1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Driver for the ST STV0910 DVB-S/S2 demodulator.
4 *
5 * Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de>
6 * Marcus Metzler <mocm@metzlerbros.de>
7 * developed for Digital Devices GmbH
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/delay.h>
15 #include <linux/firmware.h>
16 #include <linux/i2c.h>
17 #include <asm/div64.h>
18
19 #include <media/dvb_frontend.h>
20 #include "stv0910.h"
21 #include "stv0910_regs.h"
22
23 #define EXT_CLOCK 30000000
24 #define TUNING_DELAY 200
25 #define BER_SRC_S 0x20
26 #define BER_SRC_S2 0x20
27
28 static LIST_HEAD(stvlist);
29
30 enum receive_mode { RCVMODE_NONE, RCVMODE_DVBS, RCVMODE_DVBS2, RCVMODE_AUTO };
31
32 enum dvbs2_fectype { DVBS2_64K, DVBS2_16K };
33
34 enum dvbs2_mod_cod {
35 DVBS2_DUMMY_PLF, DVBS2_QPSK_1_4, DVBS2_QPSK_1_3, DVBS2_QPSK_2_5,
36 DVBS2_QPSK_1_2, DVBS2_QPSK_3_5, DVBS2_QPSK_2_3, DVBS2_QPSK_3_4,
37 DVBS2_QPSK_4_5, DVBS2_QPSK_5_6, DVBS2_QPSK_8_9, DVBS2_QPSK_9_10,
38 DVBS2_8PSK_3_5, DVBS2_8PSK_2_3, DVBS2_8PSK_3_4, DVBS2_8PSK_5_6,
39 DVBS2_8PSK_8_9, DVBS2_8PSK_9_10, DVBS2_16APSK_2_3, DVBS2_16APSK_3_4,
40 DVBS2_16APSK_4_5, DVBS2_16APSK_5_6, DVBS2_16APSK_8_9, DVBS2_16APSK_9_10,
41 DVBS2_32APSK_3_4, DVBS2_32APSK_4_5, DVBS2_32APSK_5_6, DVBS2_32APSK_8_9,
42 DVBS2_32APSK_9_10
43 };
44
45 enum fe_stv0910_mod_cod {
46 FE_DUMMY_PLF, FE_QPSK_14, FE_QPSK_13, FE_QPSK_25,
47 FE_QPSK_12, FE_QPSK_35, FE_QPSK_23, FE_QPSK_34,
48 FE_QPSK_45, FE_QPSK_56, FE_QPSK_89, FE_QPSK_910,
49 FE_8PSK_35, FE_8PSK_23, FE_8PSK_34, FE_8PSK_56,
50 FE_8PSK_89, FE_8PSK_910, FE_16APSK_23, FE_16APSK_34,
51 FE_16APSK_45, FE_16APSK_56, FE_16APSK_89, FE_16APSK_910,
52 FE_32APSK_34, FE_32APSK_45, FE_32APSK_56, FE_32APSK_89,
53 FE_32APSK_910
54 };
55
56 enum fe_stv0910_roll_off { FE_SAT_35, FE_SAT_25, FE_SAT_20, FE_SAT_15 };
57
muldiv32(u32 a,u32 b,u32 c)58 static inline u32 muldiv32(u32 a, u32 b, u32 c)
59 {
60 u64 tmp64;
61
62 tmp64 = (u64)a * (u64)b;
63 do_div(tmp64, c);
64
65 return (u32)tmp64;
66 }
67
68 struct stv_base {
69 struct list_head stvlist;
70
71 u8 adr;
72 struct i2c_adapter *i2c;
73 struct mutex i2c_lock; /* shared I2C access protect */
74 struct mutex reg_lock; /* shared register write protect */
75 int count;
76
77 u32 extclk;
78 u32 mclk;
79 };
80
81 struct stv {
82 struct stv_base *base;
83 struct dvb_frontend fe;
84 int nr;
85 u16 regoff;
86 u8 i2crpt;
87 u8 tscfgh;
88 u8 tsgeneral;
89 u8 tsspeed;
90 u8 single;
91 unsigned long tune_time;
92
93 s32 search_range;
94 u32 started;
95 u32 demod_lock_time;
96 enum receive_mode receive_mode;
97 u32 demod_timeout;
98 u32 fec_timeout;
99 u32 first_time_lock;
100 u8 demod_bits;
101 u32 symbol_rate;
102
103 u8 last_viterbi_rate;
104 enum fe_code_rate puncture_rate;
105 enum fe_stv0910_mod_cod mod_cod;
106 enum dvbs2_fectype fectype;
107 u32 pilots;
108 enum fe_stv0910_roll_off feroll_off;
109
110 int is_standard_broadcast;
111 int is_vcm;
112
113 u32 cur_scrambling_code;
114
115 u32 last_bernumerator;
116 u32 last_berdenominator;
117 u8 berscale;
118
119 u8 vth[6];
120 };
121
122 struct slookup {
123 s16 value;
124 u32 reg_value;
125 };
126
write_reg(struct stv * state,u16 reg,u8 val)127 static int write_reg(struct stv *state, u16 reg, u8 val)
128 {
129 struct i2c_adapter *adap = state->base->i2c;
130 u8 data[3] = {reg >> 8, reg & 0xff, val};
131 struct i2c_msg msg = {.addr = state->base->adr, .flags = 0,
132 .buf = data, .len = 3};
133
134 if (i2c_transfer(adap, &msg, 1) != 1) {
135 dev_warn(&adap->dev, "i2c write error ([%02x] %04x: %02x)\n",
136 state->base->adr, reg, val);
137 return -EIO;
138 }
139 return 0;
140 }
141
i2c_read_regs16(struct i2c_adapter * adapter,u8 adr,u16 reg,u8 * val,int count)142 static inline int i2c_read_regs16(struct i2c_adapter *adapter, u8 adr,
143 u16 reg, u8 *val, int count)
144 {
145 u8 msg[2] = {reg >> 8, reg & 0xff};
146 struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
147 .buf = msg, .len = 2},
148 {.addr = adr, .flags = I2C_M_RD,
149 .buf = val, .len = count } };
150
151 if (i2c_transfer(adapter, msgs, 2) != 2) {
152 dev_warn(&adapter->dev, "i2c read error ([%02x] %04x)\n",
153 adr, reg);
154 return -EIO;
155 }
156 return 0;
157 }
158
read_reg(struct stv * state,u16 reg,u8 * val)159 static int read_reg(struct stv *state, u16 reg, u8 *val)
160 {
161 return i2c_read_regs16(state->base->i2c, state->base->adr,
162 reg, val, 1);
163 }
164
read_regs(struct stv * state,u16 reg,u8 * val,int len)165 static int read_regs(struct stv *state, u16 reg, u8 *val, int len)
166 {
167 return i2c_read_regs16(state->base->i2c, state->base->adr,
168 reg, val, len);
169 }
170
write_shared_reg(struct stv * state,u16 reg,u8 mask,u8 val)171 static int write_shared_reg(struct stv *state, u16 reg, u8 mask, u8 val)
172 {
173 int status;
174 u8 tmp;
175
176 mutex_lock(&state->base->reg_lock);
177 status = read_reg(state, reg, &tmp);
178 if (!status)
179 status = write_reg(state, reg, (tmp & ~mask) | (val & mask));
180 mutex_unlock(&state->base->reg_lock);
181 return status;
182 }
183
write_field(struct stv * state,u32 field,u8 val)184 static int write_field(struct stv *state, u32 field, u8 val)
185 {
186 int status;
187 u8 shift, mask, old, new;
188
189 status = read_reg(state, field >> 16, &old);
190 if (status)
191 return status;
192 mask = field & 0xff;
193 shift = (field >> 12) & 0xf;
194 new = ((val << shift) & mask) | (old & ~mask);
195 if (new == old)
196 return 0;
197 return write_reg(state, field >> 16, new);
198 }
199
200 #define SET_FIELD(_reg, _val) \
201 write_field(state, state->nr ? FSTV0910_P2_##_reg : \
202 FSTV0910_P1_##_reg, _val)
203
204 #define SET_REG(_reg, _val) \
205 write_reg(state, state->nr ? RSTV0910_P2_##_reg : \
206 RSTV0910_P1_##_reg, _val)
207
208 #define GET_REG(_reg, _val) \
209 read_reg(state, state->nr ? RSTV0910_P2_##_reg : \
210 RSTV0910_P1_##_reg, _val)
211
212 static const struct slookup s1_sn_lookup[] = {
213 { 0, 9242 }, /* C/N= 0dB */
214 { 5, 9105 }, /* C/N= 0.5dB */
215 { 10, 8950 }, /* C/N= 1.0dB */
216 { 15, 8780 }, /* C/N= 1.5dB */
217 { 20, 8566 }, /* C/N= 2.0dB */
218 { 25, 8366 }, /* C/N= 2.5dB */
219 { 30, 8146 }, /* C/N= 3.0dB */
220 { 35, 7908 }, /* C/N= 3.5dB */
221 { 40, 7666 }, /* C/N= 4.0dB */
222 { 45, 7405 }, /* C/N= 4.5dB */
223 { 50, 7136 }, /* C/N= 5.0dB */
224 { 55, 6861 }, /* C/N= 5.5dB */
225 { 60, 6576 }, /* C/N= 6.0dB */
226 { 65, 6330 }, /* C/N= 6.5dB */
227 { 70, 6048 }, /* C/N= 7.0dB */
228 { 75, 5768 }, /* C/N= 7.5dB */
229 { 80, 5492 }, /* C/N= 8.0dB */
230 { 85, 5224 }, /* C/N= 8.5dB */
231 { 90, 4959 }, /* C/N= 9.0dB */
232 { 95, 4709 }, /* C/N= 9.5dB */
233 { 100, 4467 }, /* C/N=10.0dB */
234 { 105, 4236 }, /* C/N=10.5dB */
235 { 110, 4013 }, /* C/N=11.0dB */
236 { 115, 3800 }, /* C/N=11.5dB */
237 { 120, 3598 }, /* C/N=12.0dB */
238 { 125, 3406 }, /* C/N=12.5dB */
239 { 130, 3225 }, /* C/N=13.0dB */
240 { 135, 3052 }, /* C/N=13.5dB */
241 { 140, 2889 }, /* C/N=14.0dB */
242 { 145, 2733 }, /* C/N=14.5dB */
243 { 150, 2587 }, /* C/N=15.0dB */
244 { 160, 2318 }, /* C/N=16.0dB */
245 { 170, 2077 }, /* C/N=17.0dB */
246 { 180, 1862 }, /* C/N=18.0dB */
247 { 190, 1670 }, /* C/N=19.0dB */
248 { 200, 1499 }, /* C/N=20.0dB */
249 { 210, 1347 }, /* C/N=21.0dB */
250 { 220, 1213 }, /* C/N=22.0dB */
251 { 230, 1095 }, /* C/N=23.0dB */
252 { 240, 992 }, /* C/N=24.0dB */
253 { 250, 900 }, /* C/N=25.0dB */
254 { 260, 826 }, /* C/N=26.0dB */
