xref: /linux/include/linux/pagemap.h (revision e6b324fbf2de1797a4756fe2a489442464738dad)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4 
5 /*
6  * Copyright 1995 Linus Torvalds
7  */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18 
19 struct folio_batch;
20 
21 unsigned long invalidate_mapping_pages(struct address_space *mapping,
22 					pgoff_t start, pgoff_t end);
23 
24 static inline void invalidate_remote_inode(struct inode *inode)
25 {
26 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
27 	    S_ISLNK(inode->i_mode))
28 		invalidate_mapping_pages(inode->i_mapping, 0, -1);
29 }
30 int invalidate_inode_pages2(struct address_space *mapping);
31 int invalidate_inode_pages2_range(struct address_space *mapping,
32 		pgoff_t start, pgoff_t end);
33 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count);
34 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count);
35 
36 int write_inode_now(struct inode *, int sync);
37 int filemap_fdatawrite(struct address_space *);
38 int filemap_flush(struct address_space *);
39 int filemap_fdatawait_keep_errors(struct address_space *mapping);
40 int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
41 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
42 		loff_t start_byte, loff_t end_byte);
43 int filemap_invalidate_inode(struct inode *inode, bool flush,
44 			     loff_t start, loff_t end);
45 
46 static inline int filemap_fdatawait(struct address_space *mapping)
47 {
48 	return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
49 }
50 
51 bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
52 int filemap_write_and_wait_range(struct address_space *mapping,
53 		loff_t lstart, loff_t lend);
54 int __filemap_fdatawrite_range(struct address_space *mapping,
55 		loff_t start, loff_t end, int sync_mode);
56 int filemap_fdatawrite_range(struct address_space *mapping,
57 		loff_t start, loff_t end);
58 int filemap_check_errors(struct address_space *mapping);
59 void __filemap_set_wb_err(struct address_space *mapping, int err);
60 int filemap_fdatawrite_wbc(struct address_space *mapping,
61 			   struct writeback_control *wbc);
62 int kiocb_write_and_wait(struct kiocb *iocb, size_t count);
63 
64 static inline int filemap_write_and_wait(struct address_space *mapping)
65 {
66 	return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
67 }
68 
69 /**
70  * filemap_set_wb_err - set a writeback error on an address_space
71  * @mapping: mapping in which to set writeback error
72  * @err: error to be set in mapping
73  *
74  * When writeback fails in some way, we must record that error so that
75  * userspace can be informed when fsync and the like are called.  We endeavor
76  * to report errors on any file that was open at the time of the error.  Some
77  * internal callers also need to know when writeback errors have occurred.
78  *
79  * When a writeback error occurs, most filesystems will want to call
80  * filemap_set_wb_err to record the error in the mapping so that it will be
81  * automatically reported whenever fsync is called on the file.
82  */
83 static inline void filemap_set_wb_err(struct address_space *mapping, int err)
84 {
85 	/* Fastpath for common case of no error */
86 	if (unlikely(err))
87 		__filemap_set_wb_err(mapping, err);
88 }
89 
90 /**
91  * filemap_check_wb_err - has an error occurred since the mark was sampled?
92  * @mapping: mapping to check for writeback errors
93  * @since: previously-sampled errseq_t
94  *
95  * Grab the errseq_t value from the mapping, and see if it has changed "since"
96  * the given value was sampled.
97  *
98  * If it has then report the latest error set, otherwise return 0.
99  */
100 static inline int filemap_check_wb_err(struct address_space *mapping,
101 					errseq_t since)
102 {
103 	return errseq_check(&mapping->wb_err, since);
104 }
105 
106 /**
107  * filemap_sample_wb_err - sample the current errseq_t to test for later errors
108  * @mapping: mapping to be sampled
109  *
110  * Writeback errors are always reported relative to a particular sample point
111  * in the past. This function provides those sample points.
112  */
113 static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
114 {
115 	return errseq_sample(&mapping->wb_err);
116 }
117 
118 /**
119  * file_sample_sb_err - sample the current errseq_t to test for later errors
120  * @file: file pointer to be sampled
121  *
122  * Grab the most current superblock-level errseq_t value for the given
123  * struct file.
124  */
125 static inline errseq_t file_sample_sb_err(struct file *file)
126 {
127 	return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
128 }
129 
130 /*
131  * Flush file data before changing attributes.  Caller must hold any locks
132  * required to prevent further writes to this file until we're done setting
133  * flags.
134  */
135 static inline int inode_drain_writes(struct inode *inode)
136 {
137 	inode_dio_wait(inode);
138 	return filemap_write_and_wait(inode->i_mapping);
139 }
140 
141 static inline bool mapping_empty(struct address_space *mapping)
142 {
143 	return xa_empty(&mapping->i_pages);
144 }
145 
146 /*
147  * mapping_shrinkable - test if page cache state allows inode reclaim
148  * @mapping: the page cache mapping
149  *
150  * This checks the mapping's cache state for the pupose of inode
151  * reclaim and LRU management.
152  *
153  * The caller is expected to hold the i_lock, but is not required to
154  * hold the i_pages lock, which usually protects cache state. That's
155  * because the i_lock and the list_lru lock that protect the inode and
156  * its LRU state don't nest inside the irq-safe i_pages lock.
157  *
158  * Cache deletions are performed under the i_lock, which ensures that
159  * when an inode goes empty, it will reliably get queued on the LRU.
160  *
161  * Cache additions do not acquire the i_lock and may race with this
162  * check, in which case we'll report the inode as shrinkable when it
163  * has cache pages. This is okay: the shrinker also checks the
164  * refcount and the referenced bit, which will be elevated or set in
165  * the process of adding new cache pages to an inode.
166  */
167 static inline bool mapping_shrinkable(struct address_space *mapping)
168 {
169 	void *head;
170 
171 	/*
172 	 * On highmem systems, there could be lowmem pressure from the
173 	 * inodes before there is highmem pressure from the page
174 	 * cache. Make inodes shrinkable regardless of cache state.
175 	 */
176 	if (IS_ENABLED(CONFIG_HIGHMEM))
177 		return true;
178 
179 	/* Cache completely empty? Shrink away. */
180 	head = rcu_access_pointer(mapping->i_pages.xa_head);
181 	if (!head)
182 		return true;
183 
184 	/*
185 	 * The xarray stores single offset-0 entries directly in the
186 	 * head pointer, which allows non-resident page cache entries
187 	 * to escape the shadow shrinker's list of xarray nodes. The
188 	 * inode shrinker needs to pick them up under memory pressure.
189 	 */
190 	if (!xa_is_node(head) && xa_is_value(head))
191 		return true;
192 
193 	return false;
194 }
195 
196 /*
197  * Bits in mapping->flags.
