1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * sata_mv.c - Marvell SATA support
4 *
5 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
6 * Copyright 2005: EMC Corporation, all rights reserved.
7 * Copyright 2005 Red Hat, Inc. All rights reserved.
8 *
9 * Originally written by Brett Russ.
10 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
11 *
12 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
13 */
14
15 /*
16 * sata_mv TODO list:
17 *
18 * --> Develop a low-power-consumption strategy, and implement it.
19 *
20 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
21 *
22 * --> [Experiment, Marvell value added] Is it possible to use target
23 * mode to cross-connect two Linux boxes with Marvell cards? If so,
24 * creating LibATA target mode support would be very interesting.
25 *
26 * Target mode, for those without docs, is the ability to directly
27 * connect two SATA ports.
28 */
29
30 /*
31 * 80x1-B2 errata PCI#11:
32 *
33 * Users of the 6041/6081 Rev.B2 chips (current is C0)
34 * should be careful to insert those cards only onto PCI-X bus #0,
35 * and only in device slots 0..7, not higher. The chips may not
36 * work correctly otherwise (note: this is a pretty rare condition).
37 */
38
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/pci.h>
42 #include <linux/init.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/dmapool.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/device.h>
49 #include <linux/clk.h>
50 #include <linux/phy/phy.h>
51 #include <linux/platform_device.h>
52 #include <linux/ata_platform.h>
53 #include <linux/mbus.h>
54 #include <linux/bitops.h>
55 #include <linux/gfp.h>
56 #include <linux/of.h>
57 #include <linux/of_irq.h>
58 #include <scsi/scsi_host.h>
59 #include <scsi/scsi_cmnd.h>
60 #include <scsi/scsi_device.h>
61 #include <linux/libata.h>
62
63 #define DRV_NAME "sata_mv"
64 #define DRV_VERSION "1.28"
65
66 /*
67 * module options
68 */
69
70 #ifdef CONFIG_PCI
71 static int msi;
72 module_param(msi, int, S_IRUGO);
73 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
74 #endif
75
76 static int irq_coalescing_io_count;
77 module_param(irq_coalescing_io_count, int, S_IRUGO);
78 MODULE_PARM_DESC(irq_coalescing_io_count,
79 "IRQ coalescing I/O count threshold (0..255)");
80
81 static int irq_coalescing_usecs;
82 module_param(irq_coalescing_usecs, int, S_IRUGO);
83 MODULE_PARM_DESC(irq_coalescing_usecs,
84 "IRQ coalescing time threshold in usecs");
85
86 enum {
87 /* BAR's are enumerated in terms of pci_resource_start() terms */
88 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
89 MV_IO_BAR = 2, /* offset 0x18: IO space */
90 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
91
92 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
93 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
94
95 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
96 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
97 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
98 MAX_COAL_IO_COUNT = 255, /* completed I/O count */
99
100 MV_PCI_REG_BASE = 0,
101
102 /*
103 * Per-chip ("all ports") interrupt coalescing feature.
104 * This is only for GEN_II / GEN_IIE hardware.
105 *
106 * Coalescing defers the interrupt until either the IO_THRESHOLD
107 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
108 */
109 COAL_REG_BASE = 0x18000,
110 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08),
111 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
112
113 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc),
114 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
115
116 /*
117 * Registers for the (unused here) transaction coalescing feature:
118 */
119 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88),
120 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c),
121
122 SATAHC0_REG_BASE = 0x20000,
123 FLASH_CTL = 0x1046c,
124 GPIO_PORT_CTL = 0x104f0,
125 RESET_CFG = 0x180d8,
126
127 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
128 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
129 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
130 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
131
132 MV_MAX_Q_DEPTH = 32,
133 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
134
135 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
136 * CRPB needs alignment on a 256B boundary. Size == 256B
137 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
138 */
139 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
140 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
141 MV_MAX_SG_CT = 256,
142 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
143
144 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
145 MV_PORT_HC_SHIFT = 2,
146 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
147 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
148 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
149
150 /* Host Flags */
151 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
152
153 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
154
155 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
156
157 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
158 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
159
160 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
161
162 CRQB_FLAG_READ = (1 << 0),
163 CRQB_TAG_SHIFT = 1,
164 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
165 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
166 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
167 CRQB_CMD_ADDR_SHIFT = 8,
168 CRQB_CMD_CS = (0x2 << 11),
169 CRQB_CMD_LAST = (1 << 15),
170
171 CRPB_FLAG_STATUS_SHIFT = 8,
172 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
173 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
174
175 EPRD_FLAG_END_OF_TBL = (1 << 31),
176
177 /* PCI interface registers */
178
179 MV_PCI_COMMAND = 0xc00,
180 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
181 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
182
183 PCI_MAIN_CMD_STS = 0xd30,
184 STOP_PCI_MASTER = (1 << 2),
185 PCI_MASTER_EMPTY = (1 << 3),
186 GLOB_SFT_RST = (1 << 4),
187
188 MV_PCI_MODE = 0xd00,
189 MV_PCI_MODE_MASK = 0x30,
190
191 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
192 MV_PCI_DISC_TIMER = 0xd04,
193 MV_PCI_MSI_TRIGGER = 0xc38,
194 MV_PCI_SERR_MASK = 0xc28,
195 MV_PCI_XBAR_TMOUT = 0x1d04,
196 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
197 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
198 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
199 MV_PCI_ERR_COMMAND = 0x1d50,
200
201 PCI_IRQ_CAUSE = 0x1d58,
202 PCI_IRQ_MASK = 0x1d5c,
203 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
204
205 PCIE_IRQ_CAUSE = 0x1900,
206 PCIE_IRQ_MASK = 0x1910,
207 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
208
209 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
210 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60,
211 PCI_HC_MAIN_IRQ_MASK = 0x1d64,
212 SOC_HC_MAIN_IRQ_CAUSE = 0x20020,
213 SOC_HC_MAIN_IRQ_MASK = 0x20024,
214 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
215 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
216 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
217 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
218 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
219 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
220 PCI_ERR = (1 << 18),
221 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
222 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
223 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
224 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
225 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
226 GPIO_INT = (1 << 22),
227 SELF_INT = (1 << 23),
228 TWSI_INT = (1 << 24),
229 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
230 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
231 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
232
233 /* SATAHC registers */
234 HC_CFG = 0x00,
235
236 HC_IRQ_CAUSE = 0x14,
237 DMA_IRQ = (1 << 0), /* shift by port # */
238 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
239 DEV_IRQ = (1 << 8), /* shift by port # */
240
241 /*
242 * Per-HC (Host-Controller) interrupt coalescing feature.
243 * This is present on all chip generations.
244 *
245 * Coalescing defers the interrupt until either the IO_THRESHOLD
246 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
247 */
248 HC_IRQ_COAL_IO_THRESHOLD = 0x000c,
249 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010,
250
251 SOC_LED_CTRL = 0x2c,
252 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
253 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
254 /* with dev activity LED */
255
256 /* Shadow block registers */
257 SHD_BLK = 0x100,
258 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */
259
260 /* SATA registers */
261 SATA_STATUS = 0x300, /* ctrl, err regs follow status */
262 SATA_ACTIVE = 0x350,
263 FIS_IRQ_CAUSE = 0x364,
264 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */
265
266 LTMODE = 0x30c, /* requires read-after-write */
267 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
268
269 PHY_MODE2 = 0x330,
270 PHY_MODE3 = 0x310,
271
272 PHY_MODE4 = 0x314, /* requires read-after-write */
273 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
274 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
275 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
276 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
277
278 SATA_IFCTL = 0x344,
279 SATA_TESTCTL = 0x348,
280 SATA_IFSTAT = 0x34c,
281 VENDOR_UNIQUE_FIS = 0x35c,
282
283 FISCFG = 0x360,
284 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
285 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
286
287 PHY_MODE9_GEN2 = 0x398,
288 PHY_MODE9_GEN1 = 0x39c,
289 PHYCFG_OFS = 0x3a0, /* only in 65n devices */
290
291 MV5_PHY_MODE = 0x74,
292 MV5_LTMODE = 0x30,
293 MV5_PHY_CTL = 0x0C,
294 SATA_IFCFG = 0x050,
295 LP_PHY_CTL = 0x058,
296 LP_PHY_CTL_PIN_PU_PLL = (1 << 0),
297 LP_PHY_CTL_PIN_PU_RX = (1 << 1),
298 LP_PHY_CTL_PIN_PU_TX = (1 << 2),
299 LP_PHY_CTL_GEN_TX_3G = (1 << 5),
300 LP_PHY_CTL_GEN_RX_3G = (1 << 9),
301
302 MV_M2_PREAMP_MASK = 0x7e0,
303
304 /* Port registers */
305 EDMA_CFG = 0,
306 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
307 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
308 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
309 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
310 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
311 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
312 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
313
314 EDMA_ERR_IRQ_CAUSE = 0x8,
315 EDMA_ERR_IRQ_MASK = 0xc,
316 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
317 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
318 EDMA_ERR_DEV = (1 << 2), /* device error */
319 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
320 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
321 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
322 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
323 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
324 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
325 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
326 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
327 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
328 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
329 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
330
331 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
332 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
333 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
334 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
335 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
336
337 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
338
339 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
340 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
341 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
342 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
343 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
344 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
345
346 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
347
348 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
349 EDMA_ERR_OVERRUN_5 = (1 << 5),
350 EDMA_ERR_UNDERRUN_5 = (1 << 6),
351
352 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
353 EDMA_ERR_LNK_CTRL_RX_1 |
354 EDMA_ERR_LNK_CTRL_RX_3 |
355 EDMA_ERR_LNK_CTRL_TX,
356
357 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
358 EDMA_ERR_PRD_PAR |
359 EDMA_ERR_DEV_DCON |
360 EDMA_ERR_DEV_CON |
361 EDMA_ERR_SERR |
362 EDMA_ERR_SELF_DIS |
363 EDMA_ERR_CRQB_PAR |
364 EDMA_ERR_CRPB_PAR |
365 EDMA_ERR_INTRL_PAR |
366 EDMA_ERR_IORDY |
367 EDMA_ERR_LNK_CTRL_RX_2 |
368 EDMA_ERR_LNK_DATA_RX |
369 EDMA_ERR_LNK_DATA_TX |
370 EDMA_ERR_TRANS_PROTO,
371
372 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
373 EDMA_ERR_PRD_PAR |
374 EDMA_ERR_DEV_DCON |
375 EDMA_ERR_DEV_CON |
376 EDMA_ERR_OVERRUN_5 |
377 EDMA_ERR_UNDERRUN_5 |
378 EDMA_ERR_SELF_DIS_5 |
379 EDMA_ERR_CRQB_PAR |
380 EDMA_ERR_CRPB_PAR |
381 EDMA_ERR_INTRL_PAR |
382 EDMA_ERR_IORDY,
383
384 EDMA_REQ_Q_BASE_HI = 0x10,
385 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */
386
387 EDMA_REQ_Q_OUT_PTR = 0x18,
388 EDMA_REQ_Q_PTR_SHIFT = 5,
389
390 EDMA_RSP_Q_BASE_HI = 0x1c,
391 EDMA_RSP_Q_IN_PTR = 0x20,
392 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */
393 EDMA_RSP_Q_PTR_SHIFT = 3,
394
395 EDMA_CMD = 0x28, /* EDMA command register */
396 EDMA_EN = (1 << 0), /* enable EDMA */
397 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
398 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
399
400 EDMA_STATUS = 0x30, /* EDMA engine status */
401 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
402 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
403
404 EDMA_IORDY_TMOUT = 0x34,
405 EDMA_ARB_CFG = 0x38,
406
407 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */
408 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */
409
410 BMDMA_CMD = 0x224, /* bmdma command register */
411 BMDMA_STATUS = 0x228, /* bmdma status register */
412 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */
413 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */
414
415 /* Host private flags (hp_flags) */
416 MV_HP_FLAG_MSI = (1 << 0),
417 MV_HP_ERRATA_50XXB0 = (1 << 1),
418 MV_HP_ERRATA_50XXB2 = (1 << 2),
419 MV_HP_ERRATA_60X1B2 = (1 << 3),
420 MV_HP_ERRATA_60X1C0 = (1 << 4),
421 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
422 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
423 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
424 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
425 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
426 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
427 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
428 MV_HP_FIX_LP_PHY_CTL = (1 << 13), /* fix speed in LP_PHY_CTL ? */
429
430 /* Port private flags (pp_flags) */
431 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
432 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
433 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
434 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
435 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
436 };
437
438 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
439 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
440 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
441 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
442 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
443
444 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
445 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
446
447 enum {
448 /* DMA boundary 0xffff is required by the s/g splitting
449 * we need on /length/ in mv_fill-sg().
450 */
451 MV_DMA_BOUNDARY = 0xffffU,
452
453 /* mask of register bits containing lower 32 bits
454 * of EDMA request queue DMA address
455 */
456 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
457
458 /* ditto, for response queue */
459 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
460 };
461
462 enum chip_type {
463 chip_504x,
464 chip_508x,
465 chip_5080,
466 chip_604x,
467 chip_608x,
468 chip_6042,
469 chip_7042,
470 chip_soc,
471 };
472
473 /* Command ReQuest Block: 32B */
474 struct mv_crqb {
475 __le32 sg_addr;
476 __le32 sg_addr_hi;
477 __le16 ctrl_flags;
478 __le16 ata_cmd[11];
479 };
480
481 struct mv_crqb_iie {
482 __le32 addr;
483 __le32 addr_hi;
484 __le32 flags;
485 __le32 len;
486 __le32 ata_cmd[4];
487 };
488
489 /* Command ResPonse Block: 8B */
490 struct mv_crpb {
491 __le16 id;
492 __le16 flags;
493 __le32 tmstmp;
494 };
495
496 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
497 struct mv_sg {
498 __le32 addr;
499 __le32 flags_size;
500 __le32 addr_hi;
501 __le32 reserved;
502 };
503
504 /*
505 * We keep a local cache of a few frequently accessed port
506 * registers here, to avoid having to read them (very slow)
507 * when switching between EDMA and non-EDMA modes.
508 */
509 struct mv_cached_regs {
510 u32 fiscfg;
511 u32 ltmode;
512 u32 haltcond;
513 u32 unknown_rsvd;
514 };
515
516 struct mv_port_priv {
517 struct mv_crqb *crqb;
518 dma_addr_t crqb_dma;
519 struct mv_crpb *crpb;
520 dma_addr_t crpb_dma;
521 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
522 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
523
524 unsigned int req_idx;
525 unsigned int resp_idx;
526
527 u32 pp_flags;
528 struct mv_cached_regs cached;
529 unsigned int delayed_eh_pmp_map;
530 };
531
532 struct mv_port_signal {
533 u32 amps;
534 u32 pre;
535 };
536
537 struct mv_host_priv {
538 u32 hp_flags;
539 unsigned int board_idx;
540 u32 main_irq_mask;
541 struct mv_port_signal signal[8];
542 const struct mv_hw_ops *ops;
543 int n_ports;
544 void __iomem *base;
545 void __iomem *main_irq_cause_addr;
546 void __iomem *main_irq_mask_addr;
547 u32 irq_cause_offset;
548 u32 irq_mask_offset;
549 u32 unmask_all_irqs;
550
551 /*
552 * Needed on some devices that require their clocks to be enabled.
553 * These are optional: if the platform device does not have any
554 * clocks, they won't be used. Also, if the underlying hardware
555 * does not support the common clock framework (CONFIG_HAVE_CLK=n),
556 * all the clock operations become no-ops (see clk.h).
557 */
558 struct clk *clk;
559 struct clk **port_clks;
560 /*
561 * Some devices have a SATA PHY which can be enabled/disabled
562 * in order to save power. These are optional: if the platform
563 * devices does not have any phy, they won't be used.
564 */
565 struct phy **port_phys;
566 /*
567 * These consistent DMA memory pools give us guaranteed
568 * alignment for hardware-accessed data structures,
569 * and less memory waste in accomplishing the alignment.
570 */
571 struct dma_pool *crqb_pool;
572 struct dma_pool *crpb_pool;
573 struct dma_pool *sg_tbl_pool;
574 };
575
576 struct mv_hw_ops {
577 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
578 unsigned int port);
579 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
580 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
581 void __iomem *mmio);
582 int (*reset_hc)(struct ata_host *host, void __iomem *mmio,
583 unsigned int n_hc);
584 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
585 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
586 };
587
588 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
589 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
590 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
591 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
592 static int mv_port_start(struct ata_port *ap);
593 static void mv_port_stop(struct ata_port *ap);
594 static int mv_qc_defer(struct ata_queued_cmd *qc);
595 static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc);
596 static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc);
597 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
598 static int mv_hardreset(struct ata_link *link, unsigned int *class,
599 unsigned long deadline);
600 static void mv_eh_freeze(struct ata_port *ap);
601 static void mv_eh_thaw(struct ata_port *ap);
602 static void mv6_dev_config(struct ata_device *dev);
603
604 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
605 unsigned int port);
606 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
607 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
608 void __iomem *mmio);
609 static int mv5_reset_hc(struct ata_host *host, void __iomem *mmio,
610 unsigned int n_hc);
611 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
612 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
613
614 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
615 unsigned int port);
616 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
617 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
618 void __iomem *mmio);
619 static int mv6_reset_hc(struct ata_host *host, void __iomem *mmio,
620 unsigned int n_hc);
621 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
622 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
623 void __iomem *mmio);
624 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
625 void __iomem *mmio);
626 static int mv_soc_reset_hc(struct ata_host *host,
627 void __iomem *mmio, unsigned int n_hc);
628 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
629 void __iomem *mmio);
630 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
631 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
632 void __iomem *mmio, unsigned int port);
633 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
634 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
635 unsigned int port_no);
636 static int mv_stop_edma(struct ata_port *ap);
637 static int mv_stop_edma_engine(void __iomem *port_mmio);
638 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
639
640 static void mv_pmp_select(struct ata_port *ap, int pmp);
641 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
642 unsigned long deadline);
643 static int mv_softreset(struct ata_link *link, unsigned int *class,
644 unsigned long deadline);
645 static void mv_pmp_error_handler(struct ata_port *ap);
646 static void mv_process_crpb_entries(struct ata_port *ap,
647 struct mv_port_priv *pp);
648
649 static void mv_sff_irq_clear(struct ata_port *ap);
650 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
651 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
652 static void mv_bmdma_start(struct ata_queued_cmd *qc);
653 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
654 static u8 mv_bmdma_status(struct ata_port *ap);
655 static u8 mv_sff_check_status(struct ata_port *ap);
656
657 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
658 * because we have to allow room for worst case splitting of
659 * PRDs for 64K boundaries in mv_fill_sg().
