xref: /linux/drivers/hid/hid-playstation.c (revision e6807641ac94e832988655a1c0e60ccc806b76dc)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  HID driver for Sony DualSense(TM) controller.
4  *
5  *  Copyright (c) 2020-2022 Sony Interactive Entertainment
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/bits.h>
10 #include <linux/cleanup.h>
11 #include <linux/crc32.h>
12 #include <linux/device.h>
13 #include <linux/hid.h>
14 #include <linux/idr.h>
15 #include <linux/input/mt.h>
16 #include <linux/leds.h>
17 #include <linux/led-class-multicolor.h>
18 #include <linux/module.h>
19 
20 #include <linux/unaligned.h>
21 
22 #include "hid-ids.h"
23 
24 /* List of connected playstation devices. */
25 static DEFINE_MUTEX(ps_devices_lock);
26 static LIST_HEAD(ps_devices_list);
27 
28 static DEFINE_IDA(ps_player_id_allocator);
29 
30 #define HID_PLAYSTATION_VERSION_PATCH 0x8000
31 
32 enum PS_TYPE {
33 	PS_TYPE_PS4_DUALSHOCK4,
34 	PS_TYPE_PS5_DUALSENSE,
35 };
36 
37 /* Base class for playstation devices. */
38 struct ps_device {
39 	struct list_head list;
40 	struct hid_device *hdev;
41 	spinlock_t lock; /* Sync between event handler and workqueue */
42 
43 	u32 player_id;
44 
45 	struct power_supply_desc battery_desc;
46 	struct power_supply *battery;
47 	u8 battery_capacity;
48 	int battery_status;
49 
50 	const char *input_dev_name; /* Name of primary input device. */
51 	u8 mac_address[6]; /* Note: stored in little endian order. */
52 	u32 hw_version;
53 	u32 fw_version;
54 
55 	int (*parse_report)(struct ps_device *dev, struct hid_report *report, u8 *data, int size);
56 	void (*remove)(struct ps_device *dev);
57 };
58 
59 /* Calibration data for playstation motion sensors. */
60 struct ps_calibration_data {
61 	int abs_code;
62 	short bias;
63 	int sens_numer;
64 	int sens_denom;
65 };
66 
67 struct ps_led_info {
68 	const char *name;
69 	const char *color;
70 	int max_brightness;
71 	enum led_brightness (*brightness_get)(struct led_classdev *cdev);
72 	int (*brightness_set)(struct led_classdev *cdev, enum led_brightness);
73 	int (*blink_set)(struct led_classdev *led, unsigned long *on, unsigned long *off);
74 };
75 
76 /* Seed values for DualShock4 / DualSense CRC32 for different report types. */
77 #define PS_INPUT_CRC32_SEED	0xA1
78 #define PS_OUTPUT_CRC32_SEED	0xA2
79 #define PS_FEATURE_CRC32_SEED	0xA3
80 
81 #define DS_INPUT_REPORT_USB			0x01
82 #define DS_INPUT_REPORT_USB_SIZE		64
83 #define DS_INPUT_REPORT_BT			0x31
84 #define DS_INPUT_REPORT_BT_SIZE			78
85 #define DS_OUTPUT_REPORT_USB			0x02
86 #define DS_OUTPUT_REPORT_USB_SIZE		63
87 #define DS_OUTPUT_REPORT_BT			0x31
88 #define DS_OUTPUT_REPORT_BT_SIZE		78
89 
90 #define DS_FEATURE_REPORT_CALIBRATION		0x05
91 #define DS_FEATURE_REPORT_CALIBRATION_SIZE	41
92 #define DS_FEATURE_REPORT_PAIRING_INFO		0x09
93 #define DS_FEATURE_REPORT_PAIRING_INFO_SIZE	20
94 #define DS_FEATURE_REPORT_FIRMWARE_INFO		0x20
95 #define DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE	64
96 
97 /* Button masks for DualSense input report. */
98 #define DS_BUTTONS0_HAT_SWITCH	GENMASK(3, 0)
99 #define DS_BUTTONS0_SQUARE	BIT(4)
100 #define DS_BUTTONS0_CROSS	BIT(5)
101 #define DS_BUTTONS0_CIRCLE	BIT(6)
102 #define DS_BUTTONS0_TRIANGLE	BIT(7)
103 #define DS_BUTTONS1_L1		BIT(0)
104 #define DS_BUTTONS1_R1		BIT(1)
105 #define DS_BUTTONS1_L2		BIT(2)
106 #define DS_BUTTONS1_R2		BIT(3)
107 #define DS_BUTTONS1_CREATE	BIT(4)
108 #define DS_BUTTONS1_OPTIONS	BIT(5)
109 #define DS_BUTTONS1_L3		BIT(6)
110 #define DS_BUTTONS1_R3		BIT(7)
111 #define DS_BUTTONS2_PS_HOME	BIT(0)
112 #define DS_BUTTONS2_TOUCHPAD	BIT(1)
113 #define DS_BUTTONS2_MIC_MUTE	BIT(2)
114 
115 /* Status fields of DualSense input report. */
116 #define DS_STATUS0_BATTERY_CAPACITY		GENMASK(3, 0)
117 #define DS_STATUS0_CHARGING			GENMASK(7, 4)
118 #define DS_STATUS1_HP_DETECT			BIT(0)
119 #define DS_STATUS1_MIC_DETECT			BIT(1)
120 #define DS_STATUS1_JACK_DETECT			(DS_STATUS1_HP_DETECT | DS_STATUS1_MIC_DETECT)
121 #define DS_STATUS1_MIC_MUTE			BIT(2)
122 
123 /* Feature version from DualSense Firmware Info report. */
124 #define DS_FEATURE_VERSION_MINOR		GENMASK(7, 0)
125 #define DS_FEATURE_VERSION_MAJOR		GENMASK(15, 8)
126 #define DS_FEATURE_VERSION(major, minor)	(FIELD_PREP(DS_FEATURE_VERSION_MAJOR, major) | \
127 						 FIELD_PREP(DS_FEATURE_VERSION_MINOR, minor))
128 /*
129  * Status of a DualSense touch point contact.
130  * Contact IDs, with highest bit set are 'inactive'
131  * and any associated data is then invalid.
132  */
133 #define DS_TOUCH_POINT_INACTIVE			BIT(7)
134 #define DS_TOUCH_POINT_X_LO			GENMASK(7, 0)
135 #define DS_TOUCH_POINT_X_HI			GENMASK(11, 8)
136 #define DS_TOUCH_POINT_X(hi, lo)		(FIELD_PREP(DS_TOUCH_POINT_X_HI, hi) | \
137 						 FIELD_PREP(DS_TOUCH_POINT_X_LO, lo))
138 #define DS_TOUCH_POINT_Y_LO			GENMASK(3, 0)
139 #define DS_TOUCH_POINT_Y_HI			GENMASK(11, 4)
140 #define DS_TOUCH_POINT_Y(hi, lo)		(FIELD_PREP(DS_TOUCH_POINT_Y_HI, hi) | \
141 						 FIELD_PREP(DS_TOUCH_POINT_Y_LO, lo))
142 
143  /* Magic value required in tag field of Bluetooth output report. */
144 #define DS_OUTPUT_TAG				0x10
145 #define DS_OUTPUT_SEQ_TAG			GENMASK(3, 0)
146 #define DS_OUTPUT_SEQ_NO			GENMASK(7, 4)
147 /* Flags for DualSense output report. */
148 #define DS_OUTPUT_VALID_FLAG0_COMPATIBLE_VIBRATION		BIT(0)
149 #define DS_OUTPUT_VALID_FLAG0_HAPTICS_SELECT			BIT(1)
150 #define DS_OUTPUT_VALID_FLAG0_SPEAKER_VOLUME_ENABLE		BIT(5)
151 #define DS_OUTPUT_VALID_FLAG0_MIC_VOLUME_ENABLE			BIT(6)
152 #define DS_OUTPUT_VALID_FLAG0_AUDIO_CONTROL_ENABLE		BIT(7)
153 #define DS_OUTPUT_VALID_FLAG1_MIC_MUTE_LED_CONTROL_ENABLE	BIT(0)
154 #define DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE		BIT(1)
155 #define DS_OUTPUT_VALID_FLAG1_LIGHTBAR_CONTROL_ENABLE		BIT(2)
156 #define DS_OUTPUT_VALID_FLAG1_RELEASE_LEDS			BIT(3)
157 #define DS_OUTPUT_VALID_FLAG1_PLAYER_INDICATOR_CONTROL_ENABLE	BIT(4)
158 #define DS_OUTPUT_VALID_FLAG1_AUDIO_CONTROL2_ENABLE		BIT(7)
159 #define DS_OUTPUT_VALID_FLAG2_LIGHTBAR_SETUP_CONTROL_ENABLE	BIT(1)
160 #define DS_OUTPUT_VALID_FLAG2_COMPATIBLE_VIBRATION2		BIT(2)
161 #define DS_OUTPUT_AUDIO_FLAGS_OUTPUT_PATH_SEL			GENMASK(5, 4)
162 #define DS_OUTPUT_AUDIO_FLAGS2_SP_PREAMP_GAIN			GENMASK(2, 0)
163 #define DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE			BIT(4)
164 #define DS_OUTPUT_LIGHTBAR_SETUP_LIGHT_OUT			BIT(1)
165 
166 /* DualSense hardware limits */
167 #define DS_ACC_RES_PER_G	8192
168 #define DS_ACC_RANGE		(4 * DS_ACC_RES_PER_G)
169 #define DS_GYRO_RES_PER_DEG_S	1024
170 #define DS_GYRO_RANGE		(2048 * DS_GYRO_RES_PER_DEG_S)
171 #define DS_TOUCHPAD_WIDTH	1920
172 #define DS_TOUCHPAD_HEIGHT	1080
173 
174 struct dualsense {
175 	struct ps_device base;
176 	struct input_dev *gamepad;
177 	struct input_dev *sensors;
178 	struct input_dev *touchpad;
179 	struct input_dev *jack;
180 
181 	/* Update version is used as a feature/capability version. */
182 	u16 update_version;
183 
184 	/* Calibration data for accelerometer and gyroscope. */
185 	struct ps_calibration_data accel_calib_data[3];
186 	struct ps_calibration_data gyro_calib_data[3];
187 
188 	/* Timestamp for sensor data */
189 	bool sensor_timestamp_initialized;
190 	u32 prev_sensor_timestamp;
191 	u32 sensor_timestamp_us;
192 
193 	/* Compatible rumble state */
194 	bool use_vibration_v2;
195 	bool update_rumble;
196 	u8 motor_left;
197 	u8 motor_right;
198 
199 	/* RGB lightbar */
200 	struct led_classdev_mc lightbar;
201 	bool update_lightbar;
202 	u8 lightbar_red;
203 	u8 lightbar_green;
204 	u8 lightbar_blue;
205 
206 	/* Audio Jack plugged state */
207 	u8 plugged_state;
208 	u8 prev_plugged_state;
209 	bool prev_plugged_state_valid;
210 
211 	/* Microphone */
212 	bool update_mic_mute;
213 	bool mic_muted;
214 	bool last_btn_mic_state;
215 
216 	/* Player leds */
217 	bool update_player_leds;
218 	u8 player_leds_state;
219 	struct led_classdev player_leds[5];
220 
221 	struct work_struct output_worker;
222 	bool output_worker_initialized;
223 	void *output_report_dmabuf;
224 	u8 output_seq; /* Sequence number for output report. */
225 };
226 
227 struct dualsense_touch_point {
228 	u8 contact;
229 	u8 x_lo;
230 	u8 x_hi:4, y_lo:4;
231 	u8 y_hi;
232 } __packed;
233 static_assert(sizeof(struct dualsense_touch_point) == 4);
234 
235 /* Main DualSense input report excluding any BT/USB specific headers. */
236 struct dualsense_input_report {
237 	u8 x, y;
238 	u8 rx, ry;
239 	u8 z, rz;
240 	u8 seq_number;
241 	u8 buttons[4];
242 	u8 reserved[4];
243 
244 	/* Motion sensors */
245 	__le16 gyro[3]; /* x, y, z */
246 	__le16 accel[3]; /* x, y, z */
247 	__le32 sensor_timestamp;
248 	u8 reserved2;
249 
250 	/* Touchpad */
251 	struct dualsense_touch_point points[2];
252 
253 	u8 reserved3[12];
254 	u8 status[3];
255 	u8 reserved4[8];
256 } __packed;
257 /* Common input report size shared equals the size of the USB report minus 1 byte for ReportID. */
258 static_assert(sizeof(struct dualsense_input_report) == DS_INPUT_REPORT_USB_SIZE - 1);
259 
260 /* Common data between DualSense BT/USB main output report. */
261 struct dualsense_output_report_common {
262 	u8 valid_flag0;
263 	u8 valid_flag1;
264 
265 	/* For DualShock 4 compatibility mode. */
266 	u8 motor_right;
267 	u8 motor_left;
268 
269 	/* Audio controls */
270 	u8 headphone_volume;	/* 0x0 - 0x7f */
271 	u8 speaker_volume;	/* 0x0 - 0xff */
272 	u8 mic_volume;		/* 0x0 - 0x40 */
273 	u8 audio_control;
274 	u8 mute_button_led;
275 
276 	u8 power_save_control;
277 	u8 reserved2[27];
278 	u8 audio_control2;
279 
280 	/* LEDs and lightbar */
281 	u8 valid_flag2;
282 	u8 reserved3[2];
283 	u8 lightbar_setup;
284 	u8 led_brightness;
285 	u8 player_leds;
286 	u8 lightbar_red;
287 	u8 lightbar_green;
288 	u8 lightbar_blue;
289 } __packed;
290 static_assert(sizeof(struct dualsense_output_report_common) == 47);
291 
292 struct dualsense_output_report_bt {
293 	u8 report_id; /* 0x31 */
294 	u8 seq_tag;
295 	u8 tag;
296 	struct dualsense_output_report_common common;
297 	u8 reserved[24];
298 	__le32 crc32;
299 } __packed;
300 static_assert(sizeof(struct dualsense_output_report_bt) == DS_OUTPUT_REPORT_BT_SIZE);
301 
302 struct dualsense_output_report_usb {
303 	u8 report_id; /* 0x02 */
304 	struct dualsense_output_report_common common;
305 	u8 reserved[15];
306 } __packed;
307 static_assert(sizeof(struct dualsense_output_report_usb) == DS_OUTPUT_REPORT_USB_SIZE);
308 
309 /*
310  * The DualSense has a main output report used to control most features. It is
311  * largely the same between Bluetooth and USB except for different headers and CRC.
312  * This structure hide the differences between the two to simplify sending output reports.
313  */
314 struct dualsense_output_report {
315 	u8 *data; /* Start of data */
316 	u8 len; /* Size of output report */
317 
318 	/* Points to Bluetooth data payload in case for a Bluetooth report else NULL. */
319 	struct dualsense_output_report_bt *bt;
320 	/* Points to USB data payload in case for a USB report else NULL. */
321 	struct dualsense_output_report_usb *usb;
322 	/* Points to common section of report, so past any headers. */
323 	struct dualsense_output_report_common *common;
324 };
325 
326 #define DS4_INPUT_REPORT_USB			0x01
327 #define DS4_INPUT_REPORT_USB_SIZE		64
328 #define DS4_INPUT_REPORT_BT_MINIMAL		0x01
329 #define DS4_INPUT_REPORT_BT_MINIMAL_SIZE	10
330 #define DS4_INPUT_REPORT_BT			0x11
331 #define DS4_INPUT_REPORT_BT_SIZE		78
332 #define DS4_OUTPUT_REPORT_USB			0x05
333 #define DS4_OUTPUT_REPORT_USB_SIZE		32
334 #define DS4_OUTPUT_REPORT_BT			0x11
335 #define DS4_OUTPUT_REPORT_BT_SIZE		78
336 
337 #define DS4_FEATURE_REPORT_CALIBRATION		0x02
338 #define DS4_FEATURE_REPORT_CALIBRATION_SIZE	37
339 #define DS4_FEATURE_REPORT_CALIBRATION_BT	0x05
340 #define DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE	41
341 #define DS4_FEATURE_REPORT_FIRMWARE_INFO	0xa3
342 #define DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE	49
343 #define DS4_FEATURE_REPORT_PAIRING_INFO		0x12
344 #define DS4_FEATURE_REPORT_PAIRING_INFO_SIZE	16
345 
346 /*
347  * Status of a DualShock4 touch point contact.
348  * Contact IDs, with highest bit set are 'inactive'
349  * and any associated data is then invalid.