198  */
199 enum mapping_flags {
200 	AS_EIO		= 0,	/* IO error on async write */
201 	AS_ENOSPC	= 1,	/* ENOSPC on async write */
202 	AS_MM_ALL_LOCKS	= 2,	/* under mm_take_all_locks() */
203 	AS_UNEVICTABLE	= 3,	/* e.g., ramdisk, SHM_LOCK */
204 	AS_EXITING	= 4, 	/* final truncate in progress */
205 	/* writeback related tags are not used */
206 	AS_NO_WRITEBACK_TAGS = 5,
207 	AS_LARGE_FOLIO_SUPPORT = 6,
208 	AS_RELEASE_ALWAYS,	/* Call ->release_folio(), even if no private data */
209 	AS_STABLE_WRITES,	/* must wait for writeback before modifying
210 				   folio contents */
211 	AS_UNMOVABLE,		/* The mapping cannot be moved, ever */
212 };
213 
214 /**
215  * mapping_set_error - record a writeback error in the address_space
216  * @mapping: the mapping in which an error should be set
217  * @error: the error to set in the mapping
218  *
219  * When writeback fails in some way, we must record that error so that
220  * userspace can be informed when fsync and the like are called.  We endeavor
221  * to report errors on any file that was open at the time of the error.  Some
222  * internal callers also need to know when writeback errors have occurred.
223  *
224  * When a writeback error occurs, most filesystems will want to call
225  * mapping_set_error to record the error in the mapping so that it can be
226  * reported when the application calls fsync(2).
227  */
228 static inline void mapping_set_error(struct address_space *mapping, int error)
229 {
230 	if (likely(!error))
231 		return;
232 
233 	/* Record in wb_err for checkers using errseq_t based tracking */
234 	__filemap_set_wb_err(mapping, error);
235 
236 	/* Record it in superblock */
237 	if (mapping->host)
238 		errseq_set(&mapping->host->i_sb->s_wb_err, error);
239 
240 	/* Record it in flags for now, for legacy callers */
241 	if (error == -ENOSPC)
242 		set_bit(AS_ENOSPC, &mapping->flags);
243 	else
244 		set_bit(AS_EIO, &mapping->flags);
245 }
246 
247 static inline void mapping_set_unevictable(struct address_space *mapping)
248 {
249 	set_bit(AS_UNEVICTABLE, &mapping->flags);
250 }
251 
252 static inline void mapping_clear_unevictable(struct address_space *mapping)
253 {
254 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
255 }
256 
257 static inline bool mapping_unevictable(struct address_space *mapping)
258 {
259 	return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
260 }
261 
262 static inline void mapping_set_exiting(struct address_space *mapping)
263 {
264 	set_bit(AS_EXITING, &mapping->flags);
265 }
266 
267 static inline int mapping_exiting(struct address_space *mapping)
268 {
269 	return test_bit(AS_EXITING, &mapping->flags);
270 }
271 
272 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
273 {
274 	set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
275 }
276 
277 static inline int mapping_use_writeback_tags(struct address_space *mapping)
278 {
279 	return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
280 }
281 
282 static inline bool mapping_release_always(const struct address_space *mapping)
283 {
284 	return test_bit(AS_RELEASE_ALWAYS, &mapping->flags);
285 }
286 
287 static inline void mapping_set_release_always(struct address_space *mapping)
288 {
289 	set_bit(AS_RELEASE_ALWAYS, &mapping->flags);
290 }
291 
292 static inline void mapping_clear_release_always(struct address_space *mapping)
293 {
294 	clear_bit(AS_RELEASE_ALWAYS, &mapping->flags);
295 }
296 
297 static inline bool mapping_stable_writes(const struct address_space *mapping)
298 {
299 	return test_bit(AS_STABLE_WRITES, &mapping->flags);
300 }
301 
302 static inline void mapping_set_stable_writes(struct address_space *mapping)
303 {
304 	set_bit(AS_STABLE_WRITES, &mapping->flags);
305 }
306 
307 static inline void mapping_clear_stable_writes(struct address_space *mapping)
308 {
309 	clear_bit(AS_STABLE_WRITES, &mapping->flags);
310 }
311 
312 static inline void mapping_set_unmovable(struct address_space *mapping)
313 {
314 	/*
315 	 * It's expected unmovable mappings are also unevictable. Compaction
316 	 * migrate scanner (isolate_migratepages_block()) relies on this to
317 	 * reduce page locking.
318 	 */
319 	set_bit(AS_UNEVICTABLE, &mapping->flags);
320 	set_bit(AS_UNMOVABLE, &mapping->flags);
321 }
322 
323 static inline bool mapping_unmovable(struct address_space *mapping)
324 {
325 	return test_bit(AS_UNMOVABLE, &mapping->flags);
326 }
327 
328 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
329 {
330 	return mapping->gfp_mask;
331 }
332 
333 /* Restricts the given gfp_mask to what the mapping allows. */
334 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
335 		gfp_t gfp_mask)
336 {
337 	return mapping_gfp_mask(mapping) & gfp_mask;
338 }
339 
340 /*
341  * This is non-atomic.  Only to be used before the mapping is activated.
342  * Probably needs a barrier...
343  */
344 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
345 {
346 	m->gfp_mask = mask;
347 }
348 
349 /*
350  * There are some parts of the kernel which assume that PMD entries
351  * are exactly HPAGE_PMD_ORDER.  Those should be fixed, but until then,
352  * limit the maximum allocation order to PMD size.  I'm not aware of any
353  * assumptions about maximum order if THP are disabled, but 8 seems like
354  * a good order (that's 1MB if you're using 4kB pages)
355  */
356 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
357 #define MAX_PAGECACHE_ORDER	HPAGE_PMD_ORDER
358 #else
359 #define MAX_PAGECACHE_ORDER	8
360 #endif
361 
362 /**
363  * mapping_set_large_folios() - Indicate the file supports large folios.
364  * @mapping: The file.
365  *
366  * The filesystem should call this function in its inode constructor to
367  * indicate that the VFS can use large folios to cache the contents of
368  * the file.
369  *
370  * Context: This should not be called while the inode is active as it
371  * is non-atomic.
372  */
373 static inline void mapping_set_large_folios(struct address_space *mapping)
374 {
375 	__set_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
376 }
377 
378 /*
379  * Large folio support currently depends on THP.  These dependencies are
380  * being worked on but are not yet fixed.
