xref: /linux/arch/parisc/kernel/module.c (revision a49468240e89628236b738b5ab9416eae8f90c15)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*    Kernel dynamically loadable module help for PARISC.
3  *
4  *    The best reference for this stuff is probably the Processor-
5  *    Specific ELF Supplement for PA-RISC:
6  *        https://parisc.wiki.kernel.org/index.php/File:Elf-pa-hp.pdf
7  *
8  *    Linux/PA-RISC Project
9  *    Copyright (C) 2003 Randolph Chung <tausq at debian . org>
10  *    Copyright (C) 2008 Helge Deller <deller@gmx.de>
11  *
12  *    Notes:
13  *    - PLT stub handling
14  *      On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
15  *      ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
16  *      fail to reach their PLT stub if we only create one big stub array for
17  *      all sections at the beginning of the core or init section.
18  *      Instead we now insert individual PLT stub entries directly in front of
19  *      of the code sections where the stubs are actually called.
20  *      This reduces the distance between the PCREL location and the stub entry
21  *      so that the relocations can be fulfilled.
22  *      While calculating the final layout of the kernel module in memory, the
23  *      kernel module loader calls arch_mod_section_prepend() to request the
24  *      to be reserved amount of memory in front of each individual section.
25  *
26  *    - SEGREL32 handling
27  *      We are not doing SEGREL32 handling correctly. According to the ABI, we
28  *      should do a value offset, like this:
29  *			if (in_init(me, (void *)val))
30  *				val -= (uint32_t)me->mem[MOD_INIT_TEXT].base;
31  *			else
32  *				val -= (uint32_t)me->mem[MOD_TEXT].base;
33  *	However, SEGREL32 is used only for PARISC unwind entries, and we want
34  *	those entries to have an absolute address, and not just an offset.
35  *
36  *	The unwind table mechanism has the ability to specify an offset for
37  *	the unwind table; however, because we split off the init functions into
38  *	a different piece of memory, it is not possible to do this using a
39  *	single offset. Instead, we use the above hack for now.
40  */
41 
42 #include <linux/moduleloader.h>
43 #include <linux/elf.h>
44 #include <linux/fs.h>
45 #include <linux/ftrace.h>
46 #include <linux/string.h>
47 #include <linux/kernel.h>
48 #include <linux/bug.h>
49 #include <linux/mm.h>
50 #include <linux/slab.h>
51 
52 #include <asm/unwind.h>
53 #include <asm/sections.h>
54 
55 #define RELOC_REACHABLE(val, bits) \
56 	(( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 )  ||	\
57 	     ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
58 	0 : 1)
59 
60 #define CHECK_RELOC(val, bits) \
61 	if (!RELOC_REACHABLE(val, bits)) { \
62 		printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
63 		me->name, strtab + sym->st_name, (unsigned long)val, bits); \
64 		return -ENOEXEC;			\
65 	}
66 
67 /* Maximum number of GOT entries. We use a long displacement ldd from
68  * the bottom of the table, which has a maximum signed displacement of
69  * 0x3fff; however, since we're only going forward, this becomes
70  * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
71  * at most 1023 entries.
72  * To overcome this 14bit displacement with some kernel modules, we'll
73  * use instead the unusal 16bit displacement method (see reassemble_16a)
74  * which gives us a maximum positive displacement of 0x7fff, and as such
75  * allows us to allocate up to 4095 GOT entries. */
76 #define MAX_GOTS	4095
77 
78 #ifndef CONFIG_64BIT
79 struct got_entry {
80 	Elf32_Addr addr;
81 };
82 
83 struct stub_entry {
84 	Elf32_Word insns[2]; /* each stub entry has two insns */
85 };
86 #else
