xref: /linux/sound/sparc/dbri.c (revision 05a54fa773284d1a7923cdfdd8f0c8dabb98bd26)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for DBRI sound chip found on Sparcs.
4  * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
5  *
6  * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
7  *
8  * Based entirely upon drivers/sbus/audio/dbri.c which is:
9  * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
10  * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
11  *
12  * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
13  * on Sun SPARCStation 10, 20, LX and Voyager models.
14  *
15  * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
16  *   data time multiplexer with ISDN support (aka T7259)
17  *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
18  *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
19  *   Documentation:
20  *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
21  *     Sparc Technology Business (courtesy of Sun Support)
22  *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
23  *     available from the Lucent (formerly AT&T microelectronics) home
24  *     page.
25  *   - https://www.freesoft.org/Linux/DBRI/
26  * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
27  *   Interfaces: CHI, Audio In & Out, 2 bits parallel
28  *   Documentation: from the Crystal Semiconductor home page.
29  *
30  * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
31  * memory and a serial device (long pipes, no. 0-15) or between two serial
32  * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
33  * device (short pipes).
34  * A timeslot defines the bit-offset and no. of bits read from a serial device.
35  * The timeslots are linked to 6 circular lists, one for each direction for
36  * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
37  * (the second one is a monitor/tee pipe, valid only for serial input).
38  *
39  * The mmcodec is connected via the CHI bus and needs the data & some
40  * parameters (volume, output selection) time multiplexed in 8 byte
41  * chunks. It also has a control mode, which serves for audio format setting.
42  *
43  * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
44  * the same CHI bus, so I thought perhaps it is possible to use the on-board
45  * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
46  * audio devices. But the SUN HW group decided against it, at least on my
47  * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
48  * connected.
49  *
50  * I've tried to stick to the following function naming conventions:
51  * snd_*	ALSA stuff
52  * cs4215_*	CS4215 codec specific stuff
53  * dbri_*	DBRI high-level stuff
54  * other	DBRI low-level stuff
55  */
56 
57 #include <linux/interrupt.h>
58 #include <linux/delay.h>
59 #include <linux/irq.h>
60 #include <linux/io.h>
61 #include <linux/dma-mapping.h>
62 #include <linux/gfp.h>
63 #include <linux/string.h>
64 
65 #include <sound/core.h>
66 #include <sound/pcm.h>
67 #include <sound/pcm_params.h>
68 #include <sound/info.h>
69 #include <sound/control.h>
70 #include <sound/initval.h>
71 
72 #include <linux/of.h>
73 #include <linux/platform_device.h>
74 #include <linux/atomic.h>
75 #include <linux/module.h>
76 
77 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
78 MODULE_DESCRIPTION("Sun DBRI");
79 MODULE_LICENSE("GPL");
80 
81 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
82 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
83 /* Enable this card */
84 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
85 
86 module_param_array(index, int, NULL, 0444);
87 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
88 module_param_array(id, charp, NULL, 0444);
89 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
90 module_param_array(enable, bool, NULL, 0444);
91 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
92 
93 #undef DBRI_DEBUG
94 
95 #define D_INT	(1<<0)
96 #define D_GEN	(1<<1)
97 #define D_CMD	(1<<2)
98 #define D_MM	(1<<3)
99 #define D_USR	(1<<4)
100 #define D_DESC	(1<<5)
101 
102 static int dbri_debug;
103 module_param(dbri_debug, int, 0644);
104 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
105 
106 #ifdef DBRI_DEBUG
107 static const char * const cmds[] = {
108 	"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
109 	"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
110 };
111 
112 #define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
113 
114 #else
115 #define dprintk(a, x...) do { } while (0)
116 
117 #endif				/* DBRI_DEBUG */
118 
119 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) |	\
120 				    (intr << 27) |	\
121 				    value)
122 
123 /***************************************************************************
124 	CS4215 specific definitions and structures
125 ****************************************************************************/
126 
127 struct cs4215 {
128 	__u8 data[4];		/* Data mode: Time slots 5-8 */
129 	__u8 ctrl[4];		/* Ctrl mode: Time slots 1-4 */
130 	__u8 onboard;
131 	__u8 offset;		/* Bit offset from frame sync to time slot 1 */
132 	volatile __u32 status;
133 	volatile __u32 version;
134 	__u8 precision;		/* In bits, either 8 or 16 */
135 	__u8 channels;		/* 1 or 2 */
136 };
137 
138 /*
139  * Control mode first
140  */
141 
142 /* Time Slot 1, Status register */
143 #define CS4215_CLB	(1<<2)	/* Control Latch Bit */
144 #define CS4215_OLB	(1<<3)	/* 1: line: 2.0V, speaker 4V */
145 				/* 0: line: 2.8V, speaker 8V */
146 #define CS4215_MLB	(1<<4)	/* 1: Microphone: 20dB gain disabled */
147 #define CS4215_RSRVD_1  (1<<5)
148 
149 /* Time Slot 2, Data Format Register */
150 #define CS4215_DFR_LINEAR16	0
151 #define CS4215_DFR_ULAW		1
152 #define CS4215_DFR_ALAW		2
153 #define CS4215_DFR_LINEAR8	3
154 #define CS4215_DFR_STEREO	(1<<2)
155 static struct {
156 	unsigned short freq;
157 	unsigned char xtal;
158 	unsigned char csval;
159 } CS4215_FREQ[] = {
160 	{  8000, (1 << 4), (0 << 3) },
161 	{ 16000, (1 << 4), (1 << 3) },
162 	{ 27429, (1 << 4), (2 << 3) },	/* Actually 24428.57 */
163 	{ 32000, (1 << 4), (3 << 3) },
164      /* {    NA, (1 << 4), (4 << 3) }, */
165      /* {    NA, (1 << 4), (5 << 3) }, */
166 	{ 48000, (1 << 4), (6 << 3) },
167 	{  9600, (1 << 4), (7 << 3) },
168 	{  5512, (2 << 4), (0 << 3) },	/* Actually 5512.5 */
169 	{ 11025, (2 << 4), (1 << 3) },
170 	{ 18900, (2 << 4), (2 << 3) },
171 	{ 22050, (2 << 4), (3 << 3) },
172 	{ 37800, (2 << 4), (4 << 3) },
173 	{ 44100, (2 << 4), (5 << 3) },
174 	{ 33075, (2 << 4), (6 << 3) },
175 	{  6615, (2 << 4), (7 << 3) },
176 	{ 0, 0, 0}
177 };
178 
179 #define CS4215_HPF	(1<<7)	/* High Pass Filter, 1: Enabled */
180 
181 #define CS4215_12_MASK	0xfcbf	/* Mask off reserved bits in slot 1 & 2 */
182 
183 /* Time Slot 3, Serial Port Control register */
184 #define CS4215_XEN	(1<<0)	/* 0: Enable serial output */
185 #define CS4215_XCLK	(1<<1)	/* 1: Master mode: Generate SCLK */
186 #define CS4215_BSEL_64	(0<<2)	/* Bitrate: 64 bits per frame */
187 #define CS4215_BSEL_128	(1<<2)
188 #define CS4215_BSEL_256	(2<<2)
189 #define CS4215_MCK_MAST (0<<4)	/* Master clock */
190 #define CS4215_MCK_XTL1 (1<<4)	/* 24.576 MHz clock source */
191 #define CS4215_MCK_XTL2 (2<<4)	/* 16.9344 MHz clock source */
192 #define CS4215_MCK_CLK1 (3<<4)	/* Clockin, 256 x Fs */
193 #define CS4215_MCK_CLK2 (4<<4)	/* Clockin, see DFR */
194 
195 /* Time Slot 4, Test Register */
196 #define CS4215_DAD	(1<<0)	/* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
197 #define CS4215_ENL	(1<<1)	/* Enable Loopback Testing */
198 
199 /* Time Slot 5, Parallel Port Register */
200 /* Read only here and the same as the in data mode */
201 
202 /* Time Slot 6, Reserved  */
203 
204 /* Time Slot 7, Version Register  */
205 #define CS4215_VERSION_MASK 0xf	/* Known versions 0/C, 1/D, 2/E */
206 
207 /* Time Slot 8, Reserved  */
208 
209 /*
210  * Data mode
211  */
212 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
213 
214 /* Time Slot 5, Output Setting  */
215 #define CS4215_LO(v)	v	/* Left Output Attenuation 0x3f: -94.5 dB */
216 #define CS4215_LE	(1<<6)	/* Line Out Enable */
217 #define CS4215_HE	(1<<7)	/* Headphone Enable */
218 
219 /* Time Slot 6, Output Setting  */
220 #define CS4215_RO(v)	v	/* Right Output Attenuation 0x3f: -94.5 dB */
221 #define CS4215_SE	(1<<6)	/* Speaker Enable */
222 #define CS4215_ADI	(1<<7)	/* A/D Data Invalid: Busy in calibration */
223 
224 /* Time Slot 7, Input Setting */
225 #define CS4215_LG(v)	v	/* Left Gain Setting 0xf: 22.5 dB */
226 #define CS4215_IS	(1<<4)	/* Input Select: 1=Microphone, 0=Line */
227 #define CS4215_OVR	(1<<5)	/* 1: Over range condition occurred */
228 #define CS4215_PIO0	(1<<6)	/* Parallel I/O 0 */
229 #define CS4215_PIO1	(1<<7)
230 
231 /* Time Slot 8, Input Setting */
232 #define CS4215_RG(v)	v	/* Right Gain Setting 0xf: 22.5 dB */
233 #define CS4215_MA(v)	(v<<4)	/* Monitor Path Attenuation 0xf: mute */
234 
235 /***************************************************************************
236 		DBRI specific definitions and structures
237 ****************************************************************************/
238 
239 /* DBRI main registers */
240 #define REG0	0x00		/* Status and Control */
241 #define REG1	0x04		/* Mode and Interrupt */
242 #define REG2	0x08		/* Parallel IO */
243 #define REG3	0x0c		/* Test */
244 #define REG8	0x20		/* Command Queue Pointer */
245 #define REG9	0x24		/* Interrupt Queue Pointer */
246 
247 #define DBRI_NO_CMDS	64
248 #define DBRI_INT_BLK	64
249 #define DBRI_NO_DESCS	64
250 #define DBRI_NO_PIPES	32
251 #define DBRI_MAX_PIPE	(DBRI_NO_PIPES - 1)
252 
253 #define DBRI_REC	0
254 #define DBRI_PLAY	1
255 #define DBRI_NO_STREAMS	2
256 
257 /* One transmit/receive descriptor */
258 /* When ba != 0 descriptor is used */
259 struct dbri_mem {
260 	volatile __u32 word1;
261 	__u32 ba;	/* Transmit/Receive Buffer Address */
262 	__u32 nda;	/* Next Descriptor Address */
263 	volatile __u32 word4;
264 };
265 
266 /* This structure is in a DMA region where it can accessed by both
267  * the CPU and the DBRI
268  */
269 struct dbri_dma {
270 	s32 cmd[DBRI_NO_CMDS];			/* Place for commands */
271 	volatile s32 intr[DBRI_INT_BLK];	/* Interrupt field  */
272 	struct dbri_mem desc[DBRI_NO_DESCS];	/* Xmit/receive descriptors */
273 };
274 
275 #define dbri_dma_off(member, elem)	\
276 	((u32)(unsigned long)		\
277 	 (&(((struct dbri_dma *)0)->member[elem])))
278 
279 enum in_or_out { PIPEinput, PIPEoutput };
280 
281 struct dbri_pipe {
282 	u32 sdp;		/* SDP command word */
283 	int nextpipe;		/* Next pipe in linked list */
284 	int length;		/* Length of timeslot (bits) */
285 	int first_desc;		/* Index of first descriptor */
