nmi_teardown,
1581 .ipi_send_mask = gic_ipi_send_mask,
1582 .flags = IRQCHIP_SET_TYPE_MASKED |
1583 IRQCHIP_SKIP_SET_WAKE |
1584 IRQCHIP_MASK_ON_SUSPEND,
1585 };
1586
gic_irq_domain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hw)1587 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1588 irq_hw_number_t hw)
1589 {
1590 struct irq_chip *chip = &gic_chip;
1591 struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1592
1593 if (static_branch_likely(&supports_deactivate_key))
1594 chip = &gic_eoimode1_chip;
1595
1596 switch (__get_intid_range(hw)) {
1597 case SGI_RANGE:
1598 case PPI_RANGE:
1599 case EPPI_RANGE:
1600 irq_set_percpu_devid(irq);
1601 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1602 handle_percpu_devid_irq, NULL, NULL);
1603 break;
1604
1605 case SPI_RANGE:
1606 case ESPI_RANGE:
1607 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1608 handle_fasteoi_irq, NULL, NULL);
1609 irq_set_probe(irq);
1610 irqd_set_single_target(irqd);
1611 break;
1612
1613 case LPI_RANGE:
1614 if (!gic_dist_supports_lpis())
1615 return -EPERM;
1616 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1617 handle_fasteoi_irq, NULL, NULL);
1618 break;
1619
1620 default:
1621 return -EPERM;
1622 }
1623
1624 /* Prevents SW retriggers which mess up the ACK/EOI ordering */
1625 irqd_set_handle_enforce_irqctx(irqd);
1626 return 0;
1627 }
1628
gic_irq_domain_translate(struct irq_domain * d,struct irq_fwspec * fwspec,unsigned long * hwirq,unsigned int * type)1629 static int gic_irq_domain_translate(struct irq_domain *d,
1630 struct irq_fwspec *fwspec,
1631 unsigned long *hwirq,
1632 unsigned int *type)
1633 {
1634 if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1635 *hwirq = fwspec->param[0];
1636 *type = IRQ_TYPE_EDGE_RISING;
1637 return 0;
1638 }
1639
1640 if (is_of_node(fwspec->fwnode)) {
1641 if (fwspec->param_count < 3)
1642 return -EINVAL;
1643
1644 switch (fwspec->param[0]) {
1645 case 0: /* SPI */
1646 *hwirq = fwspec->param[1] + 32;
1647 break;
1648 case 1: /* PPI */
1649 *hwirq = fwspec->param[1] + 16;
1650 break;
1651 case 2: /* ESPI */
1652 *hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1653 break;
1654 case 3: /* EPPI */
1655 *hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1656 break;
1657 case GIC_IRQ_TYPE_LPI: /* LPI */
1658 *hwirq = fwspec->param[1];
1659 break;
1660 case GIC_IRQ_TYPE_PARTITION:
1661 *hwirq = fwspec->param[1];
1662 if (fwspec->param[1] >= 16)
1663 *hwirq += EPPI_BASE_INTID - 16;
1664 else
1665 *hwirq += 16;
1666 break;
1667 default:
1668 return -EINVAL;
1669 }
1670
1671 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1672
1673 /*
1674 * Make it clear that broken DTs are... broken.
1675 * Partitioned PPIs are an unfortunate exception.