87 struct got_entry {
88 	Elf64_Addr addr;
89 };
90 
91 struct stub_entry {
92 	Elf64_Word insns[4]; /* each stub entry has four insns */
93 };
94 #endif
95 
96 /* Field selection types defined by hppa */
97 #define rnd(x)			(((x)+0x1000)&~0x1fff)
98 /* fsel: full 32 bits */
99 #define fsel(v,a)		((v)+(a))
100 /* lsel: select left 21 bits */
101 #define lsel(v,a)		(((v)+(a))>>11)
102 /* rsel: select right 11 bits */
103 #define rsel(v,a)		(((v)+(a))&0x7ff)
104 /* lrsel with rounding of addend to nearest 8k */
105 #define lrsel(v,a)		(((v)+rnd(a))>>11)
106 /* rrsel with rounding of addend to nearest 8k */
107 #define rrsel(v,a)		((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
108 
109 #define mask(x,sz)		((x) & ~((1<<(sz))-1))
110 
111 
112 /* The reassemble_* functions prepare an immediate value for
113    insertion into an opcode. pa-risc uses all sorts of weird bitfields
114    in the instruction to hold the value.  */
sign_unext(int x,int len)115 static inline int sign_unext(int x, int len)
116 {
117 	int len_ones;
118 
119 	len_ones = (1 << len) - 1;
120 	return x & len_ones;
121 }
122 
low_sign_unext(int x,int len)123 static inline int low_sign_unext(int x, int len)
124 {
125 	int sign, temp;
126 
127 	sign = (x >> (len-1)) & 1;
128 	temp = sign_unext(x, len-1);
129 	return (temp << 1) | sign;
130 }
131 
reassemble_14(int as14)132 static inline int reassemble_14(int as14)
133 {
134 	return (((as14 & 0x1fff) << 1) |
135 		((as14 & 0x2000) >> 13));
136 }
137 
reassemble_16a(int as16)138 static inline int reassemble_16a(int as16)
139 {
140 	int s, t;
141 
142 	/* Unusual 16-bit encoding, for wide mode only.  */
143 	t = (as16 << 1) & 0xffff;
144 	s = (as16 & 0x8000);
145 	return (t ^ s ^ (s >> 1)) | (s >> 15);
146 }
147 
148 
reassemble_17(int as17)149 static inline int reassemble_17(int as17)
150 {
151 	return (((as17 & 0x10000) >> 16) |
152 		((as17 & 0x0f800) << 5) |
153 		((as17 & 0x00400) >> 8) |
154 		((as17 & 0x003ff) << 3));
155 }
156 
reassemble_21(int as21)157 static inline int reassemble_21(int as21)
158 {
159 	return (((as21 & 0x100000) >> 20) |
160 		((as21 & 0x0ffe00) >> 8) |
161 		((as21 & 0x000180) << 7) |
162 		((as21 & 0x00007c) << 14) |
163 		((as21 & 0x000003) << 12));
164 }
165 
reassemble_22(int as22)166 static inline int reassemble_22(int as22)
167 {
168 	return (((as22 & 0x200000) >> 21) |
169 		((as22 & 0x1f0000) << 5) |
170 		((as22 & 0x00f800) << 5) |
171 		((as22 & 0x000400) >> 8) |
172 		((as22 & 0x0003ff) << 3));
173 }
174 
175 #ifndef CONFIG_64BIT
count_gots(const Elf_Rela * rela,unsigned long n)176 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
177 {
178 	return 0;
179 }
180 
count_fdescs(const Elf_Rela * rela,unsigned long n)181 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
182 {
183 	return 0;
184 }
185 
count_stubs(const Elf_Rela * rela,unsigned long n)186 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
187 {
188 	unsigned long cnt = 0;
189 
190 	for (; n > 0; n--, rela++)
191 	{
192 		switch (ELF32_R_TYPE(rela->r_info)) {
193 			case R_PARISC_PCREL17F:
194 			case R_PARISC_PCREL22F:
195 				cnt++;
196 		}
197 	}
198 
199 	return cnt;
200 }
201 #else
count_gots(const Elf_Rela * rela,unsigned long n)202 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
203 {
204 	unsigned long cnt = 0;
205 
206 	for (; n > 0; n--, rela++)
207 	{
208 		switch (ELF64_R_TYPE(rela->r_info)) {
209 			case R_PARISC_LTOFF21L:
210 			case R_PARISC_LTOFF14R:
211 			case R_PARISC_PCREL22F:
212 				cnt++;
213 		}
214 	}
215 
216 	return cnt;
217 }
218 
count_fdescs(const Elf_Rela * rela,unsigned long n)219 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
220 {
221 	unsigned long cnt = 0;
222 
223 	for (; n > 0; n--, rela++)
