1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
4 *
5 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
6 * Copyright (c) 2012 Paolo Valente.
7 */
8
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/bitops.h>
12 #include <linux/errno.h>
13 #include <linux/netdevice.h>
14 #include <linux/pkt_sched.h>
15 #include <net/sch_generic.h>
16 #include <net/pkt_sched.h>
17 #include <net/pkt_cls.h>
18
19
20 /* Quick Fair Queueing Plus
21 ========================
22
23 Sources:
24
25 [1] Paolo Valente,
26 "Reducing the Execution Time of Fair-Queueing Schedulers."
27 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
28
29 Sources for QFQ:
30
31 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
32 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
33
34 See also:
35 http://retis.sssup.it/~fabio/linux/qfq/
36 */
37
38 /*
39
40 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
41 classes. Each aggregate is timestamped with a virtual start time S
42 and a virtual finish time F, and scheduled according to its
43 timestamps. S and F are computed as a function of a system virtual
44 time function V. The classes within each aggregate are instead
45 scheduled with DRR.
46
47 To speed up operations, QFQ+ divides also aggregates into a limited
48 number of groups. Which group a class belongs to depends on the
49 ratio between the maximum packet length for the class and the weight
50 of the class. Groups have their own S and F. In the end, QFQ+
51 schedules groups, then aggregates within groups, then classes within
52 aggregates. See [1] and [2] for a full description.
53
54 Virtual time computations.
55
56 S, F and V are all computed in fixed point arithmetic with
57 FRAC_BITS decimal bits.
58
59 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
60 one bit per index.
61 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
62
63 The layout of the bits is as below:
64
65 [ MTU_SHIFT ][ FRAC_BITS ]
66 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
67 ^.__grp->index = 0
68 *.__grp->slot_shift
69
70 where MIN_SLOT_SHIFT is derived by difference from the others.
71
72 The max group index corresponds to Lmax/w_min, where
73 Lmax=1<<MTU_SHIFT, w_min = 1 .
74 From this, and knowing how many groups (MAX_INDEX) we want,
75 we can derive the shift corresponding to each group.
76
77 Because we often need to compute
78 F = S + len/w_i and V = V + len/wsum
79 instead of storing w_i store the value
80 inv_w = (1<<FRAC_BITS)/w_i
81 so we can do F = S + len * inv_w * wsum.
82 We use W_TOT in the formulas so we can easily move between
83 static and adaptive weight sum.
84
85 The per-scheduler-instance data contain all the data structures
86 for the scheduler: bitmaps and bucket lists.
87
88 */
89
90 /*
91 * Maximum number of consecutive slots occupied by backlogged classes
92 * inside a group.
93 */
94 #define QFQ_MAX_SLOTS 32
95
96 /*
97 * Shifts used for aggregate<->group mapping. We allow class weights that are
98 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
99 * group with the smallest index that can support the L_i / r_i configured
100 * for the classes in the aggregate.
101 *
102 * grp->index is the index of the group; and grp->slot_shift
103 * is the shift for the corresponding (scaled) sigma_i.
104 */
105 #define QFQ_MAX_INDEX 24
106 #define QFQ_MAX_WSHIFT 10
107
108 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
109 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
110
111 #define FRAC_BITS 30 /* fixed point arithmetic */
112 #define ONE_FP (1UL << FRAC_BITS)
113
114 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
115 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
116 #define QFQ_MAX_LMAX (1UL << QFQ_MTU_SHIFT)
117
118 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
119
120 /*
121 * Possible group states. These values are used as indexes for the bitmaps
122 * array of struct qfq_queue.
123 */
124 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
125
126 struct qfq_group;
127
128 struct qfq_aggregate;
129
130 struct qfq_class {
131 struct Qdisc_class_common common;
132
133 struct gnet_stats_basic_sync bstats;
134 struct gnet_stats_queue qstats;
135 struct net_rate_estimator __rcu *rate_est;
136 struct Qdisc *qdisc;
137 struct list_head alist; /* Link for active-classes list. */
138 struct qfq_aggregate *agg; /* Parent aggregate. */
139 int deficit; /* DRR deficit counter. */
140 };
141
142 struct qfq_aggregate {
143 struct hlist_node next; /* Link for the slot list. */
144 u64 S, F; /* flow timestamps (exact) */
145
146 /* group we belong to. In principle we would need the index,
147 * which is log_2(lmax/weight), but we never reference it
148 * directly, only the group.
149 */
150 struct qfq_group *grp;
151
152 /* these are copied from the flowset. */
153 u32 class_weight; /* Weight of each class in this aggregate. */
154 /* Max pkt size for the classes in this aggregate, DRR quantum. */
155 int lmax;
156
157 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */
158 u32 budgetmax; /* Max budget for this aggregate. */
159 u32 initial_budget, budget; /* Initial and current budget. */
160
161 int num_classes; /* Number of classes in this aggr. */
162 struct list_head active; /* DRR queue of active classes. */
163
164 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
165 };
166
167 struct qfq_group {
168 u64 S, F; /* group timestamps (approx). */
169 unsigned int slot_shift; /* Slot shift. */
170 unsigned int index; /* Group index. */
171 unsigned int front; /* Index of the front slot. */
172 unsigned long full_slots; /* non-empty slots */
173
174 /* Array of RR lists of active aggregates. */
175 struct hlist_head slots[QFQ_MAX_SLOTS];
176 };
177
178 struct qfq_sched {
179 struct tcf_proto __rcu *filter_list;
180 struct tcf_block *block;
181 struct Qdisc_class_hash clhash;
182
183 u64 oldV, V; /* Precise virtual times. */
184 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
185 u32 wsum; /* weight sum */
186 u32 iwsum; /* inverse weight sum */
187
188 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
189 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
190 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
191
192 u32 max_agg_classes; /* Max number of classes per aggr. */
193 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
194 };
195
196 /*
197 * Possible reasons why the timestamps of an aggregate are updated
198 * enqueue: the aggregate switches from idle to active and must scheduled
199 * for service
200 * requeue: the aggregate finishes its budget, so it stops being served and
201 * must be rescheduled for service
202 */
203 enum update_reason {enqueue, requeue};
204
cl_is_active(struct qfq_class * cl)205 static bool cl_is_active(struct qfq_class *cl)
206 {
207 return !list_empty(&cl->alist);
208 }
209
qfq_find_class(struct Qdisc * sch,u32 classid)210 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
211 {
212 struct qfq_sched *q = qdisc_priv(sch);
213 struct Qdisc_class_common *clc;
214
215 clc = qdisc_class_find(&q->clhash, classid);
216 if (clc == NULL)
217 return NULL;
218 return container_of(clc, struct qfq_class, common);
219 }
220
221 static const struct netlink_range_validation lmax_range = {
222 .min = QFQ_MIN_LMAX,
223 .max = QFQ_MAX_LMAX,
224 };
225
226 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
227 [TCA_QFQ_WEIGHT] = NLA_POLICY_RANGE(NLA_U32, 1, QFQ_MAX_WEIGHT),
228 [TCA_QFQ_LMAX] = NLA_POLICY_FULL_RANGE(NLA_U32, &lmax_range),
229 };
230
231 /*
232 * Calculate a flow index, given its weight and maximum packet length.
