1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/include/asm/kvm_host.h:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9 */
10
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/maple_tree.h>
20 #include <linux/percpu.h>
21 #include <linux/psci.h>
22 #include <asm/arch_gicv3.h>
23 #include <asm/barrier.h>
24 #include <asm/cpufeature.h>
25 #include <asm/cputype.h>
26 #include <asm/daifflags.h>
27 #include <asm/fpsimd.h>
28 #include <asm/kvm.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/vncr_mapping.h>
31
32 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
33
34 #define KVM_HALT_POLL_NS_DEFAULT 500000
35
36 #include <kvm/arm_vgic.h>
37 #include <kvm/arm_arch_timer.h>
38 #include <kvm/arm_pmu.h>
39
40 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
41
42 #define KVM_VCPU_MAX_FEATURES 9
43 #define KVM_VCPU_VALID_FEATURES (BIT(KVM_VCPU_MAX_FEATURES) - 1)
44
45 #define KVM_REQ_SLEEP \
46 KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
47 #define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1)
48 #define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2)
49 #define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3)
50 #define KVM_REQ_RELOAD_GICv4 KVM_ARCH_REQ(4)
51 #define KVM_REQ_RELOAD_PMU KVM_ARCH_REQ(5)
52 #define KVM_REQ_SUSPEND KVM_ARCH_REQ(6)
53 #define KVM_REQ_RESYNC_PMU_EL0 KVM_ARCH_REQ(7)
54 #define KVM_REQ_NESTED_S2_UNMAP KVM_ARCH_REQ(8)
55 #define KVM_REQ_GUEST_HYP_IRQ_PENDING KVM_ARCH_REQ(9)
56 #define KVM_REQ_MAP_L1_VNCR_EL2 KVM_ARCH_REQ(10)
57
58 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
59 KVM_DIRTY_LOG_INITIALLY_SET)
60
61 #define KVM_HAVE_MMU_RWLOCK
62
63 /*
64 * Mode of operation configurable with kvm-arm.mode early param.
65 * See Documentation/admin-guide/kernel-parameters.txt for more information.
66 */
67 enum kvm_mode {
68 KVM_MODE_DEFAULT,
69 KVM_MODE_PROTECTED,
70 KVM_MODE_NV,
71 KVM_MODE_NONE,
72 };
73 #ifdef CONFIG_KVM
74 enum kvm_mode kvm_get_mode(void);
75 #else
kvm_get_mode(void)76 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
77 #endif
78
79 extern unsigned int __ro_after_init kvm_sve_max_vl;
80 extern unsigned int __ro_after_init kvm_host_sve_max_vl;
81 int __init kvm_arm_init_sve(void);
82
83 u32 __attribute_const__ kvm_target_cpu(void);
84 void kvm_reset_vcpu(struct kvm_vcpu *vcpu);
85 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
86
87 struct kvm_hyp_memcache {
88 phys_addr_t head;
89 unsigned long nr_pages;
90 struct pkvm_mapping *mapping; /* only used from EL1 */
91
92 #define HYP_MEMCACHE_ACCOUNT_STAGE2 BIT(1)
93 unsigned long flags;
94 };
95
push_hyp_memcache(struct kvm_hyp_memcache * mc,phys_addr_t * p,phys_addr_t (* to_pa)(void * virt))96 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
97 phys_addr_t *p,
98 phys_addr_t (*to_pa)(void *virt))
99 {
100 *p = mc->head;
101 mc->head = to_pa(p);
102 mc->nr_pages++;
103 }
104
pop_hyp_memcache(struct kvm_hyp_memcache * mc,void * (* to_va)(phys_addr_t phys))105 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
106 void *(*to_va)(phys_addr_t phys))
107 {
108 phys_addr_t *p = to_va(mc->head & PAGE_MASK);
109
110 if (!mc->nr_pages)
111 return NULL;
112
113 mc->head = *p;
114 mc->nr_pages--;
115
116 return p;
117 }
118
__topup_hyp_memcache(struct kvm_hyp_memcache * mc,unsigned long min_pages,void * (* alloc_fn)(void * arg),phys_addr_t (* to_pa)(void * virt),void * arg)119 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
120 unsigned long min_pages,
121 void *(*alloc_fn)(void *arg),
122 phys_addr_t (*to_pa)(void *virt),
123 void *arg)
124 {
125 while (mc->nr_pages < min_pages) {
126 phys_addr_t *p = alloc_fn(arg);
127
128 if (!p)
129 return -ENOMEM;
130 push_hyp_memcache(mc, p, to_pa);
131 }
132
133 return 0;
134 }
135
__free_hyp_memcache(struct kvm_hyp_memcache * mc,void (* free_fn)(void * virt,void * arg),void * (* to_va)(phys_addr_t phys),void * arg)136 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
137 void (*free_fn)(void *virt, void *arg),
138 void *(*to_va)(phys_addr_t phys),
139 void *arg)
140 {
141 while (mc->nr_pages)
142 free_fn(pop_hyp_memcache(mc, to_va), arg);
143 }
144
145 void free_hyp_memcache(struct kvm_hyp_memcache *mc);
146 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
147
148 struct kvm_vmid {
149 atomic64_t id;
150 };
151
152 struct kvm_s2_mmu {
153 struct kvm_vmid vmid;
154
155 /*
156 * stage2 entry level table
157 *
158 * Two kvm_s2_mmu structures in the same VM can point to the same
159 * pgd here. This happens when running a guest using a
160 * translation regime that isn't affected by its own stage-2
161 * translation, such as a non-VHE hypervisor running at vEL2, or
162 * for vEL1/EL0 with vHCR_EL2.VM == 0. In that case, we use the
163 * canonical stage-2 page tables.
164 */
165 phys_addr_t pgd_phys;
166 struct kvm_pgtable *pgt;
167
168 /*
169 * VTCR value used on the host. For a non-NV guest (or a NV
170 * guest that runs in a context where its own S2 doesn't
171 * apply), its T0SZ value reflects that of the IPA size.
172 *
173 * For a shadow S2 MMU, T0SZ reflects the PARange exposed to
174 * the guest.
175 */
176 u64 vtcr;
177
178 /* The last vcpu id that ran on each physical CPU */
179 int __percpu *last_vcpu_ran;
180
181 #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
182 /*
183 * Memory cache used to split
184 * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
185 * is used to allocate stage2 page tables while splitting huge
186 * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
187 * influences both the capacity of the split page cache, and
188 * how often KVM reschedules. Be wary of raising CHUNK_SIZE
189 * too high.
190 *
191 * Protected by kvm->slots_lock.
192 */
193 struct kvm_mmu_memory_cache split_page_cache;
194 uint64_t split_page_chunk_size;
195
196 struct kvm_arch *arch;
197
198 /*
199 * For a shadow stage-2 MMU, the virtual vttbr used by the
200 * host to parse the guest S2.
201 * This either contains:
202 * - the virtual VTTBR programmed by the guest hypervisor with
203 * CnP cleared
204 * - The value 1 (VMID=0, BADDR=0, CnP=1) if invalid
205 *
206 * We also cache the full VTCR which gets used for TLB invalidation,
207 * taking the ARM ARM's "Any of the bits in VTCR_EL2 are permitted
208 * to be cached in a TLB" to the letter.
209 */
210 u64 tlb_vttbr;
211 u64 tlb_vtcr;
212
213 /*
214 * true when this represents a nested context where virtual
215 * HCR_EL2.VM == 1
216 */
217 bool nested_stage2_enabled;
218
219 /*
220 * true when this MMU needs to be unmapped before being used for a new
221 * purpose.
222 */
223 bool pending_unmap;
224
225 /*
226 * 0: Nobody is currently using this, check vttbr for validity
227 * >0: Somebody is actively using this.