224 	{
225 		switch (ELF64_R_TYPE(rela->r_info)) {
226 			case R_PARISC_FPTR64:
227 				cnt++;
228 		}
229 	}
230 
231 	return cnt;
232 }
233 
count_stubs(const Elf_Rela * rela,unsigned long n)234 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
235 {
236 	unsigned long cnt = 0;
237 
238 	for (; n > 0; n--, rela++)
239 	{
240 		switch (ELF64_R_TYPE(rela->r_info)) {
241 			case R_PARISC_PCREL22F:
242 				cnt++;
243 		}
244 	}
245 
246 	return cnt;
247 }
248 #endif
249 
module_arch_freeing_init(struct module * mod)250 void module_arch_freeing_init(struct module *mod)
251 {
252 	kfree(mod->arch.section);
253 	mod->arch.section = NULL;
254 }
255 
256 /* Additional bytes needed in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)257 unsigned int arch_mod_section_prepend(struct module *mod,
258 				      unsigned int section)
259 {
260 	/* size needed for all stubs of this section (including
261 	 * one additional for correct alignment of the stubs) */
262 	return (mod->arch.section[section].stub_entries + 1)
263 		* sizeof(struct stub_entry);
264 }
265 
266 #define CONST
module_frob_arch_sections(CONST Elf_Ehdr * hdr,CONST Elf_Shdr * sechdrs,CONST char * secstrings,struct module * me)267 int module_frob_arch_sections(CONST Elf_Ehdr *hdr,
268 			      CONST Elf_Shdr *sechdrs,
269 			      CONST char *secstrings,
270 			      struct module *me)
271 {
272 	unsigned long gots = 0, fdescs = 0, len;
273 	unsigned int i;
274 	struct module_memory *mod_mem;
275 
276 	len = hdr->e_shnum * sizeof(me->arch.section[0]);
277 	me->arch.section = kzalloc(len, GFP_KERNEL);
278 	if (!me->arch.section)
279 		return -ENOMEM;
280 
281 	for (i = 1; i < hdr->e_shnum; i++) {
282 		const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
283 		unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
284 		unsigned int count, s;
285 
286 		if (strncmp(secstrings + sechdrs[i].sh_name,
287 			    ".PARISC.unwind", 14) == 0)
288 			me->arch.unwind_section = i;
289 
290 		if (sechdrs[i].sh_type != SHT_RELA)
291 			continue;
292 
293 		/* some of these are not relevant for 32-bit/64-bit
294 		 * we leave them here to make the code common. the
295 		 * compiler will do its thing and optimize out the
296 		 * stuff we don't need
297 		 */
298 		gots += count_gots(rels, nrels);
299 		fdescs += count_fdescs(rels, nrels);
300 
301 		/* XXX: By sorting the relocs and finding duplicate entries
302 		 *  we could reduce the number of necessary stubs and save
303 		 *  some memory. */
304 		count = count_stubs(rels, nrels);
305 		if (!count)
306 			continue;
307 
308 		/* so we need relocation stubs. reserve necessary memory. */
309 		/* sh_info gives the section for which we need to add stubs. */
310 		s = sechdrs[i].sh_info;
311 
312 		/* each code section should only have one relocation section */
313 		WARN_ON(me->arch.section[s].stub_entries);
314 
315 		/* store number of stubs we need for this section */
316 		me->arch.section[s].stub_entries += count;
317 	}
318 
319 	mod_mem = &me->mem[MOD_TEXT];
320 	/* align things a bit */
321 	mod_mem->size = ALIGN(mod_mem->size, 16);
322 	me->arch.got_offset = mod_mem->size;
323 	mod_mem->size += gots * sizeof(struct got_entry);
324 
325 	mod_mem->size = ALIGN(mod_mem->size, 16);
326 	me->arch.fdesc_offset = mod_mem->size;
327 	mod_mem->size += fdescs * sizeof(Elf_Fdesc);
328 
329 	me->arch.got_max = gots;
330 	me->arch.fdesc_max = fdescs;
331 
332 	return 0;
333 }
334 
335 #ifdef CONFIG_64BIT
get_got(struct module * me,unsigned long value,long addend)336 static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
337 {
338 	unsigned int i;
339 	struct got_entry *got;
340 
341 	value += addend;
342 
343 	BUG_ON(value == 0);
