xref: /linux/rust/kernel/driver.rs (revision 5dbeeb268b63ea2d9795b3e5e8ffb48c236f5bb0)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Generic support for drivers of different buses (e.g., PCI, Platform, Amba, etc.).
4 //!
5 //! This documentation describes how to implement a bus specific driver API and how to align it with
6 //! the design of (bus specific) devices.
7 //!
8 //! Note: Readers are expected to know the content of the documentation of [`Device`] and
9 //! [`DeviceContext`].
10 //!
11 //! # Driver Trait
12 //!
13 //! The main driver interface is defined by a bus specific driver trait. For instance:
14 //!
15 //! ```ignore
16 //! pub trait Driver: Send {
17 //!     /// The type holding information about each device ID supported by the driver.
18 //!     type IdInfo: 'static;
19 //!
20 //!     /// The table of OF device ids supported by the driver.
21 //!     const OF_ID_TABLE: Option<of::IdTable<Self::IdInfo>> = None;
22 //!
23 //!     /// The table of ACPI device ids supported by the driver.
24 //!     const ACPI_ID_TABLE: Option<acpi::IdTable<Self::IdInfo>> = None;
25 //!
26 //!     /// Driver probe.
27 //!     fn probe(dev: &Device<device::Core>, id_info: &Self::IdInfo) -> impl PinInit<Self, Error>;
28 //!
29 //!     /// Driver unbind (optional).
30 //!     fn unbind(dev: &Device<device::Core>, this: Pin<&Self>) {
31 //!         let _ = (dev, this);
32 //!     }
33 //! }
34 //! ```
35 //!
36 //! For specific examples see:
37 //!
38 //! * [`platform::Driver`](kernel::platform::Driver)
39 #![cfg_attr(
40     CONFIG_AUXILIARY_BUS,
41     doc = "* [`auxiliary::Driver`](kernel::auxiliary::Driver)"
42 )]
43 #![cfg_attr(CONFIG_PCI, doc = "* [`pci::Driver`](kernel::pci::Driver)")]
44 //!
45 //! The `probe()` callback should return a `impl PinInit<Self, Error>`, i.e. the driver's private
46 //! data. The bus abstraction should store the pointer in the corresponding bus device. The generic
47 //! [`Device`] infrastructure provides common helpers for this purpose on its
48 //! [`Device<CoreInternal>`] implementation.
49 //!
50 //! All driver callbacks should provide a reference to the driver's private data. Once the driver
51 //! is unbound from the device, the bus abstraction should take back the ownership of the driver's
52 //! private data from the corresponding [`Device`] and [`drop`] it.
53 //!
54 //! All driver callbacks should provide a [`Device<Core>`] reference (see also [`device::Core`]).
55 //!
56 //! # Adapter
57 //!
58 //! The adapter implementation of a bus represents the abstraction layer between the C bus
59 //! callbacks and the Rust bus callbacks. It therefore has to be generic over an implementation of
60 //! the [driver trait](#driver-trait).
61 //!
62 //! ```ignore
63 //! pub struct Adapter<T: Driver>;
64 //! ```
65 //!
66 //! There's a common [`Adapter`] trait that can be implemented to inherit common driver
67 //! infrastructure, such as finding the ID info from an [`of::IdTable`] or [`acpi::IdTable`].
68 //!
69 //! # Driver Registration
70 //!
71 //! In order to register C driver types (such as `struct platform_driver`) the [adapter](#adapter)
72 //! should implement the [`RegistrationOps`] trait.
73 //!
74 //! This trait implementation can be used to create the actual registration with the common
75 //! [`Registration`] type.
76 //!
77 //! Typically, bus abstractions want to provide a bus specific `module_bus_driver!` macro, which
78 //! creates a kernel module with exactly one [`Registration`] for the bus specific adapter.
79 //!
80 //! The generic driver infrastructure provides a helper for this with the [`module_driver`] macro.
81 //!
82 //! # Device IDs
83 //!
84 //! Besides the common device ID types, such as [`of::DeviceId`] and [`acpi::DeviceId`], most buses
85 //! may need to implement their own device ID types.
86 //!
87 //! For this purpose the generic infrastructure in [`device_id`] should be used.
88 //!