228 */
229 atomic_t refcnt;
230 };
231
232 struct kvm_arch_memory_slot {
233 };
234
235 /**
236 * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
237 *
238 * @std_bmap: Bitmap of standard secure service calls
239 * @std_hyp_bmap: Bitmap of standard hypervisor service calls
240 * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
241 */
242 struct kvm_smccc_features {
243 unsigned long std_bmap;
244 unsigned long std_hyp_bmap;
245 unsigned long vendor_hyp_bmap; /* Function numbers 0-63 */
246 unsigned long vendor_hyp_bmap_2; /* Function numbers 64-127 */
247 };
248
249 typedef unsigned int pkvm_handle_t;
250
251 struct kvm_protected_vm {
252 pkvm_handle_t handle;
253 struct kvm_hyp_memcache teardown_mc;
254 struct kvm_hyp_memcache stage2_teardown_mc;
255 bool is_protected;
256 bool is_created;
257 };
258
259 struct kvm_mpidr_data {
260 u64 mpidr_mask;
261 DECLARE_FLEX_ARRAY(u16, cmpidr_to_idx);
262 };
263
kvm_mpidr_index(struct kvm_mpidr_data * data,u64 mpidr)264 static inline u16 kvm_mpidr_index(struct kvm_mpidr_data *data, u64 mpidr)
265 {
266 unsigned long index = 0, mask = data->mpidr_mask;
267 unsigned long aff = mpidr & MPIDR_HWID_BITMASK;
268
269 bitmap_gather(&index, &aff, &mask, fls(mask));
270
271 return index;
272 }
273
274 struct kvm_sysreg_masks;
275
276 enum fgt_group_id {
277 __NO_FGT_GROUP__,
278 HFGRTR_GROUP,
279 HFGWTR_GROUP = HFGRTR_GROUP,
280 HDFGRTR_GROUP,
281 HDFGWTR_GROUP = HDFGRTR_GROUP,
282 HFGITR_GROUP,
283 HAFGRTR_GROUP,
284 HFGRTR2_GROUP,
285 HFGWTR2_GROUP = HFGRTR2_GROUP,
286 HDFGRTR2_GROUP,
287 HDFGWTR2_GROUP = HDFGRTR2_GROUP,
288 HFGITR2_GROUP,
289
290 /* Must be last */
291 __NR_FGT_GROUP_IDS__
292 };
293
294 struct kvm_arch {
295 struct kvm_s2_mmu mmu;
296
297 /*
298 * Fine-Grained UNDEF, mimicking the FGT layout defined by the
299 * architecture. We track them globally, as we present the
300 * same feature-set to all vcpus.
301 *
302 * Index 0 is currently spare.
303 */
304 u64 fgu[__NR_FGT_GROUP_IDS__];
305
306 /*
307 * Stage 2 paging state for VMs with nested S2 using a virtual
308 * VMID.
309 */
310 struct kvm_s2_mmu *nested_mmus;
311 size_t nested_mmus_size;
312 int nested_mmus_next;
313
314 /* Interrupt controller */
315 struct vgic_dist vgic;
316
317 /* Timers */
318 struct arch_timer_vm_data timer_data;
319
320 /* Mandated version of PSCI */
321 u32 psci_version;
322
323 /* Protects VM-scoped configuration data */
324 struct mutex config_lock;
325
326 /*
327 * If we encounter a data abort without valid instruction syndrome
328 * information, report this to user space. User space can (and
329 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
330 * supported.
331 */
332 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER 0
333 /* Memory Tagging Extension enabled for the guest */
334 #define KVM_ARCH_FLAG_MTE_ENABLED 1
335 /* At least one vCPU has ran in the VM */
336 #define KVM_ARCH_FLAG_HAS_RAN_ONCE 2
337 /* The vCPU feature set for the VM is configured */
338 #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED 3
339 /* PSCI SYSTEM_SUSPEND enabled for the guest */
340 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED 4
341 /* VM counter offset */
342 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET 5
343 /* Timer PPIs made immutable */
344 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE 6
345 /* Initial ID reg values loaded */
346 #define KVM_ARCH_FLAG_ID_REGS_INITIALIZED 7
347 /* Fine-Grained UNDEF initialised */
348 #define KVM_ARCH_FLAG_FGU_INITIALIZED 8
349 /* SVE exposed to guest */
350 #define KVM_ARCH_FLAG_GUEST_HAS_SVE 9
351 /* MIDR_EL1, REVIDR_EL1, and AIDR_EL1 are writable from userspace */
352 #define KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS 10
353 unsigned long flags;
354
355 /* VM-wide vCPU feature set */
356 DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
357
358 /* MPIDR to vcpu index mapping, optional */
359 struct kvm_mpidr_data *mpidr_data;
360
361 /*
362 * VM-wide PMU filter, implemented as a bitmap and big enough for
363 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
364 */
365 unsigned long *pmu_filter;
366 struct arm_pmu *arm_pmu;
367
368 cpumask_var_t supported_cpus;
369
370 /* Maximum number of counters for the guest */
371 u8 nr_pmu_counters;
372
373 /* Iterator for idreg debugfs */
374 u8 idreg_debugfs_iter;
375
376 /* Hypercall features firmware registers' descriptor */
377 struct kvm_smccc_features smccc_feat;
378 struct maple_tree smccc_filter;
379
380 /*
381 * Emulated CPU ID registers per VM
382 * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
383 * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
384 *
385 * These emulated idregs are VM-wide, but accessed from the context of a vCPU.
386 * Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
387 */
388 #define IDREG_IDX(id) (((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
389 #define KVM_ARM_ID_REG_NUM (IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
390 u64 id_regs[KVM_ARM_ID_REG_NUM];
391
392 u64 midr_el1;
393 u64 revidr_el1;
394 u64 aidr_el1;
395 u64 ctr_el0;
396
397 /* Masks for VNCR-backed and general EL2 sysregs */
398 struct kvm_sysreg_masks *sysreg_masks;
399
400 /* Count the number of VNCR_EL2 currently mapped */
401 atomic_t vncr_map_count;
402
403 /*
404 * For an untrusted host VM, 'pkvm.handle' is used to lookup
405 * the associated pKVM instance in the hypervisor.
406 */
407 struct kvm_protected_vm pkvm;
408 };
409
410 struct kvm_vcpu_fault_info {
411 u64 esr_el2; /* Hyp Syndrom Register */
412 u64 far_el2; /* Hyp Fault Address Register */
413 u64 hpfar_el2; /* Hyp IPA Fault Address Register */
414 u64 disr_el1; /* Deferred [SError] Status Register */
415 };
416
417 /*
418 * VNCR() just places the VNCR_capable registers in the enum after
419 * __VNCR_START__, and the value (after correction) to be an 8-byte offset
420 * from the VNCR base. As we don't require the enum to be otherwise ordered,
421 * we need the terrible hack below to ensure that we correctly size the
422 * sys_regs array, no matter what.