350  */
351 #define DS4_TOUCH_POINT_INACTIVE	BIT(7)
352 #define DS4_TOUCH_POINT_X(hi, lo)	DS_TOUCH_POINT_X(hi, lo)
353 #define DS4_TOUCH_POINT_Y(hi, lo)	DS_TOUCH_POINT_Y(hi, lo)
354 
355 /* Status field of DualShock4 input report. */
356 #define DS4_STATUS0_BATTERY_CAPACITY	GENMASK(3, 0)
357 #define DS4_STATUS0_CABLE_STATE		BIT(4)
358 /* Battery status within batery_status field. */
359 #define DS4_BATTERY_STATUS_FULL		11
360 /* Status1 bit2 contains dongle connection state:
361  * 0 = connected
362  * 1 = disconnected
363  */
364 #define DS4_STATUS1_DONGLE_STATE	BIT(2)
365 
366 /* The lower 6 bits of hw_control of the Bluetooth main output report
367  * control the interval at which Dualshock 4 reports data:
368  * 0x00 - 1ms
369  * 0x01 - 1ms
370  * 0x02 - 2ms
371  * 0x3E - 62ms
372  * 0x3F - disabled
373  */
374 #define DS4_OUTPUT_HWCTL_BT_POLL_MASK	0x3F
375 /* Default to 4ms poll interval, which is same as USB (not adjustable). */
376 #define DS4_BT_DEFAULT_POLL_INTERVAL_MS	4
377 #define DS4_OUTPUT_HWCTL_CRC32		0x40
378 #define DS4_OUTPUT_HWCTL_HID		0x80
379 
380 /* Flags for DualShock4 output report. */
381 #define DS4_OUTPUT_VALID_FLAG0_MOTOR		0x01
382 #define DS4_OUTPUT_VALID_FLAG0_LED		0x02
383 #define DS4_OUTPUT_VALID_FLAG0_LED_BLINK	0x04
384 
385 /* DualShock4 hardware limits */
386 #define DS4_ACC_RES_PER_G	8192
387 #define DS4_ACC_RANGE		(4 * DS_ACC_RES_PER_G)
388 #define DS4_GYRO_RES_PER_DEG_S	1024
389 #define DS4_GYRO_RANGE		(2048 * DS_GYRO_RES_PER_DEG_S)
390 #define DS4_LIGHTBAR_MAX_BLINK	255 /* 255 centiseconds */
391 #define DS4_TOUCHPAD_WIDTH	1920
392 #define DS4_TOUCHPAD_HEIGHT	942
393 
394 enum dualshock4_dongle_state {
395 	DONGLE_DISCONNECTED,
396 	DONGLE_CALIBRATING,
397 	DONGLE_CONNECTED,
398 	DONGLE_DISABLED
399 };
400 
401 struct dualshock4 {
402 	struct ps_device base;
403 	struct input_dev *gamepad;
404 	struct input_dev *sensors;
405 	struct input_dev *touchpad;
406 
407 	/* Calibration data for accelerometer and gyroscope. */
408 	struct ps_calibration_data accel_calib_data[3];
409 	struct ps_calibration_data gyro_calib_data[3];
410 
411 	/* Only used on dongle to track state transitions. */
412 	enum dualshock4_dongle_state dongle_state;
413 	/* Used during calibration. */
414 	struct work_struct dongle_hotplug_worker;
415 
416 	/* Timestamp for sensor data */
417 	bool sensor_timestamp_initialized;
418 	u32 prev_sensor_timestamp;
419 	u32 sensor_timestamp_us;
420 
421 	/* Bluetooth poll interval */
422 	bool update_bt_poll_interval;
423 	u8 bt_poll_interval;
424 
425 	bool update_rumble;
426 	u8 motor_left;
427 	u8 motor_right;
428 
429 	/* Lightbar leds */
430 	bool update_lightbar;
431 	bool update_lightbar_blink;
432 	bool lightbar_enabled; /* For use by global LED control. */
433 	u8 lightbar_red;
434 	u8 lightbar_green;
435 	u8 lightbar_blue;
436 	u8 lightbar_blink_on; /* In increments of 10ms. */
437 	u8 lightbar_blink_off; /* In increments of 10ms. */
438 	struct led_classdev lightbar_leds[4];
439 
440 	struct work_struct output_worker;
441 	bool output_worker_initialized;
442 	void *output_report_dmabuf;
443 };
444 
445 struct dualshock4_touch_point {
446 	u8 contact;
447 	u8 x_lo;
448 	u8 x_hi:4, y_lo:4;
449 	u8 y_hi;
450 } __packed;
451 static_assert(sizeof(struct dualshock4_touch_point) == 4);
452 
453 struct dualshock4_touch_report {
454 	u8 timestamp;
455 	struct dualshock4_touch_point points[2];
456 } __packed;
457 static_assert(sizeof(struct dualshock4_touch_report) == 9);
458 
459 /* Main DualShock4 input report excluding any BT/USB specific headers. */
460 struct dualshock4_input_report_common {
461 	u8 x, y;
462 	u8 rx, ry;
463 	u8 buttons[3];
464 	u8 z, rz;
465 
466 	/* Motion sensors */
467 	__le16 sensor_timestamp;
468 	u8 sensor_temperature;
469 	__le16 gyro[3]; /* x, y, z */
470 	__le16 accel[3]; /* x, y, z */
471 	u8 reserved2[5];
472 
473 	u8 status[2];
474 	u8 reserved3;
475 } __packed;
476 static_assert(sizeof(struct dualshock4_input_report_common) == 32);
477 
478 struct dualshock4_input_report_usb {
479 	u8 report_id; /* 0x01 */
480 	struct dualshock4_input_report_common common;
481 	u8 num_touch_reports;
482 	struct dualshock4_touch_report touch_reports[3];
483 	u8 reserved[3];
484 } __packed;
485 static_assert(sizeof(struct dualshock4_input_report_usb) == DS4_INPUT_REPORT_USB_SIZE);
486 
487 struct dualshock4_input_report_bt {
488 	u8 report_id; /* 0x11 */
489 	u8 reserved[2];
490 	struct dualshock4_input_report_common common;
491 	u8 num_touch_reports;
492 	struct dualshock4_touch_report touch_reports[4]; /* BT has 4 compared to 3 for USB */
493 	u8 reserved2[2];
494 	__le32 crc32;
495 } __packed;
496 static_assert(sizeof(struct dualshock4_input_report_bt) == DS4_INPUT_REPORT_BT_SIZE);
497 
498 /* Common data between Bluetooth and USB DualShock4 output reports. */
499 struct dualshock4_output_report_common {
500 	u8 valid_flag0;
501 	u8 valid_flag1;
502 
503 	u8 reserved;
504 
505 	u8 motor_right;
506 	u8 motor_left;
507 
508 	u8 lightbar_red;
509 	u8 lightbar_green;
510 	u8 lightbar_blue;
511 	u8 lightbar_blink_on;
512 	u8 lightbar_blink_off;
513 } __packed;
514 
515 struct dualshock4_output_report_usb {
516 	u8 report_id; /* 0x5 */
517 	struct dualshock4_output_report_common common;
518 	u8 reserved[21];
519 } __packed;
520 static_assert(sizeof(struct dualshock4_output_report_usb) == DS4_OUTPUT_REPORT_USB_SIZE);
521 
522 struct dualshock4_output_report_bt {
523 	u8 report_id; /* 0x11 */
524 	u8 hw_control;
525 	u8 audio_control;
526 	struct dualshock4_output_report_common common;
527 	u8 reserved[61];
528 	__le32 crc32;
529 } __packed;
530 static_assert(sizeof(struct dualshock4_output_report_bt) == DS4_OUTPUT_REPORT_BT_SIZE);
531 
532 /*
533  * The DualShock4 has a main output report used to control most features. It is
534  * largely the same between Bluetooth and USB except for different headers and CRC.
535  * This structure hide the differences between the two to simplify sending output reports.
536  */
537 struct dualshock4_output_report {
538 	u8 *data; /* Start of data */
539 	u8 len; /* Size of output report */
540 
541 	/* Points to Bluetooth data payload in case for a Bluetooth report else NULL. */
542 	struct dualshock4_output_report_bt *bt;
543 	/* Points to USB data payload in case for a USB report else NULL. */
544 	struct dualshock4_output_report_usb *usb;
545 	/* Points to common section of report, so past any headers. */
546 	struct dualshock4_output_report_common *common;
547 };
548 
549 /*
550  * Common gamepad buttons across DualShock 3 / 4 and DualSense.
551  * Note: for device with a touchpad, touchpad button is not included
552  *        as it will be part of the touchpad device.
553  */
554 static const int ps_gamepad_buttons[] = {
555 	BTN_WEST, /* Square */
556 	BTN_NORTH, /* Triangle */
557 	BTN_EAST, /* Circle */
558 	BTN_SOUTH, /* Cross */
559 	BTN_TL, /* L1 */
560 	BTN_TR, /* R1 */
561 	BTN_TL2, /* L2 */
562 	BTN_TR2, /* R2 */
563 	BTN_SELECT, /* Create (PS5) / Share (PS4) */
564 	BTN_START, /* Option */
565 	BTN_THUMBL, /* L3 */
566 	BTN_THUMBR, /* R3 */
567 	BTN_MODE, /* PS Home */
568 };
569 
570 static const struct {int x; int y; } ps_gamepad_hat_mapping[] = {
571 	{0, -1}, {1, -1}, {1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1},
572 	{0, 0},
573 };
574 
575 static int dualshock4_get_calibration_data(struct dualshock4 *ds4);
576 static inline void dualsense_schedule_work(struct dualsense *ds);
577 static inline void dualshock4_schedule_work(struct dualshock4 *ds4);
578 static void dualsense_set_lightbar(struct dualsense *ds, u8 red, u8 green, u8 blue);
579 static void dualshock4_set_default_lightbar_colors(struct dualshock4 *ds4);
580 
581 /*
582  * Add a new ps_device to ps_devices if it doesn't exist.
583  * Return error on duplicate device, which can happen if the same
584  * device is connected using both Bluetooth and USB.
585  */
586 static int ps_devices_list_add(struct ps_device *dev)
587 {
588 	struct ps_device *entry;
589 
590 	guard(mutex)(&ps_devices_lock);
591 
592 	list_for_each_entry(entry, &ps_devices_list, list) {
593 		if (!memcmp(entry->mac_address, dev->mac_address, sizeof(dev->mac_address))) {
594 			hid_err(dev->hdev, "Duplicate device found for MAC address %pMR.\n",
595 				dev->mac_address);
596 			return -EEXIST;
597 		}
598 	}
599 
600 	list_add_tail(&dev->list, &ps_devices_list);
601 	return 0;
602 }
603 
604 static int ps_devices_list_remove(struct ps_device *dev)
605 {
606 	guard(mutex)(&ps_devices_lock);
607 
608 	list_del(&dev->list);
609 	return 0;
610 }
611 
612 static int ps_device_set_player_id(struct ps_device *dev)
613 {
614 	int ret = ida_alloc(&ps_player_id_allocator, GFP_KERNEL);
615 
616 	if (ret < 0)
617 		return ret;
618 
619 	dev->player_id = ret;
620 	return 0;
621 }
622 
623 static void ps_device_release_player_id(struct ps_device *dev)
624 {
625 	ida_free(&ps_player_id_allocator, dev->player_id);
626 
627 	dev->player_id = U32_MAX;
628 }
629 
630 static struct input_dev *ps_allocate_input_dev(struct hid_device *hdev,
631 					       const char *name_suffix)
632 {
633 	struct input_dev *input_dev;
634 
635 	input_dev = devm_input_allocate_device(&hdev->dev);
636 	if (!input_dev)
637 		return ERR_PTR(-ENOMEM);
638 
639 	input_dev->id.bustype = hdev->bus;
640 	input_dev->id.vendor = hdev->vendor;
641 	input_dev->id.product = hdev->product;
642 	input_dev->id.version = hdev->version;
643 	input_dev->uniq = hdev->uniq;
644 
645 	if (name_suffix) {
646 		input_dev->name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s %s",
647 						 hdev->name, name_suffix);
648 		if (!input_dev->name)
649 			return ERR_PTR(-ENOMEM);
650 	} else {
651 		input_dev->name = hdev->name;
652 	}
653 
654 	input_set_drvdata(input_dev, hdev);
655 
656 	return input_dev;
657 }
658 
659 static enum power_supply_property ps_power_supply_props[] = {
660 	POWER_SUPPLY_PROP_STATUS,
661 	POWER_SUPPLY_PROP_PRESENT,
662 	POWER_SUPPLY_PROP_CAPACITY,
663 	POWER_SUPPLY_PROP_SCOPE,
664 };
665 
666 static int ps_battery_get_property(struct power_supply *psy,
667 				   enum power_supply_property psp,
668 				   union power_supply_propval *val)
669 {
670 	struct ps_device *dev = power_supply_get_drvdata(psy);
671 	u8 battery_capacity;
672 	int battery_status;
673 	int ret = 0;
674 
675 	scoped_guard(spinlock_irqsave, &dev->lock) {
676 		battery_capacity = dev->battery_capacity;
677 		battery_status = dev->battery_status;
678 	}
679 
680 	switch (psp) {
681 	case POWER_SUPPLY_PROP_STATUS:
682 		val->intval = battery_status;
683 		break;
684 	case POWER_SUPPLY_PROP_PRESENT:
685 		val->intval = 1;
686 		break;
687 	case POWER_SUPPLY_PROP_CAPACITY:
688 		val->intval = battery_capacity;
689 		break;
690 	case POWER_SUPPLY_PROP_SCOPE:
691 		val->intval = POWER_SUPPLY_SCOPE_DEVICE;
692 		break;
693 	default:
694 		ret = -EINVAL;
695 		break;
696 	}
697 
698 	return ret;
699 }
700 
701 static int ps_device_register_battery(struct ps_device *dev)
702 {
703 	struct power_supply *battery;
704 	struct power_supply_config battery_cfg = { .drv_data = dev };
705 	int ret;
706 
707 	dev->battery_desc.type = POWER_SUPPLY_TYPE_BATTERY;
708 	dev->battery_desc.properties = ps_power_supply_props;
709 	dev->battery_desc.num_properties = ARRAY_SIZE(ps_power_supply_props);
710 	dev->battery_desc.get_property = ps_battery_get_property;
711 	dev->battery_desc.name = devm_kasprintf(&dev->hdev->dev, GFP_KERNEL,
712 						"ps-controller-battery-%pMR", dev->mac_address);
713 	if (!dev->battery_desc.name)
714 		return -ENOMEM;
715 
716 	battery = devm_power_supply_register(&dev->hdev->dev, &dev->battery_desc, &battery_cfg);
717 	if (IS_ERR(battery)) {
718 		ret = PTR_ERR(battery);
719 		hid_err(dev->hdev, "Unable to register battery device: %d\n", ret);
720 		return ret;
721 	}
722 	dev->battery = battery;
723 
724 	ret = power_supply_powers(dev->battery, &dev->hdev->dev);
725 	if (ret) {
726 		hid_err(dev->hdev, "Unable to activate battery device: %d\n", ret);
727 		return ret;
728 	}
729 
730 	return 0;
731 }
732 
733 /* Compute crc32 of HID data and compare against expected CRC. */
734 static bool ps_check_crc32(u8 seed, u8 *data, size_t len, u32 report_crc)
735 {
736 	u32 crc;
737 
738 	crc = crc32_le(0xFFFFFFFF, &seed, 1);
739 	crc = ~crc32_le(crc, data, len);
740 
741 	return crc == report_crc;
742 }
743 
744 static struct input_dev *
745 ps_gamepad_create(struct hid_device *hdev,
746 		  int (*play_effect)(struct input_dev *, void *, struct ff_effect *))
747 {
748 	struct input_dev *gamepad;
749 	unsigned int i;
750 	int ret;
751 
752 	gamepad = ps_allocate_input_dev(hdev, NULL);
753 	if (IS_ERR(gamepad))
754 		return ERR_CAST(gamepad);
755 
756 	/* Set initial resting state for joysticks to 128 (center) */
757 	input_set_abs_params(gamepad, ABS_X, 0, 255, 0, 0);
758 	gamepad->absinfo[ABS_X].value = 128;
759 	input_set_abs_params(gamepad, ABS_Y, 0, 255, 0, 0);
760 	gamepad->absinfo[ABS_Y].value = 128;
761 	input_set_abs_params(gamepad, ABS_Z, 0, 255, 0, 0);
762 	input_set_abs_params(gamepad, ABS_RX, 0, 255, 0, 0);
763 	gamepad->absinfo[ABS_RX].value = 128;
764 	input_set_abs_params(gamepad, ABS_RY, 0, 255, 0, 0);
765 	gamepad->absinfo[ABS_RY].value = 128;
766 	input_set_abs_params(gamepad, ABS_RZ, 0, 255, 0, 0);
767 
768 	input_set_abs_params(gamepad, ABS_HAT0X, -1, 1, 0, 0);
769 	input_set_abs_params(gamepad, ABS_HAT0Y, -1, 1, 0, 0);
770 
771 	for (i = 0; i < ARRAY_SIZE(ps_gamepad_buttons); i++)
772 		input_set_capability(gamepad, EV_KEY, ps_gamepad_buttons[i]);
773 
774 #if IS_ENABLED(CONFIG_PLAYSTATION_FF)
775 	if (play_effect) {
776 		input_set_capability(gamepad, EV_FF, FF_RUMBLE);
777 		ret = input_ff_create_memless(gamepad, NULL, play_effect);
778 		if (ret)
779 			return ERR_PTR(ret);
780 	}
781 #endif
782 
783 	ret = input_register_device(gamepad);
784 	if (ret)
785 		return ERR_PTR(ret);
786 
787 	return gamepad;
788 }
789 
790 static int ps_get_report(struct hid_device *hdev, u8 report_id, u8 *buf,
791 			 size_t size, bool check_crc)
792 {
793 	int ret;
794 
795 	ret = hid_hw_raw_request(hdev, report_id, buf, size, HID_FEATURE_REPORT,
796 				 HID_REQ_GET_REPORT);
797 	if (ret < 0) {
798 		hid_err(hdev, "Failed to retrieve feature with reportID %d: %d\n", report_id, ret);
799 		return ret;
800 	}
801 
802 	if (ret != size) {
803 		hid_err(hdev, "Invalid byte count transferred, expected %zu got %d\n", size, ret);
804 		return -EINVAL;
805 	}
806 
807 	if (buf[0] != report_id) {
808 		hid_err(hdev, "Invalid reportID received, expected %d got %d\n", report_id, buf[0]);
809 		return -EINVAL;
810 	}
811 
812 	if (hdev->bus == BUS_BLUETOOTH && check_crc) {
813 		/* Last 4 bytes contains crc32. */
814 		u8 crc_offset = size - 4;
815 		u32 report_crc = get_unaligned_le32(&buf[crc_offset]);
816 
817 		if (!ps_check_crc32(PS_FEATURE_CRC32_SEED, buf, crc_offset, report_crc)) {
818 			hid_err(hdev, "CRC check failed for reportID=%d\n", report_id);
819 			return -EILSEQ;
820 		}
821 	}
822 
823 	return 0;
824 }
825 
826 static int ps_led_register(struct ps_device *ps_dev, struct led_classdev *led,
827 			   const struct ps_led_info *led_info)
828 {
829 	int ret;
830 
831 	if (led_info->name) {
832 		led->name = devm_kasprintf(&ps_dev->hdev->dev, GFP_KERNEL, "%s:%s:%s",
833 					   ps_dev->input_dev_name, led_info->color,
834 					   led_info->name);
835 	} else {
836 		/* Backwards compatible mode for hid-sony, but not compliant
837 		 * with LED class spec.