255 { 270, 758 }, /* C/N=27.0dB */
256 { 280, 702 }, /* C/N=28.0dB */
257 { 290, 653 }, /* C/N=29.0dB */
258 { 300, 613 }, /* C/N=30.0dB */
259 { 310, 579 }, /* C/N=31.0dB */
260 { 320, 550 }, /* C/N=32.0dB */
261 { 330, 526 }, /* C/N=33.0dB */
262 { 350, 490 }, /* C/N=33.0dB */
263 { 400, 445 }, /* C/N=40.0dB */
264 { 450, 430 }, /* C/N=45.0dB */
265 { 500, 426 }, /* C/N=50.0dB */
266 { 510, 425 } /* C/N=51.0dB */
267 };
268
269 static const struct slookup s2_sn_lookup[] = {
270 { -30, 13950 }, /* C/N=-2.5dB */
271 { -25, 13580 }, /* C/N=-2.5dB */
272 { -20, 13150 }, /* C/N=-2.0dB */
273 { -15, 12760 }, /* C/N=-1.5dB */
274 { -10, 12345 }, /* C/N=-1.0dB */
275 { -5, 11900 }, /* C/N=-0.5dB */
276 { 0, 11520 }, /* C/N= 0dB */
277 { 5, 11080 }, /* C/N= 0.5dB */
278 { 10, 10630 }, /* C/N= 1.0dB */
279 { 15, 10210 }, /* C/N= 1.5dB */
280 { 20, 9790 }, /* C/N= 2.0dB */
281 { 25, 9390 }, /* C/N= 2.5dB */
282 { 30, 8970 }, /* C/N= 3.0dB */
283 { 35, 8575 }, /* C/N= 3.5dB */
284 { 40, 8180 }, /* C/N= 4.0dB */
285 { 45, 7800 }, /* C/N= 4.5dB */
286 { 50, 7430 }, /* C/N= 5.0dB */
287 { 55, 7080 }, /* C/N= 5.5dB */
288 { 60, 6720 }, /* C/N= 6.0dB */
289 { 65, 6320 }, /* C/N= 6.5dB */
290 { 70, 6060 }, /* C/N= 7.0dB */
291 { 75, 5760 }, /* C/N= 7.5dB */
292 { 80, 5480 }, /* C/N= 8.0dB */
293 { 85, 5200 }, /* C/N= 8.5dB */
294 { 90, 4930 }, /* C/N= 9.0dB */
295 { 95, 4680 }, /* C/N= 9.5dB */
296 { 100, 4425 }, /* C/N=10.0dB */
297 { 105, 4210 }, /* C/N=10.5dB */
298 { 110, 3980 }, /* C/N=11.0dB */
299 { 115, 3765 }, /* C/N=11.5dB */
300 { 120, 3570 }, /* C/N=12.0dB */
301 { 125, 3315 }, /* C/N=12.5dB */
302 { 130, 3140 }, /* C/N=13.0dB */
303 { 135, 2980 }, /* C/N=13.5dB */
304 { 140, 2820 }, /* C/N=14.0dB */
305 { 145, 2670 }, /* C/N=14.5dB */
306 { 150, 2535 }, /* C/N=15.0dB */
307 { 160, 2270 }, /* C/N=16.0dB */
308 { 170, 2035 }, /* C/N=17.0dB */
309 { 180, 1825 }, /* C/N=18.0dB */
310 { 190, 1650 }, /* C/N=19.0dB */
311 { 200, 1485 }, /* C/N=20.0dB */
312 { 210, 1340 }, /* C/N=21.0dB */
313 { 220, 1212 }, /* C/N=22.0dB */
314 { 230, 1100 }, /* C/N=23.0dB */
315 { 240, 1000 }, /* C/N=24.0dB */
316 { 250, 910 }, /* C/N=25.0dB */
317 { 260, 836 }, /* C/N=26.0dB */
318 { 270, 772 }, /* C/N=27.0dB */
319 { 280, 718 }, /* C/N=28.0dB */
320 { 290, 671 }, /* C/N=29.0dB */
321 { 300, 635 }, /* C/N=30.0dB */
322 { 310, 602 }, /* C/N=31.0dB */
323 { 320, 575 }, /* C/N=32.0dB */
324 { 330, 550 }, /* C/N=33.0dB */
325 { 350, 517 }, /* C/N=35.0dB */
326 { 400, 480 }, /* C/N=40.0dB */
327 { 450, 466 }, /* C/N=45.0dB */
328 { 500, 464 }, /* C/N=50.0dB */
329 { 510, 463 }, /* C/N=51.0dB */
330 };
331
332 static const struct slookup padc_lookup[] = {
333 { 0, 118000 }, /* PADC= +0dBm */
334 { -100, 93600 }, /* PADC= -1dBm */
335 { -200, 74500 }, /* PADC= -2dBm */
336 { -300, 59100 }, /* PADC= -3dBm */
337 { -400, 47000 }, /* PADC= -4dBm */
338 { -500, 37300 }, /* PADC= -5dBm */
339 { -600, 29650 }, /* PADC= -6dBm */
340 { -700, 23520 }, /* PADC= -7dBm */
341 { -900, 14850 }, /* PADC= -9dBm */
342 { -1100, 9380 }, /* PADC=-11dBm */
343 { -1300, 5910 }, /* PADC=-13dBm */
344 { -1500, 3730 }, /* PADC=-15dBm */
345 { -1700, 2354 }, /* PADC=-17dBm */
346 { -1900, 1485 }, /* PADC=-19dBm */
347 { -2000, 1179 }, /* PADC=-20dBm */
348 { -2100, 1000 }, /* PADC=-21dBm */
349 };
350
351 /*********************************************************************
352 * Tracking carrier loop carrier QPSK 1/4 to 8PSK 9/10 long Frame
353 *********************************************************************/
354 static const u8 s2car_loop[] = {
355 /*
356 * Modcod 2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff
357 * 20MPon 20MPoff 30MPon 30MPoff
358 */
359
360 /* FE_QPSK_14 */
361 0x0C, 0x3C, 0x0B, 0x3C, 0x2A, 0x2C, 0x2A, 0x1C, 0x3A, 0x3B,
362 /* FE_QPSK_13 */
363 0x0C, 0x3C, 0x0B, 0x3C, 0x2A, 0x2C, 0x3A, 0x0C, 0x3A, 0x2B,
364 /* FE_QPSK_25 */
365 0x1C, 0x3C, 0x1B, 0x3C, 0x3A, 0x1C, 0x3A, 0x3B, 0x3A, 0x2B,
366 /* FE_QPSK_12 */
367 0x0C, 0x1C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B,
368 /* FE_QPSK_35 */
369 0x1C, 0x1C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B,
370 /* FE_QPSK_23 */
371 0x2C, 0x2C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B,
372 /* FE_QPSK_34 */
373 0x3C, 0x2C, 0x3B, 0x2C, 0x1B, 0x1C, 0x1B, 0x3B, 0x3A, 0x1B,
374 /* FE_QPSK_45 */
375 0x0D, 0x3C, 0x3B, 0x2C, 0x1B, 0x1C, 0x1B, 0x3B, 0x3A, 0x1B,
376 /* FE_QPSK_56 */
377 0x1D, 0x3C, 0x0C, 0x2C, 0x2B, 0x1C, 0x1B, 0x3B, 0x0B, 0x1B,
378 /* FE_QPSK_89 */
379 0x3D, 0x0D, 0x0C, 0x2C, 0x2B, 0x0C, 0x2B, 0x2B, 0x0B, 0x0B,
380 /* FE_QPSK_910 */
381 0x1E, 0x0D, 0x1C, 0x2C, 0x3B, 0x0C, 0x2B, 0x2B, 0x1B, 0x0B,
382 /* FE_8PSK_35 */
383 0x28, 0x09, 0x28, 0x09, 0x28, 0x09, 0x28, 0x08, 0x28, 0x27,
384 /* FE_8PSK_23 */
385 0x19, 0x29, 0x19, 0x29, 0x19, 0x29, 0x38, 0x19, 0x28, 0x09,
386 /* FE_8PSK_34 */
387 0x1A, 0x0B, 0x1A, 0x3A, 0x0A, 0x2A, 0x39, 0x2A, 0x39, 0x1A,
388 /* FE_8PSK_56 */
389 0x2B, 0x2B, 0x1B, 0x1B, 0x0B, 0x1B, 0x1A, 0x0B, 0x1A, 0x1A,
390 /* FE_8PSK_89 */
391 0x0C, 0x0C, 0x3B, 0x3B, 0x1B, 0x1B, 0x2A, 0x0B, 0x2A, 0x2A,
392 /* FE_8PSK_910 */
393 0x0C, 0x1C, 0x0C, 0x3B, 0x2B, 0x1B, 0x3A, 0x0B, 0x2A, 0x2A,
394
395 /**********************************************************************
396 * Tracking carrier loop carrier 16APSK 2/3 to 32APSK 9/10 long Frame
397 **********************************************************************/
398
399 /*
400 * Modcod 2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff 20MPon
401 * 20MPoff 30MPon 30MPoff
402 */
403
404 /* FE_16APSK_23 */
405 0x0A, 0x0A, 0x0A, 0x0A, 0x1A, 0x0A, 0x39, 0x0A, 0x29, 0x0A,
406 /* FE_16APSK_34 */
407 0x0A, 0x0A, 0x0A, 0x0A, 0x0B, 0x0A, 0x2A, 0x0A, 0x1A, 0x0A,
408 /* FE_16APSK_45 */
409 0x0A, 0x0A, 0x0A, 0x0A, 0x1B, 0x0A, 0x3A, 0x0A, 0x2A, 0x0A,
410 /* FE_16APSK_56 */
411 0x0A, 0x0A, 0x0A, 0x0A, 0x1B, 0x0A, 0x3A, 0x0A, 0x2A, 0x0A,
412 /* FE_16APSK_89 */
413 0x0A, 0x0A, 0x0A, 0x0A, 0x2B, 0x0A, 0x0B, 0x0A, 0x3A, 0x0A,
414 /* FE_16APSK_910 */
415 0x0A, 0x0A, 0x0A, 0x0A, 0x2B, 0x0A, 0x0B, 0x0A, 0x3A, 0x0A,
416 /* FE_32APSK_34 */
417 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
418 /* FE_32APSK_45 */
419 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
420 /* FE_32APSK_56 */
421 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
422 /* FE_32APSK_89 */
423 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
424 /* FE_32APSK_910 */
425 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
426 };
427
get_optim_cloop(struct stv * state,enum fe_stv0910_mod_cod mod_cod,u32 pilots)428 static u8 get_optim_cloop(struct stv *state,
429 enum fe_stv0910_mod_cod mod_cod, u32 pilots)
430 {
431 int i = 0;
432
433 if (mod_cod >= FE_32APSK_910)
434 i = ((int)FE_32APSK_910 - (int)FE_QPSK_14) * 10;
435 else if (mod_cod >= FE_QPSK_14)
436 i = ((int)mod_cod - (int)FE_QPSK_14) * 10;
437
438 if (state->symbol_rate <= 3000000)
439 i += 0;
440 else if (state->symbol_rate <= 7000000)
441 i += 2;
442 else if (state->symbol_rate <= 15000000)
443 i += 4;
444 else if (state->symbol_rate <= 25000000)
445 i += 6;
446 else
447 i += 8;
448
449 if (!pilots)
450 i += 1;
451
452 return s2car_loop[i];
453 }
454
get_cur_symbol_rate(struct stv * state,u32 * p_symbol_rate)455 static int get_cur_symbol_rate(struct stv *state, u32 *p_symbol_rate)
456 {
457 int status = 0;
458 u8 symb_freq0;
459 u8 symb_freq1;
460 u8 symb_freq2;