660 */
661 #ifdef CONFIG_PCI
662 static const struct scsi_host_template mv5_sht = {
663 ATA_BASE_SHT(DRV_NAME),
664 .sg_tablesize = MV_MAX_SG_CT / 2,
665 .dma_boundary = MV_DMA_BOUNDARY,
666 };
667 #endif
668 static const struct scsi_host_template mv6_sht = {
669 __ATA_BASE_SHT(DRV_NAME),
670 .can_queue = MV_MAX_Q_DEPTH - 1,
671 .sg_tablesize = MV_MAX_SG_CT / 2,
672 .dma_boundary = MV_DMA_BOUNDARY,
673 .sdev_groups = ata_ncq_sdev_groups,
674 .change_queue_depth = ata_scsi_change_queue_depth,
675 .tag_alloc_policy = BLK_TAG_ALLOC_RR,
676 .device_configure = ata_scsi_device_configure
677 };
678
679 static struct ata_port_operations mv5_ops = {
680 .inherits = &ata_sff_port_ops,
681
682 .lost_interrupt = ATA_OP_NULL,
683
684 .qc_defer = mv_qc_defer,
685 .qc_prep = mv_qc_prep,
686 .qc_issue = mv_qc_issue,
687
688 .freeze = mv_eh_freeze,
689 .thaw = mv_eh_thaw,
690 .hardreset = mv_hardreset,
691
692 .scr_read = mv5_scr_read,
693 .scr_write = mv5_scr_write,
694
695 .port_start = mv_port_start,
696 .port_stop = mv_port_stop,
697 };
698
699 static struct ata_port_operations mv6_ops = {
700 .inherits = &ata_bmdma_port_ops,
701
702 .lost_interrupt = ATA_OP_NULL,
703
704 .qc_defer = mv_qc_defer,
705 .qc_prep = mv_qc_prep,
706 .qc_issue = mv_qc_issue,
707
708 .dev_config = mv6_dev_config,
709
710 .freeze = mv_eh_freeze,
711 .thaw = mv_eh_thaw,
712 .hardreset = mv_hardreset,
713 .softreset = mv_softreset,
714 .pmp_hardreset = mv_pmp_hardreset,
715 .pmp_softreset = mv_softreset,
716 .error_handler = mv_pmp_error_handler,
717
718 .scr_read = mv_scr_read,
719 .scr_write = mv_scr_write,
720
721 .sff_check_status = mv_sff_check_status,
722 .sff_irq_clear = mv_sff_irq_clear,
723 .check_atapi_dma = mv_check_atapi_dma,
724 .bmdma_setup = mv_bmdma_setup,
725 .bmdma_start = mv_bmdma_start,
726 .bmdma_stop = mv_bmdma_stop,
727 .bmdma_status = mv_bmdma_status,
728
729 .port_start = mv_port_start,
730 .port_stop = mv_port_stop,
731 };
732
733 static struct ata_port_operations mv_iie_ops = {
734 .inherits = &mv6_ops,
735 .dev_config = ATA_OP_NULL,
736 .qc_prep = mv_qc_prep_iie,
737 };
738
739 static const struct ata_port_info mv_port_info[] = {
740 { /* chip_504x */
741 .flags = MV_GEN_I_FLAGS,
742 .pio_mask = ATA_PIO4,
743 .udma_mask = ATA_UDMA6,
744 .port_ops = &mv5_ops,
745 },
746 { /* chip_508x */
747 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
748 .pio_mask = ATA_PIO4,
749 .udma_mask = ATA_UDMA6,
750 .port_ops = &mv5_ops,
751 },
752 { /* chip_5080 */
753 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
754 .pio_mask = ATA_PIO4,
755 .udma_mask = ATA_UDMA6,
756 .port_ops = &mv5_ops,
757 },
758 { /* chip_604x */
759 .flags = MV_GEN_II_FLAGS,
760 .pio_mask = ATA_PIO4,
761 .udma_mask = ATA_UDMA6,
762 .port_ops = &mv6_ops,
763 },
764 { /* chip_608x */
765 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
766 .pio_mask = ATA_PIO4,
767 .udma_mask = ATA_UDMA6,
768 .port_ops = &mv6_ops,
769 },
770 { /* chip_6042 */
771 .flags = MV_GEN_IIE_FLAGS,
772 .pio_mask = ATA_PIO4,
773 .udma_mask = ATA_UDMA6,
774 .port_ops = &mv_iie_ops,
775 },
776 { /* chip_7042 */
777 .flags = MV_GEN_IIE_FLAGS,
778 .pio_mask = ATA_PIO4,
779 .udma_mask = ATA_UDMA6,
780 .port_ops = &mv_iie_ops,
781 },
782 { /* chip_soc */
783 .flags = MV_GEN_IIE_FLAGS,
784 .pio_mask = ATA_PIO4,
785 .udma_mask = ATA_UDMA6,
786 .port_ops = &mv_iie_ops,
787 },
788 };
789
790 static const struct mv_hw_ops mv5xxx_ops = {
791 .phy_errata = mv5_phy_errata,
792 .enable_leds = mv5_enable_leds,
793 .read_preamp = mv5_read_preamp,
794 .reset_hc = mv5_reset_hc,
795 .reset_flash = mv5_reset_flash,
796 .reset_bus = mv5_reset_bus,
797 };
798
799 static const struct mv_hw_ops mv6xxx_ops = {
800 .phy_errata = mv6_phy_errata,
801 .enable_leds = mv6_enable_leds,
802 .read_preamp = mv6_read_preamp,
803 .reset_hc = mv6_reset_hc,
804 .reset_flash = mv6_reset_flash,
805 .reset_bus = mv_reset_pci_bus,
806 };
807
808 static const struct mv_hw_ops mv_soc_ops = {
809 .phy_errata = mv6_phy_errata,
810 .enable_leds = mv_soc_enable_leds,
811 .read_preamp = mv_soc_read_preamp,
812 .reset_hc = mv_soc_reset_hc,
813 .reset_flash = mv_soc_reset_flash,
814 .reset_bus = mv_soc_reset_bus,
815 };
816
817 static const struct mv_hw_ops mv_soc_65n_ops = {
818 .phy_errata = mv_soc_65n_phy_errata,
819 .enable_leds = mv_soc_enable_leds,
820 .reset_hc = mv_soc_reset_hc,
821 .reset_flash = mv_soc_reset_flash,
822 .reset_bus = mv_soc_reset_bus,
823 };
824
825 /*
826 * Functions
827 */
828
writelfl(unsigned long data,void __iomem * addr)829 static inline void writelfl(unsigned long data, void __iomem *addr)
830 {
831 writel(data, addr);
832 (void) readl(addr); /* flush to avoid PCI posted write */
833 }
834
mv_hc_from_port(unsigned int port)835 static inline unsigned int mv_hc_from_port(unsigned int port)
836 {
837 return port >> MV_PORT_HC_SHIFT;
838 }
839
mv_hardport_from_port(unsigned int port)840 static inline unsigned int mv_hardport_from_port(unsigned int port)
841 {
842 return port & MV_PORT_MASK;
843 }
844
845 /*
846 * Consolidate some rather tricky bit shift calculations.
847 * This is hot-path stuff, so not a function.
848 * Simple code, with two return values, so macro rather than inline.
849 *
850 * port is the sole input, in range 0..7.
851 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
852 * hardport is the other output, in range 0..3.
853 *
854 * Note that port and hardport may be the same variable in some cases.
855 */
856 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
857 { \
858 shift = mv_hc_from_port(port) * HC_SHIFT; \
859 hardport = mv_hardport_from_port(port); \
860 shift += hardport * 2; \
861 }
862
mv_hc_base(void __iomem * base,unsigned int hc)863 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
864 {
865 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
866 }
867
mv_hc_base_from_port(void __iomem * base,unsigned int port)868 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
869 unsigned int port)
870 {
871 return mv_hc_base(base, mv_hc_from_port(port));
872 }
873
mv_port_base(void __iomem * base,unsigned int port)874 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
875 {
876 return mv_hc_base_from_port(base, port) +
877 MV_SATAHC_ARBTR_REG_SZ +
878 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
879 }
880
mv5_phy_base(void __iomem * mmio,unsigned int port)881 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
882 {
883 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
884 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
885
886 return hc_mmio + ofs;
887 }
888
mv_host_base(struct ata_host * host)889 static inline void __iomem *mv_host_base(struct ata_host *host)
890 {
891 struct mv_host_priv *hpriv = host->private_data;
892 return hpriv->base;
893 }
894
mv_ap_base(struct ata_port * ap)895 static inline void __iomem *mv_ap_base(struct ata_port *ap)
896 {
897 return mv_port_base(mv_host_base(ap->host), ap->port_no);
898 }
899
mv_get_hc_count(unsigned long port_flags)900 static inline int mv_get_hc_count(unsigned long port_flags)
901 {
902 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
903 }
904
905 /**
906 * mv_save_cached_regs - (re-)initialize cached port registers
907 * @ap: the port whose registers we are caching
908 *
909 * Initialize the local cache of port registers,
910 * so that reading them over and over again can
911 * be avoided on the hotter paths of this driver.
912 * This saves a few microseconds each time we switch
913 * to/from EDMA mode to perform (eg.) a drive cache flush.
914 */
mv_save_cached_regs(struct ata_port * ap)915 static void mv_save_cached_regs(struct ata_port *ap)
916 {
917 void __iomem *port_mmio = mv_ap_base(ap);
918 struct mv_port_priv *pp = ap->private_data;
919
920 pp->cached.fiscfg = readl(port_mmio + FISCFG);
921 pp->cached.ltmode = readl(port_mmio + LTMODE);
922 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
923 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
924 }
925
926 /**
927 * mv_write_cached_reg - write to a cached port register
928 * @addr: hardware address of the register
929 * @old: pointer to cached value of the register
930 * @new: new value for the register
931 *
932 * Write a new value to a cached register,
933 * but only if the value is different from before.
934 */
mv_write_cached_reg(void __iomem * addr,u32 * old,u32 new)935 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
936 {
937 if (new != *old) {
938 unsigned long laddr;
939 *old = new;
940 /*
941 * Workaround for 88SX60x1-B2 FEr SATA#13:
942 * Read-after-write is needed to prevent generating 64-bit
943 * write cycles on the PCI bus for SATA interface registers
944 * at offsets ending in 0x4 or 0xc.
945 *
946 * Looks like a lot of fuss, but it avoids an unnecessary
947 * +1 usec read-after-write delay for unaffected registers.
948 */
949 laddr = (unsigned long)addr & 0xffff;
950 if (laddr >= 0x300 && laddr <= 0x33c) {
951 laddr &= 0x000f;
952 if (laddr == 0x4 || laddr == 0xc) {
953 writelfl(new, addr); /* read after write */
954 return;
955 }
956 }
957 writel(new, addr); /* unaffected by the errata */
958 }
959 }
960
mv_set_edma_ptrs(void __iomem * port_mmio,struct mv_host_priv * hpriv,struct mv_port_priv * pp)961 static void mv_set_edma_ptrs(void __iomem *port_mmio,
962 struct mv_host_priv *hpriv,
963 struct mv_port_priv *pp)
964 {
965 u32 index;
966
967 /*
968 * initialize request queue
969 */
970 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
971 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
972
973 WARN_ON(pp->crqb_dma & 0x3ff);
974 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
975 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
976 port_mmio + EDMA_REQ_Q_IN_PTR);
977 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
978
979 /*
980 * initialize response queue
981 */
982 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
983 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
984
985 WARN_ON(pp->crpb_dma & 0xff);
986 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
987 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
988 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
989 port_mmio + EDMA_RSP_Q_OUT_PTR);
990 }
991
mv_write_main_irq_mask(u32 mask,struct mv_host_priv * hpriv)992 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
993 {
994 /*
995 * When writing to the main_irq_mask in hardware,
996 * we must ensure exclusivity between the interrupt coalescing bits
997 * and the corresponding individual port DONE_IRQ bits.
998 *
999 * Note that this register is really an "IRQ enable" register,
1000 * not an "IRQ mask" register as Marvell's naming might suggest.
1001 */
1002 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1003 mask &= ~DONE_IRQ_0_3;
1004 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1005 mask &= ~DONE_IRQ_4_7;
1006 writelfl(mask, hpriv->main_irq_mask_addr);
1007 }
1008
mv_set_main_irq_mask(struct ata_host * host,u32 disable_bits,u32 enable_bits)1009 static void mv_set_main_irq_mask(struct ata_host *host,
1010 u32 disable_bits, u32 enable_bits)
1011 {
1012 struct mv_host_priv *hpriv = host->private_data;
1013 u32 old_mask, new_mask;
1014
1015 old_mask = hpriv->main_irq_mask;
1016 new_mask = (old_mask & ~disable_bits) | enable_bits;
1017 if (new_mask != old_mask) {
1018 hpriv->main_irq_mask = new_mask;
1019 mv_write_main_irq_mask(new_mask, hpriv);
1020 }
1021 }
1022
mv_enable_port_irqs(struct ata_port * ap,unsigned int port_bits)1023 static void mv_enable_port_irqs(struct ata_port *ap,
1024 unsigned int port_bits)
1025 {
1026 unsigned int shift, hardport, port = ap->port_no;
1027 u32 disable_bits, enable_bits;
1028
1029 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1030
1031 disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1032 enable_bits = port_bits << shift;
1033 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1034 }
1035
mv_clear_and_enable_port_irqs(struct ata_port * ap,void __iomem * port_mmio,unsigned int port_irqs)1036 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1037 void __iomem *port_mmio,
1038 unsigned int port_irqs)
1039 {
1040 struct mv_host_priv *hpriv = ap->host->private_data;
1041 int hardport = mv_hardport_from_port(ap->port_no);
1042 void __iomem *hc_mmio = mv_hc_base_from_port(
1043 mv_host_base(ap->host), ap->port_no);
1044 u32 hc_irq_cause;
1045
1046 /* clear EDMA event indicators, if any */
1047 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1048
1049 /* clear pending irq events */
1050 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1051 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1052
1053 /* clear FIS IRQ Cause */
1054 if (IS_GEN_IIE(hpriv))
1055 writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1056
1057 mv_enable_port_irqs(ap, port_irqs);
1058 }
1059
mv_set_irq_coalescing(struct ata_host * host,unsigned int count,unsigned int usecs)1060 static void mv_set_irq_coalescing(struct ata_host *host,
1061 unsigned int count, unsigned int usecs)
1062 {
1063 struct mv_host_priv *hpriv = host->private_data;
1064 void __iomem *mmio = hpriv->base, *hc_mmio;
1065 u32 coal_enable = 0;
1066 unsigned long flags;
1067 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1068 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1069 ALL_PORTS_COAL_DONE;
1070
1071 /* Disable IRQ coalescing if either threshold is zero */
1072 if (!usecs || !count) {
1073 clks = count = 0;
1074 } else {
1075 /* Respect maximum limits of the hardware */
1076 clks = usecs * COAL_CLOCKS_PER_USEC;
1077 if (clks > MAX_COAL_TIME_THRESHOLD)
1078 clks = MAX_COAL_TIME_THRESHOLD;
1079 if (count > MAX_COAL_IO_COUNT)
1080 count = MAX_COAL_IO_COUNT;
1081 }
1082
1083 spin_lock_irqsave(&host->lock, flags);
1084 mv_set_main_irq_mask(host, coal_disable, 0);
1085
1086 if (is_dual_hc && !IS_GEN_I(hpriv)) {
1087 /*
1088 * GEN_II/GEN_IIE with dual host controllers:
1089 * one set of global thresholds for the entire chip.
1090 */
1091 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD);
1092 writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1093 /* clear leftover coal IRQ bit */
1094 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1095 if (count)
1096 coal_enable = ALL_PORTS_COAL_DONE;
1097 clks = count = 0; /* force clearing of regular regs below */
1098 }
1099
1100 /*
1101 * All chips: independent thresholds for each HC on the chip.
1102 */
1103 hc_mmio = mv_hc_base_from_port(mmio, 0);
1104 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1105 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1106 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1107 if (count)
1108 coal_enable |= PORTS_0_3_COAL_DONE;
1109 if (is_dual_hc) {
1110 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1111 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1112 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1113 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1114 if (count)
1115 coal_enable |= PORTS_4_7_COAL_DONE;
1116 }
1117
1118 mv_set_main_irq_mask(host, 0, coal_enable);
1119 spin_unlock_irqrestore(&host->lock, flags);
1120 }
1121
1122 /*
1123 * mv_start_edma - Enable eDMA engine
1124 * @pp: port private data
1125 *
1126 * Verify the local cache of the eDMA state is accurate with a
1127 * WARN_ON.
1128 *
1129 * LOCKING:
1130 * Inherited from caller.
1131 */
mv_start_edma(struct ata_port * ap,void __iomem * port_mmio,struct mv_port_priv * pp,u8 protocol)1132 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1133 struct mv_port_priv *pp, u8 protocol)
1134 {
1135 int want_ncq = (protocol == ATA_PROT_NCQ);
1136
1137 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1138 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1139 if (want_ncq != using_ncq)
1140 mv_stop_edma(ap);
1141 }
1142 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1143 struct mv_host_priv *hpriv = ap->host->private_data;
1144
1145 mv_edma_cfg(ap, want_ncq, 1);
1146
1147 mv_set_edma_ptrs(port_mmio, hpriv, pp);
1148 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1149
1150 writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1151 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1152 }
1153 }
1154
mv_wait_for_edma_empty_idle(struct ata_port * ap)1155 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1156 {
1157 void __iomem *port_mmio = mv_ap_base(ap);
1158 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1159 const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1160 int i;
1161
1162 /*
1163 * Wait for the EDMA engine to finish transactions in progress.
1164 * No idea what a good "timeout" value might be, but measurements
1165 * indicate that it often requires hundreds of microseconds
1166 * with two drives in-use. So we use the 15msec value above
1167 * as a rough guess at what even more drives might require.
1168 */
1169 for (i = 0; i < timeout; ++i) {
1170 u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1171 if ((edma_stat & empty_idle) == empty_idle)
1172 break;
1173 udelay(per_loop);
1174 }
1175 /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1176 }
1177
1178 /**
1179 * mv_stop_edma_engine - Disable eDMA engine
1180 * @port_mmio: io base address
1181 *
1182 * LOCKING:
1183 * Inherited from caller.