233 * index = log_2(maxlen/weight) but we need to apply the scaling.
234 * This is used only once at flow creation.
235 */
qfq_calc_index(u32 inv_w,unsigned int maxlen,u32 min_slot_shift)236 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
237 {
238 u64 slot_size = (u64)maxlen * inv_w;
239 unsigned long size_map;
240 int index = 0;
241
242 size_map = slot_size >> min_slot_shift;
243 if (!size_map)
244 goto out;
245
246 index = __fls(size_map) + 1; /* basically a log_2 */
247 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
248
249 if (index < 0)
250 index = 0;
251 out:
252 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
253 (unsigned long) ONE_FP/inv_w, maxlen, index);
254
255 return index;
256 }
257
258 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
259 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
260 enum update_reason);
261
qfq_init_agg(struct qfq_sched * q,struct qfq_aggregate * agg,u32 lmax,u32 weight)262 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
263 u32 lmax, u32 weight)
264 {
265 INIT_LIST_HEAD(&agg->active);
266 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
267
268 agg->lmax = lmax;
269 agg->class_weight = weight;
270 }
271
qfq_find_agg(struct qfq_sched * q,u32 lmax,u32 weight)272 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
273 u32 lmax, u32 weight)
274 {
275 struct qfq_aggregate *agg;
276
277 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
278 if (agg->lmax == lmax && agg->class_weight == weight)
279 return agg;
280
281 return NULL;
282 }
283
284
285 /* Update aggregate as a function of the new number of classes. */
qfq_update_agg(struct qfq_sched * q,struct qfq_aggregate * agg,int new_num_classes)286 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
287 int new_num_classes)
288 {
289 u32 new_agg_weight;
290
291 if (new_num_classes == q->max_agg_classes)
292 hlist_del_init(&agg->nonfull_next);
293
294 if (agg->num_classes > new_num_classes &&
295 new_num_classes == q->max_agg_classes - 1) /* agg no more full */
296 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
297
298 /* The next assignment may let
299 * agg->initial_budget > agg->budgetmax
300 * hold, we will take it into account in charge_actual_service().
301 */
302 agg->budgetmax = new_num_classes * agg->lmax;
303 new_agg_weight = agg->class_weight * new_num_classes;
304 agg->inv_w = ONE_FP/new_agg_weight;
305
306 if (agg->grp == NULL) {
307 int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
308 q->min_slot_shift);
309 agg->grp = &q->groups[i];
310 }
311
312 q->wsum +=
313 (int) agg->class_weight * (new_num_classes - agg->num_classes);
314 q->iwsum = ONE_FP / q->wsum;
315
316 agg->num_classes = new_num_classes;
317 }
318
319 /* Add class to aggregate. */
qfq_add_to_agg(struct qfq_sched * q,struct qfq_aggregate * agg,struct qfq_class * cl)320 static void qfq_add_to_agg(struct qfq_sched *q,
321 struct qfq_aggregate *agg,
322 struct qfq_class *cl)
323 {
324 cl->agg = agg;
325
326 qfq_update_agg(q, agg, agg->num_classes+1);
327 if (cl->qdisc->q.qlen > 0) { /* adding an active class */
328 list_add_tail(&cl->alist, &agg->active);
329 if (list_first_entry(&agg->active, struct qfq_class, alist) ==
330 cl && q->in_serv_agg != agg) /* agg was inactive */
331 qfq_activate_agg(q, agg, enqueue); /* schedule agg */
332 }
333 }
334
335 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
336
qfq_destroy_agg(struct qfq_sched * q,struct qfq_aggregate * agg)337 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
338 {
339 hlist_del_init(&agg->nonfull_next);
340 q->wsum -= agg->class_weight;
341 if (q->wsum != 0)
342 q->iwsum = ONE_FP / q->wsum;
343
344 if (q->in_serv_agg == agg)
345 q->in_serv_agg = qfq_choose_next_agg(q);
346 kfree(agg);
347 }
348
349 /* Deschedule class from within its parent aggregate. */
qfq_deactivate_class(struct qfq_sched * q,struct qfq_class * cl)350 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
351 {
352 struct qfq_aggregate *agg = cl->agg;
353
354
355 list_del_init(&cl->alist); /* remove from RR queue of the aggregate */
356 if (list_empty(&agg->active)) /* agg is now inactive */
357 qfq_deactivate_agg(q, agg);
358 }
359
360 /* Remove class from its parent aggregate. */
qfq_rm_from_agg(struct qfq_sched * q,struct qfq_class * cl)361 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
362 {
363 struct qfq_aggregate *agg = cl->agg;
364
365 cl->agg = NULL;
366 if (agg->num_classes == 1) { /* agg being emptied, destroy it */
367 qfq_destroy_agg(q, agg);
368 return;
369 }
370 qfq_update_agg(q, agg, agg->num_classes-1);
371 }
372
373 /* Deschedule class and remove it from its parent aggregate. */
qfq_deact_rm_from_agg(struct qfq_sched * q,struct qfq_class * cl)374 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
375 {
376 if (cl->qdisc->q.qlen > 0) /* class is active */
377 qfq_deactivate_class(q, cl);
378
379 qfq_rm_from_agg(q, cl);
380 }
381
382 /* Move class to a new aggregate, matching the new class weight and/or lmax */
qfq_change_agg(struct Qdisc * sch,struct qfq_class * cl,u32 weight,u32 lmax)383 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
384 u32 lmax)
385 {
386 struct qfq_sched *q = qdisc_priv(sch);
387 struct qfq_aggregate *new_agg;
388
389 /* 'lmax' can range from [QFQ_MIN_LMAX, pktlen + stab overhead] */
390 if (lmax > QFQ_MAX_LMAX)
391 return -EINVAL;
392
393 new_agg = qfq_find_agg(q, lmax, weight);
394 if (new_agg == NULL) { /* create new aggregate */
395 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
396 if (new_agg == NULL)
397 return -ENOBUFS;
398 qfq_init_agg(q, new_agg, lmax, weight);
399 }
400 qfq_deact_rm_from_agg(q, cl);
401 qfq_add_to_agg(q, new_agg, cl);
402
403 return 0;
404 }
405