1676 */
1677 WARN_ON(*type == IRQ_TYPE_NONE &&
1678 fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1679 return 0;
1680 }
1681
1682 if (is_fwnode_irqchip(fwspec->fwnode)) {
1683 if(fwspec->param_count != 2)
1684 return -EINVAL;
1685
1686 if (fwspec->param[0] < 16) {
1687 pr_err(FW_BUG "Illegal GSI%d translation request\n",
1688 fwspec->param[0]);
1689 return -EINVAL;
1690 }
1691
1692 *hwirq = fwspec->param[0];
1693 *type = fwspec->param[1];
1694
1695 WARN_ON(*type == IRQ_TYPE_NONE);
1696 return 0;
1697 }
1698
1699 return -EINVAL;
1700 }
1701
gic_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1702 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1703 unsigned int nr_irqs, void *arg)
1704 {
1705 int i, ret;
1706 irq_hw_number_t hwirq;
1707 unsigned int type = IRQ_TYPE_NONE;
1708 struct irq_fwspec *fwspec = arg;
1709
1710 ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1711 if (ret)
1712 return ret;
1713
1714 for (i = 0; i < nr_irqs; i++) {
1715 ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1716 if (ret)
1717 return ret;
1718 }
1719
1720 return 0;
1721 }
1722
gic_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1723 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1724 unsigned int nr_irqs)
1725 {
1726 int i;
1727
1728 for (i = 0; i < nr_irqs; i++) {
1729 struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1730 irq_set_handler(virq + i, NULL);
1731 irq_domain_reset_irq_data(d);
1732 }
1733 }
1734
fwspec_is_partitioned_ppi(struct irq_fwspec * fwspec,irq_hw_number_t hwirq)1735 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1736 irq_hw_number_t hwirq)
1737 {
1738 enum gic_intid_range range;
1739
1740 if (!gic_data.ppi_descs)
1741 return false;
1742
1743 if (!is_of_node(fwspec->fwnode))
1744 return false;
1745
1746 if (fwspec->param_count < 4 || !fwspec->param[3])
1747 return false;
1748
1749 range = __get_intid_range(hwirq);
1750 if (range != PPI_RANGE && range != EPPI_RANGE)
1751 return false;
1752
1753 return true;
1754 }
1755
gic_irq_domain_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)1756 static int gic_irq_domain_select(struct irq_domain *d,
1757 struct irq_fwspec *fwspec,
1758 enum irq_domain_bus_token bus_token)
1759 {
1760 unsigned int type, ret, ppi_idx;
1761 irq_hw_number_t hwirq;
1762
1763 /* Not for us */
1764 if (fwspec->fwnode != d->fwnode)
1765 return 0;
1766
1767 /* Handle pure domain searches */
1768 if (!fwspec->param_count)
1769 return d->bus_token == bus_token;
1770
1771 /* If this is not DT, then we have a single domain */
1772 if (!is_of_node(fwspec->fwnode))
1773 return 1;
1774
1775 ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1776 if (WARN_ON_ONCE(ret))
1777 return 0;
1778
1779 if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1780 return d == gic_data.domain;
1781
1782 /*
1783 * If this is a PPI and we have a 4th (non-null) parameter,
1784 * then we need to match the partition domain.
1785 */
1786 ppi_idx = __gic_get_ppi_index(hwirq);
1787 return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1788 }
1789
1790 static const struct irq_domain_ops gic_irq_domain_ops = {
1791 .translate = gic_irq_domain_translate,
1792 .alloc = gic_irq_domain_alloc,
1793 .free = gic_irq_domain_free,
1794 .select = gic_irq_domain_select,
1795 };
1796
partition_domain_translate(struct irq_domain * d,struct irq_fwspec * fwspec,unsigned long * hwirq,unsigned int * type)1797 static int partition_domain_translate(struct irq_domain *d,
1798 struct irq_fwspec *fwspec,
1799 unsigned long *hwirq,
1800 unsigned int *type)
1801 {
1802 unsigned long ppi_intid;
1803 struct device_node *np;
1804 unsigned int ppi_idx;
1805 int ret;
1806
1807 if (!gic_data.ppi_descs)
1808 return -ENOMEM;
1809
1810 np = of_find_node_by_phandle(fwspec->param[3]);
1811 if (WARN_ON(!np))
1812 return -EINVAL;
1813
1814 ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1815 if (WARN_ON_ONCE(ret))
1816 return 0;
1817
1818 ppi_idx = __gic_get_ppi_index(ppi_intid);
1819 ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1820 of_node_to_fwnode(np));
1821 if (ret < 0)
1822 return ret;
1823
1824 *hwirq = ret;
1825 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1826
1827 return 0;
1828 }
1829
1830 static const struct irq_domain_ops partition_domain_ops = {
1831 .translate = partition_domain_translate,
1832 .select = gic_irq_domain_select,
1833 };
1834
gic_enable_quirk_msm8996(void * data)1835 static bool gic_enable_quirk_msm8996(void *data)
1836 {
1837 struct gic_chip_data *d = data;
1838
1839 d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1840
1841 return true;
1842 }
1843
gic_enable_quirk_cavium_38539(void * data)1844 static bool gic_enable_quirk_cavium_38539(void *data)
1845 {
1846 struct gic_chip_data *d = data;
1847
1848 d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1849
1850 return true;
1851 }
1852
gic_enable_quirk_hip06_07(void * data)1853 static bool gic_enable_quirk_hip06_07(void *data)
1854 {
1855 struct gic_chip_data *d = data;
1856
1857 /*
1858 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1859 * not being an actual ARM implementation). The saving grace is
1860 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1861 * HIP07 doesn't even have a proper IIDR, and still pretends to
1862 * have ESPI. In both cases, put them right.
