xref: /linux/include/linux/sched.h (revision c6439bfaabf25b736154ac5640c677da2c085db4)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 #include <asm/processor.h>
14 #include <linux/thread_info.h>
15 #include <linux/preempt.h>
16 #include <linux/cpumask_types.h>
17 
18 #include <linux/cache.h>
19 #include <linux/irqflags_types.h>
20 #include <linux/smp_types.h>
21 #include <linux/pid_types.h>
22 #include <linux/sem_types.h>
23 #include <linux/shm.h>
24 #include <linux/kmsan_types.h>
25 #include <linux/mutex_types.h>
26 #include <linux/plist_types.h>
27 #include <linux/hrtimer_types.h>
28 #include <linux/timer_types.h>
29 #include <linux/seccomp_types.h>
30 #include <linux/nodemask_types.h>
31 #include <linux/refcount_types.h>
32 #include <linux/resource.h>
33 #include <linux/latencytop.h>
34 #include <linux/sched/prio.h>
35 #include <linux/sched/types.h>
36 #include <linux/signal_types.h>
37 #include <linux/spinlock.h>
38 #include <linux/syscall_user_dispatch_types.h>
39 #include <linux/mm_types_task.h>
40 #include <linux/netdevice_xmit.h>
41 #include <linux/task_io_accounting.h>
42 #include <linux/posix-timers_types.h>
43 #include <linux/restart_block.h>
44 #include <uapi/linux/rseq.h>
45 #include <linux/seqlock_types.h>
46 #include <linux/kcsan.h>
47 #include <linux/rv.h>
48 #include <linux/uidgid_types.h>
49 #include <linux/tracepoint-defs.h>
50 #include <linux/unwind_deferred_types.h>
51 #include <asm/kmap_size.h>
52 
53 /* task_struct member predeclarations (sorted alphabetically): */
54 struct audit_context;
55 struct bio_list;
56 struct blk_plug;
57 struct bpf_local_storage;
58 struct bpf_run_ctx;
59 struct bpf_net_context;
60 struct capture_control;
61 struct cfs_rq;
62 struct fs_struct;
63 struct futex_pi_state;
64 struct io_context;
65 struct io_uring_task;
66 struct mempolicy;
67 struct nameidata;
68 struct nsproxy;
69 struct perf_event_context;
70 struct perf_ctx_data;
71 struct pid_namespace;
72 struct pipe_inode_info;
73 struct rcu_node;
74 struct reclaim_state;
75 struct robust_list_head;
76 struct root_domain;
77 struct rq;
78 struct sched_attr;
79 struct sched_dl_entity;
80 struct seq_file;
81 struct sighand_struct;
82 struct signal_struct;
83 struct task_delay_info;
84 struct task_group;
85 struct task_struct;
86 struct user_event_mm;
87 
88 #include <linux/sched/ext.h>
89 
90 /*
91  * Task state bitmask. NOTE! These bits are also
92  * encoded in fs/proc/array.c: get_task_state().
93  *
94  * We have two separate sets of flags: task->__state
95  * is about runnability, while task->exit_state are
96  * about the task exiting. Confusing, but this way
97  * modifying one set can't modify the other one by
98  * mistake.
99  */
100 
101 /* Used in tsk->__state: */
102 #define TASK_RUNNING			0x00000000
103 #define TASK_INTERRUPTIBLE		0x00000001
104 #define TASK_UNINTERRUPTIBLE		0x00000002
105 #define __TASK_STOPPED			0x00000004
106 #define __TASK_TRACED			0x00000008
107 /* Used in tsk->exit_state: */
108 #define EXIT_DEAD			0x00000010
109 #define EXIT_ZOMBIE			0x00000020
110 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
111 /* Used in tsk->__state again: */
112 #define TASK_PARKED			0x00000040
113 #define TASK_DEAD			0x00000080
114 #define TASK_WAKEKILL			0x00000100
115 #define TASK_WAKING			0x00000200
116 #define TASK_NOLOAD			0x00000400
117 #define TASK_NEW			0x00000800
118 #define TASK_RTLOCK_WAIT		0x00001000
119 #define TASK_FREEZABLE			0x00002000
120 #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
121 #define TASK_FROZEN			0x00008000
122 #define TASK_STATE_MAX			0x00010000
123 
124 #define TASK_ANY			(TASK_STATE_MAX-1)
125 
126 /*
127  * DO NOT ADD ANY NEW USERS !
128  */
129 #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
130 
131 /* Convenience macros for the sake of set_current_state: */
132 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
133 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
134 #define TASK_TRACED			__TASK_TRACED
135 
136 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
137 
138 /* Convenience macros for the sake of wake_up(): */
139 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
140 
141 /* get_task_state(): */
142 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
143 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
144 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
145 					 TASK_PARKED)
146 
147 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
148 
149 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
150 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
151 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
152 
153 /*
154  * Special states are those that do not use the normal wait-loop pattern. See
155  * the comment with set_special_state().
156  */
157 #define is_special_task_state(state)					\
158 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED |	\
159 		    TASK_DEAD | TASK_FROZEN))
160 
161 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
162 # define debug_normal_state_change(state_value)				\
163 	do {								\
164 		WARN_ON_ONCE(is_special_task_state(state_value));	\
165 		current->task_state_change = _THIS_IP_;			\
166 	} while (0)
167 
168 # define debug_special_state_change(state_value)			\
169 	do {								\
170 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
171 		current->task_state_change = _THIS_IP_;			\
172 	} while (0)
173 
174 # define debug_rtlock_wait_set_state()					\
175 	do {								 \
176 		current->saved_state_change = current->task_state_change;\
177 		current->task_state_change = _THIS_IP_;			 \
178 	} while (0)
179 
180 # define debug_rtlock_wait_restore_state()				\
181 	do {								 \
182 		current->task_state_change = current->saved_state_change;\
183 	} while (0)
184 
185 #else
186 # define debug_normal_state_change(cond)	do { } while (0)
187 # define debug_special_state_change(cond)	do { } while (0)
188 # define debug_rtlock_wait_set_state()		do { } while (0)
189 # define debug_rtlock_wait_restore_state()	do { } while (0)
190 #endif
191 
192 #define trace_set_current_state(state_value)                     \
193 	do {                                                     \
194 		if (tracepoint_enabled(sched_set_state_tp))      \
195 			__trace_set_current_state(state_value); \
196 	} while (0)
197 
198 /*
199  * set_current_state() includes a barrier so that the write of current->__state
200  * is correctly serialised wrt the caller's subsequent test of whether to
201  * actually sleep:
202  *
203  *   for (;;) {
204  *	set_current_state(TASK_UNINTERRUPTIBLE);
205  *	if (CONDITION)
206  *	   break;
207  *
208  *	schedule();
209  *   }
210  *   __set_current_state(TASK_RUNNING);
211  *
212  * If the caller does not need such serialisation (because, for instance, the
213  * CONDITION test and condition change and wakeup are under the same lock) then
214  * use __set_current_state().
215  *
216  * The above is typically ordered against the wakeup, which does:
217  *
218  *   CONDITION = 1;
219  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
220  *
221  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
222  * accessing p->__state.
223  *
224  * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
225  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
226  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
227  *
228  * However, with slightly different timing the wakeup TASK_RUNNING store can
229  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
230  * a problem either because that will result in one extra go around the loop
231  * and our @cond test will save the day.
232  *
233  * Also see the comments of try_to_wake_up().
234  */
235 #define __set_current_state(state_value)				\
236 	do {								\
237 		debug_normal_state_change((state_value));		\
238 		trace_set_current_state(state_value);			\
239 		WRITE_ONCE(current->__state, (state_value));		\
240 	} while (0)
241 
242 #define set_current_state(state_value)					\
243 	do {								\
244 		debug_normal_state_change((state_value));		\
245 		trace_set_current_state(state_value);			\
246 		smp_store_mb(current->__state, (state_value));		\
247 	} while (0)
248 
249 /*
250  * set_special_state() should be used for those states when the blocking task
251  * can not use the regular condition based wait-loop. In that case we must
252  * serialize against wakeups such that any possible in-flight TASK_RUNNING
253  * stores will not collide with our state change.
254  */
255 #define set_special_state(state_value)					\
256 	do {								\
257 		unsigned long flags; /* may shadow */			\
258 									\
259 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
260 		debug_special_state_change((state_value));		\
261 		trace_set_current_state(state_value);			\
262 		WRITE_ONCE(current->__state, (state_value));		\
263 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
264 	} while (0)
265 
266 /*
267  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
268  *
269  * RT's spin/rwlock substitutions are state preserving. The state of the
270  * task when blocking on the lock is saved in task_struct::saved_state and
271  * restored after the lock has been acquired.  These operations are
272  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
273  * lock related wakeups while the task is blocked on the lock are
274  * redirected to operate on task_struct::saved_state to ensure that these
275  * are not dropped. On restore task_struct::saved_state is set to
276  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
277  *
278  * The lock operation looks like this:
279  *
280  *	current_save_and_set_rtlock_wait_state();
281  *	for (;;) {
282  *		if (try_lock())
283  *			break;
284  *		raw_spin_unlock_irq(&lock->wait_lock);
285  *		schedule_rtlock();
286  *		raw_spin_lock_irq(&lock->wait_lock);
287  *		set_current_state(TASK_RTLOCK_WAIT);
288  *	}
289  *	current_restore_rtlock_saved_state();
290  */
291 #define current_save_and_set_rtlock_wait_state()			\
292 	do {								\
293 		lockdep_assert_irqs_disabled();				\
294 		raw_spin_lock(&current->pi_lock);			\
295 		current->saved_state = current->__state;		\
296 		debug_rtlock_wait_set_state();				\
297 		trace_set_current_state(TASK_RTLOCK_WAIT);		\
298 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
299 		raw_spin_unlock(&current->pi_lock);			\
300 	} while (0);
301 
302 #define current_restore_rtlock_saved_state()				\
303 	do {								\
304 		lockdep_assert_irqs_disabled();				\
305 		raw_spin_lock(&current->pi_lock);			\
306 		debug_rtlock_wait_restore_state();			\
307 		trace_set_current_state(current->saved_state);		\
308 		WRITE_ONCE(current->__state, current->saved_state);	\
309 		current->saved_state = TASK_RUNNING;			\
310 		raw_spin_unlock(&current->pi_lock);			\
311 	} while (0);
312 
313 #define get_current_state()	READ_ONCE(current->__state)
314 
315 /*
316  * Define the task command name length as enum, then it can be visible to
317  * BPF programs.