89 //! [`Core`]: device::Core
90 //! [`Device`]: device::Device
91 //! [`Device<Core>`]: device::Device<device::Core>
92 //! [`Device<CoreInternal>`]: device::Device<device::CoreInternal>
93 //! [`DeviceContext`]: device::DeviceContext
94 //! [`device_id`]: kernel::device_id
95 //! [`module_driver`]: kernel::module_driver
96 
97 use crate::error::{Error, Result};
98 use crate::{acpi, device, of, str::CStr, try_pin_init, types::Opaque, ThisModule};
99 use core::pin::Pin;
100 use pin_init::{pin_data, pinned_drop, PinInit};
101 
102 /// Trait describing the layout of a specific device driver.
103 ///
104 /// This trait describes the layout of a specific driver structure, such as `struct pci_driver` or
105 /// `struct platform_driver`.
106 ///
107 /// # Safety
108 ///
109 /// Implementors must guarantee that:
110 /// - `DriverType` is `repr(C)`,
111 /// - `DriverData` is the type of the driver's device private data.
112 /// - `DriverType` embeds a valid `struct device_driver` at byte offset `DEVICE_DRIVER_OFFSET`.
113 pub unsafe trait DriverLayout {
114     /// The specific driver type embedding a `struct device_driver`.
115     type DriverType: Default;
116 
117     /// The type of the driver's device private data.
118     type DriverData;
119 
120     /// Byte offset of the embedded `struct device_driver` within `DriverType`.
121     ///
122     /// This must correspond exactly to the location of the embedded `struct device_driver` field.
123     const DEVICE_DRIVER_OFFSET: usize;
124 }
125 
126 /// The [`RegistrationOps`] trait serves as generic interface for subsystems (e.g., PCI, Platform,
127 /// Amba, etc.) to provide the corresponding subsystem specific implementation to register /
128 /// unregister a driver of the particular type (`DriverType`).
129 ///
130 /// For instance, the PCI subsystem would set `DriverType` to `bindings::pci_driver` and call
131 /// `bindings::__pci_register_driver` from `RegistrationOps::register` and
132 /// `bindings::pci_unregister_driver` from `RegistrationOps::unregister`.
133 ///
134 /// # Safety
135 ///
136 /// A call to [`RegistrationOps::unregister`] for a given instance of `DriverType` is only valid if
137 /// a preceding call to [`RegistrationOps::register`] has been successful.
138 pub unsafe trait RegistrationOps: DriverLayout {
139     /// Registers a driver.
140     ///
141     /// # Safety
142     ///
143     /// On success, `reg` must remain pinned and valid until the matching call to
144     /// [`RegistrationOps::unregister`].
register( reg: &Opaque<Self::DriverType>, name: &'static CStr, module: &'static ThisModule, ) -> Result145     unsafe fn register(
146         reg: &Opaque<Self::DriverType>,
147         name: &'static CStr,
148         module: &'static ThisModule,
149     ) -> Result;
150 
151     /// Unregisters a driver previously registered with [`RegistrationOps::register`].
152     ///
153     /// # Safety
154     ///
155     /// Must only be called after a preceding successful call to [`RegistrationOps::register`] for
156     /// the same `reg`.
unregister(reg: &Opaque<Self::DriverType>)157     unsafe fn unregister(reg: &Opaque<Self::DriverType>);
158 }
159 
160 /// A [`Registration`] is a generic type that represents the registration of some driver type (e.g.
161 /// `bindings::pci_driver`). Therefore a [`Registration`] must be initialized with a type that
162 /// implements the [`RegistrationOps`] trait, such that the generic `T::register` and
163 /// `T::unregister` calls result in the subsystem specific registration calls.
164 ///
165 ///Once the `Registration` structure is dropped, the driver is unregistered.
166 #[pin_data(PinnedDrop)]
167 pub struct Registration<T: RegistrationOps> {
168     #[pin]
169     reg: Opaque<T::DriverType>,
170 }
171 
172 // SAFETY: `Registration` has no fields or methods accessible via `&Registration`, so it is safe to
173 // share references to it with multiple threads as nothing can be done.
174 unsafe impl<T: RegistrationOps> Sync for Registration<T> {}
175 
176 // SAFETY: Both registration and unregistration are implemented in C and safe to be performed from
177 // any thread, so `Registration` is `Send`.