838 		 */
839 		led->name = devm_kasprintf(&ps_dev->hdev->dev, GFP_KERNEL, "%s:%s",
840 					   ps_dev->input_dev_name, led_info->color);
841 	}
842 
843 	if (!led->name)
844 		return -ENOMEM;
845 
846 	led->brightness = 0;
847 	led->max_brightness = led_info->max_brightness;
848 	led->flags = LED_CORE_SUSPENDRESUME;
849 	led->brightness_get = led_info->brightness_get;
850 	led->brightness_set_blocking = led_info->brightness_set;
851 	led->blink_set = led_info->blink_set;
852 
853 	ret = devm_led_classdev_register(&ps_dev->hdev->dev, led);
854 	if (ret) {
855 		hid_err(ps_dev->hdev, "Failed to register LED %s: %d\n", led_info->name, ret);
856 		return ret;
857 	}
858 
859 	return 0;
860 }
861 
862 /* Register a DualSense/DualShock4 RGB lightbar represented by a multicolor LED. */
863 static int ps_lightbar_register(struct ps_device *ps_dev, struct led_classdev_mc *lightbar_mc_dev,
864 				int (*brightness_set)(struct led_classdev *, enum led_brightness))
865 {
866 	struct hid_device *hdev = ps_dev->hdev;
867 	struct mc_subled *mc_led_info;
868 	struct led_classdev *led_cdev;
869 	int ret;
870 
871 	mc_led_info = devm_kmalloc_array(&hdev->dev, 3, sizeof(*mc_led_info),
872 					 GFP_KERNEL | __GFP_ZERO);
873 	if (!mc_led_info)
874 		return -ENOMEM;
875 
876 	mc_led_info[0].color_index = LED_COLOR_ID_RED;
877 	mc_led_info[1].color_index = LED_COLOR_ID_GREEN;
878 	mc_led_info[2].color_index = LED_COLOR_ID_BLUE;
879 
880 	lightbar_mc_dev->subled_info = mc_led_info;
881 	lightbar_mc_dev->num_colors = 3;
882 
883 	led_cdev = &lightbar_mc_dev->led_cdev;
884 	led_cdev->name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s:rgb:indicator",
885 					ps_dev->input_dev_name);
886 	if (!led_cdev->name)
887 		return -ENOMEM;
888 	led_cdev->brightness = 255;
889 	led_cdev->max_brightness = 255;
890 	led_cdev->brightness_set_blocking = brightness_set;
891 
892 	ret = devm_led_classdev_multicolor_register(&hdev->dev, lightbar_mc_dev);
893 	if (ret < 0) {
894 		hid_err(hdev, "Cannot register multicolor LED device\n");
895 		return ret;
896 	}
897 
898 	return 0;
899 }
900 
901 static struct input_dev *ps_sensors_create(struct hid_device *hdev, int accel_range,
902 					   int accel_res, int gyro_range, int gyro_res)
903 {
904 	struct input_dev *sensors;
905 	int ret;
906 
907 	sensors = ps_allocate_input_dev(hdev, "Motion Sensors");
908 	if (IS_ERR(sensors))
909 		return ERR_CAST(sensors);
910 
911 	__set_bit(INPUT_PROP_ACCELEROMETER, sensors->propbit);
912 	__set_bit(EV_MSC, sensors->evbit);
913 	__set_bit(MSC_TIMESTAMP, sensors->mscbit);
914 
915 	/* Accelerometer */
916 	input_set_abs_params(sensors, ABS_X, -accel_range, accel_range, 16, 0);
917 	input_set_abs_params(sensors, ABS_Y, -accel_range, accel_range, 16, 0);
918 	input_set_abs_params(sensors, ABS_Z, -accel_range, accel_range, 16, 0);
919 	input_abs_set_res(sensors, ABS_X, accel_res);
920 	input_abs_set_res(sensors, ABS_Y, accel_res);
921 	input_abs_set_res(sensors, ABS_Z, accel_res);
922 
923 	/* Gyroscope */
924 	input_set_abs_params(sensors, ABS_RX, -gyro_range, gyro_range, 16, 0);
925 	input_set_abs_params(sensors, ABS_RY, -gyro_range, gyro_range, 16, 0);
926 	input_set_abs_params(sensors, ABS_RZ, -gyro_range, gyro_range, 16, 0);
927 	input_abs_set_res(sensors, ABS_RX, gyro_res);
928 	input_abs_set_res(sensors, ABS_RY, gyro_res);
929 	input_abs_set_res(sensors, ABS_RZ, gyro_res);
930 
931 	ret = input_register_device(sensors);
932 	if (ret)
933 		return ERR_PTR(ret);
934 
935 	return sensors;
936 }
937 
938 static struct input_dev *ps_touchpad_create(struct hid_device *hdev, int width,
939 					    int height, unsigned int num_contacts)
940 {
941 	struct input_dev *touchpad;
942 	int ret;
943 
944 	touchpad = ps_allocate_input_dev(hdev, "Touchpad");
945 	if (IS_ERR(touchpad))
946 		return ERR_CAST(touchpad);
947 
948 	/* Map button underneath touchpad to BTN_LEFT. */
949 	input_set_capability(touchpad, EV_KEY, BTN_LEFT);
950 	__set_bit(INPUT_PROP_BUTTONPAD, touchpad->propbit);
951 
952 	input_set_abs_params(touchpad, ABS_MT_POSITION_X, 0, width - 1, 0, 0);
953 	input_set_abs_params(touchpad, ABS_MT_POSITION_Y, 0, height - 1, 0, 0);
954 
955 	ret = input_mt_init_slots(touchpad, num_contacts, INPUT_MT_POINTER);
956 	if (ret)
957 		return ERR_PTR(ret);
958 
959 	ret = input_register_device(touchpad);
960 	if (ret)
961 		return ERR_PTR(ret);
962 
963 	return touchpad;
964 }
965 
966 static struct input_dev *ps_headset_jack_create(struct hid_device *hdev)
967 {
968 	struct input_dev *jack;
969 	int ret;
970 
971 	jack = ps_allocate_input_dev(hdev, "Headset Jack");
972 	if (IS_ERR(jack))
973 		return ERR_CAST(jack);
974 
975 	input_set_capability(jack, EV_SW, SW_HEADPHONE_INSERT);
976 	input_set_capability(jack, EV_SW, SW_MICROPHONE_INSERT);
977 
978 	ret = input_register_device(jack);
979 	if (ret)
980 		return ERR_PTR(ret);
981 
982 	return jack;
983 }
984 
985 static ssize_t firmware_version_show(struct device *dev,
986 				     struct device_attribute *attr, char *buf)
987 {
988 	struct hid_device *hdev = to_hid_device(dev);
989 	struct ps_device *ps_dev = hid_get_drvdata(hdev);
990 
991 	return sysfs_emit(buf, "0x%08x\n", ps_dev->fw_version);
992 }
993 
994 static DEVICE_ATTR_RO(firmware_version);
995 
996 static ssize_t hardware_version_show(struct device *dev,
997 				     struct device_attribute *attr, char *buf)
998 {
999 	struct hid_device *hdev = to_hid_device(dev);
1000 	struct ps_device *ps_dev = hid_get_drvdata(hdev);
1001 
1002 	return sysfs_emit(buf, "0x%08x\n", ps_dev->hw_version);
1003 }
1004 
1005 static DEVICE_ATTR_RO(hardware_version);
1006 
1007 static struct attribute *ps_device_attrs[] = {
1008 	&dev_attr_firmware_version.attr,
1009 	&dev_attr_hardware_version.attr,
1010 	NULL
1011 };
1012 ATTRIBUTE_GROUPS(ps_device);
1013 
1014 static int dualsense_get_calibration_data(struct dualsense *ds)
1015 {
1016 	struct hid_device *hdev = ds->base.hdev;
1017 	short gyro_pitch_bias, gyro_pitch_plus, gyro_pitch_minus;
1018 	short gyro_yaw_bias, gyro_yaw_plus, gyro_yaw_minus;
1019 	short gyro_roll_bias, gyro_roll_plus, gyro_roll_minus;
1020 	short gyro_speed_plus, gyro_speed_minus;
1021 	short acc_x_plus, acc_x_minus;
1022 	short acc_y_plus, acc_y_minus;
1023 	short acc_z_plus, acc_z_minus;
1024 	int speed_2x;
1025 	int range_2g;
1026 	int ret = 0;
1027 	int i;
1028 	u8 *buf;
1029 
1030 	buf = kzalloc(DS_FEATURE_REPORT_CALIBRATION_SIZE, GFP_KERNEL);
1031 	if (!buf)
1032 		return -ENOMEM;
1033 
1034 	ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_CALIBRATION, buf,
1035 			    DS_FEATURE_REPORT_CALIBRATION_SIZE, true);
1036 	if (ret) {
1037 		hid_err(ds->base.hdev, "Failed to retrieve DualSense calibration info: %d\n", ret);
1038 		goto err_free;
1039 	}
1040 
1041 	gyro_pitch_bias  = get_unaligned_le16(&buf[1]);
1042 	gyro_yaw_bias    = get_unaligned_le16(&buf[3]);
1043 	gyro_roll_bias   = get_unaligned_le16(&buf[5]);
1044 	gyro_pitch_plus  = get_unaligned_le16(&buf[7]);
1045 	gyro_pitch_minus = get_unaligned_le16(&buf[9]);
1046 	gyro_yaw_plus    = get_unaligned_le16(&buf[11]);
1047 	gyro_yaw_minus   = get_unaligned_le16(&buf[13]);
1048 	gyro_roll_plus   = get_unaligned_le16(&buf[15]);
1049 	gyro_roll_minus  = get_unaligned_le16(&buf[17]);
1050 	gyro_speed_plus  = get_unaligned_le16(&buf[19]);
1051 	gyro_speed_minus = get_unaligned_le16(&buf[21]);
1052 	acc_x_plus       = get_unaligned_le16(&buf[23]);
1053 	acc_x_minus      = get_unaligned_le16(&buf[25]);
1054 	acc_y_plus       = get_unaligned_le16(&buf[27]);
1055 	acc_y_minus      = get_unaligned_le16(&buf[29]);
1056 	acc_z_plus       = get_unaligned_le16(&buf[31]);
1057 	acc_z_minus      = get_unaligned_le16(&buf[33]);
1058 
1059 	/*
1060 	 * Set gyroscope calibration and normalization parameters.
1061 	 * Data values will be normalized to 1/DS_GYRO_RES_PER_DEG_S degree/s.
1062 	 */
1063 	speed_2x = (gyro_speed_plus + gyro_speed_minus);
1064 	ds->gyro_calib_data[0].abs_code = ABS_RX;
1065 	ds->gyro_calib_data[0].bias = 0;
1066 	ds->gyro_calib_data[0].sens_numer = speed_2x * DS_GYRO_RES_PER_DEG_S;
1067 	ds->gyro_calib_data[0].sens_denom = abs(gyro_pitch_plus - gyro_pitch_bias) +
1068 			abs(gyro_pitch_minus - gyro_pitch_bias);
1069 
1070 	ds->gyro_calib_data[1].abs_code = ABS_RY;
1071 	ds->gyro_calib_data[1].bias = 0;
1072 	ds->gyro_calib_data[1].sens_numer = speed_2x * DS_GYRO_RES_PER_DEG_S;
1073 	ds->gyro_calib_data[1].sens_denom = abs(gyro_yaw_plus - gyro_yaw_bias) +
1074 			abs(gyro_yaw_minus - gyro_yaw_bias);
1075 
1076 	ds->gyro_calib_data[2].abs_code = ABS_RZ;
1077 	ds->gyro_calib_data[2].bias = 0;
1078 	ds->gyro_calib_data[2].sens_numer = speed_2x * DS_GYRO_RES_PER_DEG_S;
1079 	ds->gyro_calib_data[2].sens_denom = abs(gyro_roll_plus - gyro_roll_bias) +
1080 			abs(gyro_roll_minus - gyro_roll_bias);
1081 
1082 	/*
1083 	 * Sanity check gyro calibration data. This is needed to prevent crashes
1084 	 * during report handling of virtual, clone or broken devices not implementing
1085 	 * calibration data properly.
1086 	 */
1087 	for (i = 0; i < ARRAY_SIZE(ds->gyro_calib_data); i++) {
1088 		if (ds->gyro_calib_data[i].sens_denom == 0) {
1089 			hid_warn(hdev,
1090 				 "Invalid gyro calibration data for axis (%d), disabling calibration.",
1091 				 ds->gyro_calib_data[i].abs_code);
1092 			ds->gyro_calib_data[i].bias = 0;
1093 			ds->gyro_calib_data[i].sens_numer = DS_GYRO_RANGE;
1094 			ds->gyro_calib_data[i].sens_denom = S16_MAX;
1095 		}
1096 	}
1097 
1098 	/*
1099 	 * Set accelerometer calibration and normalization parameters.
1100 	 * Data values will be normalized to 1/DS_ACC_RES_PER_G g.
1101 	 */
1102 	range_2g = acc_x_plus - acc_x_minus;
1103 	ds->accel_calib_data[0].abs_code = ABS_X;
1104 	ds->accel_calib_data[0].bias = acc_x_plus - range_2g / 2;
1105 	ds->accel_calib_data[0].sens_numer = 2 * DS_ACC_RES_PER_G;
1106 	ds->accel_calib_data[0].sens_denom = range_2g;
1107 
1108 	range_2g = acc_y_plus - acc_y_minus;
1109 	ds->accel_calib_data[1].abs_code = ABS_Y;
1110 	ds->accel_calib_data[1].bias = acc_y_plus - range_2g / 2;
1111 	ds->accel_calib_data[1].sens_numer = 2 * DS_ACC_RES_PER_G;
1112 	ds->accel_calib_data[1].sens_denom = range_2g;
1113 
1114 	range_2g = acc_z_plus - acc_z_minus;
1115 	ds->accel_calib_data[2].abs_code = ABS_Z;
1116 	ds->accel_calib_data[2].bias = acc_z_plus - range_2g / 2;
1117 	ds->accel_calib_data[2].sens_numer = 2 * DS_ACC_RES_PER_G;
1118 	ds->accel_calib_data[2].sens_denom = range_2g;
1119 
1120 	/*
1121 	 * Sanity check accelerometer calibration data. This is needed to prevent crashes
1122 	 * during report handling of virtual, clone or broken devices not implementing calibration
1123 	 * data properly.
1124 	 */
1125 	for (i = 0; i < ARRAY_SIZE(ds->accel_calib_data); i++) {
1126 		if (ds->accel_calib_data[i].sens_denom == 0) {
1127 			hid_warn(hdev,
1128 				 "Invalid accelerometer calibration data for axis (%d), disabling calibration.",
1129 				 ds->accel_calib_data[i].abs_code);
1130 			ds->accel_calib_data[i].bias = 0;
1131 			ds->accel_calib_data[i].sens_numer = DS_ACC_RANGE;
1132 			ds->accel_calib_data[i].sens_denom = S16_MAX;
1133 		}
1134 	}
1135 
1136 err_free:
1137 	kfree(buf);
1138 	return ret;
1139 }
1140 
1141 static int dualsense_get_firmware_info(struct dualsense *ds)
1142 {
1143 	u8 *buf;
1144 	int ret;
1145 
1146 	buf = kzalloc(DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE, GFP_KERNEL);
1147 	if (!buf)
1148 		return -ENOMEM;
1149 
1150 	ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_FIRMWARE_INFO, buf,
1151 			    DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE, true);
1152 	if (ret) {
1153 		hid_err(ds->base.hdev, "Failed to retrieve DualSense firmware info: %d\n", ret);
1154 		goto err_free;
1155 	}
1156 
1157 	ds->base.hw_version = get_unaligned_le32(&buf[24]);
1158 	ds->base.fw_version = get_unaligned_le32(&buf[28]);
1159 
1160 	/* Update version is some kind of feature version. It is distinct from
1161 	 * the firmware version as there can be many different variations of a
1162 	 * controller over time with the same physical shell, but with different
1163 	 * PCBs and other internal changes. The update version (internal name) is
1164 	 * used as a means to detect what features are available and change behavior.
