xref: /linux/net/sched/sch_qfq.c (revision ebd297a2affadb6f6f4d2e5d975c1eda18ac762d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler.
4  *
5  * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
6  * Copyright (c) 2012 Paolo Valente.
7  */
8 
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/bitops.h>
12 #include <linux/errno.h>
13 #include <linux/netdevice.h>
14 #include <linux/pkt_sched.h>
15 #include <net/sch_generic.h>
16 #include <net/pkt_sched.h>
17 #include <net/pkt_cls.h>
18 
19 
20 /*  Quick Fair Queueing Plus
21     ========================
22 
23     Sources:
24 
25     [1] Paolo Valente,
26     "Reducing the Execution Time of Fair-Queueing Schedulers."
27     http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
28 
29     Sources for QFQ:
30 
31     [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
32     Packet Scheduling with Tight Bandwidth Distribution Guarantees."
33 
34     See also:
35     http://retis.sssup.it/~fabio/linux/qfq/
36  */
37 
38 /*
39 
40   QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
41   classes. Each aggregate is timestamped with a virtual start time S
42   and a virtual finish time F, and scheduled according to its
43   timestamps. S and F are computed as a function of a system virtual
44   time function V. The classes within each aggregate are instead
45   scheduled with DRR.
46 
47   To speed up operations, QFQ+ divides also aggregates into a limited
48   number of groups. Which group a class belongs to depends on the
49   ratio between the maximum packet length for the class and the weight
50   of the class. Groups have their own S and F. In the end, QFQ+
51   schedules groups, then aggregates within groups, then classes within
52   aggregates. See [1] and [2] for a full description.
53 
54   Virtual time computations.
55 
56   S, F and V are all computed in fixed point arithmetic with
57   FRAC_BITS decimal bits.
58 
59   QFQ_MAX_INDEX is the maximum index allowed for a group. We need
60 	one bit per index.
61   QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
62 
63   The layout of the bits is as below:
64 
65                    [ MTU_SHIFT ][      FRAC_BITS    ]
66                    [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
67 				 ^.__grp->index = 0
68 				 *.__grp->slot_shift
69 
70   where MIN_SLOT_SHIFT is derived by difference from the others.
71 
72   The max group index corresponds to Lmax/w_min, where
73   Lmax=1<<MTU_SHIFT, w_min = 1 .
74   From this, and knowing how many groups (MAX_INDEX) we want,
75   we can derive the shift corresponding to each group.
76 
77   Because we often need to compute
78 	F = S + len/w_i  and V = V + len/wsum
79   instead of storing w_i store the value
80 	inv_w = (1<<FRAC_BITS)/w_i
81   so we can do F = S + len * inv_w * wsum.
82   We use W_TOT in the formulas so we can easily move between
83   static and adaptive weight sum.
84 
85   The per-scheduler-instance data contain all the data structures
86   for the scheduler: bitmaps and bucket lists.
87 
88  */
89 
90 /*
91  * Maximum number of consecutive slots occupied by backlogged classes
92  * inside a group.
93  */
94 #define QFQ_MAX_SLOTS	32
95 
96 /*
97  * Shifts used for aggregate<->group mapping.  We allow class weights that are
98  * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
99  * group with the smallest index that can support the L_i / r_i configured
100  * for the classes in the aggregate.
101  *
102  * grp->index is the index of the group; and grp->slot_shift
103  * is the shift for the corresponding (scaled) sigma_i.
104  */
105 #define QFQ_MAX_INDEX		24
106 #define QFQ_MAX_WSHIFT		10
107 
108 #define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
109 #define QFQ_MAX_WSUM		(64*QFQ_MAX_WEIGHT)
110 
111 #define FRAC_BITS		30	/* fixed point arithmetic */
112 #define ONE_FP			(1UL << FRAC_BITS)
113 
114 #define QFQ_MTU_SHIFT		16	/* to support TSO/GSO */
115 #define QFQ_MIN_LMAX		512	/* see qfq_slot_insert */
116 #define QFQ_MAX_LMAX		(1UL << QFQ_MTU_SHIFT)
117 
118 #define QFQ_MAX_AGG_CLASSES	8 /* max num classes per aggregate allowed */
119 
120 /*
121  * Possible group states.  These values are used as indexes for the bitmaps
122  * array of struct qfq_queue.
123  */
124 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
125 
126 struct qfq_group;
127 
128 struct qfq_aggregate;
129 
130 struct qfq_class {
131 	struct Qdisc_class_common common;
132 
133 	struct gnet_stats_basic_sync bstats;
134 	struct gnet_stats_queue qstats;
135 	struct net_rate_estimator __rcu *rate_est;
136 	struct Qdisc *qdisc;
137 	struct list_head alist;		/* Link for active-classes list. */
138 	struct qfq_aggregate *agg;	/* Parent aggregate. */
139 	int deficit;			/* DRR deficit counter. */
140 };
141 
142 struct qfq_aggregate {
143 	struct hlist_node next;	/* Link for the slot list. */
144 	u64 S, F;		/* flow timestamps (exact) */
145 
146 	/* group we belong to. In principle we would need the index,
147 	 * which is log_2(lmax/weight), but we never reference it
148 	 * directly, only the group.
149 	 */
150 	struct qfq_group *grp;
151 
152 	/* these are copied from the flowset. */
153 	u32	class_weight; /* Weight of each class in this aggregate. */
154 	/* Max pkt size for the classes in this aggregate, DRR quantum. */
155 	int	lmax;
156 
157 	u32	inv_w;	    /* ONE_FP/(sum of weights of classes in aggr.). */
158 	u32	budgetmax;  /* Max budget for this aggregate. */
159 	u32	initial_budget, budget;     /* Initial and current budget. */
160 
161 	int		  num_classes;	/* Number of classes in this aggr. */
162 	struct list_head  active;	/* DRR queue of active classes. */
163 
164 	struct hlist_node nonfull_next;	/* See nonfull_aggs in qfq_sched. */
165 };
166 
167 struct qfq_group {
168 	u64 S, F;			/* group timestamps (approx). */
169 	unsigned int slot_shift;	/* Slot shift. */
170 	unsigned int index;		/* Group index. */
171 	unsigned int front;		/* Index of the front slot. */
172 	unsigned long full_slots;	/* non-empty slots */
173 
174 	/* Array of RR lists of active aggregates. */
175 	struct hlist_head slots[QFQ_MAX_SLOTS];
176 };
177 
178 struct qfq_sched {
179 	struct tcf_proto __rcu *filter_list;
180 	struct tcf_block	*block;
181 	struct Qdisc_class_hash clhash;
182 
183 	u64			oldV, V;	/* Precise virtual times. */
184 	struct qfq_aggregate	*in_serv_agg;   /* Aggregate being served. */
185 	u32			wsum;		/* weight sum */
186 	u32			iwsum;		/* inverse weight sum */
187 
188 	unsigned long bitmaps[QFQ_MAX_STATE];	    /* Group bitmaps. */
189 	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
190 	u32 min_slot_shift;	/* Index of the group-0 bit in the bitmaps. */
191 
192 	u32 max_agg_classes;		/* Max number of classes per aggr. */
193 	struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
194 };
195 
196 /*
197  * Possible reasons why the timestamps of an aggregate are updated
198  * enqueue: the aggregate switches from idle to active and must scheduled
199  *	    for service
200  * requeue: the aggregate finishes its budget, so it stops being served and
201  *	    must be rescheduled for service
202  */
203 enum update_reason {enqueue, requeue};
204 
cl_is_active(struct qfq_class * cl)205 static bool cl_is_active(struct qfq_class *cl)
206 {
207 	return !list_empty(&cl->alist);
208 }
209 
qfq_find_class(struct Qdisc * sch,u32 classid)210 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
211 {
212 	struct qfq_sched *q = qdisc_priv(sch);
213 	struct Qdisc_class_common *clc;
214 
215 	clc = qdisc_class_find(&q->clhash, classid);
216 	if (clc == NULL)
217 		return NULL;
218 	return container_of(clc, struct qfq_class, common);
219 }
220 
221 static const struct netlink_range_validation lmax_range = {
222 	.min = QFQ_MIN_LMAX,
223 	.max = QFQ_MAX_LMAX,
224 };
225 
226 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
227 	[TCA_QFQ_WEIGHT] = NLA_POLICY_RANGE(NLA_U32, 1, QFQ_MAX_WEIGHT),
228 	[TCA_QFQ_LMAX] = NLA_POLICY_FULL_RANGE(NLA_U32, &lmax_range),
229 };
230 
231 /*
232  * Calculate a flow index, given its weight and maximum packet length.