461 u8 symb_freq3;
462 u8 tim_offs0;
463 u8 tim_offs1;
464 u8 tim_offs2;
465 u32 symbol_rate;
466 s32 timing_offset;
467
468 *p_symbol_rate = 0;
469 if (!state->started)
470 return status;
471
472 read_reg(state, RSTV0910_P2_SFR3 + state->regoff, &symb_freq3);
473 read_reg(state, RSTV0910_P2_SFR2 + state->regoff, &symb_freq2);
474 read_reg(state, RSTV0910_P2_SFR1 + state->regoff, &symb_freq1);
475 read_reg(state, RSTV0910_P2_SFR0 + state->regoff, &symb_freq0);
476 read_reg(state, RSTV0910_P2_TMGREG2 + state->regoff, &tim_offs2);
477 read_reg(state, RSTV0910_P2_TMGREG1 + state->regoff, &tim_offs1);
478 read_reg(state, RSTV0910_P2_TMGREG0 + state->regoff, &tim_offs0);
479
480 symbol_rate = ((u32)symb_freq3 << 24) | ((u32)symb_freq2 << 16) |
481 ((u32)symb_freq1 << 8) | (u32)symb_freq0;
482 timing_offset = ((u32)tim_offs2 << 16) | ((u32)tim_offs1 << 8) |
483 (u32)tim_offs0;
484
485 if ((timing_offset & (1 << 23)) != 0)
486 timing_offset |= 0xFF000000; /* Sign extent */
487
488 symbol_rate = (u32)(((u64)symbol_rate * state->base->mclk) >> 32);
489 timing_offset = (s32)(((s64)symbol_rate * (s64)timing_offset) >> 29);
490
491 *p_symbol_rate = symbol_rate + timing_offset;
492
493 return 0;
494 }
495
get_signal_parameters(struct stv * state)496 static int get_signal_parameters(struct stv *state)
497 {
498 u8 tmp;
499
500 if (!state->started)
501 return -EINVAL;
502
503 if (state->receive_mode == RCVMODE_DVBS2) {
504 read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
505 state->mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2);
506 state->pilots = (tmp & 0x01) != 0;
507 state->fectype = (enum dvbs2_fectype)((tmp & 0x02) >> 1);
508
509 } else if (state->receive_mode == RCVMODE_DVBS) {
510 read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
511 state->puncture_rate = FEC_NONE;
512 switch (tmp & 0x1F) {
513 case 0x0d:
514 state->puncture_rate = FEC_1_2;
515 break;
516 case 0x12:
517 state->puncture_rate = FEC_2_3;
518 break;
519 case 0x15:
520 state->puncture_rate = FEC_3_4;
521 break;
522 case 0x18:
523 state->puncture_rate = FEC_5_6;
524 break;
525 case 0x1a:
526 state->puncture_rate = FEC_7_8;
527 break;
528 }
529 state->is_vcm = 0;
530 state->is_standard_broadcast = 1;
531 state->feroll_off = FE_SAT_35;
532 }
533 return 0;
534 }
535
tracking_optimization(struct stv * state)536 static int tracking_optimization(struct stv *state)
537 {
538 u8 tmp;
539
540 read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &tmp);
541 tmp &= ~0xC0;
542
543 switch (state->receive_mode) {
544 case RCVMODE_DVBS:
545 tmp |= 0x40;
546 break;
547 case RCVMODE_DVBS2:
548 tmp |= 0x80;
549 break;
550 default:
551 tmp |= 0xC0;
552 break;
553 }
554 write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, tmp);
555
556 if (state->receive_mode == RCVMODE_DVBS2) {
557 /* Disable Reed-Solomon */
558 write_shared_reg(state,
559 RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01,
560 0x03);
561
562 if (state->fectype == DVBS2_64K) {
563 u8 aclc = get_optim_cloop(state, state->mod_cod,
564 state->pilots);
565
566 if (state->mod_cod <= FE_QPSK_910) {
567 write_reg(state, RSTV0910_P2_ACLC2S2Q +
568 state->regoff, aclc);
569 } else if (state->mod_cod <= FE_8PSK_910) {
570 write_reg(state, RSTV0910_P2_ACLC2S2Q +
571 state->regoff, 0x2a);
572 write_reg(state, RSTV0910_P2_ACLC2S28 +
573 state->regoff, aclc);
574 } else if (state->mod_cod <= FE_16APSK_910) {
575 write_reg(state, RSTV0910_P2_ACLC2S2Q +
576 state->regoff, 0x2a);
577 write_reg(state, RSTV0910_P2_ACLC2S216A +
578 state->regoff, aclc);
579 } else if (state->mod_cod <= FE_32APSK_910) {
580 write_reg(state, RSTV0910_P2_ACLC2S2Q +
581 state->regoff, 0x2a);
582 write_reg(state, RSTV0910_P2_ACLC2S232A +
583 state->regoff, aclc);
584 }
585 }
586 }
587 return 0;
588 }
589
table_lookup(const struct slookup * table,int table_size,u32 reg_value)590 static s32 table_lookup(const struct slookup *table,
591 int table_size, u32 reg_value)
592 {
593 s32 value;
594 int imin = 0;
595 int imax = table_size - 1;
596 int i;
597 s32 reg_diff;
598
599 /* Assumes Table[0].RegValue > Table[imax].RegValue */
600 if (reg_value >= table[0].reg_value) {
601 value = table[0].value;
602 } else if (reg_value <= table[imax].reg_value) {
603 value = table[imax].value;
604 } else {
605 while ((imax - imin) > 1) {
606 i = (imax + imin) / 2;
607 if ((table[imin].reg_value >= reg_value) &&
608 (reg_value >= table[i].reg_value))
609 imax = i;
610 else
611 imin = i;
612 }
613
614 reg_diff = table[imax].reg_value - table[imin].reg_value;
615 value = table[imin].value;
616 if (reg_diff != 0)
617 value += ((s32)(reg_value - table[imin].reg_value) *
618 (s32)(table[imax].value
619 - table[imin].value))
620 / (reg_diff);
621 }
622
623 return value;
624 }
625
get_signal_to_noise(struct stv * state,s32 * signal_to_noise)626 static int get_signal_to_noise(struct stv *state, s32 *signal_to_noise)
627 {
628 u8 data0;
629 u8 data1;
630 u16 data;
631 int n_lookup;
632 const struct slookup *lookup;
633
634 *signal_to_noise = 0;
635
636 if (!state->started)
637 return -EINVAL;
638
639 if (state->receive_mode == RCVMODE_DVBS2) {
640 read_reg(state, RSTV0910_P2_NNOSPLHT1 + state->regoff,
641 &data1);
642 read_reg(state, RSTV0910_P2_NNOSPLHT0 + state->regoff,
643 &data0);
644 n_lookup = ARRAY_SIZE(s2_sn_lookup);
645 lookup = s2_sn_lookup;
646 } else {
647 read_reg(state, RSTV0910_P2_NNOSDATAT1 + state->regoff,
648 &data1);
649 read_reg(state, RSTV0910_P2_NNOSDATAT0 + state->regoff,
650 &data0);
651 n_lookup = ARRAY_SIZE(s1_sn_lookup);
652 lookup = s1_sn_lookup;
653 }
654 data = (((u16)data1) << 8) | (u16)data0;
655 *signal_to_noise = table_lookup(lookup, n_lookup, data);
656 return 0;
657 }
658
get_bit_error_rate_s(struct stv * state,u32 * bernumerator,u32 * berdenominator)659 static int get_bit_error_rate_s(struct stv *state, u32 *bernumerator,
660 u32 *berdenominator)
661 {
662 u8 regs[3];
663
664 int status = read_regs(state,
665 RSTV0910_P2_ERRCNT12 + state->regoff,
666 regs, 3);
667
668 if (status)
669 return -EINVAL;
670
671 if ((regs[0] & 0x80) == 0) {
672 state->last_berdenominator = 1ULL << ((state->berscale * 2) +
673 10 + 3);
674 state->last_bernumerator = ((u32)(regs[0] & 0x7F) << 16) |
675 ((u32)regs[1] << 8) | regs[2];
676 if (state->last_bernumerator < 256 && state->berscale < 6) {
677 state->berscale += 1;
678 status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
679 state->regoff,
680 0x20 | state->berscale);
681 } else if (state->last_bernumerator > 1024 &&
682 state->berscale > 2) {
683 state->berscale -= 1;
684 status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
685 state->regoff, 0x20 |
686 state->berscale);
687 }
688 }
689 *bernumerator = state->last_bernumerator;
690 *berdenominator = state->last_berdenominator;
691 return 0;
692 }
693
dvbs2_nbch(enum dvbs2_mod_cod mod_cod,enum dvbs2_fectype fectype)694 static u32 dvbs2_nbch(enum dvbs2_mod_cod mod_cod, enum dvbs2_fectype fectype)
695 {
696 static const u32 nbch[][2] = {
697 { 0, 0}, /* DUMMY_PLF */
698 {16200, 3240}, /* QPSK_1_4, */
699 {21600, 5400}, /* QPSK_1_3, */
700 {25920, 6480}, /* QPSK_2_5, */
701 {32400, 7200}, /* QPSK_1_2, */
702 {38880, 9720}, /* QPSK_3_5, */
703 {43200, 10800}, /* QPSK_2_3, */
704 {48600, 11880}, /* QPSK_3_4, */
705 {51840, 12600}, /* QPSK_4_5, */
706 {54000, 13320}, /* QPSK_5_6, */
707 {57600, 14400}, /* QPSK_8_9, */
708 {58320, 16000}, /* QPSK_9_10, */