1165 	 * Note: the version is different between DualSense and DualSense Edge.
1166 	 */
1167 	ds->update_version = get_unaligned_le16(&buf[44]);
1168 
1169 err_free:
1170 	kfree(buf);
1171 	return ret;
1172 }
1173 
1174 static int dualsense_get_mac_address(struct dualsense *ds)
1175 {
1176 	u8 *buf;
1177 	int ret = 0;
1178 
1179 	buf = kzalloc(DS_FEATURE_REPORT_PAIRING_INFO_SIZE, GFP_KERNEL);
1180 	if (!buf)
1181 		return -ENOMEM;
1182 
1183 	ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_PAIRING_INFO, buf,
1184 			    DS_FEATURE_REPORT_PAIRING_INFO_SIZE, true);
1185 	if (ret) {
1186 		hid_err(ds->base.hdev, "Failed to retrieve DualSense pairing info: %d\n", ret);
1187 		goto err_free;
1188 	}
1189 
1190 	memcpy(ds->base.mac_address, &buf[1], sizeof(ds->base.mac_address));
1191 
1192 err_free:
1193 	kfree(buf);
1194 	return ret;
1195 }
1196 
1197 static int dualsense_lightbar_set_brightness(struct led_classdev *cdev,
1198 					     enum led_brightness brightness)
1199 {
1200 	struct led_classdev_mc *mc_cdev = lcdev_to_mccdev(cdev);
1201 	struct dualsense *ds = container_of(mc_cdev, struct dualsense, lightbar);
1202 	u8 red, green, blue;
1203 
1204 	led_mc_calc_color_components(mc_cdev, brightness);
1205 	red = mc_cdev->subled_info[0].brightness;
1206 	green = mc_cdev->subled_info[1].brightness;
1207 	blue = mc_cdev->subled_info[2].brightness;
1208 
1209 	dualsense_set_lightbar(ds, red, green, blue);
1210 	return 0;
1211 }
1212 
1213 static enum led_brightness dualsense_player_led_get_brightness(struct led_classdev *led)
1214 {
1215 	struct hid_device *hdev = to_hid_device(led->dev->parent);
1216 	struct dualsense *ds = hid_get_drvdata(hdev);
1217 
1218 	return !!(ds->player_leds_state & BIT(led - ds->player_leds));
1219 }
1220 
1221 static int dualsense_player_led_set_brightness(struct led_classdev *led, enum led_brightness value)
1222 {
1223 	struct hid_device *hdev = to_hid_device(led->dev->parent);
1224 	struct dualsense *ds = hid_get_drvdata(hdev);
1225 	unsigned int led_index;
1226 
1227 	scoped_guard(spinlock_irqsave, &ds->base.lock) {
1228 		led_index = led - ds->player_leds;
1229 		if (value == LED_OFF)
1230 			ds->player_leds_state &= ~BIT(led_index);
1231 		else
1232 			ds->player_leds_state |= BIT(led_index);
1233 
1234 		ds->update_player_leds = true;
1235 	}
1236 
1237 	dualsense_schedule_work(ds);
1238 
1239 	return 0;
1240 }
1241 
1242 static void dualsense_init_output_report(struct dualsense *ds,
1243 					 struct dualsense_output_report *rp, void *buf)
1244 {
1245 	struct hid_device *hdev = ds->base.hdev;
1246 
1247 	if (hdev->bus == BUS_BLUETOOTH) {
1248 		struct dualsense_output_report_bt *bt = buf;
1249 
1250 		memset(bt, 0, sizeof(*bt));
1251 		bt->report_id = DS_OUTPUT_REPORT_BT;
1252 		bt->tag = DS_OUTPUT_TAG; /* Tag must be set. Exact meaning is unclear. */
1253 
1254 		/*
1255 		 * Highest 4-bit is a sequence number, which needs to be increased
1256 		 * every report. Lowest 4-bit is tag and can be zero for now.
1257 		 */
1258 		bt->seq_tag = FIELD_PREP(DS_OUTPUT_SEQ_NO, ds->output_seq) |
1259 			      FIELD_PREP(DS_OUTPUT_SEQ_TAG, 0x0);
1260 		if (++ds->output_seq == 16)
1261 			ds->output_seq = 0;
1262 
1263 		rp->data = buf;
1264 		rp->len = sizeof(*bt);
1265 		rp->bt = bt;
1266 		rp->usb = NULL;
1267 		rp->common = &bt->common;
1268 	} else { /* USB */
1269 		struct dualsense_output_report_usb *usb = buf;
1270 
1271 		memset(usb, 0, sizeof(*usb));
1272 		usb->report_id = DS_OUTPUT_REPORT_USB;
1273 
1274 		rp->data = buf;
1275 		rp->len = sizeof(*usb);
1276 		rp->bt = NULL;
1277 		rp->usb = usb;
1278 		rp->common = &usb->common;
1279 	}
1280 }
1281 
1282 static inline void dualsense_schedule_work(struct dualsense *ds)
1283 {
1284 	/* Using scoped_guard() instead of guard() to make sparse happy */
1285 	scoped_guard(spinlock_irqsave, &ds->base.lock)
1286 		if (ds->output_worker_initialized)
1287 			schedule_work(&ds->output_worker);
1288 }
1289 
1290 /*
1291  * Helper function to send DualSense output reports. Applies a CRC at the end of a report
1292  * for Bluetooth reports.
1293  */
1294 static void dualsense_send_output_report(struct dualsense *ds,
1295 					 struct dualsense_output_report *report)
1296 {
1297 	struct hid_device *hdev = ds->base.hdev;
1298 
1299 	/* Bluetooth packets need to be signed with a CRC in the last 4 bytes. */
1300 	if (report->bt) {
1301 		u32 crc;
1302 		u8 seed = PS_OUTPUT_CRC32_SEED;
1303 
1304 		crc = crc32_le(0xFFFFFFFF, &seed, 1);
1305 		crc = ~crc32_le(crc, report->data, report->len - 4);
1306 
1307 		report->bt->crc32 = cpu_to_le32(crc);
1308 	}
1309 
1310 	hid_hw_output_report(hdev, report->data, report->len);
1311 }
1312 
1313 static void dualsense_output_worker(struct work_struct *work)
1314 {
1315 	struct dualsense *ds = container_of(work, struct dualsense, output_worker);
1316 	struct dualsense_output_report report;
1317 	struct dualsense_output_report_common *common;
1318 
1319 	dualsense_init_output_report(ds, &report, ds->output_report_dmabuf);
1320 	common = report.common;
1321 
1322 	scoped_guard(spinlock_irqsave, &ds->base.lock) {
1323 		if (ds->update_rumble) {
1324 			/* Select classic rumble style haptics and enable it. */
1325 			common->valid_flag0 |= DS_OUTPUT_VALID_FLAG0_HAPTICS_SELECT;
1326 			if (ds->use_vibration_v2)
1327 				common->valid_flag2 |= DS_OUTPUT_VALID_FLAG2_COMPATIBLE_VIBRATION2;
1328 			else
1329 				common->valid_flag0 |= DS_OUTPUT_VALID_FLAG0_COMPATIBLE_VIBRATION;
1330 			common->motor_left = ds->motor_left;
1331 			common->motor_right = ds->motor_right;
1332 			ds->update_rumble = false;
1333 		}
1334 
1335 		if (ds->update_lightbar) {
1336 			common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_LIGHTBAR_CONTROL_ENABLE;
1337 			common->lightbar_red = ds->lightbar_red;
1338 			common->lightbar_green = ds->lightbar_green;
1339 			common->lightbar_blue = ds->lightbar_blue;
1340 
1341 			ds->update_lightbar = false;
1342 		}
1343 
1344 		if (ds->update_player_leds) {
1345 			common->valid_flag1 |=
1346 				DS_OUTPUT_VALID_FLAG1_PLAYER_INDICATOR_CONTROL_ENABLE;
1347 			common->player_leds = ds->player_leds_state;
1348 
1349 			ds->update_player_leds = false;
1350 		}
1351 
1352 		if (ds->plugged_state != ds->prev_plugged_state) {
1353 			u8 val = ds->plugged_state & DS_STATUS1_HP_DETECT;
1354 
1355 			if (val != (ds->prev_plugged_state & DS_STATUS1_HP_DETECT)) {
1356 				common->valid_flag0 = DS_OUTPUT_VALID_FLAG0_AUDIO_CONTROL_ENABLE;
1357 				/*
1358 				 *  _--------> Output path setup in audio_flag0
1359 				 * /  _------> Headphone (HP) Left channel sink
1360 				 * | /  _----> Headphone (HP) Right channel sink
1361 				 * | | /  _--> Internal Speaker (SP) sink
1362 				 * | | | /
1363 				 * | | | |     L/R - Left/Right channel source
1364 				 * 0 L-R X       X - Unrouted (muted) channel source
1365 				 * 1 L-L X
1366 				 * 2 L-L R
1367 				 * 3 X-X R
1368 				 */
1369 				if (val) {
1370 					/* Mute SP and route L+R channels to HP */
1371 					common->audio_control = 0;
1372 				} else {
1373 					/* Mute HP and route R channel to SP */
1374 					common->audio_control =
1375 						FIELD_PREP(DS_OUTPUT_AUDIO_FLAGS_OUTPUT_PATH_SEL,
1376 							   0x3);
1377 					/*
1378 					 * Set SP hardware volume to 100%.
1379 					 * Note the accepted range seems to be [0x3d..0x64]
1380 					 */
1381 					common->valid_flag0 |=
1382 						DS_OUTPUT_VALID_FLAG0_SPEAKER_VOLUME_ENABLE;
1383 					common->speaker_volume = 0x64;
1384 					/* Set SP preamp gain to +6dB */
1385 					common->valid_flag1 =
1386 						DS_OUTPUT_VALID_FLAG1_AUDIO_CONTROL2_ENABLE;
1387 					common->audio_control2 =
1388 						FIELD_PREP(DS_OUTPUT_AUDIO_FLAGS2_SP_PREAMP_GAIN,
1389 							   0x2);
1390 				}
1391 
1392 				input_report_switch(ds->jack, SW_HEADPHONE_INSERT, val);
1393 			}
1394 
1395 			val = ds->plugged_state & DS_STATUS1_MIC_DETECT;
1396 			if (val != (ds->prev_plugged_state & DS_STATUS1_MIC_DETECT))
1397 				input_report_switch(ds->jack, SW_MICROPHONE_INSERT, val);
1398 
1399 			input_sync(ds->jack);
1400 			ds->prev_plugged_state = ds->plugged_state;
1401 		}
1402 
1403 		if (ds->update_mic_mute) {
1404 			common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_MIC_MUTE_LED_CONTROL_ENABLE;
1405 			common->mute_button_led = ds->mic_muted;
1406 
1407 			if (ds->mic_muted) {
1408 				/* Disable microphone */
1409 				common->valid_flag1 |=
1410 					DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE;
1411 				common->power_save_control |= DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE;
1412 			} else {
1413 				/* Enable microphone */
1414 				common->valid_flag1 |=
1415 					DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE;
1416 				common->power_save_control &=
1417 					~DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE;
1418 			}
1419 
1420 			ds->update_mic_mute = false;
1421 		}
1422 	}
1423 
1424 	dualsense_send_output_report(ds, &report);
1425 }
1426 
1427 static int dualsense_parse_report(struct ps_device *ps_dev, struct hid_report *report,
1428 				  u8 *data, int size)
1429 {
1430 	struct hid_device *hdev = ps_dev->hdev;
1431 	struct dualsense *ds = container_of(ps_dev, struct dualsense, base);
1432 	struct dualsense_input_report *ds_report;
1433 	u8 battery_data, battery_capacity, charging_status, value;
1434 	int battery_status;
1435 	u32 sensor_timestamp;
1436 	bool btn_mic_state;
1437 	int i;
1438 
1439 	/*
1440 	 * DualSense in USB uses the full HID report for reportID 1, but
1441 	 * Bluetooth uses a minimal HID report for reportID 1 and reports
1442 	 * the full report using reportID 49.
1443 	 */
1444 	if (hdev->bus == BUS_USB && report->id == DS_INPUT_REPORT_USB &&
1445 	    size == DS_INPUT_REPORT_USB_SIZE) {
1446 		ds_report = (struct dualsense_input_report *)&data[1];
1447 	} else if (hdev->bus == BUS_BLUETOOTH && report->id == DS_INPUT_REPORT_BT &&
1448 		   size == DS_INPUT_REPORT_BT_SIZE) {
1449 		/* Last 4 bytes of input report contain crc32 */
1450 		u32 report_crc = get_unaligned_le32(&data[size - 4]);
1451 
1452 		if (!ps_check_crc32(PS_INPUT_CRC32_SEED, data, size - 4, report_crc)) {
1453 			hid_err(hdev, "DualSense input CRC's check failed\n");
1454 			return -EILSEQ;
1455 		}
1456 
1457 		ds_report = (struct dualsense_input_report *)&data[2];
1458 	} else {
1459 		hid_err(hdev, "Unhandled reportID=%d\n", report->id);
1460 		return -1;
1461 	}
1462 
1463 	input_report_abs(ds->gamepad, ABS_X,  ds_report->x);
1464 	input_report_abs(ds->gamepad, ABS_Y,  ds_report->y);
1465 	input_report_abs(ds->gamepad, ABS_RX, ds_report->rx);
1466 	input_report_abs(ds->gamepad, ABS_RY, ds_report->ry);
1467 	input_report_abs(ds->gamepad, ABS_Z,  ds_report->z);
1468 	input_report_abs(ds->gamepad, ABS_RZ, ds_report->rz);
1469 
1470 	value = ds_report->buttons[0] & DS_BUTTONS0_HAT_SWITCH;
1471 	if (value >= ARRAY_SIZE(ps_gamepad_hat_mapping))
1472 		value = 8; /* center */
1473 	input_report_abs(ds->gamepad, ABS_HAT0X, ps_gamepad_hat_mapping[value].x);
1474 	input_report_abs(ds->gamepad, ABS_HAT0Y, ps_gamepad_hat_mapping[value].y);
1475 
1476 	input_report_key(ds->gamepad, BTN_WEST,   ds_report->buttons[0] & DS_BUTTONS0_SQUARE);
1477 	input_report_key(ds->gamepad, BTN_SOUTH,  ds_report->buttons[0] & DS_BUTTONS0_CROSS);
1478 	input_report_key(ds->gamepad, BTN_EAST,   ds_report->buttons[0] & DS_BUTTONS0_CIRCLE);
1479 	input_report_key(ds->gamepad, BTN_NORTH,  ds_report->buttons[0] & DS_BUTTONS0_TRIANGLE);
1480 	input_report_key(ds->gamepad, BTN_TL,     ds_report->buttons[1] & DS_BUTTONS1_L1);
1481 	input_report_key(ds->gamepad, BTN_TR,     ds_report->buttons[1] & DS_BUTTONS1_R1);
1482 	input_report_key(ds->gamepad, BTN_TL2,    ds_report->buttons[1] & DS_BUTTONS1_L2);
1483 	input_report_key(ds->gamepad, BTN_TR2,    ds_report->buttons[1] & DS_BUTTONS1_R2);
1484 	input_report_key(ds->gamepad, BTN_SELECT, ds_report->buttons[1] & DS_BUTTONS1_CREATE);
1485 	input_report_key(ds->gamepad, BTN_START,  ds_report->buttons[1] & DS_BUTTONS1_OPTIONS);
1486 	input_report_key(ds->gamepad, BTN_THUMBL, ds_report->buttons[1] & DS_BUTTONS1_L3);
1487 	input_report_key(ds->gamepad, BTN_THUMBR, ds_report->buttons[1] & DS_BUTTONS1_R3);
1488 	input_report_key(ds->gamepad, BTN_MODE,   ds_report->buttons[2] & DS_BUTTONS2_PS_HOME);
1489 	input_sync(ds->gamepad);
1490 
1491 	/*
1492 	 * The DualSense has an internal microphone, which can be muted through a mute button
1493 	 * on the device. The driver is expected to read the button state and program the device
1494 	 * to mute/unmute audio at the hardware level.
1495 	 */
1496 	btn_mic_state = !!(ds_report->buttons[2] & DS_BUTTONS2_MIC_MUTE);
1497 	if (btn_mic_state && !ds->last_btn_mic_state) {
1498 		scoped_guard(spinlock_irqsave, &ps_dev->lock) {
1499 			ds->update_mic_mute = true;
1500 			ds->mic_muted = !ds->mic_muted; /* toggle */
1501 		}
1502 
1503 		/* Schedule updating of microphone state at hardware level. */
1504 		dualsense_schedule_work(ds);
1505 	}
1506 	ds->last_btn_mic_state = btn_mic_state;
1507 
1508 	/*
1509 	 * Parse HP/MIC plugged state data for USB use case, since Bluetooth
1510 	 * audio is currently not supported.