381  */
382 static inline bool mapping_large_folio_support(struct address_space *mapping)
383 {
384 	/* AS_LARGE_FOLIO_SUPPORT is only reasonable for pagecache folios */
385 	VM_WARN_ONCE((unsigned long)mapping & PAGE_MAPPING_ANON,
386 			"Anonymous mapping always supports large folio");
387 
388 	return IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
389 		test_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
390 }
391 
392 /* Return the maximum folio size for this pagecache mapping, in bytes. */
393 static inline size_t mapping_max_folio_size(struct address_space *mapping)
394 {
395 	if (mapping_large_folio_support(mapping))
396 		return PAGE_SIZE << MAX_PAGECACHE_ORDER;
397 	return PAGE_SIZE;
398 }
399 
400 static inline int filemap_nr_thps(struct address_space *mapping)
401 {
402 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
403 	return atomic_read(&mapping->nr_thps);
404 #else
405 	return 0;
406 #endif
407 }
408 
409 static inline void filemap_nr_thps_inc(struct address_space *mapping)
410 {
411 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
412 	if (!mapping_large_folio_support(mapping))
413 		atomic_inc(&mapping->nr_thps);
414 #else
415 	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
416 #endif
417 }
418 
419 static inline void filemap_nr_thps_dec(struct address_space *mapping)
420 {
421 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
422 	if (!mapping_large_folio_support(mapping))
423 		atomic_dec(&mapping->nr_thps);
424 #else
425 	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
426 #endif
427 }
428 
429 struct address_space *page_mapping(struct page *);
430 struct address_space *folio_mapping(struct folio *);
431 struct address_space *swapcache_mapping(struct folio *);
432 
433 /**
434  * folio_file_mapping - Find the mapping this folio belongs to.
435  * @folio: The folio.
436  *
437  * For folios which are in the page cache, return the mapping that this
438  * page belongs to.  Folios in the swap cache return the mapping of the
439  * swap file or swap device where the data is stored.  This is different
440  * from the mapping returned by folio_mapping().  The only reason to
441  * use it is if, like NFS, you return 0 from ->activate_swapfile.
442  *
443  * Do not call this for folios which aren't in the page cache or swap cache.
444  */
445 static inline struct address_space *folio_file_mapping(struct folio *folio)
446 {
447 	if (unlikely(folio_test_swapcache(folio)))
448 		return swapcache_mapping(folio);
449 
450 	return folio->mapping;
451 }
452 
453 /**
454  * folio_flush_mapping - Find the file mapping this folio belongs to.
455  * @folio: The folio.
456  *
457  * For folios which are in the page cache, return the mapping that this
458  * page belongs to.  Anonymous folios return NULL, even if they're in
459  * the swap cache.  Other kinds of folio also return NULL.
460  *
461  * This is ONLY used by architecture cache flushing code.  If you aren't
462  * writing cache flushing code, you want either folio_mapping() or
463  * folio_file_mapping().
464  */
465 static inline struct address_space *folio_flush_mapping(struct folio *folio)
466 {
467 	if (unlikely(folio_test_swapcache(folio)))
468 		return NULL;
469 
470 	return folio_mapping(folio);
471 }
472 
473 static inline struct address_space *page_file_mapping(struct page *page)
474 {
475 	return folio_file_mapping(page_folio(page));
476 }
477 
478 /**
479  * folio_inode - Get the host inode for this folio.
480  * @folio: The folio.
481  *
482  * For folios which are in the page cache, return the inode that this folio
483  * belongs to.
484  *
485  * Do not call this for folios which aren't in the page cache.
486  */
487 static inline struct inode *folio_inode(struct folio *folio)
488 {
489 	return folio->mapping->host;
490 }
491 
492 /**
493  * folio_attach_private - Attach private data to a folio.
494  * @folio: Folio to attach data to.
495  * @data: Data to attach to folio.
496  *
497  * Attaching private data to a folio increments the page's reference count.
498  * The data must be detached before the folio will be freed.
499  */
500 static inline void folio_attach_private(struct folio *folio, void *data)
501 {
502 	folio_get(folio);
503 	folio->private = data;
504 	folio_set_private(folio);
505 }
506 
507 /**
508  * folio_change_private - Change private data on a folio.
509  * @folio: Folio to change the data on.
510  * @data: Data to set on the folio.
511  *
512  * Change the private data attached to a folio and return the old
513  * data.  The page must previously have had data attached and the data
514  * must be detached before the folio will be freed.
515  *
516  * Return: Data that was previously attached to the folio.
517  */
518 static inline void *folio_change_private(struct folio *folio, void *data)
519 {
520 	void *old = folio_get_private(folio);
521 
522 	folio->private = data;
523 	return old;
524 }
525 
526 /**
527  * folio_detach_private - Detach private data from a folio.
528  * @folio: Folio to detach data from.
529  *
530  * Removes the data that was previously attached to the folio and decrements
531  * the refcount on the page.
532  *
533  * Return: Data that was attached to the folio.
534  */
535 static inline void *folio_detach_private(struct folio *folio)
536 {
537 	void *data = folio_get_private(folio);
538 
539 	if (!folio_test_private(folio))
540 		return NULL;
541 	folio_clear_private(folio);
542 	folio->private = NULL;
543 	folio_put(folio);
544 
545 	return data;
546 }
547 
548 static inline void attach_page_private(struct page *page, void *data)
549 {
550 	folio_attach_private(page_folio(page), data);
551 }
552 
553 static inline void *detach_page_private(struct page *page)
554 {
555 	return folio_detach_private(page_folio(page));
556 }
557 
558 #ifdef CONFIG_NUMA
559 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order);
560 #else
561 static inline struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
562 {
563 	return folio_alloc_noprof(gfp, order);
564 }
565 #endif
566 
567 #define filemap_alloc_folio(...)				\
568 	alloc_hooks(filemap_alloc_folio_noprof(__VA_ARGS__))
569 
570 static inline struct page *__page_cache_alloc(gfp_t gfp)
571 {
572 	return &filemap_alloc_folio(gfp, 0)->page;
573 }
574 
575 static inline gfp_t readahead_gfp_mask(struct address_space *x)
576 {
577 	return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
578 }
579 
580 typedef int filler_t(struct file *, struct folio *);
581 
582 pgoff_t page_cache_next_miss(struct address_space *mapping,
583 			     pgoff_t index, unsigned long max_scan);
584 pgoff_t page_cache_prev_miss(struct address_space *mapping,
585 			     pgoff_t index, unsigned long max_scan);
586 
587 /**
588  * typedef fgf_t - Flags for getting folios from the page cache.
589  *
590  * Most users of the page cache will not need to use these flags;
591  * there are convenience functions such as filemap_get_folio() and
592  * filemap_lock_folio().  For users which need more control over exactly
593  * what is done with the folios, these flags to __filemap_get_folio()
594  * are available.