709 {43200, 9720}, /* 8PSK_3_5, */
710 {48600, 10800}, /* 8PSK_2_3, */
711 {51840, 11880}, /* 8PSK_3_4, */
712 {54000, 13320}, /* 8PSK_5_6, */
713 {57600, 14400}, /* 8PSK_8_9, */
714 {58320, 16000}, /* 8PSK_9_10, */
715 {43200, 10800}, /* 16APSK_2_3, */
716 {48600, 11880}, /* 16APSK_3_4, */
717 {51840, 12600}, /* 16APSK_4_5, */
718 {54000, 13320}, /* 16APSK_5_6, */
719 {57600, 14400}, /* 16APSK_8_9, */
720 {58320, 16000}, /* 16APSK_9_10 */
721 {48600, 11880}, /* 32APSK_3_4, */
722 {51840, 12600}, /* 32APSK_4_5, */
723 {54000, 13320}, /* 32APSK_5_6, */
724 {57600, 14400}, /* 32APSK_8_9, */
725 {58320, 16000}, /* 32APSK_9_10 */
726 };
727
728 if (mod_cod >= DVBS2_QPSK_1_4 &&
729 mod_cod <= DVBS2_32APSK_9_10 && fectype <= DVBS2_16K)
730 return nbch[mod_cod][fectype];
731 return 64800;
732 }
733
get_bit_error_rate_s2(struct stv * state,u32 * bernumerator,u32 * berdenominator)734 static int get_bit_error_rate_s2(struct stv *state, u32 *bernumerator,
735 u32 *berdenominator)
736 {
737 u8 regs[3];
738
739 int status = read_regs(state, RSTV0910_P2_ERRCNT12 + state->regoff,
740 regs, 3);
741
742 if (status)
743 return -EINVAL;
744
745 if ((regs[0] & 0x80) == 0) {
746 state->last_berdenominator =
747 dvbs2_nbch((enum dvbs2_mod_cod)state->mod_cod,
748 state->fectype) <<
749 (state->berscale * 2);
750 state->last_bernumerator = (((u32)regs[0] & 0x7F) << 16) |
751 ((u32)regs[1] << 8) | regs[2];
752 if (state->last_bernumerator < 256 && state->berscale < 6) {
753 state->berscale += 1;
754 write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
755 0x20 | state->berscale);
756 } else if (state->last_bernumerator > 1024 &&
757 state->berscale > 2) {
758 state->berscale -= 1;
759 write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
760 0x20 | state->berscale);
761 }
762 }
763 *bernumerator = state->last_bernumerator;
764 *berdenominator = state->last_berdenominator;
765 return status;
766 }
767
get_bit_error_rate(struct stv * state,u32 * bernumerator,u32 * berdenominator)768 static int get_bit_error_rate(struct stv *state, u32 *bernumerator,
769 u32 *berdenominator)
770 {
771 *bernumerator = 0;
772 *berdenominator = 1;
773
774 switch (state->receive_mode) {
775 case RCVMODE_DVBS:
776 return get_bit_error_rate_s(state,
777 bernumerator, berdenominator);
778 case RCVMODE_DVBS2:
779 return get_bit_error_rate_s2(state,
780 bernumerator, berdenominator);
781 default:
782 break;
783 }
784 return 0;
785 }
786
set_mclock(struct stv * state,u32 master_clock)787 static int set_mclock(struct stv *state, u32 master_clock)
788 {
789 u32 idf = 1;
790 u32 odf = 4;
791 u32 quartz = state->base->extclk / 1000000;
792 u32 fphi = master_clock / 1000000;
793 u32 ndiv = (fphi * odf * idf) / quartz;
794 u32 cp = 7;
795 u32 fvco;
796
797 if (ndiv >= 7 && ndiv <= 71)
798 cp = 7;
799 else if (ndiv >= 72 && ndiv <= 79)
800 cp = 8;
801 else if (ndiv >= 80 && ndiv <= 87)
802 cp = 9;
803 else if (ndiv >= 88 && ndiv <= 95)
804 cp = 10;
805 else if (ndiv >= 96 && ndiv <= 103)
806 cp = 11;
807 else if (ndiv >= 104 && ndiv <= 111)
808 cp = 12;
809 else if (ndiv >= 112 && ndiv <= 119)
810 cp = 13;
811 else if (ndiv >= 120 && ndiv <= 127)
812 cp = 14;
813 else if (ndiv >= 128 && ndiv <= 135)
814 cp = 15;
815 else if (ndiv >= 136 && ndiv <= 143)
816 cp = 16;
817 else if (ndiv >= 144 && ndiv <= 151)
818 cp = 17;
819 else if (ndiv >= 152 && ndiv <= 159)
820 cp = 18;
821 else if (ndiv >= 160 && ndiv <= 167)
822 cp = 19;
823 else if (ndiv >= 168 && ndiv <= 175)
824 cp = 20;
825 else if (ndiv >= 176 && ndiv <= 183)
826 cp = 21;
827 else if (ndiv >= 184 && ndiv <= 191)
828 cp = 22;
829 else if (ndiv >= 192 && ndiv <= 199)
830 cp = 23;
831 else if (ndiv >= 200 && ndiv <= 207)
832 cp = 24;
833 else if (ndiv >= 208 && ndiv <= 215)
834 cp = 25;
835 else if (ndiv >= 216 && ndiv <= 223)
836 cp = 26;
837 else if (ndiv >= 224 && ndiv <= 225)
838 cp = 27;
839
840 write_reg(state, RSTV0910_NCOARSE, (cp << 3) | idf);
841 write_reg(state, RSTV0910_NCOARSE2, odf);
842 write_reg(state, RSTV0910_NCOARSE1, ndiv);
843
844 fvco = (quartz * 2 * ndiv) / idf;
845 state->base->mclk = fvco / (2 * odf) * 1000000;
846
847 return 0;
848 }
849
stop(struct stv * state)850 static int stop(struct stv *state)
851 {
852 if (state->started) {
853 u8 tmp;
854
855 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
856 state->tscfgh | 0x01);
857 read_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, &tmp);
858 tmp &= ~0x01; /* release reset DVBS2 packet delin */
859 write_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, tmp);
860 /* Blind optim*/
861 write_reg(state, RSTV0910_P2_AGC2O + state->regoff, 0x5B);
862 /* Stop the demod */
863 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5c);
864 state->started = 0;
865 }
866 state->receive_mode = RCVMODE_NONE;
867 return 0;
868 }
869
set_pls(struct stv * state,u32 pls_code)870 static void set_pls(struct stv *state, u32 pls_code)
871 {
872 if (pls_code == state->cur_scrambling_code)
873 return;
874
875 /* PLROOT2 bit 2 = gold code */
876 write_reg(state, RSTV0910_P2_PLROOT0 + state->regoff,
877 pls_code & 0xff);
878 write_reg(state, RSTV0910_P2_PLROOT1 + state->regoff,
879 (pls_code >> 8) & 0xff);
880 write_reg(state, RSTV0910_P2_PLROOT2 + state->regoff,
881 0x04 | ((pls_code >> 16) & 0x03));
882 state->cur_scrambling_code = pls_code;
883 }
884
set_isi(struct stv * state,u32 isi)885 static void set_isi(struct stv *state, u32 isi)
886 {
887 if (isi == NO_STREAM_ID_FILTER)
888 return;
889 if (isi == 0x80000000) {
890 SET_FIELD(FORCE_CONTINUOUS, 1);
891 SET_FIELD(TSOUT_NOSYNC, 1);
892 } else {
893 SET_FIELD(FILTER_EN, 1);
894 write_reg(state, RSTV0910_P2_ISIENTRY + state->regoff,
895 isi & 0xff);
896 write_reg(state, RSTV0910_P2_ISIBITENA + state->regoff, 0xff);
897 }
898 SET_FIELD(ALGOSWRST, 1);
899 SET_FIELD(ALGOSWRST, 0);
900 }
901
set_stream_modes(struct stv * state,struct dtv_frontend_properties * p)902 static void set_stream_modes(struct stv *state,
903 struct dtv_frontend_properties *p)
904 {
905 set_isi(state, p->stream_id);
906 set_pls(state, p->scrambling_sequence_index);
907 }
908
init_search_param(struct stv * state,struct dtv_frontend_properties * p)909 static int init_search_param(struct stv *state,
910 struct dtv_frontend_properties *p)
911 {
912 SET_FIELD(FORCE_CONTINUOUS, 0);
913 SET_FIELD(FRAME_MODE, 0);
914 SET_FIELD(FILTER_EN, 0);
915 SET_FIELD(TSOUT_NOSYNC, 0);
916 SET_FIELD(TSFIFO_EMBINDVB, 0);
917 SET_FIELD(TSDEL_SYNCBYTE, 0);
918 SET_REG(UPLCCST0, 0xe0);
919 SET_FIELD(TSINS_TOKEN, 0);
920 SET_FIELD(HYSTERESIS_THRESHOLD, 0);
921 SET_FIELD(ISIOBS_MODE, 1);
922
923 set_stream_modes(state, p);
924 return 0;
925 }
926
enable_puncture_rate(struct stv * state,enum fe_code_rate rate)927 static int enable_puncture_rate(struct stv *state, enum fe_code_rate rate)
928 {
929 u8 val;
930
931 switch (rate) {
932 case FEC_1_2:
933 val = 0x01;
934 break;
935 case FEC_2_3:
936 val = 0x02;
937 break;
938 case FEC_3_4:
939 val = 0x04;
940 break;
941 case FEC_5_6:
942 val = 0x08;
943 break;
944 case FEC_7_8:
945 val = 0x20;
946 break;
947 case FEC_NONE:
948 default:
949 val = 0x2f;
950 break;
951 }
952
953 return write_reg(state, RSTV0910_P2_PRVIT + state->regoff, val);
954 }
955
set_vth_default(struct stv * state)956 static int set_vth_default(struct stv *state)
957 {
958 state->vth[0] = 0xd7;
959 state->vth[1] = 0x85;
960 state->vth[2] = 0x58;