1511 	 */
1512 	if (hdev->bus == BUS_USB) {
1513 		value = ds_report->status[1] & DS_STATUS1_JACK_DETECT;
1514 
1515 		if (!ds->prev_plugged_state_valid) {
1516 			/* Initial handling of the plugged state report */
1517 			scoped_guard(spinlock_irqsave, &ps_dev->lock) {
1518 				ds->plugged_state = (~value) & DS_STATUS1_JACK_DETECT;
1519 				ds->prev_plugged_state_valid = true;
1520 			}
1521 		}
1522 
1523 		if (value != ds->plugged_state) {
1524 			scoped_guard(spinlock_irqsave, &ps_dev->lock) {
1525 				ds->prev_plugged_state = ds->plugged_state;
1526 				ds->plugged_state = value;
1527 			}
1528 
1529 			/* Schedule audio routing towards active endpoint. */
1530 			dualsense_schedule_work(ds);
1531 		}
1532 	}
1533 
1534 	/* Parse and calibrate gyroscope data. */
1535 	for (i = 0; i < ARRAY_SIZE(ds_report->gyro); i++) {
1536 		int raw_data = (short)le16_to_cpu(ds_report->gyro[i]);
1537 		int calib_data = mult_frac(ds->gyro_calib_data[i].sens_numer,
1538 					   raw_data, ds->gyro_calib_data[i].sens_denom);
1539 
1540 		input_report_abs(ds->sensors, ds->gyro_calib_data[i].abs_code, calib_data);
1541 	}
1542 
1543 	/* Parse and calibrate accelerometer data. */
1544 	for (i = 0; i < ARRAY_SIZE(ds_report->accel); i++) {
1545 		int raw_data = (short)le16_to_cpu(ds_report->accel[i]);
1546 		int calib_data = mult_frac(ds->accel_calib_data[i].sens_numer,
1547 					   raw_data - ds->accel_calib_data[i].bias,
1548 					   ds->accel_calib_data[i].sens_denom);
1549 
1550 		input_report_abs(ds->sensors, ds->accel_calib_data[i].abs_code, calib_data);
1551 	}
1552 
1553 	/* Convert timestamp (in 0.33us unit) to timestamp_us */
1554 	sensor_timestamp = le32_to_cpu(ds_report->sensor_timestamp);
1555 	if (!ds->sensor_timestamp_initialized) {
1556 		ds->sensor_timestamp_us = DIV_ROUND_CLOSEST(sensor_timestamp, 3);
1557 		ds->sensor_timestamp_initialized = true;
1558 	} else {
1559 		u32 delta;
1560 
1561 		if (ds->prev_sensor_timestamp > sensor_timestamp)
1562 			delta = (U32_MAX - ds->prev_sensor_timestamp + sensor_timestamp + 1);
1563 		else
1564 			delta = sensor_timestamp - ds->prev_sensor_timestamp;
1565 		ds->sensor_timestamp_us += DIV_ROUND_CLOSEST(delta, 3);
1566 	}
1567 	ds->prev_sensor_timestamp = sensor_timestamp;
1568 	input_event(ds->sensors, EV_MSC, MSC_TIMESTAMP, ds->sensor_timestamp_us);
1569 	input_sync(ds->sensors);
1570 
1571 	for (i = 0; i < ARRAY_SIZE(ds_report->points); i++) {
1572 		struct dualsense_touch_point *point = &ds_report->points[i];
1573 		bool active = (point->contact & DS_TOUCH_POINT_INACTIVE) ? false : true;
1574 
1575 		input_mt_slot(ds->touchpad, i);
1576 		input_mt_report_slot_state(ds->touchpad, MT_TOOL_FINGER, active);
1577 
1578 		if (active) {
1579 			input_report_abs(ds->touchpad, ABS_MT_POSITION_X,
1580 					 DS_TOUCH_POINT_X(point->x_hi, point->x_lo));
1581 			input_report_abs(ds->touchpad, ABS_MT_POSITION_Y,
1582 					 DS_TOUCH_POINT_Y(point->y_hi, point->y_lo));
1583 		}
1584 	}
1585 	input_mt_sync_frame(ds->touchpad);
1586 	input_report_key(ds->touchpad, BTN_LEFT, ds_report->buttons[2] & DS_BUTTONS2_TOUCHPAD);
1587 	input_sync(ds->touchpad);
1588 
1589 	battery_data = FIELD_GET(DS_STATUS0_BATTERY_CAPACITY, ds_report->status[0]);
1590 	charging_status = FIELD_GET(DS_STATUS0_CHARGING, ds_report->status[0]);
1591 
1592 	switch (charging_status) {
1593 	case 0x0:
1594 		/*
1595 		 * Each unit of battery data corresponds to 10%
1596 		 * 0 = 0-9%, 1 = 10-19%, .. and 10 = 100%
1597 		 */
1598 		battery_capacity = min(battery_data * 10 + 5, 100);
1599 		battery_status = POWER_SUPPLY_STATUS_DISCHARGING;
1600 		break;
1601 	case 0x1:
1602 		battery_capacity = min(battery_data * 10 + 5, 100);
1603 		battery_status = POWER_SUPPLY_STATUS_CHARGING;
1604 		break;
1605 	case 0x2:
1606 		battery_capacity = 100;
1607 		battery_status = POWER_SUPPLY_STATUS_FULL;
1608 		break;
1609 	case 0xa: /* voltage or temperature out of range */
1610 	case 0xb: /* temperature error */
1611 		battery_capacity = 0;
1612 		battery_status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1613 		break;
1614 	case 0xf: /* charging error */
1615 	default:
1616 		battery_capacity = 0;
1617 		battery_status = POWER_SUPPLY_STATUS_UNKNOWN;
1618 	}
1619 
1620 	scoped_guard(spinlock_irqsave, &ps_dev->lock) {
1621 		ps_dev->battery_capacity = battery_capacity;
1622 		ps_dev->battery_status = battery_status;
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 static int dualsense_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect)
1629 {
1630 	struct hid_device *hdev = input_get_drvdata(dev);
1631 	struct dualsense *ds = hid_get_drvdata(hdev);
1632 
1633 	if (effect->type != FF_RUMBLE)
1634 		return 0;
1635 
1636 	scoped_guard(spinlock_irqsave, &ds->base.lock) {
1637 		ds->update_rumble = true;
1638 		ds->motor_left = effect->u.rumble.strong_magnitude / 256;
1639 		ds->motor_right = effect->u.rumble.weak_magnitude / 256;
1640 	}
1641 
1642 	dualsense_schedule_work(ds);
1643 	return 0;
1644 }
1645 
1646 static void dualsense_remove(struct ps_device *ps_dev)
1647 {
1648 	struct dualsense *ds = container_of(ps_dev, struct dualsense, base);
1649 
1650 	scoped_guard(spinlock_irqsave, &ds->base.lock)
1651 		ds->output_worker_initialized = false;
1652 
1653 	cancel_work_sync(&ds->output_worker);
1654 }
1655 
1656 static int dualsense_reset_leds(struct dualsense *ds)
1657 {
1658 	struct dualsense_output_report report;
1659 	struct dualsense_output_report_bt *buf;
1660 
1661 	buf = kzalloc(sizeof(*buf), GFP_KERNEL);
1662 	if (!buf)
1663 		return -ENOMEM;
1664 
1665 	dualsense_init_output_report(ds, &report, buf);
1666 	/*
1667 	 * On Bluetooth the DualSense outputs an animation on the lightbar
1668 	 * during startup and maintains a color afterwards. We need to explicitly
1669 	 * reconfigure the lightbar before we can do any programming later on.
1670 	 * In USB the lightbar is not on by default, but redoing the setup there
1671 	 * doesn't hurt.
1672 	 */
1673 	report.common->valid_flag2 = DS_OUTPUT_VALID_FLAG2_LIGHTBAR_SETUP_CONTROL_ENABLE;
1674 	report.common->lightbar_setup = DS_OUTPUT_LIGHTBAR_SETUP_LIGHT_OUT; /* Fade light out. */
1675 	dualsense_send_output_report(ds, &report);
1676 
1677 	kfree(buf);
1678 	return 0;
1679 }
1680 
1681 static void dualsense_set_lightbar(struct dualsense *ds, u8 red, u8 green, u8 blue)
1682 {
1683 	scoped_guard(spinlock_irqsave, &ds->base.lock) {
1684 		ds->update_lightbar = true;
1685 		ds->lightbar_red = red;
1686 		ds->lightbar_green = green;
1687 		ds->lightbar_blue = blue;
1688 	}
1689 
1690 	dualsense_schedule_work(ds);
1691 }
1692 
1693 static void dualsense_set_player_leds(struct dualsense *ds)
1694 {
1695 	/*
1696 	 * The DualSense controller has a row of 5 LEDs used for player ids.
1697 	 * Behavior on the PlayStation 5 console is to center the player id
1698 	 * across the LEDs, so e.g. player 1 would be "--x--" with x being 'on'.
1699 	 * Follow a similar mapping here.
1700 	 */
1701 	static const int player_ids[5] = {
1702 		BIT(2),
1703 		BIT(3) | BIT(1),
1704 		BIT(4) | BIT(2) | BIT(0),
1705 		BIT(4) | BIT(3) | BIT(1) | BIT(0),
1706 		BIT(4) | BIT(3) | BIT(2) | BIT(1) | BIT(0)
1707 	};
1708 
1709 	u8 player_id = ds->base.player_id % ARRAY_SIZE(player_ids);
1710 
1711 	ds->update_player_leds = true;
1712 	ds->player_leds_state = player_ids[player_id];
1713 	dualsense_schedule_work(ds);
1714 }
1715 
1716 static struct ps_device *dualsense_create(struct hid_device *hdev)
1717 {
1718 	struct dualsense *ds;
1719 	struct ps_device *ps_dev;
1720 	u8 max_output_report_size;
1721 	int i, ret;
1722 
1723 	static const struct ps_led_info player_leds_info[] = {
1724 		{ LED_FUNCTION_PLAYER1, "white", 1, dualsense_player_led_get_brightness,
1725 				dualsense_player_led_set_brightness },
1726 		{ LED_FUNCTION_PLAYER2, "white", 1, dualsense_player_led_get_brightness,
1727 				dualsense_player_led_set_brightness },
1728 		{ LED_FUNCTION_PLAYER3, "white", 1, dualsense_player_led_get_brightness,
1729 				dualsense_player_led_set_brightness },
1730 		{ LED_FUNCTION_PLAYER4, "white", 1, dualsense_player_led_get_brightness,
1731 				dualsense_player_led_set_brightness },
1732 		{ LED_FUNCTION_PLAYER5, "white", 1, dualsense_player_led_get_brightness,
1733 				dualsense_player_led_set_brightness }
1734 	};
1735 
1736 	ds = devm_kzalloc(&hdev->dev, sizeof(*ds), GFP_KERNEL);
1737 	if (!ds)
1738 		return ERR_PTR(-ENOMEM);
1739 
1740 	/*
1741 	 * Patch version to allow userspace to distinguish between
1742 	 * hid-generic vs hid-playstation axis and button mapping.
1743 	 */
1744 	hdev->version |= HID_PLAYSTATION_VERSION_PATCH;
1745 
1746 	ps_dev = &ds->base;
1747 	ps_dev->hdev = hdev;
1748 	spin_lock_init(&ps_dev->lock);
1749 	ps_dev->battery_capacity = 100; /* initial value until parse_report. */
1750 	ps_dev->battery_status = POWER_SUPPLY_STATUS_UNKNOWN;
1751 	ps_dev->parse_report = dualsense_parse_report;
1752 	ps_dev->remove = dualsense_remove;
1753 	INIT_WORK(&ds->output_worker, dualsense_output_worker);
1754 	ds->output_worker_initialized = true;
1755 	hid_set_drvdata(hdev, ds);
1756 
1757 	max_output_report_size = sizeof(struct dualsense_output_report_bt);
1758 	ds->output_report_dmabuf = devm_kzalloc(&hdev->dev, max_output_report_size, GFP_KERNEL);
1759 	if (!ds->output_report_dmabuf)
1760 		return ERR_PTR(-ENOMEM);
1761 
1762 	ret = dualsense_get_mac_address(ds);
1763 	if (ret) {
1764 		hid_err(hdev, "Failed to get MAC address from DualSense\n");
1765 		return ERR_PTR(ret);
1766 	}
1767 	snprintf(hdev->uniq, sizeof(hdev->uniq), "%pMR", ds->base.mac_address);
1768 
1769 	ret = dualsense_get_firmware_info(ds);
1770 	if (ret) {
1771 		hid_err(hdev, "Failed to get firmware info from DualSense\n");
1772 		return ERR_PTR(ret);
1773 	}
1774 
1775 	/* Original DualSense firmware simulated classic controller rumble through
1776 	 * its new haptics hardware. It felt different from classic rumble users
1777 	 * were used to. Since then new firmwares were introduced to change behavior
1778 	 * and make this new 'v2' behavior default on PlayStation and other platforms.
1779 	 * The original DualSense requires a new enough firmware as bundled with PS5
1780 	 * software released in 2021. DualSense edge supports it out of the box.
1781 	 * Both devices also support the old mode, but it is not really used.
1782 	 */
1783 	if (hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER) {
1784 		/* Feature version 2.21 introduced new vibration method. */
1785 		ds->use_vibration_v2 = ds->update_version >= DS_FEATURE_VERSION(2, 21);
1786 	} else if (hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER_2) {
1787 		ds->use_vibration_v2 = true;
1788 	}
1789 
1790 	ret = ps_devices_list_add(ps_dev);
1791 	if (ret)
1792 		return ERR_PTR(ret);
1793 
1794 	ret = dualsense_get_calibration_data(ds);
1795 	if (ret) {
1796 		hid_err(hdev, "Failed to get calibration data from DualSense\n");
1797 		goto err;
1798 	}
1799 
1800 	ds->gamepad = ps_gamepad_create(hdev, dualsense_play_effect);
1801 	if (IS_ERR(ds->gamepad)) {
1802 		ret = PTR_ERR(ds->gamepad);
1803 		goto err;
1804 	}
1805 	/* Use gamepad input device name as primary device name for e.g. LEDs */
1806 	ps_dev->input_dev_name = dev_name(&ds->gamepad->dev);
1807 
1808 	ds->sensors = ps_sensors_create(hdev, DS_ACC_RANGE, DS_ACC_RES_PER_G,
1809 					DS_GYRO_RANGE, DS_GYRO_RES_PER_DEG_S);
1810 	if (IS_ERR(ds->sensors)) {
1811 		ret = PTR_ERR(ds->sensors);
1812 		goto err;
1813 	}
1814 
1815 	ds->touchpad = ps_touchpad_create(hdev, DS_TOUCHPAD_WIDTH, DS_TOUCHPAD_HEIGHT, 2);
1816 	if (IS_ERR(ds->touchpad)) {
1817 		ret = PTR_ERR(ds->touchpad);
1818 		goto err;
1819 	}
1820 
1821 	/* Bluetooth audio is currently not supported. */
1822 	if (hdev->bus == BUS_USB) {
1823 		ds->jack = ps_headset_jack_create(hdev);
1824 		if (IS_ERR(ds->jack)) {
1825 			ret = PTR_ERR(ds->jack);
1826 			goto err;
1827 		}
1828 	}
1829 
1830 	ret = ps_device_register_battery(ps_dev);
1831 	if (ret)
1832 		goto err;
1833 
1834 	/*
1835 	 * The hardware may have control over the LEDs (e.g. in Bluetooth on startup).
1836 	 * Reset the LEDs (lightbar, mute, player leds), so we can control them
1837 	 * from software.
1838 	 */
1839 	ret = dualsense_reset_leds(ds);
1840 	if (ret)
1841 		goto err;
1842 
1843 	ret = ps_lightbar_register(ps_dev, &ds->lightbar, dualsense_lightbar_set_brightness);
1844 	if (ret)
1845 		goto err;
1846 
1847 	/* Set default lightbar color. */
1848 	dualsense_set_lightbar(ds, 0, 0, 128); /* blue */
1849 
1850 	for (i = 0; i < ARRAY_SIZE(player_leds_info); i++) {
1851 		const struct ps_led_info *led_info = &player_leds_info[i];
1852 
1853 		ret = ps_led_register(ps_dev, &ds->player_leds[i], led_info);
1854 		if (ret < 0)
1855 			goto err;
1856 	}
1857 
1858 	ret = ps_device_set_player_id(ps_dev);
1859 	if (ret) {
1860 		hid_err(hdev, "Failed to assign player id for DualSense: %d\n", ret);
1861 		goto err;
1862 	}
1863 
1864 	/* Set player LEDs to our player id. */
1865 	dualsense_set_player_leds(ds);
1866 
1867 	/*
1868 	 * Reporting hardware and firmware is important as there are frequent updates, which
1869 	 * can change behavior.