595  *
596  * * %FGP_ACCESSED - The folio will be marked accessed.
597  * * %FGP_LOCK - The folio is returned locked.
598  * * %FGP_CREAT - If no folio is present then a new folio is allocated,
599  *   added to the page cache and the VM's LRU list.  The folio is
600  *   returned locked.
601  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
602  *   folio is already in cache.  If the folio was allocated, unlock it
603  *   before returning so the caller can do the same dance.
604  * * %FGP_WRITE - The folio will be written to by the caller.
605  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
606  * * %FGP_NOWAIT - Don't block on the folio lock.
607  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
608  * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin()
609  *   implementation.
610  */
611 typedef unsigned int __bitwise fgf_t;
612 
613 #define FGP_ACCESSED		((__force fgf_t)0x00000001)
614 #define FGP_LOCK		((__force fgf_t)0x00000002)
615 #define FGP_CREAT		((__force fgf_t)0x00000004)
616 #define FGP_WRITE		((__force fgf_t)0x00000008)
617 #define FGP_NOFS		((__force fgf_t)0x00000010)
618 #define FGP_NOWAIT		((__force fgf_t)0x00000020)
619 #define FGP_FOR_MMAP		((__force fgf_t)0x00000040)
620 #define FGP_STABLE		((__force fgf_t)0x00000080)
621 #define FGF_GET_ORDER(fgf)	(((__force unsigned)fgf) >> 26)	/* top 6 bits */
622 
623 #define FGP_WRITEBEGIN		(FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE)
624 
625 /**
626  * fgf_set_order - Encode a length in the fgf_t flags.
627  * @size: The suggested size of the folio to create.
628  *
629  * The caller of __filemap_get_folio() can use this to suggest a preferred
630  * size for the folio that is created.  If there is already a folio at
631  * the index, it will be returned, no matter what its size.  If a folio
632  * is freshly created, it may be of a different size than requested
633  * due to alignment constraints, memory pressure, or the presence of
634  * other folios at nearby indices.
635  */
636 static inline fgf_t fgf_set_order(size_t size)
637 {
638 	unsigned int shift = ilog2(size);
639 
640 	if (shift <= PAGE_SHIFT)
641 		return 0;
642 	return (__force fgf_t)((shift - PAGE_SHIFT) << 26);
643 }
644 
645 void *filemap_get_entry(struct address_space *mapping, pgoff_t index);
646 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
647 		fgf_t fgp_flags, gfp_t gfp);
648 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
649 		fgf_t fgp_flags, gfp_t gfp);
650 
651 /**
652  * filemap_get_folio - Find and get a folio.
653  * @mapping: The address_space to search.
654  * @index: The page index.
655  *
656  * Looks up the page cache entry at @mapping & @index.  If a folio is
657  * present, it is returned with an increased refcount.
658  *
659  * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
660  * this index.  Will not return a shadow, swap or DAX entry.
661  */
662 static inline struct folio *filemap_get_folio(struct address_space *mapping,
663 					pgoff_t index)
664 {
665 	return __filemap_get_folio(mapping, index, 0, 0);
666 }
667 
668 /**
669  * filemap_lock_folio - Find and lock a folio.
670  * @mapping: The address_space to search.
671  * @index: The page index.
672  *
673  * Looks up the page cache entry at @mapping & @index.  If a folio is
674  * present, it is returned locked with an increased refcount.
675  *
676  * Context: May sleep.
677  * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
678  * this index.  Will not return a shadow, swap or DAX entry.
679  */
680 static inline struct folio *filemap_lock_folio(struct address_space *mapping,
681 					pgoff_t index)
682 {
683 	return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
684 }
685 
686 /**
687  * filemap_grab_folio - grab a folio from the page cache
688  * @mapping: The address space to search
689  * @index: The page index
690  *
691  * Looks up the page cache entry at @mapping & @index. If no folio is found,
692  * a new folio is created. The folio is locked, marked as accessed, and
693  * returned.
694  *
695  * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found
696  * and failed to create a folio.
697  */
698 static inline struct folio *filemap_grab_folio(struct address_space *mapping,
699 					pgoff_t index)
700 {
701 	return __filemap_get_folio(mapping, index,
702 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
703 			mapping_gfp_mask(mapping));
704 }
705 
706 /**
707  * find_get_page - find and get a page reference
708  * @mapping: the address_space to search
709  * @offset: the page index
710  *
711  * Looks up the page cache slot at @mapping & @offset.  If there is a
712  * page cache page, it is returned with an increased refcount.
713  *
714  * Otherwise, %NULL is returned.
715  */
716 static inline struct page *find_get_page(struct address_space *mapping,
717 					pgoff_t offset)
718 {
719 	return pagecache_get_page(mapping, offset, 0, 0);
720 }
721 
722 static inline struct page *find_get_page_flags(struct address_space *mapping,
723 					pgoff_t offset, fgf_t fgp_flags)
724 {
725 	return pagecache_get_page(mapping, offset, fgp_flags, 0);
726 }
727 
728 /**
729  * find_lock_page - locate, pin and lock a pagecache page
730  * @mapping: the address_space to search
731  * @index: the page index
732  *
733  * Looks up the page cache entry at @mapping & @index.  If there is a
734  * page cache page, it is returned locked and with an increased
735  * refcount.
736  *
737  * Context: May sleep.
738  * Return: A struct page or %NULL if there is no page in the cache for this
739  * index.
740  */
741 static inline struct page *find_lock_page(struct address_space *mapping,
742 					pgoff_t index)
743 {
744 	return pagecache_get_page(mapping, index, FGP_LOCK, 0);
745 }
746 
747 /**
748  * find_or_create_page - locate or add a pagecache page
749  * @mapping: the page's address_space
750  * @index: the page's index into the mapping
751  * @gfp_mask: page allocation mode
752  *
753  * Looks up the page cache slot at @mapping & @offset.  If there is a
754  * page cache page, it is returned locked and with an increased
755  * refcount.
756  *
757  * If the page is not present, a new page is allocated using @gfp_mask
758  * and added to the page cache and the VM's LRU list.  The page is
759  * returned locked and with an increased refcount.
760  *
761  * On memory exhaustion, %NULL is returned.
762  *
763  * find_or_create_page() may sleep, even if @gfp_flags specifies an
764  * atomic allocation!
765  */
766 static inline struct page *find_or_create_page(struct address_space *mapping,
767 					pgoff_t index, gfp_t gfp_mask)
768 {
769 	return pagecache_get_page(mapping, index,
770 					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
771 					gfp_mask);
772 }
773 
774 /**
775  * grab_cache_page_nowait - returns locked page at given index in given cache
776  * @mapping: target address_space
777  * @index: the page index
778  *
779  * Same as grab_cache_page(), but do not wait if the page is unavailable.