1184 */
mv_stop_edma_engine(void __iomem * port_mmio)1185 static int mv_stop_edma_engine(void __iomem *port_mmio)
1186 {
1187 int i;
1188
1189 /* Disable eDMA. The disable bit auto clears. */
1190 writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1191
1192 /* Wait for the chip to confirm eDMA is off. */
1193 for (i = 10000; i > 0; i--) {
1194 u32 reg = readl(port_mmio + EDMA_CMD);
1195 if (!(reg & EDMA_EN))
1196 return 0;
1197 udelay(10);
1198 }
1199 return -EIO;
1200 }
1201
mv_stop_edma(struct ata_port * ap)1202 static int mv_stop_edma(struct ata_port *ap)
1203 {
1204 void __iomem *port_mmio = mv_ap_base(ap);
1205 struct mv_port_priv *pp = ap->private_data;
1206 int err = 0;
1207
1208 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1209 return 0;
1210 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1211 mv_wait_for_edma_empty_idle(ap);
1212 if (mv_stop_edma_engine(port_mmio)) {
1213 ata_port_err(ap, "Unable to stop eDMA\n");
1214 err = -EIO;
1215 }
1216 mv_edma_cfg(ap, 0, 0);
1217 return err;
1218 }
1219
mv_dump_mem(struct device * dev,void __iomem * start,unsigned bytes)1220 static void mv_dump_mem(struct device *dev, void __iomem *start, unsigned bytes)
1221 {
1222 int b, w, o;
1223 unsigned char linebuf[38];
1224
1225 for (b = 0; b < bytes; ) {
1226 for (w = 0, o = 0; b < bytes && w < 4; w++) {
1227 o += scnprintf(linebuf + o, sizeof(linebuf) - o,
1228 "%08x ", readl(start + b));
1229 b += sizeof(u32);
1230 }
1231 dev_dbg(dev, "%s: %p: %s\n",
1232 __func__, start + b, linebuf);
1233 }
1234 }
1235
mv_dump_pci_cfg(struct pci_dev * pdev,unsigned bytes)1236 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1237 {
1238 int b, w, o;
1239 u32 dw = 0;
1240 unsigned char linebuf[38];
1241
1242 for (b = 0; b < bytes; ) {
1243 for (w = 0, o = 0; b < bytes && w < 4; w++) {
1244 (void) pci_read_config_dword(pdev, b, &dw);
1245 o += snprintf(linebuf + o, sizeof(linebuf) - o,
1246 "%08x ", dw);
1247 b += sizeof(u32);
1248 }
1249 dev_dbg(&pdev->dev, "%s: %02x: %s\n",
1250 __func__, b, linebuf);
1251 }
1252 }
1253
mv_dump_all_regs(void __iomem * mmio_base,struct pci_dev * pdev)1254 static void mv_dump_all_regs(void __iomem *mmio_base,
1255 struct pci_dev *pdev)
1256 {
1257 void __iomem *hc_base;
1258 void __iomem *port_base;
1259 int start_port, num_ports, p, start_hc, num_hcs, hc;
1260
1261 start_hc = start_port = 0;
1262 num_ports = 8; /* should be benign for 4 port devs */
1263 num_hcs = 2;
1264 dev_dbg(&pdev->dev,
1265 "%s: All registers for port(s) %u-%u:\n", __func__,
1266 start_port, num_ports > 1 ? num_ports - 1 : start_port);
1267
1268 dev_dbg(&pdev->dev, "%s: PCI config space regs:\n", __func__);
1269 mv_dump_pci_cfg(pdev, 0x68);
1270
1271 dev_dbg(&pdev->dev, "%s: PCI regs:\n", __func__);
1272 mv_dump_mem(&pdev->dev, mmio_base+0xc00, 0x3c);
1273 mv_dump_mem(&pdev->dev, mmio_base+0xd00, 0x34);
1274 mv_dump_mem(&pdev->dev, mmio_base+0xf00, 0x4);
1275 mv_dump_mem(&pdev->dev, mmio_base+0x1d00, 0x6c);
1276 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1277 hc_base = mv_hc_base(mmio_base, hc);
1278 dev_dbg(&pdev->dev, "%s: HC regs (HC %i):\n", __func__, hc);
1279 mv_dump_mem(&pdev->dev, hc_base, 0x1c);
1280 }
1281 for (p = start_port; p < start_port + num_ports; p++) {
1282 port_base = mv_port_base(mmio_base, p);
1283 dev_dbg(&pdev->dev, "%s: EDMA regs (port %i):\n", __func__, p);
1284 mv_dump_mem(&pdev->dev, port_base, 0x54);
1285 dev_dbg(&pdev->dev, "%s: SATA regs (port %i):\n", __func__, p);
1286 mv_dump_mem(&pdev->dev, port_base+0x300, 0x60);
1287 }
1288 }
1289
mv_scr_offset(unsigned int sc_reg_in)1290 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1291 {
1292 unsigned int ofs;
1293
1294 switch (sc_reg_in) {
1295 case SCR_STATUS:
1296 case SCR_CONTROL:
1297 case SCR_ERROR:
1298 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1299 break;
1300 case SCR_ACTIVE:
1301 ofs = SATA_ACTIVE; /* active is not with the others */
1302 break;
1303 default:
1304 ofs = 0xffffffffU;
1305 break;
1306 }
1307 return ofs;
1308 }
1309
mv_scr_read(struct ata_link * link,unsigned int sc_reg_in,u32 * val)1310 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1311 {
1312 unsigned int ofs = mv_scr_offset(sc_reg_in);
1313
1314 if (ofs != 0xffffffffU) {
1315 *val = readl(mv_ap_base(link->ap) + ofs);
1316 return 0;
1317 } else
1318 return -EINVAL;
1319 }
1320
mv_scr_write(struct ata_link * link,unsigned int sc_reg_in,u32 val)1321 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1322 {
1323 unsigned int ofs = mv_scr_offset(sc_reg_in);
1324
1325 if (ofs != 0xffffffffU) {
1326 void __iomem *addr = mv_ap_base(link->ap) + ofs;
1327 struct mv_host_priv *hpriv = link->ap->host->private_data;
1328 if (sc_reg_in == SCR_CONTROL) {
1329 /*
1330 * Workaround for 88SX60x1 FEr SATA#26:
1331 *
1332 * COMRESETs have to take care not to accidentally
1333 * put the drive to sleep when writing SCR_CONTROL.
1334 * Setting bits 12..15 prevents this problem.
1335 *
1336 * So if we see an outbound COMMRESET, set those bits.
1337 * Ditto for the followup write that clears the reset.
1338 *
1339 * The proprietary driver does this for
1340 * all chip versions, and so do we.
1341 */
1342 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1343 val |= 0xf000;
1344
1345 if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
1346 void __iomem *lp_phy_addr =
1347 mv_ap_base(link->ap) + LP_PHY_CTL;
1348 /*
1349 * Set PHY speed according to SControl speed.
1350 */
1351 u32 lp_phy_val =
1352 LP_PHY_CTL_PIN_PU_PLL |
1353 LP_PHY_CTL_PIN_PU_RX |
1354 LP_PHY_CTL_PIN_PU_TX;
1355
1356 if ((val & 0xf0) != 0x10)
1357 lp_phy_val |=
1358 LP_PHY_CTL_GEN_TX_3G |
1359 LP_PHY_CTL_GEN_RX_3G;
1360
1361 writelfl(lp_phy_val, lp_phy_addr);
1362 }
1363 }
1364 writelfl(val, addr);
1365 return 0;
1366 } else
1367 return -EINVAL;
1368 }
1369
mv6_dev_config(struct ata_device * adev)1370 static void mv6_dev_config(struct ata_device *adev)
1371 {
1372 /*
1373 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1374 *
1375 * Gen-II does not support NCQ over a port multiplier
1376 * (no FIS-based switching).
1377 */
1378 if (adev->flags & ATA_DFLAG_NCQ) {
1379 if (sata_pmp_attached(adev->link->ap)) {
1380 adev->flags &= ~ATA_DFLAG_NCQ;
1381 ata_dev_info(adev,
1382 "NCQ disabled for command-based switching\n");
1383 }
1384 }
1385 }
1386
mv_qc_defer(struct ata_queued_cmd * qc)1387 static int mv_qc_defer(struct ata_queued_cmd *qc)
1388 {
1389 struct ata_link *link = qc->dev->link;
1390 struct ata_port *ap = link->ap;
1391 struct mv_port_priv *pp = ap->private_data;
1392
1393 /*
1394 * Don't allow new commands if we're in a delayed EH state
1395 * for NCQ and/or FIS-based switching.
1396 */
1397 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1398 return ATA_DEFER_PORT;
1399
1400 /* PIO commands need exclusive link: no other commands [DMA or PIO]
1401 * can run concurrently.
1402 * set excl_link when we want to send a PIO command in DMA mode
1403 * or a non-NCQ command in NCQ mode.
1404 * When we receive a command from that link, and there are no
1405 * outstanding commands, mark a flag to clear excl_link and let
1406 * the command go through.
1407 */
1408 if (unlikely(ap->excl_link)) {
1409 if (link == ap->excl_link) {
1410 if (ap->nr_active_links)
1411 return ATA_DEFER_PORT;
1412 qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1413 return 0;
1414 } else
1415 return ATA_DEFER_PORT;
1416 }
1417
1418 /*
1419 * If the port is completely idle, then allow the new qc.
1420 */
1421 if (ap->nr_active_links == 0)
1422 return 0;
1423
1424 /*
1425 * The port is operating in host queuing mode (EDMA) with NCQ
1426 * enabled, allow multiple NCQ commands. EDMA also allows
1427 * queueing multiple DMA commands but libata core currently
1428 * doesn't allow it.
1429 */
1430 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1431 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1432 if (ata_is_ncq(qc->tf.protocol))
1433 return 0;
1434 else {
1435 ap->excl_link = link;
1436 return ATA_DEFER_PORT;
1437 }
1438 }
1439
1440 return ATA_DEFER_PORT;
1441 }
1442
mv_config_fbs(struct ata_port * ap,int want_ncq,int want_fbs)1443 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1444 {
1445 struct mv_port_priv *pp = ap->private_data;
1446 void __iomem *port_mmio;
1447
1448 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
1449 u32 ltmode, *old_ltmode = &pp->cached.ltmode;
1450 u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1451
1452 ltmode = *old_ltmode & ~LTMODE_BIT8;
1453 haltcond = *old_haltcond | EDMA_ERR_DEV;
1454
1455 if (want_fbs) {
1456 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1457 ltmode = *old_ltmode | LTMODE_BIT8;
1458 if (want_ncq)
1459 haltcond &= ~EDMA_ERR_DEV;
1460 else
1461 fiscfg |= FISCFG_WAIT_DEV_ERR;
1462 } else {
1463 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1464 }
1465
1466 port_mmio = mv_ap_base(ap);
1467 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1468 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1469 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1470 }
1471
mv_60x1_errata_sata25(struct ata_port * ap,int want_ncq)1472 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1473 {
1474 struct mv_host_priv *hpriv = ap->host->private_data;
1475 u32 old, new;
1476
1477 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1478 old = readl(hpriv->base + GPIO_PORT_CTL);
1479 if (want_ncq)
1480 new = old | (1 << 22);
1481 else
1482 new = old & ~(1 << 22);
1483 if (new != old)
1484 writel(new, hpriv->base + GPIO_PORT_CTL);
1485 }
1486
1487 /*
1488 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1489 * @ap: Port being initialized
1490 *
1491 * There are two DMA modes on these chips: basic DMA, and EDMA.
1492 *
1493 * Bit-0 of the "EDMA RESERVED" register enables/disables use
1494 * of basic DMA on the GEN_IIE versions of the chips.
1495 *
1496 * This bit survives EDMA resets, and must be set for basic DMA
1497 * to function, and should be cleared when EDMA is active.
1498 */
mv_bmdma_enable_iie(struct ata_port * ap,int enable_bmdma)1499 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1500 {
1501 struct mv_port_priv *pp = ap->private_data;
1502 u32 new, *old = &pp->cached.unknown_rsvd;
1503
1504 if (enable_bmdma)
1505 new = *old | 1;
1506 else
1507 new = *old & ~1;
1508 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1509 }
1510
1511 /*
1512 * SOC chips have an issue whereby the HDD LEDs don't always blink
1513 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1514 * of the SOC takes care of it, generating a steady blink rate when
1515 * any drive on the chip is active.
1516 *
1517 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1518 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1519 *
1520 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1521 * LED operation works then, and provides better (more accurate) feedback.
1522 *
1523 * Note that this code assumes that an SOC never has more than one HC onboard.
1524 */
mv_soc_led_blink_enable(struct ata_port * ap)1525 static void mv_soc_led_blink_enable(struct ata_port *ap)
1526 {
1527 struct ata_host *host = ap->host;
1528 struct mv_host_priv *hpriv = host->private_data;
1529 void __iomem *hc_mmio;
1530 u32 led_ctrl;
1531
1532 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1533 return;
1534 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1535 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1536 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1537 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1538 }
1539
mv_soc_led_blink_disable(struct ata_port * ap)1540 static void mv_soc_led_blink_disable(struct ata_port *ap)
1541 {
1542 struct ata_host *host = ap->host;
1543 struct mv_host_priv *hpriv = host->private_data;
1544 void __iomem *hc_mmio;
1545 u32 led_ctrl;
1546 unsigned int port;
1547
1548 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1549 return;
1550
1551 /* disable led-blink only if no ports are using NCQ */
1552 for (port = 0; port < hpriv->n_ports; port++) {
1553 struct ata_port *this_ap = host->ports[port];
1554 struct mv_port_priv *pp = this_ap->private_data;
1555
1556 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1557 return;
1558 }
1559
1560 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1561 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1562 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1563 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1564 }
1565
mv_edma_cfg(struct ata_port * ap,int want_ncq,int want_edma)1566 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1567 {
1568 u32 cfg;
1569 struct mv_port_priv *pp = ap->private_data;
1570 struct mv_host_priv *hpriv = ap->host->private_data;
1571 void __iomem *port_mmio = mv_ap_base(ap);
1572
1573 /* set up non-NCQ EDMA configuration */
1574 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
1575 pp->pp_flags &=
1576 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1577
1578 if (IS_GEN_I(hpriv))
1579 cfg |= (1 << 8); /* enab config burst size mask */
1580
1581 else if (IS_GEN_II(hpriv)) {
1582 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1583 mv_60x1_errata_sata25(ap, want_ncq);
1584
1585 } else if (IS_GEN_IIE(hpriv)) {
1586 int want_fbs = sata_pmp_attached(ap);
1587 /*
1588 * Possible future enhancement:
1589 *
1590 * The chip can use FBS with non-NCQ, if we allow it,
1591 * But first we need to have the error handling in place
1592 * for this mode (datasheet section 7.3.15.4.2.3).
1593 * So disallow non-NCQ FBS for now.
1594 */
1595 want_fbs &= want_ncq;
1596
1597 mv_config_fbs(ap, want_ncq, want_fbs);
1598
1599 if (want_fbs) {
1600 pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1601 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1602 }
1603
1604 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
1605 if (want_edma) {
1606 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1607 if (!IS_SOC(hpriv))
1608 cfg |= (1 << 18); /* enab early completion */
1609 }
1610 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1611 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1612 mv_bmdma_enable_iie(ap, !want_edma);
1613
1614 if (IS_SOC(hpriv)) {
1615 if (want_ncq)
1616 mv_soc_led_blink_enable(ap);
1617 else
1618 mv_soc_led_blink_disable(ap);
1619 }
1620 }
1621
1622 if (want_ncq) {
1623 cfg |= EDMA_CFG_NCQ;
1624 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
1625 }
1626
1627 writelfl(cfg, port_mmio + EDMA_CFG);
1628 }
1629
mv_port_free_dma_mem(struct ata_port * ap)1630 static void mv_port_free_dma_mem(struct ata_port *ap)
1631 {
1632 struct mv_host_priv *hpriv = ap->host->private_data;
1633 struct mv_port_priv *pp = ap->private_data;
1634 int tag;
1635
1636 if (pp->crqb) {
1637 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1638 pp->crqb = NULL;
1639 }
1640 if (pp->crpb) {
1641 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1642 pp->crpb = NULL;
1643 }
1644 /*
1645 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1646 * For later hardware, we have one unique sg_tbl per NCQ tag.
1647 */
1648 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1649 if (pp->sg_tbl[tag]) {
1650 if (tag == 0 || !IS_GEN_I(hpriv))
1651 dma_pool_free(hpriv->sg_tbl_pool,
1652 pp->sg_tbl[tag],
1653 pp->sg_tbl_dma[tag]);
1654 pp->sg_tbl[tag] = NULL;
1655 }
1656 }
1657 }
1658
1659 /**
1660 * mv_port_start - Port specific init/start routine.
1661 * @ap: ATA channel to manipulate
1662 *
1663 * Allocate and point to DMA memory, init port private memory,
1664 * zero indices.
1665 *
1666 * LOCKING:
1667 * Inherited from caller.
1668 */
mv_port_start(struct ata_port * ap)1669 static int mv_port_start(struct ata_port *ap)
1670 {
1671 struct device *dev = ap->host->dev;
1672 struct mv_host_priv *hpriv = ap->host->private_data;
1673 struct mv_port_priv *pp;
1674 unsigned long flags;
1675 int tag;
1676
1677 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1678 if (!pp)
1679 return -ENOMEM;
1680 ap->private_data = pp;
1681
1682 pp->crqb = dma_pool_zalloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1683 if (!pp->crqb)
1684 return -ENOMEM;
1685
1686 pp->crpb = dma_pool_zalloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1687 if (!pp->crpb)
1688 goto out_port_free_dma_mem;
1689
1690 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1691 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1692 ap->flags |= ATA_FLAG_AN;
1693 /*
1694 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1695 * For later hardware, we need one unique sg_tbl per NCQ tag.
1696 */
1697 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1698 if (tag == 0 || !IS_GEN_I(hpriv)) {
1699 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1700 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1701 if (!pp->sg_tbl[tag])
1702 goto out_port_free_dma_mem;
1703 } else {
1704 pp->sg_tbl[tag] = pp->sg_tbl[0];
1705 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1706 }
1707 }
1708
1709 spin_lock_irqsave(ap->lock, flags);
1710 mv_save_cached_regs(ap);
1711 mv_edma_cfg(ap, 0, 0);
1712 spin_unlock_irqrestore(ap->lock, flags);
1713
1714 return 0;
1715
1716 out_port_free_dma_mem:
1717 mv_port_free_dma_mem(ap);
1718 return -ENOMEM;
1719 }
1720
1721 /**
1722 * mv_port_stop - Port specific cleanup/stop routine.