286 	int desc;		/* Index of active descriptor */
287 	volatile __u32 *recv_fixed_ptr;	/* Ptr to receive fixed data */
288 };
289 
290 /* Per stream (playback or record) information */
291 struct dbri_streaminfo {
292 	struct snd_pcm_substream *substream;
293 	u32 dvma_buffer;	/* Device view of ALSA DMA buffer */
294 	int size;		/* Size of DMA buffer             */
295 	size_t offset;		/* offset in user buffer          */
296 	int pipe;		/* Data pipe used                 */
297 	int left_gain;		/* mixer elements                 */
298 	int right_gain;
299 };
300 
301 /* This structure holds the information for both chips (DBRI & CS4215) */
302 struct snd_dbri {
303 	int regs_size, irq;	/* Needed for unload */
304 	struct platform_device *op;	/* OF device info */
305 	spinlock_t lock;
306 
307 	struct dbri_dma *dma;	/* Pointer to our DMA block */
308 	dma_addr_t dma_dvma;	/* DBRI visible DMA address */
309 
310 	void __iomem *regs;	/* dbri HW regs */
311 	int dbri_irqp;		/* intr queue pointer */
312 
313 	struct dbri_pipe pipes[DBRI_NO_PIPES];	/* DBRI's 32 data pipes */
314 	int next_desc[DBRI_NO_DESCS];		/* Index of next desc, or -1 */
315 	spinlock_t cmdlock;	/* Protects cmd queue accesses */
316 	s32 *cmdptr;		/* Pointer to the last queued cmd */
317 
318 	int chi_bpf;
319 
320 	struct cs4215 mm;	/* mmcodec special info */
321 				/* per stream (playback/record) info */
322 	struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
323 };
324 
325 #define DBRI_MAX_VOLUME		63	/* Output volume */
326 #define DBRI_MAX_GAIN		15	/* Input gain */
327 
328 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
329 #define D_P		(1<<15)	/* Program command & queue pointer valid */
330 #define D_G		(1<<14)	/* Allow 4-Word SBus Burst */
331 #define D_S		(1<<13)	/* Allow 16-Word SBus Burst */
332 #define D_E		(1<<12)	/* Allow 8-Word SBus Burst */
333 #define D_X		(1<<7)	/* Sanity Timer Disable */
334 #define D_T		(1<<6)	/* Permit activation of the TE interface */
335 #define D_N		(1<<5)	/* Permit activation of the NT interface */
336 #define D_C		(1<<4)	/* Permit activation of the CHI interface */
337 #define D_F		(1<<3)	/* Force Sanity Timer Time-Out */
338 #define D_D		(1<<2)	/* Disable Master Mode */
339 #define D_H		(1<<1)	/* Halt for Analysis */
340 #define D_R		(1<<0)	/* Soft Reset */
341 
342 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
343 #define D_LITTLE_END	(1<<8)	/* Byte Order */
344 #define D_BIG_END	(0<<8)	/* Byte Order */
345 #define D_MRR		(1<<4)	/* Multiple Error Ack on SBus (read only) */
346 #define D_MLE		(1<<3)	/* Multiple Late Error on SBus (read only) */
347 #define D_LBG		(1<<2)	/* Lost Bus Grant on SBus (read only) */
348 #define D_MBE		(1<<1)	/* Burst Error on SBus (read only) */
349 #define D_IR		(1<<0)	/* Interrupt Indicator (read only) */
350 
351 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
352 #define D_ENPIO3	(1<<7)	/* Enable Pin 3 */
353 #define D_ENPIO2	(1<<6)	/* Enable Pin 2 */
354 #define D_ENPIO1	(1<<5)	/* Enable Pin 1 */
355 #define D_ENPIO0	(1<<4)	/* Enable Pin 0 */
356 #define D_ENPIO		(0xf0)	/* Enable all the pins */
357 #define D_PIO3		(1<<3)	/* Pin 3: 1: Data mode, 0: Ctrl mode */
358 #define D_PIO2		(1<<2)	/* Pin 2: 1: Onboard PDN */
359 #define D_PIO1		(1<<1)	/* Pin 1: 0: Reset */
360 #define D_PIO0		(1<<0)	/* Pin 0: 1: Speakerbox PDN */
361 
362 /* DBRI Commands (Page 20) */
363 #define D_WAIT		0x0	/* Stop execution */
364 #define D_PAUSE		0x1	/* Flush long pipes */
365 #define D_JUMP		0x2	/* New command queue */
366 #define D_IIQ		0x3	/* Initialize Interrupt Queue */
367 #define D_REX		0x4	/* Report command execution via interrupt */
368 #define D_SDP		0x5	/* Setup Data Pipe */
369 #define D_CDP		0x6	/* Continue Data Pipe (reread NULL Pointer) */
370 #define D_DTS		0x7	/* Define Time Slot */
371 #define D_SSP		0x8	/* Set short Data Pipe */
372 #define D_CHI		0x9	/* Set CHI Global Mode */
373 #define D_NT		0xa	/* NT Command */
374 #define D_TE		0xb	/* TE Command */
375 #define D_CDEC		0xc	/* Codec setup */
376 #define D_TEST		0xd	/* No comment */
377 #define D_CDM		0xe	/* CHI Data mode command */
378 
379 /* Special bits for some commands */
380 #define D_PIPE(v)      ((v)<<0)	/* Pipe No.: 0-15 long, 16-21 short */
381 
382 /* Setup Data Pipe */
383 /* IRM */
384 #define D_SDP_2SAME	(1<<18)	/* Report 2nd time in a row value received */
385 #define D_SDP_CHANGE	(2<<18)	/* Report any changes */
386 #define D_SDP_EVERY	(3<<18)	/* Report any changes */
387 #define D_SDP_EOL	(1<<17)	/* EOL interrupt enable */
388 #define D_SDP_IDLE	(1<<16)	/* HDLC idle interrupt enable */
389 
390 /* Pipe data MODE */
391 #define D_SDP_MEM	(0<<13)	/* To/from memory */
392 #define D_SDP_HDLC	(2<<13)
393 #define D_SDP_HDLC_D	(3<<13)	/* D Channel (prio control) */
394 #define D_SDP_SER	(4<<13)	/* Serial to serial */
395 #define D_SDP_FIXED	(6<<13)	/* Short only */
396 #define D_SDP_MODE(v)	((v)&(7<<13))
397 
398 #define D_SDP_TO_SER	(1<<12)	/* Direction */
399 #define D_SDP_FROM_SER	(0<<12)	/* Direction */
400 #define D_SDP_MSB	(1<<11)	/* Bit order within Byte */
401 #define D_SDP_LSB	(0<<11)	/* Bit order within Byte */
402 #define D_SDP_P		(1<<10)	/* Pointer Valid */
403 #define D_SDP_A		(1<<8)	/* Abort */
404 #define D_SDP_C		(1<<7)	/* Clear */
405 
406 /* Define Time Slot */
407 #define D_DTS_VI	(1<<17)	/* Valid Input Time-Slot Descriptor */
408 #define D_DTS_VO	(1<<16)	/* Valid Output Time-Slot Descriptor */
409 #define D_DTS_INS	(1<<15)	/* Insert Time Slot */
410 #define D_DTS_DEL	(0<<15)	/* Delete Time Slot */
411 #define D_DTS_PRVIN(v) ((v)<<10)	/* Previous In Pipe */
412 #define D_DTS_PRVOUT(v)        ((v)<<5)	/* Previous Out Pipe */
413 
414 /* Time Slot defines */
415 #define D_TS_LEN(v)	((v)<<24)	/* Number of bits in this time slot */
416 #define D_TS_CYCLE(v)	((v)<<14)	/* Bit Count at start of TS */
417 #define D_TS_DI		(1<<13)	/* Data Invert */
418 #define D_TS_1CHANNEL	(0<<10)	/* Single Channel / Normal mode */
419 #define D_TS_MONITOR	(2<<10)	/* Monitor pipe */
420 #define D_TS_NONCONTIG	(3<<10)	/* Non contiguous mode */
421 #define D_TS_ANCHOR	(7<<10)	/* Starting short pipes */
422 #define D_TS_MON(v)    ((v)<<5)	/* Monitor Pipe */
423 #define D_TS_NEXT(v)   ((v)<<0)	/* Pipe no.: 0-15 long, 16-21 short */
424 
425 /* Concentration Highway Interface Modes */
426 #define D_CHI_CHICM(v)	((v)<<16)	/* Clock mode */
427 #define D_CHI_IR	(1<<15)	/* Immediate Interrupt Report */
428 #define D_CHI_EN	(1<<14)	/* CHIL Interrupt enabled */
429 #define D_CHI_OD	(1<<13)	/* Open Drain Enable */
430 #define D_CHI_FE	(1<<12)	/* Sample CHIFS on Rising Frame Edge */
431 #define D_CHI_FD	(1<<11)	/* Frame Drive */
432 #define D_CHI_BPF(v)	((v)<<0)	/* Bits per Frame */
433 
434 /* NT: These are here for completeness */
435 #define D_NT_FBIT	(1<<17)	/* Frame Bit */
436 #define D_NT_NBF	(1<<16)	/* Number of bad frames to loose framing */
437 #define D_NT_IRM_IMM	(1<<15)	/* Interrupt Report & Mask: Immediate */
438 #define D_NT_IRM_EN	(1<<14)	/* Interrupt Report & Mask: Enable */
439 #define D_NT_ISNT	(1<<13)	/* Configure interface as NT */
440 #define D_NT_FT		(1<<12)	/* Fixed Timing */
441 #define D_NT_EZ		(1<<11)	/* Echo Channel is Zeros */
442 #define D_NT_IFA	(1<<10)	/* Inhibit Final Activation */
443 #define D_NT_ACT	(1<<9)	/* Activate Interface */
444 #define D_NT_MFE	(1<<8)	/* Multiframe Enable */
445 #define D_NT_RLB(v)	((v)<<5)	/* Remote Loopback */
446 #define D_NT_LLB(v)	((v)<<2)	/* Local Loopback */
447 #define D_NT_FACT	(1<<1)	/* Force Activation */
448 #define D_NT_ABV	(1<<0)	/* Activate Bipolar Violation */
449 
450 /* Codec Setup */
451 #define D_CDEC_CK(v)	((v)<<24)	/* Clock Select */
452 #define D_CDEC_FED(v)	((v)<<12)	/* FSCOD Falling Edge Delay */
453 #define D_CDEC_RED(v)	((v)<<0)	/* FSCOD Rising Edge Delay */
454 
455 /* Test */
456 #define D_TEST_RAM(v)	((v)<<16)	/* RAM Pointer */
457 #define D_TEST_SIZE(v)	((v)<<11)	/* */
458 #define D_TEST_ROMONOFF	0x5	/* Toggle ROM opcode monitor on/off */
459 #define D_TEST_PROC	0x6	/* Microprocessor test */
460 #define D_TEST_SER	0x7	/* Serial-Controller test */
461 #define D_TEST_RAMREAD	0x8	/* Copy from Ram to system memory */
462 #define D_TEST_RAMWRITE	0x9	/* Copy into Ram from system memory */
463 #define D_TEST_RAMBIST	0xa	/* RAM Built-In Self Test */
464 #define D_TEST_MCBIST	0xb	/* Microcontroller Built-In Self Test */
465 #define D_TEST_DUMP	0xe	/* ROM Dump */
466 
467 /* CHI Data Mode */
468 #define D_CDM_THI	(1 << 8)	/* Transmit Data on CHIDR Pin */
469 #define D_CDM_RHI	(1 << 7)	/* Receive Data on CHIDX Pin */
470 #define D_CDM_RCE	(1 << 6)	/* Receive on Rising Edge of CHICK */
471 #define D_CDM_XCE	(1 << 2) /* Transmit Data on Rising Edge of CHICK */
472 #define D_CDM_XEN	(1 << 1)	/* Transmit Highway Enable */
473 #define D_CDM_REN	(1 << 0)	/* Receive Highway Enable */
474 
475 /* The Interrupts */
476 #define D_INTR_BRDY	1	/* Buffer Ready for processing */
477 #define D_INTR_MINT	2	/* Marked Interrupt in RD/TD */
478 #define D_INTR_IBEG	3	/* Flag to idle transition detected (HDLC) */
479 #define D_INTR_IEND	4	/* Idle to flag transition detected (HDLC) */
480 #define D_INTR_EOL	5	/* End of List */
481 #define D_INTR_CMDI	6	/* Command has bean read */
482 #define D_INTR_XCMP	8	/* Transmission of frame complete */
483 #define D_INTR_SBRI	9	/* BRI status change info */
484 #define D_INTR_FXDT	10	/* Fixed data change */
485 #define D_INTR_CHIL	11	/* CHI lost frame sync (channel 36 only) */
486 #define D_INTR_COLL	11	/* Unrecoverable D-Channel collision */
487 #define D_INTR_DBYT	12	/* Dropped by frame slip */
488 #define D_INTR_RBYT	13	/* Repeated by frame slip */
489 #define D_INTR_LINT	14	/* Lost Interrupt */
490 #define D_INTR_UNDR	15	/* DMA underrun */
491 
492 #define D_INTR_TE	32
493 #define D_INTR_NT	34
494 #define D_INTR_CHI	36
495 #define D_INTR_CMD	38
496 
497 #define D_INTR_GETCHAN(v)	(((v) >> 24) & 0x3f)
498 #define D_INTR_GETCODE(v)	(((v) >> 20) & 0xf)
499 #define D_INTR_GETCMD(v)	(((v) >> 16) & 0xf)
500 #define D_INTR_GETVAL(v)	((v) & 0xffff)
501 #define D_INTR_GETRVAL(v)	((v) & 0xfffff)
502 
503 #define D_P_0		0	/* TE receive anchor */
504 #define D_P_1		1	/* TE transmit anchor */
505 #define D_P_2		2	/* NT transmit anchor */
506 #define D_P_3		3	/* NT receive anchor */
507 #define D_P_4		4	/* CHI send data */
508 #define D_P_5		5	/* CHI receive data */
509 #define D_P_6		6	/* */
510 #define D_P_7		7	/* */
511 #define D_P_8		8	/* */
512 #define D_P_9		9	/* */
513 #define D_P_10		10	/* */
514 #define D_P_11		11	/* */
515 #define D_P_12		12	/* */
516 #define D_P_13		13	/* */
517 #define D_P_14		14	/* */
518 #define D_P_15		15	/* */
519 #define D_P_16		16	/* CHI anchor pipe */