qfq_change_class(struct Qdisc * sch,u32 classid,u32 parentid,struct nlattr ** tca,unsigned long * arg,struct netlink_ext_ack * extack)406 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
407 struct nlattr **tca, unsigned long *arg,
408 struct netlink_ext_ack *extack)
409 {
410 struct qfq_sched *q = qdisc_priv(sch);
411 struct qfq_class *cl = (struct qfq_class *)*arg;
412 bool existing = false;
413 struct nlattr *tb[TCA_QFQ_MAX + 1];
414 struct qfq_aggregate *new_agg = NULL;
415 u32 weight, lmax, inv_w;
416 int err;
417 int delta_w;
418
419 if (NL_REQ_ATTR_CHECK(extack, NULL, tca, TCA_OPTIONS)) {
420 NL_SET_ERR_MSG_MOD(extack, "missing options");
421 return -EINVAL;
422 }
423
424 err = nla_parse_nested_deprecated(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS],
425 qfq_policy, extack);
426 if (err < 0)
427 return err;
428
429 weight = nla_get_u32_default(tb[TCA_QFQ_WEIGHT], 1);
430
431 if (tb[TCA_QFQ_LMAX]) {
432 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
433 } else {
434 /* MTU size is user controlled */
435 lmax = psched_mtu(qdisc_dev(sch));
436 if (lmax < QFQ_MIN_LMAX || lmax > QFQ_MAX_LMAX) {
437 NL_SET_ERR_MSG_MOD(extack,
438 "MTU size out of bounds for qfq");
439 return -EINVAL;
440 }
441 }
442
443 inv_w = ONE_FP / weight;
444 weight = ONE_FP / inv_w;
445
446 if (cl != NULL &&
447 lmax == cl->agg->lmax &&
448 weight == cl->agg->class_weight)
449 return 0; /* nothing to change */
450
451 delta_w = weight - (cl ? cl->agg->class_weight : 0);
452
453 if (q->wsum + delta_w > QFQ_MAX_WSUM) {
454 NL_SET_ERR_MSG_FMT_MOD(extack,
455 "total weight out of range (%d + %u)",
456 delta_w, q->wsum);
457 return -EINVAL;
458 }
459
460 if (cl != NULL) { /* modify existing class */
461 if (tca[TCA_RATE]) {
462 err = gen_replace_estimator(&cl->bstats, NULL,
463 &cl->rate_est,
464 NULL,
465 true,
466 tca[TCA_RATE]);
467 if (err)
468 return err;
469 }
470 existing = true;
471 goto set_change_agg;
472 }
473
474 /* create and init new class */
475 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
476 if (cl == NULL)
477 return -ENOBUFS;
478
479 gnet_stats_basic_sync_init(&cl->bstats);
480 cl->common.classid = classid;
481 cl->deficit = lmax;
482 INIT_LIST_HEAD(&cl->alist);
483
484 cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
485 classid, NULL);
486 if (cl->qdisc == NULL)
487 cl->qdisc = &noop_qdisc;
488
489 if (tca[TCA_RATE]) {
490 err = gen_new_estimator(&cl->bstats, NULL,
491 &cl->rate_est,
492 NULL,
493 true,
494 tca[TCA_RATE]);
495 if (err)
496 goto destroy_class;
497 }
498
499 if (cl->qdisc != &noop_qdisc)
500 qdisc_hash_add(cl->qdisc, true);
501
502 set_change_agg:
503 sch_tree_lock(sch);
504 new_agg = qfq_find_agg(q, lmax, weight);
505 if (new_agg == NULL) { /* create new aggregate */
506 sch_tree_unlock(sch);
507 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
508 if (new_agg == NULL) {
509 err = -ENOBUFS;
510 gen_kill_estimator(&cl->rate_est);
511 goto destroy_class;
512 }
513 sch_tree_lock(sch);
514 qfq_init_agg(q, new_agg, lmax, weight);
515 }
516 if (existing)
517 qfq_deact_rm_from_agg(q, cl);
518 else
519 qdisc_class_hash_insert(&q->clhash, &cl->common);
520 qfq_add_to_agg(q, new_agg, cl);
521 sch_tree_unlock(sch);
522 qdisc_class_hash_grow(sch, &q->clhash);
523
524 *arg = (unsigned long)cl;
525 return 0;
526
527 destroy_class:
528 qdisc_put(cl->qdisc);
529 kfree(cl);
530 return err;
531 }
532
qfq_destroy_class(struct Qdisc * sch,struct qfq_class * cl)533 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
534 {
535 struct qfq_sched *q = qdisc_priv(sch);
536
537 qfq_rm_from_agg(q, cl);
538 gen_kill_estimator(&cl->rate_est);
539 qdisc_put(cl->qdisc);
540 kfree(cl);
541 }
542
qfq_delete_class(struct Qdisc * sch,unsigned long arg,struct netlink_ext_ack * extack)543 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg,
544 struct netlink_ext_ack *extack)
545 {
546 struct qfq_sched *q = qdisc_priv(sch);
547 struct qfq_class *cl = (struct qfq_class *)arg;
548
549 if (qdisc_class_in_use(&cl->common)) {
550 NL_SET_ERR_MSG_MOD(extack, "QFQ class in use");
551 return -EBUSY;
552 }
553
554 sch_tree_lock(sch);
555
556 qdisc_purge_queue(cl->qdisc);
557 qdisc_class_hash_remove(&q->clhash, &cl->common);
558
559 sch_tree_unlock(sch);
560
561 qfq_destroy_class(sch, cl);
562 return 0;
563 }
564
qfq_search_class(struct Qdisc * sch,u32 classid)565 static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
566 {
567 return (unsigned long)qfq_find_class(sch, classid);
568 }
569
qfq_tcf_block(struct Qdisc * sch,unsigned long cl,struct netlink_ext_ack * extack)570 static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl,
571 struct netlink_ext_ack *extack)
572 {
573 struct qfq_sched *q = qdisc_priv(sch);
574
575 if (cl)
576 return NULL;
577
578 return q->block;
579 }
580
qfq_bind_tcf(struct Qdisc * sch,unsigned long parent,u32 classid)581 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
582 u32 classid)
583 {
584 struct qfq_class *cl = qfq_find_class(sch, classid);
585
586 if (cl)
587 qdisc_class_get(&cl->common);
588
589 return (unsigned long)cl;
590 }
591
qfq_unbind_tcf(struct Qdisc * sch,unsigned long arg)592 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
593 {
594 struct qfq_class *cl = (struct qfq_class *)arg;
595
596 qdisc_class_put(&cl->common);
597 }
598
qfq_graft_class(struct Qdisc * sch,unsigned long arg,struct Qdisc * new,struct Qdisc ** old,struct netlink_ext_ack * extack)599 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
600 struct Qdisc *new, struct Qdisc **old,
601 struct netlink_ext_ack *extack)
602 {
603 struct qfq_class *cl = (struct qfq_class *)arg;
604
605 if (new == NULL) {
606 new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
607 cl->common.classid, NULL);
608 if (new == NULL)