1723 * @ap: ATA channel to manipulate
1724 *
1725 * Stop DMA, cleanup port memory.
1726 *
1727 * LOCKING:
1728 * This routine uses the host lock to protect the DMA stop.
1729 */
mv_port_stop(struct ata_port * ap)1730 static void mv_port_stop(struct ata_port *ap)
1731 {
1732 unsigned long flags;
1733
1734 spin_lock_irqsave(ap->lock, flags);
1735 mv_stop_edma(ap);
1736 mv_enable_port_irqs(ap, 0);
1737 spin_unlock_irqrestore(ap->lock, flags);
1738 mv_port_free_dma_mem(ap);
1739 }
1740
1741 /**
1742 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1743 * @qc: queued command whose SG list to source from
1744 *
1745 * Populate the SG list and mark the last entry.
1746 *
1747 * LOCKING:
1748 * Inherited from caller.
1749 */
mv_fill_sg(struct ata_queued_cmd * qc)1750 static void mv_fill_sg(struct ata_queued_cmd *qc)
1751 {
1752 struct mv_port_priv *pp = qc->ap->private_data;
1753 struct scatterlist *sg;
1754 struct mv_sg *mv_sg, *last_sg = NULL;
1755 unsigned int si;
1756
1757 mv_sg = pp->sg_tbl[qc->hw_tag];
1758 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1759 dma_addr_t addr = sg_dma_address(sg);
1760 u32 sg_len = sg_dma_len(sg);
1761
1762 while (sg_len) {
1763 u32 offset = addr & 0xffff;
1764 u32 len = sg_len;
1765
1766 if (offset + len > 0x10000)
1767 len = 0x10000 - offset;
1768
1769 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1770 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1771 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1772 mv_sg->reserved = 0;
1773
1774 sg_len -= len;
1775 addr += len;
1776
1777 last_sg = mv_sg;
1778 mv_sg++;
1779 }
1780 }
1781
1782 if (likely(last_sg))
1783 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1784 mb(); /* ensure data structure is visible to the chipset */
1785 }
1786
mv_crqb_pack_cmd(__le16 * cmdw,u8 data,u8 addr,unsigned last)1787 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1788 {
1789 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1790 (last ? CRQB_CMD_LAST : 0);
1791 *cmdw = cpu_to_le16(tmp);
1792 }
1793
1794 /**
1795 * mv_sff_irq_clear - Clear hardware interrupt after DMA.
1796 * @ap: Port associated with this ATA transaction.
1797 *
1798 * We need this only for ATAPI bmdma transactions,
1799 * as otherwise we experience spurious interrupts
1800 * after libata-sff handles the bmdma interrupts.
1801 */
mv_sff_irq_clear(struct ata_port * ap)1802 static void mv_sff_irq_clear(struct ata_port *ap)
1803 {
1804 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1805 }
1806
1807 /**
1808 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1809 * @qc: queued command to check for chipset/DMA compatibility.
1810 *
1811 * The bmdma engines cannot handle speculative data sizes
1812 * (bytecount under/over flow). So only allow DMA for
1813 * data transfer commands with known data sizes.
1814 *
1815 * LOCKING:
1816 * Inherited from caller.
1817 */
mv_check_atapi_dma(struct ata_queued_cmd * qc)1818 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1819 {
1820 struct scsi_cmnd *scmd = qc->scsicmd;
1821
1822 if (scmd) {
1823 switch (scmd->cmnd[0]) {
1824 case READ_6:
1825 case READ_10:
1826 case READ_12:
1827 case WRITE_6:
1828 case WRITE_10:
1829 case WRITE_12:
1830 case GPCMD_READ_CD:
1831 case GPCMD_SEND_DVD_STRUCTURE:
1832 case GPCMD_SEND_CUE_SHEET:
1833 return 0; /* DMA is safe */
1834 }
1835 }
1836 return -EOPNOTSUPP; /* use PIO instead */
1837 }
1838
1839 /**
1840 * mv_bmdma_setup - Set up BMDMA transaction
1841 * @qc: queued command to prepare DMA for.
1842 *
1843 * LOCKING:
1844 * Inherited from caller.
1845 */
mv_bmdma_setup(struct ata_queued_cmd * qc)1846 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1847 {
1848 struct ata_port *ap = qc->ap;
1849 void __iomem *port_mmio = mv_ap_base(ap);
1850 struct mv_port_priv *pp = ap->private_data;
1851
1852 mv_fill_sg(qc);
1853
1854 /* clear all DMA cmd bits */
1855 writel(0, port_mmio + BMDMA_CMD);
1856
1857 /* load PRD table addr. */
1858 writel((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16,
1859 port_mmio + BMDMA_PRD_HIGH);
1860 writelfl(pp->sg_tbl_dma[qc->hw_tag],
1861 port_mmio + BMDMA_PRD_LOW);
1862
1863 /* issue r/w command */
1864 ap->ops->sff_exec_command(ap, &qc->tf);
1865 }
1866
1867 /**
1868 * mv_bmdma_start - Start a BMDMA transaction
1869 * @qc: queued command to start DMA on.
1870 *
1871 * LOCKING:
1872 * Inherited from caller.
1873 */
mv_bmdma_start(struct ata_queued_cmd * qc)1874 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1875 {
1876 struct ata_port *ap = qc->ap;
1877 void __iomem *port_mmio = mv_ap_base(ap);
1878 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1879 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1880
1881 /* start host DMA transaction */
1882 writelfl(cmd, port_mmio + BMDMA_CMD);
1883 }
1884
1885 /**
1886 * mv_bmdma_stop_ap - Stop BMDMA transfer
1887 * @ap: port to stop
1888 *
1889 * Clears the ATA_DMA_START flag in the bmdma control register
1890 *
1891 * LOCKING:
1892 * Inherited from caller.
1893 */
mv_bmdma_stop_ap(struct ata_port * ap)1894 static void mv_bmdma_stop_ap(struct ata_port *ap)
1895 {
1896 void __iomem *port_mmio = mv_ap_base(ap);
1897 u32 cmd;
1898
1899 /* clear start/stop bit */
1900 cmd = readl(port_mmio + BMDMA_CMD);
1901 if (cmd & ATA_DMA_START) {
1902 cmd &= ~ATA_DMA_START;
1903 writelfl(cmd, port_mmio + BMDMA_CMD);
1904
1905 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1906 ata_sff_dma_pause(ap);
1907 }
1908 }
1909
mv_bmdma_stop(struct ata_queued_cmd * qc)1910 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1911 {
1912 mv_bmdma_stop_ap(qc->ap);
1913 }
1914
1915 /**
1916 * mv_bmdma_status - Read BMDMA status
1917 * @ap: port for which to retrieve DMA status.
1918 *
1919 * Read and return equivalent of the sff BMDMA status register.
1920 *
1921 * LOCKING:
1922 * Inherited from caller.
1923 */
mv_bmdma_status(struct ata_port * ap)1924 static u8 mv_bmdma_status(struct ata_port *ap)
1925 {
1926 void __iomem *port_mmio = mv_ap_base(ap);
1927 u32 reg, status;
1928
1929 /*
1930 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1931 * and the ATA_DMA_INTR bit doesn't exist.
1932 */
1933 reg = readl(port_mmio + BMDMA_STATUS);
1934 if (reg & ATA_DMA_ACTIVE)
1935 status = ATA_DMA_ACTIVE;
1936 else if (reg & ATA_DMA_ERR)
1937 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1938 else {
1939 /*
1940 * Just because DMA_ACTIVE is 0 (DMA completed),
1941 * this does _not_ mean the device is "done".
1942 * So we should not yet be signalling ATA_DMA_INTR
1943 * in some cases. Eg. DSM/TRIM, and perhaps others.
1944 */
1945 mv_bmdma_stop_ap(ap);
1946 if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1947 status = 0;
1948 else
1949 status = ATA_DMA_INTR;
1950 }
1951 return status;
1952 }
1953
mv_rw_multi_errata_sata24(struct ata_queued_cmd * qc)1954 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1955 {
1956 struct ata_taskfile *tf = &qc->tf;
1957 /*
1958 * Workaround for 88SX60x1 FEr SATA#24.
1959 *
1960 * Chip may corrupt WRITEs if multi_count >= 4kB.
1961 * Note that READs are unaffected.
1962 *
1963 * It's not clear if this errata really means "4K bytes",
1964 * or if it always happens for multi_count > 7
1965 * regardless of device sector_size.
1966 *
1967 * So, for safety, any write with multi_count > 7
1968 * gets converted here into a regular PIO write instead:
1969 */
1970 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
1971 if (qc->dev->multi_count > 7) {
1972 switch (tf->command) {
1973 case ATA_CMD_WRITE_MULTI:
1974 tf->command = ATA_CMD_PIO_WRITE;
1975 break;
1976 case ATA_CMD_WRITE_MULTI_FUA_EXT:
1977 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
1978 fallthrough;
1979 case ATA_CMD_WRITE_MULTI_EXT:
1980 tf->command = ATA_CMD_PIO_WRITE_EXT;
1981 break;
1982 }
1983 }
1984 }
1985 }
1986
1987 /**
1988 * mv_qc_prep - Host specific command preparation.
1989 * @qc: queued command to prepare
1990 *
1991 * This routine simply redirects to the general purpose routine
1992 * if command is not DMA. Else, it handles prep of the CRQB
1993 * (command request block), does some sanity checking, and calls
1994 * the SG load routine.
1995 *
1996 * LOCKING:
1997 * Inherited from caller.
1998 */
mv_qc_prep(struct ata_queued_cmd * qc)1999 static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc)
2000 {
2001 struct ata_port *ap = qc->ap;
2002 struct mv_port_priv *pp = ap->private_data;
2003 __le16 *cw;
2004 struct ata_taskfile *tf = &qc->tf;
2005 u16 flags = 0;
2006 unsigned in_index;
2007
2008 switch (tf->protocol) {
2009 case ATA_PROT_DMA:
2010 if (tf->command == ATA_CMD_DSM)
2011 return AC_ERR_OK;
2012 fallthrough;
2013 case ATA_PROT_NCQ:
2014 break; /* continue below */
2015 case ATA_PROT_PIO:
2016 mv_rw_multi_errata_sata24(qc);
2017 return AC_ERR_OK;
2018 default:
2019 return AC_ERR_OK;
2020 }
2021
2022 /* Fill in command request block
2023 */
2024 if (!(tf->flags & ATA_TFLAG_WRITE))
2025 flags |= CRQB_FLAG_READ;
2026 WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2027 flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2028 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2029
2030 /* get current queue index from software */
2031 in_index = pp->req_idx;
2032
2033 pp->crqb[in_index].sg_addr =
2034 cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2035 pp->crqb[in_index].sg_addr_hi =
2036 cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2037 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2038
2039 cw = &pp->crqb[in_index].ata_cmd[0];
2040
2041 /* Sadly, the CRQB cannot accommodate all registers--there are
2042 * only 11 bytes...so we must pick and choose required
2043 * registers based on the command. So, we drop feature and
2044 * hob_feature for [RW] DMA commands, but they are needed for
2045 * NCQ. NCQ will drop hob_nsect, which is not needed there
2046 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2047 */
2048 switch (tf->command) {
2049 case ATA_CMD_READ:
2050 case ATA_CMD_READ_EXT:
2051 case ATA_CMD_WRITE:
2052 case ATA_CMD_WRITE_EXT:
2053 case ATA_CMD_WRITE_FUA_EXT:
2054 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2055 break;
2056 case ATA_CMD_FPDMA_READ:
2057 case ATA_CMD_FPDMA_WRITE:
2058 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2059 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2060 break;
2061 default:
2062 /* The only other commands EDMA supports in non-queued and
2063 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2064 * of which are defined/used by Linux. If we get here, this
2065 * driver needs work.
2066 */
2067 ata_port_err(ap, "%s: unsupported command: %.2x\n", __func__,
2068 tf->command);
2069 return AC_ERR_INVALID;
2070 }
2071 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2072 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2073 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2074 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2075 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2076 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2077 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2078 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2079 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
2080
2081 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2082 return AC_ERR_OK;
2083 mv_fill_sg(qc);
2084
2085 return AC_ERR_OK;
2086 }
2087
2088 /**
2089 * mv_qc_prep_iie - Host specific command preparation.
2090 * @qc: queued command to prepare
2091 *
2092 * This routine simply redirects to the general purpose routine
2093 * if command is not DMA. Else, it handles prep of the CRQB
2094 * (command request block), does some sanity checking, and calls
2095 * the SG load routine.
2096 *
2097 * LOCKING:
2098 * Inherited from caller.
2099 */
mv_qc_prep_iie(struct ata_queued_cmd * qc)2100 static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc)
2101 {
2102 struct ata_port *ap = qc->ap;
2103 struct mv_port_priv *pp = ap->private_data;
2104 struct mv_crqb_iie *crqb;
2105 struct ata_taskfile *tf = &qc->tf;
2106 unsigned in_index;
2107 u32 flags = 0;
2108
2109 if ((tf->protocol != ATA_PROT_DMA) &&
2110 (tf->protocol != ATA_PROT_NCQ))
2111 return AC_ERR_OK;
2112 if (tf->command == ATA_CMD_DSM)
2113 return AC_ERR_OK; /* use bmdma for this */
2114
2115 /* Fill in Gen IIE command request block */
2116 if (!(tf->flags & ATA_TFLAG_WRITE))
2117 flags |= CRQB_FLAG_READ;
2118
2119 WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2120 flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2121 flags |= qc->hw_tag << CRQB_HOSTQ_SHIFT;
2122 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2123
2124 /* get current queue index from software */
2125 in_index = pp->req_idx;
2126
2127 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2128 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2129 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2130 crqb->flags = cpu_to_le32(flags);
2131
2132 crqb->ata_cmd[0] = cpu_to_le32(
2133 (tf->command << 16) |
2134 (tf->feature << 24)
2135 );
2136 crqb->ata_cmd[1] = cpu_to_le32(
2137 (tf->lbal << 0) |
2138 (tf->lbam << 8) |
2139 (tf->lbah << 16) |
2140 (tf->device << 24)
2141 );
2142 crqb->ata_cmd[2] = cpu_to_le32(
2143 (tf->hob_lbal << 0) |
2144 (tf->hob_lbam << 8) |
2145 (tf->hob_lbah << 16) |
2146 (tf->hob_feature << 24)
2147 );
2148 crqb->ata_cmd[3] = cpu_to_le32(
2149 (tf->nsect << 0) |
2150 (tf->hob_nsect << 8)
2151 );
2152
2153 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2154 return AC_ERR_OK;
2155 mv_fill_sg(qc);
2156
2157 return AC_ERR_OK;
2158 }
2159
2160 /**
2161 * mv_sff_check_status - fetch device status, if valid
2162 * @ap: ATA port to fetch status from
2163 *
2164 * When using command issue via mv_qc_issue_fis(),
2165 * the initial ATA_BUSY state does not show up in the
2166 * ATA status (shadow) register. This can confuse libata!
2167 *
2168 * So we have a hook here to fake ATA_BUSY for that situation,
2169 * until the first time a BUSY, DRQ, or ERR bit is seen.
2170 *
2171 * The rest of the time, it simply returns the ATA status register.
2172 */
mv_sff_check_status(struct ata_port * ap)2173 static u8 mv_sff_check_status(struct ata_port *ap)
2174 {
2175 u8 stat = ioread8(ap->ioaddr.status_addr);
2176 struct mv_port_priv *pp = ap->private_data;
2177
2178 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2179 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2180 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2181 else
2182 stat = ATA_BUSY;
2183 }
2184 return stat;
2185 }
2186
2187 /**
2188 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2189 * @ap: ATA port to send a FIS
2190 * @fis: fis to be sent
2191 * @nwords: number of 32-bit words in the fis
2192 */
mv_send_fis(struct ata_port * ap,u32 * fis,int nwords)2193 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2194 {
2195 void __iomem *port_mmio = mv_ap_base(ap);
2196 u32 ifctl, old_ifctl, ifstat;
2197 int i, timeout = 200, final_word = nwords - 1;
2198
2199 /* Initiate FIS transmission mode */
2200 old_ifctl = readl(port_mmio + SATA_IFCTL);
2201 ifctl = 0x100 | (old_ifctl & 0xf);
2202 writelfl(ifctl, port_mmio + SATA_IFCTL);
2203
2204 /* Send all words of the FIS except for the final word */
2205 for (i = 0; i < final_word; ++i)
2206 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2207
2208 /* Flag end-of-transmission, and then send the final word */
2209 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2210 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2211
2212 /*
2213 * Wait for FIS transmission to complete.
2214 * This typically takes just a single iteration.
2215 */
2216 do {
2217 ifstat = readl(port_mmio + SATA_IFSTAT);
2218 } while (!(ifstat & 0x1000) && --timeout);
2219
2220 /* Restore original port configuration */
2221 writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2222
2223 /* See if it worked */
2224 if ((ifstat & 0x3000) != 0x1000) {
2225 ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2226 __func__, ifstat);
2227 return AC_ERR_OTHER;
2228 }
2229 return 0;
2230 }
2231
2232 /**
2233 * mv_qc_issue_fis - Issue a command directly as a FIS
2234 * @qc: queued command to start
2235 *
2236 * Note that the ATA shadow registers are not updated
2237 * after command issue, so the device will appear "READY"
2238 * if polled, even while it is BUSY processing the command.
2239 *
2240 * So we use a status hook to fake ATA_BUSY until the drive changes state.
2241 *
2242 * Note: we don't get updated shadow regs on *completion*
2243 * of non-data commands. So avoid sending them via this function,
2244 * as they will appear to have completed immediately.
2245 *
2246 * GEN_IIE has special registers that we could get the result tf from,
2247 * but earlier chipsets do not. For now, we ignore those registers.