1870 	 */
1871 	hid_info(hdev, "Registered DualSense controller hw_version=0x%08x fw_version=0x%08x\n",
1872 		 ds->base.hw_version, ds->base.fw_version);
1873 
1874 	return &ds->base;
1875 
1876 err:
1877 	ps_devices_list_remove(ps_dev);
1878 	return ERR_PTR(ret);
1879 }
1880 
1881 static void dualshock4_dongle_calibration_work(struct work_struct *work)
1882 {
1883 	struct dualshock4 *ds4 = container_of(work, struct dualshock4, dongle_hotplug_worker);
1884 	enum dualshock4_dongle_state dongle_state;
1885 	int ret;
1886 
1887 	ret = dualshock4_get_calibration_data(ds4);
1888 	if (ret < 0) {
1889 		/* This call is very unlikely to fail for the dongle. When it
1890 		 * fails we are probably in a very bad state, so mark the
1891 		 * dongle as disabled. We will re-enable the dongle if a new
1892 		 * DS4 hotplug is detect from sony_raw_event as any issues
1893 		 * are likely resolved then (the dongle is quite stupid).
1894 		 */
1895 		hid_err(ds4->base.hdev,
1896 			"DualShock 4 USB dongle: calibration failed, disabling device\n");
1897 		dongle_state = DONGLE_DISABLED;
1898 	} else {
1899 		hid_info(ds4->base.hdev, "DualShock 4 USB dongle: calibration completed\n");
1900 		dongle_state = DONGLE_CONNECTED;
1901 	}
1902 
1903 	scoped_guard(spinlock_irqsave, &ds4->base.lock)
1904 		ds4->dongle_state = dongle_state;
1905 }
1906 
1907 static int dualshock4_get_calibration_data(struct dualshock4 *ds4)
1908 {
1909 	struct hid_device *hdev = ds4->base.hdev;
1910 	short gyro_pitch_bias, gyro_pitch_plus, gyro_pitch_minus;
1911 	short gyro_yaw_bias, gyro_yaw_plus, gyro_yaw_minus;
1912 	short gyro_roll_bias, gyro_roll_plus, gyro_roll_minus;
1913 	short gyro_speed_plus, gyro_speed_minus;
1914 	short acc_x_plus, acc_x_minus;
1915 	short acc_y_plus, acc_y_minus;
1916 	short acc_z_plus, acc_z_minus;
1917 	int speed_2x;
1918 	int range_2g;
1919 	int ret = 0;
1920 	int i;
1921 	u8 *buf;
1922 
1923 	if (ds4->base.hdev->bus == BUS_USB) {
1924 		int retries;
1925 
1926 		buf = kzalloc(DS4_FEATURE_REPORT_CALIBRATION_SIZE, GFP_KERNEL);
1927 		if (!buf) {
1928 			ret = -ENOMEM;
1929 			goto transfer_failed;
1930 		}
1931 
1932 		/* We should normally receive the feature report data we asked
1933 		 * for, but hidraw applications such as Steam can issue feature
1934 		 * reports as well. In particular for Dongle reconnects, Steam
1935 		 * and this function are competing resulting in often receiving
1936 		 * data for a different HID report, so retry a few times.
1937 		 */
1938 		for (retries = 0; retries < 3; retries++) {
1939 			ret = ps_get_report(hdev, DS4_FEATURE_REPORT_CALIBRATION, buf,
1940 					    DS4_FEATURE_REPORT_CALIBRATION_SIZE, true);
1941 			if (ret) {
1942 				if (retries < 2) {
1943 					hid_warn(hdev,
1944 						 "Retrying DualShock 4 get calibration report (0x02) request\n");
1945 					continue;
1946 				}
1947 
1948 				hid_warn(hdev,
1949 					 "Failed to retrieve DualShock4 calibration info: %d\n",
1950 					 ret);
1951 				ret = -EILSEQ;
1952 				kfree(buf);
1953 				goto transfer_failed;
1954 			} else {
1955 				break;
1956 			}
1957 		}
1958 	} else { /* Bluetooth */
1959 		buf = kzalloc(DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE, GFP_KERNEL);
1960 		if (!buf) {
1961 			ret = -ENOMEM;
1962 			goto transfer_failed;
1963 		}
1964 
1965 		ret = ps_get_report(hdev, DS4_FEATURE_REPORT_CALIBRATION_BT, buf,
1966 				    DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE, true);
1967 
1968 		if (ret) {
1969 			hid_warn(hdev, "Failed to retrieve DualShock4 calibration info: %d\n", ret);
1970 			kfree(buf);
1971 			goto transfer_failed;
1972 		}
1973 	}
1974 
1975 	/* Transfer succeeded - parse the calibration data received. */
1976 	gyro_pitch_bias  = get_unaligned_le16(&buf[1]);
1977 	gyro_yaw_bias    = get_unaligned_le16(&buf[3]);
1978 	gyro_roll_bias   = get_unaligned_le16(&buf[5]);
1979 	if (ds4->base.hdev->bus == BUS_USB) {
1980 		gyro_pitch_plus  = get_unaligned_le16(&buf[7]);
1981 		gyro_pitch_minus = get_unaligned_le16(&buf[9]);
1982 		gyro_yaw_plus    = get_unaligned_le16(&buf[11]);
1983 		gyro_yaw_minus   = get_unaligned_le16(&buf[13]);
1984 		gyro_roll_plus   = get_unaligned_le16(&buf[15]);
1985 		gyro_roll_minus  = get_unaligned_le16(&buf[17]);
1986 	} else {
1987 		/* BT + Dongle */
1988 		gyro_pitch_plus  = get_unaligned_le16(&buf[7]);
1989 		gyro_yaw_plus    = get_unaligned_le16(&buf[9]);
1990 		gyro_roll_plus   = get_unaligned_le16(&buf[11]);
1991 		gyro_pitch_minus = get_unaligned_le16(&buf[13]);
1992 		gyro_yaw_minus   = get_unaligned_le16(&buf[15]);
1993 		gyro_roll_minus  = get_unaligned_le16(&buf[17]);
1994 	}
1995 	gyro_speed_plus  = get_unaligned_le16(&buf[19]);
1996 	gyro_speed_minus = get_unaligned_le16(&buf[21]);
1997 	acc_x_plus       = get_unaligned_le16(&buf[23]);
1998 	acc_x_minus      = get_unaligned_le16(&buf[25]);
1999 	acc_y_plus       = get_unaligned_le16(&buf[27]);
2000 	acc_y_minus      = get_unaligned_le16(&buf[29]);
2001 	acc_z_plus       = get_unaligned_le16(&buf[31]);
2002 	acc_z_minus      = get_unaligned_le16(&buf[33]);
2003 
2004 	/* Done parsing the buffer, so let's free it. */
2005 	kfree(buf);
2006 
2007 	/*
2008 	 * Set gyroscope calibration and normalization parameters.
2009 	 * Data values will be normalized to 1/DS4_GYRO_RES_PER_DEG_S degree/s.
2010 	 */
2011 	speed_2x = (gyro_speed_plus + gyro_speed_minus);
2012 	ds4->gyro_calib_data[0].abs_code = ABS_RX;
2013 	ds4->gyro_calib_data[0].bias = 0;
2014 	ds4->gyro_calib_data[0].sens_numer = speed_2x * DS4_GYRO_RES_PER_DEG_S;
2015 	ds4->gyro_calib_data[0].sens_denom = abs(gyro_pitch_plus - gyro_pitch_bias) +
2016 			abs(gyro_pitch_minus - gyro_pitch_bias);
2017 
2018 	ds4->gyro_calib_data[1].abs_code = ABS_RY;
2019 	ds4->gyro_calib_data[1].bias = 0;
2020 	ds4->gyro_calib_data[1].sens_numer = speed_2x * DS4_GYRO_RES_PER_DEG_S;
2021 	ds4->gyro_calib_data[1].sens_denom = abs(gyro_yaw_plus - gyro_yaw_bias) +
2022 			abs(gyro_yaw_minus - gyro_yaw_bias);
2023 
2024 	ds4->gyro_calib_data[2].abs_code = ABS_RZ;
2025 	ds4->gyro_calib_data[2].bias = 0;
2026 	ds4->gyro_calib_data[2].sens_numer = speed_2x * DS4_GYRO_RES_PER_DEG_S;
2027 	ds4->gyro_calib_data[2].sens_denom = abs(gyro_roll_plus - gyro_roll_bias) +
2028 			abs(gyro_roll_minus - gyro_roll_bias);
2029 
2030 	/*
2031 	 * Set accelerometer calibration and normalization parameters.
2032 	 * Data values will be normalized to 1/DS4_ACC_RES_PER_G g.
2033 	 */
2034 	range_2g = acc_x_plus - acc_x_minus;
2035 	ds4->accel_calib_data[0].abs_code = ABS_X;
2036 	ds4->accel_calib_data[0].bias = acc_x_plus - range_2g / 2;
2037 	ds4->accel_calib_data[0].sens_numer = 2 * DS4_ACC_RES_PER_G;
2038 	ds4->accel_calib_data[0].sens_denom = range_2g;
2039 
2040 	range_2g = acc_y_plus - acc_y_minus;
2041 	ds4->accel_calib_data[1].abs_code = ABS_Y;
2042 	ds4->accel_calib_data[1].bias = acc_y_plus - range_2g / 2;
2043 	ds4->accel_calib_data[1].sens_numer = 2 * DS4_ACC_RES_PER_G;
2044 	ds4->accel_calib_data[1].sens_denom = range_2g;
2045 
2046 	range_2g = acc_z_plus - acc_z_minus;
2047 	ds4->accel_calib_data[2].abs_code = ABS_Z;
2048 	ds4->accel_calib_data[2].bias = acc_z_plus - range_2g / 2;
2049 	ds4->accel_calib_data[2].sens_numer = 2 * DS4_ACC_RES_PER_G;
2050 	ds4->accel_calib_data[2].sens_denom = range_2g;
2051 
2052 transfer_failed:
2053 	/*
2054 	 * Sanity check gyro calibration data. This is needed to prevent crashes
2055 	 * during report handling of virtual, clone or broken devices not implementing
2056 	 * calibration data properly.
2057 	 */
2058 	for (i = 0; i < ARRAY_SIZE(ds4->gyro_calib_data); i++) {
2059 		if (ds4->gyro_calib_data[i].sens_denom == 0) {
2060 			ds4->gyro_calib_data[i].abs_code = ABS_RX + i;
2061 			hid_warn(hdev,
2062 				 "Invalid gyro calibration data for axis (%d), disabling calibration.",
2063 				 ds4->gyro_calib_data[i].abs_code);
2064 			ds4->gyro_calib_data[i].bias = 0;
2065 			ds4->gyro_calib_data[i].sens_numer = DS4_GYRO_RANGE;
2066 			ds4->gyro_calib_data[i].sens_denom = S16_MAX;
2067 		}
2068 	}
2069 
2070 	/*
2071 	 * Sanity check accelerometer calibration data. This is needed to prevent crashes
2072 	 * during report handling of virtual, clone or broken devices not implementing calibration
2073 	 * data properly.
2074 	 */
2075 	for (i = 0; i < ARRAY_SIZE(ds4->accel_calib_data); i++) {
2076 		if (ds4->accel_calib_data[i].sens_denom == 0) {
2077 			ds4->accel_calib_data[i].abs_code = ABS_X + i;
2078 			hid_warn(hdev,
2079 				 "Invalid accelerometer calibration data for axis (%d), disabling calibration.",
2080 				 ds4->accel_calib_data[i].abs_code);
2081 			ds4->accel_calib_data[i].bias = 0;
2082 			ds4->accel_calib_data[i].sens_numer = DS4_ACC_RANGE;
2083 			ds4->accel_calib_data[i].sens_denom = S16_MAX;
2084 		}
2085 	}
2086 
2087 	return ret;
2088 }
2089 
2090 static int dualshock4_get_firmware_info(struct dualshock4 *ds4)
2091 {
2092 	u8 *buf;
2093 	int ret;
2094 
2095 	buf = kzalloc(DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE, GFP_KERNEL);
2096 	if (!buf)
2097 		return -ENOMEM;
2098 
2099 	/* Note USB and BT support the same feature report, but this report
2100 	 * lacks CRC support, so must be disabled in ps_get_report.
2101 	 */
2102 	ret = ps_get_report(ds4->base.hdev, DS4_FEATURE_REPORT_FIRMWARE_INFO, buf,
2103 			    DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE, false);
2104 	if (ret) {
2105 		hid_err(ds4->base.hdev, "Failed to retrieve DualShock4 firmware info: %d\n", ret);
2106 		goto err_free;
2107 	}
2108 
2109 	ds4->base.hw_version = get_unaligned_le16(&buf[35]);
2110 	ds4->base.fw_version = get_unaligned_le16(&buf[41]);
2111 
2112 err_free:
2113 	kfree(buf);
2114 	return ret;
2115 }
2116 
2117 static int dualshock4_get_mac_address(struct dualshock4 *ds4)
2118 {
2119 	struct hid_device *hdev = ds4->base.hdev;
2120 	u8 *buf;
2121 	int ret = 0;
2122 
2123 	if (hdev->bus == BUS_USB) {
2124 		buf = kzalloc(DS4_FEATURE_REPORT_PAIRING_INFO_SIZE, GFP_KERNEL);
2125 		if (!buf)
2126 			return -ENOMEM;
2127 
2128 		ret = ps_get_report(hdev, DS4_FEATURE_REPORT_PAIRING_INFO, buf,
2129 				    DS4_FEATURE_REPORT_PAIRING_INFO_SIZE, false);
2130 		if (ret) {
2131 			hid_err(hdev, "Failed to retrieve DualShock4 pairing info: %d\n", ret);
2132 			goto err_free;
2133 		}
2134 
2135 		memcpy(ds4->base.mac_address, &buf[1], sizeof(ds4->base.mac_address));
2136 	} else {
2137 		/* Rely on HIDP for Bluetooth */
2138 		if (strlen(hdev->uniq) != 17)
2139 			return -EINVAL;
2140 
2141 		ret = sscanf(hdev->uniq, "%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx",
2142 			     &ds4->base.mac_address[5], &ds4->base.mac_address[4],
2143 			     &ds4->base.mac_address[3], &ds4->base.mac_address[2],
2144 			     &ds4->base.mac_address[1], &ds4->base.mac_address[0]);
2145 
2146 		if (ret != sizeof(ds4->base.mac_address))
2147 			return -EINVAL;
2148 
2149 		return 0;
2150 	}
2151 
2152 err_free:
2153 	kfree(buf);
2154 	return ret;
2155 }
2156 
2157 static enum led_brightness dualshock4_led_get_brightness(struct led_classdev *led)
2158 {
2159 	struct hid_device *hdev = to_hid_device(led->dev->parent);
2160 	struct dualshock4 *ds4 = hid_get_drvdata(hdev);
2161 	unsigned int led_index;
2162 
2163 	led_index = led - ds4->lightbar_leds;
2164 	switch (led_index) {
2165 	case 0:
2166 		return ds4->lightbar_red;
2167 	case 1:
2168 		return ds4->lightbar_green;
2169 	case 2:
2170 		return ds4->lightbar_blue;
2171 	case 3:
2172 		return ds4->lightbar_enabled;
2173 	}
2174 
2175 	return -1;
2176 }
2177 
2178 static int dualshock4_led_set_blink(struct led_classdev *led, unsigned long *delay_on,
2179 				    unsigned long *delay_off)
2180 {
2181 	struct hid_device *hdev = to_hid_device(led->dev->parent);
2182 	struct dualshock4 *ds4 = hid_get_drvdata(hdev);
2183 
2184 	scoped_guard(spinlock_irqsave, &ds4->base.lock) {
2185 		if (!*delay_on && !*delay_off) {
2186 			/* Default to 1 Hz (50 centiseconds on, 50 centiseconds off). */
2187 			ds4->lightbar_blink_on = 50;
2188 			ds4->lightbar_blink_off = 50;
2189 		} else {
2190 			/* Blink delays in centiseconds. */
2191 			ds4->lightbar_blink_on = min_t(unsigned long, *delay_on / 10,
2192 						       DS4_LIGHTBAR_MAX_BLINK);
2193 			ds4->lightbar_blink_off = min_t(unsigned long, *delay_off / 10,
2194 							DS4_LIGHTBAR_MAX_BLINK);
2195 		}
2196 
2197 		ds4->update_lightbar_blink = true;
2198 	}
2199 
2200 	dualshock4_schedule_work(ds4);
2201 
2202 	/* Report scaled values back to LED subsystem */
2203 	*delay_on = ds4->lightbar_blink_on * 10;
2204 	*delay_off = ds4->lightbar_blink_off * 10;
2205 
2206 	return 0;
2207 }
2208 
2209 static int dualshock4_led_set_brightness(struct led_classdev *led, enum led_brightness value)
2210 {
2211 	struct hid_device *hdev = to_hid_device(led->dev->parent);
2212 	struct dualshock4 *ds4 = hid_get_drvdata(hdev);
2213 	unsigned int led_index;
2214 
2215 	scoped_guard(spinlock_irqsave, &ds4->base.lock) {
2216 		led_index = led - ds4->lightbar_leds;
2217 		switch (led_index) {
2218 		case 0:
2219 			ds4->lightbar_red = value;
2220 			break;
2221 		case 1:
2222 			ds4->lightbar_green = value;
2223 			break;
2224 		case 2:
2225 			ds4->lightbar_blue = value;
2226 			break;
2227 		case 3:
2228 			ds4->lightbar_enabled = !!value;
2229 
2230 			/* brightness = 0 also cancels blinking in Linux. */
2231 			if (!ds4->lightbar_enabled) {
2232 				ds4->lightbar_blink_off = 0;
2233 				ds4->lightbar_blink_on = 0;
2234 				ds4->update_lightbar_blink = true;
2235 			}
2236 		}
2237 
2238 		ds4->update_lightbar = true;
2239 	}
2240 
2241 	dualshock4_schedule_work(ds4);
2242 
2243 	return 0;
2244 }
2245 
2246 static void dualshock4_init_output_report(struct dualshock4 *ds4,
2247 					  struct dualshock4_output_report *rp, void *buf)
2248 {
2249 	struct hid_device *hdev = ds4->base.hdev;
2250 
2251 	if (hdev->bus == BUS_BLUETOOTH) {
2252 		struct dualshock4_output_report_bt *bt = buf;
2253 
2254 		memset(bt, 0, sizeof(*bt));
2255 		bt->report_id = DS4_OUTPUT_REPORT_BT;
2256 
2257 		rp->data = buf;
2258 		rp->len = sizeof(*bt);
2259 		rp->bt = bt;
2260 		rp->usb = NULL;
2261 		rp->common = &bt->common;
2262 	} else { /* USB */
2263 		struct dualshock4_output_report_usb *usb = buf;
2264 
2265 		memset(usb, 0, sizeof(*usb));
2266 		usb->report_id = DS4_OUTPUT_REPORT_USB;
2267 
2268 		rp->data = buf;
2269 		rp->len = sizeof(*usb);
2270 		rp->bt = NULL;
2271 		rp->usb = usb;
2272 		rp->common = &usb->common;
2273 	}
2274 }
2275 
2276 static void dualshock4_output_worker(struct work_struct *work)
2277 {
2278 	struct dualshock4 *ds4 = container_of(work, struct dualshock4, output_worker);
2279 	struct dualshock4_output_report report;
2280 	struct dualshock4_output_report_common *common;
2281 
2282 	dualshock4_init_output_report(ds4, &report, ds4->output_report_dmabuf);
2283 	common = report.common;
2284 
2285 	scoped_guard(spinlock_irqsave, &ds4->base.lock) {
2286 		/*
2287 		 * Some 3rd party gamepads expect updates to rumble and lightbar
2288 		 * together, and setting one may cancel the other.