609 new = &noop_qdisc;
610 }
611
612 *old = qdisc_replace(sch, new, &cl->qdisc);
613 return 0;
614 }
615
qfq_class_leaf(struct Qdisc * sch,unsigned long arg)616 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
617 {
618 struct qfq_class *cl = (struct qfq_class *)arg;
619
620 return cl->qdisc;
621 }
622
qfq_dump_class(struct Qdisc * sch,unsigned long arg,struct sk_buff * skb,struct tcmsg * tcm)623 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
624 struct sk_buff *skb, struct tcmsg *tcm)
625 {
626 struct qfq_class *cl = (struct qfq_class *)arg;
627 struct nlattr *nest;
628
629 tcm->tcm_parent = TC_H_ROOT;
630 tcm->tcm_handle = cl->common.classid;
631 tcm->tcm_info = cl->qdisc->handle;
632
633 nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
634 if (nest == NULL)
635 goto nla_put_failure;
636 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
637 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
638 goto nla_put_failure;
639 return nla_nest_end(skb, nest);
640
641 nla_put_failure:
642 nla_nest_cancel(skb, nest);
643 return -EMSGSIZE;
644 }
645
qfq_dump_class_stats(struct Qdisc * sch,unsigned long arg,struct gnet_dump * d)646 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
647 struct gnet_dump *d)
648 {
649 struct qfq_class *cl = (struct qfq_class *)arg;
650 struct tc_qfq_stats xstats;
651
652 memset(&xstats, 0, sizeof(xstats));
653
654 xstats.weight = cl->agg->class_weight;
655 xstats.lmax = cl->agg->lmax;
656
657 if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 ||
658 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
659 qdisc_qstats_copy(d, cl->qdisc) < 0)
660 return -1;
661
662 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
663 }
664
qfq_walk(struct Qdisc * sch,struct qdisc_walker * arg)665 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
666 {
667 struct qfq_sched *q = qdisc_priv(sch);
668 struct qfq_class *cl;
669 unsigned int i;
670
671 if (arg->stop)
672 return;
673
674 for (i = 0; i < q->clhash.hashsize; i++) {
675 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
676 if (!tc_qdisc_stats_dump(sch, (unsigned long)cl, arg))
677 return;
678 }
679 }
680 }
681
qfq_classify(struct sk_buff * skb,struct Qdisc * sch,int * qerr)682 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
683 int *qerr)
684 {
685 struct qfq_sched *q = qdisc_priv(sch);
686 struct qfq_class *cl;
687 struct tcf_result res;
688 struct tcf_proto *fl;
689 int result;
690
691 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
692 pr_debug("qfq_classify: found %d\n", skb->priority);
693 cl = qfq_find_class(sch, skb->priority);
694 if (cl != NULL)
695 return cl;
696 }
697
698 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
699 fl = rcu_dereference_bh(q->filter_list);
700 result = tcf_classify(skb, NULL, fl, &res, false);
701 if (result >= 0) {
702 #ifdef CONFIG_NET_CLS_ACT
703 switch (result) {
704 case TC_ACT_QUEUED:
705 case TC_ACT_STOLEN:
706 case TC_ACT_TRAP:
707 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
708 fallthrough;
709 case TC_ACT_SHOT:
710 return NULL;
711 }
712 #endif
713 cl = (struct qfq_class *)res.class;
714 if (cl == NULL)
715 cl = qfq_find_class(sch, res.classid);
716 return cl;
717 }
718
719 return NULL;
720 }
721
722 /* Generic comparison function, handling wraparound. */
qfq_gt(u64 a,u64 b)723 static inline int qfq_gt(u64 a, u64 b)
724 {
725 return (s64)(a - b) > 0;
726 }
727
728 /* Round a precise timestamp to its slotted value. */
qfq_round_down(u64 ts,unsigned int shift)729 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
730 {
731 return ts & ~((1ULL << shift) - 1);
732 }
733
734 /* return the pointer to the group with lowest index in the bitmap */
qfq_ffs(struct qfq_sched * q,unsigned long bitmap)735 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
736 unsigned long bitmap)
737 {
738 int index = __ffs(bitmap);
739 return &q->groups[index];
740 }
741 /* Calculate a mask to mimic what would be ffs_from(). */
mask_from(unsigned long bitmap,int from)742 static inline unsigned long mask_from(unsigned long bitmap, int from)
743 {
744 return bitmap & ~((1UL << from) - 1);
745 }
746
747 /*
748 * The state computation relies on ER=0, IR=1, EB=2, IB=3
749 * First compute eligibility comparing grp->S, q->V,
750 * then check if someone is blocking us and possibly add EB
751 */
qfq_calc_state(struct qfq_sched * q,const struct qfq_group * grp)752 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
753 {
754 /* if S > V we are not eligible */
755 unsigned int state = qfq_gt(grp->S, q->V);
756 unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
757 struct qfq_group *next;
758
759 if (mask) {
760 next = qfq_ffs(q, mask);
761 if (qfq_gt(grp->F, next->F))
762 state |= EB;
763 }
764
765 return state;
766 }
767
768
769 /*
770 * In principle
771 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
772 * q->bitmaps[src] &= ~mask;
773 * but we should make sure that src != dst
774 */
qfq_move_groups(struct qfq_sched * q,unsigned long mask,int src,int dst)775 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
776 int src, int dst)
777 {
778 q->bitmaps[dst] |= q->bitmaps[src] & mask;
779 q->bitmaps[src] &= ~mask;
780 }
781
qfq_unblock_groups(struct qfq_sched * q,int index,u64 old_F)782 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
783 {
784 unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
785 struct qfq_group *next;
786
787 if (mask) {
788 next = qfq_ffs(q, mask);
789 if (!qfq_gt(next->F, old_F))
790 return;
791 }
792
793 mask = (1UL << index) - 1;
794 qfq_move_groups(q, mask, EB, ER);
795 qfq_move_groups(q, mask, IB, IR);
796 }
797
798 /*
799 * perhaps
800 *
801 old_V ^= q->V;
802 old_V >>= q->min_slot_shift;
803 if (old_V) {
804 ...