961 state->vth[3] = 0x3a;
962 state->vth[4] = 0x34;
963 state->vth[5] = 0x28;
964 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]);
965 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]);
966 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]);
967 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]);
968 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]);
969 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]);
970 return 0;
971 }
972
set_vth(struct stv * state)973 static int set_vth(struct stv *state)
974 {
975 static const struct slookup vthlookup_table[] = {
976 {250, 8780}, /* C/N= 1.5dB */
977 {100, 7405}, /* C/N= 4.5dB */
978 {40, 6330}, /* C/N= 6.5dB */
979 {12, 5224}, /* C/N= 8.5dB */
980 {5, 4236} /* C/N=10.5dB */
981 };
982
983 int i;
984 u8 tmp[2];
985 int status = read_regs(state,
986 RSTV0910_P2_NNOSDATAT1 + state->regoff,
987 tmp, 2);
988 u16 reg_value = (tmp[0] << 8) | tmp[1];
989 s32 vth = table_lookup(vthlookup_table, ARRAY_SIZE(vthlookup_table),
990 reg_value);
991
992 for (i = 0; i < 6; i += 1)
993 if (state->vth[i] > vth)
994 state->vth[i] = vth;
995
996 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]);
997 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]);
998 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]);
999 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]);
1000 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]);
1001 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]);
1002 return status;
1003 }
1004
start(struct stv * state,struct dtv_frontend_properties * p)1005 static int start(struct stv *state, struct dtv_frontend_properties *p)
1006 {
1007 s32 freq;
1008 u8 reg_dmdcfgmd;
1009 u16 symb;
1010
1011 if (p->symbol_rate < 100000 || p->symbol_rate > 70000000)
1012 return -EINVAL;
1013
1014 state->receive_mode = RCVMODE_NONE;
1015 state->demod_lock_time = 0;
1016
1017 /* Demod Stop */
1018 if (state->started)
1019 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5C);
1020
1021 init_search_param(state, p);
1022
1023 if (p->symbol_rate <= 1000000) { /* SR <=1Msps */
1024 state->demod_timeout = 3000;
1025 state->fec_timeout = 2000;
1026 } else if (p->symbol_rate <= 2000000) { /* 1Msps < SR <=2Msps */
1027 state->demod_timeout = 2500;
1028 state->fec_timeout = 1300;
1029 } else if (p->symbol_rate <= 5000000) { /* 2Msps< SR <=5Msps */
1030 state->demod_timeout = 1000;
1031 state->fec_timeout = 650;
1032 } else if (p->symbol_rate <= 10000000) { /* 5Msps< SR <=10Msps */
1033 state->demod_timeout = 700;
1034 state->fec_timeout = 350;
1035 } else if (p->symbol_rate < 20000000) { /* 10Msps< SR <=20Msps */
1036 state->demod_timeout = 400;
1037 state->fec_timeout = 200;
1038 } else { /* SR >=20Msps */
1039 state->demod_timeout = 300;
1040 state->fec_timeout = 200;
1041 }
1042
1043 /* Set the Init Symbol rate */
1044 symb = muldiv32(p->symbol_rate, 65536, state->base->mclk);
1045 write_reg(state, RSTV0910_P2_SFRINIT1 + state->regoff,
1046 ((symb >> 8) & 0x7F));
1047 write_reg(state, RSTV0910_P2_SFRINIT0 + state->regoff, (symb & 0xFF));
1048
1049 state->demod_bits |= 0x80;
1050 write_reg(state, RSTV0910_P2_DEMOD + state->regoff, state->demod_bits);
1051
1052 /* FE_STV0910_SetSearchStandard */
1053 read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, ®_dmdcfgmd);
1054 write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff,
1055 reg_dmdcfgmd |= 0xC0);
1056
1057 write_shared_reg(state,
1058 RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01, 0x00);
1059
1060 /* Disable DSS */
1061 write_reg(state, RSTV0910_P2_FECM + state->regoff, 0x00);
1062 write_reg(state, RSTV0910_P2_PRVIT + state->regoff, 0x2F);
1063
1064 enable_puncture_rate(state, FEC_NONE);
1065
1066 /* 8PSK 3/5, 8PSK 2/3 Poff tracking optimization WA */
1067 write_reg(state, RSTV0910_P2_ACLC2S2Q + state->regoff, 0x0B);
1068 write_reg(state, RSTV0910_P2_ACLC2S28 + state->regoff, 0x0A);
1069 write_reg(state, RSTV0910_P2_BCLC2S2Q + state->regoff, 0x84);
1070 write_reg(state, RSTV0910_P2_BCLC2S28 + state->regoff, 0x84);
1071 write_reg(state, RSTV0910_P2_CARHDR + state->regoff, 0x1C);
1072 write_reg(state, RSTV0910_P2_CARFREQ + state->regoff, 0x79);
1073
1074 write_reg(state, RSTV0910_P2_ACLC2S216A + state->regoff, 0x29);
1075 write_reg(state, RSTV0910_P2_ACLC2S232A + state->regoff, 0x09);
1076 write_reg(state, RSTV0910_P2_BCLC2S216A + state->regoff, 0x84);
1077 write_reg(state, RSTV0910_P2_BCLC2S232A + state->regoff, 0x84);
1078
1079 /*
1080 * Reset CAR3, bug DVBS2->DVBS1 lock
1081 * Note: The bit is only pulsed -> no lock on shared register needed
1082 */
1083 write_reg(state, RSTV0910_TSTRES0, state->nr ? 0x04 : 0x08);
1084 write_reg(state, RSTV0910_TSTRES0, 0);
1085
1086 set_vth_default(state);
1087 /* Reset demod */
1088 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
1089
1090 write_reg(state, RSTV0910_P2_CARCFG + state->regoff, 0x46);
1091
1092 if (p->symbol_rate <= 5000000)
1093 freq = (state->search_range / 2000) + 80;
1094 else
1095 freq = (state->search_range / 2000) + 1600;
1096 freq = (freq << 16) / (state->base->mclk / 1000);
1097
1098 write_reg(state, RSTV0910_P2_CFRUP1 + state->regoff,
1099 (freq >> 8) & 0xff);
1100 write_reg(state, RSTV0910_P2_CFRUP0 + state->regoff, (freq & 0xff));
1101 /* CFR Low Setting */
1102 freq = -freq;
1103 write_reg(state, RSTV0910_P2_CFRLOW1 + state->regoff,
1104 (freq >> 8) & 0xff);
1105 write_reg(state, RSTV0910_P2_CFRLOW0 + state->regoff, (freq & 0xff));
1106
1107 /* init the demod frequency offset to 0 */
1108 write_reg(state, RSTV0910_P2_CFRINIT1 + state->regoff, 0);
1109 write_reg(state, RSTV0910_P2_CFRINIT0 + state->regoff, 0);
1110
1111 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
1112 /* Trigger acq */
1113 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x15);
1114
1115 state->demod_lock_time += TUNING_DELAY;
1116 state->started = 1;
1117
1118 return 0;
1119 }
1120
init_diseqc(struct stv * state)1121 static int init_diseqc(struct stv *state)
1122 {
1123 u16 offs = state->nr ? 0x40 : 0; /* Address offset */
1124 u8 freq = ((state->base->mclk + 11000 * 32) / (22000 * 32));
1125
1126 /* Disable receiver */
1127 write_reg(state, RSTV0910_P1_DISRXCFG + offs, 0x00);
1128 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0xBA); /* Reset = 1 */
1129 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A); /* Reset = 0 */
1130 write_reg(state, RSTV0910_P1_DISTXF22 + offs, freq);
1131 return 0;
1132 }
1133
probe(struct stv * state)1134 static int probe(struct stv *state)
1135 {
1136 u8 id;
1137
1138 state->receive_mode = RCVMODE_NONE;
1139 state->started = 0;
1140
1141 if (read_reg(state, RSTV0910_MID, &id) < 0)
1142 return -ENODEV;
1143
1144 if (id != 0x51)
1145 return -EINVAL;
1146
1147 /* Configure the I2C repeater to off */
1148 write_reg(state, RSTV0910_P1_I2CRPT, 0x24);
1149 /* Configure the I2C repeater to off */
1150 write_reg(state, RSTV0910_P2_I2CRPT, 0x24);
1151 /* Set the I2C to oversampling ratio */
1152 write_reg(state, RSTV0910_I2CCFG, 0x88); /* state->i2ccfg */
1153
1154 write_reg(state, RSTV0910_OUTCFG, 0x00); /* OUTCFG */
1155 write_reg(state, RSTV0910_PADCFG, 0x05); /* RFAGC Pads Dev = 05 */
1156 write_reg(state, RSTV0910_SYNTCTRL, 0x02); /* SYNTCTRL */
1157 write_reg(state, RSTV0910_TSGENERAL, state->tsgeneral); /* TSGENERAL */
1158 write_reg(state, RSTV0910_CFGEXT, 0x02); /* CFGEXT */
1159
