1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2020 Intel Corporation
4 */
5
6 #include "xe_migrate.h"
7
8 #include <linux/bitfield.h>
9 #include <linux/sizes.h>
10
11 #include <drm/drm_managed.h>
12 #include <drm/drm_pagemap.h>
13 #include <drm/ttm/ttm_tt.h>
14 #include <uapi/drm/xe_drm.h>
15
16 #include <generated/xe_wa_oob.h>
17
18 #include "instructions/xe_gpu_commands.h"
19 #include "instructions/xe_mi_commands.h"
20 #include "regs/xe_gtt_defs.h"
21 #include "tests/xe_test.h"
22 #include "xe_assert.h"
23 #include "xe_bb.h"
24 #include "xe_bo.h"
25 #include "xe_exec_queue.h"
26 #include "xe_ggtt.h"
27 #include "xe_gt.h"
28 #include "xe_hw_engine.h"
29 #include "xe_lrc.h"
30 #include "xe_map.h"
31 #include "xe_mocs.h"
32 #include "xe_printk.h"
33 #include "xe_pt.h"
34 #include "xe_res_cursor.h"
35 #include "xe_sa.h"
36 #include "xe_sched_job.h"
37 #include "xe_sync.h"
38 #include "xe_trace_bo.h"
39 #include "xe_validation.h"
40 #include "xe_vm.h"
41 #include "xe_vram.h"
42
43 /**
44 * struct xe_migrate - migrate context.
45 */
46 struct xe_migrate {
47 /** @q: Default exec queue used for migration */
48 struct xe_exec_queue *q;
49 /** @tile: Backpointer to the tile this struct xe_migrate belongs to. */
50 struct xe_tile *tile;
51 /** @job_mutex: Timeline mutex for @eng. */
52 struct mutex job_mutex;
53 /** @pt_bo: Page-table buffer object. */
54 struct xe_bo *pt_bo;
55 /** @batch_base_ofs: VM offset of the migration batch buffer */
56 u64 batch_base_ofs;
57 /** @usm_batch_base_ofs: VM offset of the usm batch buffer */
58 u64 usm_batch_base_ofs;
59 /** @cleared_mem_ofs: VM offset of @cleared_bo. */
60 u64 cleared_mem_ofs;
61 /** @large_page_copy_ofs: VM offset of 2M pages used for large copies */
62 u64 large_page_copy_ofs;
63 /**
64 * @large_page_copy_pdes: BO offset to writeout 2M pages (PDEs) used for
65 * large copies
66 */
67 u64 large_page_copy_pdes;
68 /**
69 * @fence: dma-fence representing the last migration job batch.
70 * Protected by @job_mutex.
71 */
72 struct dma_fence *fence;
73 /**
74 * @vm_update_sa: For integrated, used to suballocate page-tables
75 * out of the pt_bo.
76 */
77 struct drm_suballoc_manager vm_update_sa;
78 /** @min_chunk_size: For dgfx, Minimum chunk size */
79 u64 min_chunk_size;
80 };
81
82 #define MAX_PREEMPTDISABLE_TRANSFER SZ_8M /* Around 1ms. */
83 #define MAX_CCS_LIMITED_TRANSFER SZ_4M /* XE_PAGE_SIZE * (FIELD_MAX(XE2_CCS_SIZE_MASK) + 1) */
84 #define NUM_KERNEL_PDE 15
85 #define NUM_PT_SLOTS 32
86 #define LEVEL0_PAGE_TABLE_ENCODE_SIZE SZ_2M
87 #define MAX_NUM_PTE 512
88 #define IDENTITY_OFFSET 256ULL
89
90 /*
91 * Although MI_STORE_DATA_IMM's "length" field is 10-bits, 0x3FE is the largest
92 * legal value accepted. Since that instruction field is always stored in
93 * (val-2) format, this translates to 0x400 dwords for the true maximum length
94 * of the instruction. Subtracting the instruction header (1 dword) and
95 * address (2 dwords), that leaves 0x3FD dwords (0x1FE qwords) for PTE values.
96 */
97 #define MAX_PTE_PER_SDI 0x1FEU
98
xe_migrate_fini(void * arg)99 static void xe_migrate_fini(void *arg)
100 {
101 struct xe_migrate *m = arg;
102
103 xe_vm_lock(m->q->vm, false);
104 xe_bo_unpin(m->pt_bo);
105 xe_vm_unlock(m->q->vm);
106
107 dma_fence_put(m->fence);
108 xe_bo_put(m->pt_bo);
109 drm_suballoc_manager_fini(&m->vm_update_sa);
110 mutex_destroy(&m->job_mutex);
111 xe_vm_close_and_put(m->q->vm);
112 xe_exec_queue_put(m->q);
113 }
114
xe_migrate_vm_addr(u64 slot,u32 level)115 static u64 xe_migrate_vm_addr(u64 slot, u32 level)
116 {
117 XE_WARN_ON(slot >= NUM_PT_SLOTS);
118
119 /* First slot is reserved for mapping of PT bo and bb, start from 1 */
120 return (slot + 1ULL) << xe_pt_shift(level + 1);
121 }
122
xe_migrate_vram_ofs(struct xe_device * xe,u64 addr,bool is_comp_pte)123 static u64 xe_migrate_vram_ofs(struct xe_device *xe, u64 addr, bool is_comp_pte)
124 {
125 /*
126 * Remove the DPA to get a correct offset into identity table for the
127 * migrate offset
128 */
129 u64 identity_offset = IDENTITY_OFFSET;
130
131 if (GRAPHICS_VER(xe) >= 20 && is_comp_pte)
132 identity_offset += DIV_ROUND_UP_ULL(xe_vram_region_actual_physical_size
133 (xe->mem.vram), SZ_1G);
134
135 addr -= xe_vram_region_dpa_base(xe->mem.vram);
136 return addr + (identity_offset << xe_pt_shift(2));
137 }
138
xe_migrate_program_identity(struct xe_device * xe,struct xe_vm * vm,struct xe_bo * bo,u64 map_ofs,u64 vram_offset,u16 pat_index,u64 pt_2m_ofs)139 static void xe_migrate_program_identity(struct xe_device *xe, struct xe_vm *vm, struct xe_bo *bo,
140 u64 map_ofs, u64 vram_offset, u16 pat_index, u64 pt_2m_ofs)
141 {
142 struct xe_vram_region *vram = xe->mem.vram;
143 resource_size_t dpa_base = xe_vram_region_dpa_base(vram);
144 u64 pos, ofs, flags;
145 u64 entry;
146 /* XXX: Unclear if this should be usable_size? */
147 u64 vram_limit = xe_vram_region_actual_physical_size(vram) + dpa_base;
148 u32 level = 2;
149
150 ofs = map_ofs + XE_PAGE_SIZE * level + vram_offset * 8;
151 flags = vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level,
152 true, 0);
153
154 xe_assert(xe, IS_ALIGNED(xe_vram_region_usable_size(vram), SZ_2M));
155
156 /*
157 * Use 1GB pages when possible, last chunk always use 2M
158 * pages as mixing reserved memory (stolen, WOCPM) with a single
159 * mapping is not allowed on certain platforms.
160 */
161 for (pos = dpa_base; pos < vram_limit;
162 pos += SZ_1G, ofs += 8) {
163 if (pos + SZ_1G >= vram_limit) {
164 entry = vm->pt_ops->pde_encode_bo(bo, pt_2m_ofs);
165 xe_map_wr(xe, &bo->vmap, ofs, u64, entry);
166
167 flags = vm->pt_ops->pte_encode_addr(xe, 0,
168 pat_index,
169 level - 1,
170 true, 0);
171
172 for (ofs = pt_2m_ofs; pos < vram_limit;
173 pos += SZ_2M, ofs += 8)
174 xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags);
175 break; /* Ensure pos == vram_limit assert correct */
176 }
177
178 xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags);
179 }
180
181 xe_assert(xe, pos == vram_limit);
182 }
183
xe_migrate_prepare_vm(struct xe_tile * tile,struct xe_migrate * m,struct xe_vm * vm,struct drm_exec * exec)184 static int xe_migrate_prepare_vm(struct xe_tile *tile, struct xe_migrate *m,
185 struct xe_vm *vm, struct drm_exec *exec)
186 {
187 struct xe_device *xe = tile_to_xe(tile);
188 u16 pat_index = xe->pat.idx[XE_CACHE_WB];
189 u8 id = tile->id;
190 u32 num_entries = NUM_PT_SLOTS, num_level = vm->pt_root[id]->level;
191 #define VRAM_IDENTITY_MAP_COUNT 2
192 u32 num_setup = num_level + VRAM_IDENTITY_MAP_COUNT;
193 #undef VRAM_IDENTITY_MAP_COUNT
194 u32 map_ofs, level, i;
195 struct xe_bo *bo, *batch = tile->mem.kernel_bb_pool->bo;
196 u64 entry, pt29_ofs;
197
198 /* Can't bump NUM_PT_SLOTS too high */
199 BUILD_BUG_ON(NUM_PT_SLOTS > SZ_2M/XE_PAGE_SIZE);
200 /* Must be a multiple of 64K to support all platforms */
201 BUILD_BUG_ON(NUM_PT_SLOTS * XE_PAGE_SIZE % SZ_64K);
202 /* And one slot reserved for the 4KiB page table updates */
203 BUILD_BUG_ON(!(NUM_KERNEL_PDE & 1));
204
205 /* Need to be sure everything fits in the first PT, or create more */
206 xe_tile_assert(tile, m->batch_base_ofs + xe_bo_size(batch) < SZ_2M);
207
208 bo = xe_bo_create_pin_map(vm->xe, tile, vm,
209 num_entries * XE_PAGE_SIZE,
210 ttm_bo_type_kernel,
211 XE_BO_FLAG_VRAM_IF_DGFX(tile) |
212 XE_BO_FLAG_PAGETABLE, exec);
213 if (IS_ERR(bo))
214 return PTR_ERR(bo);
215
216 /* PT30 & PT31 reserved for 2M identity map */
217 pt29_ofs = xe_bo_size(bo) - 3 * XE_PAGE_SIZE;
218 entry = vm->pt_ops->pde_encode_bo(bo, pt29_ofs);
219 xe_pt_write(xe, &vm->pt_root[id]->bo->vmap, 0, entry);
220
221 map_ofs = (num_entries - num_setup) * XE_PAGE_SIZE;
222
223 /* Map the entire BO in our level 0 pt */
224 for (i = 0, level = 0; i < num_entries; level++) {
225 entry = vm->pt_ops->pte_encode_bo(bo, i * XE_PAGE_SIZE,
226 pat_index, 0);
227
228 xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, entry);
229
230 if (vm->flags & XE_VM_FLAG_64K)
231 i += 16;
232 else
233 i += 1;
234 }
235
236 if (!IS_DGFX(xe)) {
237 /* Write out batch too */
238 m->batch_base_ofs = NUM_PT_SLOTS * XE_PAGE_SIZE;
239 for (i = 0; i < xe_bo_size(batch);
240 i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE :
241 XE_PAGE_SIZE) {
242 entry = vm->pt_ops->pte_encode_bo(batch, i,
243 pat_index, 0);
244
245 xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64,
246 entry);
247 level++;
248 }
249 if (xe->info.has_usm) {
250 xe_tile_assert(tile, xe_bo_size(batch) == SZ_1M);
251
252 batch = tile->primary_gt->usm.bb_pool->bo;
253 m->usm_batch_base_ofs = m->batch_base_ofs + SZ_1M;
254 xe_tile_assert(tile, xe_bo_size(batch) == SZ_512K);
255
256 for (i = 0; i < xe_bo_size(batch);
257 i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE :
258 XE_PAGE_SIZE) {
259 entry = vm->pt_ops->pte_encode_bo(batch, i,
260 pat_index, 0);
261
262 xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64,
263 entry);
264 level++;
265 }
266 }
267 } else {
268 u64 batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE);
269
270 m->batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr, false);
271
272 if (xe->info.has_usm) {
273 batch = tile->primary_gt->usm.bb_pool->bo;
274 batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE);
275 m->usm_batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr, false);
276 }
277 }
278
279 for (level = 1; level < num_level; level++) {
280 u32 flags = 0;
281
282 if (vm->flags & XE_VM_FLAG_64K && level == 1)
283 flags = XE_PDE_64K;
284
285 entry = vm->pt_ops->pde_encode_bo(bo, map_ofs + (u64)(level - 1) *
286 XE_PAGE_SIZE);
287 xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level, u64,
288 entry | flags);
289 }
290
291 /* Write PDE's that point to our BO. */
292 for (i = 0; i < map_ofs / XE_PAGE_SIZE; i++) {
293 entry = vm->pt_ops->pde_encode_bo(bo, (u64)i * XE_PAGE_SIZE);
294
295 xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE +
296 (i + 1) * 8, u64, entry);
297 }
298
299 /* Reserve 2M PDEs */
300 level = 1;
301 m->large_page_copy_ofs = NUM_PT_SLOTS << xe_pt_shift(level);
302 m->large_page_copy_pdes = map_ofs + XE_PAGE_SIZE * level +
303 NUM_PT_SLOTS * 8;
304
305 /* Set up a 1GiB NULL mapping at 255GiB offset. */
306 level = 2;
307 xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level + 255 * 8, u64,
308 vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0)
309 | XE_PTE_NULL);
310 m->cleared_mem_ofs = (255ULL << xe_pt_shift(level));
311
312 /* Identity map the entire vram at 256GiB offset */
313 if (IS_DGFX(xe)) {
314 u64 pt30_ofs = xe_bo_size(bo) - 2 * XE_PAGE_SIZE;
315 resource_size_t actual_phy_size = xe_vram_region_actual_physical_size(xe->mem.vram);
316
317 xe_migrate_program_identity(xe, vm, bo, map_ofs, IDENTITY_OFFSET,
318 pat_index, pt30_ofs);
319 xe_assert(xe, actual_phy_size <= (MAX_NUM_PTE - IDENTITY_OFFSET) * SZ_1G);
320
321 /*
322 * Identity map the entire vram for compressed pat_index for xe2+
323 * if flat ccs is enabled.