520 #define D_P_17		17	/* CHI send */
521 #define D_P_18		18	/* CHI receive */
522 #define D_P_19		19	/* CHI receive */
523 #define D_P_20		20	/* CHI receive */
524 #define D_P_21		21	/* */
525 #define D_P_22		22	/* */
526 #define D_P_23		23	/* */
527 #define D_P_24		24	/* */
528 #define D_P_25		25	/* */
529 #define D_P_26		26	/* */
530 #define D_P_27		27	/* */
531 #define D_P_28		28	/* */
532 #define D_P_29		29	/* */
533 #define D_P_30		30	/* */
534 #define D_P_31		31	/* */
535 
536 /* Transmit descriptor defines */
537 #define DBRI_TD_F	(1 << 31)	/* End of Frame */
538 #define DBRI_TD_D	(1 << 30)	/* Do not append CRC */
539 #define DBRI_TD_CNT(v)	((v) << 16) /* Number of valid bytes in the buffer */
540 #define DBRI_TD_B	(1 << 15)	/* Final interrupt */
541 #define DBRI_TD_M	(1 << 14)	/* Marker interrupt */
542 #define DBRI_TD_I	(1 << 13)	/* Transmit Idle Characters */
543 #define DBRI_TD_FCNT(v)	(v)		/* Flag Count */
544 #define DBRI_TD_UNR	(1 << 3) /* Underrun: transmitter is out of data */
545 #define DBRI_TD_ABT	(1 << 2)	/* Abort: frame aborted */
546 #define DBRI_TD_TBC	(1 << 0)	/* Transmit buffer Complete */
547 #define DBRI_TD_STATUS(v)       ((v) & 0xff)	/* Transmit status */
548 			/* Maximum buffer size per TD: almost 8KB */
549 #define DBRI_TD_MAXCNT	((1 << 13) - 4)
550 
551 /* Receive descriptor defines */
552 #define DBRI_RD_F	(1 << 31)	/* End of Frame */
553 #define DBRI_RD_C	(1 << 30)	/* Completed buffer */
554 #define DBRI_RD_B	(1 << 15)	/* Final interrupt */
555 #define DBRI_RD_M	(1 << 14)	/* Marker interrupt */
556 #define DBRI_RD_BCNT(v)	(v)		/* Buffer size */
557 #define DBRI_RD_CRC	(1 << 7)	/* 0: CRC is correct */
558 #define DBRI_RD_BBC	(1 << 6)	/* 1: Bad Byte received */
559 #define DBRI_RD_ABT	(1 << 5)	/* Abort: frame aborted */
560 #define DBRI_RD_OVRN	(1 << 3)	/* Overrun: data lost */
561 #define DBRI_RD_STATUS(v)      ((v) & 0xff)	/* Receive status */
562 #define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)	/* Valid bytes in the buffer */
563 
564 /* stream_info[] access */
565 /* Translate the ALSA direction into the array index */
566 #define DBRI_STREAMNO(substream)				\
567 		(substream->stream ==				\
568 		 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
569 
570 /* Return a pointer to dbri_streaminfo */
571 #define DBRI_STREAM(dbri, substream)	\
572 		&dbri->stream_info[DBRI_STREAMNO(substream)]
573 
574 /*
575  * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
576  * So we have to reverse the bits. Note: not all bit lengths are supported
577  */
578 static __u32 reverse_bytes(__u32 b, int len)
579 {
580 	switch (len) {
581 	case 32:
582 		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
583 		fallthrough;
584 	case 16:
585 		b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
586 		fallthrough;
587 	case 8:
588 		b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
589 		fallthrough;
590 	case 4:
591 		b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
592 		fallthrough;
593 	case 2:
594 		b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
595 	case 1:
596 	case 0:
597 		break;
598 	default:
599 		printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
600 	}
601 
602 	return b;
603 }
604 
605 /*
606 ****************************************************************************
607 ************** DBRI initialization and command synchronization *************
608 ****************************************************************************
609 
610 Commands are sent to the DBRI by building a list of them in memory,
611 then writing the address of the first list item to DBRI register 8.
612 The list is terminated with a WAIT command, which generates a
613 CPU interrupt to signal completion.
614 
615 Since the DBRI can run in parallel with the CPU, several means of
616 synchronization present themselves. The method implemented here uses
617 the dbri_cmdwait() to wait for execution of batch of sent commands.
618 
619 A circular command buffer is used here. A new command is being added
620 while another can be executed. The scheme works by adding two WAIT commands
621 after each sent batch of commands. When the next batch is prepared it is
622 added after the WAIT commands then the WAITs are replaced with single JUMP
623 command to the new batch. Then the DBRI is forced to reread the last WAIT
624 command (replaced by the JUMP by then). If the DBRI is still executing
625 previous commands the request to reread the WAIT command is ignored.
626 
627 Every time a routine wants to write commands to the DBRI, it must
628 first call dbri_cmdlock() and get pointer to a free space in
629 dbri->dma->cmd buffer. After this, the commands can be written to
630 the buffer, and dbri_cmdsend() is called with the final pointer value
631 to send them to the DBRI.
632 
633 */
634 
635 #define MAXLOOPS 20
636 /*
637  * Wait for the current command string to execute
638  */
639 static void dbri_cmdwait(struct snd_dbri *dbri)
640 {
641 	int maxloops = MAXLOOPS;
642 	unsigned long flags;
643 
644 	/* Delay if previous commands are still being processed */
645 	spin_lock_irqsave(&dbri->lock, flags);
646 	while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
647 		spin_unlock_irqrestore(&dbri->lock, flags);
648 		msleep_interruptible(1);
649 		spin_lock_irqsave(&dbri->lock, flags);
650 	}
651 	spin_unlock_irqrestore(&dbri->lock, flags);
652 
653 	if (maxloops == 0)
654 		printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
655 	else
656 		dprintk(D_CMD, "Chip completed command buffer (%d)\n",
657 			MAXLOOPS - maxloops - 1);
658 }
659 /*
660  * Lock the command queue and return pointer to space for len cmd words
661  * It locks the cmdlock spinlock.
662  */
663 static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
664 {
665 	u32 dvma_addr = (u32)dbri->dma_dvma;
666 
667 	/* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
668 	len += 2;
669 	spin_lock(&dbri->cmdlock);
670 	if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
671 		return dbri->cmdptr + 2;
672 	else if (len < sbus_readl(dbri->regs + REG8) - dvma_addr)
673 		return dbri->dma->cmd;
674 	else
675 		printk(KERN_ERR "DBRI: no space for commands.");
676 
677 	return NULL;
678 }
679 
680 /*
681  * Send prepared cmd string. It works by writing a JUMP cmd into
682  * the last WAIT cmd and force DBRI to reread the cmd.
683  * The JUMP cmd points to the new cmd string.
684  * It also releases the cmdlock spinlock.
685  *
686  * Lock must be held before calling this.
687  */
688 static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
689 {
690 	u32 dvma_addr = (u32)dbri->dma_dvma;
691 	s32 tmp, addr;
692 	static int wait_id;
693 
694 	wait_id++;
695 	wait_id &= 0xffff;	/* restrict it to a 16 bit counter. */
696 	*(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
697 	*(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
698 
699 	/* Replace the last command with JUMP */
700 	addr = dvma_addr + (cmd - len - dbri->dma->cmd) * sizeof(s32);
701 	*(dbri->cmdptr+1) = addr;
702 	*(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
703 
704 #ifdef DBRI_DEBUG
705 	if (cmd > dbri->cmdptr) {
706 		s32 *ptr;
707 
708 		for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
709 			dprintk(D_CMD, "cmd: %lx:%08x\n",
710 				(unsigned long)ptr, *ptr);
711 	} else {
712 		s32 *ptr = dbri->cmdptr;
713 
714 		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
715 		ptr++;
716 		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
717 		for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
718 			dprintk(D_CMD, "cmd: %lx:%08x\n",
719 				(unsigned long)ptr, *ptr);
720 	}
721 #endif
722 
723 	/* Reread the last command */
724 	tmp = sbus_readl(dbri->regs + REG0);
725 	tmp |= D_P;
726 	sbus_writel(tmp, dbri->regs + REG0);
727 
728 	dbri->cmdptr = cmd;
729 	spin_unlock(&dbri->cmdlock);
730 }
731 
732 /* Lock must be held when calling this */
733 static void dbri_reset(struct snd_dbri *dbri)
734 {
735 	int i;
736 	u32 tmp;
737 
738 	dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
739 		sbus_readl(dbri->regs + REG0),
740 		sbus_readl(dbri->regs + REG2),
741 		sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
742 
743 	sbus_writel(D_R, dbri->regs + REG0);	/* Soft Reset */
744 	for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
745 		udelay(10);
746 
747 	/* A brute approach - DBRI falls back to working burst size by itself
748 	 * On SS20 D_S does not work, so do not try so high. */
749 	tmp = sbus_readl(dbri->regs + REG0);
750 	tmp |= D_G | D_E;
751 	tmp &= ~D_S;
752 	sbus_writel(tmp, dbri->regs + REG0);
753 }
754 
755 /* Lock must not be held before calling this */
756 static void dbri_initialize(struct snd_dbri *dbri)
757 {
758 	u32 dvma_addr = (u32)dbri->dma_dvma;
759 	s32 *cmd;
760 	u32 dma_addr;
761 	int n;
762 
763 	scoped_guard(spinlock_irqsave, &dbri->lock) {
764 		dbri_reset(dbri);
765 
766 		/* Initialize pipes */
767 		for (n = 0; n < DBRI_NO_PIPES; n++)
768 			dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
769 
770 		spin_lock_init(&dbri->cmdlock);
771 		/*
772 		 * Initialize the interrupt ring buffer.
773 		 */
774 		dma_addr = dvma_addr + dbri_dma_off(intr, 0);
775 		dbri->dma->intr[0] = dma_addr;
776 		dbri->dbri_irqp = 1;
777 		/*
778 		 * Set up the interrupt queue
779 		 */
780 		scoped_guard(spinlock, &dbri->cmdlock) {
781 			cmd = dbri->cmdptr = dbri->dma->cmd;
782 			*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
783 			*(cmd++) = dma_addr;
784 			*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
785 			dbri->cmdptr = cmd;
786 			*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
787 			*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
788 			dma_addr = dvma_addr + dbri_dma_off(cmd, 0);
789 			sbus_writel(dma_addr, dbri->regs + REG8);
790 		}
791 	}
792 
793 	dbri_cmdwait(dbri);
794 }
795 
796 /*
797 ****************************************************************************
798 ************************** DBRI data pipe management ***********************
799 ****************************************************************************
800 
801 While DBRI control functions use the command and interrupt buffers, the
802 main data path takes the form of data pipes, which can be short (command
803 and interrupt driven), or long (attached to DMA buffers).  These functions
804 provide a rudimentary means of setting up and managing the DBRI's pipes,
805 but the calling functions have to make sure they respect the pipes' linked
806 list ordering, among other things.  The transmit and receive functions
807 here interface closely with the transmit and receive interrupt code.