233  * index = log_2(maxlen/weight) but we need to apply the scaling.
234  * This is used only once at flow creation.
235  */
qfq_calc_index(u32 inv_w,unsigned int maxlen,u32 min_slot_shift)236 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
237 {
238 	u64 slot_size = (u64)maxlen * inv_w;
239 	unsigned long size_map;
240 	int index = 0;
241 
242 	size_map = slot_size >> min_slot_shift;
243 	if (!size_map)
244 		goto out;
245 
246 	index = __fls(size_map) + 1;	/* basically a log_2 */
247 	index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
248 
249 	if (index < 0)
250 		index = 0;
251 out:
252 	pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
253 		 (unsigned long) ONE_FP/inv_w, maxlen, index);
254 
255 	return index;
256 }
257 
258 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
259 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
260 			     enum update_reason);
261 
qfq_init_agg(struct qfq_sched * q,struct qfq_aggregate * agg,u32 lmax,u32 weight)262 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
263 			 u32 lmax, u32 weight)
264 {
265 	INIT_LIST_HEAD(&agg->active);
266 	hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
267 
268 	agg->lmax = lmax;
269 	agg->class_weight = weight;
270 }
271 
qfq_find_agg(struct qfq_sched * q,u32 lmax,u32 weight)272 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
273 					  u32 lmax, u32 weight)
274 {
275 	struct qfq_aggregate *agg;
276 
277 	hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
278 		if (agg->lmax == lmax && agg->class_weight == weight)
279 			return agg;
280 
281 	return NULL;
282 }
283 
284 
285 /* Update aggregate as a function of the new number of classes. */
qfq_update_agg(struct qfq_sched * q,struct qfq_aggregate * agg,int new_num_classes)286 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
287 			   int new_num_classes)
288 {
289 	u32 new_agg_weight;
290 
291 	if (new_num_classes == q->max_agg_classes)
292 		hlist_del_init(&agg->nonfull_next);
293 
294 	if (agg->num_classes > new_num_classes &&
295 	    new_num_classes == q->max_agg_classes - 1) /* agg no more full */
296 		hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
297 
298 	/* The next assignment may let
299 	 * agg->initial_budget > agg->budgetmax
300 	 * hold, we will take it into account in charge_actual_service().
301 	 */
302 	agg->budgetmax = new_num_classes * agg->lmax;
303 	new_agg_weight = agg->class_weight * new_num_classes;
304 	agg->inv_w = ONE_FP/new_agg_weight;
305 
306 	if (agg->grp == NULL) {
307 		int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
308 				       q->min_slot_shift);
309 		agg->grp = &q->groups[i];
310 	}
311 
312 	q->wsum +=
313 		(int) agg->class_weight * (new_num_classes - agg->num_classes);
314 	q->iwsum = ONE_FP / q->wsum;
315 
316 	agg->num_classes = new_num_classes;
317 }
318 
319 /* Add class to aggregate. */
qfq_add_to_agg(struct qfq_sched * q,struct qfq_aggregate * agg,struct qfq_class * cl)320 static void qfq_add_to_agg(struct qfq_sched *q,
321 			   struct qfq_aggregate *agg,
322 			   struct qfq_class *cl)
323 {
324 	cl->agg = agg;
325 
326 	qfq_update_agg(q, agg, agg->num_classes+1);
327 	if (cl->qdisc->q.qlen > 0) { /* adding an active class */
328 		list_add_tail(&cl->alist, &agg->active);
329 		if (list_first_entry(&agg->active, struct qfq_class, alist) ==
330 		    cl && q->in_serv_agg != agg) /* agg was inactive */
331 			qfq_activate_agg(q, agg, enqueue); /* schedule agg */
332 	}
333 }
334 
335 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
336 
qfq_destroy_agg(struct qfq_sched * q,struct qfq_aggregate * agg)337 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
338 {
339 	hlist_del_init(&agg->nonfull_next);
340 	q->wsum -= agg->class_weight;
341 	if (q->wsum != 0)
342 		q->iwsum = ONE_FP / q->wsum;
343 
344 	if (q->in_serv_agg == agg)
345 		q->in_serv_agg = qfq_choose_next_agg(q);
346 	kfree(agg);
347 }
348 
349 /* Deschedule class from within its parent aggregate. */
qfq_deactivate_class(struct qfq_sched * q,struct qfq_class * cl)350 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
351 {
352 	struct qfq_aggregate *agg = cl->agg;
353 
354 
355 	list_del_init(&cl->alist); /* remove from RR queue of the aggregate */
356 	if (list_empty(&agg->active)) /* agg is now inactive */
357 		qfq_deactivate_agg(q, agg);
358 }
359 
360 /* Remove class from its parent aggregate. */
qfq_rm_from_agg(struct qfq_sched * q,struct qfq_class * cl)361 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
362 {
363 	struct qfq_aggregate *agg = cl->agg;
364 
365 	cl->agg = NULL;
366 	if (agg->num_classes == 1) { /* agg being emptied, destroy it */
367 		qfq_destroy_agg(q, agg);
368 		return;
369 	}
370 	qfq_update_agg(q, agg, agg->num_classes-1);
371 }
372 
373 /* Deschedule class and remove it from its parent aggregate. */
qfq_deact_rm_from_agg(struct qfq_sched * q,struct qfq_class * cl)374 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
375 {
376 	if (cl->qdisc->q.qlen > 0) /* class is active */
377 		qfq_deactivate_class(q, cl);
378 
379 	qfq_rm_from_agg(q, cl);
380 }
381 
382 /* Move class to a new aggregate, matching the new class weight and/or lmax */
qfq_change_agg(struct Qdisc * sch,struct qfq_class * cl,u32 weight,u32 lmax)383 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
384 			   u32 lmax)
385 {
386 	struct qfq_sched *q = qdisc_priv(sch);
387 	struct qfq_aggregate *new_agg;
388 
389 	/* 'lmax' can range from [QFQ_MIN_LMAX, pktlen + stab overhead] */
390 	if (lmax > QFQ_MAX_LMAX)
391 		return -EINVAL;
392 
393 	new_agg = qfq_find_agg(q, lmax, weight);
394 	if (new_agg == NULL) { /* create new aggregate */
395 		new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
396 		if (new_agg == NULL)
397 			return -ENOBUFS;
398 		qfq_init_agg(q, new_agg, lmax, weight);
399 	}
400 	qfq_deact_rm_from_agg(q, cl);
401 	qfq_add_to_agg(q, new_agg, cl);
402 
403 	return 0;
404 }
405 