318  */
319 enum {
320 	TASK_COMM_LEN = 16,
321 };
322 
323 extern void sched_tick(void);
324 
325 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
326 
327 extern long schedule_timeout(long timeout);
328 extern long schedule_timeout_interruptible(long timeout);
329 extern long schedule_timeout_killable(long timeout);
330 extern long schedule_timeout_uninterruptible(long timeout);
331 extern long schedule_timeout_idle(long timeout);
332 asmlinkage void schedule(void);
333 extern void schedule_preempt_disabled(void);
334 asmlinkage void preempt_schedule_irq(void);
335 #ifdef CONFIG_PREEMPT_RT
336  extern void schedule_rtlock(void);
337 #endif
338 
339 extern int __must_check io_schedule_prepare(void);
340 extern void io_schedule_finish(int token);
341 extern long io_schedule_timeout(long timeout);
342 extern void io_schedule(void);
343 
344 /* wrapper functions to trace from this header file */
345 DECLARE_TRACEPOINT(sched_set_state_tp);
346 extern void __trace_set_current_state(int state_value);
347 DECLARE_TRACEPOINT(sched_set_need_resched_tp);
348 extern void __trace_set_need_resched(struct task_struct *curr, int tif);
349 
350 /**
351  * struct prev_cputime - snapshot of system and user cputime
352  * @utime: time spent in user mode
353  * @stime: time spent in system mode
354  * @lock: protects the above two fields
355  *
356  * Stores previous user/system time values such that we can guarantee
357  * monotonicity.
358  */
359 struct prev_cputime {
360 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
361 	u64				utime;
362 	u64				stime;
363 	raw_spinlock_t			lock;
364 #endif
365 };
366 
367 enum vtime_state {
368 	/* Task is sleeping or running in a CPU with VTIME inactive: */
369 	VTIME_INACTIVE = 0,
370 	/* Task is idle */
371 	VTIME_IDLE,
372 	/* Task runs in kernelspace in a CPU with VTIME active: */
373 	VTIME_SYS,
374 	/* Task runs in userspace in a CPU with VTIME active: */
375 	VTIME_USER,
376 	/* Task runs as guests in a CPU with VTIME active: */
377 	VTIME_GUEST,
378 };
379 
380 struct vtime {
381 	seqcount_t		seqcount;
382 	unsigned long long	starttime;
383 	enum vtime_state	state;
384 	unsigned int		cpu;
385 	u64			utime;
386 	u64			stime;
387 	u64			gtime;
388 };
389 
390 /*
391  * Utilization clamp constraints.
392  * @UCLAMP_MIN:	Minimum utilization
393  * @UCLAMP_MAX:	Maximum utilization
394  * @UCLAMP_CNT:	Utilization clamp constraints count
395  */
396 enum uclamp_id {
397 	UCLAMP_MIN = 0,
398 	UCLAMP_MAX,
399 	UCLAMP_CNT
400 };
401 
402 extern struct root_domain def_root_domain;
403 extern struct mutex sched_domains_mutex;
404 extern void sched_domains_mutex_lock(void);
405 extern void sched_domains_mutex_unlock(void);
406 
407 struct sched_param {
408 	int sched_priority;
409 };
410 
411 struct sched_info {
412 #ifdef CONFIG_SCHED_INFO
413 	/* Cumulative counters: */
414 
415 	/* # of times we have run on this CPU: */
416 	unsigned long			pcount;
417 
418 	/* Time spent waiting on a runqueue: */
419 	unsigned long long		run_delay;
420 
421 	/* Max time spent waiting on a runqueue: */
422 	unsigned long long		max_run_delay;
423 
424 	/* Min time spent waiting on a runqueue: */
425 	unsigned long long		min_run_delay;
426 
427 	/* Timestamps: */
428 
429 	/* When did we last run on a CPU? */
430 	unsigned long long		last_arrival;
431 
432 	/* When were we last queued to run? */
433 	unsigned long long		last_queued;
434 
435 #endif /* CONFIG_SCHED_INFO */
436 };
437 
438 /*
439  * Integer metrics need fixed point arithmetic, e.g., sched/fair
440  * has a few: load, load_avg, util_avg, freq, and capacity.
441  *
442  * We define a basic fixed point arithmetic range, and then formalize
443  * all these metrics based on that basic range.
444  */
445 # define SCHED_FIXEDPOINT_SHIFT		10
446 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
447 
448 /* Increase resolution of cpu_capacity calculations */
449 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
450 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
451 
452 struct load_weight {
453 	unsigned long			weight;
454 	u32				inv_weight;
455 };
456 
457 /*
458  * The load/runnable/util_avg accumulates an infinite geometric series
459  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
460  *
461  * [load_avg definition]
462  *
463  *   load_avg = runnable% * scale_load_down(load)
464  *
465  * [runnable_avg definition]
466  *
467  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
468  *
469  * [util_avg definition]
470  *
471  *   util_avg = running% * SCHED_CAPACITY_SCALE
472  *
473  * where runnable% is the time ratio that a sched_entity is runnable and
474  * running% the time ratio that a sched_entity is running.
475  *
476  * For cfs_rq, they are the aggregated values of all runnable and blocked
477  * sched_entities.
478  *
479  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
480  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
481  * for computing those signals (see update_rq_clock_pelt())
482  *
483  * N.B., the above ratios (runnable% and running%) themselves are in the
484  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
485  * to as large a range as necessary. This is for example reflected by
486  * util_avg's SCHED_CAPACITY_SCALE.
487  *
488  * [Overflow issue]
489  *
490  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
491  * with the highest load (=88761), always runnable on a single cfs_rq,
492  * and should not overflow as the number already hits PID_MAX_LIMIT.
493  *
494  * For all other cases (including 32-bit kernels), struct load_weight's
495  * weight will overflow first before we do, because:
496  *
497  *    Max(load_avg) <= Max(load.weight)
498  *
499  * Then it is the load_weight's responsibility to consider overflow
500  * issues.
501  */
502 struct sched_avg {
503 	u64				last_update_time;
504 	u64				load_sum;
505 	u64				runnable_sum;
506 	u32				util_sum;
507 	u32				period_contrib;
508 	unsigned long			load_avg;
509 	unsigned long			runnable_avg;
510 	unsigned long			util_avg;
511 	unsigned int			util_est;
512 } ____cacheline_aligned;
513 
514 /*
515  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
516  * updates. When a task is dequeued, its util_est should not be updated if its
517  * util_avg has not been updated in the meantime.
518  * This information is mapped into the MSB bit of util_est at dequeue time.
519  * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
520  * it is safe to use MSB.
521  */
522 #define UTIL_EST_WEIGHT_SHIFT		2
523 #define UTIL_AVG_UNCHANGED		0x80000000
524 
525 struct sched_statistics {
526 #ifdef CONFIG_SCHEDSTATS
527 	u64				wait_start;
528 	u64				wait_max;
529 	u64				wait_count;
530 	u64				wait_sum;
531 	u64				iowait_count;
532 	u64				iowait_sum;
533 
534 	u64				sleep_start;
535 	u64				sleep_max;
536 	s64				sum_sleep_runtime;
537 
538 	u64				block_start;
539 	u64				block_max;
540 	s64				sum_block_runtime;
541 
542 	s64				exec_max;
543 	u64				slice_max;
544 
545 	u64				nr_migrations_cold;
546 	u64				nr_failed_migrations_affine;
547 	u64				nr_failed_migrations_running;
548 	u64				nr_failed_migrations_hot;
549 	u64				nr_forced_migrations;
550 
551 	u64				nr_wakeups;
552 	u64				nr_wakeups_sync;
553 	u64				nr_wakeups_migrate;
554 	u64				nr_wakeups_local;
555 	u64				nr_wakeups_remote;
556 	u64				nr_wakeups_affine;
557 	u64				nr_wakeups_affine_attempts;
558 	u64				nr_wakeups_passive;
559 	u64				nr_wakeups_idle;
560 
561 #ifdef CONFIG_SCHED_CORE
562 	u64				core_forceidle_sum;
563 #endif
564 #endif /* CONFIG_SCHEDSTATS */
565 } ____cacheline_aligned;
566 
567 struct sched_entity {
568 	/* For load-balancing: */
569 	struct load_weight		load;
570 	struct rb_node			run_node;
571 	u64				deadline;
572 	u64				min_vruntime;
573 	u64				min_slice;
574 
575 	struct list_head		group_node;
576 	unsigned char			on_rq;
577 	unsigned char			sched_delayed;
578 	unsigned char			rel_deadline;
579 	unsigned char			custom_slice;
580 					/* hole */
581 
582 	u64				exec_start;
583 	u64				sum_exec_runtime;
584 	u64				prev_sum_exec_runtime;
585 	u64				vruntime;
586 	union {
587 		/*
588 		 * When !@on_rq this field is vlag.
589 		 * When cfs_rq->curr == se (which implies @on_rq)
590 		 * this field is vprot. See protect_slice().
591 		 */
592 		s64                     vlag;
593 		u64                     vprot;
594 	};
595 	u64				slice;
596 
597 	u64				nr_migrations;
598 
599 #ifdef CONFIG_FAIR_GROUP_SCHED
600 	int				depth;
601 	struct sched_entity		*parent;
602 	/* rq on which this entity is (to be) queued: */
603 	struct cfs_rq			*cfs_rq;
604 	/* rq "owned" by this entity/group: */
605 	struct cfs_rq			*my_q;
606 	/* cached value of my_q->h_nr_running */
607 	unsigned long			runnable_weight;
608 #endif
609 
610 	/*
611 	 * Per entity load average tracking.