1160 if (state->single)
1161 write_reg(state, RSTV0910_GENCFG, 0x14); /* GENCFG */
1162 else
1163 write_reg(state, RSTV0910_GENCFG, 0x15); /* GENCFG */
1164
1165 write_reg(state, RSTV0910_P1_TNRCFG2, 0x02); /* IQSWAP = 0 */
1166 write_reg(state, RSTV0910_P2_TNRCFG2, 0x82); /* IQSWAP = 1 */
1167
1168 write_reg(state, RSTV0910_P1_CAR3CFG, 0x02);
1169 write_reg(state, RSTV0910_P2_CAR3CFG, 0x02);
1170 write_reg(state, RSTV0910_P1_DMDCFG4, 0x04);
1171 write_reg(state, RSTV0910_P2_DMDCFG4, 0x04);
1172
1173 write_reg(state, RSTV0910_TSTRES0, 0x80); /* LDPC Reset */
1174 write_reg(state, RSTV0910_TSTRES0, 0x00);
1175
1176 write_reg(state, RSTV0910_P1_TSPIDFLT1, 0x00);
1177 write_reg(state, RSTV0910_P2_TSPIDFLT1, 0x00);
1178
1179 write_reg(state, RSTV0910_P1_TMGCFG2, 0x80);
1180 write_reg(state, RSTV0910_P2_TMGCFG2, 0x80);
1181
1182 set_mclock(state, 135000000);
1183
1184 /* TS output */
1185 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01);
1186 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh);
1187 write_reg(state, RSTV0910_P1_TSCFGM, 0xC0); /* Manual speed */
1188 write_reg(state, RSTV0910_P1_TSCFGL, 0x20);
1189
1190 write_reg(state, RSTV0910_P1_TSSPEED, state->tsspeed);
1191
1192 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01);
1193 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh);
1194 write_reg(state, RSTV0910_P2_TSCFGM, 0xC0); /* Manual speed */
1195 write_reg(state, RSTV0910_P2_TSCFGL, 0x20);
1196
1197 write_reg(state, RSTV0910_P2_TSSPEED, state->tsspeed);
1198
1199 /* Reset stream merger */
1200 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01);
1201 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01);
1202 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh);
1203 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh);
1204
1205 write_reg(state, RSTV0910_P1_I2CRPT, state->i2crpt);
1206 write_reg(state, RSTV0910_P2_I2CRPT, state->i2crpt);
1207
1208 write_reg(state, RSTV0910_P1_TSINSDELM, 0x17);
1209 write_reg(state, RSTV0910_P1_TSINSDELL, 0xff);
1210
1211 write_reg(state, RSTV0910_P2_TSINSDELM, 0x17);
1212 write_reg(state, RSTV0910_P2_TSINSDELL, 0xff);
1213
1214 init_diseqc(state);
1215 return 0;
1216 }
1217
gate_ctrl(struct dvb_frontend * fe,int enable)1218 static int gate_ctrl(struct dvb_frontend *fe, int enable)
1219 {
1220 struct stv *state = fe->demodulator_priv;
1221 u8 i2crpt = state->i2crpt & ~0x86;
1222
1223 /*
1224 * mutex_lock note: Concurrent I2C gate bus accesses must be
1225 * prevented (STV0910 = dual demod on a single IC with a single I2C
1226 * gate/bus, and two tuners attached), similar to most (if not all)
1227 * other I2C host interfaces/buses.
1228 *
1229 * enable=1 (open I2C gate) will grab the lock
1230 * enable=0 (close I2C gate) releases the lock
1231 */
1232
1233 if (enable) {
1234 mutex_lock(&state->base->i2c_lock);
1235 i2crpt |= 0x80;
1236 } else {
1237 i2crpt |= 0x02;
1238 }
1239
1240 if (write_reg(state, state->nr ? RSTV0910_P2_I2CRPT :
1241 RSTV0910_P1_I2CRPT, i2crpt) < 0) {
1242 /* don't hold the I2C bus lock on failure */
1243 if (!WARN_ON(!mutex_is_locked(&state->base->i2c_lock)))
1244 mutex_unlock(&state->base->i2c_lock);
1245 dev_err(&state->base->i2c->dev,
1246 "%s() write_reg failure (enable=%d)\n",
1247 __func__, enable);
1248 return -EIO;
1249 }
1250
1251 state->i2crpt = i2crpt;
1252
1253 if (!enable)
1254 if (!WARN_ON(!mutex_is_locked(&state->base->i2c_lock)))
1255 mutex_unlock(&state->base->i2c_lock);
1256 return 0;
1257 }
1258
release(struct dvb_frontend * fe)1259 static void release(struct dvb_frontend *fe)
1260 {
1261 struct stv *state = fe->demodulator_priv;
1262
1263 state->base->count--;
1264 if (state->base->count == 0) {
1265 list_del(&state->base->stvlist);
1266 kfree(state->base);
1267 }
1268 kfree(state);
1269 }
1270
set_parameters(struct dvb_frontend * fe)1271 static int set_parameters(struct dvb_frontend *fe)
1272 {
1273 int stat = 0;
1274 struct stv *state = fe->demodulator_priv;
1275 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1276
1277 stop(state);
1278 if (fe->ops.tuner_ops.set_params)
1279 fe->ops.tuner_ops.set_params(fe);
1280 state->symbol_rate = p->symbol_rate;
1281 stat = start(state, p);
1282 return stat;
1283 }
1284
manage_matype_info(struct stv * state)1285 static int manage_matype_info(struct stv *state)
1286 {
1287 if (!state->started)
1288 return -EINVAL;
1289 if (state->receive_mode == RCVMODE_DVBS2) {
1290 u8 bbheader[2];
1291
1292 read_regs(state, RSTV0910_P2_MATSTR1 + state->regoff,
1293 bbheader, 2);
1294 state->feroll_off =
1295 (enum fe_stv0910_roll_off)(bbheader[0] & 0x03);
1296 state->is_vcm = (bbheader[0] & 0x10) == 0;
1297 state->is_standard_broadcast = (bbheader[0] & 0xFC) == 0xF0;
1298 } else if (state->receive_mode == RCVMODE_DVBS) {
1299 state->is_vcm = 0;
1300 state->is_standard_broadcast = 1;
1301 state->feroll_off = FE_SAT_35;
1302 }
1303 return 0;
1304 }
1305
read_snr(struct dvb_frontend * fe)1306 static int read_snr(struct dvb_frontend *fe)
1307 {
1308 struct stv *state = fe->demodulator_priv;
1309 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1310 s32 snrval;
1311
1312 if (!get_signal_to_noise(state, &snrval)) {
1313 p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1314 p->cnr.stat[0].svalue = 100 * snrval; /* fix scale */
1315 } else {
1316 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1317 }
1318
1319 return 0;
1320 }
1321
read_ber(struct dvb_frontend * fe)1322 static int read_ber(struct dvb_frontend *fe)
1323 {
1324 struct stv *state = fe->demodulator_priv;
1325 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1326 u32 n, d;
1327
1328 get_bit_error_rate(state, &n, &d);
1329
1330 p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1331 p->pre_bit_error.stat[0].uvalue = n;
1332 p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1333 p->pre_bit_count.stat[0].uvalue = d;
1334
1335 return 0;
1336 }
1337
read_signal_strength(struct dvb_frontend * fe)1338 static void read_signal_strength(struct dvb_frontend *fe)
1339 {
1340 struct stv *state = fe->demodulator_priv;
1341 struct dtv_frontend_properties *p = &state->fe.dtv_property_cache;
1342 u8 reg[2];
1343 u16 agc;
1344 s32 padc, power = 0;
1345 int i;
1346
1347 read_regs(state, RSTV0910_P2_AGCIQIN1 + state->regoff, reg, 2);
1348
1349 agc = (((u32)reg[0]) << 8) | reg[1];
1350
1351 for (i = 0; i < 5; i += 1) {
1352 read_regs(state, RSTV0910_P2_POWERI + state->regoff, reg, 2);
1353 power += (u32)reg[0] * (u32)reg[0]
1354 + (u32)reg[1] * (u32)reg[1];
1355 usleep_range(3000, 4000);
1356 }
1357 power /= 5;
1358
1359 padc = table_lookup(padc_lookup, ARRAY_SIZE(padc_lookup), power) + 352;
1360
1361 p->strength.stat[0].scale = FE_SCALE_DECIBEL;
1362 p->strength.stat[0].svalue = (padc - agc);
1363 }
1364
read_status(struct dvb_frontend * fe,enum fe_status * status)1365 static int read_status(struct dvb_frontend *fe, enum fe_status *status)
1366 {
1367 struct stv *state = fe->demodulator_priv;
1368 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1369 u8 dmd_state = 0;
1370 u8 dstatus = 0;
1371 enum receive_mode cur_receive_mode = RCVMODE_NONE;
1372 u32 feclock = 0;
1373
1374 *status = 0;
1375
1376 read_reg(state, RSTV0910_P2_DMDSTATE + state->regoff, &dmd_state);
1377
1378 if (dmd_state & 0x40) {
1379 read_reg(state, RSTV0910_P2_DSTATUS + state->regoff, &dstatus);
1380 if (dstatus & 0x08)
1381 cur_receive_mode = (dmd_state & 0x20) ?