1863 */
1864 if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1865 /* Zero both ESPI and the RES0 field next to it... */
1866 d->rdists.gicd_typer &= ~GENMASK(9, 8);
1867 return true;
1868 }
1869
1870 return false;
1871 }
1872
1873 #define T241_CHIPN_MASK GENMASK_ULL(45, 44)
1874 #define T241_CHIP_GICDA_OFFSET 0x1580000
1875 #define SMCCC_SOC_ID_T241 0x036b0241
1876
gic_enable_quirk_nvidia_t241(void * data)1877 static bool gic_enable_quirk_nvidia_t241(void *data)
1878 {
1879 s32 soc_id = arm_smccc_get_soc_id_version();
1880 unsigned long chip_bmask = 0;
1881 phys_addr_t phys;
1882 u32 i;
1883
1884 /* Check JEP106 code for NVIDIA T241 chip (036b:0241) */
1885 if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241))
1886 return false;
1887
1888 /* Find the chips based on GICR regions PHYS addr */
1889 for (i = 0; i < gic_data.nr_redist_regions; i++) {
1890 chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK,
1891 (u64)gic_data.redist_regions[i].phys_base));
1892 }
1893
1894 if (hweight32(chip_bmask) < 3)
1895 return false;
1896
1897 /* Setup GICD alias regions */
1898 for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) {
1899 if (chip_bmask & BIT(i)) {
1900 phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET;
1901 phys |= FIELD_PREP(T241_CHIPN_MASK, i);
1902 t241_dist_base_alias[i] = ioremap(phys, SZ_64K);
1903 WARN_ON_ONCE(!t241_dist_base_alias[i]);
1904 }
1905 }
1906 static_branch_enable(&gic_nvidia_t241_erratum);
1907 return true;
1908 }
1909
gic_enable_quirk_asr8601(void * data)1910 static bool gic_enable_quirk_asr8601(void *data)
1911 {
1912 struct gic_chip_data *d = data;
1913
1914 d->flags |= FLAGS_WORKAROUND_ASR_ERRATUM_8601001;
1915
1916 return true;
1917 }
1918
gic_enable_quirk_arm64_2941627(void * data)1919 static bool gic_enable_quirk_arm64_2941627(void *data)
1920 {
1921 static_branch_enable(&gic_arm64_2941627_erratum);
1922 return true;
1923 }
1924
rd_set_non_coherent(void * data)1925 static bool rd_set_non_coherent(void *data)
1926 {
1927 struct gic_chip_data *d = data;
1928
1929 d->rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
1930 return true;
1931 }
1932
1933 static const struct gic_quirk gic_quirks[] = {
1934 {
1935 .desc = "GICv3: Qualcomm MSM8996 broken firmware",
1936 .compatible = "qcom,msm8996-gic-v3",
1937 .init = gic_enable_quirk_msm8996,
1938 },
1939 {
1940 .desc = "GICv3: ASR erratum 8601001",
1941 .compatible = "asr,asr8601-gic-v3",
1942 .init = gic_enable_quirk_asr8601,
1943 },
1944 {
1945 .desc = "GICv3: HIP06 erratum 161010803",
1946 .iidr = 0x0204043b,
1947 .mask = 0xffffffff,
1948 .init = gic_enable_quirk_hip06_07,
1949 },
1950 {
1951 .desc = "GICv3: HIP07 erratum 161010803",
1952 .iidr = 0x00000000,
1953 .mask = 0xffffffff,
1954 .init = gic_enable_quirk_hip06_07,
1955 },
1956 {
1957 /*
1958 * Reserved register accesses generate a Synchronous
1959 * External Abort. This erratum applies to:
1960 * - ThunderX: CN88xx
1961 * - OCTEON TX: CN83xx, CN81xx
1962 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1963 */
1964 .desc = "GICv3: Cavium erratum 38539",
1965 .iidr = 0xa000034c,
1966 .mask = 0xe8f00fff,
1967 .init = gic_enable_quirk_cavium_38539,
1968 },
1969 {
1970 .desc = "GICv3: NVIDIA erratum T241-FABRIC-4",
1971 .iidr = 0x0402043b,
1972 .mask = 0xffffffff,
1973 .init = gic_enable_quirk_nvidia_t241,
1974 },
1975 {
1976 /*
1977 * GIC-700: 2941627 workaround - IP variant [0,1]
1978 *
1979 */
1980 .desc = "GICv3: ARM64 erratum 2941627",
1981 .iidr = 0x0400043b,
1982 .mask = 0xff0e0fff,
1983 .init = gic_enable_quirk_arm64_2941627,
1984 },
1985 {
1986 /*
1987 * GIC-700: 2941627 workaround - IP variant [2]
1988 */
1989 .desc = "GICv3: ARM64 erratum 2941627",
1990 .iidr = 0x0402043b,
1991 .mask = 0xff0f0fff,
1992 .init = gic_enable_quirk_arm64_2941627,
1993 },
1994 {
1995 .desc = "GICv3: non-coherent attribute",
1996 .property = "dma-noncoherent",
1997 .init = rd_set_non_coherent,
1998 },
1999 {
2000 }
2001 };
2002
gic_enable_nmi_support(void)2003 static void gic_enable_nmi_support(void)
2004 {
2005 int i;
2006
2007 if (!gic_prio_masking_enabled())
2008 return;
2009
2010 rdist_nmi_refs = kcalloc(gic_data.ppi_nr + SGI_NR,