423 *
424 * The __MAX__ macro has been lifted from Sean Eron Anderson's wonderful
425 * treasure trove of bit hacks:
426 * https://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax
427 */
428 #define __MAX__(x,y) ((x) ^ (((x) ^ (y)) & -((x) < (y))))
429 #define VNCR(r) \
430 __before_##r, \
431 r = __VNCR_START__ + ((VNCR_ ## r) / 8), \
432 __after_##r = __MAX__(__before_##r - 1, r)
433
434 #define MARKER(m) \
435 m, __after_##m = m - 1
436
437 enum vcpu_sysreg {
438 __INVALID_SYSREG__, /* 0 is reserved as an invalid value */
439 MPIDR_EL1, /* MultiProcessor Affinity Register */
440 CLIDR_EL1, /* Cache Level ID Register */
441 CSSELR_EL1, /* Cache Size Selection Register */
442 TPIDR_EL0, /* Thread ID, User R/W */
443 TPIDRRO_EL0, /* Thread ID, User R/O */
444 TPIDR_EL1, /* Thread ID, Privileged */
445 CNTKCTL_EL1, /* Timer Control Register (EL1) */
446 PAR_EL1, /* Physical Address Register */
447 MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */
448 OSLSR_EL1, /* OS Lock Status Register */
449 DISR_EL1, /* Deferred Interrupt Status Register */
450
451 /* Performance Monitors Registers */
452 PMCR_EL0, /* Control Register */
453 PMSELR_EL0, /* Event Counter Selection Register */
454 PMEVCNTR0_EL0, /* Event Counter Register (0-30) */
455 PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
456 PMCCNTR_EL0, /* Cycle Counter Register */
457 PMEVTYPER0_EL0, /* Event Type Register (0-30) */
458 PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
459 PMCCFILTR_EL0, /* Cycle Count Filter Register */
460 PMCNTENSET_EL0, /* Count Enable Set Register */
461 PMINTENSET_EL1, /* Interrupt Enable Set Register */
462 PMOVSSET_EL0, /* Overflow Flag Status Set Register */
463 PMUSERENR_EL0, /* User Enable Register */
464
465 /* Pointer Authentication Registers in a strict increasing order. */
466 APIAKEYLO_EL1,
467 APIAKEYHI_EL1,
468 APIBKEYLO_EL1,
469 APIBKEYHI_EL1,
470 APDAKEYLO_EL1,
471 APDAKEYHI_EL1,
472 APDBKEYLO_EL1,
473 APDBKEYHI_EL1,
474 APGAKEYLO_EL1,
475 APGAKEYHI_EL1,
476
477 /* Memory Tagging Extension registers */
478 RGSR_EL1, /* Random Allocation Tag Seed Register */
479 GCR_EL1, /* Tag Control Register */
480 TFSRE0_EL1, /* Tag Fault Status Register (EL0) */
481
482 POR_EL0, /* Permission Overlay Register 0 (EL0) */
483
484 /* FP/SIMD/SVE */
485 SVCR,
486 FPMR,
487
488 /* 32bit specific registers. */
489 DACR32_EL2, /* Domain Access Control Register */
490 IFSR32_EL2, /* Instruction Fault Status Register */
491 FPEXC32_EL2, /* Floating-Point Exception Control Register */
492 DBGVCR32_EL2, /* Debug Vector Catch Register */
493
494 /* EL2 registers */
495 SCTLR_EL2, /* System Control Register (EL2) */
496 ACTLR_EL2, /* Auxiliary Control Register (EL2) */
497 CPTR_EL2, /* Architectural Feature Trap Register (EL2) */
498 HACR_EL2, /* Hypervisor Auxiliary Control Register */
499 ZCR_EL2, /* SVE Control Register (EL2) */
500 TTBR0_EL2, /* Translation Table Base Register 0 (EL2) */
501 TTBR1_EL2, /* Translation Table Base Register 1 (EL2) */
502 TCR_EL2, /* Translation Control Register (EL2) */
503 PIRE0_EL2, /* Permission Indirection Register 0 (EL2) */
504 PIR_EL2, /* Permission Indirection Register 1 (EL2) */
505 POR_EL2, /* Permission Overlay Register 2 (EL2) */
506 SPSR_EL2, /* EL2 saved program status register */
507 ELR_EL2, /* EL2 exception link register */
508 AFSR0_EL2, /* Auxiliary Fault Status Register 0 (EL2) */
509 AFSR1_EL2, /* Auxiliary Fault Status Register 1 (EL2) */
510 ESR_EL2, /* Exception Syndrome Register (EL2) */
511 FAR_EL2, /* Fault Address Register (EL2) */
512 HPFAR_EL2, /* Hypervisor IPA Fault Address Register */
513 MAIR_EL2, /* Memory Attribute Indirection Register (EL2) */
514 AMAIR_EL2, /* Auxiliary Memory Attribute Indirection Register (EL2) */
515 VBAR_EL2, /* Vector Base Address Register (EL2) */
516 RVBAR_EL2, /* Reset Vector Base Address Register */
517 CONTEXTIDR_EL2, /* Context ID Register (EL2) */
518 SP_EL2, /* EL2 Stack Pointer */
519 CNTHP_CTL_EL2,
520 CNTHP_CVAL_EL2,
521 CNTHV_CTL_EL2,
522 CNTHV_CVAL_EL2,
523
524 /* Anything from this can be RES0/RES1 sanitised */
525 MARKER(__SANITISED_REG_START__),
526 TCR2_EL2, /* Extended Translation Control Register (EL2) */
527 SCTLR2_EL2, /* System Control Register 2 (EL2) */
528 MDCR_EL2, /* Monitor Debug Configuration Register (EL2) */
529 CNTHCTL_EL2, /* Counter-timer Hypervisor Control register */
530
531 /* Any VNCR-capable reg goes after this point */
532 MARKER(__VNCR_START__),
533
534 VNCR(SCTLR_EL1),/* System Control Register */
535 VNCR(ACTLR_EL1),/* Auxiliary Control Register */
536 VNCR(CPACR_EL1),/* Coprocessor Access Control */
537 VNCR(ZCR_EL1), /* SVE Control */
538 VNCR(TTBR0_EL1),/* Translation Table Base Register 0 */
539 VNCR(TTBR1_EL1),/* Translation Table Base Register 1 */
540 VNCR(TCR_EL1), /* Translation Control Register */
541 VNCR(TCR2_EL1), /* Extended Translation Control Register */
542 VNCR(SCTLR2_EL1), /* System Control Register 2 */
543 VNCR(ESR_EL1), /* Exception Syndrome Register */
544 VNCR(AFSR0_EL1),/* Auxiliary Fault Status Register 0 */
545 VNCR(AFSR1_EL1),/* Auxiliary Fault Status Register 1 */
546 VNCR(FAR_EL1), /* Fault Address Register */
547 VNCR(MAIR_EL1), /* Memory Attribute Indirection Register */
548 VNCR(VBAR_EL1), /* Vector Base Address Register */
549 VNCR(CONTEXTIDR_EL1), /* Context ID Register */
550 VNCR(AMAIR_EL1),/* Aux Memory Attribute Indirection Register */
551 VNCR(MDSCR_EL1),/* Monitor Debug System Control Register */
552 VNCR(ELR_EL1),
553 VNCR(SP_EL1),
554 VNCR(SPSR_EL1),
555 VNCR(TFSR_EL1), /* Tag Fault Status Register (EL1) */
556 VNCR(VPIDR_EL2),/* Virtualization Processor ID Register */
557 VNCR(VMPIDR_EL2),/* Virtualization Multiprocessor ID Register */
558 VNCR(HCR_EL2), /* Hypervisor Configuration Register */
559 VNCR(HSTR_EL2), /* Hypervisor System Trap Register */
560 VNCR(VTTBR_EL2),/* Virtualization Translation Table Base Register */
561 VNCR(VTCR_EL2), /* Virtualization Translation Control Register */
562 VNCR(TPIDR_EL2),/* EL2 Software Thread ID Register */
563 VNCR(HCRX_EL2), /* Extended Hypervisor Configuration Register */
564
565 /* Permission Indirection Extension registers */
566 VNCR(PIR_EL1), /* Permission Indirection Register 1 (EL1) */
567 VNCR(PIRE0_EL1), /* Permission Indirection Register 0 (EL1) */
568
569 VNCR(POR_EL1), /* Permission Overlay Register 1 (EL1) */
570
571 /* FEAT_RAS registers */
572 VNCR(VDISR_EL2),
573 VNCR(VSESR_EL2),
574
575 VNCR(HFGRTR_EL2),
576 VNCR(HFGWTR_EL2),
577 VNCR(HFGITR_EL2),
578 VNCR(HDFGRTR_EL2),
579 VNCR(HDFGWTR_EL2),
580 VNCR(HAFGRTR_EL2),
581 VNCR(HFGRTR2_EL2),
582 VNCR(HFGWTR2_EL2),
583 VNCR(HFGITR2_EL2),
584 VNCR(HDFGRTR2_EL2),
585 VNCR(HDFGWTR2_EL2),
586
587 VNCR(VNCR_EL2),
588
589 VNCR(CNTVOFF_EL2),