qfq_change_class(struct Qdisc * sch,u32 classid,u32 parentid,struct nlattr ** tca,unsigned long * arg,struct netlink_ext_ack * extack)406 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
407 			    struct nlattr **tca, unsigned long *arg,
408 			    struct netlink_ext_ack *extack)
409 {
410 	struct qfq_sched *q = qdisc_priv(sch);
411 	struct qfq_class *cl = (struct qfq_class *)*arg;
412 	bool existing = false;
413 	struct nlattr *tb[TCA_QFQ_MAX + 1];
414 	struct qfq_aggregate *new_agg = NULL;
415 	u32 weight, lmax, inv_w;
416 	int err;
417 	int delta_w;
418 
419 	if (NL_REQ_ATTR_CHECK(extack, NULL, tca, TCA_OPTIONS)) {
420 		NL_SET_ERR_MSG_MOD(extack, "missing options");
421 		return -EINVAL;
422 	}
423 
424 	err = nla_parse_nested_deprecated(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS],
425 					  qfq_policy, extack);
426 	if (err < 0)
427 		return err;
428 
429 	weight = nla_get_u32_default(tb[TCA_QFQ_WEIGHT], 1);
430 
431 	if (tb[TCA_QFQ_LMAX]) {
432 		lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
433 	} else {
434 		/* MTU size is user controlled */
435 		lmax = psched_mtu(qdisc_dev(sch));
436 		if (lmax < QFQ_MIN_LMAX || lmax > QFQ_MAX_LMAX) {
437 			NL_SET_ERR_MSG_MOD(extack,
438 					   "MTU size out of bounds for qfq");
439 			return -EINVAL;
440 		}
441 	}
442 
443 	inv_w = ONE_FP / weight;
444 	weight = ONE_FP / inv_w;
445 
446 	if (cl != NULL &&
447 	    lmax == cl->agg->lmax &&
448 	    weight == cl->agg->class_weight)
449 		return 0; /* nothing to change */
450 
451 	delta_w = weight - (cl ? cl->agg->class_weight : 0);
452 
453 	if (q->wsum + delta_w > QFQ_MAX_WSUM) {
454 		NL_SET_ERR_MSG_FMT_MOD(extack,
455 				       "total weight out of range (%d + %u)",
456 				       delta_w, q->wsum);
457 		return -EINVAL;
458 	}
459 
460 	if (cl != NULL) { /* modify existing class */
461 		if (tca[TCA_RATE]) {
462 			err = gen_replace_estimator(&cl->bstats, NULL,
463 						    &cl->rate_est,
464 						    NULL,
465 						    true,
466 						    tca[TCA_RATE]);
467 			if (err)
468 				return err;
469 		}
470 		existing = true;
471 		goto set_change_agg;
472 	}
473 
474 	/* create and init new class */
475 	cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
476 	if (cl == NULL)
477 		return -ENOBUFS;
478 
479 	gnet_stats_basic_sync_init(&cl->bstats);
480 	cl->common.classid = classid;
481 	cl->deficit = lmax;
482 	INIT_LIST_HEAD(&cl->alist);
483 
484 	cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
485 				      classid, NULL);
486 	if (cl->qdisc == NULL)
487 		cl->qdisc = &noop_qdisc;
488 
489 	if (tca[TCA_RATE]) {
490 		err = gen_new_estimator(&cl->bstats, NULL,
491 					&cl->rate_est,
492 					NULL,
493 					true,
494 					tca[TCA_RATE]);
495 		if (err)
496 			goto destroy_class;
497 	}
498 
499 	if (cl->qdisc != &noop_qdisc)
500 		qdisc_hash_add(cl->qdisc, true);
501 
502 set_change_agg:
503 	sch_tree_lock(sch);
504 	new_agg = qfq_find_agg(q, lmax, weight);
505 	if (new_agg == NULL) { /* create new aggregate */
506 		sch_tree_unlock(sch);
507 		new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
508 		if (new_agg == NULL) {
509 			err = -ENOBUFS;
510 			gen_kill_estimator(&cl->rate_est);
511 			goto destroy_class;
512 		}
513 		sch_tree_lock(sch);
514 		qfq_init_agg(q, new_agg, lmax, weight);
515 	}
516 	if (existing)
517 		qfq_deact_rm_from_agg(q, cl);
518 	else
519 		qdisc_class_hash_insert(&q->clhash, &cl->common);
520 	qfq_add_to_agg(q, new_agg, cl);
521 	sch_tree_unlock(sch);
522 	qdisc_class_hash_grow(sch, &q->clhash);
523 
524 	*arg = (unsigned long)cl;
525 	return 0;
526 
527 destroy_class:
528 	qdisc_put(cl->qdisc);
529 	kfree(cl);
530 	return err;
531 }
532 
qfq_destroy_class(struct Qdisc * sch,struct qfq_class * cl)533 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
534 {
535 	struct qfq_sched *q = qdisc_priv(sch);
536 
537 	qfq_rm_from_agg(q, cl);
538 	gen_kill_estimator(&cl->rate_est);
539 	qdisc_put(cl->qdisc);
540 	kfree(cl);
541 }
542 
qfq_delete_class(struct Qdisc * sch,unsigned long arg,struct netlink_ext_ack * extack)543 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg,
544 			    struct netlink_ext_ack *extack)
545 {
546 	struct qfq_sched *q = qdisc_priv(sch);
547 	struct qfq_class *cl = (struct qfq_class *)arg;
548 
549 	if (qdisc_class_in_use(&cl->common)) {
550 		NL_SET_ERR_MSG_MOD(extack, "QFQ class in use");
551 		return -EBUSY;
552 	}
553 
554 	sch_tree_lock(sch);
555 
556 	qdisc_purge_queue(cl->qdisc);
557 	qdisc_class_hash_remove(&q->clhash, &cl->common);
558 
559 	sch_tree_unlock(sch);
560 
561 	qfq_destroy_class(sch, cl);
562 	return 0;
563 }
564 
qfq_search_class(struct Qdisc * sch,u32 classid)565 static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
566 {
567 	return (unsigned long)qfq_find_class(sch, classid);
568 }
569 
qfq_tcf_block(struct Qdisc * sch,unsigned long cl,struct netlink_ext_ack * extack)570 static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl,
571 				       struct netlink_ext_ack *extack)
572 {
573 	struct qfq_sched *q = qdisc_priv(sch);
574 
575 	if (cl)
576 		return NULL;
577 
578 	return q->block;
579 }
580 
qfq_bind_tcf(struct Qdisc * sch,unsigned long parent,u32 classid)581 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
582 				  u32 classid)
583 {
584 	struct qfq_class *cl = qfq_find_class(sch, classid);
585 
586 	if (cl)
587 		qdisc_class_get(&cl->common);
588 
589 	return (unsigned long)cl;
590 }
591 
qfq_unbind_tcf(struct Qdisc * sch,unsigned long arg)592 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
593 {
594 	struct qfq_class *cl = (struct qfq_class *)arg;
595 
596 	qdisc_class_put(&cl->common);
597 }
598 
qfq_graft_class(struct Qdisc * sch,unsigned long arg,struct Qdisc * new,struct Qdisc ** old,struct netlink_ext_ack * extack)599 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
600 			   struct Qdisc *new, struct Qdisc **old,
601 			   struct netlink_ext_ack *extack)
602 {
603 	struct qfq_class *cl = (struct qfq_class *)arg;
604 
605 	if (new == NULL) {
606 		new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