324 */
325 if (GRAPHICS_VER(xe) >= 20 && xe_device_has_flat_ccs(xe)) {
326 u16 comp_pat_index = xe->pat.idx[XE_CACHE_NONE_COMPRESSION];
327 u64 vram_offset = IDENTITY_OFFSET +
328 DIV_ROUND_UP_ULL(actual_phy_size, SZ_1G);
329 u64 pt31_ofs = xe_bo_size(bo) - XE_PAGE_SIZE;
330
331 xe_assert(xe, actual_phy_size <= (MAX_NUM_PTE - IDENTITY_OFFSET -
332 IDENTITY_OFFSET / 2) * SZ_1G);
333 xe_migrate_program_identity(xe, vm, bo, map_ofs, vram_offset,
334 comp_pat_index, pt31_ofs);
335 }
336 }
337
338 /*
339 * Example layout created above, with root level = 3:
340 * [PT0...PT7]: kernel PT's for copy/clear; 64 or 4KiB PTE's
341 * [PT8]: Kernel PT for VM_BIND, 4 KiB PTE's
342 * [PT9...PT26]: Userspace PT's for VM_BIND, 4 KiB PTE's
343 * [PT27 = PDE 0] [PT28 = PDE 1] [PT29 = PDE 2] [PT30 & PT31 = 2M vram identity map]
344 *
345 * This makes the lowest part of the VM point to the pagetables.
346 * Hence the lowest 2M in the vm should point to itself, with a few writes
347 * and flushes, other parts of the VM can be used either for copying and
348 * clearing.
349 *
350 * For performance, the kernel reserves PDE's, so about 20 are left
351 * for async VM updates.
352 *
353 * To make it easier to work, each scratch PT is put in slot (1 + PT #)
354 * everywhere, this allows lockless updates to scratch pages by using
355 * the different addresses in VM.
356 */
357 #define NUM_VMUSA_UNIT_PER_PAGE 32
358 #define VM_SA_UPDATE_UNIT_SIZE (XE_PAGE_SIZE / NUM_VMUSA_UNIT_PER_PAGE)
359 #define NUM_VMUSA_WRITES_PER_UNIT (VM_SA_UPDATE_UNIT_SIZE / sizeof(u64))
360 drm_suballoc_manager_init(&m->vm_update_sa,
361 (size_t)(map_ofs / XE_PAGE_SIZE - NUM_KERNEL_PDE) *
362 NUM_VMUSA_UNIT_PER_PAGE, 0);
363
364 m->pt_bo = bo;
365 return 0;
366 }
367
368 /*
369 * Including the reserved copy engine is required to avoid deadlocks due to
370 * migrate jobs servicing the faults gets stuck behind the job that faulted.
371 */
xe_migrate_usm_logical_mask(struct xe_gt * gt)372 static u32 xe_migrate_usm_logical_mask(struct xe_gt *gt)
373 {
374 u32 logical_mask = 0;
375 struct xe_hw_engine *hwe;
376 enum xe_hw_engine_id id;
377
378 for_each_hw_engine(hwe, gt, id) {
379 if (hwe->class != XE_ENGINE_CLASS_COPY)
380 continue;
381
382 if (xe_gt_is_usm_hwe(gt, hwe))
383 logical_mask |= BIT(hwe->logical_instance);
384 }
385
386 return logical_mask;
387 }
388
xe_migrate_needs_ccs_emit(struct xe_device * xe)389 static bool xe_migrate_needs_ccs_emit(struct xe_device *xe)
390 {
391 return xe_device_has_flat_ccs(xe) && !(GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe));
392 }
393
394 /**
395 * xe_migrate_alloc - Allocate a migrate struct for a given &xe_tile
396 * @tile: &xe_tile
397 *
398 * Allocates a &xe_migrate for a given tile.
399 *
400 * Return: &xe_migrate on success, or NULL when out of memory.
401 */
xe_migrate_alloc(struct xe_tile * tile)402 struct xe_migrate *xe_migrate_alloc(struct xe_tile *tile)
403 {
404 struct xe_migrate *m = drmm_kzalloc(&tile_to_xe(tile)->drm, sizeof(*m), GFP_KERNEL);
405
406 if (m)
407 m->tile = tile;
408 return m;
409 }
410
xe_migrate_lock_prepare_vm(struct xe_tile * tile,struct xe_migrate * m,struct xe_vm * vm)411 static int xe_migrate_lock_prepare_vm(struct xe_tile *tile, struct xe_migrate *m, struct xe_vm *vm)
412 {
413 struct xe_device *xe = tile_to_xe(tile);
414 struct xe_validation_ctx ctx;
415 struct drm_exec exec;
416 int err = 0;
417
418 xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {}, err) {
419 err = xe_vm_drm_exec_lock(vm, &exec);
420 drm_exec_retry_on_contention(&exec);
421 err = xe_migrate_prepare_vm(tile, m, vm, &exec);
422 drm_exec_retry_on_contention(&exec);
423 xe_validation_retry_on_oom(&ctx, &err);
424 }
425
426 return err;
427 }
428
429 /**
430 * xe_migrate_init() - Initialize a migrate context
431 * @m: The migration context
432 *
433 * Return: 0 if successful, negative error code on failure
434 */
xe_migrate_init(struct xe_migrate * m)435 int xe_migrate_init(struct xe_migrate *m)
436 {
437 struct xe_tile *tile = m->tile;
438 struct xe_gt *primary_gt = tile->primary_gt;
439 struct xe_device *xe = tile_to_xe(tile);
440 struct xe_vm *vm;
441 int err;
442
443 /* Special layout, prepared below.. */
444 vm = xe_vm_create(xe, XE_VM_FLAG_MIGRATION |
445 XE_VM_FLAG_SET_TILE_ID(tile), NULL);
446 if (IS_ERR(vm))
447 return PTR_ERR(vm);
448
449 err = xe_migrate_lock_prepare_vm(tile, m, vm);
450 if (err)
451 goto err_out;
452
453 if (xe->info.has_usm) {
454 struct xe_hw_engine *hwe = xe_gt_hw_engine(primary_gt,
455 XE_ENGINE_CLASS_COPY,
456 primary_gt->usm.reserved_bcs_instance,
457 false);
458 u32 logical_mask = xe_migrate_usm_logical_mask(primary_gt);
459
460 if (!hwe || !logical_mask) {
461 err = -EINVAL;
462 goto err_out;
463 }
464
465 /*
466 * XXX: Currently only reserving 1 (likely slow) BCS instance on
467 * PVC, may want to revisit if performance is needed.
468 */
469 m->q = xe_exec_queue_create(xe, vm, logical_mask, 1, hwe,
470 EXEC_QUEUE_FLAG_KERNEL |
471 EXEC_QUEUE_FLAG_PERMANENT |
472 EXEC_QUEUE_FLAG_HIGH_PRIORITY |
473 EXEC_QUEUE_FLAG_MIGRATE, 0);
474 } else {
475 m->q = xe_exec_queue_create_class(xe, primary_gt, vm,
476 XE_ENGINE_CLASS_COPY,
477 EXEC_QUEUE_FLAG_KERNEL |
478 EXEC_QUEUE_FLAG_PERMANENT |
479 EXEC_QUEUE_FLAG_MIGRATE, 0);
480 }
481 if (IS_ERR(m->q)) {
482 err = PTR_ERR(m->q);
483 goto err_out;
484 }
485
486 mutex_init(&m->job_mutex);
487 fs_reclaim_acquire(GFP_KERNEL);
488 might_lock(&m->job_mutex);
489 fs_reclaim_release(GFP_KERNEL);
490
491 err = devm_add_action_or_reset(xe->drm.dev, xe_migrate_fini, m);
492 if (err)
493 return err;
494
495 if (IS_DGFX(xe)) {
496 if (xe_migrate_needs_ccs_emit(xe))
497 /* min chunk size corresponds to 4K of CCS Metadata */
498 m->min_chunk_size = SZ_4K * SZ_64K /
499 xe_device_ccs_bytes(xe, SZ_64K);
500 else
501 /* Somewhat arbitrary to avoid a huge amount of blits */
502 m->min_chunk_size = SZ_64K;
503 m->min_chunk_size = roundup_pow_of_two(m->min_chunk_size);
504 drm_dbg(&xe->drm, "Migrate min chunk size is 0x%08llx\n",
505 (unsigned long long)m->min_chunk_size);
506 }
507
508 return err;
509
510 err_out:
511 xe_vm_close_and_put(vm);
512 return err;
513
514 }
515
max_mem_transfer_per_pass(struct xe_device * xe)516 static u64 max_mem_transfer_per_pass(struct xe_device *xe)
517 {
518 if (!IS_DGFX(xe) && xe_device_has_flat_ccs(xe))
519 return MAX_CCS_LIMITED_TRANSFER;
520
521 return MAX_PREEMPTDISABLE_TRANSFER;
522 }
523
xe_migrate_res_sizes(struct xe_migrate * m,struct xe_res_cursor * cur)524 static u64 xe_migrate_res_sizes(struct xe_migrate *m, struct xe_res_cursor *cur)
525 {
526 struct xe_device *xe = tile_to_xe(m->tile);
527 u64 size = min_t(u64, max_mem_transfer_per_pass(xe), cur->remaining);
528
529 if (mem_type_is_vram(cur->mem_type)) {
530 /*
531 * VRAM we want to blit in chunks with sizes aligned to
532 * min_chunk_size in order for the offset to CCS metadata to be
533 * page-aligned. If it's the last chunk it may be smaller.
534 *
535 * Another constraint is that we need to limit the blit to
536 * the VRAM block size, unless size is smaller than
537 * min_chunk_size.