612 	 *
613 	 * Put into separate cache line so it does not
614 	 * collide with read-mostly values above.
615 	 */
616 	struct sched_avg		avg;
617 };
618 
619 struct sched_rt_entity {
620 	struct list_head		run_list;
621 	unsigned long			timeout;
622 	unsigned long			watchdog_stamp;
623 	unsigned int			time_slice;
624 	unsigned short			on_rq;
625 	unsigned short			on_list;
626 
627 	struct sched_rt_entity		*back;
628 #ifdef CONFIG_RT_GROUP_SCHED
629 	struct sched_rt_entity		*parent;
630 	/* rq on which this entity is (to be) queued: */
631 	struct rt_rq			*rt_rq;
632 	/* rq "owned" by this entity/group: */
633 	struct rt_rq			*my_q;
634 #endif
635 } __randomize_layout;
636 
637 typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
638 typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
639 
640 struct sched_dl_entity {
641 	struct rb_node			rb_node;
642 
643 	/*
644 	 * Original scheduling parameters. Copied here from sched_attr
645 	 * during sched_setattr(), they will remain the same until
646 	 * the next sched_setattr().
647 	 */
648 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
649 	u64				dl_deadline;	/* Relative deadline of each instance	*/
650 	u64				dl_period;	/* Separation of two instances (period) */
651 	u64				dl_bw;		/* dl_runtime / dl_period		*/
652 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
653 
654 	/*
655 	 * Actual scheduling parameters. Initialized with the values above,
656 	 * they are continuously updated during task execution. Note that
657 	 * the remaining runtime could be < 0 in case we are in overrun.
658 	 */
659 	s64				runtime;	/* Remaining runtime for this instance	*/
660 	u64				deadline;	/* Absolute deadline for this instance	*/
661 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
662 
663 	/*
664 	 * Some bool flags:
665 	 *
666 	 * @dl_throttled tells if we exhausted the runtime. If so, the
667 	 * task has to wait for a replenishment to be performed at the
668 	 * next firing of dl_timer.
669 	 *
670 	 * @dl_yielded tells if task gave up the CPU before consuming
671 	 * all its available runtime during the last job.
672 	 *
673 	 * @dl_non_contending tells if the task is inactive while still
674 	 * contributing to the active utilization. In other words, it
675 	 * indicates if the inactive timer has been armed and its handler
676 	 * has not been executed yet. This flag is useful to avoid race
677 	 * conditions between the inactive timer handler and the wakeup
678 	 * code.
679 	 *
680 	 * @dl_overrun tells if the task asked to be informed about runtime
681 	 * overruns.
682 	 *
683 	 * @dl_server tells if this is a server entity.
684 	 *
685 	 * @dl_defer tells if this is a deferred or regular server. For
686 	 * now only defer server exists.
687 	 *
688 	 * @dl_defer_armed tells if the deferrable server is waiting
689 	 * for the replenishment timer to activate it.
690 	 *
691 	 * @dl_server_active tells if the dlserver is active(started).
692 	 * dlserver is started on first cfs enqueue on an idle runqueue
693 	 * and is stopped when a dequeue results in 0 cfs tasks on the
694 	 * runqueue. In other words, dlserver is active only when cpu's
695 	 * runqueue has atleast one cfs task.
696 	 *
697 	 * @dl_defer_running tells if the deferrable server is actually
698 	 * running, skipping the defer phase.
699 	 */
700 	unsigned int			dl_throttled      : 1;
701 	unsigned int			dl_yielded        : 1;
702 	unsigned int			dl_non_contending : 1;
703 	unsigned int			dl_overrun	  : 1;
704 	unsigned int			dl_server         : 1;
705 	unsigned int			dl_server_active  : 1;
706 	unsigned int			dl_defer	  : 1;
707 	unsigned int			dl_defer_armed	  : 1;
708 	unsigned int			dl_defer_running  : 1;
709 	unsigned int			dl_server_idle    : 1;
710 
711 	/*
712 	 * Bandwidth enforcement timer. Each -deadline task has its
713 	 * own bandwidth to be enforced, thus we need one timer per task.
714 	 */
715 	struct hrtimer			dl_timer;
716 
717 	/*
718 	 * Inactive timer, responsible for decreasing the active utilization
719 	 * at the "0-lag time". When a -deadline task blocks, it contributes
720 	 * to GRUB's active utilization until the "0-lag time", hence a
721 	 * timer is needed to decrease the active utilization at the correct
722 	 * time.
723 	 */
724 	struct hrtimer			inactive_timer;
725 
726 	/*
727 	 * Bits for DL-server functionality. Also see the comment near
728 	 * dl_server_update().
729 	 *
730 	 * @rq the runqueue this server is for
731 	 *
732 	 * @server_has_tasks() returns true if @server_pick return a
733 	 * runnable task.
734 	 */
735 	struct rq			*rq;
736 	dl_server_has_tasks_f		server_has_tasks;
737 	dl_server_pick_f		server_pick_task;
738 
739 #ifdef CONFIG_RT_MUTEXES
740 	/*
741 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
742 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
743 	 * to (the original one/itself).
744 	 */
745 	struct sched_dl_entity *pi_se;
746 #endif
747 };
748 
749 #ifdef CONFIG_UCLAMP_TASK
750 /* Number of utilization clamp buckets (shorter alias) */
751 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
752 
753 /*
754  * Utilization clamp for a scheduling entity
755  * @value:		clamp value "assigned" to a se
756  * @bucket_id:		bucket index corresponding to the "assigned" value
757  * @active:		the se is currently refcounted in a rq's bucket
758  * @user_defined:	the requested clamp value comes from user-space
759  *
760  * The bucket_id is the index of the clamp bucket matching the clamp value
761  * which is pre-computed and stored to avoid expensive integer divisions from
762  * the fast path.
763  *
764  * The active bit is set whenever a task has got an "effective" value assigned,
765  * which can be different from the clamp value "requested" from user-space.
766  * This allows to know a task is refcounted in the rq's bucket corresponding
767  * to the "effective" bucket_id.
768  *
769  * The user_defined bit is set whenever a task has got a task-specific clamp
770  * value requested from userspace, i.e. the system defaults apply to this task
771  * just as a restriction. This allows to relax default clamps when a less
772  * restrictive task-specific value has been requested, thus allowing to
773  * implement a "nice" semantic. For example, a task running with a 20%
774  * default boost can still drop its own boosting to 0%.
775  */
776 struct uclamp_se {
777 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
778 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
779 	unsigned int active		: 1;
780 	unsigned int user_defined	: 1;
781 };
782 #endif /* CONFIG_UCLAMP_TASK */
783 
784 union rcu_special {
785 	struct {
786 		u8			blocked;
787 		u8			need_qs;
788 		u8			exp_hint; /* Hint for performance. */
789 		u8			need_mb; /* Readers need smp_mb(). */
790 	} b; /* Bits. */
791 	u32 s; /* Set of bits. */
792 };
793 
794 enum perf_event_task_context {
795 	perf_invalid_context = -1,
796 	perf_hw_context = 0,
797 	perf_sw_context,
798 	perf_nr_task_contexts,
799 };
800 
801 /*
802  * Number of contexts where an event can trigger:
803  *      task, softirq, hardirq, nmi.
804  */
805 #define PERF_NR_CONTEXTS	4
806 
807 struct wake_q_node {
808 	struct wake_q_node *next;
809 };
810 
811 struct kmap_ctrl {
812 #ifdef CONFIG_KMAP_LOCAL
813 	int				idx;
814 	pte_t				pteval[KM_MAX_IDX];
815 #endif
816 };
817 
818 struct task_struct {
819 #ifdef CONFIG_THREAD_INFO_IN_TASK
820 	/*
821 	 * For reasons of header soup (see current_thread_info()), this
822 	 * must be the first element of task_struct.
823 	 */
824 	struct thread_info		thread_info;
825 #endif
826 	unsigned int			__state;
827 
828 	/* saved state for "spinlock sleepers" */
829 	unsigned int			saved_state;
830 
831 	/*
832 	 * This begins the randomizable portion of task_struct. Only
833 	 * scheduling-critical items should be added above here.
834 	 */
835 	randomized_struct_fields_start
836 
837 	void				*stack;
838 	refcount_t			usage;
839 	/* Per task flags (PF_*), defined further below: */
840 	unsigned int			flags;
841 	unsigned int			ptrace;
842 
843 #ifdef CONFIG_MEM_ALLOC_PROFILING
844 	struct alloc_tag		*alloc_tag;
845 #endif
846 
847 	int				on_cpu;
848 	struct __call_single_node	wake_entry;
849 	unsigned int			wakee_flips;
850 	unsigned long			wakee_flip_decay_ts;
851 	struct task_struct		*last_wakee;
852 
853 	/*
854 	 * recent_used_cpu is initially set as the last CPU used by a task
855 	 * that wakes affine another task. Waker/wakee relationships can
856 	 * push tasks around a CPU where each wakeup moves to the next one.
857 	 * Tracking a recently used CPU allows a quick search for a recently
858 	 * used CPU that may be idle.
859 	 */
860 	int				recent_used_cpu;
861 	int				wake_cpu;
862 	int				on_rq;
863 
864 	int				prio;
865 	int				static_prio;
866 	int				normal_prio;
867 	unsigned int			rt_priority;
868 
869 	struct sched_entity		se;
870 	struct sched_rt_entity		rt;
871 	struct sched_dl_entity		dl;
872 	struct sched_dl_entity		*dl_server;
873 #ifdef CONFIG_SCHED_CLASS_EXT
874 	struct sched_ext_entity		scx;
875 #endif
876 	const struct sched_class	*sched_class;
877 
878 #ifdef CONFIG_SCHED_CORE
879 	struct rb_node			core_node;
880 	unsigned long			core_cookie;
881 	unsigned int			core_occupation;
882 #endif
883 
884 #ifdef CONFIG_CGROUP_SCHED
885 	struct task_group		*sched_task_group;
886 #endif
887 
888 
889 #ifdef CONFIG_UCLAMP_TASK
890 	/*
891 	 * Clamp values requested for a scheduling entity.