344 
345 	got = me->mem[MOD_TEXT].base + me->arch.got_offset;
346 	for (i = 0; got[i].addr; i++)
347 		if (got[i].addr == value)
348 			goto out;
349 
350 	BUG_ON(++me->arch.got_count > me->arch.got_max);
351 
352 	got[i].addr = value;
353  out:
354 	pr_debug("GOT ENTRY %d[%lx] val %lx\n", i, i*sizeof(struct got_entry),
355 	       value);
356 	return i * sizeof(struct got_entry);
357 }
358 #endif /* CONFIG_64BIT */
359 
360 #ifdef CONFIG_64BIT
get_fdesc(struct module * me,unsigned long value)361 static Elf_Addr get_fdesc(struct module *me, unsigned long value)
362 {
363 	Elf_Fdesc *fdesc = me->mem[MOD_TEXT].base + me->arch.fdesc_offset;
364 
365 	if (!value) {
366 		printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
367 		return 0;
368 	}
369 
370 	/* Look for existing fdesc entry. */
371 	while (fdesc->addr) {
372 		if (fdesc->addr == value)
373 			return (Elf_Addr)fdesc;
374 		fdesc++;
375 	}
376 
377 	BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);
378 
379 	/* Create new one */
380 	fdesc->addr = value;
381 	fdesc->gp = (Elf_Addr)me->mem[MOD_TEXT].base + me->arch.got_offset;
382 	return (Elf_Addr)fdesc;
383 }
384 #endif /* CONFIG_64BIT */
385 
386 enum elf_stub_type {
387 	ELF_STUB_GOT,
388 	ELF_STUB_MILLI,
389 	ELF_STUB_DIRECT,
390 };
391 
get_stub(struct module * me,unsigned long value,long addend,enum elf_stub_type stub_type,Elf_Addr loc0,unsigned int targetsec)392 static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
393 	enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
394 {
395 	struct stub_entry *stub;
396 	int __maybe_unused d;
397 
398 	/* initialize stub_offset to point in front of the section */
399 	if (!me->arch.section[targetsec].stub_offset) {
400 		loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
401 				sizeof(struct stub_entry);
402 		/* get correct alignment for the stubs */
403 		loc0 = ALIGN(loc0, sizeof(struct stub_entry));
404 		me->arch.section[targetsec].stub_offset = loc0;
405 	}
406 
407 	/* get address of stub entry */
408 	stub = (void *) me->arch.section[targetsec].stub_offset;
409 	me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);
410 
411 	/* do not write outside available stub area */
412 	BUG_ON(0 == me->arch.section[targetsec].stub_entries--);
413 
414 
415 #ifndef CONFIG_64BIT
416 /* for 32-bit the stub looks like this:
417  * 	ldil L'XXX,%r1
418  * 	be,n R'XXX(%sr4,%r1)
419  */
420 	//value = *(unsigned long *)((value + addend) & ~3); /* why? */
421 
422 	stub->insns[0] = 0x20200000;	/* ldil L'XXX,%r1	*/
423 	stub->insns[1] = 0xe0202002;	/* be,n R'XXX(%sr4,%r1)	*/
424 
425 	stub->insns[0] |= reassemble_21(lrsel(value, addend));
426 	stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);
427 
428 #else
429 /* for 64-bit we have three kinds of stubs:
430  * for normal function calls:
431  * 	ldd 0(%dp),%dp
432  * 	ldd 10(%dp), %r1
433  * 	bve (%r1)
434  * 	ldd 18(%dp), %dp
435  *
436  * for millicode:
437  * 	ldil 0, %r1
438  * 	ldo 0(%r1), %r1
439  * 	ldd 10(%r1), %r1
440  * 	bve,n (%r1)
441  *
442  * for direct branches (jumps between different section of the
443  * same module):
444  *	ldil 0, %r1
445  *	ldo 0(%r1), %r1
446  *	bve,n (%r1)
447  */
448 	switch (stub_type) {
449 	case ELF_STUB_GOT:
450 		d = get_got(me, value, addend);
451 		if (d <= 15) {
452 			/* Format 5 */
453 			stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp	*/
454 			stub->insns[0] |= low_sign_unext(d, 5) << 16;
455 		} else {
456 			/* Format 3 */
457 			stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp	*/
458 			stub->insns[0] |= reassemble_16a(d);
459 		}
460 		stub->insns[1] = 0x53610020;	/* ldd 10(%dp),%r1	*/
461 		stub->insns[2] = 0xe820d000;	/* bve (%r1)		*/