590 VNCR(CNTV_CVAL_EL0),
591 VNCR(CNTV_CTL_EL0),
592 VNCR(CNTP_CVAL_EL0),
593 VNCR(CNTP_CTL_EL0),
594
595 VNCR(ICH_LR0_EL2),
596 VNCR(ICH_LR1_EL2),
597 VNCR(ICH_LR2_EL2),
598 VNCR(ICH_LR3_EL2),
599 VNCR(ICH_LR4_EL2),
600 VNCR(ICH_LR5_EL2),
601 VNCR(ICH_LR6_EL2),
602 VNCR(ICH_LR7_EL2),
603 VNCR(ICH_LR8_EL2),
604 VNCR(ICH_LR9_EL2),
605 VNCR(ICH_LR10_EL2),
606 VNCR(ICH_LR11_EL2),
607 VNCR(ICH_LR12_EL2),
608 VNCR(ICH_LR13_EL2),
609 VNCR(ICH_LR14_EL2),
610 VNCR(ICH_LR15_EL2),
611
612 VNCR(ICH_AP0R0_EL2),
613 VNCR(ICH_AP0R1_EL2),
614 VNCR(ICH_AP0R2_EL2),
615 VNCR(ICH_AP0R3_EL2),
616 VNCR(ICH_AP1R0_EL2),
617 VNCR(ICH_AP1R1_EL2),
618 VNCR(ICH_AP1R2_EL2),
619 VNCR(ICH_AP1R3_EL2),
620 VNCR(ICH_HCR_EL2),
621 VNCR(ICH_VMCR_EL2),
622
623 NR_SYS_REGS /* Nothing after this line! */
624 };
625
626 struct kvm_sysreg_masks {
627 struct {
628 u64 res0;
629 u64 res1;
630 } mask[NR_SYS_REGS - __SANITISED_REG_START__];
631 };
632
633 struct fgt_masks {
634 const char *str;
635 u64 mask;
636 u64 nmask;
637 u64 res0;
638 };
639
640 extern struct fgt_masks hfgrtr_masks;
641 extern struct fgt_masks hfgwtr_masks;
642 extern struct fgt_masks hfgitr_masks;
643 extern struct fgt_masks hdfgrtr_masks;
644 extern struct fgt_masks hdfgwtr_masks;
645 extern struct fgt_masks hafgrtr_masks;
646 extern struct fgt_masks hfgrtr2_masks;
647 extern struct fgt_masks hfgwtr2_masks;
648 extern struct fgt_masks hfgitr2_masks;
649 extern struct fgt_masks hdfgrtr2_masks;
650 extern struct fgt_masks hdfgwtr2_masks;
651
652 extern struct fgt_masks kvm_nvhe_sym(hfgrtr_masks);
653 extern struct fgt_masks kvm_nvhe_sym(hfgwtr_masks);
654 extern struct fgt_masks kvm_nvhe_sym(hfgitr_masks);
655 extern struct fgt_masks kvm_nvhe_sym(hdfgrtr_masks);
656 extern struct fgt_masks kvm_nvhe_sym(hdfgwtr_masks);
657 extern struct fgt_masks kvm_nvhe_sym(hafgrtr_masks);
658 extern struct fgt_masks kvm_nvhe_sym(hfgrtr2_masks);
659 extern struct fgt_masks kvm_nvhe_sym(hfgwtr2_masks);
660 extern struct fgt_masks kvm_nvhe_sym(hfgitr2_masks);
661 extern struct fgt_masks kvm_nvhe_sym(hdfgrtr2_masks);
662 extern struct fgt_masks kvm_nvhe_sym(hdfgwtr2_masks);
663
664 struct kvm_cpu_context {
665 struct user_pt_regs regs; /* sp = sp_el0 */
666
667 u64 spsr_abt;
668 u64 spsr_und;
669 u64 spsr_irq;
670 u64 spsr_fiq;
671
672 struct user_fpsimd_state fp_regs;
673
674 u64 sys_regs[NR_SYS_REGS];
675
676 struct kvm_vcpu *__hyp_running_vcpu;
677
678 /* This pointer has to be 4kB aligned. */
679 u64 *vncr_array;
680 };
681
682 struct cpu_sve_state {
683 __u64 zcr_el1;
684
685 /*
686 * Ordering is important since __sve_save_state/__sve_restore_state
687 * relies on it.
688 */
689 __u32 fpsr;
690 __u32 fpcr;
691
692 /* Must be SVE_VQ_BYTES (128 bit) aligned. */
693 __u8 sve_regs[];
694 };
695
696 /*
697 * This structure is instantiated on a per-CPU basis, and contains
698 * data that is:
699 *
700 * - tied to a single physical CPU, and
701 * - either have a lifetime that does not extend past vcpu_put()
702 * - or is an invariant for the lifetime of the system
703 *
704 * Use host_data_ptr(field) as a way to access a pointer to such a
705 * field.
706 */
707 struct kvm_host_data {
708 #define KVM_HOST_DATA_FLAG_HAS_SPE 0
709 #define KVM_HOST_DATA_FLAG_HAS_TRBE 1
710 #define KVM_HOST_DATA_FLAG_TRBE_ENABLED 4
711 #define KVM_HOST_DATA_FLAG_EL1_TRACING_CONFIGURED 5
712 #define KVM_HOST_DATA_FLAG_VCPU_IN_HYP_CONTEXT 6
713 #define KVM_HOST_DATA_FLAG_L1_VNCR_MAPPED 7
714 #define KVM_HOST_DATA_FLAG_HAS_BRBE 8
715 unsigned long flags;
716
717 struct kvm_cpu_context host_ctxt;
718
719 /*
720 * Hyp VA.
721 * sve_state is only used in pKVM and if system_supports_sve().
722 */
723 struct cpu_sve_state *sve_state;
724
725 /* Used by pKVM only. */
726 u64 fpmr;
727
728 /* Ownership of the FP regs */
729 enum {
730 FP_STATE_FREE,
731 FP_STATE_HOST_OWNED,
732 FP_STATE_GUEST_OWNED,
733 } fp_owner;
734
735 /*
736 * host_debug_state contains the host registers which are
737 * saved and restored during world switches.
738 */
739 struct {
740 /* {Break,watch}point registers */
741 struct kvm_guest_debug_arch regs;
742 /* Statistical profiling extension */
743 u64 pmscr_el1;
744 /* Self-hosted trace */
745 u64 trfcr_el1;
746 /* Values of trap registers for the host before guest entry. */
747 u64 mdcr_el2;
748 u64 brbcr_el1;
749 } host_debug_state;
750
751 /* Guest trace filter value */
752 u64 trfcr_while_in_guest;
753
754 /* Number of programmable event counters (PMCR_EL0.N) for this CPU */
755 unsigned int nr_event_counters;
756
757 /* Number of debug breakpoints/watchpoints for this CPU (minus 1) */
758 unsigned int debug_brps;
759 unsigned int debug_wrps;
760 };
761
762 struct kvm_host_psci_config {
763 /* PSCI version used by host. */
764 u32 version;
765 u32 smccc_version;
766
767 /* Function IDs used by host if version is v0.1. */
768 struct psci_0_1_function_ids function_ids_0_1;
769
770 bool psci_0_1_cpu_suspend_implemented;
771 bool psci_0_1_cpu_on_implemented;
772 bool psci_0_1_cpu_off_implemented;
773 bool psci_0_1_migrate_implemented;
774 };
775
776 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
777 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
778
779 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
780 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
781
782 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
783 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
784
785 struct vcpu_reset_state {
786 unsigned long pc;
787 unsigned long r0;
788 bool be;
789 bool reset;
790 };
791
792 struct vncr_tlb;
793
794 struct kvm_vcpu_arch {
795 struct kvm_cpu_context ctxt;
796
797 /*
798 * Guest floating point state
799 *
800 * The architecture has two main floating point extensions,
801 * the original FPSIMD and SVE. These have overlapping
802 * register views, with the FPSIMD V registers occupying the
803 * low 128 bits of the SVE Z registers. When the core
804 * floating point code saves the register state of a task it
805 * records which view it saved in fp_type.
806 */
807 void *sve_state;
808 enum fp_type fp_type;
809 unsigned int sve_max_vl;
810
811 /* Stage 2 paging state used by the hardware on next switch */
812 struct kvm_s2_mmu *hw_mmu;
813
814 /* Values of trap registers for the guest. */
815 u64 hcr_el2;
816 u64 hcrx_el2;
817 u64 mdcr_el2;
818
819 /* Exception Information */
820 struct kvm_vcpu_fault_info fault;
821
822 /* Configuration flags, set once and for all before the vcpu can run */
823 u8 cflags;
824
825 /* Input flags to the hypervisor code, potentially cleared after use */
826 u8 iflags;
827
828 /* State flags for kernel bookkeeping, unused by the hypervisor code */
829 u16 sflags;
830
831 /*
832 * Don't run the guest (internal implementation need).