607 					cl->common.classid, NULL);
608 		if (new == NULL)
609 			new = &noop_qdisc;
610 	}
611 
612 	*old = qdisc_replace(sch, new, &cl->qdisc);
613 	return 0;
614 }
615 
qfq_class_leaf(struct Qdisc * sch,unsigned long arg)616 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
617 {
618 	struct qfq_class *cl = (struct qfq_class *)arg;
619 
620 	return cl->qdisc;
621 }
622 
qfq_dump_class(struct Qdisc * sch,unsigned long arg,struct sk_buff * skb,struct tcmsg * tcm)623 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
624 			  struct sk_buff *skb, struct tcmsg *tcm)
625 {
626 	struct qfq_class *cl = (struct qfq_class *)arg;
627 	struct nlattr *nest;
628 
629 	tcm->tcm_parent	= TC_H_ROOT;
630 	tcm->tcm_handle	= cl->common.classid;
631 	tcm->tcm_info	= cl->qdisc->handle;
632 
633 	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
634 	if (nest == NULL)
635 		goto nla_put_failure;
636 	if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
637 	    nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
638 		goto nla_put_failure;
639 	return nla_nest_end(skb, nest);
640 
641 nla_put_failure:
642 	nla_nest_cancel(skb, nest);
643 	return -EMSGSIZE;
644 }
645 
qfq_dump_class_stats(struct Qdisc * sch,unsigned long arg,struct gnet_dump * d)646 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
647 				struct gnet_dump *d)
648 {
649 	struct qfq_class *cl = (struct qfq_class *)arg;
650 	struct tc_qfq_stats xstats;
651 
652 	memset(&xstats, 0, sizeof(xstats));
653 
654 	xstats.weight = cl->agg->class_weight;
655 	xstats.lmax = cl->agg->lmax;
656 
657 	if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 ||
658 	    gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
659 	    qdisc_qstats_copy(d, cl->qdisc) < 0)
660 		return -1;
661 
662 	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
663 }
664 
qfq_walk(struct Qdisc * sch,struct qdisc_walker * arg)665 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
666 {
667 	struct qfq_sched *q = qdisc_priv(sch);
668 	struct qfq_class *cl;
669 	unsigned int i;
670 
671 	if (arg->stop)
672 		return;
673 
674 	for (i = 0; i < q->clhash.hashsize; i++) {
675 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
676 			if (!tc_qdisc_stats_dump(sch, (unsigned long)cl, arg))
677 				return;
678 		}
679 	}
680 }
681 
qfq_classify(struct sk_buff * skb,struct Qdisc * sch,int * qerr)682 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
683 				      int *qerr)
684 {
685 	struct qfq_sched *q = qdisc_priv(sch);
686 	struct qfq_class *cl;
687 	struct tcf_result res;
688 	struct tcf_proto *fl;
689 	int result;
690 
691 	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
692 		pr_debug("qfq_classify: found %d\n", skb->priority);
693 		cl = qfq_find_class(sch, skb->priority);
694 		if (cl != NULL)
695 			return cl;
696 	}
697 
698 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
699 	fl = rcu_dereference_bh(q->filter_list);
700 	result = tcf_classify(skb, NULL, fl, &res, false);
701 	if (result >= 0) {
702 #ifdef CONFIG_NET_CLS_ACT
703 		switch (result) {
704 		case TC_ACT_QUEUED:
705 		case TC_ACT_STOLEN:
706 		case TC_ACT_TRAP:
707 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
708 			fallthrough;
709 		case TC_ACT_SHOT:
710 			return NULL;
711 		}
712 #endif
713 		cl = (struct qfq_class *)res.class;
714 		if (cl == NULL)
715 			cl = qfq_find_class(sch, res.classid);
716 		return cl;
717 	}
718 
719 	return NULL;
720 }
721 
722 /* Generic comparison function, handling wraparound. */
qfq_gt(u64 a,u64 b)723 static inline int qfq_gt(u64 a, u64 b)
724 {
725 	return (s64)(a - b) > 0;
726 }
727 
728 /* Round a precise timestamp to its slotted value. */
qfq_round_down(u64 ts,unsigned int shift)729 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
730 {
731 	return ts & ~((1ULL << shift) - 1);
732 }
733 
734 /* return the pointer to the group with lowest index in the bitmap */
qfq_ffs(struct qfq_sched * q,unsigned long bitmap)735 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
736 					unsigned long bitmap)
737 {
738 	int index = __ffs(bitmap);
739 	return &q->groups[index];
740 }
741 /* Calculate a mask to mimic what would be ffs_from(). */
mask_from(unsigned long bitmap,int from)742 static inline unsigned long mask_from(unsigned long bitmap, int from)
743 {
744 	return bitmap & ~((1UL << from) - 1);
745 }
746 
747 /*
748  * The state computation relies on ER=0, IR=1, EB=2, IB=3
749  * First compute eligibility comparing grp->S, q->V,
750  * then check if someone is blocking us and possibly add EB
751  */
qfq_calc_state(struct qfq_sched * q,const struct qfq_group * grp)752 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
753 {
754 	/* if S > V we are not eligible */
755 	unsigned int state = qfq_gt(grp->S, q->V);
756 	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
757 	struct qfq_group *next;
758 
759 	if (mask) {
760 		next = qfq_ffs(q, mask);
761 		if (qfq_gt(grp->F, next->F))
762 			state |= EB;
763 	}
764 
765 	return state;
766 }
767 
768 
769 /*
770  * In principle
771  *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
772  *	q->bitmaps[src] &= ~mask;
773  * but we should make sure that src != dst
774  */
qfq_move_groups(struct qfq_sched * q,unsigned long mask,int src,int dst)775 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
776 				   int src, int dst)
777 {
778 	q->bitmaps[dst] |= q->bitmaps[src] & mask;
779 	q->bitmaps[src] &= ~mask;
780 }
781 
qfq_unblock_groups(struct qfq_sched * q,int index,u64 old_F)782 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
783 {
784 	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
785 	struct qfq_group *next;
786 
787 	if (mask) {
788 		next = qfq_ffs(q, mask);
789 		if (!qfq_gt(next->F, old_F))
790 			return;
791 	}
792 
793 	mask = (1UL << index) - 1;
794 	qfq_move_groups(q, mask, EB, ER);
795 	qfq_move_groups(q, mask, IB, IR);
796 }
797 
798 /*
799  * perhaps
800  *
801 	old_V ^= q->V;
802 	old_V >>= q->min_slot_shift;
803 	if (old_V) {
804 		...