2289 		 *
2290 		 * Let's maximise compatibility by always sending rumble and lightbar
2291 		 * updates together, even when only one has been scheduled, resulting
2292 		 * in:
2293 		 *
2294 		 *   ds4->valid_flag0 >= 0x03
2295 		 *
2296 		 * Hopefully this will maximise compatibility with third-party pads.
2297 		 *
2298 		 * Any further update bits, such as 0x04 for lightbar blinking, will
2299 		 * be or'd on top of this like before.
2300 		 */
2301 		if (ds4->update_rumble || ds4->update_lightbar) {
2302 			ds4->update_rumble = true; /* 0x01 */
2303 			ds4->update_lightbar = true; /* 0x02 */
2304 		}
2305 
2306 		if (ds4->update_rumble) {
2307 			/* Select classic rumble style haptics and enable it. */
2308 			common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_MOTOR;
2309 			common->motor_left = ds4->motor_left;
2310 			common->motor_right = ds4->motor_right;
2311 			ds4->update_rumble = false;
2312 		}
2313 
2314 		if (ds4->update_lightbar) {
2315 			common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_LED;
2316 			/* Compatible behavior with hid-sony, which used a dummy global LED to
2317 			 * allow enabling/disabling the lightbar. The global LED maps to
2318 			 * lightbar_enabled.
2319 			 */
2320 			common->lightbar_red = ds4->lightbar_enabled ? ds4->lightbar_red : 0;
2321 			common->lightbar_green = ds4->lightbar_enabled ? ds4->lightbar_green : 0;
2322 			common->lightbar_blue = ds4->lightbar_enabled ? ds4->lightbar_blue : 0;
2323 			ds4->update_lightbar = false;
2324 		}
2325 
2326 		if (ds4->update_lightbar_blink) {
2327 			common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_LED_BLINK;
2328 			common->lightbar_blink_on = ds4->lightbar_blink_on;
2329 			common->lightbar_blink_off = ds4->lightbar_blink_off;
2330 			ds4->update_lightbar_blink = false;
2331 		}
2332 	}
2333 
2334 	/* Bluetooth packets need additional flags as well as a CRC in the last 4 bytes. */
2335 	if (report.bt) {
2336 		u32 crc;
2337 		u8 seed = PS_OUTPUT_CRC32_SEED;
2338 
2339 		/* Hardware control flags need to set to let the device know
2340 		 * there is HID data as well as CRC.
2341 		 */
2342 		report.bt->hw_control = DS4_OUTPUT_HWCTL_HID | DS4_OUTPUT_HWCTL_CRC32;
2343 
2344 		if (ds4->update_bt_poll_interval) {
2345 			report.bt->hw_control |= ds4->bt_poll_interval;
2346 			ds4->update_bt_poll_interval = false;
2347 		}
2348 
2349 		crc = crc32_le(0xFFFFFFFF, &seed, 1);
2350 		crc = ~crc32_le(crc, report.data, report.len - 4);
2351 
2352 		report.bt->crc32 = cpu_to_le32(crc);
2353 	}
2354 
2355 	hid_hw_output_report(ds4->base.hdev, report.data, report.len);
2356 }
2357 
2358 static int dualshock4_parse_report(struct ps_device *ps_dev, struct hid_report *report,
2359 				   u8 *data, int size)
2360 {
2361 	struct hid_device *hdev = ps_dev->hdev;
2362 	struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base);
2363 	struct dualshock4_input_report_common *ds4_report;
2364 	struct dualshock4_touch_report *touch_reports;
2365 	u8 battery_capacity, num_touch_reports, value;
2366 	int battery_status, i, j;
2367 	u16 sensor_timestamp;
2368 	bool is_minimal = false;
2369 
2370 	/*
2371 	 * DualShock4 in USB uses the full HID report for reportID 1, but
2372 	 * Bluetooth uses a minimal HID report for reportID 1 and reports
2373 	 * the full report using reportID 17.
2374 	 */
2375 	if (hdev->bus == BUS_USB && report->id == DS4_INPUT_REPORT_USB &&
2376 	    size == DS4_INPUT_REPORT_USB_SIZE) {
2377 		struct dualshock4_input_report_usb *usb =
2378 			(struct dualshock4_input_report_usb *)data;
2379 
2380 		ds4_report = &usb->common;
2381 		num_touch_reports = usb->num_touch_reports;
2382 		touch_reports = usb->touch_reports;
2383 	} else if (hdev->bus == BUS_BLUETOOTH && report->id == DS4_INPUT_REPORT_BT &&
2384 		   size == DS4_INPUT_REPORT_BT_SIZE) {
2385 		struct dualshock4_input_report_bt *bt = (struct dualshock4_input_report_bt *)data;
2386 		u32 report_crc = get_unaligned_le32(&bt->crc32);
2387 
2388 		/* Last 4 bytes of input report contains CRC. */
2389 		if (!ps_check_crc32(PS_INPUT_CRC32_SEED, data, size - 4, report_crc)) {
2390 			hid_err(hdev, "DualShock4 input CRC's check failed\n");
2391 			return -EILSEQ;
2392 		}
2393 
2394 		ds4_report = &bt->common;
2395 		num_touch_reports = bt->num_touch_reports;
2396 		touch_reports = bt->touch_reports;
2397 	} else if (hdev->bus == BUS_BLUETOOTH &&
2398 		   report->id == DS4_INPUT_REPORT_BT_MINIMAL &&
2399 			 size == DS4_INPUT_REPORT_BT_MINIMAL_SIZE) {
2400 		/* Some third-party pads never switch to the full 0x11 report.
2401 		 * The short 0x01 report is 10 bytes long:
2402 		 *   u8 report_id == 0x01
2403 		 *   u8 first_bytes_of_full_report[9]
2404 		 * So let's reuse the full report parser, and stop it after
2405 		 * parsing the buttons.
2406 		 */
2407 		ds4_report = (struct dualshock4_input_report_common *)&data[1];
2408 		is_minimal = true;
2409 	} else {
2410 		hid_err(hdev, "Unhandled reportID=%d\n", report->id);
2411 		return -1;
2412 	}
2413 
2414 	input_report_abs(ds4->gamepad, ABS_X,  ds4_report->x);
2415 	input_report_abs(ds4->gamepad, ABS_Y,  ds4_report->y);
2416 	input_report_abs(ds4->gamepad, ABS_RX, ds4_report->rx);
2417 	input_report_abs(ds4->gamepad, ABS_RY, ds4_report->ry);
2418 	input_report_abs(ds4->gamepad, ABS_Z,  ds4_report->z);
2419 	input_report_abs(ds4->gamepad, ABS_RZ, ds4_report->rz);
2420 
2421 	value = ds4_report->buttons[0] & DS_BUTTONS0_HAT_SWITCH;
2422 	if (value >= ARRAY_SIZE(ps_gamepad_hat_mapping))
2423 		value = 8; /* center */
2424 	input_report_abs(ds4->gamepad, ABS_HAT0X, ps_gamepad_hat_mapping[value].x);
2425 	input_report_abs(ds4->gamepad, ABS_HAT0Y, ps_gamepad_hat_mapping[value].y);
2426 
2427 	input_report_key(ds4->gamepad, BTN_WEST,   ds4_report->buttons[0] & DS_BUTTONS0_SQUARE);
2428 	input_report_key(ds4->gamepad, BTN_SOUTH,  ds4_report->buttons[0] & DS_BUTTONS0_CROSS);
2429 	input_report_key(ds4->gamepad, BTN_EAST,   ds4_report->buttons[0] & DS_BUTTONS0_CIRCLE);
2430 	input_report_key(ds4->gamepad, BTN_NORTH,  ds4_report->buttons[0] & DS_BUTTONS0_TRIANGLE);
2431 	input_report_key(ds4->gamepad, BTN_TL,     ds4_report->buttons[1] & DS_BUTTONS1_L1);
2432 	input_report_key(ds4->gamepad, BTN_TR,     ds4_report->buttons[1] & DS_BUTTONS1_R1);
2433 	input_report_key(ds4->gamepad, BTN_TL2,    ds4_report->buttons[1] & DS_BUTTONS1_L2);
2434 	input_report_key(ds4->gamepad, BTN_TR2,    ds4_report->buttons[1] & DS_BUTTONS1_R2);
2435 	input_report_key(ds4->gamepad, BTN_SELECT, ds4_report->buttons[1] & DS_BUTTONS1_CREATE);
2436 	input_report_key(ds4->gamepad, BTN_START,  ds4_report->buttons[1] & DS_BUTTONS1_OPTIONS);
2437 	input_report_key(ds4->gamepad, BTN_THUMBL, ds4_report->buttons[1] & DS_BUTTONS1_L3);
2438 	input_report_key(ds4->gamepad, BTN_THUMBR, ds4_report->buttons[1] & DS_BUTTONS1_R3);
2439 	input_report_key(ds4->gamepad, BTN_MODE,   ds4_report->buttons[2] & DS_BUTTONS2_PS_HOME);
2440 	input_sync(ds4->gamepad);
2441 
2442 	if (is_minimal)
2443 		return 0;
2444 
2445 	/* Parse and calibrate gyroscope data. */
2446 	for (i = 0; i < ARRAY_SIZE(ds4_report->gyro); i++) {
2447 		int raw_data = (short)le16_to_cpu(ds4_report->gyro[i]);
2448 		int calib_data = mult_frac(ds4->gyro_calib_data[i].sens_numer,
2449 					   raw_data, ds4->gyro_calib_data[i].sens_denom);
2450 
2451 		input_report_abs(ds4->sensors, ds4->gyro_calib_data[i].abs_code, calib_data);
2452 	}
2453 
2454 	/* Parse and calibrate accelerometer data. */
2455 	for (i = 0; i < ARRAY_SIZE(ds4_report->accel); i++) {
2456 		int raw_data = (short)le16_to_cpu(ds4_report->accel[i]);
2457 		int calib_data = mult_frac(ds4->accel_calib_data[i].sens_numer,
2458 					   raw_data - ds4->accel_calib_data[i].bias,
2459 					   ds4->accel_calib_data[i].sens_denom);
2460 
2461 		input_report_abs(ds4->sensors, ds4->accel_calib_data[i].abs_code, calib_data);
2462 	}
2463 
2464 	/* Convert timestamp (in 5.33us unit) to timestamp_us */
2465 	sensor_timestamp = le16_to_cpu(ds4_report->sensor_timestamp);
2466 	if (!ds4->sensor_timestamp_initialized) {
2467 		ds4->sensor_timestamp_us = DIV_ROUND_CLOSEST(sensor_timestamp * 16, 3);
2468 		ds4->sensor_timestamp_initialized = true;
2469 	} else {
2470 		u16 delta;
2471 
2472 		if (ds4->prev_sensor_timestamp > sensor_timestamp)
2473 			delta = (U16_MAX - ds4->prev_sensor_timestamp + sensor_timestamp + 1);
2474 		else
2475 			delta = sensor_timestamp - ds4->prev_sensor_timestamp;
2476 		ds4->sensor_timestamp_us += DIV_ROUND_CLOSEST(delta * 16, 3);
2477 	}
2478 	ds4->prev_sensor_timestamp = sensor_timestamp;
2479 	input_event(ds4->sensors, EV_MSC, MSC_TIMESTAMP, ds4->sensor_timestamp_us);
2480 	input_sync(ds4->sensors);
2481 
2482 	for (i = 0; i < num_touch_reports; i++) {
2483 		struct dualshock4_touch_report *touch_report = &touch_reports[i];
2484 
2485 		for (j = 0; j < ARRAY_SIZE(touch_report->points); j++) {
2486 			struct dualshock4_touch_point *point = &touch_report->points[j];
2487 			bool active = (point->contact & DS4_TOUCH_POINT_INACTIVE) ? false : true;
2488 
2489 			input_mt_slot(ds4->touchpad, j);
2490 			input_mt_report_slot_state(ds4->touchpad, MT_TOOL_FINGER, active);
2491 
2492 			if (active) {
2493 				input_report_abs(ds4->touchpad, ABS_MT_POSITION_X,
2494 						 DS4_TOUCH_POINT_X(point->x_hi, point->x_lo));
2495 				input_report_abs(ds4->touchpad, ABS_MT_POSITION_Y,
2496 						 DS4_TOUCH_POINT_Y(point->y_hi, point->y_lo));
2497 			}
2498 		}
2499 		input_mt_sync_frame(ds4->touchpad);
2500 		input_sync(ds4->touchpad);
2501 	}
2502 	input_report_key(ds4->touchpad, BTN_LEFT, ds4_report->buttons[2] & DS_BUTTONS2_TOUCHPAD);
2503 
2504 	/*
2505 	 * Interpretation of the battery_capacity data depends on the cable state.
2506 	 * When no cable is connected (bit4 is 0):
2507 	 * - 0:10: percentage in units of 10%.
2508 	 * When a cable is plugged in:
2509 	 * - 0-10: percentage in units of 10%.
2510 	 * - 11: battery is full
2511 	 * - 14: not charging due to Voltage or temperature error
2512 	 * - 15: charge error
2513 	 */
2514 	if (ds4_report->status[0] & DS4_STATUS0_CABLE_STATE) {
2515 		u8 battery_data = ds4_report->status[0] & DS4_STATUS0_BATTERY_CAPACITY;
2516 
2517 		if (battery_data < 10) {
2518 			/* Take the mid-point for each battery capacity value,
2519 			 * because on the hardware side 0 = 0-9%, 1=10-19%, etc.
2520 			 * This matches official platform behavior, which does
2521 			 * the same.
2522 			 */
2523 			battery_capacity = battery_data * 10 + 5;
2524 			battery_status = POWER_SUPPLY_STATUS_CHARGING;
2525 		} else if (battery_data == 10) {
2526 			battery_capacity = 100;
2527 			battery_status = POWER_SUPPLY_STATUS_CHARGING;
2528 		} else if (battery_data == DS4_BATTERY_STATUS_FULL) {
2529 			battery_capacity = 100;
2530 			battery_status = POWER_SUPPLY_STATUS_FULL;
2531 		} else { /* 14, 15 and undefined values */
2532 			battery_capacity = 0;
2533 			battery_status = POWER_SUPPLY_STATUS_UNKNOWN;
2534 		}
2535 	} else {
2536 		u8 battery_data = ds4_report->status[0] & DS4_STATUS0_BATTERY_CAPACITY;
2537 
2538 		if (battery_data < 10)
2539 			battery_capacity = battery_data * 10 + 5;
2540 		else /* 10 */
2541 			battery_capacity = 100;
2542 
2543 		battery_status = POWER_SUPPLY_STATUS_DISCHARGING;
2544 	}
2545 
2546 	scoped_guard(spinlock_irqsave, &ps_dev->lock) {
2547 		ps_dev->battery_capacity = battery_capacity;
2548 		ps_dev->battery_status = battery_status;
2549 	}
2550 
2551 	return 0;
2552 }
2553 
2554 static int dualshock4_dongle_parse_report(struct ps_device *ps_dev, struct hid_report *report,
2555 					  u8 *data, int size)
2556 {
2557 	struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base);
2558 	bool connected = false;
2559 
2560 	/* The dongle reports data using the main USB report (0x1) no matter whether a controller
2561 	 * is connected with mostly zeros. The report does contain dongle status, which we use to
2562 	 * determine if a controller is connected and if so we forward to the regular DualShock4
2563 	 * parsing code.