2011 sizeof(*rdist_nmi_refs), GFP_KERNEL);
2012 if (!rdist_nmi_refs)
2013 return;
2014
2015 for (i = 0; i < gic_data.ppi_nr + SGI_NR; i++)
2016 refcount_set(&rdist_nmi_refs[i], 0);
2017
2018 pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
2019 gic_has_relaxed_pmr_sync() ? "relaxed" : "forced");
2020
2021 static_branch_enable(&supports_pseudo_nmis);
2022
2023 if (static_branch_likely(&supports_deactivate_key))
2024 gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
2025 else
2026 gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
2027 }
2028
gic_init_bases(phys_addr_t dist_phys_base,void __iomem * dist_base,struct redist_region * rdist_regs,u32 nr_redist_regions,u64 redist_stride,struct fwnode_handle * handle)2029 static int __init gic_init_bases(phys_addr_t dist_phys_base,
2030 void __iomem *dist_base,
2031 struct redist_region *rdist_regs,
2032 u32 nr_redist_regions,
2033 u64 redist_stride,
2034 struct fwnode_handle *handle)
2035 {
2036 u32 typer;
2037 int err;
2038
2039 if (!is_hyp_mode_available())
2040 static_branch_disable(&supports_deactivate_key);
2041
2042 if (static_branch_likely(&supports_deactivate_key))
2043 pr_info("GIC: Using split EOI/Deactivate mode\n");
2044
2045 gic_data.fwnode = handle;
2046 gic_data.dist_phys_base = dist_phys_base;
2047 gic_data.dist_base = dist_base;
2048 gic_data.redist_regions = rdist_regs;
2049 gic_data.nr_redist_regions = nr_redist_regions;
2050 gic_data.redist_stride = redist_stride;
2051
2052 /*
2053 * Find out how many interrupts are supported.
2054 */
2055 typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
2056 gic_data.rdists.gicd_typer = typer;
2057
2058 gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
2059 gic_quirks, &gic_data);
2060
2061 pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
2062 pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
2063
2064 /*
2065 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
2066 * architecture spec (which says that reserved registers are RES0).
2067 */
2068 if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
2069 gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
2070
2071 gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
2072 &gic_data);
2073 gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
2074 if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) {
2075 /* Disable GICv4.x features for the erratum T241-FABRIC-4 */
2076 gic_data.rdists.has_rvpeid = true;
2077 gic_data.rdists.has_vlpis = true;
2078 gic_data.rdists.has_direct_lpi = true;
2079 gic_data.rdists.has_vpend_valid_dirty = true;
2080 }
2081
2082 if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
2083 err = -ENOMEM;
2084 goto out_free;
2085 }
2086
2087 irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
2088
2089 gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
2090
2091 if (typer & GICD_TYPER_MBIS) {
2092 err = mbi_init(handle, gic_data.domain);
2093 if (err)
2094 pr_err("Failed to initialize MBIs\n");
2095 }
2096
2097 set_handle_irq(gic_handle_irq);
2098
2099 gic_update_rdist_properties();
2100
2101 gic_cpu_sys_reg_enable();
2102 gic_prio_init();
2103 gic_dist_init();
2104 gic_cpu_init();
2105 gic_enable_nmi_support();
2106 gic_smp_init();
2107 gic_cpu_pm_init();
2108
2109 if (gic_dist_supports_lpis()) {
2110 its_init(handle, &gic_data.rdists, gic_data.domain, dist_prio_irq);
2111 its_cpu_init();
2112 its_lpi_memreserve_init();
2113 } else {
2114 if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
2115 gicv2m_init(handle, gic_data.domain);
2116 }
2117
2118 return 0;
2119
2120 out_free:
2121 if (gic_data.domain)
2122 irq_domain_remove(gic_data.domain);
2123 free_percpu(gic_data.rdists.rdist);
2124 return err;
2125 }
2126
gic_validate_dist_version(void __iomem * dist_base)2127 static int __init gic_validate_dist_version(void __iomem *dist_base)
2128 {
2129 u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2130
2131 if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
2132 return -ENODEV;
2133
2134 return 0;
2135 }
2136
2137 /* Create all possible partitions at boot time */
gic_populate_ppi_partitions(struct device_node * gic_node)2138 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