2248 */
mv_qc_issue_fis(struct ata_queued_cmd * qc)2249 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2250 {
2251 struct ata_port *ap = qc->ap;
2252 struct mv_port_priv *pp = ap->private_data;
2253 struct ata_link *link = qc->dev->link;
2254 u32 fis[5];
2255 int err = 0;
2256
2257 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2258 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2259 if (err)
2260 return err;
2261
2262 switch (qc->tf.protocol) {
2263 case ATAPI_PROT_PIO:
2264 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2265 fallthrough;
2266 case ATAPI_PROT_NODATA:
2267 ap->hsm_task_state = HSM_ST_FIRST;
2268 break;
2269 case ATA_PROT_PIO:
2270 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2271 if (qc->tf.flags & ATA_TFLAG_WRITE)
2272 ap->hsm_task_state = HSM_ST_FIRST;
2273 else
2274 ap->hsm_task_state = HSM_ST;
2275 break;
2276 default:
2277 ap->hsm_task_state = HSM_ST_LAST;
2278 break;
2279 }
2280
2281 if (qc->tf.flags & ATA_TFLAG_POLLING)
2282 ata_sff_queue_pio_task(link, 0);
2283 return 0;
2284 }
2285
2286 /**
2287 * mv_qc_issue - Initiate a command to the host
2288 * @qc: queued command to start
2289 *
2290 * This routine simply redirects to the general purpose routine
2291 * if command is not DMA. Else, it sanity checks our local
2292 * caches of the request producer/consumer indices then enables
2293 * DMA and bumps the request producer index.
2294 *
2295 * LOCKING:
2296 * Inherited from caller.
2297 */
mv_qc_issue(struct ata_queued_cmd * qc)2298 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2299 {
2300 static int limit_warnings = 10;
2301 struct ata_port *ap = qc->ap;
2302 void __iomem *port_mmio = mv_ap_base(ap);
2303 struct mv_port_priv *pp = ap->private_data;
2304 u32 in_index;
2305 unsigned int port_irqs;
2306
2307 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2308
2309 switch (qc->tf.protocol) {
2310 case ATA_PROT_DMA:
2311 if (qc->tf.command == ATA_CMD_DSM) {
2312 if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */
2313 return AC_ERR_OTHER;
2314 break; /* use bmdma for this */
2315 }
2316 fallthrough;
2317 case ATA_PROT_NCQ:
2318 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2319 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2320 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2321
2322 /* Write the request in pointer to kick the EDMA to life */
2323 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2324 port_mmio + EDMA_REQ_Q_IN_PTR);
2325 return 0;
2326
2327 case ATA_PROT_PIO:
2328 /*
2329 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2330 *
2331 * Someday, we might implement special polling workarounds
2332 * for these, but it all seems rather unnecessary since we
2333 * normally use only DMA for commands which transfer more
2334 * than a single block of data.
2335 *
2336 * Much of the time, this could just work regardless.
2337 * So for now, just log the incident, and allow the attempt.
2338 */
2339 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2340 --limit_warnings;
2341 ata_link_warn(qc->dev->link, DRV_NAME
2342 ": attempting PIO w/multiple DRQ: "
2343 "this may fail due to h/w errata\n");
2344 }
2345 fallthrough;
2346 case ATA_PROT_NODATA:
2347 case ATAPI_PROT_PIO:
2348 case ATAPI_PROT_NODATA:
2349 if (ap->flags & ATA_FLAG_PIO_POLLING)
2350 qc->tf.flags |= ATA_TFLAG_POLLING;
2351 break;
2352 }
2353
2354 if (qc->tf.flags & ATA_TFLAG_POLLING)
2355 port_irqs = ERR_IRQ; /* mask device interrupt when polling */
2356 else
2357 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2358
2359 /*
2360 * We're about to send a non-EDMA capable command to the
2361 * port. Turn off EDMA so there won't be problems accessing
2362 * shadow block, etc registers.
2363 */
2364 mv_stop_edma(ap);
2365 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2366 mv_pmp_select(ap, qc->dev->link->pmp);
2367
2368 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2369 struct mv_host_priv *hpriv = ap->host->private_data;
2370 /*
2371 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2372 *
2373 * After any NCQ error, the READ_LOG_EXT command
2374 * from libata-eh *must* use mv_qc_issue_fis().
2375 * Otherwise it might fail, due to chip errata.
2376 *
2377 * Rather than special-case it, we'll just *always*
2378 * use this method here for READ_LOG_EXT, making for
2379 * easier testing.
2380 */
2381 if (IS_GEN_II(hpriv))
2382 return mv_qc_issue_fis(qc);
2383 }
2384 return ata_bmdma_qc_issue(qc);
2385 }
2386
mv_get_active_qc(struct ata_port * ap)2387 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2388 {
2389 struct mv_port_priv *pp = ap->private_data;
2390 struct ata_queued_cmd *qc;
2391
2392 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2393 return NULL;
2394 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2395 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2396 return qc;
2397 return NULL;
2398 }
2399
mv_pmp_error_handler(struct ata_port * ap)2400 static void mv_pmp_error_handler(struct ata_port *ap)
2401 {
2402 unsigned int pmp, pmp_map;
2403 struct mv_port_priv *pp = ap->private_data;
2404
2405 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2406 /*
2407 * Perform NCQ error analysis on failed PMPs
2408 * before we freeze the port entirely.
2409 *
2410 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2411 */
2412 pmp_map = pp->delayed_eh_pmp_map;
2413 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2414 for (pmp = 0; pmp_map != 0; pmp++) {
2415 unsigned int this_pmp = (1 << pmp);
2416 if (pmp_map & this_pmp) {
2417 struct ata_link *link = &ap->pmp_link[pmp];
2418 pmp_map &= ~this_pmp;
2419 ata_eh_analyze_ncq_error(link);
2420 }
2421 }
2422 ata_port_freeze(ap);
2423 }
2424 sata_pmp_error_handler(ap);
2425 }
2426
mv_get_err_pmp_map(struct ata_port * ap)2427 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2428 {
2429 void __iomem *port_mmio = mv_ap_base(ap);
2430
2431 return readl(port_mmio + SATA_TESTCTL) >> 16;
2432 }
2433
mv_pmp_eh_prep(struct ata_port * ap,unsigned int pmp_map)2434 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2435 {
2436 unsigned int pmp;
2437
2438 /*
2439 * Initialize EH info for PMPs which saw device errors
2440 */
2441 for (pmp = 0; pmp_map != 0; pmp++) {
2442 unsigned int this_pmp = (1 << pmp);
2443 if (pmp_map & this_pmp) {
2444 struct ata_link *link = &ap->pmp_link[pmp];
2445 struct ata_eh_info *ehi = &link->eh_info;
2446
2447 pmp_map &= ~this_pmp;
2448 ata_ehi_clear_desc(ehi);
2449 ata_ehi_push_desc(ehi, "dev err");
2450 ehi->err_mask |= AC_ERR_DEV;
2451 ehi->action |= ATA_EH_RESET;
2452 ata_link_abort(link);
2453 }
2454 }
2455 }
2456
mv_req_q_empty(struct ata_port * ap)2457 static int mv_req_q_empty(struct ata_port *ap)
2458 {
2459 void __iomem *port_mmio = mv_ap_base(ap);
2460 u32 in_ptr, out_ptr;
2461
2462 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2463 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2464 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2465 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2466 return (in_ptr == out_ptr); /* 1 == queue_is_empty */
2467 }
2468
mv_handle_fbs_ncq_dev_err(struct ata_port * ap)2469 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2470 {
2471 struct mv_port_priv *pp = ap->private_data;
2472 int failed_links;
2473 unsigned int old_map, new_map;
2474
2475 /*
2476 * Device error during FBS+NCQ operation:
2477 *
2478 * Set a port flag to prevent further I/O being enqueued.
2479 * Leave the EDMA running to drain outstanding commands from this port.
2480 * Perform the post-mortem/EH only when all responses are complete.
2481 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2482 */
2483 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2484 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2485 pp->delayed_eh_pmp_map = 0;
2486 }
2487 old_map = pp->delayed_eh_pmp_map;
2488 new_map = old_map | mv_get_err_pmp_map(ap);
2489
2490 if (old_map != new_map) {
2491 pp->delayed_eh_pmp_map = new_map;
2492 mv_pmp_eh_prep(ap, new_map & ~old_map);
2493 }
2494 failed_links = hweight16(new_map);
2495
2496 ata_port_info(ap,
2497 "%s: pmp_map=%04x qc_map=%04llx failed_links=%d nr_active_links=%d\n",
2498 __func__, pp->delayed_eh_pmp_map,
2499 ap->qc_active, failed_links,
2500 ap->nr_active_links);
2501
2502 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2503 mv_process_crpb_entries(ap, pp);
2504 mv_stop_edma(ap);
2505 mv_eh_freeze(ap);
2506 ata_port_info(ap, "%s: done\n", __func__);
2507 return 1; /* handled */
2508 }
2509 ata_port_info(ap, "%s: waiting\n", __func__);
2510 return 1; /* handled */
2511 }
2512
mv_handle_fbs_non_ncq_dev_err(struct ata_port * ap)2513 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2514 {
2515 /*
2516 * Possible future enhancement:
2517 *
2518 * FBS+non-NCQ operation is not yet implemented.
2519 * See related notes in mv_edma_cfg().
2520 *
2521 * Device error during FBS+non-NCQ operation:
2522 *
2523 * We need to snapshot the shadow registers for each failed command.
2524 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2525 */
2526 return 0; /* not handled */
2527 }
2528
mv_handle_dev_err(struct ata_port * ap,u32 edma_err_cause)2529 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2530 {
2531 struct mv_port_priv *pp = ap->private_data;
2532
2533 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2534 return 0; /* EDMA was not active: not handled */
2535 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2536 return 0; /* FBS was not active: not handled */
2537
2538 if (!(edma_err_cause & EDMA_ERR_DEV))
2539 return 0; /* non DEV error: not handled */
2540 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2541 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2542 return 0; /* other problems: not handled */
2543
2544 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2545 /*
2546 * EDMA should NOT have self-disabled for this case.
2547 * If it did, then something is wrong elsewhere,
2548 * and we cannot handle it here.
2549 */
2550 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2551 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2552 __func__, edma_err_cause, pp->pp_flags);
2553 return 0; /* not handled */
2554 }
2555 return mv_handle_fbs_ncq_dev_err(ap);
2556 } else {
2557 /*
2558 * EDMA should have self-disabled for this case.
2559 * If it did not, then something is wrong elsewhere,
2560 * and we cannot handle it here.
2561 */
2562 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2563 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2564 __func__, edma_err_cause, pp->pp_flags);
2565 return 0; /* not handled */
2566 }
2567 return mv_handle_fbs_non_ncq_dev_err(ap);
2568 }
2569 return 0; /* not handled */
2570 }
2571
mv_unexpected_intr(struct ata_port * ap,int edma_was_enabled)2572 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2573 {
2574 struct ata_eh_info *ehi = &ap->link.eh_info;
2575 char *when = "idle";
2576
2577 ata_ehi_clear_desc(ehi);
2578 if (edma_was_enabled) {
2579 when = "EDMA enabled";
2580 } else {
2581 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2582 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2583 when = "polling";
2584 }
2585 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2586 ehi->err_mask |= AC_ERR_OTHER;
2587 ehi->action |= ATA_EH_RESET;
2588 ata_port_freeze(ap);
2589 }
2590
2591 /**
2592 * mv_err_intr - Handle error interrupts on the port
2593 * @ap: ATA channel to manipulate
2594 *
2595 * Most cases require a full reset of the chip's state machine,
2596 * which also performs a COMRESET.
2597 * Also, if the port disabled DMA, update our cached copy to match.
2598 *
2599 * LOCKING:
2600 * Inherited from caller.
2601 */
mv_err_intr(struct ata_port * ap)2602 static void mv_err_intr(struct ata_port *ap)
2603 {
2604 void __iomem *port_mmio = mv_ap_base(ap);
2605 u32 edma_err_cause, eh_freeze_mask, serr = 0;
2606 u32 fis_cause = 0;
2607 struct mv_port_priv *pp = ap->private_data;
2608 struct mv_host_priv *hpriv = ap->host->private_data;
2609 unsigned int action = 0, err_mask = 0;
2610 struct ata_eh_info *ehi = &ap->link.eh_info;
2611 struct ata_queued_cmd *qc;
2612 int abort = 0;
2613
2614 /*
2615 * Read and clear the SError and err_cause bits.
2616 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2617 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2618 */
2619 sata_scr_read(&ap->link, SCR_ERROR, &serr);
2620 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2621
2622 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2623 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2624 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2625 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2626 }
2627 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2628
2629 if (edma_err_cause & EDMA_ERR_DEV) {
2630 /*
2631 * Device errors during FIS-based switching operation
2632 * require special handling.
2633 */
2634 if (mv_handle_dev_err(ap, edma_err_cause))
2635 return;
2636 }
2637
2638 qc = mv_get_active_qc(ap);
2639 ata_ehi_clear_desc(ehi);
2640 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2641 edma_err_cause, pp->pp_flags);
2642
2643 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2644 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2645 if (fis_cause & FIS_IRQ_CAUSE_AN) {
2646 u32 ec = edma_err_cause &
2647 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2648 sata_async_notification(ap);
2649 if (!ec)
2650 return; /* Just an AN; no need for the nukes */
2651 ata_ehi_push_desc(ehi, "SDB notify");
2652 }
2653 }
2654 /*
2655 * All generations share these EDMA error cause bits:
2656 */
2657 if (edma_err_cause & EDMA_ERR_DEV) {
2658 err_mask |= AC_ERR_DEV;
2659 action |= ATA_EH_RESET;
2660 ata_ehi_push_desc(ehi, "dev error");
2661 }
2662 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2663 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2664 EDMA_ERR_INTRL_PAR)) {
2665 err_mask |= AC_ERR_ATA_BUS;
2666 action |= ATA_EH_RESET;
2667 ata_ehi_push_desc(ehi, "parity error");
2668 }
2669 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2670 ata_ehi_hotplugged(ehi);
2671 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2672 "dev disconnect" : "dev connect");
2673 action |= ATA_EH_RESET;
2674 }
2675
2676 /*
2677 * Gen-I has a different SELF_DIS bit,
2678 * different FREEZE bits, and no SERR bit:
2679 */
2680 if (IS_GEN_I(hpriv)) {
2681 eh_freeze_mask = EDMA_EH_FREEZE_5;
2682 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2683 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2684 ata_ehi_push_desc(ehi, "EDMA self-disable");
2685 }
2686 } else {
2687 eh_freeze_mask = EDMA_EH_FREEZE;
2688 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2689 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2690 ata_ehi_push_desc(ehi, "EDMA self-disable");
2691 }
2692 if (edma_err_cause & EDMA_ERR_SERR) {
2693 ata_ehi_push_desc(ehi, "SError=%08x", serr);
2694 err_mask |= AC_ERR_ATA_BUS;
2695 action |= ATA_EH_RESET;
2696 }
2697 }
2698
2699 if (!err_mask) {
2700 err_mask = AC_ERR_OTHER;
2701 action |= ATA_EH_RESET;
2702 }
2703
2704 ehi->serror |= serr;
2705 ehi->action |= action;
2706
2707 if (qc)
2708 qc->err_mask |= err_mask;
2709 else
2710 ehi->err_mask |= err_mask;
2711
2712 if (err_mask == AC_ERR_DEV) {
2713 /*
2714 * Cannot do ata_port_freeze() here,
2715 * because it would kill PIO access,
2716 * which is needed for further diagnosis.
2717 */
2718 mv_eh_freeze(ap);
2719 abort = 1;
2720 } else if (edma_err_cause & eh_freeze_mask) {
2721 /*
2722 * Note to self: ata_port_freeze() calls ata_port_abort()
2723 */
2724 ata_port_freeze(ap);
2725 } else {
2726 abort = 1;
2727 }
2728
2729 if (abort) {
2730 if (qc)
2731 ata_link_abort(qc->dev->link);
2732 else
2733 ata_port_abort(ap);
2734 }
2735 }
2736
mv_process_crpb_response(struct ata_port * ap,struct mv_crpb * response,unsigned int tag,int ncq_enabled)2737 static bool mv_process_crpb_response(struct ata_port *ap,
2738 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2739 {
2740 u8 ata_status;
2741 u16 edma_status = le16_to_cpu(response->flags);
2742
2743 /*
2744 * edma_status from a response queue entry:
2745 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2746 * MSB is saved ATA status from command completion.
2747 */
2748 if (!ncq_enabled) {
2749 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2750 if (err_cause) {
2751 /*
2752 * Error will be seen/handled by
2753 * mv_err_intr(). So do nothing at all here.
2754 */
2755 return false;
2756 }
2757 }
2758 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2759 if (!ac_err_mask(ata_status))
2760 return true;
2761 /* else: leave it for mv_err_intr() */
2762 return false;
2763 }
2764
mv_process_crpb_entries(struct ata_port * ap,struct mv_port_priv * pp)2765 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2766 {
2767 void __iomem *port_mmio = mv_ap_base(ap);
2768 struct mv_host_priv *hpriv = ap->host->private_data;
2769 u32 in_index;
2770 bool work_done = false;
2771 u32 done_mask = 0;
2772 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2773
2774 /* Get the hardware queue position index */
2775 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2776 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2777
2778 /* Process new responses from since the last time we looked */
2779 while (in_index != pp->resp_idx) {
2780 unsigned int tag;
2781 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2782
2783 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2784
2785 if (IS_GEN_I(hpriv)) {
2786 /* 50xx: no NCQ, only one command active at a time */
2787 tag = ap->link.active_tag;
2788 } else {
2789 /* Gen II/IIE: get command tag from CRPB entry */
2790 tag = le16_to_cpu(response->id) & 0x1f;
2791 }
2792 if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2793 done_mask |= 1 << tag;
2794 work_done = true;
2795 }
2796
2797 if (work_done) {
2798 ata_qc_complete_multiple(ap, ata_qc_get_active(ap) ^ done_mask);
2799
2800 /* Update the software queue position index in hardware */
2801 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2802 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2803 port_mmio + EDMA_RSP_Q_OUT_PTR);
2804 }
2805 }
2806
mv_port_intr(struct ata_port * ap,u32 port_cause)2807 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2808 {
2809 struct mv_port_priv *pp;
2810 int edma_was_enabled;
2811
2812 /*
2813 * Grab a snapshot of the EDMA_EN flag setting,
2814 * so that we have a consistent view for this port,
2815 * even if something we call of our routines changes it.
2816 */
2817 pp = ap->private_data;
2818 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2819 /*
2820 * Process completed CRPB response(s) before other events.
2821 */
2822 if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2823 mv_process_crpb_entries(ap, pp);
2824 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2825 mv_handle_fbs_ncq_dev_err(ap);
2826 }
2827 /*
2828 * Handle chip-reported errors, or continue on to handle PIO.