538 */
539 u64 chunk = max_t(u64, cur->size, m->min_chunk_size);
540
541 size = min_t(u64, size, chunk);
542 if (size > m->min_chunk_size)
543 size = round_down(size, m->min_chunk_size);
544 }
545
546 return size;
547 }
548
xe_migrate_allow_identity(u64 size,const struct xe_res_cursor * cur)549 static bool xe_migrate_allow_identity(u64 size, const struct xe_res_cursor *cur)
550 {
551 /* If the chunk is not fragmented, allow identity map. */
552 return cur->size >= size;
553 }
554
555 #define PTE_UPDATE_FLAG_IS_VRAM BIT(0)
556 #define PTE_UPDATE_FLAG_IS_COMP_PTE BIT(1)
557
pte_update_size(struct xe_migrate * m,u32 flags,struct ttm_resource * res,struct xe_res_cursor * cur,u64 * L0,u64 * L0_ofs,u32 * L0_pt,u32 cmd_size,u32 pt_ofs,u32 avail_pts)558 static u32 pte_update_size(struct xe_migrate *m,
559 u32 flags,
560 struct ttm_resource *res,
561 struct xe_res_cursor *cur,
562 u64 *L0, u64 *L0_ofs, u32 *L0_pt,
563 u32 cmd_size, u32 pt_ofs, u32 avail_pts)
564 {
565 u32 cmds = 0;
566 bool is_vram = PTE_UPDATE_FLAG_IS_VRAM & flags;
567 bool is_comp_pte = PTE_UPDATE_FLAG_IS_COMP_PTE & flags;
568
569 *L0_pt = pt_ofs;
570 if (is_vram && xe_migrate_allow_identity(*L0, cur)) {
571 /* Offset into identity map. */
572 *L0_ofs = xe_migrate_vram_ofs(tile_to_xe(m->tile),
573 cur->start + vram_region_gpu_offset(res),
574 is_comp_pte);
575 cmds += cmd_size;
576 } else {
577 /* Clip L0 to available size */
578 u64 size = min(*L0, (u64)avail_pts * SZ_2M);
579 u32 num_4k_pages = (size + XE_PAGE_SIZE - 1) >> XE_PTE_SHIFT;
580
581 *L0 = size;
582 *L0_ofs = xe_migrate_vm_addr(pt_ofs, 0);
583
584 /* MI_STORE_DATA_IMM */
585 cmds += 3 * DIV_ROUND_UP(num_4k_pages, MAX_PTE_PER_SDI);
586
587 /* PDE qwords */
588 cmds += num_4k_pages * 2;
589
590 /* Each chunk has a single blit command */
591 cmds += cmd_size;
592 }
593
594 return cmds;
595 }
596
emit_pte(struct xe_migrate * m,struct xe_bb * bb,u32 at_pt,bool is_vram,bool is_comp_pte,struct xe_res_cursor * cur,u32 size,struct ttm_resource * res)597 static void emit_pte(struct xe_migrate *m,
598 struct xe_bb *bb, u32 at_pt,
599 bool is_vram, bool is_comp_pte,
600 struct xe_res_cursor *cur,
601 u32 size, struct ttm_resource *res)
602 {
603 struct xe_device *xe = tile_to_xe(m->tile);
604 struct xe_vm *vm = m->q->vm;
605 u16 pat_index;
606 u32 ptes;
607 u64 ofs = (u64)at_pt * XE_PAGE_SIZE;
608 u64 cur_ofs;
609
610 /* Indirect access needs compression enabled uncached PAT index */
611 if (GRAPHICS_VERx100(xe) >= 2000)
612 pat_index = is_comp_pte ? xe->pat.idx[XE_CACHE_NONE_COMPRESSION] :
613 xe->pat.idx[XE_CACHE_WB];
614 else
615 pat_index = xe->pat.idx[XE_CACHE_WB];
616
617 ptes = DIV_ROUND_UP(size, XE_PAGE_SIZE);
618
619 while (ptes) {
620 u32 chunk = min(MAX_PTE_PER_SDI, ptes);
621
622 bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
623 bb->cs[bb->len++] = ofs;
624 bb->cs[bb->len++] = 0;
625
626 cur_ofs = ofs;
627 ofs += chunk * 8;
628 ptes -= chunk;
629
630 while (chunk--) {
631 u64 addr, flags = 0;
632 bool devmem = false;
633
634 addr = xe_res_dma(cur) & PAGE_MASK;
635 if (is_vram) {
636 if (vm->flags & XE_VM_FLAG_64K) {
637 u64 va = cur_ofs * XE_PAGE_SIZE / 8;
638
639 xe_assert(xe, (va & (SZ_64K - 1)) ==
640 (addr & (SZ_64K - 1)));
641
642 flags |= XE_PTE_PS64;
643 }
644
645 addr += vram_region_gpu_offset(res);
646 devmem = true;
647 }
648
649 addr = vm->pt_ops->pte_encode_addr(m->tile->xe,
650 addr, pat_index,
651 0, devmem, flags);
652 bb->cs[bb->len++] = lower_32_bits(addr);
653 bb->cs[bb->len++] = upper_32_bits(addr);
654
655 xe_res_next(cur, min_t(u32, size, PAGE_SIZE));
656 cur_ofs += 8;
657 }
658 }
659 }
660
661 #define EMIT_COPY_CCS_DW 5
emit_copy_ccs(struct xe_gt * gt,struct xe_bb * bb,u64 dst_ofs,bool dst_is_indirect,u64 src_ofs,bool src_is_indirect,u32 size)662 static void emit_copy_ccs(struct xe_gt *gt, struct xe_bb *bb,
663 u64 dst_ofs, bool dst_is_indirect,
664 u64 src_ofs, bool src_is_indirect,
665 u32 size)
666 {
667 struct xe_device *xe = gt_to_xe(gt);
668 u32 *cs = bb->cs + bb->len;
669 u32 num_ccs_blks;
670 u32 num_pages;
671 u32 ccs_copy_size;
672 u32 mocs;
673
674 if (GRAPHICS_VERx100(xe) >= 2000) {
675 num_pages = DIV_ROUND_UP(size, XE_PAGE_SIZE);
676 xe_gt_assert(gt, FIELD_FIT(XE2_CCS_SIZE_MASK, num_pages - 1));
677
678 ccs_copy_size = REG_FIELD_PREP(XE2_CCS_SIZE_MASK, num_pages - 1);
679 mocs = FIELD_PREP(XE2_XY_CTRL_SURF_MOCS_INDEX_MASK, gt->mocs.uc_index);
680
681 } else {
682 num_ccs_blks = DIV_ROUND_UP(xe_device_ccs_bytes(gt_to_xe(gt), size),
683 NUM_CCS_BYTES_PER_BLOCK);
684 xe_gt_assert(gt, FIELD_FIT(CCS_SIZE_MASK, num_ccs_blks - 1));
685
686 ccs_copy_size = REG_FIELD_PREP(CCS_SIZE_MASK, num_ccs_blks - 1);
687 mocs = FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, gt->mocs.uc_index);
688 }
689
690 *cs++ = XY_CTRL_SURF_COPY_BLT |
691 (src_is_indirect ? 0x0 : 0x1) << SRC_ACCESS_TYPE_SHIFT |
692 (dst_is_indirect ? 0x0 : 0x1) << DST_ACCESS_TYPE_SHIFT |
693 ccs_copy_size;
694 *cs++ = lower_32_bits(src_ofs);
695 *cs++ = upper_32_bits(src_ofs) | mocs;
696 *cs++ = lower_32_bits(dst_ofs);
697 *cs++ = upper_32_bits(dst_ofs) | mocs;
698
699 bb->len = cs - bb->cs;
700 }
701
702 #define EMIT_COPY_DW 10
emit_xy_fast_copy(struct xe_gt * gt,struct xe_bb * bb,u64 src_ofs,u64 dst_ofs,unsigned int size,unsigned int pitch)703 static void emit_xy_fast_copy(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
704 u64 dst_ofs, unsigned int size,
705 unsigned int pitch)
706 {
707 struct xe_device *xe = gt_to_xe(gt);
708 u32 mocs = 0;
709 u32 tile_y = 0;
710
711 xe_gt_assert(gt, !(pitch & 3));
712 xe_gt_assert(gt, size / pitch <= S16_MAX);
713 xe_gt_assert(gt, pitch / 4 <= S16_MAX);
714 xe_gt_assert(gt, pitch <= U16_MAX);
715
716 if (GRAPHICS_VER(xe) >= 20)
717 mocs = FIELD_PREP(XE2_XY_FAST_COPY_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index);
718
719 if (GRAPHICS_VERx100(xe) >= 1250)
720 tile_y = XY_FAST_COPY_BLT_D1_SRC_TILE4 | XY_FAST_COPY_BLT_D1_DST_TILE4;
721
722 bb->cs[bb->len++] = XY_FAST_COPY_BLT_CMD | (10 - 2);
723 bb->cs[bb->len++] = XY_FAST_COPY_BLT_DEPTH_32 | pitch | tile_y | mocs;
724 bb->cs[bb->len++] = 0;
725 bb->cs[bb->len++] = (size / pitch) << 16 | pitch / 4;
726 bb->cs[bb->len++] = lower_32_bits(dst_ofs);
727 bb->cs[bb->len++] = upper_32_bits(dst_ofs);
728 bb->cs[bb->len++] = 0;
729 bb->cs[bb->len++] = pitch | mocs;
730 bb->cs[bb->len++] = lower_32_bits(src_ofs);
731 bb->cs[bb->len++] = upper_32_bits(src_ofs);
732 }
733
734 #define PAGE_COPY_MODE_PS SZ_256 /* hw uses 256 bytes as the page-size */
emit_mem_copy(struct xe_gt * gt,struct xe_bb * bb,u64 src_ofs,u64 dst_ofs,unsigned int size,unsigned int pitch)735 static void emit_mem_copy(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
736 u64 dst_ofs, unsigned int size, unsigned int pitch)
737 {
738 u32 mode, copy_type, width;
739
740 xe_gt_assert(gt, IS_ALIGNED(size, pitch));
741 xe_gt_assert(gt, pitch <= U16_MAX);
742 xe_gt_assert(gt, pitch);
743 xe_gt_assert(gt, size);
744
745 if (IS_ALIGNED(size, PAGE_COPY_MODE_PS) &&
746 IS_ALIGNED(lower_32_bits(src_ofs), PAGE_COPY_MODE_PS) &&
747 IS_ALIGNED(lower_32_bits(dst_ofs), PAGE_COPY_MODE_PS)) {
748 mode = MEM_COPY_PAGE_COPY_MODE;
749 copy_type = 0; /* linear copy */
750 width = size / PAGE_COPY_MODE_PS;
751 } else if (pitch > 1) {
752 xe_gt_assert(gt, size / pitch <= U16_MAX);
753 mode = 0; /* BYTE_COPY */
754 copy_type = MEM_COPY_MATRIX_COPY;
755 width = pitch;
756 } else {
757 mode = 0; /* BYTE_COPY */
758 copy_type = 0; /* linear copy */
759 width = size;
760 }
761
762 xe_gt_assert(gt, width <= U16_MAX);
763
764 bb->cs[bb->len++] = MEM_COPY_CMD | mode | copy_type;
765 bb->cs[bb->len++] = width - 1;
766 bb->cs[bb->len++] = size / pitch - 1; /* ignored by hw for page-copy/linear above */
767 bb->cs[bb->len++] = pitch - 1;
768 bb->cs[bb->len++] = pitch - 1;
769 bb->cs[bb->len++] = lower_32_bits(src_ofs);
770 bb->cs[bb->len++] = upper_32_bits(src_ofs);
771 bb->cs[bb->len++] = lower_32_bits(dst_ofs);
772 bb->cs[bb->len++] = upper_32_bits(dst_ofs);
773 bb->cs[bb->len++] = FIELD_PREP(MEM_COPY_SRC_MOCS_INDEX_MASK, gt->mocs.uc_index) |
774 FIELD_PREP(MEM_COPY_DST_MOCS_INDEX_MASK, gt->mocs.uc_index);
775 }
776
emit_copy(struct xe_gt * gt,struct xe_bb * bb,u64 src_ofs,u64 dst_ofs,unsigned int size,unsigned int pitch)777 static void emit_copy(struct xe_gt *gt, struct xe_bb *bb,
778 u64 src_ofs, u64 dst_ofs, unsigned int size,
779 unsigned int pitch)
780 {
781 struct xe_device *xe = gt_to_xe(gt);
782
783 if (xe->info.has_mem_copy_instr)
784 emit_mem_copy(gt, bb, src_ofs, dst_ofs, size, pitch);
785 else
786 emit_xy_fast_copy(gt, bb, src_ofs, dst_ofs, size, pitch);
787 }
788
xe_migrate_batch_base(struct xe_migrate * m,bool usm)789 static u64 xe_migrate_batch_base(struct xe_migrate *m, bool usm)
790 {
791 return usm ? m->usm_batch_base_ofs : m->batch_base_ofs;
792 }
793
xe_migrate_ccs_copy(struct xe_migrate * m,struct xe_bb * bb,u64 src_ofs,bool src_is_indirect,u64 dst_ofs,bool dst_is_indirect,u32 dst_size,u64 ccs_ofs,bool copy_ccs)794 static u32 xe_migrate_ccs_copy(struct xe_migrate *m,
795 struct xe_bb *bb,
796 u64 src_ofs, bool src_is_indirect,
797 u64 dst_ofs, bool dst_is_indirect, u32 dst_size,
798 u64 ccs_ofs, bool copy_ccs)
799 {
800 struct xe_gt *gt = m->tile->primary_gt;
801 u32 flush_flags = 0;
802
803 if (!copy_ccs && dst_is_indirect) {
804 /*
805 * If the src is already in vram, then it should already
806 * have been cleared by us, or has been populated by the
807 * user. Make sure we copy the CCS aux state as-is.
808 *
809 * Otherwise if the bo doesn't have any CCS metadata attached,
810 * we still need to clear it for security reasons.
811 */
812 u64 ccs_src_ofs = src_is_indirect ? src_ofs : m->cleared_mem_ofs;
813
814 emit_copy_ccs(gt, bb,
815 dst_ofs, true,
816 ccs_src_ofs, src_is_indirect, dst_size);
817
818 flush_flags = MI_FLUSH_DW_CCS;
819 } else if (copy_ccs) {
820 if (!src_is_indirect)
821 src_ofs = ccs_ofs;
822 else if (!dst_is_indirect)
823 dst_ofs = ccs_ofs;
824
825 xe_gt_assert(gt, src_is_indirect || dst_is_indirect);
826
827 emit_copy_ccs(gt, bb, dst_ofs, dst_is_indirect, src_ofs,
828 src_is_indirect, dst_size);
829 if (dst_is_indirect)
830 flush_flags = MI_FLUSH_DW_CCS;
831 }
832
833 return flush_flags;
834 }
835
836 /**
837 * xe_migrate_copy() - Copy content of TTM resources.
838 * @m: The migration context.
839 * @src_bo: The buffer object @src is currently bound to.
840 * @dst_bo: If copying between resources created for the same bo, set this to
841 * the same value as @src_bo. If copying between buffer objects, set it to
842 * the buffer object @dst is currently bound to.
843 * @src: The source TTM resource.
844 * @dst: The dst TTM resource.
845 * @copy_only_ccs: If true copy only CCS metadata
846 *
847 * Copies the contents of @src to @dst: On flat CCS devices,
848 * the CCS metadata is copied as well if needed, or if not present,
849 * the CCS metadata of @dst is cleared for security reasons.
850 *
851 * Return: Pointer to a dma_fence representing the last copy batch, or
852 * an error pointer on failure. If there is a failure, any copy operation
853 * started by the function call has been synced.