805 	}
806  *
807  */
qfq_make_eligible(struct qfq_sched * q)808 static void qfq_make_eligible(struct qfq_sched *q)
809 {
810 	unsigned long vslot = q->V >> q->min_slot_shift;
811 	unsigned long old_vslot = q->oldV >> q->min_slot_shift;
812 
813 	if (vslot != old_vslot) {
814 		unsigned long mask;
815 		int last_flip_pos = fls(vslot ^ old_vslot);
816 
817 		if (last_flip_pos > 31) /* higher than the number of groups */
818 			mask = ~0UL;    /* make all groups eligible */
819 		else
820 			mask = (1UL << last_flip_pos) - 1;
821 
822 		qfq_move_groups(q, mask, IR, ER);
823 		qfq_move_groups(q, mask, IB, EB);
824 	}
825 }
826 
827 /*
828  * The index of the slot in which the input aggregate agg is to be
829  * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
830  * and not a '-1' because the start time of the group may be moved
831  * backward by one slot after the aggregate has been inserted, and
832  * this would cause non-empty slots to be right-shifted by one
833  * position.
834  *
835  * QFQ+ fully satisfies this bound to the slot index if the parameters
836  * of the classes are not changed dynamically, and if QFQ+ never
837  * happens to postpone the service of agg unjustly, i.e., it never
838  * happens that the aggregate becomes backlogged and eligible, or just
839  * eligible, while an aggregate with a higher approximated finish time
840  * is being served. In particular, in this case QFQ+ guarantees that
841  * the timestamps of agg are low enough that the slot index is never
842  * higher than 2. Unfortunately, QFQ+ cannot provide the same
843  * guarantee if it happens to unjustly postpone the service of agg, or
844  * if the parameters of some class are changed.
845  *
846  * As for the first event, i.e., an out-of-order service, the
847  * upper bound to the slot index guaranteed by QFQ+ grows to
848  * 2 +
849  * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
850  * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
851  *
852  * The following function deals with this problem by backward-shifting
853  * the timestamps of agg, if needed, so as to guarantee that the slot
854  * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
855  * cause the service of other aggregates to be postponed, yet the
856  * worst-case guarantees of these aggregates are not violated.  In
857  * fact, in case of no out-of-order service, the timestamps of agg
858  * would have been even lower than they are after the backward shift,
859  * because QFQ+ would have guaranteed a maximum value equal to 2 for
860  * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
861  * service is postponed because of the backward-shift would have
862  * however waited for the service of agg before being served.
863  *
864  * The other event that may cause the slot index to be higher than 2
865  * for agg is a recent change of the parameters of some class. If the
866  * weight of a class is increased or the lmax (max_pkt_size) of the
867  * class is decreased, then a new aggregate with smaller slot size
868  * than the original parent aggregate of the class may happen to be
869  * activated. The activation of this aggregate should be properly
870  * delayed to when the service of the class has finished in the ideal
871  * system tracked by QFQ+. If the activation of the aggregate is not
872  * delayed to this reference time instant, then this aggregate may be
873  * unjustly served before other aggregates waiting for service. This
874  * may cause the above bound to the slot index to be violated for some
875  * of these unlucky aggregates.
876  *
877  * Instead of delaying the activation of the new aggregate, which is
878  * quite complex, the above-discussed capping of the slot index is
879  * used to handle also the consequences of a change of the parameters
880  * of a class.
881  */
qfq_slot_insert(struct qfq_group * grp,struct qfq_aggregate * agg,u64 roundedS)882 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
883 			    u64 roundedS)
884 {
885 	u64 slot = (roundedS - grp->S) >> grp->slot_shift;
886 	unsigned int i; /* slot index in the bucket list */
887 
888 	if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
889 		u64 deltaS = roundedS - grp->S -
890 			((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
891 		agg->S -= deltaS;
892 		agg->F -= deltaS;
893 		slot = QFQ_MAX_SLOTS - 2;
894 	}
895 
896 	i = (grp->front + slot) % QFQ_MAX_SLOTS;
897 
898 	hlist_add_head(&agg->next, &grp->slots[i]);
899 	__set_bit(slot, &grp->full_slots);
900 }
901 
902 /* Maybe introduce hlist_first_entry?? */
qfq_slot_head(struct qfq_group * grp)903 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
904 {
905 	return hlist_entry(grp->slots[grp->front].first,
906 			   struct qfq_aggregate, next);
907 }
908 
909 /*
910  * remove the entry from the slot
911  */
qfq_front_slot_remove(struct qfq_group * grp)912 static void qfq_front_slot_remove(struct qfq_group *grp)
913 {
914 	struct qfq_aggregate *agg = qfq_slot_head(grp);
915 
916 	BUG_ON(!agg);
917 	hlist_del(&agg->next);
918 	if (hlist_empty(&grp->slots[grp->front]))
919 		__clear_bit(0, &grp->full_slots);
920 }
921 
922 /*
923  * Returns the first aggregate in the first non-empty bucket of the
924  * group. As a side effect, adjusts the bucket list so the first
925  * non-empty bucket is at position 0 in full_slots.
926  */
qfq_slot_scan(struct qfq_group * grp)927 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
928 {
929 	unsigned int i;
930 
931 	pr_debug("qfq slot_scan: grp %u full %#lx\n",
932 		 grp->index, grp->full_slots);
933 
934 	if (grp->full_slots == 0)
935 		return NULL;
936 
937 	i = __ffs(grp->full_slots);  /* zero based */
938 	if (i > 0) {
939 		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
940 		grp->full_slots >>= i;
941 	}
942 
943 	return qfq_slot_head(grp);
944 }
945 
946 /*
947  * adjust the bucket list. When the start time of a group decreases,
948  * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
949  * move the objects. The mask of occupied slots must be shifted
950  * because we use ffs() to find the first non-empty slot.
951  * This covers decreases in the group's start time, but what about
952  * increases of the start time ?