892 	 * Must be updated with task_rq_lock() held.
893 	 */
894 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
895 	/*
896 	 * Effective clamp values used for a scheduling entity.
897 	 * Must be updated with task_rq_lock() held.
898 	 */
899 	struct uclamp_se		uclamp[UCLAMP_CNT];
900 #endif
901 
902 	struct sched_statistics         stats;
903 
904 #ifdef CONFIG_PREEMPT_NOTIFIERS
905 	/* List of struct preempt_notifier: */
906 	struct hlist_head		preempt_notifiers;
907 #endif
908 
909 #ifdef CONFIG_BLK_DEV_IO_TRACE
910 	unsigned int			btrace_seq;
911 #endif
912 
913 	unsigned int			policy;
914 	unsigned long			max_allowed_capacity;
915 	int				nr_cpus_allowed;
916 	const cpumask_t			*cpus_ptr;
917 	cpumask_t			*user_cpus_ptr;
918 	cpumask_t			cpus_mask;
919 	void				*migration_pending;
920 	unsigned short			migration_disabled;
921 	unsigned short			migration_flags;
922 
923 #ifdef CONFIG_PREEMPT_RCU
924 	int				rcu_read_lock_nesting;
925 	union rcu_special		rcu_read_unlock_special;
926 	struct list_head		rcu_node_entry;
927 	struct rcu_node			*rcu_blocked_node;
928 #endif /* #ifdef CONFIG_PREEMPT_RCU */
929 
930 #ifdef CONFIG_TASKS_RCU
931 	unsigned long			rcu_tasks_nvcsw;
932 	u8				rcu_tasks_holdout;
933 	u8				rcu_tasks_idx;
934 	int				rcu_tasks_idle_cpu;
935 	struct list_head		rcu_tasks_holdout_list;
936 	int				rcu_tasks_exit_cpu;
937 	struct list_head		rcu_tasks_exit_list;
938 #endif /* #ifdef CONFIG_TASKS_RCU */
939 
940 #ifdef CONFIG_TASKS_TRACE_RCU
941 	int				trc_reader_nesting;
942 	int				trc_ipi_to_cpu;
943 	union rcu_special		trc_reader_special;
944 	struct list_head		trc_holdout_list;
945 	struct list_head		trc_blkd_node;
946 	int				trc_blkd_cpu;
947 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
948 
949 	struct sched_info		sched_info;
950 
951 	struct list_head		tasks;
952 	struct plist_node		pushable_tasks;
953 	struct rb_node			pushable_dl_tasks;
954 
955 	struct mm_struct		*mm;
956 	struct mm_struct		*active_mm;
957 	struct address_space		*faults_disabled_mapping;
958 
959 	int				exit_state;
960 	int				exit_code;
961 	int				exit_signal;
962 	/* The signal sent when the parent dies: */
963 	int				pdeath_signal;
964 	/* JOBCTL_*, siglock protected: */
965 	unsigned long			jobctl;
966 
967 	/* Used for emulating ABI behavior of previous Linux versions: */
968 	unsigned int			personality;
969 
970 	/* Scheduler bits, serialized by scheduler locks: */
971 	unsigned			sched_reset_on_fork:1;
972 	unsigned			sched_contributes_to_load:1;
973 	unsigned			sched_migrated:1;
974 	unsigned			sched_task_hot:1;
975 
976 	/* Force alignment to the next boundary: */
977 	unsigned			:0;
978 
979 	/* Unserialized, strictly 'current' */
980 
981 	/*
982 	 * This field must not be in the scheduler word above due to wakelist
983 	 * queueing no longer being serialized by p->on_cpu. However:
984 	 *
985 	 * p->XXX = X;			ttwu()
986 	 * schedule()			  if (p->on_rq && ..) // false
987 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
988 	 *   deactivate_task()		      ttwu_queue_wakelist())
989 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
990 	 *
991 	 * guarantees all stores of 'current' are visible before
992 	 * ->sched_remote_wakeup gets used, so it can be in this word.
993 	 */
994 	unsigned			sched_remote_wakeup:1;
995 #ifdef CONFIG_RT_MUTEXES
996 	unsigned			sched_rt_mutex:1;
997 #endif
998 
999 	/* Bit to tell TOMOYO we're in execve(): */
1000 	unsigned			in_execve:1;
1001 	unsigned			in_iowait:1;
1002 #ifndef TIF_RESTORE_SIGMASK
1003 	unsigned			restore_sigmask:1;
1004 #endif
1005 #ifdef CONFIG_MEMCG_V1
1006 	unsigned			in_user_fault:1;
1007 #endif
1008 #ifdef CONFIG_LRU_GEN
1009 	/* whether the LRU algorithm may apply to this access */
1010 	unsigned			in_lru_fault:1;
1011 #endif
1012 #ifdef CONFIG_COMPAT_BRK
1013 	unsigned			brk_randomized:1;
1014 #endif
1015 #ifdef CONFIG_CGROUPS
1016 	/* disallow userland-initiated cgroup migration */
1017 	unsigned			no_cgroup_migration:1;
1018 	/* task is frozen/stopped (used by the cgroup freezer) */
1019 	unsigned			frozen:1;
1020 #endif
1021 #ifdef CONFIG_BLK_CGROUP
1022 	unsigned			use_memdelay:1;
1023 #endif
1024 #ifdef CONFIG_PSI
1025 	/* Stalled due to lack of memory */
1026 	unsigned			in_memstall:1;
1027 #endif
1028 #ifdef CONFIG_PAGE_OWNER
1029 	/* Used by page_owner=on to detect recursion in page tracking. */
1030 	unsigned			in_page_owner:1;
1031 #endif
1032 #ifdef CONFIG_EVENTFD
1033 	/* Recursion prevention for eventfd_signal() */
1034 	unsigned			in_eventfd:1;
1035 #endif
1036 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1037 	unsigned			pasid_activated:1;
1038 #endif
1039 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1040 	unsigned			reported_split_lock:1;
1041 #endif
1042 #ifdef CONFIG_TASK_DELAY_ACCT
1043 	/* delay due to memory thrashing */
1044 	unsigned                        in_thrashing:1;
1045 #endif
1046 	unsigned			in_nf_duplicate:1;
1047 #ifdef CONFIG_PREEMPT_RT
1048 	struct netdev_xmit		net_xmit;
1049 #endif
1050 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
1051 
1052 	struct restart_block		restart_block;
1053 
1054 	pid_t				pid;
1055 	pid_t				tgid;
1056 
1057 #ifdef CONFIG_STACKPROTECTOR
1058 	/* Canary value for the -fstack-protector GCC feature: */
1059 	unsigned long			stack_canary;
1060 #endif
1061 	/*
1062 	 * Pointers to the (original) parent process, youngest child, younger sibling,
1063 	 * older sibling, respectively.  (p->father can be replaced with
1064 	 * p->real_parent->pid)
1065 	 */
1066 
1067 	/* Real parent process: */
1068 	struct task_struct __rcu	*real_parent;
1069 
1070 	/* Recipient of SIGCHLD, wait4() reports: */
1071 	struct task_struct __rcu	*parent;
1072 
1073 	/*
1074 	 * Children/sibling form the list of natural children:
1075 	 */
1076 	struct list_head		children;
1077 	struct list_head		sibling;
1078 	struct task_struct		*group_leader;
1079 
1080 	/*
1081 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
1082 	 *
1083 	 * This includes both natural children and PTRACE_ATTACH targets.
1084 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1085 	 */
1086 	struct list_head		ptraced;
1087 	struct list_head		ptrace_entry;
1088 
1089 	/* PID/PID hash table linkage. */
1090 	struct pid			*thread_pid;
1091 	struct hlist_node		pid_links[PIDTYPE_MAX];
1092 	struct list_head		thread_node;
1093 
1094 	struct completion		*vfork_done;
1095 
1096 	/* CLONE_CHILD_SETTID: */
1097 	int __user			*set_child_tid;
1098 
1099 	/* CLONE_CHILD_CLEARTID: */
1100 	int __user			*clear_child_tid;
1101 
1102 	/* PF_KTHREAD | PF_IO_WORKER */
1103 	void				*worker_private;
1104 
1105 	u64				utime;
1106 	u64				stime;
1107 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1108 	u64				utimescaled;
1109 	u64				stimescaled;
1110 #endif
1111 	u64				gtime;
1112 	struct prev_cputime		prev_cputime;
1113 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1114 	struct vtime			vtime;
1115 #endif
1116 
1117 #ifdef CONFIG_NO_HZ_FULL
1118 	atomic_t			tick_dep_mask;
1119 #endif
1120 	/* Context switch counts: */
1121 	unsigned long			nvcsw;
1122 	unsigned long			nivcsw;
1123 
1124 	/* Monotonic time in nsecs: */
1125 	u64				start_time;
1126 
1127 	/* Boot based time in nsecs: */
1128 	u64				start_boottime;
1129 
1130 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1131 	unsigned long			min_flt;
1132 	unsigned long			maj_flt;
1133 
1134 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1135 	struct posix_cputimers		posix_cputimers;
1136 
1137 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1138 	struct posix_cputimers_work	posix_cputimers_work;
1139 #endif
1140 
1141 	/* Process credentials: */
1142 
1143 	/* Tracer's credentials at attach: */
1144 	const struct cred __rcu		*ptracer_cred;
1145 
1146 	/* Objective and real subjective task credentials (COW): */
1147 	const struct cred __rcu		*real_cred;
1148 
1149 	/* Effective (overridable) subjective task credentials (COW): */
1150 	const struct cred __rcu		*cred;
1151 
1152 #ifdef CONFIG_KEYS
1153 	/* Cached requested key. */
1154 	struct key			*cached_requested_key;
1155 #endif
1156 
1157 	/*
1158 	 * executable name, excluding path.