854 */
xe_migrate_copy(struct xe_migrate * m,struct xe_bo * src_bo,struct xe_bo * dst_bo,struct ttm_resource * src,struct ttm_resource * dst,bool copy_only_ccs)855 struct dma_fence *xe_migrate_copy(struct xe_migrate *m,
856 struct xe_bo *src_bo,
857 struct xe_bo *dst_bo,
858 struct ttm_resource *src,
859 struct ttm_resource *dst,
860 bool copy_only_ccs)
861 {
862 struct xe_gt *gt = m->tile->primary_gt;
863 struct xe_device *xe = gt_to_xe(gt);
864 struct dma_fence *fence = NULL;
865 u64 size = xe_bo_size(src_bo);
866 struct xe_res_cursor src_it, dst_it, ccs_it;
867 u64 src_L0_ofs, dst_L0_ofs;
868 u32 src_L0_pt, dst_L0_pt;
869 u64 src_L0, dst_L0;
870 int pass = 0;
871 int err;
872 bool src_is_pltt = src->mem_type == XE_PL_TT;
873 bool dst_is_pltt = dst->mem_type == XE_PL_TT;
874 bool src_is_vram = mem_type_is_vram(src->mem_type);
875 bool dst_is_vram = mem_type_is_vram(dst->mem_type);
876 bool type_device = src_bo->ttm.type == ttm_bo_type_device;
877 bool needs_ccs_emit = type_device && xe_migrate_needs_ccs_emit(xe);
878 bool copy_ccs = xe_device_has_flat_ccs(xe) &&
879 xe_bo_needs_ccs_pages(src_bo) && xe_bo_needs_ccs_pages(dst_bo);
880 bool copy_system_ccs = copy_ccs && (!src_is_vram || !dst_is_vram);
881 bool use_comp_pat = type_device && xe_device_has_flat_ccs(xe) &&
882 GRAPHICS_VER(xe) >= 20 && src_is_vram && !dst_is_vram;
883
884 /* Copying CCS between two different BOs is not supported yet. */
885 if (XE_WARN_ON(copy_ccs && src_bo != dst_bo))
886 return ERR_PTR(-EINVAL);
887
888 if (src_bo != dst_bo && XE_WARN_ON(xe_bo_size(src_bo) != xe_bo_size(dst_bo)))
889 return ERR_PTR(-EINVAL);
890
891 if (!src_is_vram)
892 xe_res_first_sg(xe_bo_sg(src_bo), 0, size, &src_it);
893 else
894 xe_res_first(src, 0, size, &src_it);
895 if (!dst_is_vram)
896 xe_res_first_sg(xe_bo_sg(dst_bo), 0, size, &dst_it);
897 else
898 xe_res_first(dst, 0, size, &dst_it);
899
900 if (copy_system_ccs)
901 xe_res_first_sg(xe_bo_sg(src_bo), xe_bo_ccs_pages_start(src_bo),
902 PAGE_ALIGN(xe_device_ccs_bytes(xe, size)),
903 &ccs_it);
904
905 while (size) {
906 u32 batch_size = 1; /* MI_BATCH_BUFFER_END */
907 struct xe_sched_job *job;
908 struct xe_bb *bb;
909 u32 flush_flags = 0;
910 u32 update_idx;
911 u64 ccs_ofs, ccs_size;
912 u32 ccs_pt;
913 u32 pte_flags;
914
915 bool usm = xe->info.has_usm;
916 u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;
917
918 src_L0 = xe_migrate_res_sizes(m, &src_it);
919 dst_L0 = xe_migrate_res_sizes(m, &dst_it);
920
921 drm_dbg(&xe->drm, "Pass %u, sizes: %llu & %llu\n",
922 pass++, src_L0, dst_L0);
923
924 src_L0 = min(src_L0, dst_L0);
925
926 pte_flags = src_is_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0;
927 pte_flags |= use_comp_pat ? PTE_UPDATE_FLAG_IS_COMP_PTE : 0;
928 batch_size += pte_update_size(m, pte_flags, src, &src_it, &src_L0,
929 &src_L0_ofs, &src_L0_pt, 0, 0,
930 avail_pts);
931 if (copy_only_ccs) {
932 dst_L0_ofs = src_L0_ofs;
933 } else {
934 pte_flags = dst_is_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0;
935 batch_size += pte_update_size(m, pte_flags, dst,
936 &dst_it, &src_L0,
937 &dst_L0_ofs, &dst_L0_pt,
938 0, avail_pts, avail_pts);
939 }
940
941 if (copy_system_ccs) {
942 xe_assert(xe, type_device);
943 ccs_size = xe_device_ccs_bytes(xe, src_L0);
944 batch_size += pte_update_size(m, 0, NULL, &ccs_it, &ccs_size,
945 &ccs_ofs, &ccs_pt, 0,
946 2 * avail_pts,
947 avail_pts);
948 xe_assert(xe, IS_ALIGNED(ccs_it.start, PAGE_SIZE));
949 }
950
951 /* Add copy commands size here */
952 batch_size += ((copy_only_ccs) ? 0 : EMIT_COPY_DW) +
953 ((needs_ccs_emit ? EMIT_COPY_CCS_DW : 0));
954
955 bb = xe_bb_new(gt, batch_size, usm);
956 if (IS_ERR(bb)) {
957 err = PTR_ERR(bb);
958 goto err_sync;
959 }
960
961 if (src_is_vram && xe_migrate_allow_identity(src_L0, &src_it))
962 xe_res_next(&src_it, src_L0);
963 else
964 emit_pte(m, bb, src_L0_pt, src_is_vram, copy_system_ccs || use_comp_pat,
965 &src_it, src_L0, src);
966
967 if (dst_is_vram && xe_migrate_allow_identity(src_L0, &dst_it))
968 xe_res_next(&dst_it, src_L0);
969 else if (!copy_only_ccs)
970 emit_pte(m, bb, dst_L0_pt, dst_is_vram, copy_system_ccs,
971 &dst_it, src_L0, dst);
972
973 if (copy_system_ccs)
974 emit_pte(m, bb, ccs_pt, false, false, &ccs_it, ccs_size, src);
975
976 bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
977 update_idx = bb->len;
978
979 if (!copy_only_ccs)
980 emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, src_L0, XE_PAGE_SIZE);
981
982 if (needs_ccs_emit)
983 flush_flags = xe_migrate_ccs_copy(m, bb, src_L0_ofs,
984 IS_DGFX(xe) ? src_is_vram : src_is_pltt,
985 dst_L0_ofs,
986 IS_DGFX(xe) ? dst_is_vram : dst_is_pltt,
987 src_L0, ccs_ofs, copy_ccs);
988
989 job = xe_bb_create_migration_job(m->q, bb,
990 xe_migrate_batch_base(m, usm),
991 update_idx);
992 if (IS_ERR(job)) {
993 err = PTR_ERR(job);
994 goto err;
995 }
996
997 xe_sched_job_add_migrate_flush(job, flush_flags | MI_INVALIDATE_TLB);
998 if (!fence) {
999 err = xe_sched_job_add_deps(job, src_bo->ttm.base.resv,
1000 DMA_RESV_USAGE_BOOKKEEP);
1001 if (!err && src_bo->ttm.base.resv != dst_bo->ttm.base.resv)
1002 err = xe_sched_job_add_deps(job, dst_bo->ttm.base.resv,
1003 DMA_RESV_USAGE_BOOKKEEP);
1004 if (err)
1005 goto err_job;
1006 }
1007
1008 mutex_lock(&m->job_mutex);
1009 xe_sched_job_arm(job);
1010 dma_fence_put(fence);
1011 fence = dma_fence_get(&job->drm.s_fence->finished);
1012 xe_sched_job_push(job);
1013
1014 dma_fence_put(m->fence);
1015 m->fence = dma_fence_get(fence);
1016
1017 mutex_unlock(&m->job_mutex);
1018
1019 xe_bb_free(bb, fence);
1020 size -= src_L0;
1021 continue;
1022
1023 err_job:
1024 xe_sched_job_put(job);
1025 err:
1026 xe_bb_free(bb, NULL);
1027
1028 err_sync:
1029 /* Sync partial copy if any. FIXME: under job_mutex? */
1030 if (fence) {
1031 dma_fence_wait(fence, false);
1032 dma_fence_put(fence);
1033 }
1034
1035 return ERR_PTR(err);
1036 }
1037
1038 return fence;
1039 }
1040
1041 /**
1042 * xe_migrate_lrc() - Get the LRC from migrate context.
1043 * @migrate: Migrate context.
1044 *
1045 * Return: Pointer to LRC on success, error on failure
1046 */
xe_migrate_lrc(struct xe_migrate * migrate)1047 struct xe_lrc *xe_migrate_lrc(struct xe_migrate *migrate)
1048 {
1049 return migrate->q->lrc[0];
1050 }
1051
migrate_vm_ppgtt_addr_tlb_inval(void)1052 static u64 migrate_vm_ppgtt_addr_tlb_inval(void)
1053 {
1054 /*
1055 * The migrate VM is self-referential so it can modify its own PTEs (see
1056 * pte_update_size() or emit_pte() functions). We reserve NUM_KERNEL_PDE
1057 * entries for kernel operations (copies, clears, CCS migrate), and
1058 * suballocate the rest to user operations (binds/unbinds). With
1059 * NUM_KERNEL_PDE = 15, NUM_KERNEL_PDE - 1 is already used for PTE updates,
1060 * so assign NUM_KERNEL_PDE - 2 for TLB invalidation.
1061 */
1062 return (NUM_KERNEL_PDE - 2) * XE_PAGE_SIZE;
1063 }
1064
emit_flush_invalidate(u32 * dw,int i,u32 flags)1065 static int emit_flush_invalidate(u32 *dw, int i, u32 flags)
1066 {
1067 u64 addr = migrate_vm_ppgtt_addr_tlb_inval();
1068
1069 dw[i++] = MI_FLUSH_DW | MI_INVALIDATE_TLB | MI_FLUSH_DW_OP_STOREDW |
1070 MI_FLUSH_IMM_DW | flags;
1071 dw[i++] = lower_32_bits(addr);
1072 dw[i++] = upper_32_bits(addr);
1073 dw[i++] = MI_NOOP;
1074 dw[i++] = MI_NOOP;
1075
1076 return i;
1077 }
1078
1079 /**
1080 * xe_migrate_ccs_rw_copy() - Copy content of TTM resources.
1081 * @tile: Tile whose migration context to be used.
1082 * @q : Execution to be used along with migration context.
1083 * @src_bo: The buffer object @src is currently bound to.
1084 * @read_write : Creates BB commands for CCS read/write.
1085 *
1086 * Creates batch buffer instructions to copy CCS metadata from CCS pool to
1087 * memory and vice versa.
1088 *
1089 * This function should only be called for IGPU.
1090 *
1091 * Return: 0 if successful, negative error code on failure.
1092 */
xe_migrate_ccs_rw_copy(struct xe_tile * tile,struct xe_exec_queue * q,struct xe_bo * src_bo,enum xe_sriov_vf_ccs_rw_ctxs read_write)1093 int xe_migrate_ccs_rw_copy(struct xe_tile *tile, struct xe_exec_queue *q,
1094 struct xe_bo *src_bo,
1095 enum xe_sriov_vf_ccs_rw_ctxs read_write)
1096
1097 {
1098 bool src_is_pltt = read_write == XE_SRIOV_VF_CCS_READ_CTX;
1099 bool dst_is_pltt = read_write == XE_SRIOV_VF_CCS_WRITE_CTX;
1100 struct ttm_resource *src = src_bo->ttm.resource;
1101 struct xe_migrate *m = tile->migrate;
1102 struct xe_gt *gt = tile->primary_gt;
1103 u32 batch_size, batch_size_allocated;
1104 struct xe_device *xe = gt_to_xe(gt);
1105 struct xe_res_cursor src_it, ccs_it;
1106 u64 size = xe_bo_size(src_bo);
1107 struct xe_bb *bb = NULL;
1108 u64 src_L0, src_L0_ofs;
1109 u32 src_L0_pt;
1110 int err;
1111
1112 xe_res_first_sg(xe_bo_sg(src_bo), 0, size, &src_it);
1113
1114 xe_res_first_sg(xe_bo_sg(src_bo), xe_bo_ccs_pages_start(src_bo),
1115 PAGE_ALIGN(xe_device_ccs_bytes(xe, size)),
1116 &ccs_it);
1117
1118 /* Calculate Batch buffer size */
1119 batch_size = 0;
1120 while (size) {
1121 batch_size += 10; /* Flush + ggtt addr + 2 NOP */
1122 u64 ccs_ofs, ccs_size;
1123 u32 ccs_pt;
1124
1125 u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;
1126
1127 src_L0 = min_t(u64, max_mem_transfer_per_pass(xe), size);
1128
1129 batch_size += pte_update_size(m, false, src, &src_it, &src_L0,
1130 &src_L0_ofs, &src_L0_pt, 0, 0,
1131 avail_pts);
1132
1133 ccs_size = xe_device_ccs_bytes(xe, src_L0);
1134 batch_size += pte_update_size(m, 0, NULL, &ccs_it, &ccs_size, &ccs_ofs,
1135 &ccs_pt, 0, avail_pts, avail_pts);
1136 xe_assert(xe, IS_ALIGNED(ccs_it.start, PAGE_SIZE));
1137
1138 /* Add copy commands size here */
1139 batch_size += EMIT_COPY_CCS_DW;
1140
1141 size -= src_L0;
1142 }
1143
1144 bb = xe_bb_ccs_new(gt, batch_size, read_write);
1145 if (IS_ERR(bb)) {
1146 drm_err(&xe->drm, "BB allocation failed.\n");
1147 err = PTR_ERR(bb);
1148 goto err_ret;
1149 }
1150
1151 batch_size_allocated = batch_size;
1152 size = xe_bo_size(src_bo);
1153 batch_size = 0;
1154
1155 /*
1156 * Emit PTE and copy commands here.
1157 * The CCS copy command can only support limited size. If the size to be
1158 * copied is more than the limit, divide copy into chunks. So, calculate
1159 * sizes here again before copy command is emitted.
1160 */
1161 while (size) {
1162 batch_size += 10; /* Flush + ggtt addr + 2 NOP */
1163 u32 flush_flags = 0;
1164 u64 ccs_ofs, ccs_size;
1165 u32 ccs_pt;
1166
1167 u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;
1168
1169 src_L0 = xe_migrate_res_sizes(m, &src_it);
1170
1171 batch_size += pte_update_size(m, false, src, &src_it, &src_L0,
1172 &src_L0_ofs, &src_L0_pt, 0, 0,
1173 avail_pts);
1174
1175 ccs_size = xe_device_ccs_bytes(xe, src_L0);
1176 batch_size += pte_update_size(m, 0, NULL, &ccs_it, &ccs_size, &ccs_ofs,
1177 &ccs_pt, 0, avail_pts, avail_pts);
1178 xe_assert(xe, IS_ALIGNED(ccs_it.start, PAGE_SIZE));
1179 batch_size += EMIT_COPY_CCS_DW;
1180
1181 emit_pte(m, bb, src_L0_pt, false, true, &src_it, src_L0, src);
1182
1183 emit_pte(m, bb, ccs_pt, false, false, &ccs_it, ccs_size, src);
1184
1185 bb->len = emit_flush_invalidate(bb->cs, bb->len, flush_flags);
1186 flush_flags = xe_migrate_ccs_copy(m, bb, src_L0_ofs, src_is_pltt,
1187 src_L0_ofs, dst_is_pltt,
1188 src_L0, ccs_ofs, true);
1189 bb->len = emit_flush_invalidate(bb->cs, bb->len, flush_flags);
1190
1191 size -= src_L0;
1192 }
1193
1194 xe_assert(xe, (batch_size_allocated == bb->len));
1195 src_bo->bb_ccs[read_write] = bb;
1196
1197 return 0;
1198
1199 err_ret:
1200 return err;
1201 }
1202
1203 /**
1204 * xe_get_migrate_exec_queue() - Get the execution queue from migrate context.