2829 */
2830 if (unlikely(port_cause & ERR_IRQ)) {
2831 mv_err_intr(ap);
2832 } else if (!edma_was_enabled) {
2833 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2834 if (qc)
2835 ata_bmdma_port_intr(ap, qc);
2836 else
2837 mv_unexpected_intr(ap, edma_was_enabled);
2838 }
2839 }
2840
2841 /**
2842 * mv_host_intr - Handle all interrupts on the given host controller
2843 * @host: host specific structure
2844 * @main_irq_cause: Main interrupt cause register for the chip.
2845 *
2846 * LOCKING:
2847 * Inherited from caller.
2848 */
mv_host_intr(struct ata_host * host,u32 main_irq_cause)2849 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2850 {
2851 struct mv_host_priv *hpriv = host->private_data;
2852 void __iomem *mmio = hpriv->base, *hc_mmio;
2853 unsigned int handled = 0, port;
2854
2855 /* If asserted, clear the "all ports" IRQ coalescing bit */
2856 if (main_irq_cause & ALL_PORTS_COAL_DONE)
2857 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2858
2859 for (port = 0; port < hpriv->n_ports; port++) {
2860 struct ata_port *ap = host->ports[port];
2861 unsigned int p, shift, hardport, port_cause;
2862
2863 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2864 /*
2865 * Each hc within the host has its own hc_irq_cause register,
2866 * where the interrupting ports bits get ack'd.
2867 */
2868 if (hardport == 0) { /* first port on this hc ? */
2869 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2870 u32 port_mask, ack_irqs;
2871 /*
2872 * Skip this entire hc if nothing pending for any ports
2873 */
2874 if (!hc_cause) {
2875 port += MV_PORTS_PER_HC - 1;
2876 continue;
2877 }
2878 /*
2879 * We don't need/want to read the hc_irq_cause register,
2880 * because doing so hurts performance, and
2881 * main_irq_cause already gives us everything we need.
2882 *
2883 * But we do have to *write* to the hc_irq_cause to ack
2884 * the ports that we are handling this time through.
2885 *
2886 * This requires that we create a bitmap for those
2887 * ports which interrupted us, and use that bitmap
2888 * to ack (only) those ports via hc_irq_cause.
2889 */
2890 ack_irqs = 0;
2891 if (hc_cause & PORTS_0_3_COAL_DONE)
2892 ack_irqs = HC_COAL_IRQ;
2893 for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2894 if ((port + p) >= hpriv->n_ports)
2895 break;
2896 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2897 if (hc_cause & port_mask)
2898 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2899 }
2900 hc_mmio = mv_hc_base_from_port(mmio, port);
2901 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2902 handled = 1;
2903 }
2904 /*
2905 * Handle interrupts signalled for this port:
2906 */
2907 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2908 if (port_cause)
2909 mv_port_intr(ap, port_cause);
2910 }
2911 return handled;
2912 }
2913
mv_pci_error(struct ata_host * host,void __iomem * mmio)2914 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2915 {
2916 struct mv_host_priv *hpriv = host->private_data;
2917 struct ata_port *ap;
2918 struct ata_queued_cmd *qc;
2919 struct ata_eh_info *ehi;
2920 unsigned int i, err_mask, printed = 0;
2921 u32 err_cause;
2922
2923 err_cause = readl(mmio + hpriv->irq_cause_offset);
2924
2925 dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2926
2927 dev_dbg(host->dev, "%s: All regs @ PCI error\n", __func__);
2928 mv_dump_all_regs(mmio, to_pci_dev(host->dev));
2929
2930 writelfl(0, mmio + hpriv->irq_cause_offset);
2931
2932 for (i = 0; i < host->n_ports; i++) {
2933 ap = host->ports[i];
2934 if (!ata_link_offline(&ap->link)) {
2935 ehi = &ap->link.eh_info;
2936 ata_ehi_clear_desc(ehi);
2937 if (!printed++)
2938 ata_ehi_push_desc(ehi,
2939 "PCI err cause 0x%08x", err_cause);
2940 err_mask = AC_ERR_HOST_BUS;
2941 ehi->action = ATA_EH_RESET;
2942 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2943 if (qc)
2944 qc->err_mask |= err_mask;
2945 else
2946 ehi->err_mask |= err_mask;
2947
2948 ata_port_freeze(ap);
2949 }
2950 }
2951 return 1; /* handled */
2952 }
2953
2954 /**
2955 * mv_interrupt - Main interrupt event handler
2956 * @irq: unused
2957 * @dev_instance: private data; in this case the host structure
2958 *
2959 * Read the read only register to determine if any host
2960 * controllers have pending interrupts. If so, call lower level
2961 * routine to handle. Also check for PCI errors which are only
2962 * reported here.
2963 *
2964 * LOCKING:
2965 * This routine holds the host lock while processing pending
2966 * interrupts.
2967 */
mv_interrupt(int irq,void * dev_instance)2968 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2969 {
2970 struct ata_host *host = dev_instance;
2971 struct mv_host_priv *hpriv = host->private_data;
2972 unsigned int handled = 0;
2973 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
2974 u32 main_irq_cause, pending_irqs;
2975
2976 spin_lock(&host->lock);
2977
2978 /* for MSI: block new interrupts while in here */
2979 if (using_msi)
2980 mv_write_main_irq_mask(0, hpriv);
2981
2982 main_irq_cause = readl(hpriv->main_irq_cause_addr);
2983 pending_irqs = main_irq_cause & hpriv->main_irq_mask;
2984 /*
2985 * Deal with cases where we either have nothing pending, or have read
2986 * a bogus register value which can indicate HW removal or PCI fault.
2987 */
2988 if (pending_irqs && main_irq_cause != 0xffffffffU) {
2989 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
2990 handled = mv_pci_error(host, hpriv->base);
2991 else
2992 handled = mv_host_intr(host, pending_irqs);
2993 }
2994
2995 /* for MSI: unmask; interrupt cause bits will retrigger now */
2996 if (using_msi)
2997 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
2998
2999 spin_unlock(&host->lock);
3000
3001 return IRQ_RETVAL(handled);
3002 }
3003
mv5_scr_offset(unsigned int sc_reg_in)3004 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3005 {
3006 unsigned int ofs;
3007
3008 switch (sc_reg_in) {
3009 case SCR_STATUS:
3010 case SCR_ERROR:
3011 case SCR_CONTROL:
3012 ofs = sc_reg_in * sizeof(u32);
3013 break;
3014 default:
3015 ofs = 0xffffffffU;
3016 break;
3017 }
3018 return ofs;
3019 }
3020
mv5_scr_read(struct ata_link * link,unsigned int sc_reg_in,u32 * val)3021 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3022 {
3023 struct mv_host_priv *hpriv = link->ap->host->private_data;
3024 void __iomem *mmio = hpriv->base;
3025 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3026 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3027
3028 if (ofs != 0xffffffffU) {
3029 *val = readl(addr + ofs);
3030 return 0;
3031 } else
3032 return -EINVAL;
3033 }
3034
mv5_scr_write(struct ata_link * link,unsigned int sc_reg_in,u32 val)3035 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3036 {
3037 struct mv_host_priv *hpriv = link->ap->host->private_data;
3038 void __iomem *mmio = hpriv->base;
3039 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3040 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3041
3042 if (ofs != 0xffffffffU) {
3043 writelfl(val, addr + ofs);
3044 return 0;
3045 } else
3046 return -EINVAL;
3047 }
3048
mv5_reset_bus(struct ata_host * host,void __iomem * mmio)3049 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3050 {
3051 struct pci_dev *pdev = to_pci_dev(host->dev);
3052 int early_5080;
3053
3054 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3055
3056 if (!early_5080) {
3057 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3058 tmp |= (1 << 0);
3059 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3060 }
3061
3062 mv_reset_pci_bus(host, mmio);
3063 }
3064
mv5_reset_flash(struct mv_host_priv * hpriv,void __iomem * mmio)3065 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3066 {
3067 writel(0x0fcfffff, mmio + FLASH_CTL);
3068 }
3069
mv5_read_preamp(struct mv_host_priv * hpriv,int idx,void __iomem * mmio)3070 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3071 void __iomem *mmio)
3072 {
3073 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3074 u32 tmp;
3075
3076 tmp = readl(phy_mmio + MV5_PHY_MODE);
3077
3078 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
3079 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
3080 }
3081
mv5_enable_leds(struct mv_host_priv * hpriv,void __iomem * mmio)3082 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3083 {
3084 u32 tmp;
3085
3086 writel(0, mmio + GPIO_PORT_CTL);
3087
3088 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3089
3090 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3091 tmp |= ~(1 << 0);
3092 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3093 }
3094
mv5_phy_errata(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3095 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3096 unsigned int port)
3097 {
3098 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3099 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3100 u32 tmp;
3101 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3102
3103 if (fix_apm_sq) {
3104 tmp = readl(phy_mmio + MV5_LTMODE);
3105 tmp |= (1 << 19);
3106 writel(tmp, phy_mmio + MV5_LTMODE);
3107
3108 tmp = readl(phy_mmio + MV5_PHY_CTL);
3109 tmp &= ~0x3;
3110 tmp |= 0x1;
3111 writel(tmp, phy_mmio + MV5_PHY_CTL);
3112 }
3113
3114 tmp = readl(phy_mmio + MV5_PHY_MODE);
3115 tmp &= ~mask;
3116 tmp |= hpriv->signal[port].pre;
3117 tmp |= hpriv->signal[port].amps;
3118 writel(tmp, phy_mmio + MV5_PHY_MODE);
3119 }
3120
3121
3122 #undef ZERO
3123 #define ZERO(reg) writel(0, port_mmio + (reg))
mv5_reset_hc_port(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3124 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3125 unsigned int port)
3126 {
3127 void __iomem *port_mmio = mv_port_base(mmio, port);
3128
3129 mv_reset_channel(hpriv, mmio, port);
3130
3131 ZERO(0x028); /* command */
3132 writel(0x11f, port_mmio + EDMA_CFG);
3133 ZERO(0x004); /* timer */
3134 ZERO(0x008); /* irq err cause */
3135 ZERO(0x00c); /* irq err mask */
3136 ZERO(0x010); /* rq bah */
3137 ZERO(0x014); /* rq inp */
3138 ZERO(0x018); /* rq outp */
3139 ZERO(0x01c); /* respq bah */
3140 ZERO(0x024); /* respq outp */
3141 ZERO(0x020); /* respq inp */
3142 ZERO(0x02c); /* test control */
3143 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3144 }
3145 #undef ZERO
3146
3147 #define ZERO(reg) writel(0, hc_mmio + (reg))
mv5_reset_one_hc(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int hc)3148 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3149 unsigned int hc)
3150 {
3151 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3152 u32 tmp;
3153
3154 ZERO(0x00c);
3155 ZERO(0x010);
3156 ZERO(0x014);
3157 ZERO(0x018);
3158
3159 tmp = readl(hc_mmio + 0x20);
3160 tmp &= 0x1c1c1c1c;
3161 tmp |= 0x03030303;
3162 writel(tmp, hc_mmio + 0x20);
3163 }
3164 #undef ZERO
3165
mv5_reset_hc(struct ata_host * host,void __iomem * mmio,unsigned int n_hc)3166 static int mv5_reset_hc(struct ata_host *host, void __iomem *mmio,
3167 unsigned int n_hc)
3168 {
3169 struct mv_host_priv *hpriv = host->private_data;
3170 unsigned int hc, port;
3171
3172 for (hc = 0; hc < n_hc; hc++) {
3173 for (port = 0; port < MV_PORTS_PER_HC; port++)
3174 mv5_reset_hc_port(hpriv, mmio,
3175 (hc * MV_PORTS_PER_HC) + port);
3176
3177 mv5_reset_one_hc(hpriv, mmio, hc);
3178 }
3179
3180 return 0;
3181 }
3182
3183 #undef ZERO
3184 #define ZERO(reg) writel(0, mmio + (reg))
mv_reset_pci_bus(struct ata_host * host,void __iomem * mmio)3185 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3186 {
3187 struct mv_host_priv *hpriv = host->private_data;
3188 u32 tmp;
3189
3190 tmp = readl(mmio + MV_PCI_MODE);
3191 tmp &= 0xff00ffff;
3192 writel(tmp, mmio + MV_PCI_MODE);
3193
3194 ZERO(MV_PCI_DISC_TIMER);
3195 ZERO(MV_PCI_MSI_TRIGGER);
3196 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3197 ZERO(MV_PCI_SERR_MASK);
3198 ZERO(hpriv->irq_cause_offset);
3199 ZERO(hpriv->irq_mask_offset);
3200 ZERO(MV_PCI_ERR_LOW_ADDRESS);
3201 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3202 ZERO(MV_PCI_ERR_ATTRIBUTE);
3203 ZERO(MV_PCI_ERR_COMMAND);
3204 }
3205 #undef ZERO
3206
mv6_reset_flash(struct mv_host_priv * hpriv,void __iomem * mmio)3207 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3208 {
3209 u32 tmp;
3210
3211 mv5_reset_flash(hpriv, mmio);
3212
3213 tmp = readl(mmio + GPIO_PORT_CTL);
3214 tmp &= 0x3;
3215 tmp |= (1 << 5) | (1 << 6);
3216 writel(tmp, mmio + GPIO_PORT_CTL);
3217 }
3218
3219 /*
3220 * mv6_reset_hc - Perform the 6xxx global soft reset
3221 * @mmio: base address of the HBA
3222 *
3223 * This routine only applies to 6xxx parts.
3224 *
3225 * LOCKING:
3226 * Inherited from caller.
3227 */
mv6_reset_hc(struct ata_host * host,void __iomem * mmio,unsigned int n_hc)3228 static int mv6_reset_hc(struct ata_host *host, void __iomem *mmio,
3229 unsigned int n_hc)
3230 {
3231 void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3232 int i, rc = 0;
3233 u32 t;
3234
3235 /* Following procedure defined in PCI "main command and status
3236 * register" table.
3237 */
3238 t = readl(reg);
3239 writel(t | STOP_PCI_MASTER, reg);
3240
3241 for (i = 0; i < 1000; i++) {
3242 udelay(1);
3243 t = readl(reg);
3244 if (PCI_MASTER_EMPTY & t)
3245 break;
3246 }
3247 if (!(PCI_MASTER_EMPTY & t)) {
3248 dev_err(host->dev, "PCI master won't flush\n");
3249 rc = 1;
3250 goto done;
3251 }
3252
3253 /* set reset */
3254 i = 5;
3255 do {
3256 writel(t | GLOB_SFT_RST, reg);
3257 t = readl(reg);
3258 udelay(1);
3259 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3260
3261 if (!(GLOB_SFT_RST & t)) {
3262 dev_err(host->dev, "can't set global reset\n");
3263 rc = 1;
3264 goto done;
3265 }
3266
3267 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3268 i = 5;
3269 do {
3270 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3271 t = readl(reg);
3272 udelay(1);
3273 } while ((GLOB_SFT_RST & t) && (i-- > 0));
3274
3275 if (GLOB_SFT_RST & t) {
3276 dev_err(host->dev, "can't clear global reset\n");
3277 rc = 1;
3278 }
3279 done:
3280 return rc;
3281 }
3282
mv6_read_preamp(struct mv_host_priv * hpriv,int idx,void __iomem * mmio)3283 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3284 void __iomem *mmio)
3285 {
3286 void __iomem *port_mmio;
3287 u32 tmp;
3288
3289 tmp = readl(mmio + RESET_CFG);
3290 if ((tmp & (1 << 0)) == 0) {
3291 hpriv->signal[idx].amps = 0x7 << 8;
3292 hpriv->signal[idx].pre = 0x1 << 5;
3293 return;
3294 }
3295
3296 port_mmio = mv_port_base(mmio, idx);
3297 tmp = readl(port_mmio + PHY_MODE2);
3298
3299 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3300 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3301 }
3302
mv6_enable_leds(struct mv_host_priv * hpriv,void __iomem * mmio)3303 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3304 {
3305 writel(0x00000060, mmio + GPIO_PORT_CTL);
3306 }
3307
mv6_phy_errata(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3308 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3309 unsigned int port)
3310 {
3311 void __iomem *port_mmio = mv_port_base(mmio, port);
3312
3313 u32 hp_flags = hpriv->hp_flags;
3314 int fix_phy_mode2 =
3315 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3316 int fix_phy_mode4 =
3317 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3318 u32 m2, m3;
3319
3320 if (fix_phy_mode2) {
3321 m2 = readl(port_mmio + PHY_MODE2);
3322 m2 &= ~(1 << 16);
3323 m2 |= (1 << 31);
3324 writel(m2, port_mmio + PHY_MODE2);
3325
3326 udelay(200);
3327
3328 m2 = readl(port_mmio + PHY_MODE2);
3329 m2 &= ~((1 << 16) | (1 << 31));
3330 writel(m2, port_mmio + PHY_MODE2);
3331
3332 udelay(200);
3333 }
3334
3335 /*
3336 * Gen-II/IIe PHY_MODE3 errata RM#2:
3337 * Achieves better receiver noise performance than the h/w default:
3338 */
3339 m3 = readl(port_mmio + PHY_MODE3);
3340 m3 = (m3 & 0x1f) | (0x5555601 << 5);
3341
3342 /* Guideline 88F5182 (GL# SATA-S11) */
3343 if (IS_SOC(hpriv))
3344 m3 &= ~0x1c;
3345
3346 if (fix_phy_mode4) {
3347 u32 m4 = readl(port_mmio + PHY_MODE4);
3348 /*
3349 * Enforce reserved-bit restrictions on GenIIe devices only.
3350 * For earlier chipsets, force only the internal config field
3351 * (workaround for errata FEr SATA#10 part 1).
3352 */
3353 if (IS_GEN_IIE(hpriv))
3354 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3355 else
3356 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3357 writel(m4, port_mmio + PHY_MODE4);
3358 }
3359 /*
3360 * Workaround for 60x1-B2 errata SATA#13:
3361 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3362 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3363 * Or ensure we use writelfl() when writing PHY_MODE4.