2139 {
2140 struct device_node *parts_node, *child_part;
2141 int part_idx = 0, i;
2142 int nr_parts;
2143 struct partition_affinity *parts;
2144
2145 parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
2146 if (!parts_node)
2147 return;
2148
2149 gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
2150 if (!gic_data.ppi_descs)
2151 goto out_put_node;
2152
2153 nr_parts = of_get_child_count(parts_node);
2154
2155 if (!nr_parts)
2156 goto out_put_node;
2157
2158 parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
2159 if (WARN_ON(!parts))
2160 goto out_put_node;
2161
2162 for_each_child_of_node(parts_node, child_part) {
2163 struct partition_affinity *part;
2164 int n;
2165
2166 part = &parts[part_idx];
2167
2168 part->partition_id = of_node_to_fwnode(child_part);
2169
2170 pr_info("GIC: PPI partition %pOFn[%d] { ",
2171 child_part, part_idx);
2172
2173 n = of_property_count_elems_of_size(child_part, "affinity",
2174 sizeof(u32));
2175 WARN_ON(n <= 0);
2176
2177 for (i = 0; i < n; i++) {
2178 int err, cpu;
2179 u32 cpu_phandle;
2180 struct device_node *cpu_node;
2181
2182 err = of_property_read_u32_index(child_part, "affinity",
2183 i, &cpu_phandle);
2184 if (WARN_ON(err))
2185 continue;
2186
2187 cpu_node = of_find_node_by_phandle(cpu_phandle);
2188 if (WARN_ON(!cpu_node))
2189 continue;
2190
2191 cpu = of_cpu_node_to_id(cpu_node);
2192 if (WARN_ON(cpu < 0)) {
2193 of_node_put(cpu_node);
2194 continue;
2195 }
2196
2197 pr_cont("%pOF[%d] ", cpu_node, cpu);
2198
2199 cpumask_set_cpu(cpu, &part->mask);
2200 of_node_put(cpu_node);
2201 }
2202
2203 pr_cont("}\n");
2204 part_idx++;
2205 }
2206
2207 for (i = 0; i < gic_data.ppi_nr; i++) {
2208 unsigned int irq;
2209 struct partition_desc *desc;
2210 struct irq_fwspec ppi_fwspec = {
2211 .fwnode = gic_data.fwnode,
2212 .param_count = 3,
2213 .param = {
2214 [0] = GIC_IRQ_TYPE_PARTITION,
2215 [1] = i,
2216 [2] = IRQ_TYPE_NONE,
2217 },
2218 };
2219
2220 irq = irq_create_fwspec_mapping(&ppi_fwspec);
2221 if (WARN_ON(!irq))
2222 continue;
2223 desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
2224 irq, &partition_domain_ops);
2225 if (WARN_ON(!desc))
2226 continue;
2227
2228 gic_data.ppi_descs[i] = desc;
2229 }
2230
2231 out_put_node:
2232 of_node_put(parts_node);
2233 }
2234
gic_of_setup_kvm_info(struct device_node * node,u32 nr_redist_regions)2235 static void __init gic_of_setup_kvm_info(struct device_node *node, u32 nr_redist_regions)
2236 {
2237 int ret;
2238 struct resource r;
2239
2240 gic_v3_kvm_info.type = GIC_V3;
2241
2242 gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
2243 if (!gic_v3_kvm_info.maint_irq)
2244 return;
2245
2246 /* Also skip GICD, GICC, GICH */
2247 ret = of_address_to_resource(node, nr_redist_regions + 3, &r);
2248 if (!ret)
2249 gic_v3_kvm_info.vcpu = r;
2250
2251 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2252 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2253 vgic_set_kvm_info(&gic_v3_kvm_info);
2254 }
2255
gic_request_region(resource_size_t base,resource_size_t size,const char * name)2256 static void gic_request_region(resource_size_t base, resource_size_t size,
2257 const char *name)
2258 {
2259 if (!request_mem_region(base, size, name))
2260 pr_warn_once(FW_BUG "%s region %pa has overlapping address\n",
2261 name, &base);
2262 }
2263
gic_of_iomap(struct device_node * node,int idx,const char * name,struct resource * res)2264 static void __iomem *gic_of_iomap(struct device_node *node, int idx,
2265 const char *name, struct resource *res)
2266 {
2267 void __iomem *base;
2268 int ret;
2269
2270 ret = of_address_to_resource(node, idx, res);
2271 if (ret)
2272 return IOMEM_ERR_PTR(ret);
2273
2274 gic_request_region(res->start, resource_size(res), name);
2275 base = of_iomap(node, idx);
2276
2277 return base ?: IOMEM_ERR_PTR(-ENOMEM);
2278 }
2279
gic_of_init(struct device_node * node,struct device_node * parent)2280 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
2281 {
2282 phys_addr_t dist_phys_base;
2283 void __iomem *dist_base;
2284 struct redist_region *rdist_regs;
2285 struct resource res;
2286 u64 redist_stride;
2287 u32 nr_redist_regions;