1382 RCVMODE_DVBS : RCVMODE_DVBS2;
1383 }
1384 if (cur_receive_mode == RCVMODE_NONE) {
1385 set_vth(state);
1386
1387 /* reset signal statistics */
1388 p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1389 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1390 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1391 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1392
1393 return 0;
1394 }
1395
1396 *status |= (FE_HAS_SIGNAL
1397 | FE_HAS_CARRIER
1398 | FE_HAS_VITERBI
1399 | FE_HAS_SYNC);
1400
1401 if (state->receive_mode == RCVMODE_NONE) {
1402 state->receive_mode = cur_receive_mode;
1403 state->demod_lock_time = jiffies;
1404 state->first_time_lock = 1;
1405
1406 get_signal_parameters(state);
1407 tracking_optimization(state);
1408
1409 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1410 state->tscfgh);
1411 usleep_range(3000, 4000);
1412 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1413 state->tscfgh | 0x01);
1414 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1415 state->tscfgh);
1416 }
1417 if (dmd_state & 0x40) {
1418 if (state->receive_mode == RCVMODE_DVBS2) {
1419 u8 pdelstatus;
1420
1421 read_reg(state,
1422 RSTV0910_P2_PDELSTATUS1 + state->regoff,
1423 &pdelstatus);
1424 feclock = (pdelstatus & 0x02) != 0;
1425 } else {
1426 u8 vstatus;
1427
1428 read_reg(state,
1429 RSTV0910_P2_VSTATUSVIT + state->regoff,
1430 &vstatus);
1431 feclock = (vstatus & 0x08) != 0;
1432 }
1433 }
1434
1435 if (feclock) {
1436 *status |= FE_HAS_LOCK;
1437
1438 if (state->first_time_lock) {
1439 u8 tmp;
1440
1441 state->first_time_lock = 0;
1442
1443 manage_matype_info(state);
1444
1445 if (state->receive_mode == RCVMODE_DVBS2) {
1446 /*
1447 * FSTV0910_P2_MANUALSX_ROLLOFF,
1448 * FSTV0910_P2_MANUALS2_ROLLOFF = 0
1449 */
1450 state->demod_bits &= ~0x84;
1451 write_reg(state,
1452 RSTV0910_P2_DEMOD + state->regoff,
1453 state->demod_bits);
1454 read_reg(state,
1455 RSTV0910_P2_PDELCTRL2 + state->regoff,
1456 &tmp);
1457 /* reset DVBS2 packet delinator error counter */
1458 tmp |= 0x40;
1459 write_reg(state,
1460 RSTV0910_P2_PDELCTRL2 + state->regoff,
1461 tmp);
1462 /* reset DVBS2 packet delinator error counter */
1463 tmp &= ~0x40;
1464 write_reg(state,
1465 RSTV0910_P2_PDELCTRL2 + state->regoff,
1466 tmp);
1467
1468 state->berscale = 2;
1469 state->last_bernumerator = 0;
1470 state->last_berdenominator = 1;
1471 /* force to PRE BCH Rate */
1472 write_reg(state,
1473 RSTV0910_P2_ERRCTRL1 + state->regoff,
1474 BER_SRC_S2 | state->berscale);
1475 } else {
1476 state->berscale = 2;
1477 state->last_bernumerator = 0;
1478 state->last_berdenominator = 1;
1479 /* force to PRE RS Rate */
1480 write_reg(state,
1481 RSTV0910_P2_ERRCTRL1 + state->regoff,
1482 BER_SRC_S | state->berscale);
1483 }
1484 /* Reset the Total packet counter */
1485 write_reg(state,
1486 RSTV0910_P2_FBERCPT4 + state->regoff, 0x00);
1487 /*
1488 * Reset the packet Error counter2 (and Set it to
1489 * infinite error count mode)
1490 */
1491 write_reg(state,
1492 RSTV0910_P2_ERRCTRL2 + state->regoff, 0xc1);
1493
1494 set_vth_default(state);
1495 if (state->receive_mode == RCVMODE_DVBS)
1496 enable_puncture_rate(state,
1497 state->puncture_rate);
1498 }
1499
1500 /* Use highest signaled ModCod for quality */
1501 if (state->is_vcm) {
1502 u8 tmp;
1503 enum fe_stv0910_mod_cod mod_cod;
1504
1505 read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff,
1506 &tmp);
1507 mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2);
1508
1509 if (mod_cod > state->mod_cod)
1510 state->mod_cod = mod_cod;
1511 }
1512 }
1513
1514 /* read signal statistics */
1515
1516 /* read signal strength */
1517 read_signal_strength(fe);
1518
1519 /* read carrier/noise on FE_HAS_CARRIER */
1520 if (*status & FE_HAS_CARRIER)
1521 read_snr(fe);
1522 else
1523 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1524
1525 /* read ber */
1526 if (*status & FE_HAS_VITERBI) {
1527 read_ber(fe);
1528 } else {
1529 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1530 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1531 }
1532
1533 return 0;
1534 }
1535
get_frontend(struct dvb_frontend * fe,struct dtv_frontend_properties * p)1536 static int get_frontend(struct dvb_frontend *fe,
1537 struct dtv_frontend_properties *p)
1538 {
1539 struct stv *state = fe->demodulator_priv;
1540 u8 tmp;
1541 u32 symbolrate;
1542
1543 if (state->receive_mode == RCVMODE_DVBS2) {
1544 u32 mc;
1545 const enum fe_modulation modcod2mod[0x20] = {
1546 QPSK, QPSK, QPSK, QPSK,
1547 QPSK, QPSK, QPSK, QPSK,
1548 QPSK, QPSK, QPSK, QPSK,
1549 PSK_8, PSK_8, PSK_8, PSK_8,
1550 PSK_8, PSK_8, APSK_16, APSK_16,
1551 APSK_16, APSK_16, APSK_16, APSK_16,
1552 APSK_32, APSK_32, APSK_32, APSK_32,
1553 APSK_32,
1554 };
1555 const enum fe_code_rate modcod2fec[0x20] = {
1556 FEC_NONE, FEC_NONE, FEC_NONE, FEC_2_5,
1557 FEC_1_2, FEC_3_5, FEC_2_3, FEC_3_4,
1558 FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
1559 FEC_3_5, FEC_2_3, FEC_3_4, FEC_5_6,
1560 FEC_8_9, FEC_9_10, FEC_2_3, FEC_3_4,
1561 FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
1562 FEC_3_4, FEC_4_5, FEC_5_6, FEC_8_9,
1563 FEC_9_10
1564 };
1565 read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
1566 mc = ((tmp & 0x7c) >> 2);
1567 p->pilot = (tmp & 0x01) ? PILOT_ON : PILOT_OFF;
1568 p->modulation = modcod2mod[mc];
1569 p->fec_inner = modcod2fec[mc];
1570 } else if (state->receive_mode == RCVMODE_DVBS) {
1571 read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
1572 switch (tmp & 0x1F) {
1573 case 0x0d:
1574 p->fec_inner = FEC_1_2;
1575 break;
1576 case 0x12:
1577 p->fec_inner = FEC_2_3;
1578 break;
1579 case 0x15:
1580 p->fec_inner = FEC_3_4;
1581 break;
1582 case 0x18:
1583 p->fec_inner = FEC_5_6;
1584 break;
1585 case 0x1a:
1586 p->fec_inner = FEC_7_8;
1587 break;
1588 default:
1589 p->fec_inner = FEC_NONE;
1590 break;
1591 }
1592 p->rolloff = ROLLOFF_35;
1593 }
1594
1595 if (state->receive_mode != RCVMODE_NONE) {
1596 get_cur_symbol_rate(state, &symbolrate);
1597 p->symbol_rate = symbolrate;
1598 }
1599 return 0;
1600 }
1601
tune(struct dvb_frontend * fe,bool re_tune,unsigned int mode_flags,unsigned int * delay,enum fe_status * status)1602 static int tune(struct dvb_frontend *fe, bool re_tune,
1603 unsigned int mode_flags,
1604 unsigned int *delay, enum fe_status *status)
1605 {
1606 struct stv *state = fe->demodulator_priv;
1607 int r;
1608