1205 * @migrate: Migrate context.
1206 *
1207 * Return: Pointer to execution queue on success, error on failure
1208 */
xe_migrate_exec_queue(struct xe_migrate * migrate)1209 struct xe_exec_queue *xe_migrate_exec_queue(struct xe_migrate *migrate)
1210 {
1211 return migrate->q;
1212 }
1213
1214 /**
1215 * xe_migrate_vram_copy_chunk() - Copy a chunk of a VRAM buffer object.
1216 * @vram_bo: The VRAM buffer object.
1217 * @vram_offset: The VRAM offset.
1218 * @sysmem_bo: The sysmem buffer object.
1219 * @sysmem_offset: The sysmem offset.
1220 * @size: The size of VRAM chunk to copy.
1221 * @dir: The direction of the copy operation.
1222 *
1223 * Copies a portion of a buffer object between VRAM and system memory.
1224 * On Xe2 platforms that support flat CCS, VRAM data is decompressed when
1225 * copying to system memory.
1226 *
1227 * Return: Pointer to a dma_fence representing the last copy batch, or
1228 * an error pointer on failure. If there is a failure, any copy operation
1229 * started by the function call has been synced.
1230 */
xe_migrate_vram_copy_chunk(struct xe_bo * vram_bo,u64 vram_offset,struct xe_bo * sysmem_bo,u64 sysmem_offset,u64 size,enum xe_migrate_copy_dir dir)1231 struct dma_fence *xe_migrate_vram_copy_chunk(struct xe_bo *vram_bo, u64 vram_offset,
1232 struct xe_bo *sysmem_bo, u64 sysmem_offset,
1233 u64 size, enum xe_migrate_copy_dir dir)
1234 {
1235 struct xe_device *xe = xe_bo_device(vram_bo);
1236 struct xe_tile *tile = vram_bo->tile;
1237 struct xe_gt *gt = tile->primary_gt;
1238 struct xe_migrate *m = tile->migrate;
1239 struct dma_fence *fence = NULL;
1240 struct ttm_resource *vram = vram_bo->ttm.resource;
1241 struct ttm_resource *sysmem = sysmem_bo->ttm.resource;
1242 struct xe_res_cursor vram_it, sysmem_it;
1243 u64 vram_L0_ofs, sysmem_L0_ofs;
1244 u32 vram_L0_pt, sysmem_L0_pt;
1245 u64 vram_L0, sysmem_L0;
1246 bool to_sysmem = (dir == XE_MIGRATE_COPY_TO_SRAM);
1247 bool use_comp_pat = to_sysmem &&
1248 GRAPHICS_VER(xe) >= 20 && xe_device_has_flat_ccs(xe);
1249 int pass = 0;
1250 int err;
1251
1252 xe_assert(xe, IS_ALIGNED(vram_offset | sysmem_offset | size, PAGE_SIZE));
1253 xe_assert(xe, xe_bo_is_vram(vram_bo));
1254 xe_assert(xe, !xe_bo_is_vram(sysmem_bo));
1255 xe_assert(xe, !range_overflows(vram_offset, size, (u64)vram_bo->ttm.base.size));
1256 xe_assert(xe, !range_overflows(sysmem_offset, size, (u64)sysmem_bo->ttm.base.size));
1257
1258 xe_res_first(vram, vram_offset, size, &vram_it);
1259 xe_res_first_sg(xe_bo_sg(sysmem_bo), sysmem_offset, size, &sysmem_it);
1260
1261 while (size) {
1262 u32 pte_flags = PTE_UPDATE_FLAG_IS_VRAM;
1263 u32 batch_size = 2; /* arb_clear() + MI_BATCH_BUFFER_END */
1264 struct xe_sched_job *job;
1265 struct xe_bb *bb;
1266 u32 update_idx;
1267 bool usm = xe->info.has_usm;
1268 u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;
1269
1270 sysmem_L0 = xe_migrate_res_sizes(m, &sysmem_it);
1271 vram_L0 = min(xe_migrate_res_sizes(m, &vram_it), sysmem_L0);
1272
1273 xe_dbg(xe, "Pass %u, size: %llu\n", pass++, vram_L0);
1274
1275 pte_flags |= use_comp_pat ? PTE_UPDATE_FLAG_IS_COMP_PTE : 0;
1276 batch_size += pte_update_size(m, pte_flags, vram, &vram_it, &vram_L0,
1277 &vram_L0_ofs, &vram_L0_pt, 0, 0, avail_pts);
1278
1279 batch_size += pte_update_size(m, 0, sysmem, &sysmem_it, &vram_L0, &sysmem_L0_ofs,
1280 &sysmem_L0_pt, 0, avail_pts, avail_pts);
1281 batch_size += EMIT_COPY_DW;
1282
1283 bb = xe_bb_new(gt, batch_size, usm);
1284 if (IS_ERR(bb)) {
1285 err = PTR_ERR(bb);
1286 return ERR_PTR(err);
1287 }
1288
1289 if (xe_migrate_allow_identity(vram_L0, &vram_it))
1290 xe_res_next(&vram_it, vram_L0);
1291 else
1292 emit_pte(m, bb, vram_L0_pt, true, use_comp_pat, &vram_it, vram_L0, vram);
1293
1294 emit_pte(m, bb, sysmem_L0_pt, false, false, &sysmem_it, vram_L0, sysmem);
1295
1296 bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1297 update_idx = bb->len;
1298
1299 if (to_sysmem)
1300 emit_copy(gt, bb, vram_L0_ofs, sysmem_L0_ofs, vram_L0, XE_PAGE_SIZE);
1301 else
1302 emit_copy(gt, bb, sysmem_L0_ofs, vram_L0_ofs, vram_L0, XE_PAGE_SIZE);
1303
1304 job = xe_bb_create_migration_job(m->q, bb, xe_migrate_batch_base(m, usm),
1305 update_idx);
1306 if (IS_ERR(job)) {
1307 xe_bb_free(bb, NULL);
1308 err = PTR_ERR(job);
1309 return ERR_PTR(err);
1310 }
1311
1312 xe_sched_job_add_migrate_flush(job, MI_INVALIDATE_TLB);
1313
1314 xe_assert(xe, dma_resv_test_signaled(vram_bo->ttm.base.resv,
1315 DMA_RESV_USAGE_BOOKKEEP));
1316 xe_assert(xe, dma_resv_test_signaled(sysmem_bo->ttm.base.resv,
1317 DMA_RESV_USAGE_BOOKKEEP));
1318
1319 scoped_guard(mutex, &m->job_mutex) {
1320 xe_sched_job_arm(job);
1321 dma_fence_put(fence);
1322 fence = dma_fence_get(&job->drm.s_fence->finished);
1323 xe_sched_job_push(job);
1324
1325 dma_fence_put(m->fence);
1326 m->fence = dma_fence_get(fence);
1327 }
1328
1329 xe_bb_free(bb, fence);
1330 size -= vram_L0;
1331 }
1332
1333 return fence;
1334 }
1335
emit_clear_link_copy(struct xe_gt * gt,struct xe_bb * bb,u64 src_ofs,u32 size,u32 pitch)1336 static void emit_clear_link_copy(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
1337 u32 size, u32 pitch)
1338 {
1339 struct xe_device *xe = gt_to_xe(gt);
1340 u32 *cs = bb->cs + bb->len;
1341 u32 len = PVC_MEM_SET_CMD_LEN_DW;
1342
1343 *cs++ = PVC_MEM_SET_CMD | PVC_MEM_SET_MATRIX | (len - 2);
1344 *cs++ = pitch - 1;
1345 *cs++ = (size / pitch) - 1;
1346 *cs++ = pitch - 1;
1347 *cs++ = lower_32_bits(src_ofs);
1348 *cs++ = upper_32_bits(src_ofs);
1349 if (GRAPHICS_VERx100(xe) >= 2000)
1350 *cs++ = FIELD_PREP(XE2_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index);
1351 else
1352 *cs++ = FIELD_PREP(PVC_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index);
1353
1354 xe_gt_assert(gt, cs - bb->cs == len + bb->len);
1355
1356 bb->len += len;
1357 }
1358
emit_clear_main_copy(struct xe_gt * gt,struct xe_bb * bb,u64 src_ofs,u32 size,u32 pitch,bool is_vram)1359 static void emit_clear_main_copy(struct xe_gt *gt, struct xe_bb *bb,
1360 u64 src_ofs, u32 size, u32 pitch, bool is_vram)
1361 {
1362 struct xe_device *xe = gt_to_xe(gt);
1363 u32 *cs = bb->cs + bb->len;
1364 u32 len = XY_FAST_COLOR_BLT_DW;
1365
1366 if (GRAPHICS_VERx100(xe) < 1250)
1367 len = 11;
1368
1369 *cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 |
1370 (len - 2);
1371 if (GRAPHICS_VERx100(xe) >= 2000)
1372 *cs++ = FIELD_PREP(XE2_XY_FAST_COLOR_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index) |
1373 (pitch - 1);
1374 else
1375 *cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, gt->mocs.uc_index) |
1376 (pitch - 1);
1377 *cs++ = 0;
1378 *cs++ = (size / pitch) << 16 | pitch / 4;
1379 *cs++ = lower_32_bits(src_ofs);
1380 *cs++ = upper_32_bits(src_ofs);
1381 *cs++ = (is_vram ? 0x0 : 0x1) << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT;
1382 *cs++ = 0;
1383 *cs++ = 0;
1384 *cs++ = 0;
1385 *cs++ = 0;
1386
1387 if (len > 11) {
1388 *cs++ = 0;
1389 *cs++ = 0;
1390 *cs++ = 0;
1391 *cs++ = 0;
1392 *cs++ = 0;
1393 }
1394
1395 xe_gt_assert(gt, cs - bb->cs == len + bb->len);
1396
1397 bb->len += len;
1398 }
1399
has_service_copy_support(struct xe_gt * gt)1400 static bool has_service_copy_support(struct xe_gt *gt)
1401 {
1402 /*
1403 * What we care about is whether the architecture was designed with
1404 * service copy functionality (specifically the new MEM_SET / MEM_COPY
1405 * instructions) so check the architectural engine list rather than the
1406 * actual list since these instructions are usable on BCS0 even if
1407 * all of the actual service copy engines (BCS1-BCS8) have been fused
1408 * off.
1409 */
1410 return gt->info.engine_mask & GENMASK(XE_HW_ENGINE_BCS8,
1411 XE_HW_ENGINE_BCS1);
1412 }
1413
emit_clear_cmd_len(struct xe_gt * gt)1414 static u32 emit_clear_cmd_len(struct xe_gt *gt)
1415 {
1416 if (has_service_copy_support(gt))
1417 return PVC_MEM_SET_CMD_LEN_DW;
1418 else
1419 return XY_FAST_COLOR_BLT_DW;
1420 }
1421
emit_clear(struct xe_gt * gt,struct xe_bb * bb,u64 src_ofs,u32 size,u32 pitch,bool is_vram)1422 static void emit_clear(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
1423 u32 size, u32 pitch, bool is_vram)
1424 {
1425 if (has_service_copy_support(gt))
1426 emit_clear_link_copy(gt, bb, src_ofs, size, pitch);
1427 else
1428 emit_clear_main_copy(gt, bb, src_ofs, size, pitch,
1429 is_vram);
1430 }
1431
1432 /**
1433 * xe_migrate_clear() - Copy content of TTM resources.
1434 * @m: The migration context.
1435 * @bo: The buffer object @dst is currently bound to.
1436 * @dst: The dst TTM resource to be cleared.
1437 * @clear_flags: flags to specify which data to clear: CCS, BO, or both.
1438 *
1439 * Clear the contents of @dst to zero when XE_MIGRATE_CLEAR_FLAG_BO_DATA is set.
1440 * On flat CCS devices, the CCS metadata is cleared to zero with XE_MIGRATE_CLEAR_FLAG_CCS_DATA.
1441 * Set XE_MIGRATE_CLEAR_FLAG_FULL to clear bo as well as CCS metadata.
1442 * TODO: Eliminate the @bo argument.
1443 *
1444 * Return: Pointer to a dma_fence representing the last clear batch, or
1445 * an error pointer on failure. If there is a failure, any clear operation
1446 * started by the function call has been synced.