3364 */
3365 writel(m3, port_mmio + PHY_MODE3);
3366
3367 /* Revert values of pre-emphasis and signal amps to the saved ones */
3368 m2 = readl(port_mmio + PHY_MODE2);
3369
3370 m2 &= ~MV_M2_PREAMP_MASK;
3371 m2 |= hpriv->signal[port].amps;
3372 m2 |= hpriv->signal[port].pre;
3373 m2 &= ~(1 << 16);
3374
3375 /* according to mvSata 3.6.1, some IIE values are fixed */
3376 if (IS_GEN_IIE(hpriv)) {
3377 m2 &= ~0xC30FF01F;
3378 m2 |= 0x0000900F;
3379 }
3380
3381 writel(m2, port_mmio + PHY_MODE2);
3382 }
3383
3384 /* TODO: use the generic LED interface to configure the SATA Presence */
3385 /* & Acitivy LEDs on the board */
mv_soc_enable_leds(struct mv_host_priv * hpriv,void __iomem * mmio)3386 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3387 void __iomem *mmio)
3388 {
3389 return;
3390 }
3391
mv_soc_read_preamp(struct mv_host_priv * hpriv,int idx,void __iomem * mmio)3392 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3393 void __iomem *mmio)
3394 {
3395 void __iomem *port_mmio;
3396 u32 tmp;
3397
3398 port_mmio = mv_port_base(mmio, idx);
3399 tmp = readl(port_mmio + PHY_MODE2);
3400
3401 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3402 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3403 }
3404
3405 #undef ZERO
3406 #define ZERO(reg) writel(0, port_mmio + (reg))
mv_soc_reset_hc_port(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3407 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3408 void __iomem *mmio, unsigned int port)
3409 {
3410 void __iomem *port_mmio = mv_port_base(mmio, port);
3411
3412 mv_reset_channel(hpriv, mmio, port);
3413
3414 ZERO(0x028); /* command */
3415 writel(0x101f, port_mmio + EDMA_CFG);
3416 ZERO(0x004); /* timer */
3417 ZERO(0x008); /* irq err cause */
3418 ZERO(0x00c); /* irq err mask */
3419 ZERO(0x010); /* rq bah */
3420 ZERO(0x014); /* rq inp */
3421 ZERO(0x018); /* rq outp */
3422 ZERO(0x01c); /* respq bah */
3423 ZERO(0x024); /* respq outp */
3424 ZERO(0x020); /* respq inp */
3425 ZERO(0x02c); /* test control */
3426 writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3427 }
3428
3429 #undef ZERO
3430
3431 #define ZERO(reg) writel(0, hc_mmio + (reg))
mv_soc_reset_one_hc(struct mv_host_priv * hpriv,void __iomem * mmio)3432 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3433 void __iomem *mmio)
3434 {
3435 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3436
3437 ZERO(0x00c);
3438 ZERO(0x010);
3439 ZERO(0x014);
3440
3441 }
3442
3443 #undef ZERO
3444
mv_soc_reset_hc(struct ata_host * host,void __iomem * mmio,unsigned int n_hc)3445 static int mv_soc_reset_hc(struct ata_host *host,
3446 void __iomem *mmio, unsigned int n_hc)
3447 {
3448 struct mv_host_priv *hpriv = host->private_data;
3449 unsigned int port;
3450
3451 for (port = 0; port < hpriv->n_ports; port++)
3452 mv_soc_reset_hc_port(hpriv, mmio, port);
3453
3454 mv_soc_reset_one_hc(hpriv, mmio);
3455
3456 return 0;
3457 }
3458
mv_soc_reset_flash(struct mv_host_priv * hpriv,void __iomem * mmio)3459 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3460 void __iomem *mmio)
3461 {
3462 return;
3463 }
3464
mv_soc_reset_bus(struct ata_host * host,void __iomem * mmio)3465 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3466 {
3467 return;
3468 }
3469
mv_soc_65n_phy_errata(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3470 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3471 void __iomem *mmio, unsigned int port)
3472 {
3473 void __iomem *port_mmio = mv_port_base(mmio, port);
3474 u32 reg;
3475
3476 reg = readl(port_mmio + PHY_MODE3);
3477 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
3478 reg |= (0x1 << 27);
3479 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
3480 reg |= (0x1 << 29);
3481 writel(reg, port_mmio + PHY_MODE3);
3482
3483 reg = readl(port_mmio + PHY_MODE4);
3484 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3485 reg |= (0x1 << 16);
3486 writel(reg, port_mmio + PHY_MODE4);
3487
3488 reg = readl(port_mmio + PHY_MODE9_GEN2);
3489 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3490 reg |= 0x8;
3491 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3492 writel(reg, port_mmio + PHY_MODE9_GEN2);
3493
3494 reg = readl(port_mmio + PHY_MODE9_GEN1);
3495 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3496 reg |= 0x8;
3497 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3498 writel(reg, port_mmio + PHY_MODE9_GEN1);
3499 }
3500
3501 /*
3502 * soc_is_65 - check if the soc is 65 nano device
3503 *
3504 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3505 * register, this register should contain non-zero value and it exists only
3506 * in the 65 nano devices, when reading it from older devices we get 0.
3507 */
soc_is_65n(struct mv_host_priv * hpriv)3508 static bool soc_is_65n(struct mv_host_priv *hpriv)
3509 {
3510 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3511
3512 if (readl(port0_mmio + PHYCFG_OFS))
3513 return true;
3514 return false;
3515 }
3516
mv_setup_ifcfg(void __iomem * port_mmio,int want_gen2i)3517 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3518 {
3519 u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3520
3521 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
3522 if (want_gen2i)
3523 ifcfg |= (1 << 7); /* enable gen2i speed */
3524 writelfl(ifcfg, port_mmio + SATA_IFCFG);
3525 }
3526
mv_reset_channel(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port_no)3527 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3528 unsigned int port_no)
3529 {
3530 void __iomem *port_mmio = mv_port_base(mmio, port_no);
3531
3532 /*
3533 * The datasheet warns against setting EDMA_RESET when EDMA is active
3534 * (but doesn't say what the problem might be). So we first try
3535 * to disable the EDMA engine before doing the EDMA_RESET operation.
3536 */
3537 mv_stop_edma_engine(port_mmio);
3538 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3539
3540 if (!IS_GEN_I(hpriv)) {
3541 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3542 mv_setup_ifcfg(port_mmio, 1);
3543 }
3544 /*
3545 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3546 * link, and physical layers. It resets all SATA interface registers
3547 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3548 */
3549 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3550 udelay(25); /* allow reset propagation */
3551 writelfl(0, port_mmio + EDMA_CMD);
3552
3553 hpriv->ops->phy_errata(hpriv, mmio, port_no);
3554
3555 if (IS_GEN_I(hpriv))
3556 usleep_range(500, 1000);
3557 }
3558
mv_pmp_select(struct ata_port * ap,int pmp)3559 static void mv_pmp_select(struct ata_port *ap, int pmp)
3560 {
3561 if (sata_pmp_supported(ap)) {
3562 void __iomem *port_mmio = mv_ap_base(ap);
3563 u32 reg = readl(port_mmio + SATA_IFCTL);
3564 int old = reg & 0xf;
3565
3566 if (old != pmp) {
3567 reg = (reg & ~0xf) | pmp;
3568 writelfl(reg, port_mmio + SATA_IFCTL);
3569 }
3570 }
3571 }
3572
mv_pmp_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3573 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3574 unsigned long deadline)
3575 {
3576 mv_pmp_select(link->ap, sata_srst_pmp(link));
3577 return sata_std_hardreset(link, class, deadline);
3578 }
3579
mv_softreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3580 static int mv_softreset(struct ata_link *link, unsigned int *class,
3581 unsigned long deadline)
3582 {
3583 mv_pmp_select(link->ap, sata_srst_pmp(link));
3584 return ata_sff_softreset(link, class, deadline);
3585 }
3586
mv_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3587 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3588 unsigned long deadline)
3589 {
3590 struct ata_port *ap = link->ap;
3591 struct mv_host_priv *hpriv = ap->host->private_data;
3592 struct mv_port_priv *pp = ap->private_data;
3593 void __iomem *mmio = hpriv->base;
3594 int rc, attempts = 0, extra = 0;
3595 u32 sstatus;
3596 bool online;
3597
3598 mv_reset_channel(hpriv, mmio, ap->port_no);
3599 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3600 pp->pp_flags &=
3601 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3602
3603 /* Workaround for errata FEr SATA#10 (part 2) */
3604 do {
3605 const unsigned int *timing =
3606 sata_ehc_deb_timing(&link->eh_context);
3607
3608 rc = sata_link_hardreset(link, timing, deadline + extra,
3609 &online, NULL);
3610 rc = online ? -EAGAIN : rc;
3611 if (rc)
3612 return rc;
3613 sata_scr_read(link, SCR_STATUS, &sstatus);
3614 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3615 /* Force 1.5gb/s link speed and try again */
3616 mv_setup_ifcfg(mv_ap_base(ap), 0);
3617 if (time_after(jiffies + HZ, deadline))
3618 extra = HZ; /* only extend it once, max */
3619 }
3620 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3621 mv_save_cached_regs(ap);
3622 mv_edma_cfg(ap, 0, 0);
3623
3624 return rc;
3625 }
3626
mv_eh_freeze(struct ata_port * ap)3627 static void mv_eh_freeze(struct ata_port *ap)
3628 {
3629 mv_stop_edma(ap);
3630 mv_enable_port_irqs(ap, 0);
3631 }
3632
mv_eh_thaw(struct ata_port * ap)3633 static void mv_eh_thaw(struct ata_port *ap)
3634 {
3635 struct mv_host_priv *hpriv = ap->host->private_data;
3636 unsigned int port = ap->port_no;
3637 unsigned int hardport = mv_hardport_from_port(port);
3638 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3639 void __iomem *port_mmio = mv_ap_base(ap);
3640 u32 hc_irq_cause;
3641
3642 /* clear EDMA errors on this port */
3643 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3644
3645 /* clear pending irq events */
3646 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3647 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3648
3649 mv_enable_port_irqs(ap, ERR_IRQ);
3650 }
3651
3652 /**
3653 * mv_port_init - Perform some early initialization on a single port.
3654 * @port: libata data structure storing shadow register addresses
3655 * @port_mmio: base address of the port
3656 *
3657 * Initialize shadow register mmio addresses, clear outstanding
3658 * interrupts on the port, and unmask interrupts for the future
3659 * start of the port.
3660 *
3661 * LOCKING:
3662 * Inherited from caller.
3663 */
mv_port_init(struct ata_ioports * port,void __iomem * port_mmio)3664 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
3665 {
3666 void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3667
3668 /* PIO related setup
3669 */
3670 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3671 port->error_addr =
3672 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3673 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3674 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3675 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3676 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3677 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3678 port->status_addr =
3679 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3680 /* special case: control/altstatus doesn't have ATA_REG_ address */
3681 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3682
3683 /* Clear any currently outstanding port interrupt conditions */
3684 serr = port_mmio + mv_scr_offset(SCR_ERROR);
3685 writelfl(readl(serr), serr);
3686 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3687
3688 /* unmask all non-transient EDMA error interrupts */
3689 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3690 }
3691
mv_in_pcix_mode(struct ata_host * host)3692 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3693 {
3694 struct mv_host_priv *hpriv = host->private_data;
3695 void __iomem *mmio = hpriv->base;
3696 u32 reg;
3697
3698 if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3699 return 0; /* not PCI-X capable */
3700 reg = readl(mmio + MV_PCI_MODE);
3701 if ((reg & MV_PCI_MODE_MASK) == 0)
3702 return 0; /* conventional PCI mode */
3703 return 1; /* chip is in PCI-X mode */
3704 }
3705
mv_pci_cut_through_okay(struct ata_host * host)3706 static int mv_pci_cut_through_okay(struct ata_host *host)
3707 {
3708 struct mv_host_priv *hpriv = host->private_data;
3709 void __iomem *mmio = hpriv->base;
3710 u32 reg;
3711
3712 if (!mv_in_pcix_mode(host)) {
3713 reg = readl(mmio + MV_PCI_COMMAND);
3714 if (reg & MV_PCI_COMMAND_MRDTRIG)
3715 return 0; /* not okay */
3716 }
3717 return 1; /* okay */
3718 }
3719
mv_60x1b2_errata_pci7(struct ata_host * host)3720 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3721 {
3722 struct mv_host_priv *hpriv = host->private_data;
3723 void __iomem *mmio = hpriv->base;
3724
3725 /* workaround for 60x1-B2 errata PCI#7 */
3726 if (mv_in_pcix_mode(host)) {
3727 u32 reg = readl(mmio + MV_PCI_COMMAND);
3728 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3729 }
3730 }
3731
mv_chip_id(struct ata_host * host,unsigned int board_idx)3732 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3733 {
3734 struct pci_dev *pdev = to_pci_dev(host->dev);
3735 struct mv_host_priv *hpriv = host->private_data;
3736 u32 hp_flags = hpriv->hp_flags;
3737
3738 switch (board_idx) {
3739 case chip_5080:
3740 hpriv->ops = &mv5xxx_ops;
3741 hp_flags |= MV_HP_GEN_I;
3742
3743 switch (pdev->revision) {
3744 case 0x1:
3745 hp_flags |= MV_HP_ERRATA_50XXB0;
3746 break;
3747 case 0x3:
3748 hp_flags |= MV_HP_ERRATA_50XXB2;
3749 break;
3750 default:
3751 dev_warn(&pdev->dev,
3752 "Applying 50XXB2 workarounds to unknown rev\n");
3753 hp_flags |= MV_HP_ERRATA_50XXB2;
3754 break;
3755 }
3756 break;
3757
3758 case chip_504x:
3759 case chip_508x:
3760 hpriv->ops = &mv5xxx_ops;
3761 hp_flags |= MV_HP_GEN_I;
3762
3763 switch (pdev->revision) {
3764 case 0x0:
3765 hp_flags |= MV_HP_ERRATA_50XXB0;
3766 break;
3767 case 0x3:
3768 hp_flags |= MV_HP_ERRATA_50XXB2;
3769 break;
3770 default:
3771 dev_warn(&pdev->dev,
3772 "Applying B2 workarounds to unknown rev\n");
3773 hp_flags |= MV_HP_ERRATA_50XXB2;
3774 break;
3775 }
3776 break;
3777
3778 case chip_604x:
3779 case chip_608x:
3780 hpriv->ops = &mv6xxx_ops;
3781 hp_flags |= MV_HP_GEN_II;
3782
3783 switch (pdev->revision) {
3784 case 0x7:
3785 mv_60x1b2_errata_pci7(host);
3786 hp_flags |= MV_HP_ERRATA_60X1B2;
3787 break;
3788 case 0x9:
3789 hp_flags |= MV_HP_ERRATA_60X1C0;
3790 break;
3791 default:
3792 dev_warn(&pdev->dev,
3793 "Applying B2 workarounds to unknown rev\n");
3794 hp_flags |= MV_HP_ERRATA_60X1B2;
3795 break;
3796 }
3797 break;
3798
3799 case chip_7042:
3800 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3801 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3802 (pdev->device == 0x2300 || pdev->device == 0x2310))
3803 {
3804 /*
3805 * Highpoint RocketRAID PCIe 23xx series cards:
3806 *
3807 * Unconfigured drives are treated as "Legacy"
3808 * by the BIOS, and it overwrites sector 8 with
3809 * a "Lgcy" metadata block prior to Linux boot.
3810 *
3811 * Configured drives (RAID or JBOD) leave sector 8
3812 * alone, but instead overwrite a high numbered
3813 * sector for the RAID metadata. This sector can
3814 * be determined exactly, by truncating the physical
3815 * drive capacity to a nice even GB value.
3816 *
3817 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3818 *
3819 * Warn the user, lest they think we're just buggy.
3820 */
3821 dev_warn(&pdev->dev, "Highpoint RocketRAID"
3822 " BIOS CORRUPTS DATA on all attached drives,"
3823 " regardless of if/how they are configured."
3824 " BEWARE!\n");
3825 dev_warn(&pdev->dev, "For data safety, do not"
3826 " use sectors 8-9 on \"Legacy\" drives,"
3827 " and avoid the final two gigabytes on"
3828 " all RocketRAID BIOS initialized drives.\n");
3829 }
3830 fallthrough;
3831 case chip_6042:
3832 hpriv->ops = &mv6xxx_ops;
3833 hp_flags |= MV_HP_GEN_IIE;
3834 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3835 hp_flags |= MV_HP_CUT_THROUGH;
3836
3837 switch (pdev->revision) {
3838 case 0x2: /* Rev.B0: the first/only public release */
3839 hp_flags |= MV_HP_ERRATA_60X1C0;
3840 break;
3841 default:
3842 dev_warn(&pdev->dev,
3843 "Applying 60X1C0 workarounds to unknown rev\n");
3844 hp_flags |= MV_HP_ERRATA_60X1C0;
3845 break;
3846 }
3847 break;
3848 case chip_soc:
3849 if (soc_is_65n(hpriv))
3850 hpriv->ops = &mv_soc_65n_ops;
3851 else
3852 hpriv->ops = &mv_soc_ops;
3853 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3854 MV_HP_ERRATA_60X1C0;
3855 break;
3856
3857 default:
3858 dev_alert(host->dev, "BUG: invalid board index %u\n", board_idx);
3859 return -EINVAL;
3860 }
3861
3862 hpriv->hp_flags = hp_flags;
3863 if (hp_flags & MV_HP_PCIE) {
3864 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
3865 hpriv->irq_mask_offset = PCIE_IRQ_MASK;
3866 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
3867 } else {
3868 hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
3869 hpriv->irq_mask_offset = PCI_IRQ_MASK;
3870 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
3871 }
3872
3873 return 0;
3874 }
3875
3876 /**
3877 * mv_init_host - Perform some early initialization of the host.
3878 * @host: ATA host to initialize
3879 *
3880 * If possible, do an early global reset of the host. Then do
3881 * our port init and clear/unmask all/relevant host interrupts.
3882 *
3883 * LOCKING:
3884 * Inherited from caller.