833 *
834 * Contrary to the flags above, this is set/cleared outside of
835 * a vcpu context, and thus cannot be mixed with the flags
836 * themselves (or the flag accesses need to be made atomic).
837 */
838 bool pause;
839
840 /*
841 * We maintain more than a single set of debug registers to support
842 * debugging the guest from the host and to maintain separate host and
843 * guest state during world switches. vcpu_debug_state are the debug
844 * registers of the vcpu as the guest sees them.
845 *
846 * external_debug_state contains the debug values we want to debug the
847 * guest. This is set via the KVM_SET_GUEST_DEBUG ioctl.
848 */
849 struct kvm_guest_debug_arch vcpu_debug_state;
850 struct kvm_guest_debug_arch external_debug_state;
851 u64 external_mdscr_el1;
852
853 enum {
854 VCPU_DEBUG_FREE,
855 VCPU_DEBUG_HOST_OWNED,
856 VCPU_DEBUG_GUEST_OWNED,
857 } debug_owner;
858
859 /* VGIC state */
860 struct vgic_cpu vgic_cpu;
861 struct arch_timer_cpu timer_cpu;
862 struct kvm_pmu pmu;
863
864 /* vcpu power state */
865 struct kvm_mp_state mp_state;
866 spinlock_t mp_state_lock;
867
868 /* Cache some mmu pages needed inside spinlock regions */
869 struct kvm_mmu_memory_cache mmu_page_cache;
870
871 /* Pages to top-up the pKVM/EL2 guest pool */
872 struct kvm_hyp_memcache pkvm_memcache;
873
874 /* Virtual SError ESR to restore when HCR_EL2.VSE is set */
875 u64 vsesr_el2;
876
877 /* Additional reset state */
878 struct vcpu_reset_state reset_state;
879
880 /* Guest PV state */
881 struct {
882 u64 last_steal;
883 gpa_t base;
884 } steal;
885
886 /* Per-vcpu CCSIDR override or NULL */
887 u32 *ccsidr;
888
889 /* Per-vcpu TLB for VNCR_EL2 -- NULL when !NV */
890 struct vncr_tlb *vncr_tlb;
891 };
892
893 /*
894 * Each 'flag' is composed of a comma-separated triplet:
895 *
896 * - the flag-set it belongs to in the vcpu->arch structure
897 * - the value for that flag
898 * - the mask for that flag
899 *
900 * __vcpu_single_flag() builds such a triplet for a single-bit flag.
901 * unpack_vcpu_flag() extract the flag value from the triplet for
902 * direct use outside of the flag accessors.
903 */
904 #define __vcpu_single_flag(_set, _f) _set, (_f), (_f)
905
906 #define __unpack_flag(_set, _f, _m) _f
907 #define unpack_vcpu_flag(...) __unpack_flag(__VA_ARGS__)
908
909 #define __build_check_flag(v, flagset, f, m) \
910 do { \
911 typeof(v->arch.flagset) *_fset; \
912 \
913 /* Check that the flags fit in the mask */ \
914 BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m))); \
915 /* Check that the flags fit in the type */ \
916 BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m)); \
917 } while (0)
918
919 #define __vcpu_get_flag(v, flagset, f, m) \
920 ({ \
921 __build_check_flag(v, flagset, f, m); \
922 \
923 READ_ONCE(v->arch.flagset) & (m); \
924 })
925
926 /*
927 * Note that the set/clear accessors must be preempt-safe in order to
928 * avoid nesting them with load/put which also manipulate flags...
929 */
930 #ifdef __KVM_NVHE_HYPERVISOR__
931 /* the nVHE hypervisor is always non-preemptible */
932 #define __vcpu_flags_preempt_disable()
933 #define __vcpu_flags_preempt_enable()
934 #else
935 #define __vcpu_flags_preempt_disable() preempt_disable()
936 #define __vcpu_flags_preempt_enable() preempt_enable()
937 #endif
938
939 #define __vcpu_set_flag(v, flagset, f, m) \
940 do { \
941 typeof(v->arch.flagset) *fset; \
942 \
943 __build_check_flag(v, flagset, f, m); \
944 \
945 fset = &v->arch.flagset; \
946 __vcpu_flags_preempt_disable(); \
947 if (HWEIGHT(m) > 1) \
948 *fset &= ~(m); \
949 *fset |= (f); \
950 __vcpu_flags_preempt_enable(); \
951 } while (0)
952
953 #define __vcpu_clear_flag(v, flagset, f, m) \
954 do { \
955 typeof(v->arch.flagset) *fset; \
956 \
957 __build_check_flag(v, flagset, f, m); \
958 \
959 fset = &v->arch.flagset; \
960 __vcpu_flags_preempt_disable(); \
961 *fset &= ~(m); \
962 __vcpu_flags_preempt_enable(); \
963 } while (0)
964
965 #define __vcpu_test_and_clear_flag(v, flagset, f, m) \
966 ({ \
967 typeof(v->arch.flagset) set; \
968 \
969 set = __vcpu_get_flag(v, flagset, f, m); \
970 __vcpu_clear_flag(v, flagset, f, m); \
971 \
972 set; \
973 })
974
975 #define vcpu_get_flag(v, ...) __vcpu_get_flag((v), __VA_ARGS__)
976 #define vcpu_set_flag(v, ...) __vcpu_set_flag((v), __VA_ARGS__)
977 #define vcpu_clear_flag(v, ...) __vcpu_clear_flag((v), __VA_ARGS__)
978 #define vcpu_test_and_clear_flag(v, ...) \
979 __vcpu_test_and_clear_flag((v), __VA_ARGS__)
980
981 /* KVM_ARM_VCPU_INIT completed */
982 #define VCPU_INITIALIZED __vcpu_single_flag(cflags, BIT(0))
983 /* SVE config completed */
984 #define VCPU_SVE_FINALIZED __vcpu_single_flag(cflags, BIT(1))
985 /* pKVM VCPU setup completed */
986 #define VCPU_PKVM_FINALIZED __vcpu_single_flag(cflags, BIT(2))
987
988 /* Exception pending */
989 #define PENDING_EXCEPTION __vcpu_single_flag(iflags, BIT(0))
990 /*
991 * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
992 * be set together with an exception...