953  * Here too we should make sure that i is less than 32
954  */
qfq_slot_rotate(struct qfq_group * grp,u64 roundedS)955 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
956 {
957 	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
958 
959 	grp->full_slots <<= i;
960 	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
961 }
962 
qfq_update_eligible(struct qfq_sched * q)963 static void qfq_update_eligible(struct qfq_sched *q)
964 {
965 	struct qfq_group *grp;
966 	unsigned long ineligible;
967 
968 	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
969 	if (ineligible) {
970 		if (!q->bitmaps[ER]) {
971 			grp = qfq_ffs(q, ineligible);
972 			if (qfq_gt(grp->S, q->V))
973 				q->V = grp->S;
974 		}
975 		qfq_make_eligible(q);
976 	}
977 }
978 
979 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
agg_dequeue(struct qfq_aggregate * agg,struct qfq_class * cl,unsigned int len)980 static struct sk_buff *agg_dequeue(struct qfq_aggregate *agg,
981 				   struct qfq_class *cl, unsigned int len)
982 {
983 	struct sk_buff *skb = qdisc_dequeue_peeked(cl->qdisc);
984 
985 	if (!skb)
986 		return NULL;
987 
988 	cl->deficit -= (int) len;
989 
990 	if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
991 		list_del_init(&cl->alist);
992 	else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
993 		cl->deficit += agg->lmax;
994 		list_move_tail(&cl->alist, &agg->active);
995 	}
996 
997 	return skb;
998 }
999 
qfq_peek_skb(struct qfq_aggregate * agg,struct qfq_class ** cl,unsigned int * len)1000 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1001 					   struct qfq_class **cl,
1002 					   unsigned int *len)
1003 {
1004 	struct sk_buff *skb;
1005 
1006 	*cl = list_first_entry(&agg->active, struct qfq_class, alist);
1007 	skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1008 	if (skb == NULL)
1009 		qdisc_warn_nonwc("qfq_dequeue", (*cl)->qdisc);
1010 	else
1011 		*len = qdisc_pkt_len(skb);
1012 
1013 	return skb;
1014 }
1015 
1016 /* Update F according to the actual service received by the aggregate. */
charge_actual_service(struct qfq_aggregate * agg)1017 static inline void charge_actual_service(struct qfq_aggregate *agg)
1018 {
1019 	/* Compute the service received by the aggregate, taking into
1020 	 * account that, after decreasing the number of classes in
1021 	 * agg, it may happen that
1022 	 * agg->initial_budget - agg->budget > agg->bugdetmax
1023 	 */
1024 	u32 service_received = min(agg->budgetmax,
1025 				   agg->initial_budget - agg->budget);
1026 
1027 	agg->F = agg->S + (u64)service_received * agg->inv_w;
1028 }
1029 
1030 /* Assign a reasonable start time for a new aggregate in group i.
1031  * Admissible values for \hat(F) are multiples of \sigma_i
1032  * no greater than V+\sigma_i . Larger values mean that
1033  * we had a wraparound so we consider the timestamp to be stale.
1034  *
1035  * If F is not stale and F >= V then we set S = F.
1036  * Otherwise we should assign S = V, but this may violate
1037  * the ordering in EB (see [2]). So, if we have groups in ER,
1038  * set S to the F_j of the first group j which would be blocking us.
1039  * We are guaranteed not to move S backward because
1040  * otherwise our group i would still be blocked.
1041  */
qfq_update_start(struct qfq_sched * q,struct qfq_aggregate * agg)1042 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1043 {
1044 	unsigned long mask;
1045 	u64 limit, roundedF;
1046 	int slot_shift = agg->grp->slot_shift;
1047 
1048 	roundedF = qfq_round_down(agg->F, slot_shift);
1049 	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1050 
1051 	if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1052 		/* timestamp was stale */
1053 		mask = mask_from(q->bitmaps[ER], agg->grp->index);
1054 		if (mask) {
1055 			struct qfq_group *next = qfq_ffs(q, mask);
1056 			if (qfq_gt(roundedF, next->F)) {
1057 				if (qfq_gt(limit, next->F))
1058 					agg->S = next->F;
1059 				else /* preserve timestamp correctness */
1060 					agg->S = limit;
1061 				return;
1062 			}
1063 		}
1064 		agg->S = q->V;
1065 	} else  /* timestamp is not stale */
1066 		agg->S = agg->F;
1067 }
1068 
1069 /* Update the timestamps of agg before scheduling/rescheduling it for
1070  * service.  In particular, assign to agg->F its maximum possible
1071  * value, i.e., the virtual finish time with which the aggregate
1072  * should be labeled if it used all its budget once in service.
1073  */
1074 static inline void
qfq_update_agg_ts(struct qfq_sched * q,struct qfq_aggregate * agg,enum update_reason reason)1075 qfq_update_agg_ts(struct qfq_sched *q,
1076 		    struct qfq_aggregate *agg, enum update_reason reason)
1077 {
1078 	if (reason != requeue)
1079 		qfq_update_start(q, agg);
1080 	else /* just charge agg for the service received */
1081 		agg->S = agg->F;
1082 
1083 	agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1084 }
1085 
1086 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1087 
qfq_dequeue(struct Qdisc * sch)1088 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1089 {
1090 	struct qfq_sched *q = qdisc_priv(sch);
1091 	struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1092 	struct qfq_class *cl;
1093 	struct sk_buff *skb = NULL;
1094 	/* next-packet len, 0 means no more active classes in in-service agg */
1095 	unsigned int len = 0;
1096 
1097 	if (in_serv_agg == NULL)
1098 		return NULL;
1099 
1100 	if (!list_empty(&in_serv_agg->active))
1101 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1102 
1103 	/*
1104 	 * If there are no active classes in the in-service aggregate,
1105 	 * or if the aggregate has not enough budget to serve its next
1106 	 * class, then choose the next aggregate to serve.
1107 	 */
1108 	if (len == 0 || in_serv_agg->budget < len) {
1109 		charge_actual_service(in_serv_agg);
1110 
1111 		/* recharge the budget of the aggregate */
1112 		in_serv_agg->initial_budget = in_serv_agg->budget =
1113 			in_serv_agg->budgetmax;
1114 
1115 		if (!list_empty(&in_serv_agg->active)) {
1116 			/*
1117 			 * Still active: reschedule for
1118 			 * service. Possible optimization: if no other
1119 			 * aggregate is active, then there is no point
1120 			 * in rescheduling this aggregate, and we can
1121 			 * just keep it as the in-service one. This
1122 			 * should be however a corner case, and to
1123 			 * handle it, we would need to maintain an
1124 			 * extra num_active_aggs field.
1125 			*/
1126 			qfq_update_agg_ts(q, in_serv_agg, requeue);
1127 			qfq_schedule_agg(q, in_serv_agg);
1128 		} else if (sch->q.qlen == 0) { /* no aggregate to serve */
1129 			q->in_serv_agg = NULL;
1130 			return NULL;
1131 		}
1132 
1133 		/*
1134 		 * If we get here, there are other aggregates queued:
1135 		 * choose the new aggregate to serve.
1136 		 */
1137 		in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1138 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1139 	}
1140 	if (!skb)
1141 		return NULL;
1142 
1143 	sch->q.qlen--;
1144 
1145 	skb = agg_dequeue(in_serv_agg, cl, len);
1146 
1147 	if (!skb) {
1148 		sch->q.qlen++;
1149 		return NULL;
1150 	}
1151 
1152 	qdisc_qstats_backlog_dec(sch, skb);
1153 	qdisc_bstats_update(sch, skb);
1154 
1155 	/* If lmax is lowered, through qfq_change_class, for a class
1156 	 * owning pending packets with larger size than the new value
1157 	 * of lmax, then the following condition may hold.