462 		stub->insns[3] = 0x537b0030;	/* ldd 18(%dp),%dp	*/
463 		break;
464 	case ELF_STUB_MILLI:
465 		stub->insns[0] = 0x20200000;	/* ldil 0,%r1		*/
466 		stub->insns[1] = 0x34210000;	/* ldo 0(%r1), %r1	*/
467 		stub->insns[2] = 0x50210020;	/* ldd 10(%r1),%r1	*/
468 		stub->insns[3] = 0xe820d002;	/* bve,n (%r1)		*/
469 
470 		stub->insns[0] |= reassemble_21(lrsel(value, addend));
471 		stub->insns[1] |= reassemble_14(rrsel(value, addend));
472 		break;
473 	case ELF_STUB_DIRECT:
474 		stub->insns[0] = 0x20200000;    /* ldil 0,%r1           */
475 		stub->insns[1] = 0x34210000;    /* ldo 0(%r1), %r1      */
476 		stub->insns[2] = 0xe820d002;    /* bve,n (%r1)          */
477 
478 		stub->insns[0] |= reassemble_21(lrsel(value, addend));
479 		stub->insns[1] |= reassemble_14(rrsel(value, addend));
480 		break;
481 	}
482 
483 #endif
484 
485 	return (Elf_Addr)stub;
486 }
487 
488 #ifndef CONFIG_64BIT
apply_relocate_add(Elf_Shdr * sechdrs,const char * strtab,unsigned int symindex,unsigned int relsec,struct module * me)489 int apply_relocate_add(Elf_Shdr *sechdrs,
490 		       const char *strtab,
491 		       unsigned int symindex,
492 		       unsigned int relsec,
493 		       struct module *me)
494 {
495 	int i;
496 	Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
497 	Elf32_Sym *sym;
498 	Elf32_Word *loc;
499 	Elf32_Addr val;
500 	Elf32_Sword addend;
501 	Elf32_Addr dot;
502 	Elf_Addr loc0;
503 	unsigned int targetsec = sechdrs[relsec].sh_info;
504 	//unsigned long dp = (unsigned long)$global$;
505 	register unsigned long dp asm ("r27");
506 
507 	pr_debug("Applying relocate section %u to %u\n", relsec,
508 	       targetsec);
509 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
510 		/* This is where to make the change */
511 		loc = (void *)sechdrs[targetsec].sh_addr
512 		      + rel[i].r_offset;
513 		/* This is the start of the target section */
514 		loc0 = sechdrs[targetsec].sh_addr;
515 		/* This is the symbol it is referring to */
516 		sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
517 			+ ELF32_R_SYM(rel[i].r_info);
518 		if (!sym->st_value) {
519 			printk(KERN_WARNING "%s: Unknown symbol %s\n",
520 			       me->name, strtab + sym->st_name);
521 			return -ENOENT;
522 		}
523 		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
524 		dot =  (Elf32_Addr)loc & ~0x03;
525 
526 		val = sym->st_value;
527 		addend = rel[i].r_addend;
528 
529 #if 0
530 #define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
531 		pr_debug("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
532 			strtab + sym->st_name,
533 			(uint32_t)loc, val, addend,
534 			r(R_PARISC_PLABEL32)
535 			r(R_PARISC_DIR32)
536 			r(R_PARISC_DIR21L)
537 			r(R_PARISC_DIR14R)
538 			r(R_PARISC_SEGREL32)
539 			r(R_PARISC_DPREL21L)
540 			r(R_PARISC_DPREL14R)
541 			r(R_PARISC_PCREL17F)
542 			r(R_PARISC_PCREL22F)
543 			"UNKNOWN");
544 #undef r
545 #endif
546 
547 		switch (ELF32_R_TYPE(rel[i].r_info)) {
548 		case R_PARISC_PLABEL32:
549 			/* 32-bit function address */
550 			/* no function descriptors... */
551 			*loc = fsel(val, addend);
552 			break;
553 		case R_PARISC_DIR32:
554 			/* direct 32-bit ref */
555 			*loc = fsel(val, addend);
556 			break;
557 		case R_PARISC_DIR21L:
558 			/* left 21 bits of effective address */
559 			val = lrsel(val, addend);
560 			*loc = mask(*loc, 21) | reassemble_21(val);
561 			break;
562 		case R_PARISC_DIR14R:
563 			/* right 14 bits of effective address */
564 			val = rrsel(val, addend);
565 			*loc = mask(*loc, 14) | reassemble_14(val);
566 			break;
567 		case R_PARISC_SEGREL32:
568 			/* 32-bit segment relative address */
569 			/* See note about special handling of SEGREL32 at
570 			 * the beginning of this file.