808 
809 */
810 static inline int pipe_active(struct snd_dbri *dbri, int pipe)
811 {
812 	return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
813 }
814 
815 /* reset_pipe(dbri, pipe)
816  *
817  * Called on an in-use pipe to clear anything being transmitted or received
818  * Lock must be held before calling this.
819  */
820 static void reset_pipe(struct snd_dbri *dbri, int pipe)
821 {
822 	int sdp;
823 	int desc;
824 	s32 *cmd;
825 
826 	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
827 		printk(KERN_ERR "DBRI: reset_pipe called with "
828 			"illegal pipe number\n");
829 		return;
830 	}
831 
832 	sdp = dbri->pipes[pipe].sdp;
833 	if (sdp == 0) {
834 		printk(KERN_ERR "DBRI: reset_pipe called "
835 			"on uninitialized pipe\n");
836 		return;
837 	}
838 
839 	cmd = dbri_cmdlock(dbri, 3);
840 	*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
841 	*(cmd++) = 0;
842 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
843 	dbri_cmdsend(dbri, cmd, 3);
844 
845 	desc = dbri->pipes[pipe].first_desc;
846 	if (desc >= 0)
847 		do {
848 			dbri->dma->desc[desc].ba = 0;
849 			dbri->dma->desc[desc].nda = 0;
850 			desc = dbri->next_desc[desc];
851 		} while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
852 
853 	dbri->pipes[pipe].desc = -1;
854 	dbri->pipes[pipe].first_desc = -1;
855 }
856 
857 /*
858  * Lock must be held before calling this.
859  */
860 static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
861 {
862 	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
863 		printk(KERN_ERR "DBRI: setup_pipe called "
864 			"with illegal pipe number\n");
865 		return;
866 	}
867 
868 	if ((sdp & 0xf800) != sdp) {
869 		printk(KERN_ERR "DBRI: setup_pipe called "
870 			"with strange SDP value\n");
871 		/* sdp &= 0xf800; */
872 	}
873 
874 	/* If this is a fixed receive pipe, arrange for an interrupt
875 	 * every time its data changes
876 	 */
877 	if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
878 		sdp |= D_SDP_CHANGE;
879 
880 	sdp |= D_PIPE(pipe);
881 	dbri->pipes[pipe].sdp = sdp;
882 	dbri->pipes[pipe].desc = -1;
883 	dbri->pipes[pipe].first_desc = -1;
884 
885 	reset_pipe(dbri, pipe);
886 }
887 
888 /*
889  * Lock must be held before calling this.
890  */
891 static void link_time_slot(struct snd_dbri *dbri, int pipe,
892 			   int prevpipe, int nextpipe,
893 			   int length, int cycle)
894 {
895 	s32 *cmd;
896 	int val;
897 
898 	if (pipe < 0 || pipe > DBRI_MAX_PIPE
899 			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
900 			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
901 		printk(KERN_ERR
902 		    "DBRI: link_time_slot called with illegal pipe number\n");
903 		return;
904 	}
905 
906 	if (dbri->pipes[pipe].sdp == 0
907 			|| dbri->pipes[prevpipe].sdp == 0
908 			|| dbri->pipes[nextpipe].sdp == 0) {
909 		printk(KERN_ERR "DBRI: link_time_slot called "
910 			"on uninitialized pipe\n");
911 		return;
912 	}
913 
914 	dbri->pipes[prevpipe].nextpipe = pipe;
915 	dbri->pipes[pipe].nextpipe = nextpipe;
916 	dbri->pipes[pipe].length = length;
917 
918 	cmd = dbri_cmdlock(dbri, 4);
919 
920 	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
921 		/* Deal with CHI special case:
922 		 * "If transmission on edges 0 or 1 is desired, then cycle n
923 		 *  (where n = # of bit times per frame...) must be used."
924 		 *                  - DBRI data sheet, page 11
925 		 */
926 		if (prevpipe == 16 && cycle == 0)
927 			cycle = dbri->chi_bpf;
928 
929 		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
930 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
931 		*(cmd++) = 0;
932 		*(cmd++) =
933 		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
934 	} else {
935 		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
936 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
937 		*(cmd++) =
938 		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
939 		*(cmd++) = 0;
940 	}
941 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
942 
943 	dbri_cmdsend(dbri, cmd, 4);
944 }
945 
946 #if 0
947 /*
948  * Lock must be held before calling this.
949  */
950 static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
951 			     enum in_or_out direction, int prevpipe,
952 			     int nextpipe)
953 {
954 	s32 *cmd;
955 	int val;
956 
957 	if (pipe < 0 || pipe > DBRI_MAX_PIPE
958 			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
959 			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
960 		printk(KERN_ERR
961 		    "DBRI: unlink_time_slot called with illegal pipe number\n");
962 		return;
963 	}
964 
965 	cmd = dbri_cmdlock(dbri, 4);
966 
967 	if (direction == PIPEinput) {
968 		val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
969 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
970 		*(cmd++) = D_TS_NEXT(nextpipe);
971 		*(cmd++) = 0;
972 	} else {
973 		val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
974 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
975 		*(cmd++) = 0;
976 		*(cmd++) = D_TS_NEXT(nextpipe);
977 	}
978 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
979 
980 	dbri_cmdsend(dbri, cmd, 4);
981 }
982 #endif
983 
984 /* xmit_fixed() / recv_fixed()
985  *
986  * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
987  * expected to change much, and which we don't need to buffer.
988  * The DBRI only interrupts us when the data changes (receive pipes),
989  * or only changes the data when this function is called (transmit pipes).
990  * Only short pipes (numbers 16-31) can be used in fixed data mode.
991  *
992  * These function operate on a 32-bit field, no matter how large
993  * the actual time slot is.  The interrupt handler takes care of bit
994  * ordering and alignment.  An 8-bit time slot will always end up
995  * in the low-order 8 bits, filled either MSB-first or LSB-first,
996  * depending on the settings passed to setup_pipe().
997  *
998  * Lock must not be held before calling it.
999  */
1000 static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
1001 {
1002 	s32 *cmd;
1003 
1004 	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1005 		printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1006 		return;
1007 	}
1008 
1009 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1010 		printk(KERN_ERR "DBRI: xmit_fixed: "
1011 			"Uninitialized pipe %d\n", pipe);
1012 		return;
1013 	}
1014 
1015 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1016 		printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1017 		return;
1018 	}
1019 
1020 	if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1021 		printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1022 			pipe);
1023 		return;
1024 	}
1025 
1026 	/* DBRI short pipes always transmit LSB first */
1027 
1028 	if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1029 		data = reverse_bytes(data, dbri->pipes[pipe].length);
1030 
1031 	cmd = dbri_cmdlock(dbri, 3);
1032 
1033 	*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1034 	*(cmd++) = data;
1035 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1036 
1037 	scoped_guard(spinlock_irqsave, &dbri->lock) {
1038 		dbri_cmdsend(dbri, cmd, 3);
1039 	}
1040 
1041 	dbri_cmdwait(dbri);
1042 
1043 }
1044 
1045 static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1046 {
1047 	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1048 		printk(KERN_ERR "DBRI: recv_fixed called with "
1049 			"illegal pipe number\n");
1050 		return;
1051 	}
1052 
1053 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1054 		printk(KERN_ERR "DBRI: recv_fixed called on "
1055 			"non-fixed pipe %d\n", pipe);
1056 		return;
1057 	}
1058 
1059 	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1060 		printk(KERN_ERR "DBRI: recv_fixed called on "
1061 			"transmit pipe %d\n", pipe);
1062 		return;
1063 	}
1064 
1065 	dbri->pipes[pipe].recv_fixed_ptr = ptr;
1066 }
1067 
1068 /* setup_descs()
1069  *
1070  * Setup transmit/receive data on a "long" pipe - i.e, one associated
1071  * with a DMA buffer.
1072  *
1073  * Only pipe numbers 0-15 can be used in this mode.
1074  *
1075  * This function takes a stream number pointing to a data buffer,
1076  * and work by building chains of descriptors which identify the
1077  * data buffers.  Buffers too large for a single descriptor will
1078  * be spread across multiple descriptors.
1079  *
1080  * All descriptors create a ring buffer.
1081  *
1082  * Lock must be held before calling this.
1083  */
1084 static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1085 {
1086 	struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1087 	u32 dvma_addr = (u32)dbri->dma_dvma;
1088 	__u32 dvma_buffer;
1089 	int desc;
1090 	int len;
1091 	int first_desc = -1;
1092 	int last_desc = -1;
1093 
1094 	if (info->pipe < 0 || info->pipe > 15) {
1095 		printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1096 		return -2;
1097 	}
1098 
1099 	if (dbri->pipes[info->pipe].sdp == 0) {
1100 		printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1101 		       info->pipe);
1102 		return -2;
1103 	}
1104 
1105 	dvma_buffer = info->dvma_buffer;
1106 	len = info->size;
1107 
1108 	if (streamno == DBRI_PLAY) {
1109 		if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1110 			printk(KERN_ERR "DBRI: setup_descs: "
1111 				"Called on receive pipe %d\n", info->pipe);
1112 			return -2;
1113 		}
1114 	} else {
1115 		if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1116 			printk(KERN_ERR
1117 			    "DBRI: setup_descs: Called on transmit pipe %d\n",
1118 			     info->pipe);
1119 			return -2;
1120 		}
1121 		/* Should be able to queue multiple buffers
1122 		 * to receive on a pipe
1123 		 */
1124 		if (pipe_active(dbri, info->pipe)) {
1125 			printk(KERN_ERR "DBRI: recv_on_pipe: "
1126 				"Called on active pipe %d\n", info->pipe);
1127 			return -2;
1128 		}
1129 
1130 		/* Make sure buffer size is multiple of four */
1131 		len &= ~3;
1132 	}
1133 
1134 	/* Free descriptors if pipe has any */
1135 	desc = dbri->pipes[info->pipe].first_desc;
1136 	if (desc >= 0)
1137 		do {
1138 			dbri->dma->desc[desc].ba = 0;
1139 			dbri->dma->desc[desc].nda = 0;
1140 			desc = dbri->next_desc[desc];
1141 		} while (desc != -1 &&
1142 			 desc != dbri->pipes[info->pipe].first_desc);
1143 
1144 	dbri->pipes[info->pipe].desc = -1;
1145 	dbri->pipes[info->pipe].first_desc = -1;
1146 
1147 	desc = 0;
1148 	while (len > 0) {
1149 		int mylen;
1150 
1151 		for (; desc < DBRI_NO_DESCS; desc++) {
1152 			if (!dbri->dma->desc[desc].ba)
1153 				break;
1154 		}
1155 
1156 		if (desc == DBRI_NO_DESCS) {
1157 			printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1158 			return -1;
1159 		}
1160 
1161 		if (len > DBRI_TD_MAXCNT)
1162 			mylen = DBRI_TD_MAXCNT;	/* 8KB - 4 */
1163 		else
1164 			mylen = len;
1165 
1166 		if (mylen > period)
1167 			mylen = period;
1168 
1169 		dbri->next_desc[desc] = -1;
1170 		dbri->dma->desc[desc].ba = dvma_buffer;
1171 		dbri->dma->desc[desc].nda = 0;
1172 
1173 		if (streamno == DBRI_PLAY) {
1174 			dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1175 			dbri->dma->desc[desc].word4 = 0;
1176 			dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1177 		} else {
1178 			dbri->dma->desc[desc].word1 = 0;
1179 			dbri->dma->desc[desc].word4 =
1180 			    DBRI_RD_B | DBRI_RD_BCNT(mylen);
1181 		}
1182 
1183 		if (first_desc == -1)
1184 			first_desc = desc;
1185 		else {
1186 			dbri->next_desc[last_desc] = desc;
1187 			dbri->dma->desc[last_desc].nda =
1188 			    dvma_addr + dbri_dma_off(desc, desc);
1189 		}
1190 
1191 		last_desc = desc;
1192 		dvma_buffer += mylen;
1193 		len -= mylen;
1194 	}
1195 
1196 	if (first_desc == -1 || last_desc == -1) {
1197 		printk(KERN_ERR "DBRI: setup_descs: "
1198 			" Not enough descriptors available\n");
1199 		return -1;
1200 	}
1201 
1202 	dbri->dma->desc[last_desc].nda =
1203 	    dvma_addr + dbri_dma_off(desc, first_desc);
1204 	dbri->next_desc[last_desc] = first_desc;
1205 	dbri->pipes[info->pipe].first_desc = first_desc;
1206 	dbri->pipes[info->pipe].desc = first_desc;
1207 
1208 #ifdef DBRI_DEBUG
1209 	for (desc = first_desc; desc != -1;) {
1210 		dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1211 			desc,
1212 			dbri->dma->desc[desc].word1,
1213 			dbri->dma->desc[desc].ba,
1214 			dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1215 			desc = dbri->next_desc[desc];
1216 			if (desc == first_desc)
1217 				break;
1218 	}
1219 #endif
1220 	return 0;
1221 }
1222 
1223 /*
1224 ****************************************************************************
1225 ************************** DBRI - CHI interface ****************************
1226 ****************************************************************************
1227 
1228 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1229 multiplexed serial interface which the DBRI can operate in either master
1230 (give clock/frame sync) or slave (take clock/frame sync) mode.
