1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #ifndef _LINUX_BPF_H
5 #define _LINUX_BPF_H 1
6
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/filter.h>
9
10 #include <linux/workqueue.h>
11 #include <linux/file.h>
12 #include <linux/percpu.h>
13 #include <linux/err.h>
14 #include <linux/rbtree_latch.h>
15 #include <linux/numa.h>
16 #include <linux/mm_types.h>
17 #include <linux/wait.h>
18 #include <linux/refcount.h>
19 #include <linux/mutex.h>
20 #include <linux/module.h>
21 #include <linux/kallsyms.h>
22 #include <linux/capability.h>
23 #include <linux/sched/mm.h>
24 #include <linux/slab.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/stddef.h>
27 #include <linux/bpfptr.h>
28 #include <linux/btf.h>
29 #include <linux/rcupdate_trace.h>
30 #include <linux/static_call.h>
31 #include <linux/memcontrol.h>
32 #include <linux/cfi.h>
33 #include <asm/rqspinlock.h>
34
35 struct bpf_verifier_env;
36 struct bpf_verifier_log;
37 struct perf_event;
38 struct bpf_prog;
39 struct bpf_prog_aux;
40 struct bpf_map;
41 struct bpf_arena;
42 struct sock;
43 struct seq_file;
44 struct btf;
45 struct btf_type;
46 struct exception_table_entry;
47 struct seq_operations;
48 struct bpf_iter_aux_info;
49 struct bpf_local_storage;
50 struct bpf_local_storage_map;
51 struct kobject;
52 struct mem_cgroup;
53 struct module;
54 struct bpf_func_state;
55 struct ftrace_ops;
56 struct cgroup;
57 struct bpf_token;
58 struct user_namespace;
59 struct super_block;
60 struct inode;
61
62 extern struct idr btf_idr;
63 extern spinlock_t btf_idr_lock;
64 extern struct kobject *btf_kobj;
65 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma;
66 extern bool bpf_global_ma_set;
67
68 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
69 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
70 struct bpf_iter_aux_info *aux);
71 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
72 typedef unsigned int (*bpf_func_t)(const void *,
73 const struct bpf_insn *);
74 struct bpf_iter_seq_info {
75 const struct seq_operations *seq_ops;
76 bpf_iter_init_seq_priv_t init_seq_private;
77 bpf_iter_fini_seq_priv_t fini_seq_private;
78 u32 seq_priv_size;
79 };
80
81 /* map is generic key/value storage optionally accessible by eBPF programs */
82 struct bpf_map_ops {
83 /* funcs callable from userspace (via syscall) */
84 int (*map_alloc_check)(union bpf_attr *attr);
85 struct bpf_map *(*map_alloc)(union bpf_attr *attr);
86 void (*map_release)(struct bpf_map *map, struct file *map_file);
87 void (*map_free)(struct bpf_map *map);
88 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
89 void (*map_release_uref)(struct bpf_map *map);
90 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
91 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
92 union bpf_attr __user *uattr);
93 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
94 void *value, u64 flags);
95 int (*map_lookup_and_delete_batch)(struct bpf_map *map,
96 const union bpf_attr *attr,
97 union bpf_attr __user *uattr);
98 int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
99 const union bpf_attr *attr,
100 union bpf_attr __user *uattr);
101 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
102 union bpf_attr __user *uattr);
103
104 /* funcs callable from userspace and from eBPF programs */
105 void *(*map_lookup_elem)(struct bpf_map *map, void *key);
106 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
107 long (*map_delete_elem)(struct bpf_map *map, void *key);
108 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
109 long (*map_pop_elem)(struct bpf_map *map, void *value);
110 long (*map_peek_elem)(struct bpf_map *map, void *value);
111 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
112
113 /* funcs called by prog_array and perf_event_array map */
114 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
115 int fd);
116 /* If need_defer is true, the implementation should guarantee that
117 * the to-be-put element is still alive before the bpf program, which
118 * may manipulate it, exists.
119 */
120 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer);
121 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
122 u32 (*map_fd_sys_lookup_elem)(void *ptr);
123 void (*map_seq_show_elem)(struct bpf_map *map, void *key,
124 struct seq_file *m);
125 int (*map_check_btf)(const struct bpf_map *map,
126 const struct btf *btf,
127 const struct btf_type *key_type,
128 const struct btf_type *value_type);
129
130 /* Prog poke tracking helpers. */
131 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
132 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
133 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
134 struct bpf_prog *new);
135
136 /* Direct value access helpers. */
137 int (*map_direct_value_addr)(const struct bpf_map *map,
138 u64 *imm, u32 off);
139 int (*map_direct_value_meta)(const struct bpf_map *map,
140 u64 imm, u32 *off);
141 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
142 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
143 struct poll_table_struct *pts);
144 unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr,
145 unsigned long len, unsigned long pgoff,
146 unsigned long flags);
147
148 /* Functions called by bpf_local_storage maps */
149 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
150 void *owner, u32 size);
151 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
152 void *owner, u32 size);
153 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
154
155 /* Misc helpers.*/
156 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
157
158 /* map_meta_equal must be implemented for maps that can be
159 * used as an inner map. It is a runtime check to ensure
160 * an inner map can be inserted to an outer map.
161 *
162 * Some properties of the inner map has been used during the
163 * verification time. When inserting an inner map at the runtime,
164 * map_meta_equal has to ensure the inserting map has the same
165 * properties that the verifier has used earlier.
166 */
167 bool (*map_meta_equal)(const struct bpf_map *meta0,
168 const struct bpf_map *meta1);
169
170
171 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
172 struct bpf_func_state *caller,
173 struct bpf_func_state *callee);
174 long (*map_for_each_callback)(struct bpf_map *map,
175 bpf_callback_t callback_fn,
176 void *callback_ctx, u64 flags);
177
178 u64 (*map_mem_usage)(const struct bpf_map *map);
179
180 /* BTF id of struct allocated by map_alloc */
181 int *map_btf_id;
182
183 /* bpf_iter info used to open a seq_file */
184 const struct bpf_iter_seq_info *iter_seq_info;
185 };
186
187 enum {
188 /* Support at most 11 fields in a BTF type */
189 BTF_FIELDS_MAX = 11,
190 };
191
192 enum btf_field_type {
193 BPF_SPIN_LOCK = (1 << 0),
194 BPF_TIMER = (1 << 1),
195 BPF_KPTR_UNREF = (1 << 2),
196 BPF_KPTR_REF = (1 << 3),
197 BPF_KPTR_PERCPU = (1 << 4),
198 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU,
199 BPF_LIST_HEAD = (1 << 5),
200 BPF_LIST_NODE = (1 << 6),
201 BPF_RB_ROOT = (1 << 7),
202 BPF_RB_NODE = (1 << 8),
203 BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE,
204 BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD,
205 BPF_REFCOUNT = (1 << 9),
206 BPF_WORKQUEUE = (1 << 10),
207 BPF_UPTR = (1 << 11),
208 BPF_RES_SPIN_LOCK = (1 << 12),
209 };
210
211 enum bpf_cgroup_storage_type {
212 BPF_CGROUP_STORAGE_SHARED,
213 BPF_CGROUP_STORAGE_PERCPU,
214 __BPF_CGROUP_STORAGE_MAX
215 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
216 };
217
218 #ifdef CONFIG_CGROUP_BPF
219 # define for_each_cgroup_storage_type(stype) \
220 for (stype = 0; stype < MAX_BPF_CGROUP_STORAGE_TYPE; stype++)
221 #else
222 # define for_each_cgroup_storage_type(stype) for (; false; )
223 #endif /* CONFIG_CGROUP_BPF */
224
225 typedef void (*btf_dtor_kfunc_t)(void *);
226
227 struct btf_field_kptr {
228 struct btf *btf;
229 struct module *module;
230 /* dtor used if btf_is_kernel(btf), otherwise the type is
231 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used
232 */
233 btf_dtor_kfunc_t dtor;
234 u32 btf_id;
235 };
236
237 struct btf_field_graph_root {
238 struct btf *btf;
239 u32 value_btf_id;
240 u32 node_offset;
241 struct btf_record *value_rec;
242 };
243
244 struct btf_field {
245 u32 offset;
246 u32 size;
247 enum btf_field_type type;
248 union {
249 struct btf_field_kptr kptr;
250 struct btf_field_graph_root graph_root;
251 };
252 };
253
254 struct btf_record {
255 u32 cnt;
256 u32 field_mask;
257 int spin_lock_off;
258 int res_spin_lock_off;
259 int timer_off;
260 int wq_off;
261 int refcount_off;
262 struct btf_field fields[];
263 };
264
265 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
266 struct bpf_rb_node_kern {
267 struct rb_node rb_node;
268 void *owner;
269 } __attribute__((aligned(8)));
270
271 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
272 struct bpf_list_node_kern {
273 struct list_head list_head;
274 void *owner;
275 } __attribute__((aligned(8)));
276
277 /* 'Ownership' of program-containing map is claimed by the first program
278 * that is going to use this map or by the first program which FD is
279 * stored in the map to make sure that all callers and callees have the
280 * same prog type, JITed flag and xdp_has_frags flag.
281 */
282 struct bpf_map_owner {
283 enum bpf_prog_type type;
284 bool jited;
285 bool xdp_has_frags;
286 u64 storage_cookie[MAX_BPF_CGROUP_STORAGE_TYPE];
287 const struct btf_type *attach_func_proto;
288 };
289
290 struct bpf_map {
291 const struct bpf_map_ops *ops;
292 struct bpf_map *inner_map_meta;
293 #ifdef CONFIG_SECURITY
294 void *security;
295 #endif
296 enum bpf_map_type map_type;
297 u32 key_size;
298 u32 value_size;
299 u32 max_entries;
300 u64 map_extra; /* any per-map-type extra fields */
301 u32 map_flags;
302 u32 id;
303 struct btf_record *record;
304 int numa_node;
305 u32 btf_key_type_id;
306 u32 btf_value_type_id;
307 u32 btf_vmlinux_value_type_id;
308 struct btf *btf;
309 #ifdef CONFIG_MEMCG
310 struct obj_cgroup *objcg;
311 #endif
312 char name[BPF_OBJ_NAME_LEN];
313 struct mutex freeze_mutex;
314 atomic64_t refcnt;
315 atomic64_t usercnt;
316 /* rcu is used before freeing and work is only used during freeing */
317 union {
318 struct work_struct work;
319 struct rcu_head rcu;
320 };
321 atomic64_t writecnt;
322 spinlock_t owner_lock;
323 struct bpf_map_owner *owner;
324 bool bypass_spec_v1;
325 bool frozen; /* write-once; write-protected by freeze_mutex */
326 bool free_after_mult_rcu_gp;
327 bool free_after_rcu_gp;
328 atomic64_t sleepable_refcnt;
329 s64 __percpu *elem_count;
330 u64 cookie; /* write-once */
331 };
332
btf_field_type_name(enum btf_field_type type)333 static inline const char *btf_field_type_name(enum btf_field_type type)
334 {
335 switch (type) {
336 case BPF_SPIN_LOCK:
337 return "bpf_spin_lock";
338 case BPF_RES_SPIN_LOCK:
339 return "bpf_res_spin_lock";
340 case BPF_TIMER:
341 return "bpf_timer";
342 case BPF_WORKQUEUE:
343 return "bpf_wq";
344 case BPF_KPTR_UNREF:
345 case BPF_KPTR_REF:
346 return "kptr";
347 case BPF_KPTR_PERCPU:
348 return "percpu_kptr";
349 case BPF_UPTR:
350 return "uptr";
351 case BPF_LIST_HEAD:
352 return "bpf_list_head";
353 case BPF_LIST_NODE:
354 return "bpf_list_node";
355 case BPF_RB_ROOT:
356 return "bpf_rb_root";
357 case BPF_RB_NODE:
358 return "bpf_rb_node";
359 case BPF_REFCOUNT:
360 return "bpf_refcount";
361 default:
362 WARN_ON_ONCE(1);
363 return "unknown";
364 }
365 }
366
367 #if IS_ENABLED(CONFIG_DEBUG_KERNEL)
368 #define BPF_WARN_ONCE(cond, format...) WARN_ONCE(cond, format)
369 #else
370 #define BPF_WARN_ONCE(cond, format...) BUILD_BUG_ON_INVALID(cond)
371 #endif
372
btf_field_type_size(enum btf_field_type type)373 static inline u32 btf_field_type_size(enum btf_field_type type)
374 {
375 switch (type) {
376 case BPF_SPIN_LOCK:
377 return sizeof(struct bpf_spin_lock);
378 case BPF_RES_SPIN_LOCK:
379 return sizeof(struct bpf_res_spin_lock);
380 case BPF_TIMER:
381 return sizeof(struct bpf_timer);
382 case BPF_WORKQUEUE:
383 return sizeof(struct bpf_wq);
384 case BPF_KPTR_UNREF:
385 case BPF_KPTR_REF:
386 case BPF_KPTR_PERCPU:
387 case BPF_UPTR:
388 return sizeof(u64);
389 case BPF_LIST_HEAD:
390 return sizeof(struct bpf_list_head);
391 case BPF_LIST_NODE:
392 return sizeof(struct bpf_list_node);
393 case BPF_RB_ROOT:
394 return sizeof(struct bpf_rb_root);
395 case BPF_RB_NODE:
396 return sizeof(struct bpf_rb_node);
397 case BPF_REFCOUNT:
398 return sizeof(struct bpf_refcount);
399 default:
400 WARN_ON_ONCE(1);
401 return 0;
402 }
403 }
404
btf_field_type_align(enum btf_field_type type)405 static inline u32 btf_field_type_align(enum btf_field_type type)
406 {
407 switch (type) {
408 case BPF_SPIN_LOCK:
409 return __alignof__(struct bpf_spin_lock);
410 case BPF_RES_SPIN_LOCK:
411 return __alignof__(struct bpf_res_spin_lock);
412 case BPF_TIMER:
413 return __alignof__(struct bpf_timer);
414 case BPF_WORKQUEUE:
415 return __alignof__(struct bpf_wq);
416 case BPF_KPTR_UNREF:
417 case BPF_KPTR_REF:
418 case BPF_KPTR_PERCPU:
419 case BPF_UPTR:
420 return __alignof__(u64);
421 case BPF_LIST_HEAD:
422 return __alignof__(struct bpf_list_head);
423 case BPF_LIST_NODE:
424 return __alignof__(struct bpf_list_node);
425 case BPF_RB_ROOT:
426 return __alignof__(struct bpf_rb_root);
427 case BPF_RB_NODE:
428 return __alignof__(struct bpf_rb_node);
429 case BPF_REFCOUNT:
430 return __alignof__(struct bpf_refcount);
431 default:
432 WARN_ON_ONCE(1);
433 return 0;
434 }
435 }
436
bpf_obj_init_field(const struct btf_field * field,void * addr)437 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
438 {
439 memset(addr, 0, field->size);
440
441 switch (field->type) {
442 case BPF_REFCOUNT:
443 refcount_set((refcount_t *)addr, 1);
444 break;
445 case BPF_RB_NODE:
446 RB_CLEAR_NODE((struct rb_node *)addr);
447 break;
448 case BPF_LIST_HEAD:
449 case BPF_LIST_NODE:
450 INIT_LIST_HEAD((struct list_head *)addr);
451 break;
452 case BPF_RB_ROOT:
453 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
454 case BPF_SPIN_LOCK:
455 case BPF_RES_SPIN_LOCK:
456 case BPF_TIMER:
457 case BPF_WORKQUEUE:
458 case BPF_KPTR_UNREF:
459 case BPF_KPTR_REF:
460 case BPF_KPTR_PERCPU:
461 case BPF_UPTR:
462 break;
463 default:
464 WARN_ON_ONCE(1);
465 return;
466 }
467 }
468
btf_record_has_field(const struct btf_record * rec,enum btf_field_type type)469 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
470 {
471 if (IS_ERR_OR_NULL(rec))
472 return false;
473 return rec->field_mask & type;
474 }
475
bpf_obj_init(const struct btf_record * rec,void * obj)476 static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
477 {
478 int i;
479
480 if (IS_ERR_OR_NULL(rec))
481 return;
482 for (i = 0; i < rec->cnt; i++)
483 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
484 }
485
486 /* 'dst' must be a temporary buffer and should not point to memory that is being
487 * used in parallel by a bpf program or bpf syscall, otherwise the access from
488 * the bpf program or bpf syscall may be corrupted by the reinitialization,
489 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
490 * allocator, it is still possible for 'dst' to be used in parallel by a bpf
491 * program or bpf syscall.