993 */
994 #define INCREMENT_PC __vcpu_single_flag(iflags, BIT(1))
995 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
996 #define EXCEPT_MASK __vcpu_single_flag(iflags, GENMASK(3, 1))
997
998 /* Helpers to encode exceptions with minimum fuss */
999 #define __EXCEPT_MASK_VAL unpack_vcpu_flag(EXCEPT_MASK)
1000 #define __EXCEPT_SHIFT __builtin_ctzl(__EXCEPT_MASK_VAL)
1001 #define __vcpu_except_flags(_f) iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
1002
1003 /*
1004 * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
1005 * values:
1006 *
1007 * For AArch32 EL1:
1008 */
1009 #define EXCEPT_AA32_UND __vcpu_except_flags(0)
1010 #define EXCEPT_AA32_IABT __vcpu_except_flags(1)
1011 #define EXCEPT_AA32_DABT __vcpu_except_flags(2)
1012 /* For AArch64: */
1013 #define EXCEPT_AA64_EL1_SYNC __vcpu_except_flags(0)
1014 #define EXCEPT_AA64_EL1_IRQ __vcpu_except_flags(1)
1015 #define EXCEPT_AA64_EL1_FIQ __vcpu_except_flags(2)
1016 #define EXCEPT_AA64_EL1_SERR __vcpu_except_flags(3)
1017 /* For AArch64 with NV: */
1018 #define EXCEPT_AA64_EL2_SYNC __vcpu_except_flags(4)
1019 #define EXCEPT_AA64_EL2_IRQ __vcpu_except_flags(5)
1020 #define EXCEPT_AA64_EL2_FIQ __vcpu_except_flags(6)
1021 #define EXCEPT_AA64_EL2_SERR __vcpu_except_flags(7)
1022
1023 /* Physical CPU not in supported_cpus */
1024 #define ON_UNSUPPORTED_CPU __vcpu_single_flag(sflags, BIT(0))
1025 /* WFIT instruction trapped */
1026 #define IN_WFIT __vcpu_single_flag(sflags, BIT(1))
1027 /* vcpu system registers loaded on physical CPU */
1028 #define SYSREGS_ON_CPU __vcpu_single_flag(sflags, BIT(2))
1029 /* Software step state is Active-pending for external debug */
1030 #define HOST_SS_ACTIVE_PENDING __vcpu_single_flag(sflags, BIT(3))
1031 /* Software step state is Active pending for guest debug */
1032 #define GUEST_SS_ACTIVE_PENDING __vcpu_single_flag(sflags, BIT(4))
1033 /* PMUSERENR for the guest EL0 is on physical CPU */
1034 #define PMUSERENR_ON_CPU __vcpu_single_flag(sflags, BIT(5))
1035 /* WFI instruction trapped */
1036 #define IN_WFI __vcpu_single_flag(sflags, BIT(6))
1037 /* KVM is currently emulating a nested ERET */
1038 #define IN_NESTED_ERET __vcpu_single_flag(sflags, BIT(7))
1039 /* SError pending for nested guest */
1040 #define NESTED_SERROR_PENDING __vcpu_single_flag(sflags, BIT(8))
1041
1042
1043 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
1044 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) + \
1045 sve_ffr_offset((vcpu)->arch.sve_max_vl))
1046
1047 #define vcpu_sve_max_vq(vcpu) sve_vq_from_vl((vcpu)->arch.sve_max_vl)
1048
1049 #define vcpu_sve_zcr_elx(vcpu) \
1050 (unlikely(is_hyp_ctxt(vcpu)) ? ZCR_EL2 : ZCR_EL1)
1051
1052 #define sve_state_size_from_vl(sve_max_vl) ({ \
1053 size_t __size_ret; \
1054 unsigned int __vq; \
1055 \
1056 if (WARN_ON(!sve_vl_valid(sve_max_vl))) { \
1057 __size_ret = 0; \
1058 } else { \
1059 __vq = sve_vq_from_vl(sve_max_vl); \
1060 __size_ret = SVE_SIG_REGS_SIZE(__vq); \
1061 } \
1062 \
1063 __size_ret; \
1064 })
1065
1066 #define vcpu_sve_state_size(vcpu) sve_state_size_from_vl((vcpu)->arch.sve_max_vl)
1067
1068 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
1069 KVM_GUESTDBG_USE_SW_BP | \
1070 KVM_GUESTDBG_USE_HW | \
1071 KVM_GUESTDBG_SINGLESTEP)
1072
1073 #define kvm_has_sve(kvm) (system_supports_sve() && \
1074 test_bit(KVM_ARCH_FLAG_GUEST_HAS_SVE, &(kvm)->arch.flags))
1075
1076 #ifdef __KVM_NVHE_HYPERVISOR__
1077 #define vcpu_has_sve(vcpu) kvm_has_sve(kern_hyp_va((vcpu)->kvm))
1078 #else
1079 #define vcpu_has_sve(vcpu) kvm_has_sve((vcpu)->kvm)
1080 #endif
1081
1082 #ifdef CONFIG_ARM64_PTR_AUTH
1083 #define vcpu_has_ptrauth(vcpu) \
1084 ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) || \
1085 cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) && \
1086 (vcpu_has_feature(vcpu, KVM_ARM_VCPU_PTRAUTH_ADDRESS) || \
1087 vcpu_has_feature(vcpu, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
1088 #else
1089 #define vcpu_has_ptrauth(vcpu) false
1090 #endif
1091
1092 #define vcpu_on_unsupported_cpu(vcpu) \
1093 vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
1094
1095 #define vcpu_set_on_unsupported_cpu(vcpu) \
1096 vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
1097
1098 #define vcpu_clear_on_unsupported_cpu(vcpu) \
1099 vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
1100
1101 #define vcpu_gp_regs(v) (&(v)->arch.ctxt.regs)
1102
1103 /*
1104 * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
1105 * memory backed version of a register, and not the one most recently
1106 * accessed by a running VCPU. For example, for userspace access or
1107 * for system registers that are never context switched, but only
1108 * emulated.
1109 *
1110 * Don't bother with VNCR-based accesses in the nVHE code, it has no
1111 * business dealing with NV.
1112 */
___ctxt_sys_reg(const struct kvm_cpu_context * ctxt,int r)1113 static inline u64 *___ctxt_sys_reg(const struct kvm_cpu_context *ctxt, int r)
1114 {
1115 #if !defined (__KVM_NVHE_HYPERVISOR__)
1116 if (unlikely(cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) &&
1117 r >= __VNCR_START__ && ctxt->vncr_array))
1118 return &ctxt->vncr_array[r - __VNCR_START__];
1119 #endif
1120 return (u64 *)&ctxt->sys_regs[r];
1121 }
1122
1123 #define __ctxt_sys_reg(c,r) \
1124 ({ \
1125 BUILD_BUG_ON(__builtin_constant_p(r) && \
1126 (r) >= NR_SYS_REGS); \
1127 ___ctxt_sys_reg(c, r); \
1128 })
1129
1130 #define ctxt_sys_reg(c,r) (*__ctxt_sys_reg(c,r))
1131
1132 u64 kvm_vcpu_apply_reg_masks(const struct kvm_vcpu *, enum vcpu_sysreg, u64);
1133
1134 #define __vcpu_assign_sys_reg(v, r, val) \
1135 do { \
1136 const struct kvm_cpu_context *ctxt = &(v)->arch.ctxt; \
1137 u64 __v = (val); \
1138 if (vcpu_has_nv((v)) && (r) >= __SANITISED_REG_START__) \
1139 __v = kvm_vcpu_apply_reg_masks((v), (r), __v); \
1140 \
1141 ctxt_sys_reg(ctxt, (r)) = __v; \
1142 } while (0)
1143
1144 #define __vcpu_rmw_sys_reg(v, r, op, val) \
1145 do { \
1146 const struct kvm_cpu_context *ctxt = &(v)->arch.ctxt; \
1147 u64 __v = ctxt_sys_reg(ctxt, (r)); \
1148 __v op (val); \
1149 if (vcpu_has_nv((v)) && (r) >= __SANITISED_REG_START__) \
1150 __v = kvm_vcpu_apply_reg_masks((v), (r), __v); \
1151 \
1152 ctxt_sys_reg(ctxt, (r)) = __v; \
1153 } while (0)
1154
1155 #define __vcpu_sys_reg(v,r) \
1156 ({ \
1157 const struct kvm_cpu_context *ctxt = &(v)->arch.ctxt; \
1158 u64 __v = ctxt_sys_reg(ctxt, (r)); \
1159 if (vcpu_has_nv((v)) && (r) >= __SANITISED_REG_START__) \
1160 __v = kvm_vcpu_apply_reg_masks((v), (r), __v); \
1161 __v; \
1162 })
1163
1164 u64 vcpu_read_sys_reg(const struct kvm_vcpu *, enum vcpu_sysreg);
1165 void vcpu_write_sys_reg(struct kvm_vcpu *, u64, enum vcpu_sysreg);
1166
1167 struct kvm_vm_stat {
1168 struct kvm_vm_stat_generic generic;
1169 };
1170
1171 struct kvm_vcpu_stat {
1172 struct kvm_vcpu_stat_generic generic;
1173 u64 hvc_exit_stat;
1174 u64 wfe_exit_stat;
1175 u64 wfi_exit_stat;
1176 u64 mmio_exit_user;
1177 u64 mmio_exit_kernel;
1178 u64 signal_exits;
1179 u64 exits;
1180 };
1181
1182 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
1183 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
1184 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1185 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1186
1187 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
1188 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
1189
1190 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1191 struct kvm_vcpu_events *events);
1192
1193 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1194 struct kvm_vcpu_events *events);
1195
1196 void kvm_arm_halt_guest(struct kvm *kvm);
1197 void kvm_arm_resume_guest(struct kvm *kvm);
1198
1199 #define vcpu_has_run_once(vcpu) (!!READ_ONCE((vcpu)->pid))
1200
1201 #ifndef __KVM_NVHE_HYPERVISOR__
1202 #define kvm_call_hyp_nvhe(f, ...) \
1203 ({ \
1204 struct arm_smccc_res res; \
1205 \
1206 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f), \
1207 ##__VA_ARGS__, &res); \
1208 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); \
1209 \
1210 res.a1; \
1211 })
1212
1213 /*
1214 * The isb() below is there to guarantee the same behaviour on VHE as on !VHE,
1215 * where the eret to EL1 acts as a context synchronization event.