1158 	 */
1159 	if (unlikely(in_serv_agg->budget < len))
1160 		in_serv_agg->budget = 0;
1161 	else
1162 		in_serv_agg->budget -= len;
1163 
1164 	q->V += (u64)len * q->iwsum;
1165 	pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1166 		 len, (unsigned long long) in_serv_agg->F,
1167 		 (unsigned long long) q->V);
1168 
1169 	return skb;
1170 }
1171 
qfq_choose_next_agg(struct qfq_sched * q)1172 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1173 {
1174 	struct qfq_group *grp;
1175 	struct qfq_aggregate *agg, *new_front_agg;
1176 	u64 old_F;
1177 
1178 	qfq_update_eligible(q);
1179 	q->oldV = q->V;
1180 
1181 	if (!q->bitmaps[ER])
1182 		return NULL;
1183 
1184 	grp = qfq_ffs(q, q->bitmaps[ER]);
1185 	old_F = grp->F;
1186 
1187 	agg = qfq_slot_head(grp);
1188 
1189 	/* agg starts to be served, remove it from schedule */
1190 	qfq_front_slot_remove(grp);
1191 
1192 	new_front_agg = qfq_slot_scan(grp);
1193 
1194 	if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1195 		__clear_bit(grp->index, &q->bitmaps[ER]);
1196 	else {
1197 		u64 roundedS = qfq_round_down(new_front_agg->S,
1198 					      grp->slot_shift);
1199 		unsigned int s;
1200 
1201 		if (grp->S == roundedS)
1202 			return agg;
1203 		grp->S = roundedS;
1204 		grp->F = roundedS + (2ULL << grp->slot_shift);
1205 		__clear_bit(grp->index, &q->bitmaps[ER]);
1206 		s = qfq_calc_state(q, grp);
1207 		__set_bit(grp->index, &q->bitmaps[s]);
1208 	}
1209 
1210 	qfq_unblock_groups(q, grp->index, old_F);
1211 
1212 	return agg;
1213 }
1214 
qfq_enqueue(struct sk_buff * skb,struct Qdisc * sch,struct sk_buff ** to_free)1215 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1216 		       struct sk_buff **to_free)
1217 {
1218 	unsigned int len = qdisc_pkt_len(skb), gso_segs;
1219 	struct qfq_sched *q = qdisc_priv(sch);
1220 	struct qfq_class *cl;
1221 	struct qfq_aggregate *agg;
1222 	int err = 0;
1223 
1224 	cl = qfq_classify(skb, sch, &err);
1225 	if (cl == NULL) {
1226 		if (err & __NET_XMIT_BYPASS)
1227 			qdisc_qstats_drop(sch);
1228 		__qdisc_drop(skb, to_free);
1229 		return err;
1230 	}
1231 	pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1232 
1233 	if (unlikely(cl->agg->lmax < len)) {
1234 		pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1235 			 cl->agg->lmax, len, cl->common.classid);
1236 		err = qfq_change_agg(sch, cl, cl->agg->class_weight, len);
1237 		if (err) {
1238 			cl->qstats.drops++;
1239 			return qdisc_drop(skb, sch, to_free);
1240 		}
1241 	}
1242 
1243 	gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1;
1244 	err = qdisc_enqueue(skb, cl->qdisc, to_free);
1245 	if (unlikely(err != NET_XMIT_SUCCESS)) {
1246 		pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1247 		if (net_xmit_drop_count(err)) {
1248 			cl->qstats.drops++;
1249 			qdisc_qstats_drop(sch);
1250 		}
1251 		return err;
1252 	}
1253 
1254 	_bstats_update(&cl->bstats, len, gso_segs);
1255 	sch->qstats.backlog += len;
1256 	++sch->q.qlen;
1257 
1258 	agg = cl->agg;
1259 	/* if the class is active, then done here */
1260 	if (cl_is_active(cl)) {
1261 		if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1262 		    list_first_entry(&agg->active, struct qfq_class, alist)
1263 		    == cl && cl->deficit < len)
1264 			list_move_tail(&cl->alist, &agg->active);
1265 
1266 		return err;
1267 	}
1268 
1269 	/* schedule class for service within the aggregate */
1270 	cl->deficit = agg->lmax;
1271 	list_add_tail(&cl->alist, &agg->active);
1272 
1273 	if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1274 	    q->in_serv_agg == agg)
1275 		return err; /* non-empty or in service, nothing else to do */
1276 
1277 	qfq_activate_agg(q, agg, enqueue);
1278 
1279 	return err;
1280 }
1281 
1282 /*
1283  * Schedule aggregate according to its timestamps.
1284  */
qfq_schedule_agg(struct qfq_sched * q,struct qfq_aggregate * agg)1285 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1286 {
1287 	struct qfq_group *grp = agg->grp;
1288 	u64 roundedS;
1289 	int s;
1290 
1291 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1292 
1293 	/*
1294 	 * Insert agg in the correct bucket.
1295 	 * If agg->S >= grp->S we don't need to adjust the
1296 	 * bucket list and simply go to the insertion phase.
1297 	 * Otherwise grp->S is decreasing, we must make room
1298 	 * in the bucket list, and also recompute the group state.
1299 	 * Finally, if there were no flows in this group and nobody
1300 	 * was in ER make sure to adjust V.
1301 	 */
1302 	if (grp->full_slots) {
1303 		if (!qfq_gt(grp->S, agg->S))
1304 			goto skip_update;
1305 
1306 		/* create a slot for this agg->S */
1307 		qfq_slot_rotate(grp, roundedS);
1308 		/* group was surely ineligible, remove */
1309 		__clear_bit(grp->index, &q->bitmaps[IR]);
1310 		__clear_bit(grp->index, &q->bitmaps[IB]);
1311 	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1312 		   q->in_serv_agg == NULL)
1313 		q->V = roundedS;
1314 
1315 	grp->S = roundedS;
1316 	grp->F = roundedS + (2ULL << grp->slot_shift);
1317 	s = qfq_calc_state(q, grp);
1318 	__set_bit(grp->index, &q->bitmaps[s]);
1319 
1320 	pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1321 		 s, q->bitmaps[s],
1322 		 (unsigned long long) agg->S,
1323 		 (unsigned long long) agg->F,
1324 		 (unsigned long long) q->V);
1325 
1326 skip_update:
1327 	qfq_slot_insert(grp, agg, roundedS);
1328 }
1329 
1330 
1331 /* Update agg ts and schedule agg for service */
qfq_activate_agg(struct qfq_sched * q,struct qfq_aggregate * agg,enum update_reason reason)1332 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1333 			     enum update_reason reason)
1334 {
1335 	agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1336 
1337 	qfq_update_agg_ts(q, agg, reason);
1338 	if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1339 		q->in_serv_agg = agg; /* start serving this aggregate */
1340 		 /* update V: to be in service, agg must be eligible */
1341 		q->oldV = q->V = agg->S;
1342 	} else if (agg != q->in_serv_agg)
1343 		qfq_schedule_agg(q, agg);
1344 }
1345 
qfq_slot_remove(struct qfq_sched * q,struct qfq_group * grp,struct qfq_aggregate * agg)1346 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1347 			    struct qfq_aggregate *agg)
1348 {
1349 	unsigned int i, offset;
1350 	u64 roundedS;
1351 
1352 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1353 	offset = (roundedS - grp->S) >> grp->slot_shift;
1354 
1355 	i = (grp->front + offset) % QFQ_MAX_SLOTS;
1356 
1357 	hlist_del(&agg->next);
1358 	if (hlist_empty(&grp->slots[i]))
1359 		__clear_bit(offset, &grp->full_slots);
1360 }
1361 
1362 /*
1363  * Called to forcibly deschedule an aggregate.  If the aggregate is
1364  * not in the front bucket, or if the latter has other aggregates in
1365  * the front bucket, we can simply remove the aggregate with no other
1366  * side effects.