805 }
806 *
807 */
qfq_make_eligible(struct qfq_sched * q)808 static void qfq_make_eligible(struct qfq_sched *q)
809 {
810 unsigned long vslot = q->V >> q->min_slot_shift;
811 unsigned long old_vslot = q->oldV >> q->min_slot_shift;
812
813 if (vslot != old_vslot) {
814 unsigned long mask;
815 int last_flip_pos = fls(vslot ^ old_vslot);
816
817 if (last_flip_pos > 31) /* higher than the number of groups */
818 mask = ~0UL; /* make all groups eligible */
819 else
820 mask = (1UL << last_flip_pos) - 1;
821
822 qfq_move_groups(q, mask, IR, ER);
823 qfq_move_groups(q, mask, IB, EB);
824 }
825 }
826
827 /*
828 * The index of the slot in which the input aggregate agg is to be
829 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
830 * and not a '-1' because the start time of the group may be moved
831 * backward by one slot after the aggregate has been inserted, and
832 * this would cause non-empty slots to be right-shifted by one
833 * position.
834 *
835 * QFQ+ fully satisfies this bound to the slot index if the parameters
836 * of the classes are not changed dynamically, and if QFQ+ never
837 * happens to postpone the service of agg unjustly, i.e., it never
838 * happens that the aggregate becomes backlogged and eligible, or just
839 * eligible, while an aggregate with a higher approximated finish time
840 * is being served. In particular, in this case QFQ+ guarantees that
841 * the timestamps of agg are low enough that the slot index is never
842 * higher than 2. Unfortunately, QFQ+ cannot provide the same
843 * guarantee if it happens to unjustly postpone the service of agg, or
844 * if the parameters of some class are changed.
845 *
846 * As for the first event, i.e., an out-of-order service, the
847 * upper bound to the slot index guaranteed by QFQ+ grows to
848 * 2 +
849 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
850 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
851 *
852 * The following function deals with this problem by backward-shifting
853 * the timestamps of agg, if needed, so as to guarantee that the slot
854 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
855 * cause the service of other aggregates to be postponed, yet the
856 * worst-case guarantees of these aggregates are not violated. In
857 * fact, in case of no out-of-order service, the timestamps of agg
858 * would have been even lower than they are after the backward shift,
859 * because QFQ+ would have guaranteed a maximum value equal to 2 for
860 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
861 * service is postponed because of the backward-shift would have
862 * however waited for the service of agg before being served.
863 *
864 * The other event that may cause the slot index to be higher than 2
865 * for agg is a recent change of the parameters of some class. If the
866 * weight of a class is increased or the lmax (max_pkt_size) of the
867 * class is decreased, then a new aggregate with smaller slot size
868 * than the original parent aggregate of the class may happen to be
869 * activated. The activation of this aggregate should be properly
870 * delayed to when the service of the class has finished in the ideal
871 * system tracked by QFQ+. If the activation of the aggregate is not
872 * delayed to this reference time instant, then this aggregate may be
873 * unjustly served before other aggregates waiting for service. This
874 * may cause the above bound to the slot index to be violated for some
875 * of these unlucky aggregates.
876 *
877 * Instead of delaying the activation of the new aggregate, which is
878 * quite complex, the above-discussed capping of the slot index is
879 * used to handle also the consequences of a change of the parameters
880 * of a class.
881 */
qfq_slot_insert(struct qfq_group * grp,struct qfq_aggregate * agg,u64 roundedS)882 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
883 u64 roundedS)
884 {
885 u64 slot = (roundedS - grp->S) >> grp->slot_shift;
886 unsigned int i; /* slot index in the bucket list */
887
888 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
889 u64 deltaS = roundedS - grp->S -
890 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
891 agg->S -= deltaS;
892 agg->F -= deltaS;
893 slot = QFQ_MAX_SLOTS - 2;
894 }
895
896 i = (grp->front + slot) % QFQ_MAX_SLOTS;
897
898 hlist_add_head(&agg->next, &grp->slots[i]);
899 __set_bit(slot, &grp->full_slots);
900 }
901
902 /* Maybe introduce hlist_first_entry?? */
qfq_slot_head(struct qfq_group * grp)903 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
904 {
905 return hlist_entry(grp->slots[grp->front].first,
906 struct qfq_aggregate, next);
907 }
908
909 /*
910 * remove the entry from the slot
911 */
qfq_front_slot_remove(struct qfq_group * grp)912 static void qfq_front_slot_remove(struct qfq_group *grp)
913 {
914 struct qfq_aggregate *agg = qfq_slot_head(grp);
915
916 BUG_ON(!agg);
917 hlist_del(&agg->next);
918 if (hlist_empty(&grp->slots[grp->front]))
919 __clear_bit(0, &grp->full_slots);
920 }
921
922 /*
923 * Returns the first aggregate in the first non-empty bucket of the
924 * group. As a side effect, adjusts the bucket list so the first
925 * non-empty bucket is at position 0 in full_slots.
926 */
qfq_slot_scan(struct qfq_group * grp)927 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
928 {
929 unsigned int i;
930
931 pr_debug("qfq slot_scan: grp %u full %#lx\n",
932 grp->index, grp->full_slots);
933
934 if (grp->full_slots == 0)
935 return NULL;
936
937 i = __ffs(grp->full_slots); /* zero based */
938 if (i > 0) {
939 grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
940 grp->full_slots >>= i;
941 }
942
943 return qfq_slot_head(grp);
944 }
945
946 /*
947 * adjust the bucket list. When the start time of a group decreases,
948 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
949 * move the objects. The mask of occupied slots must be shifted
950 * because we use ffs() to find the first non-empty slot.
951 * This covers decreases in the group's start time, but what about
952 * increases of the start time ?