2564 	 */
2565 	if (data[0] == DS4_INPUT_REPORT_USB && size == DS4_INPUT_REPORT_USB_SIZE) {
2566 		struct dualshock4_input_report_common *ds4_report =
2567 			(struct dualshock4_input_report_common *)&data[1];
2568 
2569 		connected = ds4_report->status[1] & DS4_STATUS1_DONGLE_STATE ? false : true;
2570 
2571 		if (ds4->dongle_state == DONGLE_DISCONNECTED && connected) {
2572 			hid_info(ps_dev->hdev, "DualShock 4 USB dongle: controller connected\n");
2573 
2574 			dualshock4_set_default_lightbar_colors(ds4);
2575 
2576 			scoped_guard(spinlock_irqsave, &ps_dev->lock)
2577 				ds4->dongle_state = DONGLE_CALIBRATING;
2578 
2579 			schedule_work(&ds4->dongle_hotplug_worker);
2580 
2581 			/* Don't process the report since we don't have
2582 			 * calibration data, but let hidraw have it anyway.
2583 			 */
2584 			return 0;
2585 		} else if ((ds4->dongle_state == DONGLE_CONNECTED ||
2586 			    ds4->dongle_state == DONGLE_DISABLED) && !connected) {
2587 			hid_info(ps_dev->hdev, "DualShock 4 USB dongle: controller disconnected\n");
2588 
2589 			scoped_guard(spinlock_irqsave, &ps_dev->lock)
2590 				ds4->dongle_state = DONGLE_DISCONNECTED;
2591 
2592 			/* Return 0, so hidraw can get the report. */
2593 			return 0;
2594 		} else if (ds4->dongle_state == DONGLE_CALIBRATING ||
2595 			   ds4->dongle_state == DONGLE_DISABLED ||
2596 			   ds4->dongle_state == DONGLE_DISCONNECTED) {
2597 			/* Return 0, so hidraw can get the report. */
2598 			return 0;
2599 		}
2600 	}
2601 
2602 	if (connected)
2603 		return dualshock4_parse_report(ps_dev, report, data, size);
2604 
2605 	return 0;
2606 }
2607 
2608 static int dualshock4_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect)
2609 {
2610 	struct hid_device *hdev = input_get_drvdata(dev);
2611 	struct dualshock4 *ds4 = hid_get_drvdata(hdev);
2612 
2613 	if (effect->type != FF_RUMBLE)
2614 		return 0;
2615 
2616 	scoped_guard(spinlock_irqsave, &ds4->base.lock) {
2617 		ds4->update_rumble = true;
2618 		ds4->motor_left = effect->u.rumble.strong_magnitude / 256;
2619 		ds4->motor_right = effect->u.rumble.weak_magnitude / 256;
2620 	}
2621 
2622 	dualshock4_schedule_work(ds4);
2623 	return 0;
2624 }
2625 
2626 static void dualshock4_remove(struct ps_device *ps_dev)
2627 {
2628 	struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base);
2629 
2630 	scoped_guard(spinlock_irqsave, &ds4->base.lock)
2631 		ds4->output_worker_initialized = false;
2632 
2633 	cancel_work_sync(&ds4->output_worker);
2634 
2635 	if (ps_dev->hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE)
2636 		cancel_work_sync(&ds4->dongle_hotplug_worker);
2637 }
2638 
2639 static inline void dualshock4_schedule_work(struct dualshock4 *ds4)
2640 {
2641 	/* Using scoped_guard() instead of guard() to make sparse happy */
2642 	scoped_guard(spinlock_irqsave, &ds4->base.lock)
2643 		if (ds4->output_worker_initialized)
2644 			schedule_work(&ds4->output_worker);
2645 }
2646 
2647 static void dualshock4_set_bt_poll_interval(struct dualshock4 *ds4, u8 interval)
2648 {
2649 	ds4->bt_poll_interval = interval;
2650 	ds4->update_bt_poll_interval = true;
2651 	dualshock4_schedule_work(ds4);
2652 }
2653 
2654 /* Set default lightbar color based on player. */
2655 static void dualshock4_set_default_lightbar_colors(struct dualshock4 *ds4)
2656 {
2657 	/* Use same player colors as PlayStation 4.
2658 	 * Array of colors is in RGB.
2659 	 */
2660 	static const int player_colors[4][3] = {
2661 		{ 0x00, 0x00, 0x40 }, /* Blue */
2662 		{ 0x40, 0x00, 0x00 }, /* Red */
2663 		{ 0x00, 0x40, 0x00 }, /* Green */
2664 		{ 0x20, 0x00, 0x20 }  /* Pink */
2665 	};
2666 
2667 	u8 player_id = ds4->base.player_id % ARRAY_SIZE(player_colors);
2668 
2669 	ds4->lightbar_enabled = true;
2670 	ds4->lightbar_red = player_colors[player_id][0];
2671 	ds4->lightbar_green = player_colors[player_id][1];
2672 	ds4->lightbar_blue = player_colors[player_id][2];
2673 
2674 	ds4->update_lightbar = true;
2675 	dualshock4_schedule_work(ds4);
2676 }
2677 
2678 static struct ps_device *dualshock4_create(struct hid_device *hdev)
2679 {
2680 	struct dualshock4 *ds4;
2681 	struct ps_device *ps_dev;
2682 	u8 max_output_report_size;
2683 	int i, ret;
2684 
2685 	/* The DualShock4 has an RGB lightbar, which the original hid-sony driver
2686 	 * exposed as a set of 4 LEDs for the 3 color channels and a global control.
2687 	 * Ideally this should have used the multi-color LED class, which didn't exist
2688 	 * yet. In addition the driver used a naming scheme not compliant with the LED
2689 	 * naming spec by using "<mac_address>:<color>", which contained many colons.
2690 	 * We use a more compliant by using "<device_name>:<color>" name now. Ideally
2691 	 * would have been "<device_name>:<color>:indicator", but that would break
2692 	 * existing applications (e.g. Android). Nothing matches against MAC address.
2693 	 */
2694 	static const struct ps_led_info lightbar_leds_info[] = {
2695 		{ NULL, "red", 255, dualshock4_led_get_brightness,
2696 		  dualshock4_led_set_brightness },
2697 		{ NULL, "green", 255, dualshock4_led_get_brightness,
2698 		  dualshock4_led_set_brightness },
2699 		{ NULL, "blue", 255, dualshock4_led_get_brightness,
2700 		  dualshock4_led_set_brightness },
2701 		{ NULL, "global", 1, dualshock4_led_get_brightness,
2702 		  dualshock4_led_set_brightness, dualshock4_led_set_blink },
2703 	};
2704 
2705 	ds4 = devm_kzalloc(&hdev->dev, sizeof(*ds4), GFP_KERNEL);
2706 	if (!ds4)
2707 		return ERR_PTR(-ENOMEM);
2708 
2709 	/*
2710 	 * Patch version to allow userspace to distinguish between
2711 	 * hid-generic vs hid-playstation axis and button mapping.
2712 	 */
2713 	hdev->version |= HID_PLAYSTATION_VERSION_PATCH;
2714 
2715 	ps_dev = &ds4->base;
2716 	ps_dev->hdev = hdev;
2717 	spin_lock_init(&ps_dev->lock);
2718 	ps_dev->battery_capacity = 100; /* initial value until parse_report. */
2719 	ps_dev->battery_status = POWER_SUPPLY_STATUS_UNKNOWN;
2720 	ps_dev->parse_report = dualshock4_parse_report;
2721 	ps_dev->remove = dualshock4_remove;
2722 	INIT_WORK(&ds4->output_worker, dualshock4_output_worker);
2723 	ds4->output_worker_initialized = true;
2724 	hid_set_drvdata(hdev, ds4);
2725 
2726 	max_output_report_size = sizeof(struct dualshock4_output_report_bt);
2727 	ds4->output_report_dmabuf = devm_kzalloc(&hdev->dev, max_output_report_size, GFP_KERNEL);
2728 	if (!ds4->output_report_dmabuf)
2729 		return ERR_PTR(-ENOMEM);
2730 
2731 	if (hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE) {
2732 		ds4->dongle_state = DONGLE_DISCONNECTED;
2733 		INIT_WORK(&ds4->dongle_hotplug_worker, dualshock4_dongle_calibration_work);
2734 
2735 		/* Override parse report for dongle specific hotplug handling. */
2736 		ps_dev->parse_report = dualshock4_dongle_parse_report;
2737 	}
2738 
2739 	ret = dualshock4_get_mac_address(ds4);
2740 	if (ret) {
2741 		hid_err(hdev, "Failed to get MAC address from DualShock4\n");
2742 		return ERR_PTR(ret);
2743 	}
2744 	snprintf(hdev->uniq, sizeof(hdev->uniq), "%pMR", ds4->base.mac_address);
2745 
2746 	ret = dualshock4_get_firmware_info(ds4);
2747 	if (ret) {
2748 		hid_warn(hdev, "Failed to get firmware info from DualShock4\n");
2749 		hid_warn(hdev, "HW/FW version data in sysfs will be invalid.\n");
2750 	}
2751 
2752 	ret = ps_devices_list_add(ps_dev);
2753 	if (ret)
2754 		return ERR_PTR(ret);
2755 
2756 	ret = dualshock4_get_calibration_data(ds4);
2757 	if (ret) {
2758 		hid_warn(hdev, "Failed to get calibration data from DualShock4\n");
2759 		hid_warn(hdev, "Gyroscope and accelerometer will be inaccurate.\n");
2760 	}
2761 
2762 	ds4->gamepad = ps_gamepad_create(hdev, dualshock4_play_effect);
2763 	if (IS_ERR(ds4->gamepad)) {
2764 		ret = PTR_ERR(ds4->gamepad);
2765 		goto err;
2766 	}
2767 
2768 	/* Use gamepad input device name as primary device name for e.g. LEDs */
2769 	ps_dev->input_dev_name = dev_name(&ds4->gamepad->dev);
2770 
2771 	ds4->sensors = ps_sensors_create(hdev, DS4_ACC_RANGE, DS4_ACC_RES_PER_G,
2772 					 DS4_GYRO_RANGE, DS4_GYRO_RES_PER_DEG_S);
2773 	if (IS_ERR(ds4->sensors)) {
2774 		ret = PTR_ERR(ds4->sensors);
2775 		goto err;
2776 	}
2777 
2778 	ds4->touchpad = ps_touchpad_create(hdev, DS4_TOUCHPAD_WIDTH, DS4_TOUCHPAD_HEIGHT, 2);
2779 	if (IS_ERR(ds4->touchpad)) {
2780 		ret = PTR_ERR(ds4->touchpad);
2781 		goto err;
2782 	}
2783 
2784 	ret = ps_device_register_battery(ps_dev);
2785 	if (ret)
2786 		goto err;
2787 
2788 	for (i = 0; i < ARRAY_SIZE(lightbar_leds_info); i++) {
2789 		const struct ps_led_info *led_info = &lightbar_leds_info[i];
2790 
2791 		ret = ps_led_register(ps_dev, &ds4->lightbar_leds[i], led_info);
2792 		if (ret < 0)
2793 			goto err;
2794 	}
2795 
2796 	dualshock4_set_bt_poll_interval(ds4, DS4_BT_DEFAULT_POLL_INTERVAL_MS);
2797 
2798 	ret = ps_device_set_player_id(ps_dev);
2799 	if (ret) {
2800 		hid_err(hdev, "Failed to assign player id for DualShock4: %d\n", ret);
2801 		goto err;
2802 	}
2803 
2804 	dualshock4_set_default_lightbar_colors(ds4);
2805 
2806 	/*
2807 	 * Reporting hardware and firmware is important as there are frequent updates, which
2808 	 * can change behavior.
2809 	 */
2810 	hid_info(hdev, "Registered DualShock4 controller hw_version=0x%08x fw_version=0x%08x\n",
2811 		 ds4->base.hw_version, ds4->base.fw_version);
2812 	return &ds4->base;
2813 
2814 err:
2815 	ps_devices_list_remove(ps_dev);
2816 	return ERR_PTR(ret);
2817 }
2818 
2819 static int ps_raw_event(struct hid_device *hdev, struct hid_report *report,
2820 			u8 *data, int size)
2821 {
2822 	struct ps_device *dev = hid_get_drvdata(hdev);
2823 
2824 	if (dev && dev->parse_report)
2825 		return dev->parse_report(dev, report, data, size);
2826 
2827 	return 0;
2828 }
2829 
2830 static int ps_probe(struct hid_device *hdev, const struct hid_device_id *id)
2831 {
2832 	struct ps_device *dev;
2833 	int ret;
2834 
2835 	ret = hid_parse(hdev);
2836 	if (ret) {
2837 		hid_err(hdev, "Parse failed\n");
2838 		return ret;
2839 	}
2840 
2841 	ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW);
2842 	if (ret) {
2843 		hid_err(hdev, "Failed to start HID device\n");
2844 		return ret;
2845 	}
2846 
2847 	ret = hid_hw_open(hdev);
2848 	if (ret) {
2849 		hid_err(hdev, "Failed to open HID device\n");
2850 		goto err_stop;
2851 	}
2852 
2853 	if (id->driver_data == PS_TYPE_PS4_DUALSHOCK4) {
2854 		dev = dualshock4_create(hdev);
2855 		if (IS_ERR(dev)) {
2856 			hid_err(hdev, "Failed to create dualshock4.\n");
2857 			ret = PTR_ERR(dev);
2858 			goto err_close;
2859 		}
2860 	} else if (id->driver_data == PS_TYPE_PS5_DUALSENSE) {
2861 		dev = dualsense_create(hdev);
2862 		if (IS_ERR(dev)) {
2863 			hid_err(hdev, "Failed to create dualsense.\n");
2864 			ret = PTR_ERR(dev);
2865 			goto err_close;
2866 		}
2867 	}
2868 
2869 	return ret;
2870 
2871 err_close:
2872 	hid_hw_close(hdev);
2873 err_stop:
2874 	hid_hw_stop(hdev);
2875 	return ret;
2876 }
2877 
2878 static void ps_remove(struct hid_device *hdev)
2879 {
2880 	struct ps_device *dev = hid_get_drvdata(hdev);
2881 
2882 	ps_devices_list_remove(dev);
2883 	ps_device_release_player_id(dev);
2884 
2885 	if (dev->remove)
2886 		dev->remove(dev);
2887 
2888 	hid_hw_close(hdev);
2889 	hid_hw_stop(hdev);
2890 }
2891 
2892 static const struct hid_device_id ps_devices[] = {
2893 	/* Sony DualShock 4 controllers for PS4 */
2894 	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER),
2895 		.driver_data = PS_TYPE_PS4_DUALSHOCK4 },
2896 	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER),
2897 		.driver_data = PS_TYPE_PS4_DUALSHOCK4 },
2898 	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_2),
2899 		.driver_data = PS_TYPE_PS4_DUALSHOCK4 },
2900 	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_2),
2901 		.driver_data = PS_TYPE_PS4_DUALSHOCK4 },
2902 	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE),
2903 		.driver_data = PS_TYPE_PS4_DUALSHOCK4 },
2904 
2905 	/* Sony DualSense controllers for PS5 */
2906 	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER),
2907 		.driver_data = PS_TYPE_PS5_DUALSENSE },
2908 	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER),
2909 		.driver_data = PS_TYPE_PS5_DUALSENSE },
2910 	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER_2),
2911 		.driver_data = PS_TYPE_PS5_DUALSENSE },
2912 	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER_2),
2913 		.driver_data = PS_TYPE_PS5_DUALSENSE },
2914 	{ }
2915 };
2916 MODULE_DEVICE_TABLE(hid, ps_devices);
2917 
2918 static struct hid_driver ps_driver = {
2919 	.name		= "playstation",
2920 	.id_table	= ps_devices,
2921 	.probe		= ps_probe,
2922 	.remove		= ps_remove,
2923 	.raw_event	= ps_raw_event,
2924 	.driver = {
2925 		.dev_groups = ps_device_groups,
2926 	},
2927 };
2928 
2929 static int __init ps_init(void)
2930 {
2931 	return hid_register_driver(&ps_driver);
2932 }
2933 
2934 static void __exit ps_exit(void)
2935 {
2936 	hid_unregister_driver(&ps_driver);
2937 	ida_destroy(&ps_player_id_allocator);
2938 }
2939 
2940 module_init(ps_init);
2941 module_exit(ps_exit);
2942 
2943 MODULE_AUTHOR("Sony Interactive Entertainment");
2944 MODULE_DESCRIPTION("HID Driver for PlayStation peripherals.");
2945 MODULE_LICENSE("GPL");
2946