1159 	 *
1160 	 * - normally initialized begin_new_exec()
1161 	 * - set it with set_task_comm()
1162 	 *   - strscpy_pad() to ensure it is always NUL-terminated and
1163 	 *     zero-padded
1164 	 *   - task_lock() to ensure the operation is atomic and the name is
1165 	 *     fully updated.
1166 	 */
1167 	char				comm[TASK_COMM_LEN];
1168 
1169 	struct nameidata		*nameidata;
1170 
1171 #ifdef CONFIG_SYSVIPC
1172 	struct sysv_sem			sysvsem;
1173 	struct sysv_shm			sysvshm;
1174 #endif
1175 #ifdef CONFIG_DETECT_HUNG_TASK
1176 	unsigned long			last_switch_count;
1177 	unsigned long			last_switch_time;
1178 #endif
1179 	/* Filesystem information: */
1180 	struct fs_struct		*fs;
1181 
1182 	/* Open file information: */
1183 	struct files_struct		*files;
1184 
1185 #ifdef CONFIG_IO_URING
1186 	struct io_uring_task		*io_uring;
1187 #endif
1188 
1189 	/* Namespaces: */
1190 	struct nsproxy			*nsproxy;
1191 
1192 	/* Signal handlers: */
1193 	struct signal_struct		*signal;
1194 	struct sighand_struct __rcu		*sighand;
1195 	sigset_t			blocked;
1196 	sigset_t			real_blocked;
1197 	/* Restored if set_restore_sigmask() was used: */
1198 	sigset_t			saved_sigmask;
1199 	struct sigpending		pending;
1200 	unsigned long			sas_ss_sp;
1201 	size_t				sas_ss_size;
1202 	unsigned int			sas_ss_flags;
1203 
1204 	struct callback_head		*task_works;
1205 
1206 #ifdef CONFIG_AUDIT
1207 #ifdef CONFIG_AUDITSYSCALL
1208 	struct audit_context		*audit_context;
1209 #endif
1210 	kuid_t				loginuid;
1211 	unsigned int			sessionid;
1212 #endif
1213 	struct seccomp			seccomp;
1214 	struct syscall_user_dispatch	syscall_dispatch;
1215 
1216 	/* Thread group tracking: */
1217 	u64				parent_exec_id;
1218 	u64				self_exec_id;
1219 
1220 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1221 	spinlock_t			alloc_lock;
1222 
1223 	/* Protection of the PI data structures: */
1224 	raw_spinlock_t			pi_lock;
1225 
1226 	struct wake_q_node		wake_q;
1227 
1228 #ifdef CONFIG_RT_MUTEXES
1229 	/* PI waiters blocked on a rt_mutex held by this task: */
1230 	struct rb_root_cached		pi_waiters;
1231 	/* Updated under owner's pi_lock and rq lock */
1232 	struct task_struct		*pi_top_task;
1233 	/* Deadlock detection and priority inheritance handling: */
1234 	struct rt_mutex_waiter		*pi_blocked_on;
1235 #endif
1236 
1237 	struct mutex			*blocked_on;	/* lock we're blocked on */
1238 
1239 #ifdef CONFIG_DETECT_HUNG_TASK_BLOCKER
1240 	/*
1241 	 * Encoded lock address causing task block (lower 2 bits = type from
1242 	 * <linux/hung_task.h>). Accessed via hung_task_*() helpers.
1243 	 */
1244 	unsigned long			blocker;
1245 #endif
1246 
1247 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1248 	int				non_block_count;
1249 #endif
1250 
1251 #ifdef CONFIG_TRACE_IRQFLAGS
1252 	struct irqtrace_events		irqtrace;
1253 	unsigned int			hardirq_threaded;
1254 	u64				hardirq_chain_key;
1255 	int				softirqs_enabled;
1256 	int				softirq_context;
1257 	int				irq_config;
1258 #endif
1259 #ifdef CONFIG_PREEMPT_RT
1260 	int				softirq_disable_cnt;
1261 #endif
1262 
1263 #ifdef CONFIG_LOCKDEP
1264 # define MAX_LOCK_DEPTH			48UL
1265 	u64				curr_chain_key;
1266 	int				lockdep_depth;
1267 	unsigned int			lockdep_recursion;
1268 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1269 #endif
1270 
1271 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1272 	unsigned int			in_ubsan;
1273 #endif
1274 
1275 	/* Journalling filesystem info: */
1276 	void				*journal_info;
1277 
1278 	/* Stacked block device info: */
1279 	struct bio_list			*bio_list;
1280 
1281 	/* Stack plugging: */
1282 	struct blk_plug			*plug;
1283 
1284 	/* VM state: */
1285 	struct reclaim_state		*reclaim_state;
1286 
1287 	struct io_context		*io_context;
1288 
1289 #ifdef CONFIG_COMPACTION
1290 	struct capture_control		*capture_control;
1291 #endif
1292 	/* Ptrace state: */
1293 	unsigned long			ptrace_message;
1294 	kernel_siginfo_t		*last_siginfo;
1295 
1296 	struct task_io_accounting	ioac;
1297 #ifdef CONFIG_PSI
1298 	/* Pressure stall state */
1299 	unsigned int			psi_flags;
1300 #endif
1301 #ifdef CONFIG_TASK_XACCT
1302 	/* Accumulated RSS usage: */
1303 	u64				acct_rss_mem1;
1304 	/* Accumulated virtual memory usage: */
1305 	u64				acct_vm_mem1;
1306 	/* stime + utime since last update: */
1307 	u64				acct_timexpd;
1308 #endif
1309 #ifdef CONFIG_CPUSETS
1310 	/* Protected by ->alloc_lock: */
1311 	nodemask_t			mems_allowed;
1312 	/* Sequence number to catch updates: */
1313 	seqcount_spinlock_t		mems_allowed_seq;
1314 	int				cpuset_mem_spread_rotor;
1315 #endif
1316 #ifdef CONFIG_CGROUPS
1317 	/* Control Group info protected by css_set_lock: */
1318 	struct css_set __rcu		*cgroups;
1319 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1320 	struct list_head		cg_list;
1321 #endif
1322 #ifdef CONFIG_X86_CPU_RESCTRL
1323 	u32				closid;
1324 	u32				rmid;
1325 #endif
1326 #ifdef CONFIG_FUTEX
1327 	struct robust_list_head __user	*robust_list;
1328 #ifdef CONFIG_COMPAT
1329 	struct compat_robust_list_head __user *compat_robust_list;
1330 #endif
1331 	struct list_head		pi_state_list;
1332 	struct futex_pi_state		*pi_state_cache;
1333 	struct mutex			futex_exit_mutex;
1334 	unsigned int			futex_state;
1335 #endif
1336 #ifdef CONFIG_PERF_EVENTS
1337 	u8				perf_recursion[PERF_NR_CONTEXTS];
1338 	struct perf_event_context	*perf_event_ctxp;
1339 	struct mutex			perf_event_mutex;
1340 	struct list_head		perf_event_list;
1341 	struct perf_ctx_data __rcu	*perf_ctx_data;
1342 #endif
1343 #ifdef CONFIG_DEBUG_PREEMPT
1344 	unsigned long			preempt_disable_ip;
1345 #endif
1346 #ifdef CONFIG_NUMA
1347 	/* Protected by alloc_lock: */
1348 	struct mempolicy		*mempolicy;
1349 	short				il_prev;
1350 	u8				il_weight;
1351 	short				pref_node_fork;
1352 #endif
1353 #ifdef CONFIG_NUMA_BALANCING
1354 	int				numa_scan_seq;
1355 	unsigned int			numa_scan_period;
1356 	unsigned int			numa_scan_period_max;
1357 	int				numa_preferred_nid;
1358 	unsigned long			numa_migrate_retry;
1359 	/* Migration stamp: */
1360 	u64				node_stamp;
1361 	u64				last_task_numa_placement;
1362 	u64				last_sum_exec_runtime;
1363 	struct callback_head		numa_work;
1364 
1365 	/*
1366 	 * This pointer is only modified for current in syscall and
1367 	 * pagefault context (and for tasks being destroyed), so it can be read
1368 	 * from any of the following contexts:
1369 	 *  - RCU read-side critical section
1370 	 *  - current->numa_group from everywhere
1371 	 *  - task's runqueue locked, task not running
1372 	 */
1373 	struct numa_group __rcu		*numa_group;
1374 
1375 	/*
1376 	 * numa_faults is an array split into four regions:
1377 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1378 	 * in this precise order.
1379 	 *
1380 	 * faults_memory: Exponential decaying average of faults on a per-node
1381 	 * basis. Scheduling placement decisions are made based on these
1382 	 * counts. The values remain static for the duration of a PTE scan.
1383 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1384 	 * hinting fault was incurred.
1385 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1386 	 * during the current scan window. When the scan completes, the counts
1387 	 * in faults_memory and faults_cpu decay and these values are copied.
1388 	 */
1389 	unsigned long			*numa_faults;
1390 	unsigned long			total_numa_faults;
1391 
1392 	/*
1393 	 * numa_faults_locality tracks if faults recorded during the last
1394 	 * scan window were remote/local or failed to migrate. The task scan
1395 	 * period is adapted based on the locality of the faults with different
1396 	 * weights depending on whether they were shared or private faults
1397 	 */
1398 	unsigned long			numa_faults_locality[3];
1399 
1400 	unsigned long			numa_pages_migrated;
1401 #endif /* CONFIG_NUMA_BALANCING */
1402 
1403 #ifdef CONFIG_RSEQ
1404 	struct rseq __user *rseq;
1405 	u32 rseq_len;
1406 	u32 rseq_sig;
1407 	/*
1408 	 * RmW on rseq_event_mask must be performed atomically
1409 	 * with respect to preemption.
1410 	 */
1411 	unsigned long rseq_event_mask;
1412 # ifdef CONFIG_DEBUG_RSEQ
1413 	/*
1414 	 * This is a place holder to save a copy of the rseq fields for
1415 	 * validation of read-only fields. The struct rseq has a
1416 	 * variable-length array at the end, so it cannot be used
1417 	 * directly. Reserve a size large enough for the known fields.