492 */
check_and_init_map_value(struct bpf_map * map,void * dst)493 static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
494 {
495 bpf_obj_init(map->record, dst);
496 }
497
498 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
499 * forced to use 'long' read/writes to try to atomically copy long counters.
500 * Best-effort only. No barriers here, since it _will_ race with concurrent
501 * updates from BPF programs. Called from bpf syscall and mostly used with
502 * size 8 or 16 bytes, so ask compiler to inline it.
503 */
bpf_long_memcpy(void * dst,const void * src,u32 size)504 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
505 {
506 const long *lsrc = src;
507 long *ldst = dst;
508
509 size /= sizeof(long);
510 while (size--)
511 data_race(*ldst++ = *lsrc++);
512 }
513
514 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
bpf_obj_memcpy(struct btf_record * rec,void * dst,void * src,u32 size,bool long_memcpy)515 static inline void bpf_obj_memcpy(struct btf_record *rec,
516 void *dst, void *src, u32 size,
517 bool long_memcpy)
518 {
519 u32 curr_off = 0;
520 int i;
521
522 if (IS_ERR_OR_NULL(rec)) {
523 if (long_memcpy)
524 bpf_long_memcpy(dst, src, round_up(size, 8));
525 else
526 memcpy(dst, src, size);
527 return;
528 }
529
530 for (i = 0; i < rec->cnt; i++) {
531 u32 next_off = rec->fields[i].offset;
532 u32 sz = next_off - curr_off;
533
534 memcpy(dst + curr_off, src + curr_off, sz);
535 curr_off += rec->fields[i].size + sz;
536 }
537 memcpy(dst + curr_off, src + curr_off, size - curr_off);
538 }
539
copy_map_value(struct bpf_map * map,void * dst,void * src)540 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
541 {
542 bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
543 }
544
copy_map_value_long(struct bpf_map * map,void * dst,void * src)545 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
546 {
547 bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
548 }
549
bpf_obj_swap_uptrs(const struct btf_record * rec,void * dst,void * src)550 static inline void bpf_obj_swap_uptrs(const struct btf_record *rec, void *dst, void *src)
551 {
552 unsigned long *src_uptr, *dst_uptr;
553 const struct btf_field *field;
554 int i;
555
556 if (!btf_record_has_field(rec, BPF_UPTR))
557 return;
558
559 for (i = 0, field = rec->fields; i < rec->cnt; i++, field++) {
560 if (field->type != BPF_UPTR)
561 continue;
562
563 src_uptr = src + field->offset;
564 dst_uptr = dst + field->offset;
565 swap(*src_uptr, *dst_uptr);
566 }
567 }
568
bpf_obj_memzero(struct btf_record * rec,void * dst,u32 size)569 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
570 {
571 u32 curr_off = 0;
572 int i;
573
574 if (IS_ERR_OR_NULL(rec)) {
575 memset(dst, 0, size);
576 return;
577 }
578
579 for (i = 0; i < rec->cnt; i++) {
580 u32 next_off = rec->fields[i].offset;
581 u32 sz = next_off - curr_off;
582
583 memset(dst + curr_off, 0, sz);
584 curr_off += rec->fields[i].size + sz;
585 }
586 memset(dst + curr_off, 0, size - curr_off);
587 }
588
zero_map_value(struct bpf_map * map,void * dst)589 static inline void zero_map_value(struct bpf_map *map, void *dst)
590 {
591 bpf_obj_memzero(map->record, dst, map->value_size);
592 }
593
594 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
595 bool lock_src);
596 void bpf_timer_cancel_and_free(void *timer);
597 void bpf_wq_cancel_and_free(void *timer);
598 void bpf_list_head_free(const struct btf_field *field, void *list_head,
599 struct bpf_spin_lock *spin_lock);
600 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
601 struct bpf_spin_lock *spin_lock);
602 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena);
603 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena);
604 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
605
606 struct bpf_offload_dev;
607 struct bpf_offloaded_map;
608
609 struct bpf_map_dev_ops {
610 int (*map_get_next_key)(struct bpf_offloaded_map *map,
611 void *key, void *next_key);
612 int (*map_lookup_elem)(struct bpf_offloaded_map *map,
613 void *key, void *value);
614 int (*map_update_elem)(struct bpf_offloaded_map *map,
615 void *key, void *value, u64 flags);
616 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
617 };
618
619 struct bpf_offloaded_map {
620 struct bpf_map map;
621 struct net_device *netdev;
622 const struct bpf_map_dev_ops *dev_ops;
623 void *dev_priv;
624 struct list_head offloads;
625 };
626
map_to_offmap(struct bpf_map * map)627 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
628 {
629 return container_of(map, struct bpf_offloaded_map, map);
630 }
631
bpf_map_offload_neutral(const struct bpf_map * map)632 static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
633 {
634 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
635 }
636
bpf_map_support_seq_show(const struct bpf_map * map)637 static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
638 {
639 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
640 map->ops->map_seq_show_elem;
641 }
642
643 int map_check_no_btf(const struct bpf_map *map,
644 const struct btf *btf,
645 const struct btf_type *key_type,
646 const struct btf_type *value_type);
647
648 bool bpf_map_meta_equal(const struct bpf_map *meta0,
649 const struct bpf_map *meta1);
650
651 extern const struct bpf_map_ops bpf_map_offload_ops;
652
653 /* bpf_type_flag contains a set of flags that are applicable to the values of
654 * arg_type, ret_type and reg_type. For example, a pointer value may be null,
655 * or a memory is read-only. We classify types into two categories: base types
656 * and extended types. Extended types are base types combined with a type flag.
657 *
658 * Currently there are no more than 32 base types in arg_type, ret_type and
659 * reg_types.
660 */
661 #define BPF_BASE_TYPE_BITS 8
662
663 enum bpf_type_flag {
664 /* PTR may be NULL. */
665 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS),
666
667 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is
668 * compatible with both mutable and immutable memory.
669 */
670 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS),
671
672 /* MEM points to BPF ring buffer reservation. */
673 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS),
674
675 /* MEM is in user address space. */
676 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS),
677
678 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
679 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
680 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
681 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
682 * to the specified cpu.
683 */
684 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS),
685
686 /* Indicates that the argument will be released. */
687 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS),
688
689 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
690 * unreferenced and referenced kptr loaded from map value using a load
691 * instruction, so that they can only be dereferenced but not escape the
692 * BPF program into the kernel (i.e. cannot be passed as arguments to
693 * kfunc or bpf helpers).
694 */
695 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS),
696
697 /* MEM can be uninitialized. */
698 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS),
699
700 /* DYNPTR points to memory local to the bpf program. */
701 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS),
702
703 /* DYNPTR points to a kernel-produced ringbuf record. */
704 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS),
705
706 /* Size is known at compile time. */
707 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS),
708
709 /* MEM is of an allocated object of type in program BTF. This is used to
710 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
711 */
712 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS),
713
714 /* PTR was passed from the kernel in a trusted context, and may be
715 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
716 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
717 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
718 * without invoking bpf_kptr_xchg(). What we really need to know is
719 * whether a pointer is safe to pass to a kfunc or BPF helper function.
720 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
721 * helpers, they do not cover all possible instances of unsafe
722 * pointers. For example, a pointer that was obtained from walking a
723 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
724 * fact that it may be NULL, invalid, etc. This is due to backwards
725 * compatibility requirements, as this was the behavior that was first
726 * introduced when kptrs were added. The behavior is now considered
727 * deprecated, and PTR_UNTRUSTED will eventually be removed.
728 *
729 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
730 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
731 * For example, pointers passed to tracepoint arguments are considered
732 * PTR_TRUSTED, as are pointers that are passed to struct_ops
733 * callbacks. As alluded to above, pointers that are obtained from
734 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
735 * struct task_struct *task is PTR_TRUSTED, then accessing
736 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
737 * in a BPF register. Similarly, pointers passed to certain programs
738 * types such as kretprobes are not guaranteed to be valid, as they may
739 * for example contain an object that was recently freed.
740 */
741 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS),
742
743 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
744 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS),
745
746 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
747 * Currently only valid for linked-list and rbtree nodes. If the nodes
748 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
749 */
750 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS),
751
752 /* DYNPTR points to sk_buff */
753 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS),
754
755 /* DYNPTR points to xdp_buff */
756 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS),
757
758 /* Memory must be aligned on some architectures, used in combination with
759 * MEM_FIXED_SIZE.
760 */
761 MEM_ALIGNED = BIT(17 + BPF_BASE_TYPE_BITS),
762
763 /* MEM is being written to, often combined with MEM_UNINIT. Non-presence
764 * of MEM_WRITE means that MEM is only being read. MEM_WRITE without the
765 * MEM_UNINIT means that memory needs to be initialized since it is also
766 * read.
767 */
768 MEM_WRITE = BIT(18 + BPF_BASE_TYPE_BITS),
769
770 __BPF_TYPE_FLAG_MAX,
771 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1,
772 };
773
774 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
775 | DYNPTR_TYPE_XDP)
776
777 /* Max number of base types. */
778 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS)
779
780 /* Max number of all types. */
781 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
782
783 /* function argument constraints */
784 enum bpf_arg_type {
785 ARG_DONTCARE = 0, /* unused argument in helper function */
786
787 /* the following constraints used to prototype
788 * bpf_map_lookup/update/delete_elem() functions
789 */
790 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */
791 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */
792 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */
793
794 /* Used to prototype bpf_memcmp() and other functions that access data
795 * on eBPF program stack
796 */
797 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */
798 ARG_PTR_TO_ARENA,
799
800 ARG_CONST_SIZE, /* number of bytes accessed from memory */
801 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */
802
803 ARG_PTR_TO_CTX, /* pointer to context */
804 ARG_ANYTHING, /* any (initialized) argument is ok */
805 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */
806 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */
807 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */
808 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */
809 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */
810 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */
811 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
812 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */
813 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */
814 ARG_PTR_TO_STACK, /* pointer to stack */
815 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */
816 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */
817 ARG_KPTR_XCHG_DEST, /* pointer to destination that kptrs are bpf_kptr_xchg'd into */
818 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
819 __BPF_ARG_TYPE_MAX,
820
821 /* Extended arg_types. */
822 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
823 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
824 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
825 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
826 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
827 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
828 /* Pointer to memory does not need to be initialized, since helper function
829 * fills all bytes or clears them in error case.
830 */
831 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | MEM_WRITE | ARG_PTR_TO_MEM,
832 /* Pointer to valid memory of size known at compile time. */
833 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
834
835 /* This must be the last entry. Its purpose is to ensure the enum is
836 * wide enough to hold the higher bits reserved for bpf_type_flag.
837 */
838 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT,
839 };
840 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
841
842 /* type of values returned from helper functions */
843 enum bpf_return_type {
844 RET_INTEGER, /* function returns integer */
845 RET_VOID, /* function doesn't return anything */
846 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */
847 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */
848 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */
849 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */
850 RET_PTR_TO_MEM, /* returns a pointer to memory */
851 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */
852 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */
853 __BPF_RET_TYPE_MAX,
854
855 /* Extended ret_types. */
856 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
857 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
858 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
859 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
860 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
861 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM,
862 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
863 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID,
864
865 /* This must be the last entry. Its purpose is to ensure the enum is
866 * wide enough to hold the higher bits reserved for bpf_type_flag.
867 */
868 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT,
869 };
870 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
871
872 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
873 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
874 * instructions after verifying
875 */
876 struct bpf_func_proto {
877 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
878 bool gpl_only;
879 bool pkt_access;
880 bool might_sleep;
881 /* set to true if helper follows contract for llvm
882 * attribute bpf_fastcall:
883 * - void functions do not scratch r0
884 * - functions taking N arguments scratch only registers r1-rN
885 */
886 bool allow_fastcall;
887 enum bpf_return_type ret_type;
888 union {
889 struct {
890 enum bpf_arg_type arg1_type;
891 enum bpf_arg_type arg2_type;
892 enum bpf_arg_type arg3_type;
893 enum bpf_arg_type arg4_type;
894 enum bpf_arg_type arg5_type;
895 };
896 enum bpf_arg_type arg_type[5];
897 };
898 union {
899 struct {
900 u32 *arg1_btf_id;
901 u32 *arg2_btf_id;
902 u32 *arg3_btf_id;
903 u32 *arg4_btf_id;
904 u32 *arg5_btf_id;
905 };
906 u32 *arg_btf_id[5];
907 struct {
908 size_t arg1_size;
909 size_t arg2_size;
910 size_t arg3_size;
911 size_t arg4_size;
912 size_t arg5_size;
913 };
914 size_t arg_size[5];
915 };
916 int *ret_btf_id; /* return value btf_id */
917 bool (*allowed)(const struct bpf_prog *prog);
918 };
919
920 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is
921 * the first argument to eBPF programs.
922 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
923 */
924 struct bpf_context;
925
926 enum bpf_access_type {
927 BPF_READ = 1,
928 BPF_WRITE = 2
929 };
930
931 /* types of values stored in eBPF registers */
932 /* Pointer types represent:
933 * pointer
934 * pointer + imm
935 * pointer + (u16) var
936 * pointer + (u16) var + imm
937 * if (range > 0) then [ptr, ptr + range - off) is safe to access
938 * if (id > 0) means that some 'var' was added
939 * if (off > 0) means that 'imm' was added
940 */
941 enum bpf_reg_type {
942 NOT_INIT = 0, /* nothing was written into register */
943 SCALAR_VALUE, /* reg doesn't contain a valid pointer */
944 PTR_TO_CTX, /* reg points to bpf_context */
945 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */
946 PTR_TO_MAP_VALUE, /* reg points to map element value */
947 PTR_TO_MAP_KEY, /* reg points to a map element key */
948 PTR_TO_STACK, /* reg == frame_pointer + offset */
949 PTR_TO_PACKET_META, /* skb->data - meta_len */
950 PTR_TO_PACKET, /* reg points to skb->data */
951 PTR_TO_PACKET_END, /* skb->data + headlen */
952 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */
953 PTR_TO_SOCKET, /* reg points to struct bpf_sock */
954 PTR_TO_SOCK_COMMON, /* reg points to sock_common */
955 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */
956 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */
957 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */
958 /* PTR_TO_BTF_ID points to a kernel struct that does not need
959 * to be null checked by the BPF program. This does not imply the
960 * pointer is _not_ null and in practice this can easily be a null
961 * pointer when reading pointer chains. The assumption is program
962 * context will handle null pointer dereference typically via fault
963 * handling. The verifier must keep this in mind and can make no
964 * assumptions about null or non-null when doing branch analysis.
965 * Further, when passed into helpers the helpers can not, without
966 * additional context, assume the value is non-null.
967 */
968 PTR_TO_BTF_ID,
969 PTR_TO_MEM, /* reg points to valid memory region */
970 PTR_TO_ARENA,
971 PTR_TO_BUF, /* reg points to a read/write buffer */
972 PTR_TO_FUNC, /* reg points to a bpf program function */
973 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */
974 __BPF_REG_TYPE_MAX,
975
976 /* Extended reg_types. */
977 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
978 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET,
979 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
980 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
981 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
982 * been checked for null. Used primarily to inform the verifier
983 * an explicit null check is required for this struct.
984 */
985 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID,
986
987 /* This must be the last entry. Its purpose is to ensure the enum is
988 * wide enough to hold the higher bits reserved for bpf_type_flag.