1447 */
xe_migrate_clear(struct xe_migrate * m,struct xe_bo * bo,struct ttm_resource * dst,u32 clear_flags)1448 struct dma_fence *xe_migrate_clear(struct xe_migrate *m,
1449 struct xe_bo *bo,
1450 struct ttm_resource *dst,
1451 u32 clear_flags)
1452 {
1453 bool clear_vram = mem_type_is_vram(dst->mem_type);
1454 bool clear_bo_data = XE_MIGRATE_CLEAR_FLAG_BO_DATA & clear_flags;
1455 bool clear_ccs = XE_MIGRATE_CLEAR_FLAG_CCS_DATA & clear_flags;
1456 struct xe_gt *gt = m->tile->primary_gt;
1457 struct xe_device *xe = gt_to_xe(gt);
1458 bool clear_only_system_ccs = false;
1459 struct dma_fence *fence = NULL;
1460 u64 size = xe_bo_size(bo);
1461 struct xe_res_cursor src_it;
1462 struct ttm_resource *src = dst;
1463 int err;
1464
1465 if (WARN_ON(!clear_bo_data && !clear_ccs))
1466 return NULL;
1467
1468 if (!clear_bo_data && clear_ccs && !IS_DGFX(xe))
1469 clear_only_system_ccs = true;
1470
1471 if (!clear_vram)
1472 xe_res_first_sg(xe_bo_sg(bo), 0, xe_bo_size(bo), &src_it);
1473 else
1474 xe_res_first(src, 0, xe_bo_size(bo), &src_it);
1475
1476 while (size) {
1477 u64 clear_L0_ofs;
1478 u32 clear_L0_pt;
1479 u32 flush_flags = 0;
1480 u64 clear_L0;
1481 struct xe_sched_job *job;
1482 struct xe_bb *bb;
1483 u32 batch_size, update_idx;
1484 u32 pte_flags;
1485
1486 bool usm = xe->info.has_usm;
1487 u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;
1488
1489 clear_L0 = xe_migrate_res_sizes(m, &src_it);
1490
1491 /* Calculate final sizes and batch size.. */
1492 pte_flags = clear_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0;
1493 batch_size = 1 +
1494 pte_update_size(m, pte_flags, src, &src_it,
1495 &clear_L0, &clear_L0_ofs, &clear_L0_pt,
1496 clear_bo_data ? emit_clear_cmd_len(gt) : 0, 0,
1497 avail_pts);
1498
1499 if (xe_migrate_needs_ccs_emit(xe))
1500 batch_size += EMIT_COPY_CCS_DW;
1501
1502 /* Clear commands */
1503
1504 if (WARN_ON_ONCE(!clear_L0))
1505 break;
1506
1507 bb = xe_bb_new(gt, batch_size, usm);
1508 if (IS_ERR(bb)) {
1509 err = PTR_ERR(bb);
1510 goto err_sync;
1511 }
1512
1513 size -= clear_L0;
1514 /* Preemption is enabled again by the ring ops. */
1515 if (clear_vram && xe_migrate_allow_identity(clear_L0, &src_it)) {
1516 xe_res_next(&src_it, clear_L0);
1517 } else {
1518 emit_pte(m, bb, clear_L0_pt, clear_vram,
1519 clear_only_system_ccs, &src_it, clear_L0, dst);
1520 flush_flags |= MI_INVALIDATE_TLB;
1521 }
1522
1523 bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1524 update_idx = bb->len;
1525
1526 if (clear_bo_data)
1527 emit_clear(gt, bb, clear_L0_ofs, clear_L0, XE_PAGE_SIZE, clear_vram);
1528
1529 if (xe_migrate_needs_ccs_emit(xe)) {
1530 emit_copy_ccs(gt, bb, clear_L0_ofs, true,
1531 m->cleared_mem_ofs, false, clear_L0);
1532 flush_flags |= MI_FLUSH_DW_CCS;
1533 }
1534
1535 job = xe_bb_create_migration_job(m->q, bb,
1536 xe_migrate_batch_base(m, usm),
1537 update_idx);
1538 if (IS_ERR(job)) {
1539 err = PTR_ERR(job);
1540 goto err;
1541 }
1542
1543 xe_sched_job_add_migrate_flush(job, flush_flags);
1544 if (!fence) {
1545 /*
1546 * There can't be anything userspace related at this
1547 * point, so we just need to respect any potential move
1548 * fences, which are always tracked as
1549 * DMA_RESV_USAGE_KERNEL.
1550 */
1551 err = xe_sched_job_add_deps(job, bo->ttm.base.resv,
1552 DMA_RESV_USAGE_KERNEL);
1553 if (err)
1554 goto err_job;
1555 }
1556
1557 mutex_lock(&m->job_mutex);
1558 xe_sched_job_arm(job);
1559 dma_fence_put(fence);
1560 fence = dma_fence_get(&job->drm.s_fence->finished);
1561 xe_sched_job_push(job);
1562
1563 dma_fence_put(m->fence);
1564 m->fence = dma_fence_get(fence);
1565
1566 mutex_unlock(&m->job_mutex);
1567
1568 xe_bb_free(bb, fence);
1569 continue;
1570
1571 err_job:
1572 xe_sched_job_put(job);
1573 err:
1574 xe_bb_free(bb, NULL);
1575 err_sync:
1576 /* Sync partial copies if any. FIXME: job_mutex? */
1577 if (fence) {
1578 dma_fence_wait(fence, false);
1579 dma_fence_put(fence);
1580 }
1581
1582 return ERR_PTR(err);
1583 }
1584
1585 if (clear_ccs)
1586 bo->ccs_cleared = true;
1587
1588 return fence;
1589 }
1590
write_pgtable(struct xe_tile * tile,struct xe_bb * bb,u64 ppgtt_ofs,const struct xe_vm_pgtable_update_op * pt_op,const struct xe_vm_pgtable_update * update,struct xe_migrate_pt_update * pt_update)1591 static void write_pgtable(struct xe_tile *tile, struct xe_bb *bb, u64 ppgtt_ofs,
1592 const struct xe_vm_pgtable_update_op *pt_op,
1593 const struct xe_vm_pgtable_update *update,
1594 struct xe_migrate_pt_update *pt_update)
1595 {
1596 const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1597 u32 chunk;
1598 u32 ofs = update->ofs, size = update->qwords;
1599
1600 /*
1601 * If we have 512 entries (max), we would populate it ourselves,
1602 * and update the PDE above it to the new pointer.
1603 * The only time this can only happen if we have to update the top
1604 * PDE. This requires a BO that is almost vm->size big.
1605 *
1606 * This shouldn't be possible in practice.. might change when 16K
1607 * pages are used. Hence the assert.
1608 */
1609 xe_tile_assert(tile, update->qwords < MAX_NUM_PTE);
1610 if (!ppgtt_ofs)
1611 ppgtt_ofs = xe_migrate_vram_ofs(tile_to_xe(tile),
1612 xe_bo_addr(update->pt_bo, 0,
1613 XE_PAGE_SIZE), false);
1614
1615 do {
1616 u64 addr = ppgtt_ofs + ofs * 8;
1617
1618 chunk = min(size, MAX_PTE_PER_SDI);
1619
1620 /* Ensure populatefn can do memset64 by aligning bb->cs */
1621 if (!(bb->len & 1))
1622 bb->cs[bb->len++] = MI_NOOP;
1623
1624 bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
1625 bb->cs[bb->len++] = lower_32_bits(addr);
1626 bb->cs[bb->len++] = upper_32_bits(addr);
1627 if (pt_op->bind)
1628 ops->populate(pt_update, tile, NULL, bb->cs + bb->len,
1629 ofs, chunk, update);
1630 else
1631 ops->clear(pt_update, tile, NULL, bb->cs + bb->len,
1632 ofs, chunk, update);
1633
1634 bb->len += chunk * 2;
1635 ofs += chunk;
1636 size -= chunk;
1637 } while (size);
1638 }
1639
xe_migrate_get_vm(struct xe_migrate * m)1640 struct xe_vm *xe_migrate_get_vm(struct xe_migrate *m)
1641 {
1642 return xe_vm_get(m->q->vm);
1643 }
1644
1645 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
1646 struct migrate_test_params {
1647 struct xe_test_priv base;
1648 bool force_gpu;
1649 };
1650
1651 #define to_migrate_test_params(_priv) \
1652 container_of(_priv, struct migrate_test_params, base)
1653 #endif
1654
1655 static struct dma_fence *
xe_migrate_update_pgtables_cpu(struct xe_migrate * m,struct xe_migrate_pt_update * pt_update)1656 xe_migrate_update_pgtables_cpu(struct xe_migrate *m,
1657 struct xe_migrate_pt_update *pt_update)
1658 {
1659 XE_TEST_DECLARE(struct migrate_test_params *test =
1660 to_migrate_test_params
1661 (xe_cur_kunit_priv(XE_TEST_LIVE_MIGRATE));)
1662 const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1663 struct xe_vm *vm = pt_update->vops->vm;
1664 struct xe_vm_pgtable_update_ops *pt_update_ops =
1665 &pt_update->vops->pt_update_ops[pt_update->tile_id];
1666 int err;
1667 u32 i, j;
1668
1669 if (XE_TEST_ONLY(test && test->force_gpu))
1670 return ERR_PTR(-ETIME);
1671
1672 if (ops->pre_commit) {
1673 pt_update->job = NULL;
1674 err = ops->pre_commit(pt_update);
1675 if (err)
1676 return ERR_PTR(err);
1677 }
1678
1679 for (i = 0; i < pt_update_ops->num_ops; ++i) {
1680 const struct xe_vm_pgtable_update_op *pt_op =
1681 &pt_update_ops->ops[i];
1682
1683 for (j = 0; j < pt_op->num_entries; j++) {
1684 const struct xe_vm_pgtable_update *update =
1685 &pt_op->entries[j];
1686
1687 if (pt_op->bind)
1688 ops->populate(pt_update, m->tile,
1689 &update->pt_bo->vmap, NULL,
1690 update->ofs, update->qwords,
1691 update);
1692 else
1693 ops->clear(pt_update, m->tile,
1694 &update->pt_bo->vmap, NULL,
1695 update->ofs, update->qwords, update);
1696 }
1697 }
1698
1699 trace_xe_vm_cpu_bind(vm);
1700 xe_device_wmb(vm->xe);
1701
1702 return dma_fence_get_stub();
1703 }
1704
1705 static struct dma_fence *
__xe_migrate_update_pgtables(struct xe_migrate * m,struct xe_migrate_pt_update * pt_update,struct xe_vm_pgtable_update_ops * pt_update_ops)1706 __xe_migrate_update_pgtables(struct xe_migrate *m,
1707 struct xe_migrate_pt_update *pt_update,
1708 struct xe_vm_pgtable_update_ops *pt_update_ops)
1709 {
1710 const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1711 struct xe_tile *tile = m->tile;
1712 struct xe_gt *gt = tile->primary_gt;
1713 struct xe_device *xe = tile_to_xe(tile);
1714 struct xe_sched_job *job;
1715 struct dma_fence *fence;
1716 struct drm_suballoc *sa_bo = NULL;
1717 struct xe_bb *bb;
1718 u32 i, j, batch_size = 0, ppgtt_ofs, update_idx, page_ofs = 0;
1719 u32 num_updates = 0, current_update = 0;
1720 u64 addr;
1721 int err = 0;
1722 bool is_migrate = pt_update_ops->q == m->q;
1723 bool usm = is_migrate && xe->info.has_usm;
1724
1725 for (i = 0; i < pt_update_ops->num_ops; ++i) {
1726 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i];
1727 struct xe_vm_pgtable_update *updates = pt_op->entries;
1728
1729 num_updates += pt_op->num_entries;
1730 for (j = 0; j < pt_op->num_entries; ++j) {
1731 u32 num_cmds = DIV_ROUND_UP(updates[j].qwords,
1732 MAX_PTE_PER_SDI);
1733
1734 /* align noop + MI_STORE_DATA_IMM cmd prefix */
1735 batch_size += 4 * num_cmds + updates[j].qwords * 2;
1736 }
1737 }
1738
1739 /* fixed + PTE entries */
1740 if (IS_DGFX(xe))
1741 batch_size += 2;
1742 else
1743 batch_size += 6 * (num_updates / MAX_PTE_PER_SDI + 1) +
1744 num_updates * 2;
1745
1746 bb = xe_bb_new(gt, batch_size, usm);
1747 if (IS_ERR(bb))
1748 return ERR_CAST(bb);
1749
1750 /* For sysmem PTE's, need to map them in our hole.. */
1751 if (!IS_DGFX(xe)) {
1752 u16 pat_index = xe->pat.idx[XE_CACHE_WB];
1753 u32 ptes, ofs;
1754
1755 ppgtt_ofs = NUM_KERNEL_PDE - 1;
1756 if (!is_migrate) {
1757 u32 num_units = DIV_ROUND_UP(num_updates,
1758 NUM_VMUSA_WRITES_PER_UNIT);
1759
1760 if (num_units > m->vm_update_sa.size) {
1761 err = -ENOBUFS;
1762 goto err_bb;
1763 }
1764 sa_bo = drm_suballoc_new(&m->vm_update_sa, num_units,
1765 GFP_KERNEL, true, 0);
1766 if (IS_ERR(sa_bo)) {
1767 err = PTR_ERR(sa_bo);
1768 goto err_bb;
1769 }
1770
1771 ppgtt_ofs = NUM_KERNEL_PDE +
1772 (drm_suballoc_soffset(sa_bo) /
1773 NUM_VMUSA_UNIT_PER_PAGE);
1774 page_ofs = (drm_suballoc_soffset(sa_bo) %
1775 NUM_VMUSA_UNIT_PER_PAGE) *
1776 VM_SA_UPDATE_UNIT_SIZE;
1777 }
1778
1779 /* Map our PT's to gtt */
1780 i = 0;
1781 j = 0;
1782 ptes = num_updates;
1783 ofs = ppgtt_ofs * XE_PAGE_SIZE + page_ofs;
1784 while (ptes) {
1785 u32 chunk = min(MAX_PTE_PER_SDI, ptes);
1786 u32 idx = 0;
1787
1788 bb->cs[bb->len++] = MI_STORE_DATA_IMM |
1789 MI_SDI_NUM_QW(chunk);
1790 bb->cs[bb->len++] = ofs;
1791 bb->cs[bb->len++] = 0; /* upper_32_bits */
1792
1793 for (; i < pt_update_ops->num_ops; ++i) {
1794 struct xe_vm_pgtable_update_op *pt_op =
1795 &pt_update_ops->ops[i];
1796 struct xe_vm_pgtable_update *updates = pt_op->entries;
1797
1798 for (; j < pt_op->num_entries; ++j, ++current_update, ++idx) {
1799 struct xe_vm *vm = pt_update->vops->vm;
1800 struct xe_bo *pt_bo = updates[j].pt_bo;
1801
1802 if (idx == chunk)
1803 goto next_cmd;
1804
1805 xe_tile_assert(tile, xe_bo_size(pt_bo) == SZ_4K);
1806
1807 /* Map a PT at most once */
1808 if (pt_bo->update_index < 0)
1809 pt_bo->update_index = current_update;
1810
1811 addr = vm->pt_ops->pte_encode_bo(pt_bo, 0,
1812 pat_index, 0);
1813 bb->cs[bb->len++] = lower_32_bits(addr);
1814 bb->cs[bb->len++] = upper_32_bits(addr);
1815 }
1816
1817 j = 0;
1818 }
1819
1820 next_cmd:
1821 ptes -= chunk;
1822 ofs += chunk * sizeof(u64);
1823 }
1824
1825 bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1826 update_idx = bb->len;
1827
1828 addr = xe_migrate_vm_addr(ppgtt_ofs, 0) +
1829 (page_ofs / sizeof(u64)) * XE_PAGE_SIZE;
1830 for (i = 0; i < pt_update_ops->num_ops; ++i) {
1831 struct xe_vm_pgtable_update_op *pt_op =
1832 &pt_update_ops->ops[i];
1833 struct xe_vm_pgtable_update *updates = pt_op->entries;
1834
1835 for (j = 0; j < pt_op->num_entries; ++j) {
1836 struct xe_bo *pt_bo = updates[j].pt_bo;
1837
1838 write_pgtable(tile, bb, addr +
1839 pt_bo->update_index * XE_PAGE_SIZE,
1840 pt_op, &updates[j], pt_update);
1841 }
1842 }
1843 } else {
1844 /* phys pages, no preamble required */
1845 bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1846 update_idx = bb->len;
1847
1848 for (i = 0; i < pt_update_ops->num_ops; ++i) {
1849 struct xe_vm_pgtable_update_op *pt_op =
1850 &pt_update_ops->ops[i];
1851 struct xe_vm_pgtable_update *updates = pt_op->entries;
1852
1853 for (j = 0; j < pt_op->num_entries; ++j)
1854 write_pgtable(tile, bb, 0, pt_op, &updates[j],
1855 pt_update);
1856 }
1857 }
1858
1859 job = xe_bb_create_migration_job(pt_update_ops->q, bb,
1860 xe_migrate_batch_base(m, usm),
1861 update_idx);
1862 if (IS_ERR(job)) {
1863 err = PTR_ERR(job);
1864 goto err_sa;
1865 }
1866
1867 xe_sched_job_add_migrate_flush(job, MI_INVALIDATE_TLB);
1868
1869 if (ops->pre_commit) {
1870 pt_update->job = job;
1871 err = ops->pre_commit(pt_update);
1872 if (err)
1873 goto err_job;
1874 }
1875 if (is_migrate)
1876 mutex_lock(&m->job_mutex);
1877
1878 xe_sched_job_arm(job);
1879 fence = dma_fence_get(&job->drm.s_fence->finished);
1880 xe_sched_job_push(job);
1881
1882 if (is_migrate)
1883 mutex_unlock(&m->job_mutex);
1884
1885 xe_bb_free(bb, fence);
1886 drm_suballoc_free(sa_bo, fence);
1887
1888 return fence;
1889
1890 err_job:
1891 xe_sched_job_put(job);
1892 err_sa:
1893 drm_suballoc_free(sa_bo, NULL);
1894 err_bb:
1895 xe_bb_free(bb, NULL);
1896 return ERR_PTR(err);
1897 }
1898
1899 /**
1900 * xe_migrate_update_pgtables() - Pipelined page-table update
1901 * @m: The migrate context.