1367  * Otherwise we must propagate the event up.
1368  */
qfq_deactivate_agg(struct qfq_sched * q,struct qfq_aggregate * agg)1369 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1370 {
1371 	struct qfq_group *grp = agg->grp;
1372 	unsigned long mask;
1373 	u64 roundedS;
1374 	int s;
1375 
1376 	if (agg == q->in_serv_agg) {
1377 		charge_actual_service(agg);
1378 		q->in_serv_agg = qfq_choose_next_agg(q);
1379 		return;
1380 	}
1381 
1382 	agg->F = agg->S;
1383 	qfq_slot_remove(q, grp, agg);
1384 
1385 	if (!grp->full_slots) {
1386 		__clear_bit(grp->index, &q->bitmaps[IR]);
1387 		__clear_bit(grp->index, &q->bitmaps[EB]);
1388 		__clear_bit(grp->index, &q->bitmaps[IB]);
1389 
1390 		if (test_bit(grp->index, &q->bitmaps[ER]) &&
1391 		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1392 			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1393 			if (mask)
1394 				mask = ~((1UL << __fls(mask)) - 1);
1395 			else
1396 				mask = ~0UL;
1397 			qfq_move_groups(q, mask, EB, ER);
1398 			qfq_move_groups(q, mask, IB, IR);
1399 		}
1400 		__clear_bit(grp->index, &q->bitmaps[ER]);
1401 	} else if (hlist_empty(&grp->slots[grp->front])) {
1402 		agg = qfq_slot_scan(grp);
1403 		roundedS = qfq_round_down(agg->S, grp->slot_shift);
1404 		if (grp->S != roundedS) {
1405 			__clear_bit(grp->index, &q->bitmaps[ER]);
1406 			__clear_bit(grp->index, &q->bitmaps[IR]);
1407 			__clear_bit(grp->index, &q->bitmaps[EB]);
1408 			__clear_bit(grp->index, &q->bitmaps[IB]);
1409 			grp->S = roundedS;
1410 			grp->F = roundedS + (2ULL << grp->slot_shift);
1411 			s = qfq_calc_state(q, grp);
1412 			__set_bit(grp->index, &q->bitmaps[s]);
1413 		}
1414 	}
1415 }
1416 
qfq_qlen_notify(struct Qdisc * sch,unsigned long arg)1417 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1418 {
1419 	struct qfq_sched *q = qdisc_priv(sch);
1420 	struct qfq_class *cl = (struct qfq_class *)arg;
1421 
1422 	if (list_empty(&cl->alist))
1423 		return;
1424 	qfq_deactivate_class(q, cl);
1425 }
1426 
qfq_init_qdisc(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1427 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
1428 			  struct netlink_ext_ack *extack)
1429 {
1430 	struct qfq_sched *q = qdisc_priv(sch);
1431 	struct qfq_group *grp;
1432 	int i, j, err;
1433 	u32 max_cl_shift, maxbudg_shift, max_classes;
1434 
1435 	err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
1436 	if (err)
1437 		return err;
1438 
1439 	err = qdisc_class_hash_init(&q->clhash);
1440 	if (err < 0)
1441 		return err;
1442 
1443 	max_classes = min_t(u64, (u64)qdisc_dev(sch)->tx_queue_len + 1,
1444 			    QFQ_MAX_AGG_CLASSES);
1445 	/* max_cl_shift = floor(log_2(max_classes)) */
1446 	max_cl_shift = __fls(max_classes);
1447 	q->max_agg_classes = 1<<max_cl_shift;
1448 
1449 	/* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1450 	maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1451 	q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1452 
1453 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1454 		grp = &q->groups[i];
1455 		grp->index = i;
1456 		grp->slot_shift = q->min_slot_shift + i;
1457 		for (j = 0; j < QFQ_MAX_SLOTS; j++)
1458 			INIT_HLIST_HEAD(&grp->slots[j]);
1459 	}
1460 
1461 	INIT_HLIST_HEAD(&q->nonfull_aggs);
1462 
1463 	return 0;
1464 }
1465 
qfq_reset_qdisc(struct Qdisc * sch)1466 static void qfq_reset_qdisc(struct Qdisc *sch)
1467 {
1468 	struct qfq_sched *q = qdisc_priv(sch);
1469 	struct qfq_class *cl;
1470 	unsigned int i;
1471 
1472 	for (i = 0; i < q->clhash.hashsize; i++) {
1473 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1474 			if (cl->qdisc->q.qlen > 0)
1475 				qfq_deactivate_class(q, cl);
1476 
1477 			qdisc_reset(cl->qdisc);
1478 		}
1479 	}
1480 }
1481 
qfq_destroy_qdisc(struct Qdisc * sch)1482 static void qfq_destroy_qdisc(struct Qdisc *sch)
1483 {
1484 	struct qfq_sched *q = qdisc_priv(sch);
1485 	struct qfq_class *cl;
1486 	struct hlist_node *next;
1487 	unsigned int i;
1488 
1489 	tcf_block_put(q->block);
1490 
1491 	for (i = 0; i < q->clhash.hashsize; i++) {
1492 		hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1493 					  common.hnode) {
1494 			qfq_destroy_class(sch, cl);
1495 		}
1496 	}
1497 	qdisc_class_hash_destroy(&q->clhash);
1498 }
1499 
1500 static const struct Qdisc_class_ops qfq_class_ops = {
1501 	.change		= qfq_change_class,
1502 	.delete		= qfq_delete_class,
1503 	.find		= qfq_search_class,
1504 	.tcf_block	= qfq_tcf_block,
1505 	.bind_tcf	= qfq_bind_tcf,
1506 	.unbind_tcf	= qfq_unbind_tcf,
1507 	.graft		= qfq_graft_class,
1508 	.leaf		= qfq_class_leaf,
1509 	.qlen_notify	= qfq_qlen_notify,
1510 	.dump		= qfq_dump_class,
1511 	.dump_stats	= qfq_dump_class_stats,
1512 	.walk		= qfq_walk,
1513 };
1514 
1515 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1516 	.cl_ops		= &qfq_class_ops,
1517 	.id		= "qfq",
1518 	.priv_size	= sizeof(struct qfq_sched),
1519 	.enqueue	= qfq_enqueue,
1520 	.dequeue	= qfq_dequeue,
1521 	.peek		= qdisc_peek_dequeued,
1522 	.init		= qfq_init_qdisc,
1523 	.reset		= qfq_reset_qdisc,
1524 	.destroy	= qfq_destroy_qdisc,
1525 	.owner		= THIS_MODULE,
1526 };
1527 MODULE_ALIAS_NET_SCH("qfq");
1528 
qfq_init(void)1529 static int __init qfq_init(void)
1530 {
1531 	return register_qdisc(&qfq_qdisc_ops);
1532 }
1533 
qfq_exit(void)1534 static void __exit qfq_exit(void)
1535 {
1536 	unregister_qdisc(&qfq_qdisc_ops);
1537 }
1538 
1539 module_init(qfq_init);
1540 module_exit(qfq_exit);
1541 MODULE_LICENSE("GPL");
1542 MODULE_DESCRIPTION("Quick Fair Queueing Plus qdisc");
1543