2288 int err, i;
2289
2290 dist_base = gic_of_iomap(node, 0, "GICD", &res);
2291 if (IS_ERR(dist_base)) {
2292 pr_err("%pOF: unable to map gic dist registers\n", node);
2293 return PTR_ERR(dist_base);
2294 }
2295
2296 dist_phys_base = res.start;
2297
2298 err = gic_validate_dist_version(dist_base);
2299 if (err) {
2300 pr_err("%pOF: no distributor detected, giving up\n", node);
2301 goto out_unmap_dist;
2302 }
2303
2304 if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
2305 nr_redist_regions = 1;
2306
2307 rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
2308 GFP_KERNEL);
2309 if (!rdist_regs) {
2310 err = -ENOMEM;
2311 goto out_unmap_dist;
2312 }
2313
2314 for (i = 0; i < nr_redist_regions; i++) {
2315 rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res);
2316 if (IS_ERR(rdist_regs[i].redist_base)) {
2317 pr_err("%pOF: couldn't map region %d\n", node, i);
2318 err = -ENODEV;
2319 goto out_unmap_rdist;
2320 }
2321 rdist_regs[i].phys_base = res.start;
2322 }
2323
2324 if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
2325 redist_stride = 0;
2326
2327 gic_enable_of_quirks(node, gic_quirks, &gic_data);
2328
2329 err = gic_init_bases(dist_phys_base, dist_base, rdist_regs,
2330 nr_redist_regions, redist_stride, &node->fwnode);
2331 if (err)
2332 goto out_unmap_rdist;
2333
2334 gic_populate_ppi_partitions(node);
2335
2336 if (static_branch_likely(&supports_deactivate_key))
2337 gic_of_setup_kvm_info(node, nr_redist_regions);
2338 return 0;
2339
2340 out_unmap_rdist:
2341 for (i = 0; i < nr_redist_regions; i++)
2342 if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base))
2343 iounmap(rdist_regs[i].redist_base);
2344 kfree(rdist_regs);
2345 out_unmap_dist:
2346 iounmap(dist_base);
2347 return err;
2348 }
2349
2350 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2351
2352 #ifdef CONFIG_ACPI
2353 static struct
2354 {
2355 void __iomem *dist_base;
2356 struct redist_region *redist_regs;
2357 u32 nr_redist_regions;
2358 bool single_redist;
2359 int enabled_rdists;
2360 u32 maint_irq;
2361 int maint_irq_mode;
2362 phys_addr_t vcpu_base;
2363 } acpi_data __initdata;
2364
2365 static void __init
gic_acpi_register_redist(phys_addr_t phys_base,void __iomem * redist_base)2366 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2367 {
2368 static int count = 0;
2369
2370 acpi_data.redist_regs[count].phys_base = phys_base;
2371 acpi_data.redist_regs[count].redist_base = redist_base;
2372 acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2373 count++;
2374 }
2375
2376 static int __init
gic_acpi_parse_madt_redist(union acpi_subtable_headers * header,const unsigned long end)2377 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2378 const unsigned long end)
2379 {
2380 struct acpi_madt_generic_redistributor *redist =
2381 (struct acpi_madt_generic_redistributor *)header;
2382 void __iomem *redist_base;
2383
2384 redist_base = ioremap(redist->base_address, redist->length);
2385 if (!redist_base) {
2386 pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2387 return -ENOMEM;
2388 }
2389
2390 if (acpi_get_madt_revision() >= 7 &&
2391 (redist->flags & ACPI_MADT_GICR_NON_COHERENT))
2392 gic_data.rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
2393
2394 gic_request_region(redist->base_address, redist->length, "GICR");
2395
2396 gic_acpi_register_redist(redist->base_address, redist_base);
2397 return 0;
2398 }
2399
2400 static int __init
gic_acpi_parse_madt_gicc(union acpi_subtable_headers * header,const unsigned long end)2401 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2402 const unsigned long end)
2403 {
2404 struct acpi_madt_generic_interrupt *gicc =
2405 (struct acpi_madt_generic_interrupt *)header;
2406 u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2407 u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2408 void __iomem *redist_base;
2409
2410 /* Neither enabled or online capable means it doesn't exist, skip it */
2411 if (!(gicc->flags & (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE)))
2412 return 0;
2413
2414 /*
2415 * Capable but disabled CPUs can be brought online later. What about
2416 * the redistributor? ACPI doesn't want to say!