780  * This is intended for speculative data generators, where the data can
781  * be regenerated if the page couldn't be grabbed.  This routine should
782  * be safe to call while holding the lock for another page.
783  *
784  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
785  * and deadlock against the caller's locked page.
786  */
787 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
788 				pgoff_t index)
789 {
790 	return pagecache_get_page(mapping, index,
791 			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
792 			mapping_gfp_mask(mapping));
793 }
794 
795 #define swapcache_index(folio)	__page_file_index(&(folio)->page)
796 
797 /**
798  * folio_index - File index of a folio.
799  * @folio: The folio.
800  *
801  * For a folio which is either in the page cache or the swap cache,
802  * return its index within the address_space it belongs to.  If you know
803  * the page is definitely in the page cache, you can look at the folio's
804  * index directly.
805  *
806  * Return: The index (offset in units of pages) of a folio in its file.
807  */
808 static inline pgoff_t folio_index(struct folio *folio)
809 {
810         if (unlikely(folio_test_swapcache(folio)))
811                 return swapcache_index(folio);
812         return folio->index;
813 }
814 
815 /**
816  * folio_next_index - Get the index of the next folio.
817  * @folio: The current folio.
818  *
819  * Return: The index of the folio which follows this folio in the file.
820  */
821 static inline pgoff_t folio_next_index(struct folio *folio)
822 {
823 	return folio->index + folio_nr_pages(folio);
824 }
825 
826 /**
827  * folio_file_page - The page for a particular index.
828  * @folio: The folio which contains this index.
829  * @index: The index we want to look up.
830  *
831  * Sometimes after looking up a folio in the page cache, we need to
832  * obtain the specific page for an index (eg a page fault).
833  *
834  * Return: The page containing the file data for this index.
835  */
836 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
837 {
838 	return folio_page(folio, index & (folio_nr_pages(folio) - 1));
839 }
840 
841 /**
842  * folio_contains - Does this folio contain this index?
843  * @folio: The folio.
844  * @index: The page index within the file.
845  *
846  * Context: The caller should have the page locked in order to prevent
847  * (eg) shmem from moving the page between the page cache and swap cache
848  * and changing its index in the middle of the operation.
849  * Return: true or false.
850  */
851 static inline bool folio_contains(struct folio *folio, pgoff_t index)
852 {
853 	return index - folio_index(folio) < folio_nr_pages(folio);
854 }
855 
856 /*
857  * Given the page we found in the page cache, return the page corresponding
858  * to this index in the file
859  */
860 static inline struct page *find_subpage(struct page *head, pgoff_t index)
861 {
862 	/* HugeTLBfs wants the head page regardless */
863 	if (PageHuge(head))
864 		return head;
865 
866 	return head + (index & (thp_nr_pages(head) - 1));
867 }
868 
869 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
870 		pgoff_t end, struct folio_batch *fbatch);
871 unsigned filemap_get_folios_contig(struct address_space *mapping,
872 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
873 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
874 		pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch);
875 
876 struct page *grab_cache_page_write_begin(struct address_space *mapping,
877 			pgoff_t index);
878 
879 /*
880  * Returns locked page at given index in given cache, creating it if needed.
881  */
882 static inline struct page *grab_cache_page(struct address_space *mapping,
883 								pgoff_t index)
884 {
885 	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
886 }
887 
888 struct folio *read_cache_folio(struct address_space *, pgoff_t index,
889 		filler_t *filler, struct file *file);
890 struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index,
891 		gfp_t flags);
892 struct page *read_cache_page(struct address_space *, pgoff_t index,
893 		filler_t *filler, struct file *file);
894 extern struct page * read_cache_page_gfp(struct address_space *mapping,
895 				pgoff_t index, gfp_t gfp_mask);
896 
897 static inline struct page *read_mapping_page(struct address_space *mapping,
898 				pgoff_t index, struct file *file)
899 {
900 	return read_cache_page(mapping, index, NULL, file);
901 }
902 
903 static inline struct folio *read_mapping_folio(struct address_space *mapping,
904 				pgoff_t index, struct file *file)
905 {
906 	return read_cache_folio(mapping, index, NULL, file);
907 }
908 
909 /*
910  * Get the offset in PAGE_SIZE (even for hugetlb pages).
911  */
912 static inline pgoff_t page_to_pgoff(struct page *page)
913 {
914 	struct page *head;
915 
916 	if (likely(!PageTransTail(page)))
917 		return page->index;
918 
919 	head = compound_head(page);
920 	/*
921 	 *  We don't initialize ->index for tail pages: calculate based on
922 	 *  head page
923 	 */
924 	return head->index + page - head;
925 }
926 
927 /*
928  * Return byte-offset into filesystem object for page.
929  */
930 static inline loff_t page_offset(struct page *page)
931 {
932 	return ((loff_t)page->index) << PAGE_SHIFT;
933 }
934 
935 static inline loff_t page_file_offset(struct page *page)
936 {
937 	return ((loff_t)page_index(page)) << PAGE_SHIFT;
938 }
939 
940 /**
941  * folio_pos - Returns the byte position of this folio in its file.
942  * @folio: The folio.
943  */
944 static inline loff_t folio_pos(struct folio *folio)
945 {
946 	return page_offset(&folio->page);
947 }
948 
949 /**
950  * folio_file_pos - Returns the byte position of this folio in its file.
951  * @folio: The folio.
952  *
953  * This differs from folio_pos() for folios which belong to a swap file.
954  * NFS is the only filesystem today which needs to use folio_file_pos().
955  */
956 static inline loff_t folio_file_pos(struct folio *folio)
957 {
958 	return page_file_offset(&folio->page);
959 }
960 
961 /*
962  * Get the offset in PAGE_SIZE (even for hugetlb folios).
963  */
964 static inline pgoff_t folio_pgoff(struct folio *folio)
965 {
966 	return folio->index;
967 }
968 
969 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
970 					unsigned long address)
971 {
972 	pgoff_t pgoff;
973 	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
974 	pgoff += vma->vm_pgoff;
975 	return pgoff;
976 }
977 
978 struct wait_page_key {
979 	struct folio *folio;
980 	int bit_nr;
981 	int page_match;
982 };
983 
984 struct wait_page_queue {
985 	struct folio *folio;
986 	int bit_nr;
987 	wait_queue_entry_t wait;
988 };
989 
990 static inline bool wake_page_match(struct wait_page_queue *wait_page,
991 				  struct wait_page_key *key)
992 {
993 	if (wait_page->folio != key->folio)
994 	       return false;
995 	key->page_match = 1;
996 
997 	if (wait_page->bit_nr != key->bit_nr)
998 		return false;
999 
1000 	return true;
1001 }
1002 
1003 void __folio_lock(struct folio *folio);
1004 int __folio_lock_killable(struct folio *folio);
1005 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf);
1006 void unlock_page(struct page *page);
1007 void folio_unlock(struct folio *folio);
1008 
1009 /**
1010  * folio_trylock() - Attempt to lock a folio.