1231 
1232 */
1233 
1234 enum master_or_slave { CHImaster, CHIslave };
1235 
1236 /*
1237  * Lock must not be held before calling it.
1238  */
1239 static void reset_chi(struct snd_dbri *dbri,
1240 		      enum master_or_slave master_or_slave,
1241 		      int bits_per_frame)
1242 {
1243 	s32 *cmd;
1244 	int val;
1245 
1246 	/* Set CHI Anchor: Pipe 16 */
1247 
1248 	cmd = dbri_cmdlock(dbri, 4);
1249 	val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1250 		| D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1251 	*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1252 	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1253 	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1254 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1255 	dbri_cmdsend(dbri, cmd, 4);
1256 
1257 	dbri->pipes[16].sdp = 1;
1258 	dbri->pipes[16].nextpipe = 16;
1259 
1260 	cmd = dbri_cmdlock(dbri, 4);
1261 
1262 	if (master_or_slave == CHIslave) {
1263 		/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1264 		 *
1265 		 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1266 		 * IR     = give immediate CHI status interrupt
1267 		 * EN     = give CHI status interrupt upon change
1268 		 */
1269 		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1270 	} else {
1271 		/* Setup DBRI for CHI Master - generate clock, FS
1272 		 *
1273 		 * BPF				=  bits per 8 kHz frame
1274 		 * 12.288 MHz / CHICM_divisor	= clock rate
1275 		 * FD = 1 - drive CHIFS on rising edge of CHICK
1276 		 */
1277 		int clockrate = bits_per_frame * 8;
1278 		int divisor = 12288 / clockrate;
1279 
1280 		if (divisor > 255 || divisor * clockrate != 12288)
1281 			printk(KERN_ERR "DBRI: illegal bits_per_frame "
1282 				"in setup_chi\n");
1283 
1284 		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1285 				    | D_CHI_BPF(bits_per_frame));
1286 	}
1287 
1288 	dbri->chi_bpf = bits_per_frame;
1289 
1290 	/* CHI Data Mode
1291 	 *
1292 	 * RCE   =  0 - receive on falling edge of CHICK
1293 	 * XCE   =  1 - transmit on rising edge of CHICK
1294 	 * XEN   =  1 - enable transmitter
1295 	 * REN   =  1 - enable receiver
1296 	 */
1297 
1298 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1299 	*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1300 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1301 
1302 	dbri_cmdsend(dbri, cmd, 4);
1303 }
1304 
1305 /*
1306 ****************************************************************************
1307 *********************** CS4215 audio codec management **********************
1308 ****************************************************************************
1309 
1310 In the standard SPARC audio configuration, the CS4215 codec is attached
1311 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1312 
1313  * Lock must not be held before calling it.
1314 
1315 */
1316 static void cs4215_setup_pipes(struct snd_dbri *dbri)
1317 {
1318 	scoped_guard(spinlock_irqsave, &dbri->lock) {
1319 		/*
1320 		 * Data mode:
1321 		 * Pipe  4: Send timeslots 1-4 (audio data)
1322 		 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1323 		 * Pipe  6: Receive timeslots 1-4 (audio data)
1324 		 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1325 		 *          interrupt, and the rest of the data (slot 5 and 8) is
1326 		 *          not relevant for us (only for doublechecking).
1327 		 *
1328 		 * Control mode:
1329 		 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1330 		 * Pipe 18: Receive timeslot 1 (clb).
1331 		 * Pipe 19: Receive timeslot 7 (version).
1332 		 */
1333 
1334 		setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1335 		setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1336 		setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1337 		setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1338 
1339 		setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1340 		setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1341 		setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1342 	}
1343 
1344 	dbri_cmdwait(dbri);
1345 }
1346 
1347 static int cs4215_init_data(struct cs4215 *mm)
1348 {
1349 	/*
1350 	 * No action, memory resetting only.
1351 	 *
1352 	 * Data Time Slot 5-8
1353 	 * Speaker,Line and Headphone enable. Gain set to the half.
1354 	 * Input is mike.
1355 	 */
1356 	mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1357 	mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1358 	mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1359 	mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1360 
1361 	/*
1362 	 * Control Time Slot 1-4
1363 	 * 0: Default I/O voltage scale
1364 	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1365 	 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1366 	 * 3: Tests disabled
1367 	 */
1368 	mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1369 	mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1370 	mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1371 	mm->ctrl[3] = 0;
1372 
1373 	mm->status = 0;
1374 	mm->version = 0xff;
1375 	mm->precision = 8;	/* For ULAW */
1376 	mm->channels = 1;
1377 
1378 	return 0;
1379 }
1380 
1381 static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1382 {
1383 	if (muted) {
1384 		dbri->mm.data[0] |= 63;
1385 		dbri->mm.data[1] |= 63;
1386 		dbri->mm.data[2] &= ~15;
1387 		dbri->mm.data[3] &= ~15;
1388 	} else {
1389 		/* Start by setting the playback attenuation. */
1390 		struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1391 		int left_gain = info->left_gain & 0x3f;
1392 		int right_gain = info->right_gain & 0x3f;
1393 
1394 		dbri->mm.data[0] &= ~0x3f;	/* Reset the volume bits */
1395 		dbri->mm.data[1] &= ~0x3f;
1396 		dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1397 		dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1398 
1399 		/* Now set the recording gain. */
1400 		info = &dbri->stream_info[DBRI_REC];
1401 		left_gain = info->left_gain & 0xf;
1402 		right_gain = info->right_gain & 0xf;
1403 		dbri->mm.data[2] |= CS4215_LG(left_gain);
1404 		dbri->mm.data[3] |= CS4215_RG(right_gain);
1405 	}
1406 
1407 	xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1408 }
1409 
1410 /*
1411  * Set the CS4215 to data mode.
1412  */
1413 static void cs4215_open(struct snd_dbri *dbri)
1414 {
1415 	int data_width;
1416 	u32 tmp;
1417 
1418 	dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1419 		dbri->mm.channels, dbri->mm.precision);
1420 
1421 	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1422 	 * to make sure this takes.  This avoids clicking noises.
1423 	 */
1424 
1425 	cs4215_setdata(dbri, 1);
1426 	udelay(125);
1427 
1428 	/*
1429 	 * Data mode:
1430 	 * Pipe  4: Send timeslots 1-4 (audio data)
1431 	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1432 	 * Pipe  6: Receive timeslots 1-4 (audio data)
1433 	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1434 	 *          interrupt, and the rest of the data (slot 5 and 8) is
1435 	 *          not relevant for us (only for doublechecking).
1436 	 *
1437 	 * Just like in control mode, the time slots are all offset by eight
1438 	 * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1439 	 * even if it's the CHI master.  Don't ask me...
1440 	 */
1441 	scoped_guard(spinlock_irqsave, &dbri->lock) {
1442 		tmp = sbus_readl(dbri->regs + REG0);
1443 		tmp &= ~(D_C);		/* Disable CHI */
1444 		sbus_writel(tmp, dbri->regs + REG0);
1445 
1446 		/* Switch CS4215 to data mode - set PIO3 to 1 */
1447 		sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1448 			    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1449 
1450 		reset_chi(dbri, CHIslave, 128);
1451 
1452 		/* Note: this next doesn't work for 8-bit stereo, because the two
1453 		 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1454 		 * (See CS4215 datasheet Fig 15)
1455 		 *
1456 		 * DBRI non-contiguous mode would be required to make this work.
1457 		 */
1458 		data_width = dbri->mm.channels * dbri->mm.precision;
1459 
1460 		link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1461 		link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1462 		link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1463 		link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1464 
1465 		/* FIXME: enable CHI after _setdata? */
1466 		tmp = sbus_readl(dbri->regs + REG0);
1467 		tmp |= D_C;		/* Enable CHI */
1468 		sbus_writel(tmp, dbri->regs + REG0);
1469 	}
1470 
1471 	cs4215_setdata(dbri, 0);
1472 }
1473 
1474 /*
1475  * Send the control information (i.e. audio format)
1476  */
1477 static int cs4215_setctrl(struct snd_dbri *dbri)
1478 {
1479 	int i, val;
1480 	u32 tmp;
1481 
1482 	/* FIXME - let the CPU do something useful during these delays */
1483 
1484 	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1485 	 * to make sure this takes.  This avoids clicking noises.
1486 	 */
1487 	cs4215_setdata(dbri, 1);
1488 	udelay(125);
1489 
1490 	/*
1491 	 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1492 	 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1493 	 */
1494 	val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1495 	sbus_writel(val, dbri->regs + REG2);
1496 	dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1497 	udelay(34);
1498 
1499 	/* In Control mode, the CS4215 is a slave device, so the DBRI must
1500 	 * operate as CHI master, supplying clocking and frame synchronization.
1501 	 *
1502 	 * In Data mode, however, the CS4215 must be CHI master to insure
1503 	 * that its data stream is synchronous with its codec.
1504 	 *
1505 	 * The upshot of all this?  We start by putting the DBRI into master
1506 	 * mode, program the CS4215 in Control mode, then switch the CS4215
1507 	 * into Data mode and put the DBRI into slave mode.  Various timing
1508 	 * requirements must be observed along the way.
1509 	 *
1510 	 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1511 	 * others?), the addressing of the CS4215's time slots is
1512 	 * offset by eight bits, so we add eight to all the "cycle"
1513 	 * values in the Define Time Slot (DTS) commands.  This is
1514 	 * done in hardware by a TI 248 that delays the DBRI->4215
1515 	 * frame sync signal by eight clock cycles.  Anybody know why?
1516 	 */
1517 	scoped_guard(spinlock_irqsave, &dbri->lock) {
1518 		tmp = sbus_readl(dbri->regs + REG0);
1519 		tmp &= ~D_C;		/* Disable CHI */
1520 		sbus_writel(tmp, dbri->regs + REG0);
1521 
1522 		reset_chi(dbri, CHImaster, 128);
1523 
1524 		/*
1525 		 * Control mode:
1526 		 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1527 		 * Pipe 18: Receive timeslot 1 (clb).
1528 		 * Pipe 19: Receive timeslot 7 (version).
1529 		 */
1530 
1531 		link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1532 		link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1533 		link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1534 	}
1535 
1536 	/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1537 	dbri->mm.ctrl[0] &= ~CS4215_CLB;
1538 	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1539 
1540 	scoped_guard(spinlock_irqsave, &dbri->lock) {
1541 		tmp = sbus_readl(dbri->regs + REG0);
1542 		tmp |= D_C;		/* Enable CHI */
1543 		sbus_writel(tmp, dbri->regs + REG0);
1544 	}
1545 
1546 	for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1547 		msleep_interruptible(1);
1548 
1549 	if (i == 0) {
1550 		dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1551 			dbri->mm.status);
1552 		return -1;
1553 	}
1554 
1555 	/* Disable changes to our copy of the version number, as we are about
1556 	 * to leave control mode.