2417 * Virtual hotplug systems can use the MADT's "always-on" GICR entries.
2418 * Otherwise, prevent such CPUs from being brought online.
2419 */
2420 if (!(gicc->flags & ACPI_MADT_ENABLED)) {
2421 int cpu = get_cpu_for_acpi_id(gicc->uid);
2422
2423 pr_warn("CPU %u's redistributor is inaccessible: this CPU can't be brought online\n", cpu);
2424 if (cpu >= 0)
2425 cpumask_set_cpu(cpu, &broken_rdists);
2426 return 0;
2427 }
2428
2429 redist_base = ioremap(gicc->gicr_base_address, size);
2430 if (!redist_base)
2431 return -ENOMEM;
2432 gic_request_region(gicc->gicr_base_address, size, "GICR");
2433
2434 if (acpi_get_madt_revision() >= 7 &&
2435 (gicc->flags & ACPI_MADT_GICC_NON_COHERENT))
2436 gic_data.rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
2437
2438 gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2439 return 0;
2440 }
2441
gic_acpi_collect_gicr_base(void)2442 static int __init gic_acpi_collect_gicr_base(void)
2443 {
2444 acpi_tbl_entry_handler redist_parser;
2445 enum acpi_madt_type type;
2446
2447 if (acpi_data.single_redist) {
2448 type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2449 redist_parser = gic_acpi_parse_madt_gicc;
2450 } else {
2451 type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2452 redist_parser = gic_acpi_parse_madt_redist;
2453 }
2454
2455 /* Collect redistributor base addresses in GICR entries */
2456 if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2457 return 0;
2458
2459 pr_info("No valid GICR entries exist\n");
2460 return -ENODEV;
2461 }
2462
gic_acpi_match_gicr(union acpi_subtable_headers * header,const unsigned long end)2463 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2464 const unsigned long end)
2465 {
2466 /* Subtable presence means that redist exists, that's it */
2467 return 0;
2468 }
2469
gic_acpi_match_gicc(union acpi_subtable_headers * header,const unsigned long end)2470 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2471 const unsigned long end)
2472 {
2473 struct acpi_madt_generic_interrupt *gicc =
2474 (struct acpi_madt_generic_interrupt *)header;
2475
2476 /*
2477 * If GICC is enabled and has valid gicr base address, then it means
2478 * GICR base is presented via GICC. The redistributor is only known to
2479 * be accessible if the GICC is marked as enabled. If this bit is not
2480 * set, we'd need to add the redistributor at runtime, which isn't
2481 * supported.
2482 */
2483 if (gicc->flags & ACPI_MADT_ENABLED && gicc->gicr_base_address)
2484 acpi_data.enabled_rdists++;
2485
2486 return 0;
2487 }
2488
gic_acpi_count_gicr_regions(void)2489 static int __init gic_acpi_count_gicr_regions(void)
2490 {
2491 int count;
2492
2493 /*
2494 * Count how many redistributor regions we have. It is not allowed
2495 * to mix redistributor description, GICR and GICC subtables have to be
2496 * mutually exclusive.
2497 */
2498 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2499 gic_acpi_match_gicr, 0);
2500 if (count > 0) {
2501 acpi_data.single_redist = false;
2502 return count;
2503 }
2504
2505 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2506 gic_acpi_match_gicc, 0);
2507 if (count > 0) {
2508 acpi_data.single_redist = true;
2509 count = acpi_data.enabled_rdists;
2510 }
2511
2512 return count;
2513 }
2514
acpi_validate_gic_table(struct acpi_subtable_header * header,struct acpi_probe_entry * ape)2515 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2516 struct acpi_probe_entry *ape)
2517 {
2518 struct acpi_madt_generic_distributor *dist;
2519 int count;
2520
2521 dist = (struct acpi_madt_generic_distributor *)header;
2522 if (dist->version != ape->driver_data)
2523 return false;
2524
2525 /* We need to do that exercise anyway, the sooner the better */
2526 count = gic_acpi_count_gicr_regions();
2527 if (count <= 0)
2528 return false;
2529
2530 acpi_data.nr_redist_regions = count;
2531 return true;
2532 }
2533
gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers * header,const unsigned long end)2534 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2535 const unsigned long end)
2536 {
2537 struct acpi_madt_generic_interrupt *gicc =
2538 (struct acpi_madt_generic_interrupt *)header;
2539 int maint_irq_mode;
2540 static int first_madt = true;
2541
2542 if (!(gicc->flags &
2543 (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE)))
2544 return 0;
2545
2546 maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2547 ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2548
2549 if (first_madt) {
2550 first_madt = false;