1609 if (re_tune) {
1610 r = set_parameters(fe);
1611 if (r)
1612 return r;
1613 state->tune_time = jiffies;
1614 }
1615
1616 r = read_status(fe, status);
1617 if (r)
1618 return r;
1619
1620 if (*status & FE_HAS_LOCK)
1621 return 0;
1622 *delay = HZ;
1623
1624 return 0;
1625 }
1626
get_algo(struct dvb_frontend * fe)1627 static enum dvbfe_algo get_algo(struct dvb_frontend *fe)
1628 {
1629 return DVBFE_ALGO_HW;
1630 }
1631
set_tone(struct dvb_frontend * fe,enum fe_sec_tone_mode tone)1632 static int set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
1633 {
1634 struct stv *state = fe->demodulator_priv;
1635 u16 offs = state->nr ? 0x40 : 0;
1636
1637 switch (tone) {
1638 case SEC_TONE_ON:
1639 return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x38);
1640 case SEC_TONE_OFF:
1641 return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3a);
1642 default:
1643 break;
1644 }
1645 return -EINVAL;
1646 }
1647
wait_dis(struct stv * state,u8 flag,u8 val)1648 static int wait_dis(struct stv *state, u8 flag, u8 val)
1649 {
1650 int i;
1651 u8 stat;
1652 u16 offs = state->nr ? 0x40 : 0;
1653
1654 for (i = 0; i < 10; i++) {
1655 read_reg(state, RSTV0910_P1_DISTXSTATUS + offs, &stat);
1656 if ((stat & flag) == val)
1657 return 0;
1658 usleep_range(10000, 11000);
1659 }
1660 return -ETIMEDOUT;
1661 }
1662
send_master_cmd(struct dvb_frontend * fe,struct dvb_diseqc_master_cmd * cmd)1663 static int send_master_cmd(struct dvb_frontend *fe,
1664 struct dvb_diseqc_master_cmd *cmd)
1665 {
1666 struct stv *state = fe->demodulator_priv;
1667 int i;
1668
1669 SET_FIELD(DISEQC_MODE, 2);
1670 SET_FIELD(DIS_PRECHARGE, 1);
1671 for (i = 0; i < cmd->msg_len; i++) {
1672 wait_dis(state, 0x40, 0x00);
1673 SET_REG(DISTXFIFO, cmd->msg[i]);
1674 }
1675 SET_FIELD(DIS_PRECHARGE, 0);
1676 wait_dis(state, 0x20, 0x20);
1677 return 0;
1678 }
1679
send_burst(struct dvb_frontend * fe,enum fe_sec_mini_cmd burst)1680 static int send_burst(struct dvb_frontend *fe, enum fe_sec_mini_cmd burst)
1681 {
1682 struct stv *state = fe->demodulator_priv;
1683 u8 value;
1684
1685 if (burst == SEC_MINI_A) {
1686 SET_FIELD(DISEQC_MODE, 3);
1687 value = 0x00;
1688 } else {
1689 SET_FIELD(DISEQC_MODE, 2);
1690 value = 0xFF;
1691 }
1692
1693 SET_FIELD(DIS_PRECHARGE, 1);
1694 wait_dis(state, 0x40, 0x00);
1695 SET_REG(DISTXFIFO, value);
1696 SET_FIELD(DIS_PRECHARGE, 0);
1697 wait_dis(state, 0x20, 0x20);
1698
1699 return 0;
1700 }
1701
sleep(struct dvb_frontend * fe)1702 static int sleep(struct dvb_frontend *fe)
1703 {
1704 struct stv *state = fe->demodulator_priv;
1705
1706 stop(state);
1707 return 0;
1708 }
1709
1710 static const struct dvb_frontend_ops stv0910_ops = {
1711 .delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
1712 .info = {
1713 .name = "ST STV0910",
1714 .frequency_min_hz = 950 * MHz,
1715 .frequency_max_hz = 2150 * MHz,
1716 .symbol_rate_min = 100000,
1717 .symbol_rate_max = 70000000,
1718 .caps = FE_CAN_INVERSION_AUTO |
1719 FE_CAN_FEC_AUTO |
1720 FE_CAN_QPSK |
1721 FE_CAN_2G_MODULATION |
1722 FE_CAN_MULTISTREAM
1723 },
1724 .sleep = sleep,
1725 .release = release,
1726 .i2c_gate_ctrl = gate_ctrl,
1727 .set_frontend = set_parameters,
1728 .get_frontend_algo = get_algo,
1729 .get_frontend = get_frontend,
1730 .tune = tune,
1731 .read_status = read_status,
1732 .set_tone = set_tone,
1733
1734 .diseqc_send_master_cmd = send_master_cmd,
1735 .diseqc_send_burst = send_burst,
1736 };
1737
match_base(struct i2c_adapter * i2c,u8 adr)1738 static struct stv_base *match_base(struct i2c_adapter *i2c, u8 adr)
1739 {
1740 struct stv_base *p;
1741
1742 list_for_each_entry(p, &stvlist, stvlist)
1743 if (p->i2c == i2c && p->adr == adr)
1744 return p;
1745 return NULL;
1746 }
1747
stv0910_init_stats(struct stv * state)1748 static void stv0910_init_stats(struct stv *state)
1749 {
1750 struct dtv_frontend_properties *p = &state->fe.dtv_property_cache;
1751
1752 p->strength.len = 1;
1753 p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1754 p->cnr.len = 1;
1755 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1756 p->pre_bit_error.len = 1;
1757 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1758 p->pre_bit_count.len = 1;
1759 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1760 }
1761
stv0910_attach(struct i2c_adapter * i2c,struct stv0910_cfg * cfg,int nr)1762 struct dvb_frontend *stv0910_attach(struct i2c_adapter *i2c,
1763 struct stv0910_cfg *cfg,
1764 int nr)
1765 {
1766 struct stv *state;
1767 struct stv_base *base;
1768
1769 state = kzalloc(sizeof(*state), GFP_KERNEL);
1770 if (!state)
1771 return NULL;
1772
1773 state->tscfgh = 0x20 | (cfg->parallel ? 0 : 0x40);
1774 state->tsgeneral = (cfg->parallel == 2) ? 0x02 : 0x00;
1775 state->i2crpt = 0x0A | ((cfg->rptlvl & 0x07) << 4);
1776 /* use safe tsspeed value if unspecified through stv0910_cfg */
1777 state->tsspeed = (cfg->tsspeed ? cfg->tsspeed : 0x28);
1778 state->nr = nr;
1779 state->regoff = state->nr ? 0 : 0x200;
1780 state->search_range = 16000000;
1781 state->demod_bits = 0x10; /* Inversion : Auto with reset to 0 */
1782 state->receive_mode = RCVMODE_NONE;
1783 state->cur_scrambling_code = (~0U);
1784 state->single = cfg->single ? 1 : 0;
1785
1786 base = match_base(i2c, cfg->adr);
1787 if (base) {
1788 base->count++;
1789 state->base = base;
1790 } else {
1791 base = kzalloc(sizeof(*base), GFP_KERNEL);
1792 if (!base)
1793 goto fail;
1794 base->i2c = i2c;
1795 base->adr = cfg->adr;
1796 base->count = 1;
1797 base->extclk = cfg->clk ? cfg->clk : 30000000;
1798
1799 mutex_init(&base->i2c_lock);
1800 mutex_init(&base->reg_lock);
1801 state->base = base;
1802 if (probe(state) < 0) {
1803 dev_info(&i2c->dev, "No demod found at adr %02X on %s\n",
1804 cfg->adr, dev_name(&i2c->dev));
1805 kfree(base);
1806 goto fail;
1807 }
1808 list_add(&base->stvlist, &stvlist);
1809 }
1810 state->fe.ops = stv0910_ops;
1811 state->fe.demodulator_priv = state;
1812 state->nr = nr;
1813
1814 dev_info(&i2c->dev, "%s demod found at adr %02X on %s\n",
1815 state->fe.ops.info.name, cfg->adr, dev_name(&i2c->dev));
1816
1817 stv0910_init_stats(state);
1818
1819 return &state->fe;
1820
1821 fail:
1822 kfree(state);
1823 return NULL;
1824 }
1825 EXPORT_SYMBOL_GPL(stv0910_attach);
1826
1827 MODULE_DESCRIPTION("ST STV0910 multistandard frontend driver");
1828 MODULE_AUTHOR("Ralph and Marcus Metzler, Manfred Voelkel");
1829 MODULE_LICENSE("GPL v2");
1830