178 unsafe impl<T: RegistrationOps> Send for Registration<T> {}
179 
180 impl<T: RegistrationOps + 'static> Registration<T> {
post_unbind_callback(dev: *mut bindings::device)181     extern "C" fn post_unbind_callback(dev: *mut bindings::device) {
182         // SAFETY: The driver core only ever calls the post unbind callback with a valid pointer to
183         // a `struct device`.
184         //
185         // INVARIANT: `dev` is valid for the duration of the `post_unbind_callback()`.
186         let dev = unsafe { &*dev.cast::<device::Device<device::CoreInternal>>() };
187 
188         // `remove()` and all devres callbacks have been completed at this point, hence drop the
189         // driver's device private data.
190         //
191         // SAFETY: By the safety requirements of the `Driver` trait, `T::DriverData` is the
192         // driver's device private data type.
193         drop(unsafe { dev.drvdata_obtain::<T::DriverData>() });
194     }
195 
196     /// Attach generic `struct device_driver` callbacks.
callbacks_attach(drv: &Opaque<T::DriverType>)197     fn callbacks_attach(drv: &Opaque<T::DriverType>) {
198         let ptr = drv.get().cast::<u8>();
199 
200         // SAFETY:
201         // - `drv.get()` yields a valid pointer to `Self::DriverType`.
202         // - Adding `DEVICE_DRIVER_OFFSET` yields the address of the embedded `struct device_driver`
203         //   as guaranteed by the safety requirements of the `Driver` trait.
204         let base = unsafe { ptr.add(T::DEVICE_DRIVER_OFFSET) };
205 
206         // CAST: `base` points to the offset of the embedded `struct device_driver`.
207         let base = base.cast::<bindings::device_driver>();
208 
209         // SAFETY: It is safe to set the fields of `struct device_driver` on initialization.
210         unsafe { (*base).p_cb.post_unbind_rust = Some(Self::post_unbind_callback) };
211     }
212 
213     /// Creates a new instance of the registration object.
new(name: &'static CStr, module: &'static ThisModule) -> impl PinInit<Self, Error>214     pub fn new(name: &'static CStr, module: &'static ThisModule) -> impl PinInit<Self, Error> {
215         try_pin_init!(Self {
216             reg <- Opaque::try_ffi_init(|ptr: *mut T::DriverType| {
217                 // SAFETY: `try_ffi_init` guarantees that `ptr` is valid for write.
218                 unsafe { ptr.write(T::DriverType::default()) };
219 
220                 // SAFETY: `try_ffi_init` guarantees that `ptr` is valid for write, and it has
221                 // just been initialised above, so it's also valid for read.
222                 let drv = unsafe { &*(ptr as *const Opaque<T::DriverType>) };
223 
224                 Self::callbacks_attach(drv);
225 
226                 // SAFETY: `drv` is guaranteed to be pinned until `T::unregister`.
227                 unsafe { T::register(drv, name, module) }
228             }),
229         })
230     }
231 }
232 
233 #[pinned_drop]
234 impl<T: RegistrationOps> PinnedDrop for Registration<T> {
drop(self: Pin<&mut Self>)235     fn drop(self: Pin<&mut Self>) {
236         // SAFETY: The existence of `self` guarantees that `self.reg` has previously been
237         // successfully registered with `T::register`
238         unsafe { T::unregister(&self.reg) };
239     }
240 }
241 
242 /// Declares a kernel module that exposes a single driver.
243 ///
244 /// It is meant to be used as a helper by other subsystems so they can more easily expose their own
245 /// macros.
246 #[macro_export]
247 macro_rules! module_driver {
248     (<$gen_type:ident>, $driver_ops:ty, { type: $type:ty, $($f:tt)* }) => {
249         type Ops<$gen_type> = $driver_ops;
250 
251         #[$crate::prelude::pin_data]
252         struct DriverModule {
253             #[pin]
254             _driver: $crate::driver::Registration<Ops<$type>>,
255         }
256 
257         impl $crate::InPlaceModule for DriverModule {
258             fn init(
259                 module: &'static $crate::ThisModule
260             ) -> impl ::pin_init::PinInit<Self, $crate::error::Error> {
261                 $crate::try_pin_init!(Self {
262                     _driver <- $crate::driver::Registration::new(
263                         <Self as $crate::ModuleMetadata>::NAME,
264                         module,
265                     ),
266                 })
267             }
268         }
269 
270         $crate::prelude::module! {
271             type: DriverModule,
272             $($f)*
273         }
274     }
275 }
276 
277 /// The bus independent adapter to match a drivers and a devices.