1902 * @pt_update: PT update arguments
1903 *
1904 * Perform a pipelined page-table update. The update descriptors are typically
1905 * built under the same lock critical section as a call to this function. If
1906 * using the default engine for the updates, they will be performed in the
1907 * order they grab the job_mutex. If different engines are used, external
1908 * synchronization is needed for overlapping updates to maintain page-table
1909 * consistency. Note that the meaning of "overlapping" is that the updates
1910 * touch the same page-table, which might be a higher-level page-directory.
1911 * If no pipelining is needed, then updates may be performed by the cpu.
1912 *
1913 * Return: A dma_fence that, when signaled, indicates the update completion.
1914 */
1915 struct dma_fence *
xe_migrate_update_pgtables(struct xe_migrate * m,struct xe_migrate_pt_update * pt_update)1916 xe_migrate_update_pgtables(struct xe_migrate *m,
1917 struct xe_migrate_pt_update *pt_update)
1918
1919 {
1920 struct xe_vm_pgtable_update_ops *pt_update_ops =
1921 &pt_update->vops->pt_update_ops[pt_update->tile_id];
1922 struct dma_fence *fence;
1923
1924 fence = xe_migrate_update_pgtables_cpu(m, pt_update);
1925
1926 /* -ETIME indicates a job is needed, anything else is legit error */
1927 if (!IS_ERR(fence) || PTR_ERR(fence) != -ETIME)
1928 return fence;
1929
1930 return __xe_migrate_update_pgtables(m, pt_update, pt_update_ops);
1931 }
1932
1933 /**
1934 * xe_migrate_wait() - Complete all operations using the xe_migrate context
1935 * @m: Migrate context to wait for.
1936 *
1937 * Waits until the GPU no longer uses the migrate context's default engine
1938 * or its page-table objects. FIXME: What about separate page-table update
1939 * engines?
1940 */
xe_migrate_wait(struct xe_migrate * m)1941 void xe_migrate_wait(struct xe_migrate *m)
1942 {
1943 if (m->fence)
1944 dma_fence_wait(m->fence, false);
1945 }
1946
pte_update_cmd_size(u64 size)1947 static u32 pte_update_cmd_size(u64 size)
1948 {
1949 u32 num_dword;
1950 u64 entries = DIV_U64_ROUND_UP(size, XE_PAGE_SIZE);
1951
1952 XE_WARN_ON(size > MAX_PREEMPTDISABLE_TRANSFER);
1953
1954 /*
1955 * MI_STORE_DATA_IMM command is used to update page table. Each
1956 * instruction can update maximumly MAX_PTE_PER_SDI pte entries. To
1957 * update n (n <= MAX_PTE_PER_SDI) pte entries, we need:
1958 *
1959 * - 1 dword for the MI_STORE_DATA_IMM command header (opcode etc)
1960 * - 2 dword for the page table's physical location
1961 * - 2*n dword for value of pte to fill (each pte entry is 2 dwords)
1962 */
1963 num_dword = (1 + 2) * DIV_U64_ROUND_UP(entries, MAX_PTE_PER_SDI);
1964 num_dword += entries * 2;
1965
1966 return num_dword;
1967 }
1968
build_pt_update_batch_sram(struct xe_migrate * m,struct xe_bb * bb,u32 pt_offset,struct drm_pagemap_addr * sram_addr,u32 size,int level)1969 static void build_pt_update_batch_sram(struct xe_migrate *m,
1970 struct xe_bb *bb, u32 pt_offset,
1971 struct drm_pagemap_addr *sram_addr,
1972 u32 size, int level)
1973 {
1974 u16 pat_index = tile_to_xe(m->tile)->pat.idx[XE_CACHE_WB];
1975 u64 gpu_page_size = 0x1ull << xe_pt_shift(level);
1976 u32 ptes;
1977 int i = 0;
1978
1979 xe_tile_assert(m->tile, PAGE_ALIGNED(size));
1980
1981 ptes = DIV_ROUND_UP(size, gpu_page_size);
1982 while (ptes) {
1983 u32 chunk = min(MAX_PTE_PER_SDI, ptes);
1984
1985 if (!level)
1986 chunk = ALIGN_DOWN(chunk, PAGE_SIZE / XE_PAGE_SIZE);
1987
1988 bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
1989 bb->cs[bb->len++] = pt_offset;
1990 bb->cs[bb->len++] = 0;
1991
1992 pt_offset += chunk * 8;
1993 ptes -= chunk;
1994
1995 while (chunk--) {
1996 u64 addr = sram_addr[i].addr;
1997 u64 pte;
1998
1999 xe_tile_assert(m->tile, sram_addr[i].proto ==
2000 DRM_INTERCONNECT_SYSTEM);
2001 xe_tile_assert(m->tile, addr);
2002 xe_tile_assert(m->tile, PAGE_ALIGNED(addr));
2003
2004 again:
2005 pte = m->q->vm->pt_ops->pte_encode_addr(m->tile->xe,
2006 addr, pat_index,
2007 level, false, 0);
2008 bb->cs[bb->len++] = lower_32_bits(pte);
2009 bb->cs[bb->len++] = upper_32_bits(pte);
2010
2011 if (gpu_page_size < PAGE_SIZE) {
2012 addr += XE_PAGE_SIZE;
2013 if (!PAGE_ALIGNED(addr)) {
2014 chunk--;
2015 goto again;
2016 }
2017 i++;
2018 } else {
2019 i += gpu_page_size / PAGE_SIZE;
2020 }
2021 }
2022 }
2023 }
2024
xe_migrate_vram_use_pde(struct drm_pagemap_addr * sram_addr,unsigned long size)2025 static bool xe_migrate_vram_use_pde(struct drm_pagemap_addr *sram_addr,
2026 unsigned long size)
2027 {
2028 u32 large_size = (0x1 << xe_pt_shift(1));
2029 unsigned long i, incr = large_size / PAGE_SIZE;
2030
2031 for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE); i += incr)
2032 if (PAGE_SIZE << sram_addr[i].order != large_size)
2033 return false;
2034
2035 return true;
2036 }
2037
2038 #define XE_CACHELINE_BYTES 64ull
2039 #define XE_CACHELINE_MASK (XE_CACHELINE_BYTES - 1)
2040
xe_migrate_copy_pitch(struct xe_device * xe,u32 len)2041 static u32 xe_migrate_copy_pitch(struct xe_device *xe, u32 len)
2042 {
2043 u32 pitch;
2044
2045 if (IS_ALIGNED(len, PAGE_SIZE))
2046 pitch = PAGE_SIZE;
2047 else if (IS_ALIGNED(len, SZ_4K))
2048 pitch = SZ_4K;
2049 else if (IS_ALIGNED(len, SZ_256))
2050 pitch = SZ_256;
2051 else if (IS_ALIGNED(len, 4))
2052 pitch = 4;
2053 else
2054 pitch = 1;
2055
2056 xe_assert(xe, pitch > 1 || xe->info.has_mem_copy_instr);
2057 return pitch;
2058 }
2059
xe_migrate_vram(struct xe_migrate * m,unsigned long len,unsigned long sram_offset,struct drm_pagemap_addr * sram_addr,u64 vram_addr,const enum xe_migrate_copy_dir dir)2060 static struct dma_fence *xe_migrate_vram(struct xe_migrate *m,
2061 unsigned long len,
2062 unsigned long sram_offset,
2063 struct drm_pagemap_addr *sram_addr,
2064 u64 vram_addr,
2065 const enum xe_migrate_copy_dir dir)
2066 {
2067 struct xe_gt *gt = m->tile->primary_gt;
2068 struct xe_device *xe = gt_to_xe(gt);
2069 bool use_usm_batch = xe->info.has_usm;
2070 struct dma_fence *fence = NULL;
2071 u32 batch_size = 1;
2072 u64 src_L0_ofs, dst_L0_ofs;
2073 struct xe_sched_job *job;
2074 struct xe_bb *bb;
2075 u32 update_idx, pt_slot = 0;
2076 unsigned long npages = DIV_ROUND_UP(len + sram_offset, PAGE_SIZE);
2077 unsigned int pitch = xe_migrate_copy_pitch(xe, len);
2078 int err;
2079 unsigned long i, j;
2080 bool use_pde = xe_migrate_vram_use_pde(sram_addr, len + sram_offset);
2081
2082 if (!xe->info.has_mem_copy_instr &&
2083 drm_WARN_ON(&xe->drm,
2084 (!IS_ALIGNED(len, pitch)) || (sram_offset | vram_addr) & XE_CACHELINE_MASK))
2085 return ERR_PTR(-EOPNOTSUPP);
2086
2087 xe_assert(xe, npages * PAGE_SIZE <= MAX_PREEMPTDISABLE_TRANSFER);
2088
2089 batch_size += pte_update_cmd_size(npages << PAGE_SHIFT);
2090 batch_size += EMIT_COPY_DW;
2091
2092 bb = xe_bb_new(gt, batch_size, use_usm_batch);
2093 if (IS_ERR(bb)) {
2094 err = PTR_ERR(bb);
2095 return ERR_PTR(err);
2096 }
2097
2098 /*
2099 * If the order of a struct drm_pagemap_addr entry is greater than 0,
2100 * the entry is populated by GPU pagemap but subsequent entries within
2101 * the range of that order are not populated.
2102 * build_pt_update_batch_sram() expects a fully populated array of
2103 * struct drm_pagemap_addr. Ensure this is the case even with higher
2104 * orders.