1557 	 */
1558 	recv_fixed(dbri, 19, NULL);
1559 
1560 	/* Terminate CS4215 control mode - data sheet says
1561 	 * "Set CLB=1 and send two more frames of valid control info"
1562 	 */
1563 	dbri->mm.ctrl[0] |= CS4215_CLB;
1564 	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1565 
1566 	/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1567 	udelay(250);
1568 
1569 	cs4215_setdata(dbri, 0);
1570 
1571 	return 0;
1572 }
1573 
1574 /*
1575  * Setup the codec with the sampling rate, audio format and number of
1576  * channels.
1577  * As part of the process we resend the settings for the data
1578  * timeslots as well.
1579  */
1580 static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1581 			  snd_pcm_format_t format, unsigned int channels)
1582 {
1583 	int freq_idx;
1584 	int ret = 0;
1585 
1586 	/* Lookup index for this rate */
1587 	for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1588 		if (CS4215_FREQ[freq_idx].freq == rate)
1589 			break;
1590 	}
1591 	if (CS4215_FREQ[freq_idx].freq != rate) {
1592 		printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1593 		return -1;
1594 	}
1595 
1596 	switch (format) {
1597 	case SNDRV_PCM_FORMAT_MU_LAW:
1598 		dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1599 		dbri->mm.precision = 8;
1600 		break;
1601 	case SNDRV_PCM_FORMAT_A_LAW:
1602 		dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1603 		dbri->mm.precision = 8;
1604 		break;
1605 	case SNDRV_PCM_FORMAT_U8:
1606 		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1607 		dbri->mm.precision = 8;
1608 		break;
1609 	case SNDRV_PCM_FORMAT_S16_BE:
1610 		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1611 		dbri->mm.precision = 16;
1612 		break;
1613 	default:
1614 		printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1615 		return -1;
1616 	}
1617 
1618 	/* Add rate parameters */
1619 	dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1620 	dbri->mm.ctrl[2] = CS4215_XCLK |
1621 	    CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1622 
1623 	dbri->mm.channels = channels;
1624 	if (channels == 2)
1625 		dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1626 
1627 	ret = cs4215_setctrl(dbri);
1628 	if (ret == 0)
1629 		cs4215_open(dbri);	/* set codec to data mode */
1630 
1631 	return ret;
1632 }
1633 
1634 /*
1635  *
1636  */
1637 static int cs4215_init(struct snd_dbri *dbri)
1638 {
1639 	u32 reg2 = sbus_readl(dbri->regs + REG2);
1640 	dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1641 
1642 	/* Look for the cs4215 chips */
1643 	if (reg2 & D_PIO2) {
1644 		dprintk(D_MM, "Onboard CS4215 detected\n");
1645 		dbri->mm.onboard = 1;
1646 	}
1647 	if (reg2 & D_PIO0) {
1648 		dprintk(D_MM, "Speakerbox detected\n");
1649 		dbri->mm.onboard = 0;
1650 
1651 		if (reg2 & D_PIO2) {
1652 			printk(KERN_INFO "DBRI: Using speakerbox / "
1653 			       "ignoring onboard mmcodec.\n");
1654 			sbus_writel(D_ENPIO2, dbri->regs + REG2);
1655 		}
1656 	}
1657 
1658 	if (!(reg2 & (D_PIO0 | D_PIO2))) {
1659 		printk(KERN_ERR "DBRI: no mmcodec found.\n");
1660 		return -EIO;
1661 	}
1662 
1663 	cs4215_setup_pipes(dbri);
1664 	cs4215_init_data(&dbri->mm);
1665 
1666 	/* Enable capture of the status & version timeslots. */
1667 	recv_fixed(dbri, 18, &dbri->mm.status);
1668 	recv_fixed(dbri, 19, &dbri->mm.version);
1669 
1670 	dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1671 	if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1672 		dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1673 			dbri->mm.offset);
1674 		return -EIO;
1675 	}
1676 	dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1677 
1678 	return 0;
1679 }
1680 
1681 /*
1682 ****************************************************************************
1683 *************************** DBRI interrupt handler *************************
1684 ****************************************************************************
1685 
1686 The DBRI communicates with the CPU mainly via a circular interrupt
1687 buffer.  When an interrupt is signaled, the CPU walks through the
1688 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1689 Complicated interrupts are handled by dedicated functions (which
1690 appear first in this file).  Any pending interrupts can be serviced by
1691 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1692 interrupts are disabled.
1693 
1694 */
1695 
1696 /* xmit_descs()
1697  *
1698  * Starts transmitting the current TD's for recording/playing.
1699  * For playback, ALSA has filled the DMA memory with new data (we hope).
1700  */
1701 static void xmit_descs(struct snd_dbri *dbri)
1702 {
1703 	struct dbri_streaminfo *info;
1704 	u32 dvma_addr;
1705 	s32 *cmd;
1706 	int first_td;
1707 
1708 	if (dbri == NULL)
1709 		return;		/* Disabled */
1710 
1711 	dvma_addr = (u32)dbri->dma_dvma;
1712 	info = &dbri->stream_info[DBRI_REC];
1713 	guard(spinlock_irqsave)(&dbri->lock);
1714 
1715 	if (info->pipe >= 0) {
1716 		first_td = dbri->pipes[info->pipe].first_desc;
1717 
1718 		dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1719 
1720 		/* Stream could be closed by the time we run. */
1721 		if (first_td >= 0) {
1722 			cmd = dbri_cmdlock(dbri, 2);
1723 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1724 					    dbri->pipes[info->pipe].sdp
1725 					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1726 			*(cmd++) = dvma_addr +
1727 				   dbri_dma_off(desc, first_td);
1728 			dbri_cmdsend(dbri, cmd, 2);
1729 
1730 			/* Reset our admin of the pipe. */
1731 			dbri->pipes[info->pipe].desc = first_td;
1732 		}
1733 	}
1734 
1735 	info = &dbri->stream_info[DBRI_PLAY];
1736 
1737 	if (info->pipe >= 0) {
1738 		first_td = dbri->pipes[info->pipe].first_desc;
1739 
1740 		dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1741 
1742 		/* Stream could be closed by the time we run. */
1743 		if (first_td >= 0) {
1744 			cmd = dbri_cmdlock(dbri, 2);
1745 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1746 					    dbri->pipes[info->pipe].sdp
1747 					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1748 			*(cmd++) = dvma_addr +
1749 				   dbri_dma_off(desc, first_td);
1750 			dbri_cmdsend(dbri, cmd, 2);
1751 
1752 			/* Reset our admin of the pipe. */
1753 			dbri->pipes[info->pipe].desc = first_td;
1754 		}
1755 	}
1756 }
1757 
1758 /* transmission_complete_intr()
1759  *
1760  * Called by main interrupt handler when DBRI signals transmission complete
1761  * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1762  *
1763  * Walks through the pipe's list of transmit buffer descriptors and marks
1764  * them as available. Stops when the first descriptor is found without
1765  * TBC (Transmit Buffer Complete) set, or we've run through them all.
1766  *
1767  * The DMA buffers are not released. They form a ring buffer and
1768  * they are filled by ALSA while others are transmitted by DMA.
1769  *
1770  */
1771 
1772 static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1773 {
1774 	struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1775 	int td = dbri->pipes[pipe].desc;
1776 	int status;
1777 
1778 	while (td >= 0) {
1779 		if (td >= DBRI_NO_DESCS) {
1780 			printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1781 			return;
1782 		}
1783 
1784 		status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1785 		if (!(status & DBRI_TD_TBC))
1786 			break;
1787 
1788 		dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1789 
1790 		dbri->dma->desc[td].word4 = 0;	/* Reset it for next time. */
1791 		info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1792 
1793 		td = dbri->next_desc[td];
1794 		dbri->pipes[pipe].desc = td;
1795 	}
1796 
1797 	/* Notify ALSA */
1798 	spin_unlock(&dbri->lock);
1799 	snd_pcm_period_elapsed(info->substream);
1800 	spin_lock(&dbri->lock);
1801 }
1802 
1803 static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1804 {
1805 	struct dbri_streaminfo *info;
1806 	int rd = dbri->pipes[pipe].desc;
1807 	s32 status;
1808 
1809 	if (rd < 0 || rd >= DBRI_NO_DESCS) {
1810 		printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1811 		return;
1812 	}
1813 
1814 	dbri->pipes[pipe].desc = dbri->next_desc[rd];
1815 	status = dbri->dma->desc[rd].word1;
1816 	dbri->dma->desc[rd].word1 = 0;	/* Reset it for next time. */
1817 
1818 	info = &dbri->stream_info[DBRI_REC];
1819 	info->offset += DBRI_RD_CNT(status);
1820 
1821 	/* FIXME: Check status */
1822 
1823 	dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1824 		rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1825 
1826 	/* Notify ALSA */
1827 	spin_unlock(&dbri->lock);
1828 	snd_pcm_period_elapsed(info->substream);
1829 	spin_lock(&dbri->lock);
1830 }
1831 
1832 static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1833 {
1834 	int val = D_INTR_GETVAL(x);
1835 	int channel = D_INTR_GETCHAN(x);
1836 	int command = D_INTR_GETCMD(x);
1837 	int code = D_INTR_GETCODE(x);
1838 #ifdef DBRI_DEBUG
1839 	int rval = D_INTR_GETRVAL(x);
1840 #endif
1841 
1842 	if (channel == D_INTR_CMD) {
1843 		dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1844 			cmds[command], val);
1845 	} else {
1846 		dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1847 			channel, code, rval);
1848 	}
1849 
1850 	switch (code) {
1851 	case D_INTR_CMDI:
1852 		if (command != D_WAIT)
1853 			printk(KERN_ERR "DBRI: Command read interrupt\n");
1854 		break;
1855 	case D_INTR_BRDY:
1856 		reception_complete_intr(dbri, channel);
1857 		break;
1858 	case D_INTR_XCMP:
1859 	case D_INTR_MINT:
1860 		transmission_complete_intr(dbri, channel);
1861 		break;
1862 	case D_INTR_UNDR:
1863 		/* UNDR - Transmission underrun
1864 		 * resend SDP command with clear pipe bit (C) set
1865 		 */
1866 		{
1867 	/* FIXME: do something useful in case of underrun */
1868 			printk(KERN_ERR "DBRI: Underrun error\n");
1869 #if 0
1870 			s32 *cmd;
1871 			int pipe = channel;
1872 			int td = dbri->pipes[pipe].desc;
1873 
1874 			dbri->dma->desc[td].word4 = 0;
1875 			cmd = dbri_cmdlock(dbri, NoGetLock);
1876 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1877 					    dbri->pipes[pipe].sdp
1878 					    | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1879 			*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1880 			dbri_cmdsend(dbri, cmd);
1881 #endif
1882 		}
1883 		break;
1884 	case D_INTR_FXDT:
1885 		/* FXDT - Fixed data change */
1886 		if (dbri->pipes[channel].sdp & D_SDP_MSB)
1887 			val = reverse_bytes(val, dbri->pipes[channel].length);
1888 
1889 		if (dbri->pipes[channel].recv_fixed_ptr)
1890 			*(dbri->pipes[channel].recv_fixed_ptr) = val;
1891 		break;
1892 	default:
1893 		if (channel != D_INTR_CMD)
1894 			printk(KERN_WARNING
1895 			       "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1896 	}
1897 }
1898 
1899 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1900  * buffer until it finds a zero word (indicating nothing more to do
1901  * right now).  Non-zero words require processing and are handed off
1902  * to dbri_process_one_interrupt AFTER advancing the pointer.
1903  */
1904 static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1905 {
1906 	s32 x;
1907 
1908 	while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1909 		dbri->dma->intr[dbri->dbri_irqp] = 0;
1910 		dbri->dbri_irqp++;
1911 		if (dbri->dbri_irqp == DBRI_INT_BLK)
1912 			dbri->dbri_irqp = 1;
1913 
1914 		dbri_process_one_interrupt(dbri, x);
1915 	}
1916 }
1917 
1918 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1919 {
1920 	struct snd_dbri *dbri = dev_id;
1921 	static int errcnt;
1922 	int x;
1923 
1924 	if (dbri == NULL)
1925 		return IRQ_NONE;
1926 	guard(spinlock)(&dbri->lock);
1927 
1928 	/*
1929 	 * Read it, so the interrupt goes away.