1011  * @folio: The folio to attempt to lock.
1012  *
1013  * Sometimes it is undesirable to wait for a folio to be unlocked (eg
1014  * when the locks are being taken in the wrong order, or if making
1015  * progress through a batch of folios is more important than processing
1016  * them in order).  Usually folio_lock() is the correct function to call.
1017  *
1018  * Context: Any context.
1019  * Return: Whether the lock was successfully acquired.
1020  */
1021 static inline bool folio_trylock(struct folio *folio)
1022 {
1023 	return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
1024 }
1025 
1026 /*
1027  * Return true if the page was successfully locked
1028  */
1029 static inline bool trylock_page(struct page *page)
1030 {
1031 	return folio_trylock(page_folio(page));
1032 }
1033 
1034 /**
1035  * folio_lock() - Lock this folio.
1036  * @folio: The folio to lock.
1037  *
1038  * The folio lock protects against many things, probably more than it
1039  * should.  It is primarily held while a folio is being brought uptodate,
1040  * either from its backing file or from swap.  It is also held while a
1041  * folio is being truncated from its address_space, so holding the lock
1042  * is sufficient to keep folio->mapping stable.
1043  *
1044  * The folio lock is also held while write() is modifying the page to
1045  * provide POSIX atomicity guarantees (as long as the write does not
1046  * cross a page boundary).  Other modifications to the data in the folio
1047  * do not hold the folio lock and can race with writes, eg DMA and stores
1048  * to mapped pages.
1049  *
1050  * Context: May sleep.  If you need to acquire the locks of two or
1051  * more folios, they must be in order of ascending index, if they are
1052  * in the same address_space.  If they are in different address_spaces,
1053  * acquire the lock of the folio which belongs to the address_space which
1054  * has the lowest address in memory first.
1055  */
1056 static inline void folio_lock(struct folio *folio)
1057 {
1058 	might_sleep();
1059 	if (!folio_trylock(folio))
1060 		__folio_lock(folio);
1061 }
1062 
1063 /**
1064  * lock_page() - Lock the folio containing this page.
1065  * @page: The page to lock.
1066  *
1067  * See folio_lock() for a description of what the lock protects.
1068  * This is a legacy function and new code should probably use folio_lock()
1069  * instead.
1070  *
1071  * Context: May sleep.  Pages in the same folio share a lock, so do not
1072  * attempt to lock two pages which share a folio.
1073  */
1074 static inline void lock_page(struct page *page)
1075 {
1076 	struct folio *folio;
1077 	might_sleep();
1078 
1079 	folio = page_folio(page);
1080 	if (!folio_trylock(folio))
1081 		__folio_lock(folio);
1082 }
1083 
1084 /**
1085  * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
1086  * @folio: The folio to lock.
1087  *
1088  * Attempts to lock the folio, like folio_lock(), except that the sleep
1089  * to acquire the lock is interruptible by a fatal signal.
1090  *
1091  * Context: May sleep; see folio_lock().
1092  * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
1093  */
1094 static inline int folio_lock_killable(struct folio *folio)
1095 {
1096 	might_sleep();
1097 	if (!folio_trylock(folio))
1098 		return __folio_lock_killable(folio);
1099 	return 0;
1100 }
1101 
1102 /*
1103  * folio_lock_or_retry - Lock the folio, unless this would block and the
1104  * caller indicated that it can handle a retry.
1105  *
1106  * Return value and mmap_lock implications depend on flags; see
1107  * __folio_lock_or_retry().
1108  */
1109 static inline vm_fault_t folio_lock_or_retry(struct folio *folio,
1110 					     struct vm_fault *vmf)
1111 {
1112 	might_sleep();
1113 	if (!folio_trylock(folio))
1114 		return __folio_lock_or_retry(folio, vmf);
1115 	return 0;
1116 }
1117 
1118 /*
1119  * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1120  * and should not be used directly.
1121  */
1122 void folio_wait_bit(struct folio *folio, int bit_nr);
1123 int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1124 
1125 /*
1126  * Wait for a folio to be unlocked.
1127  *
1128  * This must be called with the caller "holding" the folio,
1129  * ie with increased folio reference count so that the folio won't
1130  * go away during the wait.
1131  */
1132 static inline void folio_wait_locked(struct folio *folio)
1133 {
1134 	if (folio_test_locked(folio))
1135 		folio_wait_bit(folio, PG_locked);
1136 }
1137 
1138 static inline int folio_wait_locked_killable(struct folio *folio)
1139 {
1140 	if (!folio_test_locked(folio))
1141 		return 0;
1142 	return folio_wait_bit_killable(folio, PG_locked);
1143 }
1144 
1145 static inline void wait_on_page_locked(struct page *page)
1146 {
1147 	folio_wait_locked(page_folio(page));
1148 }
1149 
1150 void folio_end_read(struct folio *folio, bool success);
1151 void wait_on_page_writeback(struct page *page);
1152 void folio_wait_writeback(struct folio *folio);
1153 int folio_wait_writeback_killable(struct folio *folio);
1154 void end_page_writeback(struct page *page);
1155 void folio_end_writeback(struct folio *folio);
1156 void wait_for_stable_page(struct page *page);
1157 void folio_wait_stable(struct folio *folio);
1158 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
1159 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1160 void __folio_cancel_dirty(struct folio *folio);
1161 static inline void folio_cancel_dirty(struct folio *folio)
1162 {
1163 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1164 	if (folio_test_dirty(folio))
1165 		__folio_cancel_dirty(folio);
1166 }
1167 bool folio_clear_dirty_for_io(struct folio *folio);
1168 bool clear_page_dirty_for_io(struct page *page);
1169 void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1170 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1171 
1172 #ifdef CONFIG_MIGRATION
1173 int filemap_migrate_folio(struct address_space *mapping, struct folio *dst,
1174 		struct folio *src, enum migrate_mode mode);
1175 #else
1176 #define filemap_migrate_folio NULL
1177 #endif
1178 void folio_end_private_2(struct folio *folio);
1179 void folio_wait_private_2(struct folio *folio);
1180 int folio_wait_private_2_killable(struct folio *folio);
1181 
1182 /*
1183  * Add an arbitrary waiter to a page's wait queue
1184  */
1185 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter);
1186 
1187 /*
1188  * Fault in userspace address range.