953 * Here too we should make sure that i is less than 32
954 */
qfq_slot_rotate(struct qfq_group * grp,u64 roundedS)955 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
956 {
957 unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
958
959 grp->full_slots <<= i;
960 grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
961 }
962
qfq_update_eligible(struct qfq_sched * q)963 static void qfq_update_eligible(struct qfq_sched *q)
964 {
965 struct qfq_group *grp;
966 unsigned long ineligible;
967
968 ineligible = q->bitmaps[IR] | q->bitmaps[IB];
969 if (ineligible) {
970 if (!q->bitmaps[ER]) {
971 grp = qfq_ffs(q, ineligible);
972 if (qfq_gt(grp->S, q->V))
973 q->V = grp->S;
974 }
975 qfq_make_eligible(q);
976 }
977 }
978
979 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
agg_dequeue(struct qfq_aggregate * agg,struct qfq_class * cl,unsigned int len)980 static struct sk_buff *agg_dequeue(struct qfq_aggregate *agg,
981 struct qfq_class *cl, unsigned int len)
982 {
983 struct sk_buff *skb = qdisc_dequeue_peeked(cl->qdisc);
984
985 if (!skb)
986 return NULL;
987
988 cl->deficit -= (int) len;
989
990 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
991 list_del_init(&cl->alist);
992 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
993 cl->deficit += agg->lmax;
994 list_move_tail(&cl->alist, &agg->active);
995 }
996
997 return skb;
998 }
999
qfq_peek_skb(struct qfq_aggregate * agg,struct qfq_class ** cl,unsigned int * len)1000 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1001 struct qfq_class **cl,
1002 unsigned int *len)
1003 {
1004 struct sk_buff *skb;
1005
1006 *cl = list_first_entry(&agg->active, struct qfq_class, alist);
1007 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1008 if (skb == NULL)
1009 qdisc_warn_nonwc("qfq_dequeue", (*cl)->qdisc);
1010 else
1011 *len = qdisc_pkt_len(skb);
1012
1013 return skb;
1014 }
1015
1016 /* Update F according to the actual service received by the aggregate. */
charge_actual_service(struct qfq_aggregate * agg)1017 static inline void charge_actual_service(struct qfq_aggregate *agg)
1018 {
1019 /* Compute the service received by the aggregate, taking into
1020 * account that, after decreasing the number of classes in
1021 * agg, it may happen that
1022 * agg->initial_budget - agg->budget > agg->bugdetmax
1023 */
1024 u32 service_received = min(agg->budgetmax,
1025 agg->initial_budget - agg->budget);
1026
1027 agg->F = agg->S + (u64)service_received * agg->inv_w;
1028 }
1029
1030 /* Assign a reasonable start time for a new aggregate in group i.
1031 * Admissible values for \hat(F) are multiples of \sigma_i
1032 * no greater than V+\sigma_i . Larger values mean that
1033 * we had a wraparound so we consider the timestamp to be stale.
1034 *
1035 * If F is not stale and F >= V then we set S = F.
1036 * Otherwise we should assign S = V, but this may violate
1037 * the ordering in EB (see [2]). So, if we have groups in ER,
1038 * set S to the F_j of the first group j which would be blocking us.
1039 * We are guaranteed not to move S backward because
1040 * otherwise our group i would still be blocked.
1041 */
qfq_update_start(struct qfq_sched * q,struct qfq_aggregate * agg)1042 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1043 {
1044 unsigned long mask;
1045 u64 limit, roundedF;
1046 int slot_shift = agg->grp->slot_shift;
1047
1048 roundedF = qfq_round_down(agg->F, slot_shift);
1049 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1050
1051 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1052 /* timestamp was stale */
1053 mask = mask_from(q->bitmaps[ER], agg->grp->index);
1054 if (mask) {
1055 struct qfq_group *next = qfq_ffs(q, mask);
1056 if (qfq_gt(roundedF, next->F)) {
1057 if (qfq_gt(limit, next->F))
1058 agg->S = next->F;
1059 else /* preserve timestamp correctness */
1060 agg->S = limit;
1061 return;
1062 }
1063 }
1064 agg->S = q->V;
1065 } else /* timestamp is not stale */
1066 agg->S = agg->F;
1067 }
1068
1069 /* Update the timestamps of agg before scheduling/rescheduling it for
1070 * service. In particular, assign to agg->F its maximum possible
1071 * value, i.e., the virtual finish time with which the aggregate
1072 * should be labeled if it used all its budget once in service.
1073 */
1074 static inline void
qfq_update_agg_ts(struct qfq_sched * q,struct qfq_aggregate * agg,enum update_reason reason)1075 qfq_update_agg_ts(struct qfq_sched *q,
1076 struct qfq_aggregate *agg, enum update_reason reason)
1077 {
1078 if (reason != requeue)
1079 qfq_update_start(q, agg);
1080 else /* just charge agg for the service received */
1081 agg->S = agg->F;
1082
1083 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1084 }
1085
1086 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1087
qfq_dequeue(struct Qdisc * sch)1088 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1089 {
1090 struct qfq_sched *q = qdisc_priv(sch);
1091 struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1092 struct qfq_class *cl;
1093 struct sk_buff *skb = NULL;
1094 /* next-packet len, 0 means no more active classes in in-service agg */
1095 unsigned int len = 0;
1096
1097 if (in_serv_agg == NULL)
1098 return NULL;
1099
1100 if (!list_empty(&in_serv_agg->active))
1101 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1102
1103 /*
1104 * If there are no active classes in the in-service aggregate,
1105 * or if the aggregate has not enough budget to serve its next
1106 * class, then choose the next aggregate to serve.
1107 */
1108 if (len == 0 || in_serv_agg->budget < len) {
1109 charge_actual_service(in_serv_agg);
1110
1111 /* recharge the budget of the aggregate */
1112 in_serv_agg->initial_budget = in_serv_agg->budget =
1113 in_serv_agg->budgetmax;
1114
1115 if (!list_empty(&in_serv_agg->active)) {
1116 /*
1117 * Still active: reschedule for
1118 * service. Possible optimization: if no other
1119 * aggregate is active, then there is no point
1120 * in rescheduling this aggregate, and we can
1121 * just keep it as the in-service one. This
1122 * should be however a corner case, and to
1123 * handle it, we would need to maintain an
1124 * extra num_active_aggs field.
1125 */
1126 qfq_update_agg_ts(q, in_serv_agg, requeue);
1127 qfq_schedule_agg(q, in_serv_agg);
1128 } else if (sch->q.qlen == 0) { /* no aggregate to serve */
1129 q->in_serv_agg = NULL;
1130 return NULL;
1131 }
1132
1133 /*
1134 * If we get here, there are other aggregates queued:
1135 * choose the new aggregate to serve.
1136 */
1137 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1138 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1139 }
1140 if (!skb)
1141 return NULL;
1142
1143 sch->q.qlen--;
1144
1145 skb = agg_dequeue(in_serv_agg, cl, len);
1146
1147 if (!skb) {
1148 sch->q.qlen++;
1149 return NULL;
1150 }
1151
1152 qdisc_qstats_backlog_dec(sch, skb);
1153 qdisc_bstats_update(sch, skb);
1154
1155 /* If lmax is lowered, through qfq_change_class, for a class
1156 * owning pending packets with larger size than the new value
1157 * of lmax, then the following condition may hold.