989 */
990 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT,
991 };
992 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
993
994 /* The information passed from prog-specific *_is_valid_access
995 * back to the verifier.
996 */
997 struct bpf_insn_access_aux {
998 enum bpf_reg_type reg_type;
999 bool is_ldsx;
1000 union {
1001 int ctx_field_size;
1002 struct {
1003 struct btf *btf;
1004 u32 btf_id;
1005 u32 ref_obj_id;
1006 };
1007 };
1008 struct bpf_verifier_log *log; /* for verbose logs */
1009 bool is_retval; /* is accessing function return value ? */
1010 };
1011
1012 static inline void
bpf_ctx_record_field_size(struct bpf_insn_access_aux * aux,u32 size)1013 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
1014 {
1015 aux->ctx_field_size = size;
1016 }
1017
bpf_is_ldimm64(const struct bpf_insn * insn)1018 static bool bpf_is_ldimm64(const struct bpf_insn *insn)
1019 {
1020 return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
1021 }
1022
bpf_pseudo_func(const struct bpf_insn * insn)1023 static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
1024 {
1025 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
1026 }
1027
1028 /* Given a BPF_ATOMIC instruction @atomic_insn, return true if it is an
1029 * atomic load or store, and false if it is a read-modify-write instruction.
1030 */
1031 static inline bool
bpf_atomic_is_load_store(const struct bpf_insn * atomic_insn)1032 bpf_atomic_is_load_store(const struct bpf_insn *atomic_insn)
1033 {
1034 switch (atomic_insn->imm) {
1035 case BPF_LOAD_ACQ:
1036 case BPF_STORE_REL:
1037 return true;
1038 default:
1039 return false;
1040 }
1041 }
1042
1043 struct bpf_prog_ops {
1044 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
1045 union bpf_attr __user *uattr);
1046 };
1047
1048 struct bpf_reg_state;
1049 struct bpf_verifier_ops {
1050 /* return eBPF function prototype for verification */
1051 const struct bpf_func_proto *
1052 (*get_func_proto)(enum bpf_func_id func_id,
1053 const struct bpf_prog *prog);
1054
1055 /* return true if 'size' wide access at offset 'off' within bpf_context
1056 * with 'type' (read or write) is allowed
1057 */
1058 bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
1059 const struct bpf_prog *prog,
1060 struct bpf_insn_access_aux *info);
1061 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
1062 const struct bpf_prog *prog);
1063 int (*gen_epilogue)(struct bpf_insn *insn, const struct bpf_prog *prog,
1064 s16 ctx_stack_off);
1065 int (*gen_ld_abs)(const struct bpf_insn *orig,
1066 struct bpf_insn *insn_buf);
1067 u32 (*convert_ctx_access)(enum bpf_access_type type,
1068 const struct bpf_insn *src,
1069 struct bpf_insn *dst,
1070 struct bpf_prog *prog, u32 *target_size);
1071 int (*btf_struct_access)(struct bpf_verifier_log *log,
1072 const struct bpf_reg_state *reg,
1073 int off, int size);
1074 };
1075
1076 struct bpf_prog_offload_ops {
1077 /* verifier basic callbacks */
1078 int (*insn_hook)(struct bpf_verifier_env *env,
1079 int insn_idx, int prev_insn_idx);
1080 int (*finalize)(struct bpf_verifier_env *env);
1081 /* verifier optimization callbacks (called after .finalize) */
1082 int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
1083 struct bpf_insn *insn);
1084 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
1085 /* program management callbacks */
1086 int (*prepare)(struct bpf_prog *prog);
1087 int (*translate)(struct bpf_prog *prog);
1088 void (*destroy)(struct bpf_prog *prog);
1089 };
1090
1091 struct bpf_prog_offload {
1092 struct bpf_prog *prog;
1093 struct net_device *netdev;
1094 struct bpf_offload_dev *offdev;
1095 void *dev_priv;
1096 struct list_head offloads;
1097 bool dev_state;
1098 bool opt_failed;
1099 void *jited_image;
1100 u32 jited_len;
1101 };
1102
1103 /* The longest tracepoint has 12 args.
1104 * See include/trace/bpf_probe.h
1105 */
1106 #define MAX_BPF_FUNC_ARGS 12
1107
1108 /* The maximum number of arguments passed through registers
1109 * a single function may have.
1110 */
1111 #define MAX_BPF_FUNC_REG_ARGS 5
1112
1113 /* The argument is a structure. */
1114 #define BTF_FMODEL_STRUCT_ARG BIT(0)
1115
1116 /* The argument is signed. */
1117 #define BTF_FMODEL_SIGNED_ARG BIT(1)
1118
1119 struct btf_func_model {
1120 u8 ret_size;
1121 u8 ret_flags;
1122 u8 nr_args;
1123 u8 arg_size[MAX_BPF_FUNC_ARGS];
1124 u8 arg_flags[MAX_BPF_FUNC_ARGS];
1125 };
1126
1127 /* Restore arguments before returning from trampoline to let original function
1128 * continue executing. This flag is used for fentry progs when there are no
1129 * fexit progs.
1130 */
1131 #define BPF_TRAMP_F_RESTORE_REGS BIT(0)
1132 /* Call original function after fentry progs, but before fexit progs.
1133 * Makes sense for fentry/fexit, normal calls and indirect calls.
1134 */
1135 #define BPF_TRAMP_F_CALL_ORIG BIT(1)
1136 /* Skip current frame and return to parent. Makes sense for fentry/fexit
1137 * programs only. Should not be used with normal calls and indirect calls.
1138 */
1139 #define BPF_TRAMP_F_SKIP_FRAME BIT(2)
1140 /* Store IP address of the caller on the trampoline stack,
1141 * so it's available for trampoline's programs.
1142 */
1143 #define BPF_TRAMP_F_IP_ARG BIT(3)
1144 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1145 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4)
1146
1147 /* Get original function from stack instead of from provided direct address.
1148 * Makes sense for trampolines with fexit or fmod_ret programs.
1149 */
1150 #define BPF_TRAMP_F_ORIG_STACK BIT(5)
1151
1152 /* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1153 * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1154 */
1155 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6)
1156
1157 /* Indicate that current trampoline is in a tail call context. Then, it has to
1158 * cache and restore tail_call_cnt to avoid infinite tail call loop.
1159 */
1160 #define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7)
1161
1162 /*
1163 * Indicate the trampoline should be suitable to receive indirect calls;
1164 * without this indirectly calling the generated code can result in #UD/#CP,
1165 * depending on the CFI options.
1166 *
1167 * Used by bpf_struct_ops.
1168 *
1169 * Incompatible with FENTRY usage, overloads @func_addr argument.
1170 */
1171 #define BPF_TRAMP_F_INDIRECT BIT(8)
1172
1173 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1174 * bytes on x86.
1175 */
1176 enum {
1177 #if defined(__s390x__)
1178 BPF_MAX_TRAMP_LINKS = 27,
1179 #else
1180 BPF_MAX_TRAMP_LINKS = 38,
1181 #endif
1182 };
1183
1184 struct bpf_tramp_links {
1185 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1186 int nr_links;
1187 };
1188
1189 struct bpf_tramp_run_ctx;
1190
1191 /* Different use cases for BPF trampoline:
1192 * 1. replace nop at the function entry (kprobe equivalent)
1193 * flags = BPF_TRAMP_F_RESTORE_REGS
1194 * fentry = a set of programs to run before returning from trampoline
1195 *
1196 * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1197 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1198 * orig_call = fentry_ip + MCOUNT_INSN_SIZE
1199 * fentry = a set of program to run before calling original function
1200 * fexit = a set of program to run after original function
1201 *
1202 * 3. replace direct call instruction anywhere in the function body
1203 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1204 * With flags = 0
1205 * fentry = a set of programs to run before returning from trampoline
1206 * With flags = BPF_TRAMP_F_CALL_ORIG
1207 * orig_call = original callback addr or direct function addr
1208 * fentry = a set of program to run before calling original function
1209 * fexit = a set of program to run after original function
1210 */
1211 struct bpf_tramp_image;
1212 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
1213 const struct btf_func_model *m, u32 flags,
1214 struct bpf_tramp_links *tlinks,
1215 void *func_addr);
1216 void *arch_alloc_bpf_trampoline(unsigned int size);
1217 void arch_free_bpf_trampoline(void *image, unsigned int size);
1218 int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size);
1219 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1220 struct bpf_tramp_links *tlinks, void *func_addr);
1221
1222 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1223 struct bpf_tramp_run_ctx *run_ctx);
1224 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1225 struct bpf_tramp_run_ctx *run_ctx);
1226 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1227 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1228 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1229 struct bpf_tramp_run_ctx *run_ctx);
1230 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1231 struct bpf_tramp_run_ctx *run_ctx);
1232 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1233 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1234
1235 struct bpf_ksym {
1236 unsigned long start;
1237 unsigned long end;
1238 char name[KSYM_NAME_LEN];
1239 struct list_head lnode;
1240 struct latch_tree_node tnode;
1241 bool prog;
1242 };
1243
1244 enum bpf_tramp_prog_type {
1245 BPF_TRAMP_FENTRY,
1246 BPF_TRAMP_FEXIT,
1247 BPF_TRAMP_MODIFY_RETURN,
1248 BPF_TRAMP_MAX,
1249 BPF_TRAMP_REPLACE, /* more than MAX */
1250 };
1251
1252 struct bpf_tramp_image {
1253 void *image;
1254 int size;
1255 struct bpf_ksym ksym;
1256 struct percpu_ref pcref;
1257 void *ip_after_call;
1258 void *ip_epilogue;
1259 union {
1260 struct rcu_head rcu;
1261 struct work_struct work;
1262 };
1263 };
1264
1265 struct bpf_trampoline {
1266 /* hlist for trampoline_table */
1267 struct hlist_node hlist;
1268 struct ftrace_ops *fops;
1269 /* serializes access to fields of this trampoline */
1270 struct mutex mutex;
1271 refcount_t refcnt;
1272 u32 flags;
1273 u64 key;
1274 struct {
1275 struct btf_func_model model;
1276 void *addr;
1277 bool ftrace_managed;
1278 } func;
1279 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1280 * program by replacing one of its functions. func.addr is the address
1281 * of the function it replaced.
1282 */
1283 struct bpf_prog *extension_prog;
1284 /* list of BPF programs using this trampoline */
1285 struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1286 /* Number of attached programs. A counter per kind. */
1287 int progs_cnt[BPF_TRAMP_MAX];
1288 /* Executable image of trampoline */
1289 struct bpf_tramp_image *cur_image;
1290 };
1291
1292 struct bpf_attach_target_info {
1293 struct btf_func_model fmodel;
1294 long tgt_addr;
1295 struct module *tgt_mod;
1296 const char *tgt_name;
1297 const struct btf_type *tgt_type;
1298 };
1299
1300 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1301
1302 struct bpf_dispatcher_prog {
1303 struct bpf_prog *prog;
1304 refcount_t users;
1305 };
1306
1307 struct bpf_dispatcher {
1308 /* dispatcher mutex */
1309 struct mutex mutex;
1310 void *func;
1311 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1312 int num_progs;
1313 void *image;
1314 void *rw_image;
1315 u32 image_off;
1316 struct bpf_ksym ksym;
1317 #ifdef CONFIG_HAVE_STATIC_CALL
1318 struct static_call_key *sc_key;
1319 void *sc_tramp;
1320 #endif
1321 };
1322
1323 #ifndef __bpfcall
1324 #define __bpfcall __nocfi
1325 #endif
1326
bpf_dispatcher_nop_func(const void * ctx,const struct bpf_insn * insnsi,bpf_func_t bpf_func)1327 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func(
1328 const void *ctx,
1329 const struct bpf_insn *insnsi,
1330 bpf_func_t bpf_func)
1331 {
1332 return bpf_func(ctx, insnsi);
1333 }
1334
1335 /* the implementation of the opaque uapi struct bpf_dynptr */
1336 struct bpf_dynptr_kern {
1337 void *data;
1338 /* Size represents the number of usable bytes of dynptr data.
1339 * If for example the offset is at 4 for a local dynptr whose data is
1340 * of type u64, the number of usable bytes is 4.
1341 *
1342 * The upper 8 bits are reserved. It is as follows:
1343 * Bits 0 - 23 = size
1344 * Bits 24 - 30 = dynptr type
1345 * Bit 31 = whether dynptr is read-only
1346 */
1347 u32 size;
1348 u32 offset;
1349 } __aligned(8);
1350
1351 enum bpf_dynptr_type {
1352 BPF_DYNPTR_TYPE_INVALID,
1353 /* Points to memory that is local to the bpf program */
1354 BPF_DYNPTR_TYPE_LOCAL,
1355 /* Underlying data is a ringbuf record */
1356 BPF_DYNPTR_TYPE_RINGBUF,
1357 /* Underlying data is a sk_buff */
1358 BPF_DYNPTR_TYPE_SKB,
1359 /* Underlying data is a xdp_buff */
1360 BPF_DYNPTR_TYPE_XDP,
1361 };
1362
1363 int bpf_dynptr_check_size(u32 size);
1364 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1365 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len);
1366 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len);
1367 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr);
1368 int __bpf_dynptr_write(const struct bpf_dynptr_kern *dst, u32 offset,
1369 void *src, u32 len, u64 flags);
1370 void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u32 offset,
1371 void *buffer__opt, u32 buffer__szk);
1372
bpf_dynptr_check_off_len(const struct bpf_dynptr_kern * ptr,u32 offset,u32 len)1373 static inline int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
1374 {
1375 u32 size = __bpf_dynptr_size(ptr);
1376
1377 if (len > size || offset > size - len)
1378 return -E2BIG;
1379
1380 return 0;
1381 }
1382
1383 #ifdef CONFIG_BPF_JIT
1384 int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1385 struct bpf_trampoline *tr,
1386 struct bpf_prog *tgt_prog);
1387 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1388 struct bpf_trampoline *tr,
1389 struct bpf_prog *tgt_prog);
1390 struct bpf_trampoline *bpf_trampoline_get(u64 key,
1391 struct bpf_attach_target_info *tgt_info);
1392 void bpf_trampoline_put(struct bpf_trampoline *tr);
1393 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1394
1395 /*
1396 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1397 * indirection with a direct call to the bpf program. If the architecture does
1398 * not have STATIC_CALL, avoid a double-indirection.