571 			 */
572 			*loc = fsel(val, addend);
573 			break;
574 		case R_PARISC_SECREL32:
575 			/* 32-bit section relative address. */
576 			*loc = fsel(val, addend);
577 			break;
578 		case R_PARISC_DPREL21L:
579 			/* left 21 bit of relative address */
580 			val = lrsel(val - dp, addend);
581 			*loc = mask(*loc, 21) | reassemble_21(val);
582 			break;
583 		case R_PARISC_DPREL14R:
584 			/* right 14 bit of relative address */
585 			val = rrsel(val - dp, addend);
586 			*loc = mask(*loc, 14) | reassemble_14(val);
587 			break;
588 		case R_PARISC_PCREL17F:
589 			/* 17-bit PC relative address */
590 			/* calculate direct call offset */
591 			val += addend;
592 			val = (val - dot - 8)/4;
593 			if (!RELOC_REACHABLE(val, 17)) {
594 				/* direct distance too far, create
595 				 * stub entry instead */
596 				val = get_stub(me, sym->st_value, addend,
597 					ELF_STUB_DIRECT, loc0, targetsec);
598 				val = (val - dot - 8)/4;
599 				CHECK_RELOC(val, 17);
600 			}
601 			*loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
602 			break;
603 		case R_PARISC_PCREL22F:
604 			/* 22-bit PC relative address; only defined for pa20 */
605 			/* calculate direct call offset */
606 			val += addend;
607 			val = (val - dot - 8)/4;
608 			if (!RELOC_REACHABLE(val, 22)) {
609 				/* direct distance too far, create
610 				 * stub entry instead */
611 				val = get_stub(me, sym->st_value, addend,
612 					ELF_STUB_DIRECT, loc0, targetsec);
613 				val = (val - dot - 8)/4;
614 				CHECK_RELOC(val, 22);
615 			}
616 			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
617 			break;
618 		case R_PARISC_PCREL32:
619 			/* 32-bit PC relative address */
620 			*loc = val - dot - 8 + addend;
621 			break;
622 
623 		default:
624 			printk(KERN_ERR "module %s: Unknown relocation: %u\n",
625 			       me->name, ELF32_R_TYPE(rel[i].r_info));
626 			return -ENOEXEC;
627 		}
628 	}
629 
630 	return 0;
631 }
632 
633 #else
apply_relocate_add(Elf_Shdr * sechdrs,const char * strtab,unsigned int symindex,unsigned int relsec,struct module * me)634 int apply_relocate_add(Elf_Shdr *sechdrs,
635 		       const char *strtab,
636 		       unsigned int symindex,
637 		       unsigned int relsec,
638 		       struct module *me)
639 {
640 	int i;
641 	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
642 	Elf64_Sym *sym;
643 	Elf64_Word *loc;
644 	Elf64_Xword *loc64;
645 	Elf64_Addr val;
646 	Elf64_Sxword addend;
647 	Elf64_Addr dot;
648 	Elf_Addr loc0;
649 	unsigned int targetsec = sechdrs[relsec].sh_info;
650 
651 	pr_debug("Applying relocate section %u to %u\n", relsec,
652 	       targetsec);
653 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
654 		/* This is where to make the change */
655 		loc = (void *)sechdrs[targetsec].sh_addr
656 		      + rel[i].r_offset;
657 		/* This is the start of the target section */
658 		loc0 = sechdrs[targetsec].sh_addr;
659 		/* This is the symbol it is referring to */
660 		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
661 			+ ELF64_R_SYM(rel[i].r_info);
662 		if (!sym->st_value) {
663 			printk(KERN_WARNING "%s: Unknown symbol %s\n",
664 			       me->name, strtab + sym->st_name);
665 			return -ENOENT;
666 		}
667 		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
668 		dot = (Elf64_Addr)loc & ~0x03;
669 		loc64 = (Elf64_Xword *)loc;
670 
671 		val = sym->st_value;
672 		addend = rel[i].r_addend;
673 
674 #if 0
675 #define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
676 		printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
677 			strtab + sym->st_name,
678 			loc, val, addend,
679 			r(R_PARISC_LTOFF14R)
680 			r(R_PARISC_LTOFF21L)
681 			r(R_PARISC_PCREL22F)
682 			r(R_PARISC_DIR64)
683 			r(R_PARISC_SEGREL32)
684 			r(R_PARISC_FPTR64)
685 			"UNKNOWN");
686 #undef r
687 #endif
688 
689 		switch (ELF64_R_TYPE(rel[i].r_info)) {
690 		case R_PARISC_LTOFF21L:
691 			/* LT-relative; left 21 bits */
692 			val = get_got(me, val, addend);
693 			pr_debug("LTOFF21L Symbol %s loc %p val %llx\n",
694 			       strtab + sym->st_name,
695 			       loc, val);
696 			val = lrsel(val, 0);
697 			*loc = mask(*loc, 21) | reassemble_21(val);
698 			break;
699 		case R_PARISC_LTOFF14R:
700 			/* L(ltoff(val+addend)) */