1158 */
1159 if (unlikely(in_serv_agg->budget < len))
1160 in_serv_agg->budget = 0;
1161 else
1162 in_serv_agg->budget -= len;
1163
1164 q->V += (u64)len * q->iwsum;
1165 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1166 len, (unsigned long long) in_serv_agg->F,
1167 (unsigned long long) q->V);
1168
1169 return skb;
1170 }
1171
qfq_choose_next_agg(struct qfq_sched * q)1172 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1173 {
1174 struct qfq_group *grp;
1175 struct qfq_aggregate *agg, *new_front_agg;
1176 u64 old_F;
1177
1178 qfq_update_eligible(q);
1179 q->oldV = q->V;
1180
1181 if (!q->bitmaps[ER])
1182 return NULL;
1183
1184 grp = qfq_ffs(q, q->bitmaps[ER]);
1185 old_F = grp->F;
1186
1187 agg = qfq_slot_head(grp);
1188
1189 /* agg starts to be served, remove it from schedule */
1190 qfq_front_slot_remove(grp);
1191
1192 new_front_agg = qfq_slot_scan(grp);
1193
1194 if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1195 __clear_bit(grp->index, &q->bitmaps[ER]);
1196 else {
1197 u64 roundedS = qfq_round_down(new_front_agg->S,
1198 grp->slot_shift);
1199 unsigned int s;
1200
1201 if (grp->S == roundedS)
1202 return agg;
1203 grp->S = roundedS;
1204 grp->F = roundedS + (2ULL << grp->slot_shift);
1205 __clear_bit(grp->index, &q->bitmaps[ER]);
1206 s = qfq_calc_state(q, grp);
1207 __set_bit(grp->index, &q->bitmaps[s]);
1208 }
1209
1210 qfq_unblock_groups(q, grp->index, old_F);
1211
1212 return agg;
1213 }
1214
qfq_enqueue(struct sk_buff * skb,struct Qdisc * sch,struct sk_buff ** to_free)1215 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1216 struct sk_buff **to_free)
1217 {
1218 unsigned int len = qdisc_pkt_len(skb), gso_segs;
1219 struct qfq_sched *q = qdisc_priv(sch);
1220 struct qfq_class *cl;
1221 struct qfq_aggregate *agg;
1222 int err = 0;
1223
1224 cl = qfq_classify(skb, sch, &err);
1225 if (cl == NULL) {
1226 if (err & __NET_XMIT_BYPASS)
1227 qdisc_qstats_drop(sch);
1228 __qdisc_drop(skb, to_free);
1229 return err;
1230 }
1231 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1232
1233 if (unlikely(cl->agg->lmax < len)) {
1234 pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1235 cl->agg->lmax, len, cl->common.classid);
1236 err = qfq_change_agg(sch, cl, cl->agg->class_weight, len);
1237 if (err) {
1238 cl->qstats.drops++;
1239 return qdisc_drop(skb, sch, to_free);
1240 }
1241 }
1242
1243 gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1;
1244 err = qdisc_enqueue(skb, cl->qdisc, to_free);
1245 if (unlikely(err != NET_XMIT_SUCCESS)) {
1246 pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1247 if (net_xmit_drop_count(err)) {
1248 cl->qstats.drops++;
1249 qdisc_qstats_drop(sch);
1250 }
1251 return err;
1252 }
1253
1254 _bstats_update(&cl->bstats, len, gso_segs);
1255 sch->qstats.backlog += len;
1256 ++sch->q.qlen;
1257
1258 agg = cl->agg;
1259 /* if the class is active, then done here */
1260 if (cl_is_active(cl)) {
1261 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1262 list_first_entry(&agg->active, struct qfq_class, alist)
1263 == cl && cl->deficit < len)
1264 list_move_tail(&cl->alist, &agg->active);
1265
1266 return err;
1267 }
1268
1269 /* schedule class for service within the aggregate */
1270 cl->deficit = agg->lmax;
1271 list_add_tail(&cl->alist, &agg->active);
1272
1273 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1274 q->in_serv_agg == agg)
1275 return err; /* non-empty or in service, nothing else to do */
1276
1277 qfq_activate_agg(q, agg, enqueue);
1278
1279 return err;
1280 }
1281
1282 /*
1283 * Schedule aggregate according to its timestamps.
1284 */
qfq_schedule_agg(struct qfq_sched * q,struct qfq_aggregate * agg)1285 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1286 {
1287 struct qfq_group *grp = agg->grp;
1288 u64 roundedS;
1289 int s;
1290
1291 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1292
1293 /*
1294 * Insert agg in the correct bucket.
1295 * If agg->S >= grp->S we don't need to adjust the
1296 * bucket list and simply go to the insertion phase.
1297 * Otherwise grp->S is decreasing, we must make room
1298 * in the bucket list, and also recompute the group state.
1299 * Finally, if there were no flows in this group and nobody
1300 * was in ER make sure to adjust V.
1301 */
1302 if (grp->full_slots) {
1303 if (!qfq_gt(grp->S, agg->S))
1304 goto skip_update;
1305
1306 /* create a slot for this agg->S */
1307 qfq_slot_rotate(grp, roundedS);
1308 /* group was surely ineligible, remove */
1309 __clear_bit(grp->index, &q->bitmaps[IR]);
1310 __clear_bit(grp->index, &q->bitmaps[IB]);
1311 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1312 q->in_serv_agg == NULL)
1313 q->V = roundedS;
1314
1315 grp->S = roundedS;
1316 grp->F = roundedS + (2ULL << grp->slot_shift);
1317 s = qfq_calc_state(q, grp);
1318 __set_bit(grp->index, &q->bitmaps[s]);
1319
1320 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1321 s, q->bitmaps[s],
1322 (unsigned long long) agg->S,
1323 (unsigned long long) agg->F,
1324 (unsigned long long) q->V);
1325
1326 skip_update:
1327 qfq_slot_insert(grp, agg, roundedS);
1328 }
1329
1330
1331 /* Update agg ts and schedule agg for service */
qfq_activate_agg(struct qfq_sched * q,struct qfq_aggregate * agg,enum update_reason reason)1332 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1333 enum update_reason reason)
1334 {
1335 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1336
1337 qfq_update_agg_ts(q, agg, reason);
1338 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1339 q->in_serv_agg = agg; /* start serving this aggregate */
1340 /* update V: to be in service, agg must be eligible */
1341 q->oldV = q->V = agg->S;
1342 } else if (agg != q->in_serv_agg)
1343 qfq_schedule_agg(q, agg);
1344 }
1345
qfq_slot_remove(struct qfq_sched * q,struct qfq_group * grp,struct qfq_aggregate * agg)1346 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1347 struct qfq_aggregate *agg)
1348 {
1349 unsigned int i, offset;
1350 u64 roundedS;
1351
1352 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1353 offset = (roundedS - grp->S) >> grp->slot_shift;
1354
1355 i = (grp->front + offset) % QFQ_MAX_SLOTS;
1356
1357 hlist_del(&agg->next);
1358 if (hlist_empty(&grp->slots[i]))
1359 __clear_bit(offset, &grp->full_slots);
1360 }
1361
1362 /*
1363 * Called to forcibly deschedule an aggregate. If the aggregate is
1364 * not in the front bucket, or if the latter has other aggregates in
1365 * the front bucket, we can simply remove the aggregate with no other
1366 * side effects.