1418 	 */
1419 	char				rseq_fields[sizeof(struct rseq)];
1420 # endif
1421 #endif
1422 
1423 #ifdef CONFIG_SCHED_MM_CID
1424 	int				mm_cid;		/* Current cid in mm */
1425 	int				last_mm_cid;	/* Most recent cid in mm */
1426 	int				migrate_from_cpu;
1427 	int				mm_cid_active;	/* Whether cid bitmap is active */
1428 	struct callback_head		cid_work;
1429 #endif
1430 
1431 	struct tlbflush_unmap_batch	tlb_ubc;
1432 
1433 	/* Cache last used pipe for splice(): */
1434 	struct pipe_inode_info		*splice_pipe;
1435 
1436 	struct page_frag		task_frag;
1437 
1438 #ifdef CONFIG_TASK_DELAY_ACCT
1439 	struct task_delay_info		*delays;
1440 #endif
1441 
1442 #ifdef CONFIG_FAULT_INJECTION
1443 	int				make_it_fail;
1444 	unsigned int			fail_nth;
1445 #endif
1446 	/*
1447 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1448 	 * balance_dirty_pages() for a dirty throttling pause:
1449 	 */
1450 	int				nr_dirtied;
1451 	int				nr_dirtied_pause;
1452 	/* Start of a write-and-pause period: */
1453 	unsigned long			dirty_paused_when;
1454 
1455 #ifdef CONFIG_LATENCYTOP
1456 	int				latency_record_count;
1457 	struct latency_record		latency_record[LT_SAVECOUNT];
1458 #endif
1459 	/*
1460 	 * Time slack values; these are used to round up poll() and
1461 	 * select() etc timeout values. These are in nanoseconds.
1462 	 */
1463 	u64				timer_slack_ns;
1464 	u64				default_timer_slack_ns;
1465 
1466 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1467 	unsigned int			kasan_depth;
1468 #endif
1469 
1470 #ifdef CONFIG_KCSAN
1471 	struct kcsan_ctx		kcsan_ctx;
1472 #ifdef CONFIG_TRACE_IRQFLAGS
1473 	struct irqtrace_events		kcsan_save_irqtrace;
1474 #endif
1475 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1476 	int				kcsan_stack_depth;
1477 #endif
1478 #endif
1479 
1480 #ifdef CONFIG_KMSAN
1481 	struct kmsan_ctx		kmsan_ctx;
1482 #endif
1483 
1484 #if IS_ENABLED(CONFIG_KUNIT)
1485 	struct kunit			*kunit_test;
1486 #endif
1487 
1488 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1489 	/* Index of current stored address in ret_stack: */
1490 	int				curr_ret_stack;
1491 	int				curr_ret_depth;
1492 
1493 	/* Stack of return addresses for return function tracing: */
1494 	unsigned long			*ret_stack;
1495 
1496 	/* Timestamp for last schedule: */
1497 	unsigned long long		ftrace_timestamp;
1498 	unsigned long long		ftrace_sleeptime;
1499 
1500 	/*
1501 	 * Number of functions that haven't been traced
1502 	 * because of depth overrun:
1503 	 */
1504 	atomic_t			trace_overrun;
1505 
1506 	/* Pause tracing: */
1507 	atomic_t			tracing_graph_pause;
1508 #endif
1509 
1510 #ifdef CONFIG_TRACING
1511 	/* Bitmask and counter of trace recursion: */
1512 	unsigned long			trace_recursion;
1513 #endif /* CONFIG_TRACING */
1514 
1515 #ifdef CONFIG_KCOV
1516 	/* See kernel/kcov.c for more details. */
1517 
1518 	/* Coverage collection mode enabled for this task (0 if disabled): */
1519 	unsigned int			kcov_mode;
1520 
1521 	/* Size of the kcov_area: */
1522 	unsigned int			kcov_size;
1523 
1524 	/* Buffer for coverage collection: */
1525 	void				*kcov_area;
1526 
1527 	/* KCOV descriptor wired with this task or NULL: */
1528 	struct kcov			*kcov;
1529 
1530 	/* KCOV common handle for remote coverage collection: */
1531 	u64				kcov_handle;
1532 
1533 	/* KCOV sequence number: */
1534 	int				kcov_sequence;
1535 
1536 	/* Collect coverage from softirq context: */
1537 	unsigned int			kcov_softirq;
1538 #endif
1539 
1540 #ifdef CONFIG_MEMCG_V1
1541 	struct mem_cgroup		*memcg_in_oom;
1542 #endif
1543 
1544 #ifdef CONFIG_MEMCG
1545 	/* Number of pages to reclaim on returning to userland: */
1546 	unsigned int			memcg_nr_pages_over_high;
1547 
1548 	/* Used by memcontrol for targeted memcg charge: */
1549 	struct mem_cgroup		*active_memcg;
1550 
1551 	/* Cache for current->cgroups->memcg->objcg lookups: */
1552 	struct obj_cgroup		*objcg;
1553 #endif
1554 
1555 #ifdef CONFIG_BLK_CGROUP
1556 	struct gendisk			*throttle_disk;
1557 #endif
1558 
1559 #ifdef CONFIG_UPROBES
1560 	struct uprobe_task		*utask;
1561 #endif
1562 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1563 	unsigned int			sequential_io;
1564 	unsigned int			sequential_io_avg;
1565 #endif
1566 	struct kmap_ctrl		kmap_ctrl;
1567 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1568 	unsigned long			task_state_change;
1569 # ifdef CONFIG_PREEMPT_RT
1570 	unsigned long			saved_state_change;
1571 # endif
1572 #endif
1573 	struct rcu_head			rcu;
1574 	refcount_t			rcu_users;
1575 	int				pagefault_disabled;
1576 #ifdef CONFIG_MMU
1577 	struct task_struct		*oom_reaper_list;
1578 	struct timer_list		oom_reaper_timer;
1579 #endif
1580 #ifdef CONFIG_VMAP_STACK
1581 	struct vm_struct		*stack_vm_area;
1582 #endif
1583 #ifdef CONFIG_THREAD_INFO_IN_TASK
1584 	/* A live task holds one reference: */
1585 	refcount_t			stack_refcount;
1586 #endif
1587 #ifdef CONFIG_LIVEPATCH
1588 	int patch_state;
1589 #endif
1590 #ifdef CONFIG_SECURITY
1591 	/* Used by LSM modules for access restriction: */
1592 	void				*security;
1593 #endif
1594 #ifdef CONFIG_BPF_SYSCALL
1595 	/* Used by BPF task local storage */
1596 	struct bpf_local_storage __rcu	*bpf_storage;
1597 	/* Used for BPF run context */
1598 	struct bpf_run_ctx		*bpf_ctx;
1599 #endif
1600 	/* Used by BPF for per-TASK xdp storage */
1601 	struct bpf_net_context		*bpf_net_context;
1602 
1603 #ifdef CONFIG_KSTACK_ERASE
1604 	unsigned long			lowest_stack;
1605 #endif
1606 #ifdef CONFIG_KSTACK_ERASE_METRICS
1607 	unsigned long			prev_lowest_stack;
1608 #endif
1609 
1610 #ifdef CONFIG_X86_MCE
1611 	void __user			*mce_vaddr;
1612 	__u64				mce_kflags;
1613 	u64				mce_addr;
1614 	__u64				mce_ripv : 1,
1615 					mce_whole_page : 1,
1616 					__mce_reserved : 62;
1617 	struct callback_head		mce_kill_me;
1618 	int				mce_count;
1619 #endif
1620 
1621 #ifdef CONFIG_KRETPROBES
1622 	struct llist_head               kretprobe_instances;
1623 #endif
1624 #ifdef CONFIG_RETHOOK
1625 	struct llist_head               rethooks;
1626 #endif
1627 
1628 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1629 	/*
1630 	 * If L1D flush is supported on mm context switch
1631 	 * then we use this callback head to queue kill work
1632 	 * to kill tasks that are not running on SMT disabled
1633 	 * cores
1634 	 */
1635 	struct callback_head		l1d_flush_kill;
1636 #endif
1637 
1638 #ifdef CONFIG_RV
1639 	/*
1640 	 * Per-task RV monitor, fixed in CONFIG_RV_PER_TASK_MONITORS.
1641 	 * If memory becomes a concern, we can think about a dynamic method.
1642 	 */
1643 	union rv_task_monitor		rv[CONFIG_RV_PER_TASK_MONITORS];
1644 #endif
1645 
1646 #ifdef CONFIG_USER_EVENTS
1647 	struct user_event_mm		*user_event_mm;
1648 #endif
1649 
1650 #ifdef CONFIG_UNWIND_USER
1651 	struct unwind_task_info		unwind_info;
1652 #endif
1653 
1654 	/* CPU-specific state of this task: */
1655 	struct thread_struct		thread;
1656 
1657 	/*
1658 	 * New fields for task_struct should be added above here, so that
1659 	 * they are included in the randomized portion of task_struct.
1660 	 */
1661 	randomized_struct_fields_end
1662 } __attribute__ ((aligned (64)));
1663 
1664 #ifdef CONFIG_SCHED_PROXY_EXEC
1665 DECLARE_STATIC_KEY_TRUE(__sched_proxy_exec);
sched_proxy_exec(void)1666 static inline bool sched_proxy_exec(void)
1667 {
1668 	return static_branch_likely(&__sched_proxy_exec);
1669 }
1670 #else
sched_proxy_exec(void)1671 static inline bool sched_proxy_exec(void)
1672 {
1673 	return false;
1674 }
1675 #endif
1676 
1677 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1678 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1679 
__task_state_index(unsigned int tsk_state,unsigned int tsk_exit_state)1680 static inline unsigned int __task_state_index(unsigned int tsk_state,
1681 					      unsigned int tsk_exit_state)
1682 {
1683 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1684 
1685 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1686 
1687 	if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1688 		state = TASK_REPORT_IDLE;
1689 
1690 	/*
1691 	 * We're lying here, but rather than expose a completely new task state
1692 	 * to userspace, we can make this appear as if the task has gone through
1693 	 * a regular rt_mutex_lock() call.