2551
2552 acpi_data.maint_irq = gicc->vgic_interrupt;
2553 acpi_data.maint_irq_mode = maint_irq_mode;
2554 acpi_data.vcpu_base = gicc->gicv_base_address;
2555
2556 return 0;
2557 }
2558
2559 /*
2560 * The maintenance interrupt and GICV should be the same for every CPU
2561 */
2562 if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2563 (acpi_data.maint_irq_mode != maint_irq_mode) ||
2564 (acpi_data.vcpu_base != gicc->gicv_base_address))
2565 return -EINVAL;
2566
2567 return 0;
2568 }
2569
gic_acpi_collect_virt_info(void)2570 static bool __init gic_acpi_collect_virt_info(void)
2571 {
2572 int count;
2573
2574 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2575 gic_acpi_parse_virt_madt_gicc, 0);
2576
2577 return (count > 0);
2578 }
2579
2580 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2581 #define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K)
2582 #define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K)
2583
gic_acpi_setup_kvm_info(void)2584 static void __init gic_acpi_setup_kvm_info(void)
2585 {
2586 int irq;
2587
2588 if (!gic_acpi_collect_virt_info()) {
2589 pr_warn("Unable to get hardware information used for virtualization\n");
2590 return;
2591 }
2592
2593 gic_v3_kvm_info.type = GIC_V3;
2594
2595 irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2596 acpi_data.maint_irq_mode,
2597 ACPI_ACTIVE_HIGH);
2598 if (irq <= 0)
2599 return;
2600
2601 gic_v3_kvm_info.maint_irq = irq;
2602
2603 if (acpi_data.vcpu_base) {
2604 struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2605
2606 vcpu->flags = IORESOURCE_MEM;
2607 vcpu->start = acpi_data.vcpu_base;
2608 vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2609 }
2610
2611 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2612 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2613 vgic_set_kvm_info(&gic_v3_kvm_info);
2614 }
2615
2616 static struct fwnode_handle *gsi_domain_handle;
2617
gic_v3_get_gsi_domain_id(u32 gsi)2618 static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi)
2619 {
2620 return gsi_domain_handle;
2621 }
2622
2623 static int __init
gic_acpi_init(union acpi_subtable_headers * header,const unsigned long end)2624 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2625 {
2626 struct acpi_madt_generic_distributor *dist;
2627 size_t size;
2628 int i, err;
2629
2630 /* Get distributor base address */
2631 dist = (struct acpi_madt_generic_distributor *)header;
2632 acpi_data.dist_base = ioremap(dist->base_address,
2633 ACPI_GICV3_DIST_MEM_SIZE);
2634 if (!acpi_data.dist_base) {
2635 pr_err("Unable to map GICD registers\n");
2636 return -ENOMEM;
2637 }
2638 gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD");
2639
2640 err = gic_validate_dist_version(acpi_data.dist_base);
2641 if (err) {
2642 pr_err("No distributor detected at @%p, giving up\n",
2643 acpi_data.dist_base);
2644 goto out_dist_unmap;
2645 }
2646
2647 size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2648 acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2649 if (!acpi_data.redist_regs) {
2650 err = -ENOMEM;
2651 goto out_dist_unmap;
2652 }
2653
2654 err = gic_acpi_collect_gicr_base();
2655 if (err)
2656 goto out_redist_unmap;
2657
2658 gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2659 if (!gsi_domain_handle) {
2660 err = -ENOMEM;
2661 goto out_redist_unmap;
2662 }
2663
2664 err = gic_init_bases(dist->base_address, acpi_data.dist_base,
2665 acpi_data.redist_regs, acpi_data.nr_redist_regions,
2666 0, gsi_domain_handle);
2667 if (err)
2668 goto out_fwhandle_free;
2669
2670 acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id);
2671
2672 if (static_branch_likely(&supports_deactivate_key))
2673 gic_acpi_setup_kvm_info();
2674
2675 return 0;
2676
2677 out_fwhandle_free:
2678 irq_domain_free_fwnode(gsi_domain_handle);
2679 out_redist_unmap:
2680 for (i = 0; i < acpi_data.nr_redist_regions; i++)
2681 if (acpi_data.redist_regs[i].redist_base)
2682 iounmap(acpi_data.redist_regs[i].redist_base);
2683 kfree(acpi_data.redist_regs);
2684 out_dist_unmap:
2685 iounmap(acpi_data.dist_base);
2686 return err;
2687 }
2688 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2689 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2690 gic_acpi_init);
2691 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2692 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2693 gic_acpi_init);
2694 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2695 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2696 gic_acpi_init);
2697 #endif
2698