3885 */
mv_init_host(struct ata_host * host)3886 static int mv_init_host(struct ata_host *host)
3887 {
3888 int rc = 0, n_hc, port, hc;
3889 struct mv_host_priv *hpriv = host->private_data;
3890 void __iomem *mmio = hpriv->base;
3891
3892 rc = mv_chip_id(host, hpriv->board_idx);
3893 if (rc)
3894 goto done;
3895
3896 if (IS_SOC(hpriv)) {
3897 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3898 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK;
3899 } else {
3900 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3901 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK;
3902 }
3903
3904 /* initialize shadow irq mask with register's value */
3905 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3906
3907 /* global interrupt mask: 0 == mask everything */
3908 mv_set_main_irq_mask(host, ~0, 0);
3909
3910 n_hc = mv_get_hc_count(host->ports[0]->flags);
3911
3912 for (port = 0; port < host->n_ports; port++)
3913 if (hpriv->ops->read_preamp)
3914 hpriv->ops->read_preamp(hpriv, port, mmio);
3915
3916 rc = hpriv->ops->reset_hc(host, mmio, n_hc);
3917 if (rc)
3918 goto done;
3919
3920 hpriv->ops->reset_flash(hpriv, mmio);
3921 hpriv->ops->reset_bus(host, mmio);
3922 hpriv->ops->enable_leds(hpriv, mmio);
3923
3924 for (port = 0; port < host->n_ports; port++) {
3925 struct ata_port *ap = host->ports[port];
3926 void __iomem *port_mmio = mv_port_base(mmio, port);
3927
3928 mv_port_init(&ap->ioaddr, port_mmio);
3929 }
3930
3931 for (hc = 0; hc < n_hc; hc++) {
3932 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3933
3934 dev_dbg(host->dev, "HC%i: HC config=0x%08x HC IRQ cause "
3935 "(before clear)=0x%08x\n", hc,
3936 readl(hc_mmio + HC_CFG),
3937 readl(hc_mmio + HC_IRQ_CAUSE));
3938
3939 /* Clear any currently outstanding hc interrupt conditions */
3940 writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3941 }
3942
3943 if (!IS_SOC(hpriv)) {
3944 /* Clear any currently outstanding host interrupt conditions */
3945 writelfl(0, mmio + hpriv->irq_cause_offset);
3946
3947 /* and unmask interrupt generation for host regs */
3948 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3949 }
3950
3951 /*
3952 * enable only global host interrupts for now.
3953 * The per-port interrupts get done later as ports are set up.
3954 */
3955 mv_set_main_irq_mask(host, 0, PCI_ERR);
3956 mv_set_irq_coalescing(host, irq_coalescing_io_count,
3957 irq_coalescing_usecs);
3958 done:
3959 return rc;
3960 }
3961
mv_create_dma_pools(struct mv_host_priv * hpriv,struct device * dev)3962 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3963 {
3964 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3965 MV_CRQB_Q_SZ, 0);
3966 if (!hpriv->crqb_pool)
3967 return -ENOMEM;
3968
3969 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3970 MV_CRPB_Q_SZ, 0);
3971 if (!hpriv->crpb_pool)
3972 return -ENOMEM;
3973
3974 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3975 MV_SG_TBL_SZ, 0);
3976 if (!hpriv->sg_tbl_pool)
3977 return -ENOMEM;
3978
3979 return 0;
3980 }
3981
mv_conf_mbus_windows(struct mv_host_priv * hpriv,const struct mbus_dram_target_info * dram)3982 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3983 const struct mbus_dram_target_info *dram)
3984 {
3985 int i;
3986
3987 for (i = 0; i < 4; i++) {
3988 writel(0, hpriv->base + WINDOW_CTRL(i));
3989 writel(0, hpriv->base + WINDOW_BASE(i));
3990 }
3991
3992 for (i = 0; i < dram->num_cs; i++) {
3993 const struct mbus_dram_window *cs = dram->cs + i;
3994
3995 writel(((cs->size - 1) & 0xffff0000) |
3996 (cs->mbus_attr << 8) |
3997 (dram->mbus_dram_target_id << 4) | 1,
3998 hpriv->base + WINDOW_CTRL(i));
3999 writel(cs->base, hpriv->base + WINDOW_BASE(i));
4000 }
4001 }
4002
4003 /**
4004 * mv_platform_probe - handle a positive probe of an soc Marvell
4005 * host
4006 * @pdev: platform device found
4007 *
4008 * LOCKING:
4009 * Inherited from caller.
4010 */
mv_platform_probe(struct platform_device * pdev)4011 static int mv_platform_probe(struct platform_device *pdev)
4012 {
4013 const struct mv_sata_platform_data *mv_platform_data;
4014 const struct mbus_dram_target_info *dram;
4015 const struct ata_port_info *ppi[] =
4016 { &mv_port_info[chip_soc], NULL };
4017 struct ata_host *host;
4018 struct mv_host_priv *hpriv;
4019 struct resource *res;
4020 int n_ports = 0, irq = 0;
4021 int rc;
4022 int port;
4023
4024 ata_print_version_once(&pdev->dev, DRV_VERSION);
4025
4026 /*
4027 * Simple resource validation ..
4028 */
4029 if (unlikely(pdev->num_resources != 1)) {
4030 dev_err(&pdev->dev, "invalid number of resources\n");
4031 return -EINVAL;
4032 }
4033
4034 /*
4035 * Get the register base first
4036 */
4037 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4038 if (res == NULL)
4039 return -EINVAL;
4040
4041 /* allocate host */
4042 if (pdev->dev.of_node) {
4043 rc = of_property_read_u32(pdev->dev.of_node, "nr-ports",
4044 &n_ports);
4045 if (rc) {
4046 dev_err(&pdev->dev,
4047 "error parsing nr-ports property: %d\n", rc);
4048 return rc;
4049 }
4050
4051 if (n_ports <= 0) {
4052 dev_err(&pdev->dev, "nr-ports must be positive: %d\n",
4053 n_ports);
4054 return -EINVAL;
4055 }
4056
4057 irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4058 } else {
4059 mv_platform_data = dev_get_platdata(&pdev->dev);
4060 n_ports = mv_platform_data->n_ports;
4061 irq = platform_get_irq(pdev, 0);
4062 }
4063 if (irq < 0)
4064 return irq;
4065 if (!irq)
4066 return -EINVAL;
4067
4068 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4069 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4070
4071 if (!host || !hpriv)
4072 return -ENOMEM;
4073 hpriv->port_clks = devm_kcalloc(&pdev->dev,
4074 n_ports, sizeof(struct clk *),
4075 GFP_KERNEL);
4076 if (!hpriv->port_clks)
4077 return -ENOMEM;
4078 hpriv->port_phys = devm_kcalloc(&pdev->dev,
4079 n_ports, sizeof(struct phy *),
4080 GFP_KERNEL);
4081 if (!hpriv->port_phys)
4082 return -ENOMEM;
4083 host->private_data = hpriv;
4084 hpriv->board_idx = chip_soc;
4085
4086 host->iomap = NULL;
4087 hpriv->base = devm_ioremap(&pdev->dev, res->start,
4088 resource_size(res));
4089 if (!hpriv->base)
4090 return -ENOMEM;
4091
4092 hpriv->base -= SATAHC0_REG_BASE;
4093
4094 hpriv->clk = clk_get(&pdev->dev, NULL);
4095 if (IS_ERR(hpriv->clk)) {
4096 dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4097 } else {
4098 rc = clk_prepare_enable(hpriv->clk);
4099 if (rc)
4100 goto err;
4101 }
4102
4103 for (port = 0; port < n_ports; port++) {
4104 char port_number[16];
4105 sprintf(port_number, "%d", port);
4106 hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4107 if (!IS_ERR(hpriv->port_clks[port]))
4108 clk_prepare_enable(hpriv->port_clks[port]);
4109
4110 sprintf(port_number, "port%d", port);
4111 hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
4112 port_number);
4113 if (IS_ERR(hpriv->port_phys[port])) {
4114 rc = PTR_ERR(hpriv->port_phys[port]);
4115 hpriv->port_phys[port] = NULL;
4116 if (rc != -EPROBE_DEFER)
4117 dev_warn(&pdev->dev, "error getting phy %d", rc);
4118
4119 /* Cleanup only the initialized ports */
4120 hpriv->n_ports = port;
4121 goto err;
4122 } else
4123 phy_power_on(hpriv->port_phys[port]);
4124 }
4125
4126 /* All the ports have been initialized */
4127 hpriv->n_ports = n_ports;
4128
4129 /*
4130 * (Re-)program MBUS remapping windows if we are asked to.
4131 */
4132 dram = mv_mbus_dram_info();
4133 if (dram)
4134 mv_conf_mbus_windows(hpriv, dram);
4135
4136 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4137 if (rc)
4138 goto err;
4139
4140 /*
4141 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4142 * updated in the LP_PHY_CTL register.
4143 */
4144 if (pdev->dev.of_node &&
4145 of_device_is_compatible(pdev->dev.of_node,
4146 "marvell,armada-370-sata"))
4147 hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
4148
4149 /* initialize adapter */
4150 rc = mv_init_host(host);
4151 if (rc)
4152 goto err;
4153
4154 dev_info(&pdev->dev, "slots %u ports %d\n",
4155 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4156
4157 rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4158 if (!rc)
4159 return 0;
4160
4161 err:
4162 if (!IS_ERR(hpriv->clk)) {
4163 clk_disable_unprepare(hpriv->clk);
4164 clk_put(hpriv->clk);
4165 }
4166 for (port = 0; port < hpriv->n_ports; port++) {
4167 if (!IS_ERR(hpriv->port_clks[port])) {
4168 clk_disable_unprepare(hpriv->port_clks[port]);
4169 clk_put(hpriv->port_clks[port]);
4170 }
4171 phy_power_off(hpriv->port_phys[port]);
4172 }
4173
4174 return rc;
4175 }
4176
4177 /*
4178 *
4179 * mv_platform_remove - unplug a platform interface
4180 * @pdev: platform device
4181 *
4182 * A platform bus SATA device has been unplugged. Perform the needed
4183 * cleanup. Also called on module unload for any active devices.
4184 */
mv_platform_remove(struct platform_device * pdev)4185 static void mv_platform_remove(struct platform_device *pdev)
4186 {
4187 struct ata_host *host = platform_get_drvdata(pdev);
4188 struct mv_host_priv *hpriv = host->private_data;
4189 int port;
4190 ata_host_detach(host);
4191
4192 if (!IS_ERR(hpriv->clk)) {
4193 clk_disable_unprepare(hpriv->clk);
4194 clk_put(hpriv->clk);
4195 }
4196 for (port = 0; port < host->n_ports; port++) {
4197 if (!IS_ERR(hpriv->port_clks[port])) {
4198 clk_disable_unprepare(hpriv->port_clks[port]);
4199 clk_put(hpriv->port_clks[port]);
4200 }
4201 phy_power_off(hpriv->port_phys[port]);
4202 }
4203 }
4204
4205 #ifdef CONFIG_PM_SLEEP
mv_platform_suspend(struct platform_device * pdev,pm_message_t state)4206 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4207 {
4208 struct ata_host *host = platform_get_drvdata(pdev);
4209
4210 if (host)
4211 ata_host_suspend(host, state);
4212 return 0;
4213 }
4214
mv_platform_resume(struct platform_device * pdev)4215 static int mv_platform_resume(struct platform_device *pdev)
4216 {
4217 struct ata_host *host = platform_get_drvdata(pdev);
4218 const struct mbus_dram_target_info *dram;
4219 int ret;
4220
4221 if (host) {
4222 struct mv_host_priv *hpriv = host->private_data;
4223
4224 /*
4225 * (Re-)program MBUS remapping windows if we are asked to.
4226 */
4227 dram = mv_mbus_dram_info();
4228 if (dram)
4229 mv_conf_mbus_windows(hpriv, dram);
4230
4231 /* initialize adapter */
4232 ret = mv_init_host(host);
4233 if (ret) {
4234 dev_err(&pdev->dev, "Error during HW init\n");
4235 return ret;
4236 }
4237 ata_host_resume(host);
4238 }
4239
4240 return 0;
4241 }
4242 #else
4243 #define mv_platform_suspend NULL
4244 #define mv_platform_resume NULL
4245 #endif
4246
4247 #ifdef CONFIG_OF
4248 static const struct of_device_id mv_sata_dt_ids[] = {
4249 { .compatible = "marvell,armada-370-sata", },
4250 { .compatible = "marvell,orion-sata", },
4251 { /* sentinel */ }
4252 };
4253 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4254 #endif
4255
4256 static struct platform_driver mv_platform_driver = {
4257 .probe = mv_platform_probe,
4258 .remove_new = mv_platform_remove,
4259 .suspend = mv_platform_suspend,
4260 .resume = mv_platform_resume,
4261 .driver = {
4262 .name = DRV_NAME,
4263 .of_match_table = of_match_ptr(mv_sata_dt_ids),
4264 },
4265 };
4266
4267
4268 #ifdef CONFIG_PCI
4269 static int mv_pci_init_one(struct pci_dev *pdev,
4270 const struct pci_device_id *ent);
4271 #ifdef CONFIG_PM_SLEEP
4272 static int mv_pci_device_resume(struct pci_dev *pdev);
4273 #endif
4274
4275 static const struct pci_device_id mv_pci_tbl[] = {
4276 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
4277 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
4278 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
4279 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
4280 /* RocketRAID 1720/174x have different identifiers */
4281 { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
4282 { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
4283 { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
4284
4285 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
4286 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
4287 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
4288 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
4289 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
4290
4291 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
4292
4293 /* Adaptec 1430SA */
4294 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
4295
4296 /* Marvell 7042 support */
4297 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
4298
4299 /* Highpoint RocketRAID PCIe series */
4300 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
4301 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
4302
4303 { } /* terminate list */
4304 };
4305
4306 static struct pci_driver mv_pci_driver = {
4307 .name = DRV_NAME,
4308 .id_table = mv_pci_tbl,
4309 .probe = mv_pci_init_one,
4310 .remove = ata_pci_remove_one,
4311 #ifdef CONFIG_PM_SLEEP
4312 .suspend = ata_pci_device_suspend,
4313 .resume = mv_pci_device_resume,
4314 #endif
4315
4316 };
4317 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4318
4319 /**
4320 * mv_print_info - Dump key info to kernel log for perusal.
4321 * @host: ATA host to print info about
4322 *
4323 * FIXME: complete this.
4324 *
4325 * LOCKING:
4326 * Inherited from caller.
4327 */
mv_print_info(struct ata_host * host)4328 static void mv_print_info(struct ata_host *host)
4329 {
4330 struct pci_dev *pdev = to_pci_dev(host->dev);
4331 struct mv_host_priv *hpriv = host->private_data;
4332 u8 scc;
4333 const char *scc_s, *gen;
4334
4335 /* Use this to determine the HW stepping of the chip so we know
4336 * what errata to workaround
4337 */
4338 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4339 if (scc == 0)
4340 scc_s = "SCSI";
4341 else if (scc == 0x01)
4342 scc_s = "RAID";
4343 else
4344 scc_s = "?";
4345
4346 if (IS_GEN_I(hpriv))
4347 gen = "I";
4348 else if (IS_GEN_II(hpriv))
4349 gen = "II";
4350 else if (IS_GEN_IIE(hpriv))
4351 gen = "IIE";
4352 else
4353 gen = "?";
4354
4355 dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4356 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4357 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4358 }
4359
4360 /**
4361 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
4362 * @pdev: PCI device found
4363 * @ent: PCI device ID entry for the matched host
4364 *
4365 * LOCKING:
4366 * Inherited from caller.
4367 */
mv_pci_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)4368 static int mv_pci_init_one(struct pci_dev *pdev,
4369 const struct pci_device_id *ent)
4370 {
4371 unsigned int board_idx = (unsigned int)ent->driver_data;
4372 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4373 struct ata_host *host;
4374 struct mv_host_priv *hpriv;
4375 int n_ports, port, rc;
4376
4377 ata_print_version_once(&pdev->dev, DRV_VERSION);
4378
4379 /* allocate host */
4380 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4381
4382 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4383 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4384 if (!host || !hpriv)
4385 return -ENOMEM;
4386 host->private_data = hpriv;
4387 hpriv->n_ports = n_ports;
4388 hpriv->board_idx = board_idx;
4389
4390 /* acquire resources */
4391 rc = pcim_enable_device(pdev);
4392 if (rc)
4393 return rc;
4394
4395 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4396 if (rc == -EBUSY)
4397 pcim_pin_device(pdev);
4398 if (rc)
4399 return rc;
4400 host->iomap = pcim_iomap_table(pdev);
4401 hpriv->base = host->iomap[MV_PRIMARY_BAR];
4402
4403 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4404 if (rc) {
4405 dev_err(&pdev->dev, "DMA enable failed\n");
4406 return rc;
4407 }
4408
4409 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4410 if (rc)
4411 return rc;
4412
4413 for (port = 0; port < host->n_ports; port++) {
4414 struct ata_port *ap = host->ports[port];
4415 void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4416 unsigned int offset = port_mmio - hpriv->base;
4417
4418 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4419 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4420 }
4421
4422 /* initialize adapter */
4423 rc = mv_init_host(host);
4424 if (rc)
4425 return rc;
4426
4427 /* Enable message-switched interrupts, if requested */
4428 if (msi && pci_enable_msi(pdev) == 0)
4429 hpriv->hp_flags |= MV_HP_FLAG_MSI;
4430
4431 mv_dump_pci_cfg(pdev, 0x68);
4432 mv_print_info(host);
4433
4434 pci_set_master(pdev);
4435 pci_try_set_mwi(pdev);
4436 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4437 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4438 }
4439
4440 #ifdef CONFIG_PM_SLEEP
mv_pci_device_resume(struct pci_dev * pdev)4441 static int mv_pci_device_resume(struct pci_dev *pdev)
4442 {
4443 struct ata_host *host = pci_get_drvdata(pdev);
4444 int rc;
4445
4446 rc = ata_pci_device_do_resume(pdev);
4447 if (rc)
4448 return rc;
4449
4450 /* initialize adapter */
4451 rc = mv_init_host(host);
4452 if (rc)
4453 return rc;
4454
4455 ata_host_resume(host);
4456
4457 return 0;
4458 }
4459 #endif
4460 #endif
4461
mv_init(void)4462 static int __init mv_init(void)
4463 {
4464 int rc = -ENODEV;
4465 #ifdef CONFIG_PCI
4466 rc = pci_register_driver(&mv_pci_driver);
4467 if (rc < 0)
4468 return rc;
4469 #endif
4470 rc = platform_driver_register(&mv_platform_driver);
4471
4472 #ifdef CONFIG_PCI
4473 if (rc < 0)
4474 pci_unregister_driver(&mv_pci_driver);
4475 #endif
4476 return rc;
4477 }
4478
mv_exit(void)4479 static void __exit mv_exit(void)
4480 {
4481 #ifdef CONFIG_PCI
4482 pci_unregister_driver(&mv_pci_driver);
4483 #endif
4484 platform_driver_unregister(&mv_platform_driver);
4485 }
4486
4487 MODULE_AUTHOR("Brett Russ");
4488 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4489 MODULE_LICENSE("GPL v2");
4490 MODULE_VERSION(DRV_VERSION);
4491 MODULE_ALIAS("platform:" DRV_NAME);
4492
4493 module_init(mv_init);
4494 module_exit(mv_exit);
4495