1367 * Otherwise we must propagate the event up.
1368 */
qfq_deactivate_agg(struct qfq_sched * q,struct qfq_aggregate * agg)1369 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1370 {
1371 struct qfq_group *grp = agg->grp;
1372 unsigned long mask;
1373 u64 roundedS;
1374 int s;
1375
1376 if (agg == q->in_serv_agg) {
1377 charge_actual_service(agg);
1378 q->in_serv_agg = qfq_choose_next_agg(q);
1379 return;
1380 }
1381
1382 agg->F = agg->S;
1383 qfq_slot_remove(q, grp, agg);
1384
1385 if (!grp->full_slots) {
1386 __clear_bit(grp->index, &q->bitmaps[IR]);
1387 __clear_bit(grp->index, &q->bitmaps[EB]);
1388 __clear_bit(grp->index, &q->bitmaps[IB]);
1389
1390 if (test_bit(grp->index, &q->bitmaps[ER]) &&
1391 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1392 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1393 if (mask)
1394 mask = ~((1UL << __fls(mask)) - 1);
1395 else
1396 mask = ~0UL;
1397 qfq_move_groups(q, mask, EB, ER);
1398 qfq_move_groups(q, mask, IB, IR);
1399 }
1400 __clear_bit(grp->index, &q->bitmaps[ER]);
1401 } else if (hlist_empty(&grp->slots[grp->front])) {
1402 agg = qfq_slot_scan(grp);
1403 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1404 if (grp->S != roundedS) {
1405 __clear_bit(grp->index, &q->bitmaps[ER]);
1406 __clear_bit(grp->index, &q->bitmaps[IR]);
1407 __clear_bit(grp->index, &q->bitmaps[EB]);
1408 __clear_bit(grp->index, &q->bitmaps[IB]);
1409 grp->S = roundedS;
1410 grp->F = roundedS + (2ULL << grp->slot_shift);
1411 s = qfq_calc_state(q, grp);
1412 __set_bit(grp->index, &q->bitmaps[s]);
1413 }
1414 }
1415 }
1416
qfq_qlen_notify(struct Qdisc * sch,unsigned long arg)1417 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1418 {
1419 struct qfq_sched *q = qdisc_priv(sch);
1420 struct qfq_class *cl = (struct qfq_class *)arg;
1421
1422 if (list_empty(&cl->alist))
1423 return;
1424 qfq_deactivate_class(q, cl);
1425 }
1426
qfq_init_qdisc(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1427 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
1428 struct netlink_ext_ack *extack)
1429 {
1430 struct qfq_sched *q = qdisc_priv(sch);
1431 struct qfq_group *grp;
1432 int i, j, err;
1433 u32 max_cl_shift, maxbudg_shift, max_classes;
1434
1435 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
1436 if (err)
1437 return err;
1438
1439 err = qdisc_class_hash_init(&q->clhash);
1440 if (err < 0)
1441 return err;
1442
1443 max_classes = min_t(u64, (u64)qdisc_dev(sch)->tx_queue_len + 1,
1444 QFQ_MAX_AGG_CLASSES);
1445 /* max_cl_shift = floor(log_2(max_classes)) */
1446 max_cl_shift = __fls(max_classes);
1447 q->max_agg_classes = 1<<max_cl_shift;
1448
1449 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1450 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1451 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1452
1453 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1454 grp = &q->groups[i];
1455 grp->index = i;
1456 grp->slot_shift = q->min_slot_shift + i;
1457 for (j = 0; j < QFQ_MAX_SLOTS; j++)
1458 INIT_HLIST_HEAD(&grp->slots[j]);
1459 }
1460
1461 INIT_HLIST_HEAD(&q->nonfull_aggs);
1462
1463 return 0;
1464 }
1465
qfq_reset_qdisc(struct Qdisc * sch)1466 static void qfq_reset_qdisc(struct Qdisc *sch)
1467 {
1468 struct qfq_sched *q = qdisc_priv(sch);
1469 struct qfq_class *cl;
1470 unsigned int i;
1471
1472 for (i = 0; i < q->clhash.hashsize; i++) {
1473 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1474 if (cl->qdisc->q.qlen > 0)
1475 qfq_deactivate_class(q, cl);
1476
1477 qdisc_reset(cl->qdisc);
1478 }
1479 }
1480 }
1481
qfq_destroy_qdisc(struct Qdisc * sch)1482 static void qfq_destroy_qdisc(struct Qdisc *sch)
1483 {
1484 struct qfq_sched *q = qdisc_priv(sch);
1485 struct qfq_class *cl;
1486 struct hlist_node *next;
1487 unsigned int i;
1488
1489 tcf_block_put(q->block);
1490
1491 for (i = 0; i < q->clhash.hashsize; i++) {
1492 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1493 common.hnode) {
1494 qfq_destroy_class(sch, cl);
1495 }
1496 }
1497 qdisc_class_hash_destroy(&q->clhash);
1498 }
1499
1500 static const struct Qdisc_class_ops qfq_class_ops = {
1501 .change = qfq_change_class,
1502 .delete = qfq_delete_class,
1503 .find = qfq_search_class,
1504 .tcf_block = qfq_tcf_block,
1505 .bind_tcf = qfq_bind_tcf,
1506 .unbind_tcf = qfq_unbind_tcf,
1507 .graft = qfq_graft_class,
1508 .leaf = qfq_class_leaf,
1509 .qlen_notify = qfq_qlen_notify,
1510 .dump = qfq_dump_class,
1511 .dump_stats = qfq_dump_class_stats,
1512 .walk = qfq_walk,
1513 };
1514
1515 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1516 .cl_ops = &qfq_class_ops,
1517 .id = "qfq",
1518 .priv_size = sizeof(struct qfq_sched),
1519 .enqueue = qfq_enqueue,
1520 .dequeue = qfq_dequeue,
1521 .peek = qdisc_peek_dequeued,
1522 .init = qfq_init_qdisc,
1523 .reset = qfq_reset_qdisc,
1524 .destroy = qfq_destroy_qdisc,
1525 .owner = THIS_MODULE,
1526 };
1527 MODULE_ALIAS_NET_SCH("qfq");
1528
qfq_init(void)1529 static int __init qfq_init(void)
1530 {
1531 return register_qdisc(&qfq_qdisc_ops);
1532 }
1533
qfq_exit(void)1534 static void __exit qfq_exit(void)
1535 {
1536 unregister_qdisc(&qfq_qdisc_ops);
1537 }
1538
1539 module_init(qfq_init);
1540 module_exit(qfq_exit);
1541 MODULE_LICENSE("GPL");
1542 MODULE_DESCRIPTION("Quick Fair Queueing Plus qdisc");
1543