278 ///
279 /// This trait should be implemented by the bus specific adapter, which represents the connection
280 /// of a device and a driver.
281 ///
282 /// It provides bus independent functions for device / driver interactions.
283 pub trait Adapter {
284     /// The type holding driver private data about each device id supported by the driver.
285     type IdInfo: 'static;
286 
287     /// The [`acpi::IdTable`] of the corresponding driver
acpi_id_table() -> Option<acpi::IdTable<Self::IdInfo>>288     fn acpi_id_table() -> Option<acpi::IdTable<Self::IdInfo>>;
289 
290     /// Returns the driver's private data from the matching entry in the [`acpi::IdTable`], if any.
291     ///
292     /// If this returns `None`, it means there is no match with an entry in the [`acpi::IdTable`].
acpi_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo>293     fn acpi_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> {
294         #[cfg(not(CONFIG_ACPI))]
295         {
296             let _ = dev;
297             None
298         }
299 
300         #[cfg(CONFIG_ACPI)]
301         {
302             let table = Self::acpi_id_table()?;
303 
304             // SAFETY:
305             // - `table` has static lifetime, hence it's valid for read,
306             // - `dev` is guaranteed to be valid while it's alive, and so is `dev.as_raw()`.
307             let raw_id = unsafe { bindings::acpi_match_device(table.as_ptr(), dev.as_raw()) };
308 
309             if raw_id.is_null() {
310                 None
311             } else {
312                 // SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `struct acpi_device_id`
313                 // and does not add additional invariants, so it's safe to transmute.
314                 let id = unsafe { &*raw_id.cast::<acpi::DeviceId>() };
315 
316                 Some(table.info(<acpi::DeviceId as crate::device_id::RawDeviceIdIndex>::index(id)))
317             }
318         }
319     }
320 
321     /// The [`of::IdTable`] of the corresponding driver.
of_id_table() -> Option<of::IdTable<Self::IdInfo>>322     fn of_id_table() -> Option<of::IdTable<Self::IdInfo>>;
323 
324     /// Returns the driver's private data from the matching entry in the [`of::IdTable`], if any.
325     ///
326     /// If this returns `None`, it means there is no match with an entry in the [`of::IdTable`].
of_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo>327     fn of_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> {
328         #[cfg(not(CONFIG_OF))]
329         {
330             let _ = dev;
331             None
332         }
333 
334         #[cfg(CONFIG_OF)]
335         {
336             let table = Self::of_id_table()?;
337 
338             // SAFETY:
339             // - `table` has static lifetime, hence it's valid for read,
340             // - `dev` is guaranteed to be valid while it's alive, and so is `dev.as_raw()`.
341             let raw_id = unsafe { bindings::of_match_device(table.as_ptr(), dev.as_raw()) };
342 
343             if raw_id.is_null() {
344                 None
345             } else {
346                 // SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `struct of_device_id`
347                 // and does not add additional invariants, so it's safe to transmute.
348                 let id = unsafe { &*raw_id.cast::<of::DeviceId>() };
349 
350                 Some(
351                     table.info(<of::DeviceId as crate::device_id::RawDeviceIdIndex>::index(
352                         id,
353                     )),
354                 )
355             }
356         }
357     }
358 
359     /// Returns the driver's private data from the matching entry of any of the ID tables, if any.
360     ///
361     /// If this returns `None`, it means that there is no match in any of the ID tables directly
362     /// associated with a [`device::Device`].
id_info(dev: &device::Device) -> Option<&'static Self::IdInfo>363     fn id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> {
364         let id = Self::acpi_id_info(dev);
365         if id.is_some() {
366             return id;
367         }
368 
369         let id = Self::of_id_info(dev);
370         if id.is_some() {
371             return id;
372         }
373 
374         None
375     }
376 }
377