2105 */
2106 for (i = 0; !use_pde && i < npages;) {
2107 unsigned int order = sram_addr[i].order;
2108
2109 for (j = 1; j < NR_PAGES(order) && i + j < npages; j++)
2110 if (!sram_addr[i + j].addr)
2111 sram_addr[i + j].addr = sram_addr[i].addr + j * PAGE_SIZE;
2112
2113 i += NR_PAGES(order);
2114 }
2115
2116 if (use_pde)
2117 build_pt_update_batch_sram(m, bb, m->large_page_copy_pdes,
2118 sram_addr, npages << PAGE_SHIFT, 1);
2119 else
2120 build_pt_update_batch_sram(m, bb, pt_slot * XE_PAGE_SIZE,
2121 sram_addr, npages << PAGE_SHIFT, 0);
2122
2123 if (dir == XE_MIGRATE_COPY_TO_VRAM) {
2124 if (use_pde)
2125 src_L0_ofs = m->large_page_copy_ofs + sram_offset;
2126 else
2127 src_L0_ofs = xe_migrate_vm_addr(pt_slot, 0) + sram_offset;
2128 dst_L0_ofs = xe_migrate_vram_ofs(xe, vram_addr, false);
2129
2130 } else {
2131 src_L0_ofs = xe_migrate_vram_ofs(xe, vram_addr, false);
2132 if (use_pde)
2133 dst_L0_ofs = m->large_page_copy_ofs + sram_offset;
2134 else
2135 dst_L0_ofs = xe_migrate_vm_addr(pt_slot, 0) + sram_offset;
2136 }
2137
2138 bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
2139 update_idx = bb->len;
2140
2141 emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, len, pitch);
2142
2143 job = xe_bb_create_migration_job(m->q, bb,
2144 xe_migrate_batch_base(m, use_usm_batch),
2145 update_idx);
2146 if (IS_ERR(job)) {
2147 err = PTR_ERR(job);
2148 goto err;
2149 }
2150
2151 xe_sched_job_add_migrate_flush(job, MI_INVALIDATE_TLB);
2152
2153 mutex_lock(&m->job_mutex);
2154 xe_sched_job_arm(job);
2155 fence = dma_fence_get(&job->drm.s_fence->finished);
2156 xe_sched_job_push(job);
2157
2158 dma_fence_put(m->fence);
2159 m->fence = dma_fence_get(fence);
2160 mutex_unlock(&m->job_mutex);
2161
2162 xe_bb_free(bb, fence);
2163
2164 return fence;
2165
2166 err:
2167 xe_bb_free(bb, NULL);
2168
2169 return ERR_PTR(err);
2170 }
2171
2172 /**
2173 * xe_migrate_to_vram() - Migrate to VRAM
2174 * @m: The migration context.
2175 * @npages: Number of pages to migrate.
2176 * @src_addr: Array of DMA information (source of migrate)
2177 * @dst_addr: Device physical address of VRAM (destination of migrate)
2178 *
2179 * Copy from an array dma addresses to a VRAM device physical address
2180 *
2181 * Return: dma fence for migrate to signal completion on success, ERR_PTR on
2182 * failure
2183 */
xe_migrate_to_vram(struct xe_migrate * m,unsigned long npages,struct drm_pagemap_addr * src_addr,u64 dst_addr)2184 struct dma_fence *xe_migrate_to_vram(struct xe_migrate *m,
2185 unsigned long npages,
2186 struct drm_pagemap_addr *src_addr,
2187 u64 dst_addr)
2188 {
2189 return xe_migrate_vram(m, npages * PAGE_SIZE, 0, src_addr, dst_addr,
2190 XE_MIGRATE_COPY_TO_VRAM);
2191 }
2192
2193 /**
2194 * xe_migrate_from_vram() - Migrate from VRAM
2195 * @m: The migration context.
2196 * @npages: Number of pages to migrate.
2197 * @src_addr: Device physical address of VRAM (source of migrate)
2198 * @dst_addr: Array of DMA information (destination of migrate)
2199 *
2200 * Copy from a VRAM device physical address to an array dma addresses
2201 *
2202 * Return: dma fence for migrate to signal completion on success, ERR_PTR on
2203 * failure
2204 */
xe_migrate_from_vram(struct xe_migrate * m,unsigned long npages,u64 src_addr,struct drm_pagemap_addr * dst_addr)2205 struct dma_fence *xe_migrate_from_vram(struct xe_migrate *m,
2206 unsigned long npages,
2207 u64 src_addr,
2208 struct drm_pagemap_addr *dst_addr)
2209 {
2210 return xe_migrate_vram(m, npages * PAGE_SIZE, 0, dst_addr, src_addr,
2211 XE_MIGRATE_COPY_TO_SRAM);
2212 }
2213
xe_migrate_dma_unmap(struct xe_device * xe,struct drm_pagemap_addr * pagemap_addr,int len,int write)2214 static void xe_migrate_dma_unmap(struct xe_device *xe,
2215 struct drm_pagemap_addr *pagemap_addr,
2216 int len, int write)
2217 {
2218 unsigned long i, npages = DIV_ROUND_UP(len, PAGE_SIZE);
2219
2220 for (i = 0; i < npages; ++i) {
2221 if (!pagemap_addr[i].addr)
2222 break;
2223
2224 dma_unmap_page(xe->drm.dev, pagemap_addr[i].addr, PAGE_SIZE,
2225 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
2226 }
2227 kfree(pagemap_addr);
2228 }
2229
xe_migrate_dma_map(struct xe_device * xe,void * buf,int len,int write)2230 static struct drm_pagemap_addr *xe_migrate_dma_map(struct xe_device *xe,
2231 void *buf, int len,
2232 int write)
2233 {
2234 struct drm_pagemap_addr *pagemap_addr;
2235 unsigned long i, npages = DIV_ROUND_UP(len, PAGE_SIZE);
2236
2237 pagemap_addr = kcalloc(npages, sizeof(*pagemap_addr), GFP_KERNEL);
2238 if (!pagemap_addr)
2239 return ERR_PTR(-ENOMEM);
2240
2241 for (i = 0; i < npages; ++i) {
2242 dma_addr_t addr;
2243 struct page *page;
2244 enum dma_data_direction dir = write ? DMA_TO_DEVICE :
2245 DMA_FROM_DEVICE;
2246
2247 if (is_vmalloc_addr(buf))
2248 page = vmalloc_to_page(buf);
2249 else
2250 page = virt_to_page(buf);
2251
2252 addr = dma_map_page(xe->drm.dev, page, 0, PAGE_SIZE, dir);
2253 if (dma_mapping_error(xe->drm.dev, addr))
2254 goto err_fault;
2255
2256 pagemap_addr[i] =
2257 drm_pagemap_addr_encode(addr,
2258 DRM_INTERCONNECT_SYSTEM,
2259 0, dir);
2260 buf += PAGE_SIZE;
2261 }
2262
2263 return pagemap_addr;
2264
2265 err_fault:
2266 xe_migrate_dma_unmap(xe, pagemap_addr, len, write);
2267 return ERR_PTR(-EFAULT);
2268 }
2269
2270 /**
2271 * xe_migrate_access_memory - Access memory of a BO via GPU
2272 *
2273 * @m: The migration context.
2274 * @bo: buffer object
2275 * @offset: access offset into buffer object
2276 * @buf: pointer to caller memory to read into or write from
2277 * @len: length of access
2278 * @write: write access
2279 *
2280 * Access memory of a BO via GPU either reading in or writing from a passed in
2281 * pointer. Pointer is dma mapped for GPU access and GPU commands are issued to
2282 * read to or write from pointer.
2283 *
2284 * Returns:
2285 * 0 if successful, negative error code on failure.
2286 */
xe_migrate_access_memory(struct xe_migrate * m,struct xe_bo * bo,unsigned long offset,void * buf,int len,int write)2287 int xe_migrate_access_memory(struct xe_migrate *m, struct xe_bo *bo,
2288 unsigned long offset, void *buf, int len,
2289 int write)
2290 {
2291 struct xe_tile *tile = m->tile;
2292 struct xe_device *xe = tile_to_xe(tile);
2293 struct xe_res_cursor cursor;
2294 struct dma_fence *fence = NULL;
2295 struct drm_pagemap_addr *pagemap_addr;
2296 unsigned long page_offset = (unsigned long)buf & ~PAGE_MASK;
2297 int bytes_left = len, current_page = 0;
2298 void *orig_buf = buf;
2299
2300 xe_bo_assert_held(bo);
2301
2302 /* Use bounce buffer for small access and unaligned access */
2303 if (!xe->info.has_mem_copy_instr &&
2304 (!IS_ALIGNED(len, 4) ||
2305 !IS_ALIGNED(page_offset, XE_CACHELINE_BYTES) ||
2306 !IS_ALIGNED(offset, XE_CACHELINE_BYTES))) {
2307 int buf_offset = 0;
2308 void *bounce;
2309 int err;
2310
2311 BUILD_BUG_ON(!is_power_of_2(XE_CACHELINE_BYTES));
2312 bounce = kmalloc(XE_CACHELINE_BYTES, GFP_KERNEL);
2313 if (!bounce)
2314 return -ENOMEM;
2315
2316 /*
2317 * Less than ideal for large unaligned access but this should be
2318 * fairly rare, can fixup if this becomes common.
2319 */
2320 do {
2321 int copy_bytes = min_t(int, bytes_left,
2322 XE_CACHELINE_BYTES -
2323 (offset & XE_CACHELINE_MASK));
2324 int ptr_offset = offset & XE_CACHELINE_MASK;
2325
2326 err = xe_migrate_access_memory(m, bo,
2327 offset &
2328 ~XE_CACHELINE_MASK,
2329 bounce,
2330 XE_CACHELINE_BYTES, 0);
2331 if (err)
2332 break;
2333
2334 if (write) {
2335 memcpy(bounce + ptr_offset, buf + buf_offset, copy_bytes);
2336
2337 err = xe_migrate_access_memory(m, bo,
2338 offset & ~XE_CACHELINE_MASK,
2339 bounce,
2340 XE_CACHELINE_BYTES, write);
2341 if (err)
2342 break;
2343 } else {
2344 memcpy(buf + buf_offset, bounce + ptr_offset,
2345 copy_bytes);
2346 }
2347
2348 bytes_left -= copy_bytes;
2349 buf_offset += copy_bytes;
2350 offset += copy_bytes;
2351 } while (bytes_left);
2352
2353 kfree(bounce);
2354 return err;
2355 }
2356
2357 pagemap_addr = xe_migrate_dma_map(xe, buf, len + page_offset, write);
2358 if (IS_ERR(pagemap_addr))
2359 return PTR_ERR(pagemap_addr);
2360
2361 xe_res_first(bo->ttm.resource, offset, xe_bo_size(bo) - offset, &cursor);
2362
2363 do {
2364 struct dma_fence *__fence;
2365 u64 vram_addr = vram_region_gpu_offset(bo->ttm.resource) +
2366 cursor.start;
2367 int current_bytes;
2368 u32 pitch;
2369
2370 if (cursor.size > MAX_PREEMPTDISABLE_TRANSFER)
2371 current_bytes = min_t(int, bytes_left,
2372 MAX_PREEMPTDISABLE_TRANSFER);
2373 else
2374 current_bytes = min_t(int, bytes_left, cursor.size);
2375
2376 pitch = xe_migrate_copy_pitch(xe, current_bytes);
2377 if (xe->info.has_mem_copy_instr)
2378 current_bytes = min_t(int, current_bytes, U16_MAX * pitch);
2379 else
2380 current_bytes = min_t(int, current_bytes,
2381 round_down(S16_MAX * pitch,
2382 XE_CACHELINE_BYTES));
2383
2384 __fence = xe_migrate_vram(m, current_bytes,
2385 (unsigned long)buf & ~PAGE_MASK,
2386 &pagemap_addr[current_page],
2387 vram_addr, write ?
2388 XE_MIGRATE_COPY_TO_VRAM :
2389 XE_MIGRATE_COPY_TO_SRAM);
2390 if (IS_ERR(__fence)) {
2391 if (fence) {
2392 dma_fence_wait(fence, false);
2393 dma_fence_put(fence);
2394 }
2395 fence = __fence;
2396 goto out_err;
2397 }
2398
2399 dma_fence_put(fence);
2400 fence = __fence;
2401
2402 buf += current_bytes;
2403 offset += current_bytes;
2404 current_page = (int)(buf - orig_buf) / PAGE_SIZE;
2405 bytes_left -= current_bytes;
2406 if (bytes_left)
2407 xe_res_next(&cursor, current_bytes);
2408 } while (bytes_left);
2409
2410 dma_fence_wait(fence, false);
2411 dma_fence_put(fence);
2412
2413 out_err:
2414 xe_migrate_dma_unmap(xe, pagemap_addr, len + page_offset, write);
2415 return IS_ERR(fence) ? PTR_ERR(fence) : 0;
2416 }
2417
2418 /**
2419 * xe_migrate_job_lock() - Lock migrate job lock
2420 * @m: The migration context.
2421 * @q: Queue associated with the operation which requires a lock
2422 *
2423 * Lock the migrate job lock if the queue is a migration queue, otherwise
2424 * assert the VM's dma-resv is held (user queue's have own locking).
2425 */
xe_migrate_job_lock(struct xe_migrate * m,struct xe_exec_queue * q)2426 void xe_migrate_job_lock(struct xe_migrate *m, struct xe_exec_queue *q)
2427 {
2428 bool is_migrate = q == m->q;
2429
2430 if (is_migrate)
2431 mutex_lock(&m->job_mutex);
2432 else
2433 xe_vm_assert_held(q->vm); /* User queues VM's should be locked */
2434 }
2435
2436 /**
2437 * xe_migrate_job_unlock() - Unlock migrate job lock
2438 * @m: The migration context.
2439 * @q: Queue associated with the operation which requires a lock
2440 *
2441 * Unlock the migrate job lock if the queue is a migration queue, otherwise
2442 * assert the VM's dma-resv is held (user queue's have own locking).
2443 */
xe_migrate_job_unlock(struct xe_migrate * m,struct xe_exec_queue * q)2444 void xe_migrate_job_unlock(struct xe_migrate *m, struct xe_exec_queue *q)
2445 {
2446 bool is_migrate = q == m->q;
2447
2448 if (is_migrate)
2449 mutex_unlock(&m->job_mutex);
2450 else
2451 xe_vm_assert_held(q->vm); /* User queues VM's should be locked */
2452 }
2453
2454 #if IS_ENABLED(CONFIG_PROVE_LOCKING)
2455 /**
2456 * xe_migrate_job_lock_assert() - Assert migrate job lock held of queue
2457 * @q: Migrate queue
2458 */
xe_migrate_job_lock_assert(struct xe_exec_queue * q)2459 void xe_migrate_job_lock_assert(struct xe_exec_queue *q)
2460 {
2461 struct xe_migrate *m = gt_to_tile(q->gt)->migrate;
2462
2463 xe_gt_assert(q->gt, q == m->q);
2464 lockdep_assert_held(&m->job_mutex);
2465 }
2466 #endif
2467
2468 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
2469 #include "tests/xe_migrate.c"
2470 #endif
2471