1216 */
1217 #define kvm_call_hyp(f, ...) \
1218 do { \
1219 if (has_vhe()) { \
1220 f(__VA_ARGS__); \
1221 isb(); \
1222 } else { \
1223 kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \
1224 } \
1225 } while(0)
1226
1227 #define kvm_call_hyp_ret(f, ...) \
1228 ({ \
1229 typeof(f(__VA_ARGS__)) ret; \
1230 \
1231 if (has_vhe()) { \
1232 ret = f(__VA_ARGS__); \
1233 } else { \
1234 ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \
1235 } \
1236 \
1237 ret; \
1238 })
1239 #else /* __KVM_NVHE_HYPERVISOR__ */
1240 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
1241 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
1242 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
1243 #endif /* __KVM_NVHE_HYPERVISOR__ */
1244
1245 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
1246 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
1247
1248 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
1249 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
1250 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
1251 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
1252 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
1253 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
1254 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
1255
1256 void kvm_sys_regs_create_debugfs(struct kvm *kvm);
1257 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
1258
1259 int __init kvm_sys_reg_table_init(void);
1260 struct sys_reg_desc;
1261 int __init populate_sysreg_config(const struct sys_reg_desc *sr,
1262 unsigned int idx);
1263 int __init populate_nv_trap_config(void);
1264
1265 void kvm_calculate_traps(struct kvm_vcpu *vcpu);
1266
1267 /* MMIO helpers */
1268 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
1269 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
1270
1271 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
1272 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
1273
1274 /*
1275 * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
1276 * arrived in guest context. For arm64, any event that arrives while a vCPU is
1277 * loaded is considered to be "in guest".
1278 */
kvm_arch_pmi_in_guest(struct kvm_vcpu * vcpu)1279 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
1280 {
1281 return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
1282 }
1283
1284 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
1285 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
1286 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
1287
1288 bool kvm_arm_pvtime_supported(void);
1289 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
1290 struct kvm_device_attr *attr);
1291 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
1292 struct kvm_device_attr *attr);
1293 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
1294 struct kvm_device_attr *attr);
1295
1296 extern unsigned int __ro_after_init kvm_arm_vmid_bits;
1297 int __init kvm_arm_vmid_alloc_init(void);
1298 void __init kvm_arm_vmid_alloc_free(void);
1299 void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
1300 void kvm_arm_vmid_clear_active(void);
1301
kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch * vcpu_arch)1302 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
1303 {
1304 vcpu_arch->steal.base = INVALID_GPA;
1305 }
1306
kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch * vcpu_arch)1307 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
1308 {
1309 return (vcpu_arch->steal.base != INVALID_GPA);
1310 }
1311
1312 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
1313
1314 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
1315
1316 /*
1317 * How we access per-CPU host data depends on the where we access it from,
1318 * and the mode we're in:
1319 *
1320 * - VHE and nVHE hypervisor bits use their locally defined instance
1321 *
1322 * - the rest of the kernel use either the VHE or nVHE one, depending on
1323 * the mode we're running in.
1324 *
1325 * Unless we're in protected mode, fully deprivileged, and the nVHE
1326 * per-CPU stuff is exclusively accessible to the protected EL2 code.
1327 * In this case, the EL1 code uses the *VHE* data as its private state
1328 * (which makes sense in a way as there shouldn't be any shared state
1329 * between the host and the hypervisor).
1330 *
1331 * Yes, this is all totally trivial. Shoot me now.
1332 */
1333 #if defined(__KVM_NVHE_HYPERVISOR__) || defined(__KVM_VHE_HYPERVISOR__)
1334 #define host_data_ptr(f) (&this_cpu_ptr(&kvm_host_data)->f)
1335 #else
1336 #define host_data_ptr(f) \
1337 (static_branch_unlikely(&kvm_protected_mode_initialized) ? \
1338 &this_cpu_ptr(&kvm_host_data)->f : \
1339 &this_cpu_ptr_hyp_sym(kvm_host_data)->f)
1340 #endif
1341
1342 #define host_data_test_flag(flag) \
1343 (test_bit(KVM_HOST_DATA_FLAG_##flag, host_data_ptr(flags)))
1344 #define host_data_set_flag(flag) \
1345 set_bit(KVM_HOST_DATA_FLAG_##flag, host_data_ptr(flags))
1346 #define host_data_clear_flag(flag) \
1347 clear_bit(KVM_HOST_DATA_FLAG_##flag, host_data_ptr(flags))
1348
1349 /* Check whether the FP regs are owned by the guest */
guest_owns_fp_regs(void)1350 static inline bool guest_owns_fp_regs(void)
1351 {
1352 return *host_data_ptr(fp_owner) == FP_STATE_GUEST_OWNED;
1353 }
1354
1355 /* Check whether the FP regs are owned by the host */
host_owns_fp_regs(void)1356 static inline bool host_owns_fp_regs(void)
1357 {
1358 return *host_data_ptr(fp_owner) == FP_STATE_HOST_OWNED;
1359 }
1360
kvm_init_host_cpu_context(struct kvm_cpu_context * cpu_ctxt)1361 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
1362 {
1363 /* The host's MPIDR is immutable, so let's set it up at boot time */
1364 ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
1365 }
1366
kvm_system_needs_idmapped_vectors(void)1367 static inline bool kvm_system_needs_idmapped_vectors(void)
1368 {
1369 return cpus_have_final_cap(ARM64_SPECTRE_V3A);
1370 }
1371
1372 void kvm_init_host_debug_data(void);
1373 void kvm_debug_init_vhe(void);
1374 void kvm_vcpu_load_debug(struct kvm_vcpu *vcpu);
1375 void kvm_vcpu_put_debug(struct kvm_vcpu *vcpu);
1376 void kvm_debug_set_guest_ownership(struct kvm_vcpu *vcpu);
1377 void kvm_debug_handle_oslar(struct kvm_vcpu *vcpu, u64 val);
1378
1379 #define kvm_vcpu_os_lock_enabled(vcpu) \
1380 (!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK))
1381
1382 #define kvm_debug_regs_in_use(vcpu) \
1383 ((vcpu)->arch.debug_owner != VCPU_DEBUG_FREE)
1384 #define kvm_host_owns_debug_regs(vcpu) \
1385 ((vcpu)->arch.debug_owner == VCPU_DEBUG_HOST_OWNED)
1386 #define kvm_guest_owns_debug_regs(vcpu) \
1387 ((vcpu)->arch.debug_owner == VCPU_DEBUG_GUEST_OWNED)
1388
1389 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1390 struct kvm_device_attr *attr);
1391 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1392 struct kvm_device_attr *attr);
1393 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1394 struct kvm_device_attr *attr);
1395
1396 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1397 struct kvm_arm_copy_mte_tags *copy_tags);
1398 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1399 struct kvm_arm_counter_offset *offset);
1400 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm,
1401 struct reg_mask_range *range);
1402
1403 /* Guest/host FPSIMD coordination helpers */