1189  */
1190 size_t fault_in_writeable(char __user *uaddr, size_t size);
1191 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1192 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1193 size_t fault_in_readable(const char __user *uaddr, size_t size);
1194 
1195 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1196 		pgoff_t index, gfp_t gfp);
1197 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1198 		pgoff_t index, gfp_t gfp);
1199 void filemap_remove_folio(struct folio *folio);
1200 void __filemap_remove_folio(struct folio *folio, void *shadow);
1201 void replace_page_cache_folio(struct folio *old, struct folio *new);
1202 void delete_from_page_cache_batch(struct address_space *mapping,
1203 				  struct folio_batch *fbatch);
1204 bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1205 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1206 		int whence);
1207 
1208 /* Must be non-static for BPF error injection */
1209 int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1210 		pgoff_t index, gfp_t gfp, void **shadowp);
1211 
1212 bool filemap_range_has_writeback(struct address_space *mapping,
1213 				 loff_t start_byte, loff_t end_byte);
1214 
1215 /**
1216  * filemap_range_needs_writeback - check if range potentially needs writeback
1217  * @mapping:           address space within which to check
1218  * @start_byte:        offset in bytes where the range starts
1219  * @end_byte:          offset in bytes where the range ends (inclusive)
1220  *
1221  * Find at least one page in the range supplied, usually used to check if
1222  * direct writing in this range will trigger a writeback. Used by O_DIRECT
1223  * read/write with IOCB_NOWAIT, to see if the caller needs to do
1224  * filemap_write_and_wait_range() before proceeding.
1225  *
1226  * Return: %true if the caller should do filemap_write_and_wait_range() before
1227  * doing O_DIRECT to a page in this range, %false otherwise.
1228  */
1229 static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1230 						 loff_t start_byte,
1231 						 loff_t end_byte)
1232 {
1233 	if (!mapping->nrpages)
1234 		return false;
1235 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1236 	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1237 		return false;
1238 	return filemap_range_has_writeback(mapping, start_byte, end_byte);
1239 }
1240 
1241 /**
1242  * struct readahead_control - Describes a readahead request.
1243  *
1244  * A readahead request is for consecutive pages.  Filesystems which
1245  * implement the ->readahead method should call readahead_page() or
1246  * readahead_page_batch() in a loop and attempt to start I/O against
1247  * each page in the request.
1248  *
1249  * Most of the fields in this struct are private and should be accessed
1250  * by the functions below.
1251  *
1252  * @file: The file, used primarily by network filesystems for authentication.
1253  *	  May be NULL if invoked internally by the filesystem.
1254  * @mapping: Readahead this filesystem object.
1255  * @ra: File readahead state.  May be NULL.
1256  */
1257 struct readahead_control {
1258 	struct file *file;
1259 	struct address_space *mapping;
1260 	struct file_ra_state *ra;
1261 /* private: use the readahead_* accessors instead */
1262 	pgoff_t _index;
1263 	unsigned int _nr_pages;
1264 	unsigned int _batch_count;
1265 	bool _workingset;
1266 	unsigned long _pflags;
1267 };
1268 
1269 #define DEFINE_READAHEAD(ractl, f, r, m, i)				\
1270 	struct readahead_control ractl = {				\
1271 		.file = f,						\
1272 		.mapping = m,						\
1273 		.ra = r,						\
1274 		._index = i,						\
1275 	}
1276 
1277 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
1278 
1279 void page_cache_ra_unbounded(struct readahead_control *,
1280 		unsigned long nr_to_read, unsigned long lookahead_count);
1281 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1282 void page_cache_async_ra(struct readahead_control *, struct folio *,
1283 		unsigned long req_count);
1284 void readahead_expand(struct readahead_control *ractl,
1285 		      loff_t new_start, size_t new_len);
1286 
1287 /**
1288  * page_cache_sync_readahead - generic file readahead
1289  * @mapping: address_space which holds the pagecache and I/O vectors
1290  * @ra: file_ra_state which holds the readahead state
1291  * @file: Used by the filesystem for authentication.
1292  * @index: Index of first page to be read.
1293  * @req_count: Total number of pages being read by the caller.
1294  *
1295  * page_cache_sync_readahead() should be called when a cache miss happened:
1296  * it will submit the read.  The readahead logic may decide to piggyback more
1297  * pages onto the read request if access patterns suggest it will improve
1298  * performance.
1299  */
1300 static inline
1301 void page_cache_sync_readahead(struct address_space *mapping,
1302 		struct file_ra_state *ra, struct file *file, pgoff_t index,
1303 		unsigned long req_count)
1304 {
1305 	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1306 	page_cache_sync_ra(&ractl, req_count);
1307 }
1308 
1309 /**
1310  * page_cache_async_readahead - file readahead for marked pages
1311  * @mapping: address_space which holds the pagecache and I/O vectors
1312  * @ra: file_ra_state which holds the readahead state
1313  * @file: Used by the filesystem for authentication.
1314  * @folio: The folio at @index which triggered the readahead call.
1315  * @index: Index of first page to be read.
1316  * @req_count: Total number of pages being read by the caller.
1317  *
1318  * page_cache_async_readahead() should be called when a page is used which
1319  * is marked as PageReadahead; this is a marker to suggest that the application
1320  * has used up enough of the readahead window that we should start pulling in
1321  * more pages.
1322  */
1323 static inline
1324 void page_cache_async_readahead(struct address_space *mapping,
1325 		struct file_ra_state *ra, struct file *file,
1326 		struct folio *folio, pgoff_t index, unsigned long req_count)
1327 {
1328 	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1329 	page_cache_async_ra(&ractl, folio, req_count);
1330 }
1331 
1332 static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1333 {
1334 	struct folio *folio;
1335 
1336 	BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1337 	ractl->_nr_pages -= ractl->_batch_count;
1338 	ractl->_index += ractl->_batch_count;
1339 
1340 	if (!ractl->_nr_pages) {
1341 		ractl->_batch_count = 0;
1342 		return NULL;
1343 	}
1344 
1345 	folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1346 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1347 	ractl->_batch_count = folio_nr_pages(folio);
1348 
1349 	return folio;
1350 }
1351 
1352 /**
1353  * readahead_page - Get the next page to read.
1354  * @ractl: The current readahead request.
1355  *
1356  * Context: The page is locked and has an elevated refcount.  The caller
1357  * should decreases the refcount once the page has been submitted for I/O
1358  * and unlock the page once all I/O to that page has completed.
1359  * Return: A pointer to the next page, or %NULL if we are done.