1399 */
1400 #ifdef CONFIG_HAVE_STATIC_CALL
1401
1402 #define __BPF_DISPATCHER_SC_INIT(_name) \
1403 .sc_key = &STATIC_CALL_KEY(_name), \
1404 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1405
1406 #define __BPF_DISPATCHER_SC(name) \
1407 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1408
1409 #define __BPF_DISPATCHER_CALL(name) \
1410 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1411
1412 #define __BPF_DISPATCHER_UPDATE(_d, _new) \
1413 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1414
1415 #else
1416 #define __BPF_DISPATCHER_SC_INIT(name)
1417 #define __BPF_DISPATCHER_SC(name)
1418 #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi)
1419 #define __BPF_DISPATCHER_UPDATE(_d, _new)
1420 #endif
1421
1422 #define BPF_DISPATCHER_INIT(_name) { \
1423 .mutex = __MUTEX_INITIALIZER(_name.mutex), \
1424 .func = &_name##_func, \
1425 .progs = {}, \
1426 .num_progs = 0, \
1427 .image = NULL, \
1428 .image_off = 0, \
1429 .ksym = { \
1430 .name = #_name, \
1431 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \
1432 }, \
1433 __BPF_DISPATCHER_SC_INIT(_name##_call) \
1434 }
1435
1436 #define DEFINE_BPF_DISPATCHER(name) \
1437 __BPF_DISPATCHER_SC(name); \
1438 noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \
1439 const void *ctx, \
1440 const struct bpf_insn *insnsi, \
1441 bpf_func_t bpf_func) \
1442 { \
1443 return __BPF_DISPATCHER_CALL(name); \
1444 } \
1445 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \
1446 struct bpf_dispatcher bpf_dispatcher_##name = \
1447 BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1448
1449 #define DECLARE_BPF_DISPATCHER(name) \
1450 unsigned int bpf_dispatcher_##name##_func( \
1451 const void *ctx, \
1452 const struct bpf_insn *insnsi, \
1453 bpf_func_t bpf_func); \
1454 extern struct bpf_dispatcher bpf_dispatcher_##name;
1455
1456 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1457 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1458 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1459 struct bpf_prog *to);
1460 /* Called only from JIT-enabled code, so there's no need for stubs. */
1461 void bpf_image_ksym_init(void *data, unsigned int size, struct bpf_ksym *ksym);
1462 void bpf_image_ksym_add(struct bpf_ksym *ksym);
1463 void bpf_image_ksym_del(struct bpf_ksym *ksym);
1464 void bpf_ksym_add(struct bpf_ksym *ksym);
1465 void bpf_ksym_del(struct bpf_ksym *ksym);
1466 int bpf_jit_charge_modmem(u32 size);
1467 void bpf_jit_uncharge_modmem(u32 size);
1468 bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1469 #else
bpf_trampoline_link_prog(struct bpf_tramp_link * link,struct bpf_trampoline * tr,struct bpf_prog * tgt_prog)1470 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1471 struct bpf_trampoline *tr,
1472 struct bpf_prog *tgt_prog)
1473 {
1474 return -ENOTSUPP;
1475 }
bpf_trampoline_unlink_prog(struct bpf_tramp_link * link,struct bpf_trampoline * tr,struct bpf_prog * tgt_prog)1476 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1477 struct bpf_trampoline *tr,
1478 struct bpf_prog *tgt_prog)
1479 {
1480 return -ENOTSUPP;
1481 }
bpf_trampoline_get(u64 key,struct bpf_attach_target_info * tgt_info)1482 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1483 struct bpf_attach_target_info *tgt_info)
1484 {
1485 return NULL;
1486 }
bpf_trampoline_put(struct bpf_trampoline * tr)1487 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1488 #define DEFINE_BPF_DISPATCHER(name)
1489 #define DECLARE_BPF_DISPATCHER(name)
1490 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1491 #define BPF_DISPATCHER_PTR(name) NULL
bpf_dispatcher_change_prog(struct bpf_dispatcher * d,struct bpf_prog * from,struct bpf_prog * to)1492 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1493 struct bpf_prog *from,
1494 struct bpf_prog *to) {}
is_bpf_image_address(unsigned long address)1495 static inline bool is_bpf_image_address(unsigned long address)
1496 {
1497 return false;
1498 }
bpf_prog_has_trampoline(const struct bpf_prog * prog)1499 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1500 {
1501 return false;
1502 }
1503 #endif
1504
1505 struct bpf_func_info_aux {
1506 u16 linkage;
1507 bool unreliable;
1508 bool called : 1;
1509 bool verified : 1;
1510 };
1511
1512 enum bpf_jit_poke_reason {
1513 BPF_POKE_REASON_TAIL_CALL,
1514 };
1515
1516 /* Descriptor of pokes pointing /into/ the JITed image. */
1517 struct bpf_jit_poke_descriptor {
1518 void *tailcall_target;
1519 void *tailcall_bypass;
1520 void *bypass_addr;
1521 void *aux;
1522 union {
1523 struct {
1524 struct bpf_map *map;
1525 u32 key;
1526 } tail_call;
1527 };
1528 bool tailcall_target_stable;
1529 u8 adj_off;
1530 u16 reason;
1531 u32 insn_idx;
1532 };
1533
1534 /* reg_type info for ctx arguments */
1535 struct bpf_ctx_arg_aux {
1536 u32 offset;
1537 enum bpf_reg_type reg_type;
1538 struct btf *btf;
1539 u32 btf_id;
1540 u32 ref_obj_id;
1541 bool refcounted;
1542 };
1543
1544 struct btf_mod_pair {
1545 struct btf *btf;
1546 struct module *module;
1547 };
1548
1549 struct bpf_kfunc_desc_tab;
1550
1551 enum bpf_stream_id {
1552 BPF_STDOUT = 1,
1553 BPF_STDERR = 2,
1554 };
1555
1556 struct bpf_stream_elem {
1557 struct llist_node node;
1558 int total_len;
1559 int consumed_len;
1560 char str[];
1561 };
1562
1563 enum {
1564 /* 100k bytes */
1565 BPF_STREAM_MAX_CAPACITY = 100000ULL,
1566 };
1567
1568 struct bpf_stream {
1569 atomic_t capacity;
1570 struct llist_head log; /* list of in-flight stream elements in LIFO order */
1571
1572 struct mutex lock; /* lock protecting backlog_{head,tail} */
1573 struct llist_node *backlog_head; /* list of in-flight stream elements in FIFO order */
1574 struct llist_node *backlog_tail; /* tail of the list above */
1575 };
1576
1577 struct bpf_stream_stage {
1578 struct llist_head log;
1579 int len;
1580 };
1581
1582 struct bpf_prog_aux {
1583 atomic64_t refcnt;
1584 u32 used_map_cnt;
1585 u32 used_btf_cnt;
1586 u32 max_ctx_offset;
1587 u32 max_pkt_offset;
1588 u32 max_tp_access;
1589 u32 stack_depth;
1590 u32 id;
1591 u32 func_cnt; /* used by non-func prog as the number of func progs */
1592 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */
1593 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1594 u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1595 u32 attach_st_ops_member_off;
1596 u32 ctx_arg_info_size;
1597 u32 max_rdonly_access;
1598 u32 max_rdwr_access;
1599 struct btf *attach_btf;
1600 struct bpf_ctx_arg_aux *ctx_arg_info;
1601 void __percpu *priv_stack_ptr;
1602 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1603 struct bpf_prog *dst_prog;
1604 struct bpf_trampoline *dst_trampoline;
1605 enum bpf_prog_type saved_dst_prog_type;
1606 enum bpf_attach_type saved_dst_attach_type;
1607 bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1608 bool dev_bound; /* Program is bound to the netdev. */
1609 bool offload_requested; /* Program is bound and offloaded to the netdev. */
1610 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1611 bool attach_tracing_prog; /* true if tracing another tracing program */
1612 bool func_proto_unreliable;
1613 bool tail_call_reachable;
1614 bool xdp_has_frags;
1615 bool exception_cb;
1616 bool exception_boundary;
1617 bool is_extended; /* true if extended by freplace program */
1618 bool jits_use_priv_stack;
1619 bool priv_stack_requested;
1620 bool changes_pkt_data;
1621 bool might_sleep;
1622 u64 prog_array_member_cnt; /* counts how many times as member of prog_array */
1623 struct mutex ext_mutex; /* mutex for is_extended and prog_array_member_cnt */
1624 struct bpf_arena *arena;
1625 void (*recursion_detected)(struct bpf_prog *prog); /* callback if recursion is detected */
1626 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1627 const struct btf_type *attach_func_proto;
1628 /* function name for valid attach_btf_id */
1629 const char *attach_func_name;
1630 struct bpf_prog **func;
1631 void *jit_data; /* JIT specific data. arch dependent */
1632 struct bpf_jit_poke_descriptor *poke_tab;
1633 struct bpf_kfunc_desc_tab *kfunc_tab;
1634 struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1635 u32 size_poke_tab;
1636 #ifdef CONFIG_FINEIBT
1637 struct bpf_ksym ksym_prefix;
1638 #endif
1639 struct bpf_ksym ksym;
1640 const struct bpf_prog_ops *ops;
1641 const struct bpf_struct_ops *st_ops;
1642 struct bpf_map **used_maps;
1643 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1644 struct btf_mod_pair *used_btfs;
1645 struct bpf_prog *prog;
1646 struct user_struct *user;
1647 u64 load_time; /* ns since boottime */
1648 u32 verified_insns;
1649 int cgroup_atype; /* enum cgroup_bpf_attach_type */
1650 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1651 char name[BPF_OBJ_NAME_LEN];
1652 u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64);
1653 #ifdef CONFIG_SECURITY
1654 void *security;
1655 #endif
1656 struct bpf_token *token;
1657 struct bpf_prog_offload *offload;
1658 struct btf *btf;
1659 struct bpf_func_info *func_info;
1660 struct bpf_func_info_aux *func_info_aux;
1661 /* bpf_line_info loaded from userspace. linfo->insn_off
1662 * has the xlated insn offset.
1663 * Both the main and sub prog share the same linfo.
1664 * The subprog can access its first linfo by
1665 * using the linfo_idx.
1666 */
1667 struct bpf_line_info *linfo;
1668 /* jited_linfo is the jited addr of the linfo. It has a
1669 * one to one mapping to linfo:
1670 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1671 * Both the main and sub prog share the same jited_linfo.
1672 * The subprog can access its first jited_linfo by
1673 * using the linfo_idx.
1674 */
1675 void **jited_linfo;
1676 u32 func_info_cnt;
1677 u32 nr_linfo;
1678 /* subprog can use linfo_idx to access its first linfo and
1679 * jited_linfo.
1680 * main prog always has linfo_idx == 0
1681 */
1682 u32 linfo_idx;
1683 struct module *mod;
1684 u32 num_exentries;
1685 struct exception_table_entry *extable;
1686 union {
1687 struct work_struct work;
1688 struct rcu_head rcu;
1689 };
1690 struct bpf_stream stream[2];
1691 };
1692
1693 struct bpf_prog {
1694 u16 pages; /* Number of allocated pages */
1695 u16 jited:1, /* Is our filter JIT'ed? */
1696 jit_requested:1,/* archs need to JIT the prog */
1697 gpl_compatible:1, /* Is filter GPL compatible? */
1698 cb_access:1, /* Is control block accessed? */
1699 dst_needed:1, /* Do we need dst entry? */
1700 blinding_requested:1, /* needs constant blinding */
1701 blinded:1, /* Was blinded */
1702 is_func:1, /* program is a bpf function */
1703 kprobe_override:1, /* Do we override a kprobe? */
1704 has_callchain_buf:1, /* callchain buffer allocated? */
1705 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1706 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1707 call_get_func_ip:1, /* Do we call get_func_ip() */
1708 tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */
1709 sleepable:1; /* BPF program is sleepable */
1710 enum bpf_prog_type type; /* Type of BPF program */
1711 enum bpf_attach_type expected_attach_type; /* For some prog types */
1712 u32 len; /* Number of filter blocks */
1713 u32 jited_len; /* Size of jited insns in bytes */
1714 u8 tag[BPF_TAG_SIZE];
1715 struct bpf_prog_stats __percpu *stats;
1716 int __percpu *active;
1717 unsigned int (*bpf_func)(const void *ctx,
1718 const struct bpf_insn *insn);
1719 struct bpf_prog_aux *aux; /* Auxiliary fields */
1720 struct sock_fprog_kern *orig_prog; /* Original BPF program */
1721 /* Instructions for interpreter */
1722 union {
1723 DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1724 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1725 };
1726 };
1727
1728 struct bpf_array_aux {
1729 /* Programs with direct jumps into programs part of this array. */
1730 struct list_head poke_progs;
1731 struct bpf_map *map;
1732 struct mutex poke_mutex;
1733 struct work_struct work;
1734 };
1735
1736 struct bpf_link {
1737 atomic64_t refcnt;
1738 u32 id;
1739 enum bpf_link_type type;
1740 const struct bpf_link_ops *ops;
1741 struct bpf_prog *prog;
1742
1743 u32 flags;
1744 enum bpf_attach_type attach_type;
1745
1746 /* rcu is used before freeing, work can be used to schedule that
1747 * RCU-based freeing before that, so they never overlap
1748 */
1749 union {
1750 struct rcu_head rcu;
1751 struct work_struct work;
1752 };
1753 /* whether BPF link itself has "sleepable" semantics, which can differ
1754 * from underlying BPF program having a "sleepable" semantics, as BPF
1755 * link's semantics is determined by target attach hook
1756 */
1757 bool sleepable;
1758 };
1759
1760 struct bpf_link_ops {
1761 void (*release)(struct bpf_link *link);
1762 /* deallocate link resources callback, called without RCU grace period
1763 * waiting
1764 */
1765 void (*dealloc)(struct bpf_link *link);
1766 /* deallocate link resources callback, called after RCU grace period;
1767 * if either the underlying BPF program is sleepable or BPF link's
1768 * target hook is sleepable, we'll go through tasks trace RCU GP and
1769 * then "classic" RCU GP; this need for chaining tasks trace and
1770 * classic RCU GPs is designated by setting bpf_link->sleepable flag
1771 */
1772 void (*dealloc_deferred)(struct bpf_link *link);
1773 int (*detach)(struct bpf_link *link);
1774 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1775 struct bpf_prog *old_prog);
1776 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1777 int (*fill_link_info)(const struct bpf_link *link,
1778 struct bpf_link_info *info);
1779 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1780 struct bpf_map *old_map);
1781 __poll_t (*poll)(struct file *file, struct poll_table_struct *pts);
1782 };
1783
1784 struct bpf_tramp_link {
1785 struct bpf_link link;
1786 struct hlist_node tramp_hlist;
1787 u64 cookie;
1788 };
1789
1790 struct bpf_shim_tramp_link {
1791 struct bpf_tramp_link link;
1792 struct bpf_trampoline *trampoline;
1793 };
1794
1795 struct bpf_tracing_link {
1796 struct bpf_tramp_link link;
1797 struct bpf_trampoline *trampoline;
1798 struct bpf_prog *tgt_prog;
1799 };
1800
1801 struct bpf_raw_tp_link {
1802 struct bpf_link link;
1803 struct bpf_raw_event_map *btp;
1804 u64 cookie;
1805 };
1806
1807 struct bpf_link_primer {
1808 struct bpf_link *link;
1809 struct file *file;
1810 int fd;
1811 u32 id;
1812 };
1813
1814 struct bpf_mount_opts {
1815 kuid_t uid;
1816 kgid_t gid;
1817 umode_t mode;
1818
1819 /* BPF token-related delegation options */
1820 u64 delegate_cmds;
1821 u64 delegate_maps;
1822 u64 delegate_progs;
1823 u64 delegate_attachs;
1824 };
1825
1826 struct bpf_token {
1827 struct work_struct work;
1828 atomic64_t refcnt;
1829 struct user_namespace *userns;
1830 u64 allowed_cmds;
1831 u64 allowed_maps;
1832 u64 allowed_progs;
1833 u64 allowed_attachs;
1834 #ifdef CONFIG_SECURITY
1835 void *security;
1836 #endif
1837 };
1838
1839 struct bpf_struct_ops_value;
1840 struct btf_member;
1841
1842 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1843 /**
1844 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1845 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1846 * of BPF_PROG_TYPE_STRUCT_OPS progs.
1847 * @verifier_ops: A structure of callbacks that are invoked by the verifier
1848 * when determining whether the struct_ops progs in the
1849 * struct_ops map are valid.
1850 * @init: A callback that is invoked a single time, and before any other
1851 * callback, to initialize the structure. A nonzero return value means
1852 * the subsystem could not be initialized.
1853 * @check_member: When defined, a callback invoked by the verifier to allow
1854 * the subsystem to determine if an entry in the struct_ops map
1855 * is valid. A nonzero return value means that the map is
1856 * invalid and should be rejected by the verifier.
1857 * @init_member: A callback that is invoked for each member of the struct_ops
1858 * map to allow the subsystem to initialize the member. A nonzero
1859 * value means the member could not be initialized. This callback
1860 * is exclusive with the @type, @type_id, @value_type, and
1861 * @value_id fields.
1862 * @reg: A callback that is invoked when the struct_ops map has been
1863 * initialized and is being attached to. Zero means the struct_ops map
1864 * has been successfully registered and is live. A nonzero return value
1865 * means the struct_ops map could not be registered.
1866 * @unreg: A callback that is invoked when the struct_ops map should be
1867 * unregistered.
1868 * @update: A callback that is invoked when the live struct_ops map is being
1869 * updated to contain new values. This callback is only invoked when
1870 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1871 * it is assumed that the struct_ops map cannot be updated.