1694 	 * Report frozen tasks as uninterruptible.
1695 	 */
1696 	if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN))
1697 		state = TASK_UNINTERRUPTIBLE;
1698 
1699 	return fls(state);
1700 }
1701 
task_state_index(struct task_struct * tsk)1702 static inline unsigned int task_state_index(struct task_struct *tsk)
1703 {
1704 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1705 }
1706 
task_index_to_char(unsigned int state)1707 static inline char task_index_to_char(unsigned int state)
1708 {
1709 	static const char state_char[] = "RSDTtXZPI";
1710 
1711 	BUILD_BUG_ON(TASK_REPORT_MAX * 2 != 1 << (sizeof(state_char) - 1));
1712 
1713 	return state_char[state];
1714 }
1715 
task_state_to_char(struct task_struct * tsk)1716 static inline char task_state_to_char(struct task_struct *tsk)
1717 {
1718 	return task_index_to_char(task_state_index(tsk));
1719 }
1720 
1721 extern struct pid *cad_pid;
1722 
1723 /*
1724  * Per process flags
1725  */
1726 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1727 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1728 #define PF_EXITING		0x00000004	/* Getting shut down */
1729 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1730 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1731 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1732 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1733 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1734 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1735 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1736 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1737 #define PF_MEMALLOC		0x00000800	/* Allocating memory to free memory. See memalloc_noreclaim_save() */
1738 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1739 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1740 #define PF_USER_WORKER		0x00004000	/* Kernel thread cloned from userspace thread */
1741 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1742 #define PF_KCOMPACTD		0x00010000	/* I am kcompactd */
1743 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1744 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
1745 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
1746 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1747 						 * I am cleaning dirty pages from some other bdi. */
1748 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1749 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1750 #define PF__HOLE__00800000	0x00800000
1751 #define PF__HOLE__01000000	0x01000000
1752 #define PF__HOLE__02000000	0x02000000
1753 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1754 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1755 #define PF_MEMALLOC_PIN		0x10000000	/* Allocations constrained to zones which allow long term pinning.
1756 						 * See memalloc_pin_save() */
1757 #define PF_BLOCK_TS		0x20000000	/* plug has ts that needs updating */
1758 #define PF__HOLE__40000000	0x40000000
1759 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1760 
1761 /*
1762  * Only the _current_ task can read/write to tsk->flags, but other
1763  * tasks can access tsk->flags in readonly mode for example
1764  * with tsk_used_math (like during threaded core dumping).
1765  * There is however an exception to this rule during ptrace
1766  * or during fork: the ptracer task is allowed to write to the
1767  * child->flags of its traced child (same goes for fork, the parent
1768  * can write to the child->flags), because we're guaranteed the
1769  * child is not running and in turn not changing child->flags
1770  * at the same time the parent does it.
1771  */
1772 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1773 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1774 #define clear_used_math()			clear_stopped_child_used_math(current)
1775 #define set_used_math()				set_stopped_child_used_math(current)
1776 
1777 #define conditional_stopped_child_used_math(condition, child) \
1778 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1779 
1780 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1781 
1782 #define copy_to_stopped_child_used_math(child) \
1783 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1784 
1785 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1786 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1787 #define used_math()				tsk_used_math(current)
1788 
is_percpu_thread(void)1789 static __always_inline bool is_percpu_thread(void)
1790 {
1791 	return (current->flags & PF_NO_SETAFFINITY) &&
1792 		(current->nr_cpus_allowed  == 1);
1793 }
1794 
1795 /* Per-process atomic flags. */
1796 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1797 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1798 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1799 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1800 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1801 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1802 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1803 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1804 
1805 #define TASK_PFA_TEST(name, func)					\
1806 	static inline bool task_##func(struct task_struct *p)		\
1807 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1808 
1809 #define TASK_PFA_SET(name, func)					\
1810 	static inline void task_set_##func(struct task_struct *p)	\
1811 	{ set_bit(PFA_##name, &p->atomic_flags); }
1812 
1813 #define TASK_PFA_CLEAR(name, func)					\
1814 	static inline void task_clear_##func(struct task_struct *p)	\
1815 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1816 
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1817 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1818 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1819 
1820 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1821 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1822 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1823 
1824 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1825 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1826 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1827 
1828 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1829 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1830 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1831 
1832 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1833 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1834 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1835 
1836 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1837 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1838 
1839 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1840 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1841 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1842 
1843 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1844 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1845 
1846 static inline void
1847 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1848 {
1849 	current->flags &= ~flags;
1850 	current->flags |= orig_flags & flags;
1851 }
1852 
1853 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1854 extern int task_can_attach(struct task_struct *p);
1855 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1856 extern void dl_bw_free(int cpu, u64 dl_bw);
1857 
1858 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1859 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1860 
1861 /**
1862  * set_cpus_allowed_ptr - set CPU affinity mask of a task
1863  * @p: the task
1864  * @new_mask: CPU affinity mask
1865  *
1866  * Return: zero if successful, or a negative error code
1867  */
1868 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1869 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1870 extern void release_user_cpus_ptr(struct task_struct *p);
1871 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1872 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1873 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1874 
1875 extern int yield_to(struct task_struct *p, bool preempt);
1876 extern void set_user_nice(struct task_struct *p, long nice);
1877 extern int task_prio(const struct task_struct *p);
1878 
1879 /**
1880  * task_nice - return the nice value of a given task.
1881  * @p: the task in question.
1882  *
1883  * Return: The nice value [ -20 ... 0 ... 19 ].
1884  */
task_nice(const struct task_struct * p)1885 static inline int task_nice(const struct task_struct *p)
1886 {
1887 	return PRIO_TO_NICE((p)->static_prio);
1888 }
1889 
1890 extern int can_nice(const struct task_struct *p, const int nice);
1891 extern int task_curr(const struct task_struct *p);
1892 extern int idle_cpu(int cpu);
1893 extern int available_idle_cpu(int cpu);
1894 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1895 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1896 extern void sched_set_fifo(struct task_struct *p);
1897 extern void sched_set_fifo_low(struct task_struct *p);
1898 extern void sched_set_normal(struct task_struct *p, int nice);
1899 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1900 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1901 extern struct task_struct *idle_task(int cpu);
1902 
1903 /**
1904  * is_idle_task - is the specified task an idle task?
1905  * @p: the task in question.
1906  *
1907  * Return: 1 if @p is an idle task. 0 otherwise.
1908  */
is_idle_task(const struct task_struct * p)1909 static __always_inline bool is_idle_task(const struct task_struct *p)
1910 {
1911 	return !!(p->flags & PF_IDLE);
1912 }
1913 
1914 extern struct task_struct *curr_task(int cpu);
1915 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1916 
1917 void yield(void);
1918 
1919 union thread_union {
1920 	struct task_struct task;
1921 #ifndef CONFIG_THREAD_INFO_IN_TASK
1922 	struct thread_info thread_info;
1923 #endif
1924 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1925 };
1926 
1927 #ifndef CONFIG_THREAD_INFO_IN_TASK
1928 extern struct thread_info init_thread_info;
1929 #endif
1930 
1931 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1932 
1933 #ifdef CONFIG_THREAD_INFO_IN_TASK
1934 # define task_thread_info(task)	(&(task)->thread_info)
1935 #else
1936 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1937 #endif
1938 
1939 /*
1940  * find a task by one of its numerical ids
1941  *
1942  * find_task_by_pid_ns():
1943  *      finds a task by its pid in the specified namespace
1944  * find_task_by_vpid():
1945  *      finds a task by its virtual pid
1946  *
1947  * see also find_vpid() etc in include/linux/pid.h
1948  */
1949 
1950 extern struct task_struct *find_task_by_vpid(pid_t nr);
1951 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1952 
1953 /*
1954  * find a task by its virtual pid and get the task struct
1955  */
1956 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1957 
1958 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1959 extern int wake_up_process(struct task_struct *tsk);
1960 extern void wake_up_new_task(struct task_struct *tsk);
1961 
1962 extern void kick_process(struct task_struct *tsk);
1963 
1964 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1965 #define set_task_comm(tsk, from) ({			\
1966 	BUILD_BUG_ON(sizeof(from) != TASK_COMM_LEN);	\
1967 	__set_task_comm(tsk, from, false);		\
1968 })
1969 
1970 /*
1971  * - Why not use task_lock()?
1972  *   User space can randomly change their names anyway, so locking for readers
1973  *   doesn't make sense. For writers, locking is probably necessary, as a race
1974  *   condition could lead to long-term mixed results.
1975  *   The strscpy_pad() in __set_task_comm() can ensure that the task comm is
1976  *   always NUL-terminated and zero-padded. Therefore the race condition between
1977  *   reader and writer is not an issue.
1978  *
1979  * - BUILD_BUG_ON() can help prevent the buf from being truncated.
1980  *   Since the callers don't perform any return value checks, this safeguard is
1981  *   necessary.
1982  */
1983 #define get_task_comm(buf, tsk) ({			\
1984 	BUILD_BUG_ON(sizeof(buf) < TASK_COMM_LEN);	\
1985 	strscpy_pad(buf, (tsk)->comm);			\
1986 	buf;						\
1987 })
1988 
scheduler_ipi(void)1989 static __always_inline void scheduler_ipi(void)
1990 {
1991 	/*
1992 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1993 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1994 	 * this IPI.
1995 	 */
1996 	preempt_fold_need_resched();
1997 }
1998 
1999 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2000 
2001 /*
2002  * Set thread flags in other task's structures.