1930 	 */
1931 	x = sbus_readl(dbri->regs + REG1);
1932 
1933 	if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1934 		u32 tmp;
1935 
1936 		if (x & D_MRR)
1937 			printk(KERN_ERR
1938 			       "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1939 			       x);
1940 		if (x & D_MLE)
1941 			printk(KERN_ERR
1942 			       "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1943 			       x);
1944 		if (x & D_LBG)
1945 			printk(KERN_ERR
1946 			       "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1947 		if (x & D_MBE)
1948 			printk(KERN_ERR
1949 			       "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1950 
1951 		/* Some of these SBus errors cause the chip's SBus circuitry
1952 		 * to be disabled, so just re-enable and try to keep going.
1953 		 *
1954 		 * The only one I've seen is MRR, which will be triggered
1955 		 * if you let a transmit pipe underrun, then try to CDP it.
1956 		 *
1957 		 * If these things persist, we reset the chip.
1958 		 */
1959 		if ((++errcnt) % 10 == 0) {
1960 			dprintk(D_INT, "Interrupt errors exceeded.\n");
1961 			dbri_reset(dbri);
1962 		} else {
1963 			tmp = sbus_readl(dbri->regs + REG0);
1964 			tmp &= ~(D_D);
1965 			sbus_writel(tmp, dbri->regs + REG0);
1966 		}
1967 	}
1968 
1969 	dbri_process_interrupt_buffer(dbri);
1970 
1971 	return IRQ_HANDLED;
1972 }
1973 
1974 /****************************************************************************
1975 		PCM Interface
1976 ****************************************************************************/
1977 static const struct snd_pcm_hardware snd_dbri_pcm_hw = {
1978 	.info		= SNDRV_PCM_INFO_MMAP |
1979 			  SNDRV_PCM_INFO_INTERLEAVED |
1980 			  SNDRV_PCM_INFO_BLOCK_TRANSFER |
1981 			  SNDRV_PCM_INFO_MMAP_VALID |
1982 			  SNDRV_PCM_INFO_BATCH,
1983 	.formats	= SNDRV_PCM_FMTBIT_MU_LAW |
1984 			  SNDRV_PCM_FMTBIT_A_LAW |
1985 			  SNDRV_PCM_FMTBIT_U8 |
1986 			  SNDRV_PCM_FMTBIT_S16_BE,
1987 	.rates		= SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1988 	.rate_min		= 5512,
1989 	.rate_max		= 48000,
1990 	.channels_min		= 1,
1991 	.channels_max		= 2,
1992 	.buffer_bytes_max	= 64 * 1024,
1993 	.period_bytes_min	= 1,
1994 	.period_bytes_max	= DBRI_TD_MAXCNT,
1995 	.periods_min		= 1,
1996 	.periods_max		= 1024,
1997 };
1998 
1999 static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
2000 			      struct snd_pcm_hw_rule *rule)
2001 {
2002 	struct snd_interval *c = hw_param_interval(params,
2003 				SNDRV_PCM_HW_PARAM_CHANNELS);
2004 	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2005 	struct snd_mask fmt;
2006 
2007 	snd_mask_any(&fmt);
2008 	if (c->min > 1) {
2009 		fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2010 		return snd_mask_refine(f, &fmt);
2011 	}
2012 	return 0;
2013 }
2014 
2015 static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2016 				struct snd_pcm_hw_rule *rule)
2017 {
2018 	struct snd_interval *c = hw_param_interval(params,
2019 				SNDRV_PCM_HW_PARAM_CHANNELS);
2020 	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2021 	struct snd_interval ch;
2022 
2023 	snd_interval_any(&ch);
2024 	if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2025 		ch.min = 1;
2026 		ch.max = 1;
2027 		ch.integer = 1;
2028 		return snd_interval_refine(c, &ch);
2029 	}
2030 	return 0;
2031 }
2032 
2033 static int snd_dbri_open(struct snd_pcm_substream *substream)
2034 {
2035 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2036 	struct snd_pcm_runtime *runtime = substream->runtime;
2037 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2038 
2039 	dprintk(D_USR, "open audio output.\n");
2040 	runtime->hw = snd_dbri_pcm_hw;
2041 
2042 	scoped_guard(spinlock_irqsave, &dbri->lock) {
2043 		info->substream = substream;
2044 		info->offset = 0;
2045 		info->dvma_buffer = 0;
2046 		info->pipe = -1;
2047 	}
2048 
2049 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2050 			    snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2051 			    -1);
2052 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2053 			    snd_hw_rule_channels, NULL,
2054 			    SNDRV_PCM_HW_PARAM_CHANNELS,
2055 			    -1);
2056 
2057 	cs4215_open(dbri);
2058 
2059 	return 0;
2060 }
2061 
2062 static int snd_dbri_close(struct snd_pcm_substream *substream)
2063 {
2064 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2065 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2066 
2067 	dprintk(D_USR, "close audio output.\n");
2068 	info->substream = NULL;
2069 	info->offset = 0;
2070 
2071 	return 0;
2072 }
2073 
2074 static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2075 			      struct snd_pcm_hw_params *hw_params)
2076 {
2077 	struct snd_pcm_runtime *runtime = substream->runtime;
2078 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2079 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2080 	int direction;
2081 	int ret;
2082 
2083 	/* set sampling rate, audio format and number of channels */
2084 	ret = cs4215_prepare(dbri, params_rate(hw_params),
2085 			     params_format(hw_params),
2086 			     params_channels(hw_params));
2087 	if (ret != 0)
2088 		return ret;
2089 
2090 	/* hw_params can get called multiple times. Only map the DMA once.
2091 	 */
2092 	if (info->dvma_buffer == 0) {
2093 		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2094 			direction = DMA_TO_DEVICE;
2095 		else
2096 			direction = DMA_FROM_DEVICE;
2097 
2098 		info->dvma_buffer =
2099 			dma_map_single(&dbri->op->dev,
2100 				       runtime->dma_area,
2101 				       params_buffer_bytes(hw_params),
2102 				       direction);
2103 	}
2104 
2105 	direction = params_buffer_bytes(hw_params);
2106 	dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2107 		direction, info->dvma_buffer);
2108 	return 0;
2109 }
2110 
2111 static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2112 {
2113 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2114 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2115 	int direction;
2116 
2117 	dprintk(D_USR, "hw_free.\n");
2118 
2119 	/* hw_free can get called multiple times. Only unmap the DMA once.
2120 	 */
2121 	if (info->dvma_buffer) {
2122 		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2123 			direction = DMA_TO_DEVICE;
2124 		else
2125 			direction = DMA_FROM_DEVICE;
2126 
2127 		dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2128 				 substream->runtime->buffer_size, direction);
2129 		info->dvma_buffer = 0;
2130 	}
2131 	if (info->pipe != -1) {
2132 		reset_pipe(dbri, info->pipe);
2133 		info->pipe = -1;
2134 	}
2135 
2136 	return 0;
2137 }
2138 
2139 static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2140 {
2141 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2142 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2143 	int ret;
2144 
2145 	info->size = snd_pcm_lib_buffer_bytes(substream);
2146 	if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2147 		info->pipe = 4;	/* Send pipe */
2148 	else
2149 		info->pipe = 6;	/* Receive pipe */
2150 
2151 	guard(spinlock_irq)(&dbri->lock);
2152 	info->offset = 0;
2153 
2154 	/* Setup the all the transmit/receive descriptors to cover the
2155 	 * whole DMA buffer.
2156 	 */
2157 	ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2158 			  snd_pcm_lib_period_bytes(substream));
2159 
2160 	dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2161 	return ret;
2162 }
2163 
2164 static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2165 {
2166 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2167 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2168 	int ret = 0;
2169 
2170 	switch (cmd) {
2171 	case SNDRV_PCM_TRIGGER_START:
2172 		dprintk(D_USR, "start audio, period is %d bytes\n",
2173 			(int)snd_pcm_lib_period_bytes(substream));
2174 		/* Re-submit the TDs. */
2175 		xmit_descs(dbri);
2176 		break;
2177 	case SNDRV_PCM_TRIGGER_STOP:
2178 		dprintk(D_USR, "stop audio.\n");
2179 		reset_pipe(dbri, info->pipe);
2180 		break;
2181 	default:
2182 		ret = -EINVAL;
2183 	}
2184 
2185 	return ret;
2186 }
2187 
2188 static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2189 {
2190 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2191 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2192 	snd_pcm_uframes_t ret;
2193 
2194 	ret = bytes_to_frames(substream->runtime, info->offset)
2195 		% substream->runtime->buffer_size;
2196 	dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2197 		ret, substream->runtime->buffer_size);
2198 	return ret;
2199 }
2200 
2201 static const struct snd_pcm_ops snd_dbri_ops = {
2202 	.open = snd_dbri_open,
2203 	.close = snd_dbri_close,
2204 	.hw_params = snd_dbri_hw_params,
2205 	.hw_free = snd_dbri_hw_free,
2206 	.prepare = snd_dbri_prepare,
2207 	.trigger = snd_dbri_trigger,
2208 	.pointer = snd_dbri_pointer,
2209 };
2210 
2211 static int snd_dbri_pcm(struct snd_card *card)
2212 {
2213 	struct snd_pcm *pcm;
2214 	int err;
2215 
2216 	err = snd_pcm_new(card,
2217 			  /* ID */	    "sun_dbri",
2218 			  /* device */	    0,
2219 			  /* playback count */ 1,
2220 			  /* capture count */  1, &pcm);
2221 	if (err < 0)
2222 		return err;
2223 
2224 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2225 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2226 
2227 	pcm->private_data = card->private_data;
2228 	pcm->info_flags = 0;
2229 	strscpy(pcm->name, card->shortname);
2230 
2231 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
2232 				       NULL, 64 * 1024, 64 * 1024);
2233 	return 0;
2234 }
2235 
2236 /*****************************************************************************
2237 			Mixer interface
2238 *****************************************************************************/
2239 
2240 static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2241 				  struct snd_ctl_elem_info *uinfo)
2242 {
2243 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2244 	uinfo->count = 2;
2245 	uinfo->value.integer.min = 0;
2246 	if (kcontrol->private_value == DBRI_PLAY)
2247 		uinfo->value.integer.max = DBRI_MAX_VOLUME;
2248 	else
2249 		uinfo->value.integer.max = DBRI_MAX_GAIN;
2250 	return 0;
2251 }
2252 
2253 static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2254 				 struct snd_ctl_elem_value *ucontrol)
2255 {
2256 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2257 	struct dbri_streaminfo *info;
2258 
2259 	if (snd_BUG_ON(!dbri))
2260 		return -EINVAL;
2261 	info = &dbri->stream_info[kcontrol->private_value];
2262 
2263 	ucontrol->value.integer.value[0] = info->left_gain;
2264 	ucontrol->value.integer.value[1] = info->right_gain;
2265 	return 0;
2266 }
2267 
2268 static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2269 				 struct snd_ctl_elem_value *ucontrol)
2270 {
2271 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2272 	struct dbri_streaminfo *info =
2273 				&dbri->stream_info[kcontrol->private_value];
2274 	unsigned int vol[2];
2275 	int changed = 0;
2276 
2277 	vol[0] = ucontrol->value.integer.value[0];
2278 	vol[1] = ucontrol->value.integer.value[1];
2279 	if (kcontrol->private_value == DBRI_PLAY) {
2280 		if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2281 			return -EINVAL;
2282 	} else {
2283 		if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2284 			return -EINVAL;
2285 	}
2286 
2287 	if (info->left_gain != vol[0]) {
2288 		info->left_gain = vol[0];
2289 		changed = 1;
2290 	}
2291 	if (info->right_gain != vol[1]) {
2292 		info->right_gain = vol[1];
2293 		changed = 1;
2294 	}
2295 	if (changed) {
2296 		/* First mute outputs, and wait 1/8000 sec (125 us)
2297 		 * to make sure this takes.  This avoids clicking noises.
2298 		 */
2299 		cs4215_setdata(dbri, 1);
2300 		udelay(125);
2301 		cs4215_setdata(dbri, 0);
2302 	}
2303 	return changed;
2304 }
2305 
2306 static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2307 				  struct snd_ctl_elem_info *uinfo)
2308 {
2309 	int mask = (kcontrol->private_value >> 16) & 0xff;
2310 
2311 	uinfo->type = (mask == 1) ?