701 			/* LT-relative; right 14 bits */
702 			val = get_got(me, val, addend);
703 			val = rrsel(val, 0);
704 			pr_debug("LTOFF14R Symbol %s loc %p val %llx\n",
705 			       strtab + sym->st_name,
706 			       loc, val);
707 			*loc = mask(*loc, 14) | reassemble_14(val);
708 			break;
709 		case R_PARISC_PCREL22F:
710 			/* PC-relative; 22 bits */
711 			pr_debug("PCREL22F Symbol %s loc %p val %llx\n",
712 			       strtab + sym->st_name,
713 			       loc, val);
714 			val += addend;
715 			/* can we reach it locally? */
716 			if (within_module(val, me)) {
717 				/* this is the case where the symbol is local
718 				 * to the module, but in a different section,
719 				 * so stub the jump in case it's more than 22
720 				 * bits away */
721 				val = (val - dot - 8)/4;
722 				if (!RELOC_REACHABLE(val, 22)) {
723 					/* direct distance too far, create
724 					 * stub entry instead */
725 					val = get_stub(me, sym->st_value,
726 						addend, ELF_STUB_DIRECT,
727 						loc0, targetsec);
728 				} else {
729 					/* Ok, we can reach it directly. */
730 					val = sym->st_value;
731 					val += addend;
732 				}
733 			} else {
734 				val = sym->st_value;
735 				if (strncmp(strtab + sym->st_name, "$$", 2)
736 				    == 0)
737 					val = get_stub(me, val, addend, ELF_STUB_MILLI,
738 						       loc0, targetsec);
739 				else
740 					val = get_stub(me, val, addend, ELF_STUB_GOT,
741 						       loc0, targetsec);
742 			}
743 			pr_debug("STUB FOR %s loc %px, val %llx+%llx at %llx\n",
744 			       strtab + sym->st_name, loc, sym->st_value,
745 			       addend, val);
746 			val = (val - dot - 8)/4;
747 			CHECK_RELOC(val, 22);
748 			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
749 			break;
750 		case R_PARISC_PCREL32:
751 			/* 32-bit PC relative address */
752 			*loc = val - dot - 8 + addend;
753 			break;
754 		case R_PARISC_PCREL64:
755 			/* 64-bit PC relative address */
756 			*loc64 = val - dot - 8 + addend;
757 			break;
758 		case R_PARISC_DIR64:
759 			/* 64-bit effective address */
760 			*loc64 = val + addend;
761 			break;
762 		case R_PARISC_SEGREL32:
763 			/* 32-bit segment relative address */
764 			/* See note about special handling of SEGREL32 at
765 			 * the beginning of this file.
766 			 */
767 			*loc = fsel(val, addend);
768 			break;
769 		case R_PARISC_SECREL32:
770 			/* 32-bit section relative address. */
771 			*loc = fsel(val, addend);
772 			break;
773 		case R_PARISC_FPTR64:
774 			/* 64-bit function address */
775 			if (within_module(val + addend, me)) {
776 				*loc64 = get_fdesc(me, val+addend);
777 				pr_debug("FDESC for %s at %llx points to %llx\n",
778 				       strtab + sym->st_name, *loc64,
779 				       ((Elf_Fdesc *)*loc64)->addr);
780 			} else {
781 				/* if the symbol is not local to this
782 				 * module then val+addend is a pointer
783 				 * to the function descriptor */
784 				pr_debug("Non local FPTR64 Symbol %s loc %p val %llx\n",
785 				       strtab + sym->st_name,
786 				       loc, val);
787 				*loc64 = val + addend;
788 			}
789 			break;
790 
791 		default:
792 			printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
793 			       me->name, ELF64_R_TYPE(rel[i].r_info));
794 			return -ENOEXEC;
795 		}
796 	}
797 	return 0;
798 }
799 #endif
800 
801 static void
register_unwind_table(struct module * me,const Elf_Shdr * sechdrs)802 register_unwind_table(struct module *me,
803 		      const Elf_Shdr *sechdrs)
804 {
805 	unsigned char *table, *end;
806 	unsigned long gp;
807 
808 	if (!me->arch.unwind_section)
809 		return;
810 
811 	table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
812 	end = table + sechdrs[me->arch.unwind_section].sh_size;
813 	gp = (Elf_Addr)me->mem[MOD_TEXT].base + me->arch.got_offset;
814 
815 	pr_debug("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
816 	       me->arch.unwind_section, table, end, gp);
817 	me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
818 }
819 
820 static void
deregister_unwind_table(struct module * me)821 deregister_unwind_table(struct module *me)
822 {
823 	if (me->arch.unwind)
824 		unwind_table_remove(me->arch.unwind);
825 }
826 
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)827 int module_finalize(const Elf_Ehdr *hdr,