1360  */
1361 static inline struct page *readahead_page(struct readahead_control *ractl)
1362 {
1363 	struct folio *folio = __readahead_folio(ractl);
1364 
1365 	return &folio->page;
1366 }
1367 
1368 /**
1369  * readahead_folio - Get the next folio to read.
1370  * @ractl: The current readahead request.
1371  *
1372  * Context: The folio is locked.  The caller should unlock the folio once
1373  * all I/O to that folio has completed.
1374  * Return: A pointer to the next folio, or %NULL if we are done.
1375  */
1376 static inline struct folio *readahead_folio(struct readahead_control *ractl)
1377 {
1378 	struct folio *folio = __readahead_folio(ractl);
1379 
1380 	if (folio)
1381 		folio_put(folio);
1382 	return folio;
1383 }
1384 
1385 static inline unsigned int __readahead_batch(struct readahead_control *rac,
1386 		struct page **array, unsigned int array_sz)
1387 {
1388 	unsigned int i = 0;
1389 	XA_STATE(xas, &rac->mapping->i_pages, 0);
1390 	struct page *page;
1391 
1392 	BUG_ON(rac->_batch_count > rac->_nr_pages);
1393 	rac->_nr_pages -= rac->_batch_count;
1394 	rac->_index += rac->_batch_count;
1395 	rac->_batch_count = 0;
1396 
1397 	xas_set(&xas, rac->_index);
1398 	rcu_read_lock();
1399 	xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
1400 		if (xas_retry(&xas, page))
1401 			continue;
1402 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1403 		VM_BUG_ON_PAGE(PageTail(page), page);
1404 		array[i++] = page;
1405 		rac->_batch_count += thp_nr_pages(page);
1406 		if (i == array_sz)
1407 			break;
1408 	}
1409 	rcu_read_unlock();
1410 
1411 	return i;
1412 }
1413 
1414 /**
1415  * readahead_page_batch - Get a batch of pages to read.
1416  * @rac: The current readahead request.
1417  * @array: An array of pointers to struct page.
1418  *
1419  * Context: The pages are locked and have an elevated refcount.  The caller
1420  * should decreases the refcount once the page has been submitted for I/O
1421  * and unlock the page once all I/O to that page has completed.
1422  * Return: The number of pages placed in the array.  0 indicates the request
1423  * is complete.
1424  */
1425 #define readahead_page_batch(rac, array)				\
1426 	__readahead_batch(rac, array, ARRAY_SIZE(array))
1427 
1428 /**
1429  * readahead_pos - The byte offset into the file of this readahead request.
1430  * @rac: The readahead request.
1431  */
1432 static inline loff_t readahead_pos(struct readahead_control *rac)
1433 {
1434 	return (loff_t)rac->_index * PAGE_SIZE;
1435 }
1436 
1437 /**
1438  * readahead_length - The number of bytes in this readahead request.
1439  * @rac: The readahead request.
1440  */
1441 static inline size_t readahead_length(struct readahead_control *rac)
1442 {
1443 	return rac->_nr_pages * PAGE_SIZE;
1444 }
1445 
1446 /**
1447  * readahead_index - The index of the first page in this readahead request.
1448  * @rac: The readahead request.
1449  */
1450 static inline pgoff_t readahead_index(struct readahead_control *rac)
1451 {
1452 	return rac->_index;
1453 }
1454 
1455 /**
1456  * readahead_count - The number of pages in this readahead request.
1457  * @rac: The readahead request.
1458  */
1459 static inline unsigned int readahead_count(struct readahead_control *rac)
1460 {
1461 	return rac->_nr_pages;
1462 }
1463 
1464 /**
1465  * readahead_batch_length - The number of bytes in the current batch.
1466  * @rac: The readahead request.
1467  */
1468 static inline size_t readahead_batch_length(struct readahead_control *rac)
1469 {
1470 	return rac->_batch_count * PAGE_SIZE;
1471 }
1472 
1473 static inline unsigned long dir_pages(struct inode *inode)
1474 {
1475 	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1476 			       PAGE_SHIFT;
1477 }
1478 
1479 /**
1480  * folio_mkwrite_check_truncate - check if folio was truncated
1481  * @folio: the folio to check
1482  * @inode: the inode to check the folio against
1483  *
1484  * Return: the number of bytes in the folio up to EOF,
1485  * or -EFAULT if the folio was truncated.
1486  */
1487 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1488 					      struct inode *inode)
1489 {
1490 	loff_t size = i_size_read(inode);
1491 	pgoff_t index = size >> PAGE_SHIFT;
1492 	size_t offset = offset_in_folio(folio, size);
1493 
1494 	if (!folio->mapping)
1495 		return -EFAULT;
1496 
1497 	/* folio is wholly inside EOF */
1498 	if (folio_next_index(folio) - 1 < index)
1499 		return folio_size(folio);
1500 	/* folio is wholly past EOF */
1501 	if (folio->index > index || !offset)
1502 		return -EFAULT;
1503 	/* folio is partially inside EOF */
1504 	return offset;
1505 }
1506 
1507 /**
1508  * page_mkwrite_check_truncate - check if page was truncated
1509  * @page: the page to check
1510  * @inode: the inode to check the page against
1511  *
1512  * Returns the number of bytes in the page up to EOF,
1513  * or -EFAULT if the page was truncated.
1514  */
1515 static inline int page_mkwrite_check_truncate(struct page *page,
1516 					      struct inode *inode)
1517 {
1518 	loff_t size = i_size_read(inode);
1519 	pgoff_t index = size >> PAGE_SHIFT;
1520 	int offset = offset_in_page(size);
1521 
1522 	if (page->mapping != inode->i_mapping)
1523 		return -EFAULT;
1524 
1525 	/* page is wholly inside EOF */
1526 	if (page->index < index)
1527 		return PAGE_SIZE;
1528 	/* page is wholly past EOF */
1529 	if (page->index > index || !offset)
1530 		return -EFAULT;
1531 	/* page is partially inside EOF */
1532 	return offset;
1533 }
1534 
1535 /**
1536  * i_blocks_per_folio - How many blocks fit in this folio.
1537  * @inode: The inode which contains the blocks.
1538  * @folio: The folio.
1539  *
1540  * If the block size is larger than the size of this folio, return zero.
1541  *
1542  * Context: The caller should hold a refcount on the folio to prevent it
1543  * from being split.
1544  * Return: The number of filesystem blocks covered by this folio.
1545  */
1546 static inline
1547 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1548 {
1549 	return folio_size(folio) >> inode->i_blkbits;
1550 }
1551 
1552 static inline
1553 unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1554 {
1555 	return i_blocks_per_folio(inode, page_folio(page));
1556 }
1557 #endif /* _LINUX_PAGEMAP_H */
1558