2312 	    SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2313 	uinfo->count = 1;
2314 	uinfo->value.integer.min = 0;
2315 	uinfo->value.integer.max = mask;
2316 	return 0;
2317 }
2318 
2319 static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2320 				 struct snd_ctl_elem_value *ucontrol)
2321 {
2322 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2323 	int elem = kcontrol->private_value & 0xff;
2324 	int shift = (kcontrol->private_value >> 8) & 0xff;
2325 	int mask = (kcontrol->private_value >> 16) & 0xff;
2326 	int invert = (kcontrol->private_value >> 24) & 1;
2327 
2328 	if (snd_BUG_ON(!dbri))
2329 		return -EINVAL;
2330 
2331 	if (elem < 4)
2332 		ucontrol->value.integer.value[0] =
2333 		    (dbri->mm.data[elem] >> shift) & mask;
2334 	else
2335 		ucontrol->value.integer.value[0] =
2336 		    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2337 
2338 	if (invert == 1)
2339 		ucontrol->value.integer.value[0] =
2340 		    mask - ucontrol->value.integer.value[0];
2341 	return 0;
2342 }
2343 
2344 static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2345 				 struct snd_ctl_elem_value *ucontrol)
2346 {
2347 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2348 	int elem = kcontrol->private_value & 0xff;
2349 	int shift = (kcontrol->private_value >> 8) & 0xff;
2350 	int mask = (kcontrol->private_value >> 16) & 0xff;
2351 	int invert = (kcontrol->private_value >> 24) & 1;
2352 	int changed = 0;
2353 	unsigned short val;
2354 
2355 	if (snd_BUG_ON(!dbri))
2356 		return -EINVAL;
2357 
2358 	val = (ucontrol->value.integer.value[0] & mask);
2359 	if (invert == 1)
2360 		val = mask - val;
2361 	val <<= shift;
2362 
2363 	if (elem < 4) {
2364 		dbri->mm.data[elem] = (dbri->mm.data[elem] &
2365 				       ~(mask << shift)) | val;
2366 		changed = (val != dbri->mm.data[elem]);
2367 	} else {
2368 		dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2369 					   ~(mask << shift)) | val;
2370 		changed = (val != dbri->mm.ctrl[elem - 4]);
2371 	}
2372 
2373 	dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2374 		"mixer-value=%ld, mm-value=0x%x\n",
2375 		mask, changed, ucontrol->value.integer.value[0],
2376 		dbri->mm.data[elem & 3]);
2377 
2378 	if (changed) {
2379 		/* First mute outputs, and wait 1/8000 sec (125 us)
2380 		 * to make sure this takes.  This avoids clicking noises.
2381 		 */
2382 		cs4215_setdata(dbri, 1);
2383 		udelay(125);
2384 		cs4215_setdata(dbri, 0);
2385 	}
2386 	return changed;
2387 }
2388 
2389 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2390    timeslots. Shift is the bit offset in the timeslot, mask defines the
2391    number of bits. invert is a boolean for use with attenuation.
2392  */
2393 #define CS4215_SINGLE(xname, entry, shift, mask, invert)	\
2394 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),		\
2395   .info = snd_cs4215_info_single,				\
2396   .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,	\
2397   .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |	\
2398 			((invert) << 24) },
2399 
2400 static const struct snd_kcontrol_new dbri_controls[] = {
2401 	{
2402 	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2403 	 .name  = "Playback Volume",
2404 	 .info  = snd_cs4215_info_volume,
2405 	 .get   = snd_cs4215_get_volume,
2406 	 .put   = snd_cs4215_put_volume,
2407 	 .private_value = DBRI_PLAY,
2408 	 },
2409 	CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2410 	CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2411 	CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2412 	{
2413 	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2414 	 .name  = "Capture Volume",
2415 	 .info  = snd_cs4215_info_volume,
2416 	 .get   = snd_cs4215_get_volume,
2417 	 .put   = snd_cs4215_put_volume,
2418 	 .private_value = DBRI_REC,
2419 	 },
2420 	/* FIXME: mic/line switch */
2421 	CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2422 	CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2423 	CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2424 	CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2425 };
2426 
2427 static int snd_dbri_mixer(struct snd_card *card)
2428 {
2429 	int idx, err;
2430 	struct snd_dbri *dbri;
2431 
2432 	if (snd_BUG_ON(!card || !card->private_data))
2433 		return -EINVAL;
2434 	dbri = card->private_data;
2435 
2436 	strscpy(card->mixername, card->shortname);
2437 
2438 	for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2439 		err = snd_ctl_add(card,
2440 				snd_ctl_new1(&dbri_controls[idx], dbri));
2441 		if (err < 0)
2442 			return err;
2443 	}
2444 
2445 	for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2446 		dbri->stream_info[idx].left_gain = 0;
2447 		dbri->stream_info[idx].right_gain = 0;
2448 	}
2449 
2450 	return 0;
2451 }
2452 
2453 /****************************************************************************
2454 			/proc interface
2455 ****************************************************************************/
2456 static void dbri_regs_read(struct snd_info_entry *entry,
2457 			   struct snd_info_buffer *buffer)
2458 {
2459 	struct snd_dbri *dbri = entry->private_data;
2460 
2461 	snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2462 	snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2463 	snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2464 	snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2465 }
2466 
2467 #ifdef DBRI_DEBUG
2468 static void dbri_debug_read(struct snd_info_entry *entry,
2469 			    struct snd_info_buffer *buffer)
2470 {
2471 	struct snd_dbri *dbri = entry->private_data;
2472 	int pipe;
2473 	snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2474 
2475 	for (pipe = 0; pipe < 32; pipe++) {
2476 		if (pipe_active(dbri, pipe)) {
2477 			struct dbri_pipe *pptr = &dbri->pipes[pipe];
2478 			snd_iprintf(buffer,
2479 				    "Pipe %d: %s SDP=0x%x desc=%d, "
2480 				    "len=%d next %d\n",
2481 				    pipe,
2482 				   (pptr->sdp & D_SDP_TO_SER) ? "output" :
2483 								 "input",
2484 				    pptr->sdp, pptr->desc,
2485 				    pptr->length, pptr->nextpipe);
2486 		}
2487 	}
2488 }
2489 #endif
2490 
2491 static void snd_dbri_proc(struct snd_card *card)
2492 {
2493 	struct snd_dbri *dbri = card->private_data;
2494 
2495 	snd_card_ro_proc_new(card, "regs", dbri, dbri_regs_read);
2496 #ifdef DBRI_DEBUG
2497 	snd_card_ro_proc_new(card, "debug", dbri, dbri_debug_read);
2498 #endif
2499 }
2500 
2501 /*
2502 ****************************************************************************
2503 **************************** Initialization ********************************
2504 ****************************************************************************
2505 */
2506 static void snd_dbri_free(struct snd_dbri *dbri);
2507 
2508 static int snd_dbri_create(struct snd_card *card,
2509 			   struct platform_device *op,
2510 			   int irq, int dev)
2511 {
2512 	struct snd_dbri *dbri = card->private_data;
2513 	int err;
2514 
2515 	spin_lock_init(&dbri->lock);
2516 	dbri->op = op;
2517 	dbri->irq = irq;
2518 
2519 	dbri->dma = dma_alloc_coherent(&op->dev, sizeof(struct dbri_dma),
2520 				       &dbri->dma_dvma, GFP_KERNEL);
2521 	if (!dbri->dma)
2522 		return -ENOMEM;
2523 
2524 	dprintk(D_GEN, "DMA Cmd Block 0x%p (%pad)\n",
2525 		dbri->dma, dbri->dma_dvma);
2526 
2527 	/* Map the registers into memory. */
2528 	dbri->regs_size = resource_size(&op->resource[0]);
2529 	dbri->regs = of_ioremap(&op->resource[0], 0,
2530 				dbri->regs_size, "DBRI Registers");
2531 	if (!dbri->regs) {
2532 		printk(KERN_ERR "DBRI: could not allocate registers\n");
2533 		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2534 				  (void *)dbri->dma, dbri->dma_dvma);
2535 		return -EIO;
2536 	}
2537 
2538 	err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2539 			  "DBRI audio", dbri);
2540 	if (err) {
2541 		printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2542 		of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2543 		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2544 				  (void *)dbri->dma, dbri->dma_dvma);
2545 		return err;
2546 	}
2547 
2548 	/* Do low level initialization of the DBRI and CS4215 chips */
2549 	dbri_initialize(dbri);
2550 	err = cs4215_init(dbri);
2551 	if (err) {
2552 		snd_dbri_free(dbri);
2553 		return err;
2554 	}
2555 
2556 	return 0;
2557 }
2558 
2559 static void snd_dbri_free(struct snd_dbri *dbri)
2560 {
2561 	dprintk(D_GEN, "snd_dbri_free\n");
2562 	dbri_reset(dbri);
2563 
2564 	if (dbri->irq)
2565 		free_irq(dbri->irq, dbri);
2566 
2567 	if (dbri->regs)
2568 		of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2569 
2570 	if (dbri->dma)
2571 		dma_free_coherent(&dbri->op->dev,
2572 				  sizeof(struct dbri_dma),
2573 				  (void *)dbri->dma, dbri->dma_dvma);
2574 }
2575 
2576 static int dbri_probe(struct platform_device *op)
2577 {
2578 	struct snd_dbri *dbri;
2579 	struct resource *rp;
2580 	struct snd_card *card;
2581 	static int dev;
2582 	int irq;
2583 	int err;
2584 
2585 	if (dev >= SNDRV_CARDS)
2586 		return -ENODEV;
2587 	if (!enable[dev]) {
2588 		dev++;
2589 		return -ENOENT;
2590 	}
2591 
2592 	irq = op->archdata.irqs[0];
2593 	if (irq <= 0) {
2594 		printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2595 		return -ENODEV;
2596 	}
2597 
2598 	err = snd_card_new(&op->dev, index[dev], id[dev], THIS_MODULE,
2599 			   sizeof(struct snd_dbri), &card);
2600 	if (err < 0)
2601 		return err;
2602 
2603 	strscpy(card->driver, "DBRI");
2604 	strscpy(card->shortname, "Sun DBRI");
2605 	rp = &op->resource[0];
2606 	sprintf(card->longname, "%s at 0x%02lx:0x%016llx, irq %d",
2607 		card->shortname,
2608 		rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2609 
2610 	err = snd_dbri_create(card, op, irq, dev);
2611 	if (err < 0) {
2612 		snd_card_free(card);
2613 		return err;
2614 	}
2615 
2616 	dbri = card->private_data;
2617 	err = snd_dbri_pcm(card);
2618 	if (err < 0)
2619 		goto _err;
2620 
2621 	err = snd_dbri_mixer(card);
2622 	if (err < 0)
2623 		goto _err;
2624 
2625 	/* /proc file handling */
2626 	snd_dbri_proc(card);
2627 	dev_set_drvdata(&op->dev, card);
2628 
2629 	err = snd_card_register(card);
2630 	if (err < 0)
2631 		goto _err;
2632 
2633 	printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2634 	       dev, dbri->regs,
2635 	       dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2636 	dev++;
2637 
2638 	return 0;
2639 
2640 _err:
2641 	snd_dbri_free(dbri);
2642 	snd_card_free(card);
2643 	return err;
2644 }
2645 
2646 static void dbri_remove(struct platform_device *op)
2647 {
2648 	struct snd_card *card = dev_get_drvdata(&op->dev);
2649 
2650 	snd_dbri_free(card->private_data);
2651 	snd_card_free(card);
2652 }
2653 
2654 static const struct of_device_id dbri_match[] = {
2655 	{
2656 		.name = "SUNW,DBRIe",
2657 	},
2658 	{
2659 		.name = "SUNW,DBRIf",
2660 	},
2661 	{},
2662 };
2663 
2664 MODULE_DEVICE_TABLE(of, dbri_match);
2665 
2666 static struct platform_driver dbri_sbus_driver = {
2667 	.driver = {
2668 		.name = "dbri",
2669 		.of_match_table = dbri_match,
2670 	},
2671 	.probe		= dbri_probe,
2672 	.remove		= dbri_remove,
2673 };
2674 
2675 module_platform_driver(dbri_sbus_driver);
2676