828 		    const Elf_Shdr *sechdrs,
829 		    struct module *me)
830 {
831 	int i;
832 	unsigned long nsyms;
833 	const char *strtab = NULL;
834 	const Elf_Shdr *s;
835 	char *secstrings;
836 	int symindex __maybe_unused = -1;
837 	Elf_Sym *newptr, *oldptr;
838 	Elf_Shdr *symhdr = NULL;
839 #ifdef DEBUG
840 	Elf_Fdesc *entry;
841 	u32 *addr;
842 
843 	entry = (Elf_Fdesc *)me->init;
844 	printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
845 	       entry->gp, entry->addr);
846 	addr = (u32 *)entry->addr;
847 	printk("INSNS: %x %x %x %x\n",
848 	       addr[0], addr[1], addr[2], addr[3]);
849 	printk("got entries used %ld, gots max %ld\n"
850 	       "fdescs used %ld, fdescs max %ld\n",
851 	       me->arch.got_count, me->arch.got_max,
852 	       me->arch.fdesc_count, me->arch.fdesc_max);
853 #endif
854 
855 	register_unwind_table(me, sechdrs);
856 
857 	/* haven't filled in me->symtab yet, so have to find it
858 	 * ourselves */
859 	for (i = 1; i < hdr->e_shnum; i++) {
860 		if(sechdrs[i].sh_type == SHT_SYMTAB
861 		   && (sechdrs[i].sh_flags & SHF_ALLOC)) {
862 			int strindex = sechdrs[i].sh_link;
863 			symindex = i;
864 			/* FIXME: AWFUL HACK
865 			 * The cast is to drop the const from
866 			 * the sechdrs pointer */
867 			symhdr = (Elf_Shdr *)&sechdrs[i];
868 			strtab = (char *)sechdrs[strindex].sh_addr;
869 			break;
870 		}
871 	}
872 
873 	pr_debug("module %s: strtab %p, symhdr %p\n",
874 	       me->name, strtab, symhdr);
875 
876 	if(me->arch.got_count > MAX_GOTS) {
877 		printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
878 				me->name, me->arch.got_count, MAX_GOTS);
879 		return -EINVAL;
880 	}
881 
882 	kfree(me->arch.section);
883 	me->arch.section = NULL;
884 
885 	/* no symbol table */
886 	if(symhdr == NULL)
887 		return 0;
888 
889 	oldptr = (void *)symhdr->sh_addr;
890 	newptr = oldptr + 1;	/* we start counting at 1 */
891 	nsyms = symhdr->sh_size / sizeof(Elf_Sym);
892 	pr_debug("OLD num_symtab %lu\n", nsyms);
893 
894 	for (i = 1; i < nsyms; i++) {
895 		oldptr++;	/* note, count starts at 1 so preincrement */
896 		if(strncmp(strtab + oldptr->st_name,
897 			      ".L", 2) == 0)
898 			continue;
899 
900 		if(newptr != oldptr)
901 			*newptr++ = *oldptr;
902 		else
903 			newptr++;
904 
905 	}
906 	nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
907 	pr_debug("NEW num_symtab %lu\n", nsyms);
908 	symhdr->sh_size = nsyms * sizeof(Elf_Sym);
909 
910 	/* find .altinstructions section */
911 	secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
912 	for (s = sechdrs; s < sechdrs + hdr->e_shnum; s++) {
913 		void *aseg = (void *) s->sh_addr;
914 		char *secname = secstrings + s->sh_name;
915 
916 		if (!strcmp(".altinstructions", secname))
917 			/* patch .altinstructions */
918 			apply_alternatives(aseg, aseg + s->sh_size, me->name);
919 
920 #ifdef CONFIG_DYNAMIC_FTRACE
921 		/* For 32 bit kernels we're compiling modules with
922 		 * -ffunction-sections so we must relocate the addresses in the
923 		 *  ftrace callsite section.
924 		 */
925 		if (symindex != -1 && !strcmp(secname, FTRACE_CALLSITE_SECTION)) {
926 			int err;
927 			if (s->sh_type == SHT_REL)
928 				err = apply_relocate((Elf_Shdr *)sechdrs,
929 							strtab, symindex,
930 							s - sechdrs, me);
931 			else if (s->sh_type == SHT_RELA)
932 				err = apply_relocate_add((Elf_Shdr *)sechdrs,
933 							strtab, symindex,
934 							s - sechdrs, me);
935 			if (err)
936 				return err;
937 		}
938 #endif
939 	}
940 	return 0;
941 }
942 
module_arch_cleanup(struct module * mod)943 void module_arch_cleanup(struct module *mod)
944 {
945 	deregister_unwind_table(mod);
946 }
947 
948 #ifdef CONFIG_64BIT
dereference_module_function_descriptor(struct module * mod,void * ptr)949 void *dereference_module_function_descriptor(struct module *mod, void *ptr)
950 {
951 	unsigned long start_opd = (Elf64_Addr)mod->mem[MOD_TEXT].base +
952 				   mod->arch.fdesc_offset;
953 	unsigned long end_opd = start_opd +
954 				mod->arch.fdesc_count * sizeof(Elf64_Fdesc);
955 
956 	if (ptr < (void *)start_opd || ptr >= (void *)end_opd)
957 		return ptr;
958 
959 	return dereference_function_descriptor(ptr);
960 }
961 #endif
962