1872 * @validate: A callback that is invoked after all of the members have been
1873 * initialized. This callback should perform static checks on the
1874 * map, meaning that it should either fail or succeed
1875 * deterministically. A struct_ops map that has been validated may
1876 * not necessarily succeed in being registered if the call to @reg
1877 * fails. For example, a valid struct_ops map may be loaded, but
1878 * then fail to be registered due to there being another active
1879 * struct_ops map on the system in the subsystem already. For this
1880 * reason, if this callback is not defined, the check is skipped as
1881 * the struct_ops map will have final verification performed in
1882 * @reg.
1883 * @type: BTF type.
1884 * @value_type: Value type.
1885 * @name: The name of the struct bpf_struct_ops object.
1886 * @func_models: Func models
1887 * @type_id: BTF type id.
1888 * @value_id: BTF value id.
1889 */
1890 struct bpf_struct_ops {
1891 const struct bpf_verifier_ops *verifier_ops;
1892 int (*init)(struct btf *btf);
1893 int (*check_member)(const struct btf_type *t,
1894 const struct btf_member *member,
1895 const struct bpf_prog *prog);
1896 int (*init_member)(const struct btf_type *t,
1897 const struct btf_member *member,
1898 void *kdata, const void *udata);
1899 int (*reg)(void *kdata, struct bpf_link *link);
1900 void (*unreg)(void *kdata, struct bpf_link *link);
1901 int (*update)(void *kdata, void *old_kdata, struct bpf_link *link);
1902 int (*validate)(void *kdata);
1903 void *cfi_stubs;
1904 struct module *owner;
1905 const char *name;
1906 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1907 };
1908
1909 /* Every member of a struct_ops type has an instance even a member is not
1910 * an operator (function pointer). The "info" field will be assigned to
1911 * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the
1912 * argument information required by the verifier to verify the program.
1913 *
1914 * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the
1915 * corresponding entry for an given argument.
1916 */
1917 struct bpf_struct_ops_arg_info {
1918 struct bpf_ctx_arg_aux *info;
1919 u32 cnt;
1920 };
1921
1922 struct bpf_struct_ops_desc {
1923 struct bpf_struct_ops *st_ops;
1924
1925 const struct btf_type *type;
1926 const struct btf_type *value_type;
1927 u32 type_id;
1928 u32 value_id;
1929
1930 /* Collection of argument information for each member */
1931 struct bpf_struct_ops_arg_info *arg_info;
1932 };
1933
1934 enum bpf_struct_ops_state {
1935 BPF_STRUCT_OPS_STATE_INIT,
1936 BPF_STRUCT_OPS_STATE_INUSE,
1937 BPF_STRUCT_OPS_STATE_TOBEFREE,
1938 BPF_STRUCT_OPS_STATE_READY,
1939 };
1940
1941 struct bpf_struct_ops_common_value {
1942 refcount_t refcnt;
1943 enum bpf_struct_ops_state state;
1944 };
1945
1946 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1947 /* This macro helps developer to register a struct_ops type and generate
1948 * type information correctly. Developers should use this macro to register
1949 * a struct_ops type instead of calling __register_bpf_struct_ops() directly.
1950 */
1951 #define register_bpf_struct_ops(st_ops, type) \
1952 ({ \
1953 struct bpf_struct_ops_##type { \
1954 struct bpf_struct_ops_common_value common; \
1955 struct type data ____cacheline_aligned_in_smp; \
1956 }; \
1957 BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \
1958 __register_bpf_struct_ops(st_ops); \
1959 })
1960 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1961 bool bpf_struct_ops_get(const void *kdata);
1962 void bpf_struct_ops_put(const void *kdata);
1963 int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff);
1964 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1965 void *value);
1966 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1967 struct bpf_tramp_link *link,
1968 const struct btf_func_model *model,
1969 void *stub_func,
1970 void **image, u32 *image_off,
1971 bool allow_alloc);
1972 void bpf_struct_ops_image_free(void *image);
bpf_try_module_get(const void * data,struct module * owner)1973 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1974 {
1975 if (owner == BPF_MODULE_OWNER)
1976 return bpf_struct_ops_get(data);
1977 else
1978 return try_module_get(owner);
1979 }
bpf_module_put(const void * data,struct module * owner)1980 static inline void bpf_module_put(const void *data, struct module *owner)
1981 {
1982 if (owner == BPF_MODULE_OWNER)
1983 bpf_struct_ops_put(data);
1984 else
1985 module_put(owner);
1986 }
1987 int bpf_struct_ops_link_create(union bpf_attr *attr);
1988
1989 #ifdef CONFIG_NET
1990 /* Define it here to avoid the use of forward declaration */
1991 struct bpf_dummy_ops_state {
1992 int val;
1993 };
1994
1995 struct bpf_dummy_ops {
1996 int (*test_1)(struct bpf_dummy_ops_state *cb);
1997 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1998 char a3, unsigned long a4);
1999 int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
2000 };
2001
2002 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
2003 union bpf_attr __user *uattr);
2004 #endif
2005 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc,
2006 struct btf *btf,
2007 struct bpf_verifier_log *log);
2008 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2009 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc);
2010 #else
2011 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; })
bpf_try_module_get(const void * data,struct module * owner)2012 static inline bool bpf_try_module_get(const void *data, struct module *owner)
2013 {
2014 return try_module_get(owner);
2015 }
bpf_module_put(const void * data,struct module * owner)2016 static inline void bpf_module_put(const void *data, struct module *owner)
2017 {
2018 module_put(owner);
2019 }
bpf_struct_ops_supported(const struct bpf_struct_ops * st_ops,u32 moff)2020 static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff)
2021 {
2022 return -ENOTSUPP;
2023 }
bpf_struct_ops_map_sys_lookup_elem(struct bpf_map * map,void * key,void * value)2024 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
2025 void *key,
2026 void *value)
2027 {
2028 return -EINVAL;
2029 }
bpf_struct_ops_link_create(union bpf_attr * attr)2030 static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
2031 {
2032 return -EOPNOTSUPP;
2033 }
bpf_map_struct_ops_info_fill(struct bpf_map_info * info,struct bpf_map * map)2034 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map)
2035 {
2036 }
2037
bpf_struct_ops_desc_release(struct bpf_struct_ops_desc * st_ops_desc)2038 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc)
2039 {
2040 }
2041
2042 #endif
2043
2044 int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog,
2045 const struct bpf_ctx_arg_aux *info, u32 cnt);
2046
2047 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
2048 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
2049 int cgroup_atype,
2050 enum bpf_attach_type attach_type);
2051 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
2052 #else
bpf_trampoline_link_cgroup_shim(struct bpf_prog * prog,int cgroup_atype,enum bpf_attach_type attach_type)2053 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
2054 int cgroup_atype,
2055 enum bpf_attach_type attach_type)
2056 {
2057 return -EOPNOTSUPP;
2058 }
bpf_trampoline_unlink_cgroup_shim(struct bpf_prog * prog)2059 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
2060 {
2061 }
2062 #endif
2063
2064 struct bpf_array {
2065 struct bpf_map map;
2066 u32 elem_size;
2067 u32 index_mask;
2068 struct bpf_array_aux *aux;
2069 union {
2070 DECLARE_FLEX_ARRAY(char, value) __aligned(8);
2071 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
2072 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
2073 };
2074 };
2075
2076 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */
2077 #define MAX_TAIL_CALL_CNT 33
2078
2079 /* Maximum number of loops for bpf_loop and bpf_iter_num.
2080 * It's enum to expose it (and thus make it discoverable) through BTF.
2081 */
2082 enum {
2083 BPF_MAX_LOOPS = 8 * 1024 * 1024,
2084 BPF_MAX_TIMED_LOOPS = 0xffff,
2085 };
2086
2087 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \
2088 BPF_F_RDONLY_PROG | \
2089 BPF_F_WRONLY | \
2090 BPF_F_WRONLY_PROG)
2091
2092 #define BPF_MAP_CAN_READ BIT(0)
2093 #define BPF_MAP_CAN_WRITE BIT(1)
2094
2095 /* Maximum number of user-producer ring buffer samples that can be drained in
2096 * a call to bpf_user_ringbuf_drain().
2097 */
2098 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
2099
bpf_map_flags_to_cap(struct bpf_map * map)2100 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
2101 {
2102 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
2103
2104 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
2105 * not possible.
2106 */
2107 if (access_flags & BPF_F_RDONLY_PROG)
2108 return BPF_MAP_CAN_READ;
2109 else if (access_flags & BPF_F_WRONLY_PROG)
2110 return BPF_MAP_CAN_WRITE;
2111 else
2112 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
2113 }
2114
bpf_map_flags_access_ok(u32 access_flags)2115 static inline bool bpf_map_flags_access_ok(u32 access_flags)
2116 {
2117 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
2118 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
2119 }
2120
bpf_map_owner_alloc(struct bpf_map * map)2121 static inline struct bpf_map_owner *bpf_map_owner_alloc(struct bpf_map *map)
2122 {
2123 return kzalloc(sizeof(*map->owner), GFP_ATOMIC);
2124 }
2125
bpf_map_owner_free(struct bpf_map * map)2126 static inline void bpf_map_owner_free(struct bpf_map *map)
2127 {
2128 kfree(map->owner);
2129 }
2130
2131 struct bpf_event_entry {
2132 struct perf_event *event;
2133 struct file *perf_file;
2134 struct file *map_file;
2135 struct rcu_head rcu;
2136 };
2137
map_type_contains_progs(struct bpf_map * map)2138 static inline bool map_type_contains_progs(struct bpf_map *map)
2139 {
2140 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
2141 map->map_type == BPF_MAP_TYPE_DEVMAP ||
2142 map->map_type == BPF_MAP_TYPE_CPUMAP;
2143 }
2144
2145 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
2146 int bpf_prog_calc_tag(struct bpf_prog *fp);
2147
2148 const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
2149 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
2150
2151 const struct bpf_func_proto *bpf_get_perf_event_read_value_proto(void);
2152
2153 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
2154 unsigned long off, unsigned long len);
2155 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
2156 const struct bpf_insn *src,
2157 struct bpf_insn *dst,
2158 struct bpf_prog *prog,
2159 u32 *target_size);
2160
2161 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2162 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
2163
2164 /* an array of programs to be executed under rcu_lock.
2165 *
2166 * Typical usage:
2167 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
2168 *
2169 * the structure returned by bpf_prog_array_alloc() should be populated
2170 * with program pointers and the last pointer must be NULL.
2171 * The user has to keep refcnt on the program and make sure the program
2172 * is removed from the array before bpf_prog_put().
2173 * The 'struct bpf_prog_array *' should only be replaced with xchg()
2174 * since other cpus are walking the array of pointers in parallel.
2175 */
2176 struct bpf_prog_array_item {
2177 struct bpf_prog *prog;
2178 union {
2179 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
2180 u64 bpf_cookie;
2181 };
2182 };
2183
2184 struct bpf_prog_array {
2185 struct rcu_head rcu;
2186 struct bpf_prog_array_item items[];
2187 };
2188
2189 struct bpf_empty_prog_array {
2190 struct bpf_prog_array hdr;
2191 struct bpf_prog *null_prog;
2192 };
2193
2194 /* to avoid allocating empty bpf_prog_array for cgroups that
2195 * don't have bpf program attached use one global 'bpf_empty_prog_array'
2196 * It will not be modified the caller of bpf_prog_array_alloc()
2197 * (since caller requested prog_cnt == 0)
2198 * that pointer should be 'freed' by bpf_prog_array_free()
2199 */
2200 extern struct bpf_empty_prog_array bpf_empty_prog_array;
2201
2202 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
2203 void bpf_prog_array_free(struct bpf_prog_array *progs);
2204 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
2205 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
2206 int bpf_prog_array_length(struct bpf_prog_array *progs);
2207 bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
2208 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
2209 __u32 __user *prog_ids, u32 cnt);
2210
2211 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
2212 struct bpf_prog *old_prog);
2213 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
2214 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2215 struct bpf_prog *prog);
2216 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2217 u32 *prog_ids, u32 request_cnt,
2218 u32 *prog_cnt);
2219 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2220 struct bpf_prog *exclude_prog,
2221 struct bpf_prog *include_prog,
2222 u64 bpf_cookie,
2223 struct bpf_prog_array **new_array);
2224
2225 struct bpf_run_ctx {};
2226
2227 struct bpf_cg_run_ctx {
2228 struct bpf_run_ctx run_ctx;
2229 const struct bpf_prog_array_item *prog_item;
2230 int retval;
2231 };
2232
2233 struct bpf_trace_run_ctx {
2234 struct bpf_run_ctx run_ctx;
2235 u64 bpf_cookie;
2236 bool is_uprobe;
2237 };
2238
2239 struct bpf_tramp_run_ctx {
2240 struct bpf_run_ctx run_ctx;
2241 u64 bpf_cookie;
2242 struct bpf_run_ctx *saved_run_ctx;
2243 };
2244
bpf_set_run_ctx(struct bpf_run_ctx * new_ctx)2245 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
2246 {
2247 struct bpf_run_ctx *old_ctx = NULL;
2248
2249 #ifdef CONFIG_BPF_SYSCALL
2250 old_ctx = current->bpf_ctx;
2251 current->bpf_ctx = new_ctx;
2252 #endif
2253 return old_ctx;
2254 }
2255
bpf_reset_run_ctx(struct bpf_run_ctx * old_ctx)2256 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
2257 {
2258 #ifdef CONFIG_BPF_SYSCALL
2259 current->bpf_ctx = old_ctx;
2260 #endif
2261 }
2262
2263 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
2264 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0)
2265 /* BPF program asks to set CN on the packet. */
2266 #define BPF_RET_SET_CN (1 << 0)
2267
2268 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
2269
2270 static __always_inline u32
bpf_prog_run_array(const struct bpf_prog_array * array,const void * ctx,bpf_prog_run_fn run_prog)2271 bpf_prog_run_array(const struct bpf_prog_array *array,
2272 const void *ctx, bpf_prog_run_fn run_prog)
2273 {
2274 const struct bpf_prog_array_item *item;
2275 const struct bpf_prog *prog;
2276 struct bpf_run_ctx *old_run_ctx;
2277 struct bpf_trace_run_ctx run_ctx;
2278 u32 ret = 1;
2279
2280 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
2281
2282 if (unlikely(!array))
2283 return ret;
2284
2285 run_ctx.is_uprobe = false;
2286
2287 migrate_disable();
2288 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2289 item = &array->items[0];
2290 while ((prog = READ_ONCE(item->prog))) {
2291 run_ctx.bpf_cookie = item->bpf_cookie;
2292 ret &= run_prog(prog, ctx);
2293 item++;
2294 }
2295 bpf_reset_run_ctx(old_run_ctx);
2296 migrate_enable();
2297 return ret;
2298 }
2299
2300 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
2301 *
2302 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
2303 * overall. As a result, we must use the bpf_prog_array_free_sleepable
2304 * in order to use the tasks_trace rcu grace period.
2305 *
2306 * When a non-sleepable program is inside the array, we take the rcu read
2307 * section and disable preemption for that program alone, so it can access
2308 * rcu-protected dynamically sized maps.