1404 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1405 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1406 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1407 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1408
kvm_pmu_counter_deferred(struct perf_event_attr * attr)1409 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1410 {
1411 return (!has_vhe() && attr->exclude_host);
1412 }
1413
1414 #ifdef CONFIG_KVM
1415 void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr);
1416 void kvm_clr_pmu_events(u64 clr);
1417 bool kvm_set_pmuserenr(u64 val);
1418 void kvm_enable_trbe(void);
1419 void kvm_disable_trbe(void);
1420 void kvm_tracing_set_el1_configuration(u64 trfcr_while_in_guest);
1421 #else
kvm_set_pmu_events(u64 set,struct perf_event_attr * attr)1422 static inline void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr) {}
kvm_clr_pmu_events(u64 clr)1423 static inline void kvm_clr_pmu_events(u64 clr) {}
kvm_set_pmuserenr(u64 val)1424 static inline bool kvm_set_pmuserenr(u64 val)
1425 {
1426 return false;
1427 }
kvm_enable_trbe(void)1428 static inline void kvm_enable_trbe(void) {}
kvm_disable_trbe(void)1429 static inline void kvm_disable_trbe(void) {}
kvm_tracing_set_el1_configuration(u64 trfcr_while_in_guest)1430 static inline void kvm_tracing_set_el1_configuration(u64 trfcr_while_in_guest) {}
1431 #endif
1432
1433 void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu);
1434 void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu);
1435
1436 int __init kvm_set_ipa_limit(void);
1437 u32 kvm_get_pa_bits(struct kvm *kvm);
1438
1439 #define __KVM_HAVE_ARCH_VM_ALLOC
1440 struct kvm *kvm_arch_alloc_vm(void);
1441
1442 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1443
1444 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1445
1446 #define kvm_vm_is_protected(kvm) (is_protected_kvm_enabled() && (kvm)->arch.pkvm.is_protected)
1447
1448 #define vcpu_is_protected(vcpu) kvm_vm_is_protected((vcpu)->kvm)
1449
1450 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1451 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1452
1453 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1454
1455 #define kvm_has_mte(kvm) \
1456 (system_supports_mte() && \
1457 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1458
1459 #define kvm_supports_32bit_el0() \
1460 (system_supports_32bit_el0() && \
1461 !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1462
1463 #define kvm_vm_has_ran_once(kvm) \
1464 (test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1465
__vcpu_has_feature(const struct kvm_arch * ka,int feature)1466 static inline bool __vcpu_has_feature(const struct kvm_arch *ka, int feature)
1467 {
1468 return test_bit(feature, ka->vcpu_features);
1469 }
1470
1471 #define kvm_vcpu_has_feature(k, f) __vcpu_has_feature(&(k)->arch, (f))
1472 #define vcpu_has_feature(v, f) __vcpu_has_feature(&(v)->kvm->arch, (f))
1473
1474 #define kvm_vcpu_initialized(v) vcpu_get_flag(vcpu, VCPU_INITIALIZED)
1475
1476 int kvm_trng_call(struct kvm_vcpu *vcpu);
1477 #ifdef CONFIG_KVM
1478 extern phys_addr_t hyp_mem_base;
1479 extern phys_addr_t hyp_mem_size;
1480 void __init kvm_hyp_reserve(void);
1481 #else
kvm_hyp_reserve(void)1482 static inline void kvm_hyp_reserve(void) { }
1483 #endif
1484
1485 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1486 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1487
__vm_id_reg(struct kvm_arch * ka,u32 reg)1488 static inline u64 *__vm_id_reg(struct kvm_arch *ka, u32 reg)
1489 {
1490 switch (reg) {
1491 case sys_reg(3, 0, 0, 1, 0) ... sys_reg(3, 0, 0, 7, 7):
1492 return &ka->id_regs[IDREG_IDX(reg)];
1493 case SYS_CTR_EL0:
1494 return &ka->ctr_el0;
1495 case SYS_MIDR_EL1:
1496 return &ka->midr_el1;
1497 case SYS_REVIDR_EL1:
1498 return &ka->revidr_el1;
1499 case SYS_AIDR_EL1:
1500 return &ka->aidr_el1;
1501 default:
1502 WARN_ON_ONCE(1);
1503 return NULL;
1504 }
1505 }
1506
1507 #define kvm_read_vm_id_reg(kvm, reg) \
1508 ({ u64 __val = *__vm_id_reg(&(kvm)->arch, reg); __val; })
1509
1510 void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val);
1511
1512 #define __expand_field_sign_unsigned(id, fld, val) \
1513 ((u64)SYS_FIELD_VALUE(id, fld, val))
1514
1515 #define __expand_field_sign_signed(id, fld, val) \
1516 ({ \
1517 u64 __val = SYS_FIELD_VALUE(id, fld, val); \
1518 sign_extend64(__val, id##_##fld##_WIDTH - 1); \
1519 })
1520
1521 #define get_idreg_field_unsigned(kvm, id, fld) \
1522 ({ \
1523 u64 __val = kvm_read_vm_id_reg((kvm), SYS_##id); \
1524 FIELD_GET(id##_##fld##_MASK, __val); \
1525 })
1526
1527 #define get_idreg_field_signed(kvm, id, fld) \
1528 ({ \
1529 u64 __val = get_idreg_field_unsigned(kvm, id, fld); \
1530 sign_extend64(__val, id##_##fld##_WIDTH - 1); \
1531 })
1532
1533 #define get_idreg_field_enum(kvm, id, fld) \
1534 get_idreg_field_unsigned(kvm, id, fld)
1535
1536 #define kvm_cmp_feat_signed(kvm, id, fld, op, limit) \
1537 (get_idreg_field_signed((kvm), id, fld) op __expand_field_sign_signed(id, fld, limit))
1538
1539 #define kvm_cmp_feat_unsigned(kvm, id, fld, op, limit) \
1540 (get_idreg_field_unsigned((kvm), id, fld) op __expand_field_sign_unsigned(id, fld, limit))
1541
1542 #define kvm_cmp_feat(kvm, id, fld, op, limit) \
1543 (id##_##fld##_SIGNED ? \
1544 kvm_cmp_feat_signed(kvm, id, fld, op, limit) : \
1545 kvm_cmp_feat_unsigned(kvm, id, fld, op, limit))
1546
1547 #define __kvm_has_feat(kvm, id, fld, limit) \
1548 kvm_cmp_feat(kvm, id, fld, >=, limit)
1549
1550 #define kvm_has_feat(kvm, ...) __kvm_has_feat(kvm, __VA_ARGS__)
1551
1552 #define __kvm_has_feat_enum(kvm, id, fld, val) \
1553 kvm_cmp_feat_unsigned(kvm, id, fld, ==, val)
1554
1555 #define kvm_has_feat_enum(kvm, ...) __kvm_has_feat_enum(kvm, __VA_ARGS__)
1556
1557 #define kvm_has_feat_range(kvm, id, fld, min, max) \
1558 (kvm_cmp_feat(kvm, id, fld, >=, min) && \
1559 kvm_cmp_feat(kvm, id, fld, <=, max))
1560
1561 /* Check for a given level of PAuth support */
1562 #define kvm_has_pauth(k, l) \
1563 ({ \
1564 bool pa, pi, pa3; \
1565 \
1566 pa = kvm_has_feat((k), ID_AA64ISAR1_EL1, APA, l); \
1567 pa &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPA, IMP); \
1568 pi = kvm_has_feat((k), ID_AA64ISAR1_EL1, API, l); \
1569 pi &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPI, IMP); \
1570 pa3 = kvm_has_feat((k), ID_AA64ISAR2_EL1, APA3, l); \
1571 pa3 &= kvm_has_feat((k), ID_AA64ISAR2_EL1, GPA3, IMP); \
1572 \
1573 (pa + pi + pa3) == 1; \
1574 })
1575
1576 #define kvm_has_fpmr(k) \
1577 (system_supports_fpmr() && \
1578 kvm_has_feat((k), ID_AA64PFR2_EL1, FPMR, IMP))
1579
1580 #define kvm_has_tcr2(k) \
1581 (kvm_has_feat((k), ID_AA64MMFR3_EL1, TCRX, IMP))
1582
1583 #define kvm_has_s1pie(k) \
1584 (kvm_has_feat((k), ID_AA64MMFR3_EL1, S1PIE, IMP))
1585
1586 #define kvm_has_s1poe(k) \
1587 (kvm_has_feat((k), ID_AA64MMFR3_EL1, S1POE, IMP))
1588
1589 #define kvm_has_ras(k) \
1590 (kvm_has_feat((k), ID_AA64PFR0_EL1, RAS, IMP))
1591
1592 #define kvm_has_sctlr2(k) \
1593 (kvm_has_feat((k), ID_AA64MMFR3_EL1, SCTLRX, IMP))
1594
kvm_arch_has_irq_bypass(void)1595 static inline bool kvm_arch_has_irq_bypass(void)
1596 {
1597 return true;
1598 }
1599
1600 void compute_fgu(struct kvm *kvm, enum fgt_group_id fgt);
1601 void get_reg_fixed_bits(struct kvm *kvm, enum vcpu_sysreg reg, u64 *res0, u64 *res1);
1602 void check_feature_map(void);
1603
1604
1605 #endif /* __ARM64_KVM_HOST_H__ */
1606