2003  * See asm/thread_info.h for TIF_xxxx flags available:
2004  */
set_tsk_thread_flag(struct task_struct * tsk,int flag)2005 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2006 {
2007 	set_ti_thread_flag(task_thread_info(tsk), flag);
2008 }
2009 
clear_tsk_thread_flag(struct task_struct * tsk,int flag)2010 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2011 {
2012 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2013 }
2014 
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)2015 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2016 					  bool value)
2017 {
2018 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
2019 }
2020 
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)2021 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2022 {
2023 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2024 }
2025 
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2026 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2027 {
2028 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2029 }
2030 
test_tsk_thread_flag(struct task_struct * tsk,int flag)2031 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2032 {
2033 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2034 }
2035 
set_tsk_need_resched(struct task_struct * tsk)2036 static inline void set_tsk_need_resched(struct task_struct *tsk)
2037 {
2038 	if (tracepoint_enabled(sched_set_need_resched_tp) &&
2039 	    !test_tsk_thread_flag(tsk, TIF_NEED_RESCHED))
2040 		__trace_set_need_resched(tsk, TIF_NEED_RESCHED);
2041 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2042 }
2043 
clear_tsk_need_resched(struct task_struct * tsk)2044 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2045 {
2046 	atomic_long_andnot(_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY,
2047 			   (atomic_long_t *)&task_thread_info(tsk)->flags);
2048 }
2049 
test_tsk_need_resched(struct task_struct * tsk)2050 static inline int test_tsk_need_resched(struct task_struct *tsk)
2051 {
2052 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2053 }
2054 
2055 /*
2056  * cond_resched() and cond_resched_lock(): latency reduction via
2057  * explicit rescheduling in places that are safe. The return
2058  * value indicates whether a reschedule was done in fact.
2059  * cond_resched_lock() will drop the spinlock before scheduling,
2060  */
2061 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2062 extern int __cond_resched(void);
2063 
2064 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2065 
2066 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2067 
_cond_resched(void)2068 static __always_inline int _cond_resched(void)
2069 {
2070 	return static_call_mod(cond_resched)();
2071 }
2072 
2073 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2074 
2075 extern int dynamic_cond_resched(void);
2076 
_cond_resched(void)2077 static __always_inline int _cond_resched(void)
2078 {
2079 	return dynamic_cond_resched();
2080 }
2081 
2082 #else /* !CONFIG_PREEMPTION */
2083 
_cond_resched(void)2084 static inline int _cond_resched(void)
2085 {
2086 	return __cond_resched();
2087 }
2088 
2089 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2090 
2091 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2092 
_cond_resched(void)2093 static inline int _cond_resched(void)
2094 {
2095 	return 0;
2096 }
2097 
2098 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2099 
2100 #define cond_resched() ({			\
2101 	__might_resched(__FILE__, __LINE__, 0);	\
2102 	_cond_resched();			\
2103 })
2104 
2105 extern int __cond_resched_lock(spinlock_t *lock);
2106 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2107 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2108 
2109 #define MIGHT_RESCHED_RCU_SHIFT		8
2110 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2111 
2112 #ifndef CONFIG_PREEMPT_RT
2113 /*
2114  * Non RT kernels have an elevated preempt count due to the held lock,
2115  * but are not allowed to be inside a RCU read side critical section
2116  */
2117 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2118 #else
2119 /*
2120  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2121  * cond_resched*lock() has to take that into account because it checks for
2122  * preempt_count() and rcu_preempt_depth().
2123  */
2124 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2125 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2126 #endif
2127 
2128 #define cond_resched_lock(lock) ({						\
2129 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2130 	__cond_resched_lock(lock);						\
2131 })
2132 
2133 #define cond_resched_rwlock_read(lock) ({					\
2134 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2135 	__cond_resched_rwlock_read(lock);					\
2136 })
2137 
2138 #define cond_resched_rwlock_write(lock) ({					\
2139 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2140 	__cond_resched_rwlock_write(lock);					\
2141 })
2142 
2143 #ifndef CONFIG_PREEMPT_RT
__get_task_blocked_on(struct task_struct * p)2144 static inline struct mutex *__get_task_blocked_on(struct task_struct *p)
2145 {
2146 	struct mutex *m = p->blocked_on;
2147 
2148 	if (m)
2149 		lockdep_assert_held_once(&m->wait_lock);
2150 	return m;
2151 }
2152 
__set_task_blocked_on(struct task_struct * p,struct mutex * m)2153 static inline void __set_task_blocked_on(struct task_struct *p, struct mutex *m)
2154 {
2155 	WARN_ON_ONCE(!m);
2156 	/* The task should only be setting itself as blocked */
2157 	WARN_ON_ONCE(p != current);
2158 	/* Currently we serialize blocked_on under the mutex::wait_lock */
2159 	lockdep_assert_held_once(&m->wait_lock);
2160 	/*
2161 	 * Check ensure we don't overwrite existing mutex value
2162 	 * with a different mutex. Note, setting it to the same
2163 	 * lock repeatedly is ok.
2164 	 */
2165 	WARN_ON_ONCE(p->blocked_on && p->blocked_on != m);
2166 	p->blocked_on = m;
2167 }
2168 
set_task_blocked_on(struct task_struct * p,struct mutex * m)2169 static inline void set_task_blocked_on(struct task_struct *p, struct mutex *m)
2170 {
2171 	guard(raw_spinlock_irqsave)(&m->wait_lock);
2172 	__set_task_blocked_on(p, m);
2173 }
2174 
__clear_task_blocked_on(struct task_struct * p,struct mutex * m)2175 static inline void __clear_task_blocked_on(struct task_struct *p, struct mutex *m)
2176 {
2177 	WARN_ON_ONCE(!m);
2178 	/* Currently we serialize blocked_on under the mutex::wait_lock */
2179 	lockdep_assert_held_once(&m->wait_lock);
2180 	/*
2181 	 * There may be cases where we re-clear already cleared
2182 	 * blocked_on relationships, but make sure we are not
2183 	 * clearing the relationship with a different lock.
2184 	 */
2185 	WARN_ON_ONCE(m && p->blocked_on && p->blocked_on != m);
2186 	p->blocked_on = NULL;
2187 }
2188 
clear_task_blocked_on(struct task_struct * p,struct mutex * m)2189 static inline void clear_task_blocked_on(struct task_struct *p, struct mutex *m)
2190 {
2191 	guard(raw_spinlock_irqsave)(&m->wait_lock);
2192 	__clear_task_blocked_on(p, m);
2193 }
2194 #else
__clear_task_blocked_on(struct task_struct * p,struct rt_mutex * m)2195 static inline void __clear_task_blocked_on(struct task_struct *p, struct rt_mutex *m)
2196 {
2197 }
2198 
clear_task_blocked_on(struct task_struct * p,struct rt_mutex * m)2199 static inline void clear_task_blocked_on(struct task_struct *p, struct rt_mutex *m)
2200 {
2201 }
2202 #endif /* !CONFIG_PREEMPT_RT */
2203 
need_resched(void)2204 static __always_inline bool need_resched(void)
2205 {
2206 	return unlikely(tif_need_resched());
2207 }
2208 
2209 /*
2210  * Wrappers for p->thread_info->cpu access. No-op on UP.
2211  */
2212 #ifdef CONFIG_SMP
2213 
task_cpu(const struct task_struct * p)2214 static inline unsigned int task_cpu(const struct task_struct *p)
2215 {
2216 	return READ_ONCE(task_thread_info(p)->cpu);
2217 }
2218 
2219 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2220 
2221 #else
2222 
task_cpu(const struct task_struct * p)2223 static inline unsigned int task_cpu(const struct task_struct *p)
2224 {
2225 	return 0;
2226 }
2227 
set_task_cpu(struct task_struct * p,unsigned int cpu)2228 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2229 {
2230 }
2231 
2232 #endif /* CONFIG_SMP */
2233 
task_is_runnable(struct task_struct * p)2234 static inline bool task_is_runnable(struct task_struct *p)
2235 {
2236 	return p->on_rq && !p->se.sched_delayed;
2237 }
2238 
2239 extern bool sched_task_on_rq(struct task_struct *p);
2240 extern unsigned long get_wchan(struct task_struct *p);
2241 extern struct task_struct *cpu_curr_snapshot(int cpu);
2242 
2243 /*
2244  * In order to reduce various lock holder preemption latencies provide an
2245  * interface to see if a vCPU is currently running or not.
2246  *
2247  * This allows us to terminate optimistic spin loops and block, analogous to
2248  * the native optimistic spin heuristic of testing if the lock owner task is
2249  * running or not.
2250  */
2251 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)2252 static inline bool vcpu_is_preempted(int cpu)
2253 {
2254 	return false;
2255 }
2256 #endif
2257 
2258 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2259 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2260 
2261 #ifndef TASK_SIZE_OF
2262 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2263 #endif
2264 
owner_on_cpu(struct task_struct * owner)2265 static inline bool owner_on_cpu(struct task_struct *owner)
2266 {
2267 	/*
2268 	 * As lock holder preemption issue, we both skip spinning if
2269 	 * task is not on cpu or its cpu is preempted
2270 	 */
2271 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2272 }
2273 
2274 /* Returns effective CPU energy utilization, as seen by the scheduler */
2275 unsigned long sched_cpu_util(int cpu);
2276 
2277 #ifdef CONFIG_SCHED_CORE
2278 extern void sched_core_free(struct task_struct *tsk);
2279 extern void sched_core_fork(struct task_struct *p);
2280 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2281 				unsigned long uaddr);
2282 extern int sched_core_idle_cpu(int cpu);
2283 #else
sched_core_free(struct task_struct * tsk)2284 static inline void sched_core_free(struct task_struct *tsk) { }
sched_core_fork(struct task_struct * p)2285 static inline void sched_core_fork(struct task_struct *p) { }
sched_core_idle_cpu(int cpu)2286 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2287 #endif
2288 
2289 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2290 
2291 #ifdef CONFIG_MEM_ALLOC_PROFILING
alloc_tag_save(struct alloc_tag * tag)2292 static __always_inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
2293 {
2294 	swap(current->alloc_tag, tag);
2295 	return tag;
2296 }
2297 
alloc_tag_restore(struct alloc_tag * tag,struct alloc_tag * old)2298 static __always_inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
2299 {
2300 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2301 	WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
2302 #endif
2303 	current->alloc_tag = old;
2304 }
2305 #else
2306 #define alloc_tag_save(_tag)			NULL
2307 #define alloc_tag_restore(_tag, _old)		do {} while (0)
2308 #endif
2309 
2310 #endif
2311