2309 */
2310 static __always_inline u32
bpf_prog_run_array_uprobe(const struct bpf_prog_array * array,const void * ctx,bpf_prog_run_fn run_prog)2311 bpf_prog_run_array_uprobe(const struct bpf_prog_array *array,
2312 const void *ctx, bpf_prog_run_fn run_prog)
2313 {
2314 const struct bpf_prog_array_item *item;
2315 const struct bpf_prog *prog;
2316 struct bpf_run_ctx *old_run_ctx;
2317 struct bpf_trace_run_ctx run_ctx;
2318 u32 ret = 1;
2319
2320 might_fault();
2321 RCU_LOCKDEP_WARN(!rcu_read_lock_trace_held(), "no rcu lock held");
2322
2323 if (unlikely(!array))
2324 return ret;
2325
2326 migrate_disable();
2327
2328 run_ctx.is_uprobe = true;
2329
2330 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2331 item = &array->items[0];
2332 while ((prog = READ_ONCE(item->prog))) {
2333 if (!prog->sleepable)
2334 rcu_read_lock();
2335
2336 run_ctx.bpf_cookie = item->bpf_cookie;
2337 ret &= run_prog(prog, ctx);
2338 item++;
2339
2340 if (!prog->sleepable)
2341 rcu_read_unlock();
2342 }
2343 bpf_reset_run_ctx(old_run_ctx);
2344 migrate_enable();
2345 return ret;
2346 }
2347
2348 bool bpf_jit_bypass_spec_v1(void);
2349 bool bpf_jit_bypass_spec_v4(void);
2350
2351 #ifdef CONFIG_BPF_SYSCALL
2352 DECLARE_PER_CPU(int, bpf_prog_active);
2353 extern struct mutex bpf_stats_enabled_mutex;
2354
2355 /*
2356 * Block execution of BPF programs attached to instrumentation (perf,
2357 * kprobes, tracepoints) to prevent deadlocks on map operations as any of
2358 * these events can happen inside a region which holds a map bucket lock
2359 * and can deadlock on it.
2360 */
bpf_disable_instrumentation(void)2361 static inline void bpf_disable_instrumentation(void)
2362 {
2363 migrate_disable();
2364 this_cpu_inc(bpf_prog_active);
2365 }
2366
bpf_enable_instrumentation(void)2367 static inline void bpf_enable_instrumentation(void)
2368 {
2369 this_cpu_dec(bpf_prog_active);
2370 migrate_enable();
2371 }
2372
2373 extern const struct super_operations bpf_super_ops;
2374 extern const struct file_operations bpf_map_fops;
2375 extern const struct file_operations bpf_prog_fops;
2376 extern const struct file_operations bpf_iter_fops;
2377 extern const struct file_operations bpf_token_fops;
2378
2379 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2380 extern const struct bpf_prog_ops _name ## _prog_ops; \
2381 extern const struct bpf_verifier_ops _name ## _verifier_ops;
2382 #define BPF_MAP_TYPE(_id, _ops) \
2383 extern const struct bpf_map_ops _ops;
2384 #define BPF_LINK_TYPE(_id, _name)
2385 #include <linux/bpf_types.h>
2386 #undef BPF_PROG_TYPE
2387 #undef BPF_MAP_TYPE
2388 #undef BPF_LINK_TYPE
2389
2390 extern const struct bpf_prog_ops bpf_offload_prog_ops;
2391 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2392 extern const struct bpf_verifier_ops xdp_analyzer_ops;
2393
2394 struct bpf_prog *bpf_prog_get(u32 ufd);
2395 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2396 bool attach_drv);
2397 void bpf_prog_add(struct bpf_prog *prog, int i);
2398 void bpf_prog_sub(struct bpf_prog *prog, int i);
2399 void bpf_prog_inc(struct bpf_prog *prog);
2400 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2401 void bpf_prog_put(struct bpf_prog *prog);
2402
2403 void bpf_prog_free_id(struct bpf_prog *prog);
2404 void bpf_map_free_id(struct bpf_map *map);
2405
2406 struct btf_field *btf_record_find(const struct btf_record *rec,
2407 u32 offset, u32 field_mask);
2408 void btf_record_free(struct btf_record *rec);
2409 void bpf_map_free_record(struct bpf_map *map);
2410 struct btf_record *btf_record_dup(const struct btf_record *rec);
2411 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2412 void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2413 void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj);
2414 void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2415 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu);
2416
2417 struct bpf_map *bpf_map_get(u32 ufd);
2418 struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2419
2420 /*
2421 * The __bpf_map_get() and __btf_get_by_fd() functions parse a file
2422 * descriptor and return a corresponding map or btf object.
2423 * Their names are double underscored to emphasize the fact that they
2424 * do not increase refcnt. To also increase refcnt use corresponding
2425 * bpf_map_get() and btf_get_by_fd() functions.
2426 */
2427
__bpf_map_get(struct fd f)2428 static inline struct bpf_map *__bpf_map_get(struct fd f)
2429 {
2430 if (fd_empty(f))
2431 return ERR_PTR(-EBADF);
2432 if (unlikely(fd_file(f)->f_op != &bpf_map_fops))
2433 return ERR_PTR(-EINVAL);
2434 return fd_file(f)->private_data;
2435 }
2436
__btf_get_by_fd(struct fd f)2437 static inline struct btf *__btf_get_by_fd(struct fd f)
2438 {
2439 if (fd_empty(f))
2440 return ERR_PTR(-EBADF);
2441 if (unlikely(fd_file(f)->f_op != &btf_fops))
2442 return ERR_PTR(-EINVAL);
2443 return fd_file(f)->private_data;
2444 }
2445
2446 void bpf_map_inc(struct bpf_map *map);
2447 void bpf_map_inc_with_uref(struct bpf_map *map);
2448 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2449 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2450 void bpf_map_put_with_uref(struct bpf_map *map);
2451 void bpf_map_put(struct bpf_map *map);
2452 void *bpf_map_area_alloc(u64 size, int numa_node);
2453 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2454 void bpf_map_area_free(void *base);
2455 bool bpf_map_write_active(const struct bpf_map *map);
2456 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2457 int generic_map_lookup_batch(struct bpf_map *map,
2458 const union bpf_attr *attr,
2459 union bpf_attr __user *uattr);
2460 int generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2461 const union bpf_attr *attr,
2462 union bpf_attr __user *uattr);
2463 int generic_map_delete_batch(struct bpf_map *map,
2464 const union bpf_attr *attr,
2465 union bpf_attr __user *uattr);
2466 struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2467 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2468
2469
2470 int bpf_map_alloc_pages(const struct bpf_map *map, int nid,
2471 unsigned long nr_pages, struct page **page_array);
2472 #ifdef CONFIG_MEMCG
2473 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2474 int node);
2475 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2476 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2477 gfp_t flags);
2478 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2479 size_t align, gfp_t flags);
2480 #else
2481 /*
2482 * These specialized allocators have to be macros for their allocations to be
2483 * accounted separately (to have separate alloc_tag).
2484 */
2485 #define bpf_map_kmalloc_node(_map, _size, _flags, _node) \
2486 kmalloc_node(_size, _flags, _node)
2487 #define bpf_map_kzalloc(_map, _size, _flags) \
2488 kzalloc(_size, _flags)
2489 #define bpf_map_kvcalloc(_map, _n, _size, _flags) \
2490 kvcalloc(_n, _size, _flags)
2491 #define bpf_map_alloc_percpu(_map, _size, _align, _flags) \
2492 __alloc_percpu_gfp(_size, _align, _flags)
2493 #endif
2494
2495 static inline int
bpf_map_init_elem_count(struct bpf_map * map)2496 bpf_map_init_elem_count(struct bpf_map *map)
2497 {
2498 size_t size = sizeof(*map->elem_count), align = size;
2499 gfp_t flags = GFP_USER | __GFP_NOWARN;
2500
2501 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2502 if (!map->elem_count)
2503 return -ENOMEM;
2504
2505 return 0;
2506 }
2507
2508 static inline void
bpf_map_free_elem_count(struct bpf_map * map)2509 bpf_map_free_elem_count(struct bpf_map *map)
2510 {
2511 free_percpu(map->elem_count);
2512 }
2513
bpf_map_inc_elem_count(struct bpf_map * map)2514 static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2515 {
2516 this_cpu_inc(*map->elem_count);
2517 }
2518
bpf_map_dec_elem_count(struct bpf_map * map)2519 static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2520 {
2521 this_cpu_dec(*map->elem_count);
2522 }
2523
2524 extern int sysctl_unprivileged_bpf_disabled;
2525
2526 bool bpf_token_capable(const struct bpf_token *token, int cap);
2527
bpf_allow_ptr_leaks(const struct bpf_token * token)2528 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token)
2529 {
2530 return bpf_token_capable(token, CAP_PERFMON);
2531 }
2532
bpf_allow_uninit_stack(const struct bpf_token * token)2533 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token)
2534 {
2535 return bpf_token_capable(token, CAP_PERFMON);
2536 }
2537
bpf_bypass_spec_v1(const struct bpf_token * token)2538 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token)
2539 {
2540 return bpf_jit_bypass_spec_v1() ||
2541 cpu_mitigations_off() ||
2542 bpf_token_capable(token, CAP_PERFMON);
2543 }
2544
bpf_bypass_spec_v4(const struct bpf_token * token)2545 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token)
2546 {
2547 return bpf_jit_bypass_spec_v4() ||
2548 cpu_mitigations_off() ||
2549 bpf_token_capable(token, CAP_PERFMON);
2550 }
2551
2552 int bpf_map_new_fd(struct bpf_map *map, int flags);
2553 int bpf_prog_new_fd(struct bpf_prog *prog);
2554
2555 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2556 const struct bpf_link_ops *ops, struct bpf_prog *prog,
2557 enum bpf_attach_type attach_type);
2558 void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type,
2559 const struct bpf_link_ops *ops, struct bpf_prog *prog,
2560 enum bpf_attach_type attach_type, bool sleepable);
2561 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2562 int bpf_link_settle(struct bpf_link_primer *primer);
2563 void bpf_link_cleanup(struct bpf_link_primer *primer);
2564 void bpf_link_inc(struct bpf_link *link);
2565 struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link);
2566 void bpf_link_put(struct bpf_link *link);
2567 int bpf_link_new_fd(struct bpf_link *link);
2568 struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2569 struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2570
2571 void bpf_token_inc(struct bpf_token *token);
2572 void bpf_token_put(struct bpf_token *token);
2573 int bpf_token_create(union bpf_attr *attr);
2574 struct bpf_token *bpf_token_get_from_fd(u32 ufd);
2575 int bpf_token_get_info_by_fd(struct bpf_token *token,
2576 const union bpf_attr *attr,
2577 union bpf_attr __user *uattr);
2578
2579 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd);
2580 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type);
2581 bool bpf_token_allow_prog_type(const struct bpf_token *token,
2582 enum bpf_prog_type prog_type,
2583 enum bpf_attach_type attach_type);
2584
2585 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2586 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2587 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir,
2588 umode_t mode);
2589
2590 #define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2591 #define DEFINE_BPF_ITER_FUNC(target, args...) \
2592 extern int bpf_iter_ ## target(args); \
2593 int __init bpf_iter_ ## target(args) { return 0; }
2594
2595 /*
2596 * The task type of iterators.
2597 *
2598 * For BPF task iterators, they can be parameterized with various
2599 * parameters to visit only some of tasks.
2600 *
2601 * BPF_TASK_ITER_ALL (default)
2602 * Iterate over resources of every task.
2603 *
2604 * BPF_TASK_ITER_TID
2605 * Iterate over resources of a task/tid.
2606 *
2607 * BPF_TASK_ITER_TGID
2608 * Iterate over resources of every task of a process / task group.
2609 */
2610 enum bpf_iter_task_type {
2611 BPF_TASK_ITER_ALL = 0,
2612 BPF_TASK_ITER_TID,
2613 BPF_TASK_ITER_TGID,
2614 };
2615
2616 struct bpf_iter_aux_info {
2617 /* for map_elem iter */
2618 struct bpf_map *map;
2619
2620 /* for cgroup iter */
2621 struct {
2622 struct cgroup *start; /* starting cgroup */
2623 enum bpf_cgroup_iter_order order;
2624 } cgroup;
2625 struct {
2626 enum bpf_iter_task_type type;
2627 u32 pid;
2628 } task;
2629 };
2630
2631 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2632 union bpf_iter_link_info *linfo,
2633 struct bpf_iter_aux_info *aux);
2634 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2635 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2636 struct seq_file *seq);
2637 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2638 struct bpf_link_info *info);
2639 typedef const struct bpf_func_proto *
2640 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2641 const struct bpf_prog *prog);
2642
2643 enum bpf_iter_feature {
2644 BPF_ITER_RESCHED = BIT(0),
2645 };
2646
2647 #define BPF_ITER_CTX_ARG_MAX 2
2648 struct bpf_iter_reg {
2649 const char *target;
2650 bpf_iter_attach_target_t attach_target;
2651 bpf_iter_detach_target_t detach_target;
2652 bpf_iter_show_fdinfo_t show_fdinfo;
2653 bpf_iter_fill_link_info_t fill_link_info;
2654 bpf_iter_get_func_proto_t get_func_proto;
2655 u32 ctx_arg_info_size;
2656 u32 feature;
2657 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2658 const struct bpf_iter_seq_info *seq_info;
2659 };
2660
2661 struct bpf_iter_meta {
2662 __bpf_md_ptr(struct seq_file *, seq);
2663 u64 session_id;
2664 u64 seq_num;
2665 };
2666
2667 struct bpf_iter__bpf_map_elem {
2668 __bpf_md_ptr(struct bpf_iter_meta *, meta);
2669 __bpf_md_ptr(struct bpf_map *, map);
2670 __bpf_md_ptr(void *, key);
2671 __bpf_md_ptr(void *, value);
2672 };
2673
2674 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2675 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2676 int bpf_iter_prog_supported(struct bpf_prog *prog);
2677 const struct bpf_func_proto *
2678 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2679 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2680 int bpf_iter_new_fd(struct bpf_link *link);
2681 bool bpf_link_is_iter(struct bpf_link *link);
2682 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2683 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2684 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2685 struct seq_file *seq);
2686 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2687 struct bpf_link_info *info);
2688
2689 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2690 struct bpf_func_state *caller,
2691 struct bpf_func_state *callee);
2692
2693 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2694 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2695 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2696 u64 flags);
2697 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2698 u64 flags);
2699
2700 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2701
2702 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2703 void *key, void *value, u64 map_flags);
2704 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2705 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2706 void *key, void *value, u64 map_flags);
2707 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2708
2709 int bpf_get_file_flag(int flags);
2710 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2711 size_t actual_size);
2712
2713 /* verify correctness of eBPF program */
2714 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2715
2716 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2717 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2718 #endif
2719
2720 struct btf *bpf_get_btf_vmlinux(void);
2721
2722 /* Map specifics */
2723 struct xdp_frame;
2724 struct sk_buff;
2725 struct bpf_dtab_netdev;
2726 struct bpf_cpu_map_entry;
2727
2728 void __dev_flush(struct list_head *flush_list);
2729 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2730 struct net_device *dev_rx);
2731 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2732 struct net_device *dev_rx);
2733 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2734 struct bpf_map *map, bool exclude_ingress);
2735 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2736 const struct bpf_prog *xdp_prog);
2737 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2738 const struct bpf_prog *xdp_prog,
2739 struct bpf_map *map, bool exclude_ingress);
2740
2741 void __cpu_map_flush(struct list_head *flush_list);
2742 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2743 struct net_device *dev_rx);
2744 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2745 struct sk_buff *skb);
2746
2747 /* Return map's numa specified by userspace */
bpf_map_attr_numa_node(const union bpf_attr * attr)2748 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2749 {
2750 return (attr->map_flags & BPF_F_NUMA_NODE) ?
2751 attr->numa_node : NUMA_NO_NODE;
2752 }
2753
2754 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2755 int array_map_alloc_check(union bpf_attr *attr);
2756
2757 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2758 union bpf_attr __user *uattr);
2759 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2760 union bpf_attr __user *uattr);
2761 int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2762 const union bpf_attr *kattr,
2763 union bpf_attr __user *uattr);
2764 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2765 const union bpf_attr *kattr,
2766 union bpf_attr __user *uattr);
2767 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2768 const union bpf_attr *kattr,
2769 union bpf_attr __user *uattr);
2770 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2771 const union bpf_attr *kattr,
2772 union bpf_attr __user *uattr);
2773 int bpf_prog_test_run_nf(struct bpf_prog *prog,
2774 const union bpf_attr *kattr,
2775 union bpf_attr __user *uattr);
2776 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2777 const struct bpf_prog *prog,
2778 struct bpf_insn_access_aux *info);
2779
bpf_tracing_ctx_access(int off,int size,enum bpf_access_type type)2780 static inline bool bpf_tracing_ctx_access(int off, int size,
2781 enum bpf_access_type type)
2782 {
2783 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2784 return false;
2785 if (type != BPF_READ)
2786 return false;
2787 if (off % size != 0)
2788 return false;
2789 return true;
2790 }
2791
bpf_tracing_btf_ctx_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2792 static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2793 enum bpf_access_type type,
2794 const struct bpf_prog *prog,
2795 struct bpf_insn_access_aux *info)
2796 {
2797 if (!bpf_tracing_ctx_access(off, size, type))
2798 return false;
2799 return btf_ctx_access(off, size, type, prog, info);
2800 }
2801
2802 int btf_struct_access(struct bpf_verifier_log *log,
2803 const struct bpf_reg_state *reg,
2804 int off, int size, enum bpf_access_type atype,
2805 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2806 bool btf_struct_ids_match(struct bpf_verifier_log *log,
2807 const struct btf *btf, u32 id, int off,
2808 const struct btf *need_btf, u32 need_type_id,
2809 bool strict);
2810
2811 int btf_distill_func_proto(struct bpf_verifier_log *log,
2812 struct btf *btf,
2813 const struct btf_type *func_proto,
2814 const char *func_name,
2815 struct btf_func_model *m);
2816
2817 struct bpf_reg_state;
2818 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog);
2819 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2820 struct btf *btf, const struct btf_type *t);
2821 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
2822 int comp_idx, const char *tag_key);
2823 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
2824 int comp_idx, const char *tag_key, int last_id);
2825
2826 struct bpf_prog *bpf_prog_by_id(u32 id);
2827 struct bpf_link *bpf_link_by_id(u32 id);
2828
2829 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id,
2830 const struct bpf_prog *prog);
2831 void bpf_task_storage_free(struct task_struct *task);
2832 void bpf_cgrp_storage_free(struct cgroup *cgroup);
2833 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2834 const struct btf_func_model *
2835 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2836 const struct bpf_insn *insn);
2837 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2838 u16 btf_fd_idx, u8 **func_addr);
2839
2840 struct bpf_core_ctx {
2841 struct bpf_verifier_log *log;
2842 const struct btf *btf;
2843 };
2844
2845 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2846 const struct bpf_reg_state *reg,
2847 const char *field_name, u32 btf_id, const char *suffix);
2848
2849 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2850 const struct btf *reg_btf, u32 reg_id,
2851 const struct btf *arg_btf, u32 arg_id);
2852
2853 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2854 int relo_idx, void *insn);
2855
unprivileged_ebpf_enabled(void)2856 static inline bool unprivileged_ebpf_enabled(void)
2857 {
2858 return !sysctl_unprivileged_bpf_disabled;
2859 }
2860
2861 /* Not all bpf prog type has the bpf_ctx.
2862 * For the bpf prog type that has initialized the bpf_ctx,
2863 * this function can be used to decide if a kernel function
2864 * is called by a bpf program.
2865 */
has_current_bpf_ctx(void)2866 static inline bool has_current_bpf_ctx(void)
2867 {
2868 return !!current->bpf_ctx;
2869 }
2870
2871 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2872
2873 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2874 enum bpf_dynptr_type type, u32 offset, u32 size);
2875 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2876 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2877
2878 #else /* !CONFIG_BPF_SYSCALL */
bpf_prog_get(u32 ufd)2879 static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2880 {
2881 return ERR_PTR(-EOPNOTSUPP);
2882 }
2883
bpf_prog_get_type_dev(u32 ufd,enum bpf_prog_type type,bool attach_drv)2884 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2885 enum bpf_prog_type type,
2886 bool attach_drv)
2887 {
2888 return ERR_PTR(-EOPNOTSUPP);
2889 }
2890
bpf_prog_add(struct bpf_prog * prog,int i)2891 static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2892 {
2893 }
2894
bpf_prog_sub(struct bpf_prog * prog,int i)2895 static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2896 {
2897 }
2898
bpf_prog_put(struct bpf_prog * prog)2899 static inline void bpf_prog_put(struct bpf_prog *prog)
2900 {
2901 }
2902
bpf_prog_inc(struct bpf_prog * prog)2903 static inline void bpf_prog_inc(struct bpf_prog *prog)
2904 {
2905 }
2906
2907 static inline struct bpf_prog *__must_check
bpf_prog_inc_not_zero(struct bpf_prog * prog)2908 bpf_prog_inc_not_zero(struct bpf_prog *prog)
2909 {
2910 return ERR_PTR(-EOPNOTSUPP);
2911 }
2912
bpf_link_init(struct bpf_link * link,enum bpf_link_type type,const struct bpf_link_ops * ops,struct bpf_prog * prog,enum bpf_attach_type attach_type)2913 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2914 const struct bpf_link_ops *ops,
2915 struct bpf_prog *prog, enum bpf_attach_type attach_type)
2916 {
2917 }
2918
bpf_link_init_sleepable(struct bpf_link * link,enum bpf_link_type type,const struct bpf_link_ops * ops,struct bpf_prog * prog,enum bpf_attach_type attach_type,bool sleepable)2919 static inline void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type,
2920 const struct bpf_link_ops *ops, struct bpf_prog *prog,
2921 enum bpf_attach_type attach_type, bool sleepable)
2922 {
2923 }
2924
bpf_link_prime(struct bpf_link * link,struct bpf_link_primer * primer)2925 static inline int bpf_link_prime(struct bpf_link *link,
2926 struct bpf_link_primer *primer)
2927 {
2928 return -EOPNOTSUPP;
2929 }
2930
bpf_link_settle(struct bpf_link_primer * primer)2931 static inline int bpf_link_settle(struct bpf_link_primer *primer)
2932 {
2933 return -EOPNOTSUPP;
2934 }
2935
bpf_link_cleanup(struct bpf_link_primer * primer)2936 static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2937 {
2938 }
2939
bpf_link_inc(struct bpf_link * link)2940 static inline void bpf_link_inc(struct bpf_link *link)
2941 {
2942 }
2943
bpf_link_inc_not_zero(struct bpf_link * link)2944 static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link)
2945 {
2946 return NULL;
2947 }
2948
bpf_link_put(struct bpf_link * link)2949 static inline void bpf_link_put(struct bpf_link *link)
2950 {
2951 }
2952
bpf_obj_get_user(const char __user * pathname,int flags)2953 static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2954 {
2955 return -EOPNOTSUPP;
2956 }
2957
bpf_token_capable(const struct bpf_token * token,int cap)2958 static inline bool bpf_token_capable(const struct bpf_token *token, int cap)
2959 {
2960 return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN));
2961 }
2962
bpf_token_inc(struct bpf_token * token)2963 static inline void bpf_token_inc(struct bpf_token *token)
2964 {
2965 }
2966
bpf_token_put(struct bpf_token * token)2967 static inline void bpf_token_put(struct bpf_token *token)
2968 {
2969 }
2970
bpf_token_get_from_fd(u32 ufd)2971 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd)
2972 {
2973 return ERR_PTR(-EOPNOTSUPP);
2974 }
2975
bpf_token_get_info_by_fd(struct bpf_token * token,const union bpf_attr * attr,union bpf_attr __user * uattr)2976 static inline int bpf_token_get_info_by_fd(struct bpf_token *token,
2977 const union bpf_attr *attr,
2978 union bpf_attr __user *uattr)
2979 {
2980 return -EOPNOTSUPP;
2981 }
2982
__dev_flush(struct list_head * flush_list)2983 static inline void __dev_flush(struct list_head *flush_list)
2984 {
2985 }
2986
2987 struct xdp_frame;
2988 struct bpf_dtab_netdev;
2989 struct bpf_cpu_map_entry;
2990
2991 static inline
dev_xdp_enqueue(struct net_device * dev,struct xdp_frame * xdpf,struct net_device * dev_rx)2992 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2993 struct net_device *dev_rx)
2994 {
2995 return 0;
2996 }
2997
2998 static inline
dev_map_enqueue(struct bpf_dtab_netdev * dst,struct xdp_frame * xdpf,struct net_device * dev_rx)2999 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
3000 struct net_device *dev_rx)
3001 {
3002 return 0;
3003 }
3004
3005 static inline
dev_map_enqueue_multi(struct xdp_frame * xdpf,struct net_device * dev_rx,struct bpf_map * map,bool exclude_ingress)3006 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
3007 struct bpf_map *map, bool exclude_ingress)
3008 {
3009 return 0;
3010 }
3011
3012 struct sk_buff;
3013
dev_map_generic_redirect(struct bpf_dtab_netdev * dst,struct sk_buff * skb,const struct bpf_prog * xdp_prog)3014 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
3015 struct sk_buff *skb,
3016 const struct bpf_prog *xdp_prog)
3017 {
3018 return 0;
3019 }
3020
3021 static inline
dev_map_redirect_multi(struct net_device * dev,struct sk_buff * skb,const struct bpf_prog * xdp_prog,struct bpf_map * map,bool exclude_ingress)3022 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
3023 const struct bpf_prog *xdp_prog,
3024 struct bpf_map *map, bool exclude_ingress)
3025 {
3026 return 0;
3027 }
3028
__cpu_map_flush(struct list_head * flush_list)3029 static inline void __cpu_map_flush(struct list_head *flush_list)
3030 {
3031 }
3032
cpu_map_enqueue(struct bpf_cpu_map_entry * rcpu,struct xdp_frame * xdpf,struct net_device * dev_rx)3033 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
3034 struct xdp_frame *xdpf,
3035 struct net_device *dev_rx)
3036 {
3037 return 0;
3038 }
3039
cpu_map_generic_redirect(struct bpf_cpu_map_entry * rcpu,struct sk_buff * skb)3040 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
3041 struct sk_buff *skb)
3042 {
3043 return -EOPNOTSUPP;
3044 }
3045
bpf_prog_get_type_path(const char * name,enum bpf_prog_type type)3046 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
3047 enum bpf_prog_type type)
3048 {
3049 return ERR_PTR(-EOPNOTSUPP);
3050 }
3051
bpf_prog_test_run_xdp(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)3052 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
3053 const union bpf_attr *kattr,
3054 union bpf_attr __user *uattr)
3055 {
3056 return -ENOTSUPP;
3057 }
3058
bpf_prog_test_run_skb(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)3059 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
3060 const union bpf_attr *kattr,
3061 union bpf_attr __user *uattr)
3062 {
3063 return -ENOTSUPP;
3064 }
3065
bpf_prog_test_run_tracing(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)3066 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
3067 const union bpf_attr *kattr,
3068 union bpf_attr __user *uattr)
3069 {
3070 return -ENOTSUPP;
3071 }
3072
bpf_prog_test_run_flow_dissector(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)3073 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
3074 const union bpf_attr *kattr,
3075 union bpf_attr __user *uattr)
3076 {
3077 return -ENOTSUPP;
3078 }
3079
bpf_prog_test_run_sk_lookup(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)3080 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
3081 const union bpf_attr *kattr,
3082 union bpf_attr __user *uattr)
3083 {
3084 return -ENOTSUPP;
3085 }
3086
bpf_map_put(struct bpf_map * map)3087 static inline void bpf_map_put(struct bpf_map *map)
3088 {
3089 }
3090
bpf_prog_by_id(u32 id)3091 static inline struct bpf_prog *bpf_prog_by_id(u32 id)
3092 {
3093 return ERR_PTR(-ENOTSUPP);
3094 }
3095
btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size,enum bpf_access_type atype,u32 * next_btf_id,enum bpf_type_flag * flag,const char ** field_name)3096 static inline int btf_struct_access(struct bpf_verifier_log *log,
3097 const struct bpf_reg_state *reg,
3098 int off, int size, enum bpf_access_type atype,
3099 u32 *next_btf_id, enum bpf_type_flag *flag,
3100 const char **field_name)
3101 {
3102 return -EACCES;
3103 }
3104
3105 static inline const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)3106 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3107 {
3108 return NULL;
3109 }
3110
bpf_task_storage_free(struct task_struct * task)3111 static inline void bpf_task_storage_free(struct task_struct *task)
3112 {
3113 }
3114
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)3115 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
3116 {
3117 return false;
3118 }
3119
3120 static inline const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)3121 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3122 const struct bpf_insn *insn)
3123 {
3124 return NULL;
3125 }
3126
3127 static inline int
bpf_get_kfunc_addr(const struct bpf_prog * prog,u32 func_id,u16 btf_fd_idx,u8 ** func_addr)3128 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
3129 u16 btf_fd_idx, u8 **func_addr)
3130 {
3131 return -ENOTSUPP;
3132 }
3133
unprivileged_ebpf_enabled(void)3134 static inline bool unprivileged_ebpf_enabled(void)
3135 {
3136 return false;
3137 }
3138
has_current_bpf_ctx(void)3139 static inline bool has_current_bpf_ctx(void)
3140 {
3141 return false;
3142 }
3143
bpf_prog_inc_misses_counter(struct bpf_prog * prog)3144 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
3145 {
3146 }
3147
bpf_cgrp_storage_free(struct cgroup * cgroup)3148 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
3149 {
3150 }
3151
bpf_dynptr_init(struct bpf_dynptr_kern * ptr,void * data,enum bpf_dynptr_type type,u32 offset,u32 size)3152 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
3153 enum bpf_dynptr_type type, u32 offset, u32 size)
3154 {
3155 }
3156
bpf_dynptr_set_null(struct bpf_dynptr_kern * ptr)3157 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
3158 {
3159 }
3160
bpf_dynptr_set_rdonly(struct bpf_dynptr_kern * ptr)3161 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
3162 {
3163 }
3164 #endif /* CONFIG_BPF_SYSCALL */
3165
3166 static __always_inline int
bpf_probe_read_kernel_common(void * dst,u32 size,const void * unsafe_ptr)3167 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
3168 {
3169 int ret = -EFAULT;
3170
3171 if (IS_ENABLED(CONFIG_BPF_EVENTS))
3172 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
3173 if (unlikely(ret < 0))
3174 memset(dst, 0, size);
3175 return ret;
3176 }
3177
3178 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len);
3179
bpf_prog_get_type(u32 ufd,enum bpf_prog_type type)3180 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
3181 enum bpf_prog_type type)
3182 {
3183 return bpf_prog_get_type_dev(ufd, type, false);
3184 }
3185
3186 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
3187 struct bpf_map **used_maps, u32 len);
3188
3189 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
3190
3191 int bpf_prog_offload_compile(struct bpf_prog *prog);
3192 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
3193 int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
3194 struct bpf_prog *prog);
3195
3196 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
3197
3198 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
3199 int bpf_map_offload_update_elem(struct bpf_map *map,
3200 void *key, void *value, u64 flags);
3201 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
3202 int bpf_map_offload_get_next_key(struct bpf_map *map,
3203 void *key, void *next_key);
3204
3205 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
3206
3207 struct bpf_offload_dev *
3208 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
3209 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
3210 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
3211 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
3212 struct net_device *netdev);
3213 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
3214 struct net_device *netdev);
3215 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
3216
3217 void unpriv_ebpf_notify(int new_state);
3218
3219 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
3220 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3221 struct bpf_prog_aux *prog_aux);
3222 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
3223 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
3224 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
3225 void bpf_dev_bound_netdev_unregister(struct net_device *dev);
3226
bpf_prog_is_dev_bound(const struct bpf_prog_aux * aux)3227 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3228 {
3229 return aux->dev_bound;
3230 }
3231
bpf_prog_is_offloaded(const struct bpf_prog_aux * aux)3232 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
3233 {
3234 return aux->offload_requested;
3235 }
3236
3237 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
3238
bpf_map_is_offloaded(struct bpf_map * map)3239 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3240 {
3241 return unlikely(map->ops == &bpf_map_offload_ops);
3242 }
3243
3244 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
3245 void bpf_map_offload_map_free(struct bpf_map *map);
3246 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
3247 int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3248 const union bpf_attr *kattr,
3249 union bpf_attr __user *uattr);
3250
3251 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
3252 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
3253 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
3254 int sock_map_bpf_prog_query(const union bpf_attr *attr,
3255 union bpf_attr __user *uattr);
3256 int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog);
3257
3258 void sock_map_unhash(struct sock *sk);
3259 void sock_map_destroy(struct sock *sk);
3260 void sock_map_close(struct sock *sk, long timeout);
3261 #else
bpf_dev_bound_kfunc_check(struct bpf_verifier_log * log,struct bpf_prog_aux * prog_aux)3262 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3263 struct bpf_prog_aux *prog_aux)
3264 {
3265 return -EOPNOTSUPP;
3266 }
3267
bpf_dev_bound_resolve_kfunc(struct bpf_prog * prog,u32 func_id)3268 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
3269 u32 func_id)
3270 {
3271 return NULL;
3272 }
3273
bpf_prog_dev_bound_init(struct bpf_prog * prog,union bpf_attr * attr)3274 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
3275 union bpf_attr *attr)
3276 {
3277 return -EOPNOTSUPP;
3278 }
3279
bpf_prog_dev_bound_inherit(struct bpf_prog * new_prog,struct bpf_prog * old_prog)3280 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
3281 struct bpf_prog *old_prog)
3282 {
3283 return -EOPNOTSUPP;
3284 }
3285
bpf_dev_bound_netdev_unregister(struct net_device * dev)3286 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
3287 {
3288 }
3289
bpf_prog_is_dev_bound(const struct bpf_prog_aux * aux)3290 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3291 {
3292 return false;
3293 }
3294
bpf_prog_is_offloaded(struct bpf_prog_aux * aux)3295 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
3296 {
3297 return false;
3298 }
3299
bpf_prog_dev_bound_match(const struct bpf_prog * lhs,const struct bpf_prog * rhs)3300 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
3301 {
3302 return false;
3303 }
3304
bpf_map_is_offloaded(struct bpf_map * map)3305 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3306 {
3307 return false;
3308 }
3309
bpf_map_offload_map_alloc(union bpf_attr * attr)3310 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
3311 {
3312 return ERR_PTR(-EOPNOTSUPP);
3313 }
3314
bpf_map_offload_map_free(struct bpf_map * map)3315 static inline void bpf_map_offload_map_free(struct bpf_map *map)
3316 {
3317 }
3318
bpf_map_offload_map_mem_usage(const struct bpf_map * map)3319 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
3320 {
3321 return 0;
3322 }
3323
bpf_prog_test_run_syscall(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)3324 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3325 const union bpf_attr *kattr,
3326 union bpf_attr __user *uattr)
3327 {
3328 return -ENOTSUPP;
3329 }
3330
3331 #ifdef CONFIG_BPF_SYSCALL
sock_map_get_from_fd(const union bpf_attr * attr,struct bpf_prog * prog)3332 static inline int sock_map_get_from_fd(const union bpf_attr *attr,
3333 struct bpf_prog *prog)
3334 {
3335 return -EINVAL;
3336 }
3337
sock_map_prog_detach(const union bpf_attr * attr,enum bpf_prog_type ptype)3338 static inline int sock_map_prog_detach(const union bpf_attr *attr,
3339 enum bpf_prog_type ptype)
3340 {
3341 return -EOPNOTSUPP;
3342 }
3343
sock_map_update_elem_sys(struct bpf_map * map,void * key,void * value,u64 flags)3344 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
3345 u64 flags)
3346 {
3347 return -EOPNOTSUPP;
3348 }
3349
sock_map_bpf_prog_query(const union bpf_attr * attr,union bpf_attr __user * uattr)3350 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
3351 union bpf_attr __user *uattr)
3352 {
3353 return -EINVAL;
3354 }
3355
sock_map_link_create(const union bpf_attr * attr,struct bpf_prog * prog)3356 static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog)
3357 {
3358 return -EOPNOTSUPP;
3359 }
3360 #endif /* CONFIG_BPF_SYSCALL */
3361 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
3362
3363 static __always_inline void
bpf_prog_inc_misses_counters(const struct bpf_prog_array * array)3364 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array)
3365 {
3366 const struct bpf_prog_array_item *item;
3367 struct bpf_prog *prog;
3368
3369 if (unlikely(!array))
3370 return;
3371
3372 item = &array->items[0];
3373 while ((prog = READ_ONCE(item->prog))) {
3374 bpf_prog_inc_misses_counter(prog);
3375 item++;
3376 }
3377 }
3378
3379 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
3380 void bpf_sk_reuseport_detach(struct sock *sk);
3381 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
3382 void *value);
3383 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
3384 void *value, u64 map_flags);
3385 #else
bpf_sk_reuseport_detach(struct sock * sk)3386 static inline void bpf_sk_reuseport_detach(struct sock *sk)
3387 {
3388 }
3389
3390 #ifdef CONFIG_BPF_SYSCALL
bpf_fd_reuseport_array_lookup_elem(struct bpf_map * map,void * key,void * value)3391 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
3392 void *key, void *value)
3393 {
3394 return -EOPNOTSUPP;
3395 }
3396
bpf_fd_reuseport_array_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)3397 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
3398 void *key, void *value,
3399 u64 map_flags)
3400 {
3401 return -EOPNOTSUPP;
3402 }
3403 #endif /* CONFIG_BPF_SYSCALL */
3404 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
3405
3406 /* verifier prototypes for helper functions called from eBPF programs */
3407 extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
3408 extern const struct bpf_func_proto bpf_map_update_elem_proto;
3409 extern const struct bpf_func_proto bpf_map_delete_elem_proto;
3410 extern const struct bpf_func_proto bpf_map_push_elem_proto;
3411 extern const struct bpf_func_proto bpf_map_pop_elem_proto;
3412 extern const struct bpf_func_proto bpf_map_peek_elem_proto;
3413 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
3414
3415 extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
3416 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
3417 extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
3418 extern const struct bpf_func_proto bpf_tail_call_proto;
3419 extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
3420 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
3421 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
3422 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
3423 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
3424 extern const struct bpf_func_proto bpf_get_current_comm_proto;
3425 extern const struct bpf_func_proto bpf_get_stackid_proto;
3426 extern const struct bpf_func_proto bpf_get_stack_proto;
3427 extern const struct bpf_func_proto bpf_get_stack_sleepable_proto;
3428 extern const struct bpf_func_proto bpf_get_task_stack_proto;
3429 extern const struct bpf_func_proto bpf_get_task_stack_sleepable_proto;
3430 extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
3431 extern const struct bpf_func_proto bpf_get_stack_proto_pe;
3432 extern const struct bpf_func_proto bpf_sock_map_update_proto;
3433 extern const struct bpf_func_proto bpf_sock_hash_update_proto;
3434 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
3435 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
3436 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
3437 extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto;
3438 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
3439 extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
3440 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
3441 extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
3442 extern const struct bpf_func_proto bpf_spin_lock_proto;
3443 extern const struct bpf_func_proto bpf_spin_unlock_proto;
3444 extern const struct bpf_func_proto bpf_get_local_storage_proto;
3445 extern const struct bpf_func_proto bpf_strtol_proto;
3446 extern const struct bpf_func_proto bpf_strtoul_proto;
3447 extern const struct bpf_func_proto bpf_tcp_sock_proto;
3448 extern const struct bpf_func_proto bpf_jiffies64_proto;
3449 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
3450 extern const struct bpf_func_proto bpf_event_output_data_proto;
3451 extern const struct bpf_func_proto bpf_ringbuf_output_proto;
3452 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
3453 extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
3454 extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
3455 extern const struct bpf_func_proto bpf_ringbuf_query_proto;
3456 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
3457 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
3458 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
3459 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
3460 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
3461 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
3462 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
3463 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
3464 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
3465 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
3466 extern const struct bpf_func_proto bpf_copy_from_user_proto;
3467 extern const struct bpf_func_proto bpf_snprintf_btf_proto;
3468 extern const struct bpf_func_proto bpf_snprintf_proto;
3469 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
3470 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
3471 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
3472 extern const struct bpf_func_proto bpf_sock_from_file_proto;
3473 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3474 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3475 extern const struct bpf_func_proto bpf_task_storage_get_proto;
3476 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3477 extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3478 extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3479 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3480 extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3481 extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3482 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3483 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3484 extern const struct bpf_func_proto bpf_find_vma_proto;
3485 extern const struct bpf_func_proto bpf_loop_proto;
3486 extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3487 extern const struct bpf_func_proto bpf_set_retval_proto;
3488 extern const struct bpf_func_proto bpf_get_retval_proto;
3489 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3490 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3491 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3492
3493 const struct bpf_func_proto *tracing_prog_func_proto(
3494 enum bpf_func_id func_id, const struct bpf_prog *prog);
3495
3496 /* Shared helpers among cBPF and eBPF. */
3497 void bpf_user_rnd_init_once(void);
3498 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3499 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3500
3501 #if defined(CONFIG_NET)
3502 bool bpf_sock_common_is_valid_access(int off, int size,
3503 enum bpf_access_type type,
3504 struct bpf_insn_access_aux *info);
3505 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3506 struct bpf_insn_access_aux *info);
3507 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3508 const struct bpf_insn *si,
3509 struct bpf_insn *insn_buf,
3510 struct bpf_prog *prog,
3511 u32 *target_size);
3512 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3513 struct bpf_dynptr *ptr);
3514 #else
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3515 static inline bool bpf_sock_common_is_valid_access(int off, int size,
3516 enum bpf_access_type type,
3517 struct bpf_insn_access_aux *info)
3518 {
3519 return false;
3520 }
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3521 static inline bool bpf_sock_is_valid_access(int off, int size,
3522 enum bpf_access_type type,
3523 struct bpf_insn_access_aux *info)
3524 {
3525 return false;
3526 }
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3527 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3528 const struct bpf_insn *si,
3529 struct bpf_insn *insn_buf,
3530 struct bpf_prog *prog,
3531 u32 *target_size)
3532 {
3533 return 0;
3534 }
bpf_dynptr_from_skb_rdonly(struct __sk_buff * skb,u64 flags,struct bpf_dynptr * ptr)3535 static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3536 struct bpf_dynptr *ptr)
3537 {
3538 return -EOPNOTSUPP;
3539 }
3540 #endif
3541
3542 #ifdef CONFIG_INET
3543 struct sk_reuseport_kern {
3544 struct sk_buff *skb;
3545 struct sock *sk;
3546 struct sock *selected_sk;
3547 struct sock *migrating_sk;
3548 void *data_end;
3549 u32 hash;
3550 u32 reuseport_id;
3551 bool bind_inany;
3552 };
3553 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3554 struct bpf_insn_access_aux *info);
3555
3556 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3557 const struct bpf_insn *si,
3558 struct bpf_insn *insn_buf,
3559 struct bpf_prog *prog,
3560 u32 *target_size);
3561
3562 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3563 struct bpf_insn_access_aux *info);
3564
3565 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3566 const struct bpf_insn *si,
3567 struct bpf_insn *insn_buf,
3568 struct bpf_prog *prog,
3569 u32 *target_size);
3570 #else
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3571 static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3572 enum bpf_access_type type,
3573 struct bpf_insn_access_aux *info)
3574 {
3575 return false;
3576 }
3577
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3578 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3579 const struct bpf_insn *si,
3580 struct bpf_insn *insn_buf,
3581 struct bpf_prog *prog,
3582 u32 *target_size)
3583 {
3584 return 0;
3585 }
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3586 static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3587 enum bpf_access_type type,
3588 struct bpf_insn_access_aux *info)
3589 {
3590 return false;
3591 }
3592
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3593 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3594 const struct bpf_insn *si,
3595 struct bpf_insn *insn_buf,
3596 struct bpf_prog *prog,
3597 u32 *target_size)
3598 {
3599 return 0;
3600 }
3601 #endif /* CONFIG_INET */
3602
3603 enum bpf_text_poke_type {
3604 BPF_MOD_CALL,
3605 BPF_MOD_JUMP,
3606 };
3607
3608 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3609 void *addr1, void *addr2);
3610
3611 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3612 struct bpf_prog *new, struct bpf_prog *old);
3613
3614 void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3615 int bpf_arch_text_invalidate(void *dst, size_t len);
3616
3617 struct btf_id_set;
3618 bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3619
3620 #define MAX_BPRINTF_VARARGS 12
3621 #define MAX_BPRINTF_BUF 1024
3622
3623 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
3624 * arguments representation.
3625 */
3626 #define MAX_BPRINTF_BIN_ARGS 512
3627
3628 struct bpf_bprintf_buffers {
3629 char bin_args[MAX_BPRINTF_BIN_ARGS];
3630 char buf[MAX_BPRINTF_BUF];
3631 };
3632
3633 struct bpf_bprintf_data {
3634 u32 *bin_args;
3635 char *buf;
3636 bool get_bin_args;
3637 bool get_buf;
3638 };
3639
3640 int bpf_bprintf_prepare(const char *fmt, u32 fmt_size, const u64 *raw_args,
3641 u32 num_args, struct bpf_bprintf_data *data);
3642 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3643 int bpf_try_get_buffers(struct bpf_bprintf_buffers **bufs);
3644 void bpf_put_buffers(void);
3645
3646 void bpf_prog_stream_init(struct bpf_prog *prog);
3647 void bpf_prog_stream_free(struct bpf_prog *prog);
3648 int bpf_prog_stream_read(struct bpf_prog *prog, enum bpf_stream_id stream_id, void __user *buf, int len);
3649 void bpf_stream_stage_init(struct bpf_stream_stage *ss);
3650 void bpf_stream_stage_free(struct bpf_stream_stage *ss);
3651 __printf(2, 3)
3652 int bpf_stream_stage_printk(struct bpf_stream_stage *ss, const char *fmt, ...);
3653 int bpf_stream_stage_commit(struct bpf_stream_stage *ss, struct bpf_prog *prog,
3654 enum bpf_stream_id stream_id);
3655 int bpf_stream_stage_dump_stack(struct bpf_stream_stage *ss);
3656
3657 #define bpf_stream_printk(ss, ...) bpf_stream_stage_printk(&ss, __VA_ARGS__)
3658 #define bpf_stream_dump_stack(ss) bpf_stream_stage_dump_stack(&ss)
3659
3660 #define bpf_stream_stage(ss, prog, stream_id, expr) \
3661 ({ \
3662 bpf_stream_stage_init(&ss); \
3663 (expr); \
3664 bpf_stream_stage_commit(&ss, prog, stream_id); \
3665 bpf_stream_stage_free(&ss); \
3666 })
3667
3668 #ifdef CONFIG_BPF_LSM
3669 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3670 void bpf_cgroup_atype_put(int cgroup_atype);
3671 #else
bpf_cgroup_atype_get(u32 attach_btf_id,int cgroup_atype)3672 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
bpf_cgroup_atype_put(int cgroup_atype)3673 static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3674 #endif /* CONFIG_BPF_LSM */
3675
3676 struct key;
3677
3678 #ifdef CONFIG_KEYS
3679 struct bpf_key {
3680 struct key *key;
3681 bool has_ref;
3682 };
3683 #endif /* CONFIG_KEYS */
3684
type_is_alloc(u32 type)3685 static inline bool type_is_alloc(u32 type)
3686 {
3687 return type & MEM_ALLOC;
3688 }
3689
bpf_memcg_flags(gfp_t flags)3690 static inline gfp_t bpf_memcg_flags(gfp_t flags)
3691 {
3692 if (memcg_bpf_enabled())
3693 return flags | __GFP_ACCOUNT;
3694 return flags;
3695 }
3696
bpf_is_subprog(const struct bpf_prog * prog)3697 static inline bool bpf_is_subprog(const struct bpf_prog *prog)
3698 {
3699 return prog->aux->func_idx != 0;
3700 }
3701
3702 int bpf_prog_get_file_line(struct bpf_prog *prog, unsigned long ip, const char **filep,
3703 const char **linep, int *nump);
3704 struct bpf_prog *bpf_prog_find_from_stack(void);
3705
3706 #endif /* _LINUX_BPF_H */
3707